WO2020259184A1 - 信号收发装置和电子设备 - Google Patents

信号收发装置和电子设备 Download PDF

Info

Publication number
WO2020259184A1
WO2020259184A1 PCT/CN2020/092517 CN2020092517W WO2020259184A1 WO 2020259184 A1 WO2020259184 A1 WO 2020259184A1 CN 2020092517 W CN2020092517 W CN 2020092517W WO 2020259184 A1 WO2020259184 A1 WO 2020259184A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna
interference
module
interference signal
Prior art date
Application number
PCT/CN2020/092517
Other languages
English (en)
French (fr)
Inventor
李斌
肖石文
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020259184A1 publication Critical patent/WO2020259184A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver

Definitions

  • the embodiments of the present disclosure relate to the field of communication technologies, and in particular, to a signal transceiving device and electronic equipment.
  • the signal transceiver of the terminal equipment is usually configured with multiple antennas.
  • the signal transceiver of the terminal equipment is equipped with a 4G antenna and a 5G antenna at the same time, so that the terminal equipment can send and receive 4G signals and 5G signals through the 4G antenna and 5G antenna respectively.
  • the distance between the 4G antenna and the 5G antenna in the terminal device is small, which causes interference between the 4G antenna and the 5G antenna, which in turn causes the 4G signal received by the 4G antenna to be distorted, or The 5G signal received by the 5G antenna is distorted.
  • the 4G antenna in the terminal device sends 4G signals
  • the 5G antenna receives 5G signals
  • there is interference between the 4G antenna and the 5G antenna which causes the 5G antenna in the terminal device to receive 5G signals at the same time.
  • the interference signal sent by the 4G antenna causes distortion of the 5G signal received by the 5G antenna.
  • the embodiments of the present disclosure provide a signal transceiving device and electronic equipment to solve the problem of signal interference between multiple antennas in terminal equipment.
  • embodiments of the present disclosure provide a signal transceiving device, which includes: a first transceiving module, a second transceiving module, a first antenna, a second antenna, and a signal processing module, wherein: the output of the first transceiving module The terminal is connected to the input terminal of the signal processing module; the first output terminal of the signal processing module is connected to the first antenna, and the second output terminal of the signal processing module is connected to the input terminal of the second transceiver module and the transmission channel between the second antenna ; The second transceiver module is connected to the second antenna;
  • the signal processing module is used to split the first signal sent by the first transceiver module to the signal processing module into two first signals.
  • the first signal includes an interference signal and is also used to divide the first signal through the first output terminal.
  • the signal is sent to the first antenna, and the interference signal in the second channel of the first signal is acquired and adjusted, and the adjusted interference signal is sent to the input terminal of the second transceiver module through the second output terminal;
  • the second transceiver module is configured to receive the first target signal in the second signal received by the second antenna;
  • the second signal includes the interference signal in the first channel of the first signal that the first antenna is coupled to the second antenna, the phase of the interference signal in the first channel of the first signal is opposite to the phase of the adjusted interference signal, and the The amplitude of the interference signal in one first signal is the same as the amplitude of the adjusted interference signal, so that the interference signal in the first first signal is canceled with the adjusted interference signal in the transmission channel.
  • an embodiment of the present disclosure also provides an electronic device, which includes the signal transceiving device provided in the first aspect.
  • a signal processing module is added to the related signal transceiving device, so that the signal transceiving device can solve the problem of signal interference between the first antenna and the second antenna in the signal transceiving device. That is, the signal processing module adjusts the interference signal in the first signal sent by the first transceiver module to the signal processing module, so that the signal processing module can send to the transmission channel between the input terminal of the second transceiver module and the second antenna
  • the adjusted interference signal because the phase of the adjusted interference signal is opposite to the phase of the interference signal in the first signal, and the amplitude of the adjusted interference signal is the same as the amplitude of the interference signal, so that the first antenna
  • the interference signal can be canceled with the adjusted interference signal in the transmission channel, so that the second transceiver module can receive the signal received by the second antenna.
  • the first target signal avoids the interference of the interference signal coupled to the second antenna from the first antenna to the first target signal.
  • FIG. 1 is a schematic structural diagram of a related signal transceiving device provided by an embodiment of the disclosure
  • FIG. 2 is one of the structural schematic diagrams of a signal transceiving device provided by an embodiment of the disclosure
  • FIG. 3 is a second structural diagram of a signal transceiving device provided by an embodiment of the disclosure.
  • FIG. 4 is the third structural diagram of a signal transceiving device provided by an embodiment of the disclosure.
  • FIG. 5 is the fourth structural diagram of a signal transceiving device provided by an embodiment of the disclosure.
  • FIG. 6 is a fifth structural diagram of a signal transceiving device provided by an embodiment of the disclosure.
  • FIG. 7 is a sixth structural diagram of a signal transceiving device provided by an embodiment of the disclosure.
  • FIG. 8 is a seventh structural diagram of a signal transceiving device provided by an embodiment of the disclosure.
  • FIG. 9 is the eighth structural diagram of a signal transceiving device provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of the disclosure.
  • FIG. 1 is a schematic diagram of a typical 4G+5G dual-connected signal transceiver device in which 4G antennas and 5G antennas coexist (that is, 4G signals and 5G signals do not share antennas).
  • the signal transceiver device 100 includes 4G RF transceiver 101, 5G RF transceiver 102, first power amplifier module 103, second power amplifier module 104, duplexer 105, first RF switch 106, second RF switch 107, first coupler 108, The second coupler 109, the 4G antenna 110, and the 5G antenna 111, in which: the aforementioned 4G radio frequency transceiver 101, the first power amplifier module 103, the duplexer 105, the first radio frequency switch 106, the first coupler 108 and the 4G
  • the antenna 110 is connected in sequence, and the aforementioned first coupler 108 is connected to the aforementioned 4G radio frequency transceiver 101; the aforementioned 5G radio frequency transceiver 102, the second power
  • the aforementioned 4G radio frequency transceiver 101 is used to receive or send 4G signals; the aforementioned 5G radio frequency transceiver 102 is used to receive or transmit 5G signals; the aforementioned first power amplifier module 103 and second power amplifier module 104 Used to amplify the power of the signal; the aforementioned duplexer 105 is used to isolate the 4G signal sent by the 4G radio frequency transceiver 101 and the 4G signal received by the 4G antenna; the aforementioned first radio frequency switch 106 is used to realize the reception and transmission of 4G signals The above-mentioned first radio frequency switch 106 is also used for switching between different 4G frequency bands; the above-mentioned second radio frequency switch 107 is used for switching between receiving and transmitting 5G signals, and the above-mentioned second radio frequency switch 107 is also used for Realize switching between different 5G frequency bands; 4G antenna 110 is used to transmit 4G signals from 4G radio frequency transceiver 101 to 4G base stations, or to receive 4G signals transmitted
  • the 4G radio frequency transceiver 101 will generate second harmonics (ie interference signals) while generating the 4G original signal.
  • the 4G signal generated by the 4G radio frequency transceiver 101 includes: the 4G original signal generated by the 4G radio frequency transceiver 101 and the aforementioned interference signal.
  • the 4G antenna 110 After the 4G signal is coupled to the 4G antenna 110 through the first coupler 108, the 4G antenna 110 will The 4G original signal is sent to the corresponding 4G base station.
  • the 4G antenna 110 will couple the interference signal to the 5G antenna 111, so that the 5G antenna 111 will receive the 5G original signal at the same time.
  • the aforementioned interference signal will also be received, which will cause interference to the original 5G signal.
  • the terminal equipment works in the 4G B3 frequency band (that is, the uplink frequency is: 1710MHz to 1785MHz, and the downlink frequency is: 1805MHz to 1880MHz)
  • the 4G radio frequency transceiver 101 generates the first harmonic with the frequency of 1750MHz
  • a second harmonic with a frequency of 3500MHz is generated.
  • the terminal device is working in the 5G N77 frequency band at the same time (that is, the uplink frequency and the downlink frequency are both: 3300MHz to 4200MHz)
  • the frequency of the second harmonic just falls in the frequency band where the terminal device receives 5G signals. Therefore, the terminal device will simultaneously Receive the 5G signal and the second harmonic, which will cause interference to the 5G signal received by the terminal device.
  • the embodiments of the present disclosure provide a signal transceiving device.
  • the signal transceiving device can solve the problem of the first antenna and the second antenna in the signal transceiving device.
  • the signal processing module adjusts the interference signal in the first signal sent by the first transceiver module to the signal processing module, so that the signal processing module can send to the transmission channel between the input terminal of the second transceiver module and the second antenna
  • the adjusted interference signal because the phase of the adjusted interference signal is opposite to the phase of the interference signal in the first signal, and the amplitude of the adjusted interference signal is the same as the amplitude of the interference signal, so that the first antenna
  • the interference signal in the first signal is coupled to the second antenna
  • the interference signal can be canceled with the adjusted interference signal in the transmission channel, so that the second transceiver module can receive the signal received by the second antenna.
  • the first target signal avoids the interference of the interference signal coupled to the second antenna from the first antenna to the first target signal.
  • the “cancellation” mentioned in the embodiments of the present disclosure refers to the use of radio frequency interference cancellation technology to cancel two signals with opposite phases and the same amplitude.
  • the above-mentioned radio frequency interference cancellation technology refers to: using the principle of vector synthesis and superposition, the interference signal is compared to a vector in a rectangular space coordinate system, by finding a vector with the same information characteristics (such as signal amplitude) The inverse vector of, that is, find a signal with the opposite phase and the same amplitude as the interference signal, and combine these two vectors to cancel the interference signal.
  • the aforementioned signals with the same amplitude means that the absolute difference between the amplitudes of the two signals is greater than or equal to 0 and less than or equal to a predetermined threshold, that is, the amplitudes of the two signals may tend to be the same.
  • vector A is an interference signal
  • vector B is an equal-amplitude inverted vector with the same information characteristics as vector A. It is used to cancel the interference signal. The two are combined and superimposed. The resulting vector C tends to zero, that is, the interference signal Almost disappeared. It is understandable that the process of "cancellation” is the process of combining vector A and vector B.
  • the "coupling” mentioned in the embodiments of the present disclosure means that there is close coordination and mutual influence between the input and output of two or more circuit elements or electrical networks, and they interact from one side to the other through interaction.
  • the phenomenon of side transmission energy For example, the process in which a 4G antenna couples an interference signal to a 5G antenna is equivalent to a 4G antenna transmitting an interference signal to a 5G antenna.
  • the words “first”, “second”, etc. are used for the same items or similar items that have substantially the same function or effect.
  • words such as “first” and “second” do not limit the number and execution order.
  • the first signal and the second signal are used to distinguish different signals, rather than to describe the specific order of the signals.
  • the signal transceiving device 200 includes: a first transceiving module 201, a second transceiving module 202, a first antenna 203, and a Two antennas 204 and a signal processing module 205, wherein: the output terminal 201b of the first transceiver module 201 is connected to the input terminal 205a of the signal processing module 205; the first output terminal 205b of the signal processing module 205 is connected to the first antenna 203, and the signal processing The second output terminal 205c of the module 205 is connected to the transmission channel between the input terminal 202a of the second transceiver module 202 and the second antenna 204; the second transceiver module 202 is connected to the second antenna 204.
  • the above-mentioned signal processing module 205 is configured to split the first signal sent by the first transceiver module 201 to the signal processing module 205 into two first signals, and the first signals include interference signals.
  • the above-mentioned signal processing module 205 is also used to send the first signal of the two first signals to the first antenna 203 through the first output terminal 205b of the signal processing module 205, and to obtain and adjust the two first signals
  • the second channel of the interference signal in the first signal in the second path, and the second output terminal 205c of the signal processing module 205 sends the adjusted interference signal to the input terminal 202a of the second transceiver module 202.
  • the above-mentioned second transceiver module 202 is configured to receive the first target signal in the second signal received by the second antenna 204.
  • the second signal includes the interference signal in the first channel of the first signal that the first antenna is coupled to the second antenna, and the phase of the interference signal in the first channel of the first signal is opposite to the phase of the adjusted interference signal, And the amplitude of the interference signal in the first channel of the first signal is the same as the amplitude of the adjusted interference signal, so that the interference signal in the first channel of the first channel is canceled with the adjusted interference signal in the transmission channel.
  • phase of the interference signal in the first channel of the first signal is opposite to the phase of the adjusted interference signal. Specifically, the phase of the interference signal in the first channel of the first signal is different from the phase of the adjusted interference signal. The phase difference is 180 degrees.
  • the signal processing module 205 can adjust the phase of the interference signal in the second channel of the first signal to a phase difference of 180 degrees from the phase of the interference signal in the first channel of the first signal, and Adjust the amplitude of the interference signal in the second channel of the first signal to be equal to the amplitude of the interference signal in the first channel of the first signal.
  • it is affected by the hardware of the signal processing module 205 or the external environment.
  • the signal processing module 205 cannot adjust the interference signal in the second channel of the first signal to a signal with the opposite phase and the same amplitude as the interference signal in the first channel of the first signal, that is, the above-mentioned signal processing device
  • the cancellation cannot be completely realized, but the interference signal in the second signal can be reduced to a large extent.
  • the aforementioned first signal further includes: a second target signal, the second target signal is the original signal generated by the aforementioned first transceiver module 201, and the aforementioned interference signal is usually generated by the first transceiver module 201 The second harmonic or other higher harmonics generated at the same time as the second target signal.
  • the first transceiver module is a 4G radio frequency transceiver
  • the second transceiver module is a 5G radio frequency transceiver
  • the first signal is a 4G signal
  • the second signal may be a 5G signal
  • the first The target signal is a 5G original signal
  • the aforementioned second target signal is a 4G original signal
  • the aforementioned first signal is For a 5G signal
  • the second signal may be a 4G signal
  • the first target signal may be a 4G original signal
  • the first target signal may be a 5G original signal.
  • first output terminal 205b and the second output terminal 205c of the above-mentioned signal processing module 205 may be different output terminals or the same output terminal, which is not limited in the present disclosure.
  • the aforementioned signal processing module 205 when the aforementioned signal processing module 205 adjusts the interference signal, it can adjust the phase of the interference signal in the second path of the first signal according to the target phase offset, and adjust the second path of the first signal according to the target amplitude offset.
  • the above-mentioned target phase offset can be a predetermined threshold, or it can be flexibly set according to actual application scenarios, which is not limited in this disclosure.
  • the above-mentioned target amplitude offset can be a predetermined threshold, or it can be based on actual applications.
  • the scene is set flexibly, and this disclosure does not limit it. It should be noted that the above-mentioned target phase offset and target amplitude offset may be obtained by simulating the transmission process of the interference signal in the signal processing device.
  • the signal processing module 205 includes: a demultiplexing unit 2051 and a signal adjustment unit 2052 connected to the demultiplexing unit 2051, wherein: the input 2051a of the demultiplexing unit 2051 is connected to the first transceiver 2051
  • the output terminal 201b of the module 201 is connected, the first output terminal 2051b of the splitting unit 2051 is connected to the first antenna 203, the second output terminal 2051c of the splitting module 2051 is connected to the input terminal 2052a of the signal adjustment unit 2052, and the signal adjustment unit 2052
  • the output terminal 2052b of the second transceiver module 202 is connected to the transmission channel between the input terminal 202a of the second transceiver module 202 and the second antenna 204.
  • the above-mentioned demultiplexing unit 2051 is used to divide the first signal of the first path into two first signals, transmit the first signal of the two first signals to the first antenna 203, and transmit the first signal of the first signal to the first antenna 203.
  • the two first signals are transmitted to the signal adjustment unit 2052;
  • the above-mentioned signal adjustment unit 2052 is used to filter the first signal transmitted by the demultiplexing module unit 2051, obtain the interference signal in the first signal, and adjust the The interference signal then sends the adjusted interference signal to the input terminal 202a of the second transceiver module 202 through the output terminal 2052b of the signal adjustment unit 2052.
  • the above-mentioned branching unit may be a coupler (for example, a directional coupler), or a power divider, which is not limited in the present disclosure.
  • the above-mentioned coupler may be any of the following: 5DB coupler, 6DB coupler, 7DB coupler, 10DB coupler, which can be specifically determined according to actual use requirements, and this disclosure does not limit this; the above-mentioned power
  • the distributor can be any one of the following: a two-power distributor, a three-power distributor, or a four-power distributor, which can be specifically determined according to actual usage requirements, which is not limited in the present disclosure.
  • the signal processing module in the present disclosure needs to make the phase of the interference signal in the second first signal from the coupling end (ie, the branch The input end of the unit) is transmitted to the 5G RX transmission channel (that is, the transmission channel between the input end of the second transceiver module and the second antenna) is exactly 180 degrees out of phase.
  • the above-mentioned signal processing module 205 further includes: a delay unit 2053, wherein the delay unit 2053 is configured to convert the above-mentioned second path The output time of the interference signal in the first signal is delayed by a first preset period of time.
  • the above-mentioned first preset duration may be a predetermined threshold, or may be flexibly set according to actual application scenarios, which is not limited in the present disclosure.
  • the above-mentioned delay unit 2053 may be an RC differentiation circuit, or an IC chip composed of an RC differentiation circuit, a timer, and a comparator, which is not limited in the present disclosure.
  • the second output terminal 2051c of the branching unit 2051 is connected to the input terminal 2053a of the delay unit 2053, and the output terminal 2053b of the delay unit 2053 is connected to the signal adjustment unit 2052.
  • the input terminal 2052a of the signal adjustment unit 2052 is connected to the transmission channel between the output terminal 2052b of the signal adjustment unit 2052 and the input terminal 202a of the second transceiver module 202 and the second antenna 204.
  • the input terminal 2053a of the delay unit 2053 is connected to the output terminal 2052b of the signal adjustment unit 2052, and the output terminal 2053b of the delay unit 2053 is connected to the second transceiver module 202.
  • the transmission channel between the input terminal 202a and the second antenna 204 is connected.
  • the aforementioned signal adjustment unit 2052 includes: a first filter 20521, a phase shifter 20522, and an attenuator 20523, where:
  • the first filter 20521 is used to filter the second target signal in the second first signal to obtain the interference signal in the second first signal.
  • the above-mentioned phase shifter 20522 is used to adjust the phase of the interference signal in the second first signal.
  • the aforementioned attenuator 20523 is used to adjust the amplitude of the interference signal in the second first signal.
  • the second output terminal 2051c of the branching unit 2051, the first filter 20521, the phase shifter 20522, the attenuator 20523, and the transmission channel are connected in sequence.
  • the second output terminal 2051c of the splitting unit 2051 is connected to the input terminal 20521a of the first filter 20521
  • the output terminal 20521b of the first filter 20521 is connected to the input terminal 20522a of the phase shifter 20522.
  • the output terminal 20522b is connected to the input terminal 20523a of the attenuator 20523, and the output terminal 20523b of the attenuator 20523 is connected to the transmission channel between the input terminal 202a of the second transceiver module 202 and the second antenna 204, where:
  • the above-mentioned first filter 20521 is used to filter the first signal transmitted by the demultiplexing unit 2051 to obtain the interference signal in the first signal and send the interference signal to the phase shifter 20522; the above-mentioned phase shifter 20522 is used for The received interference signal is phase adjusted and the phase-adjusted interference signal is sent to the attenuator 20523; the above-mentioned attenuator 20523 is used to adjust the amplitude of the received interference signal after the phase is adjusted, and adjust the phase and The interference signal of amplitude is sent to the transmission channel to the input 202a of the second transceiver module 202 and the second antenna 204.
  • the second output end 2051c of the branching unit 2051, the first filter 20521, the attenuator 20523, the phase shifter 20522 and the transmission channel are connected in sequence.
  • the second output terminal 2051c of the demultiplexing unit 2051 is connected to the input terminal 20521a of the first filter 20521
  • the output terminal 20521b of the first filter 20521 is connected to the input terminal 20523a of the attenuator 20523
  • the output terminal of the attenuator 20523 20523b is connected to the input terminal 20522a of the phase shifter 20522
  • the output terminal 20522b of the phase shifter 20522 is connected to the transmission channel between the input terminal 202a of the second transceiver module 202 and the second antenna 204, where:
  • the above-mentioned first filter 20521 is used to filter the first signal transmitted by the demultiplexing unit 2051 to obtain the interference signal in the first signal and send the interference signal to the attenuator 20523; the above-mentioned attenuator 20523 is used to receive The interference signal received is adjusted in amplitude and the adjusted interference signal is sent to the phase shifter 20522; the above-mentioned phase shifter 20522 is used to adjust the phase of the received interference signal after adjusting the amplitude, and adjust the amplitude and The phase interference signal is sent to the transmission channel to the second transceiver module 202 and the second antenna 204.
  • the above-mentioned signal adjustment unit 2052 further includes: a delayer 20524, which is used to reduce the interference signal in the second channel of the first signal The output time is delayed to the second preset duration.
  • the above-mentioned second preset duration may be a predetermined threshold, or may be flexibly set according to actual application scenarios, which is not limited in the present disclosure.
  • the delayer can be arranged at any position between the first filter 20521, the phase shifter 20522, and the attenuator 20523, that is, the second output terminal 2051c of the branching unit 2051, the delayer 20524, the first The filter 20521, the attenuator 20523, the phase shifter 20522, and the transmission channel are connected in sequence, or the second output terminal 2051c of the demultiplexing unit 2051, the first filter 20521, the delayer 20524, the attenuator 20523, and the phase shifter 20522 And the transmission channels are connected in sequence, or the second output terminal 2051c of the splitting unit 2051, the first filter 20521, the attenuator 20523, the delayer 20524, the phase shifter 20522 and the transmission channel are connected in sequence, or the splitting unit 2051
  • the first filter 20521 can filter the first harmonic of 4G TX to obtain the 4G TX second harmonic.
  • This 4G TX second harmonic After the delay is delayed, the phase is shifted by the phase shifter, and finally the amplitude is attenuated by the attenuator, and then the adjusted 4G TX second harmonic is transmitted to the 5GRX receiving channel.
  • the above-mentioned signal transceiving device 200 further includes: a first power amplifier module 206, wherein: the first power amplifier module 206 and the second power amplifier module 206 are respectively The output end of the transceiver module 202 is connected to the second antenna 204, and the second output end 205c of the signal processing module 205 is connected to the transmission channel between the first power amplifier module 206 and the second antenna 204; the first power amplifier module described above 206 includes: a first power amplifier and a second filter, and the first power amplifying module 206 is used for amplifying signal power.
  • the above-mentioned signal transceiving apparatus 200 further includes: a second power amplifier 207, wherein the input terminal 207a of the second power amplifier 207 is connected to the first transceiving terminal 207
  • the output terminal 201b of the module 201 is connected, and the output terminal 207b of the second power amplifier 207 is connected to the input terminal 205a of the signal processing module 205.
  • the branching unit 2051 is used as a coupler (that is, the third coupler in Figure 9), the first transceiver module 201 is a 4G radio frequency transceiver, and the second transceiver module 201 is a 4G radio frequency transceiver.
  • the module 202 is a 5G radio frequency transceiver, the first antenna 203 is a 4G antenna, the second antenna 204 is a 5G antenna, and the delay unit 2053 is a delayer.
  • the signal transceiver device further includes: a second power amplifier module 208, a duplexer 209, a first radio frequency switch 210, a first coupler 211, a second coupler 212, a second radio frequency switch 213, and a controller 214 ,among them:
  • the aforementioned 4G radio frequency transceiver 201 is used to receive or send 4G signals; the aforementioned 5G radio frequency transceiver 202 is used to receive or transmit 5G signals; the aforementioned first power amplifier module 206 and second power amplifier module 208 And the second power amplifier 207 is used to amplify the power of the signal; the aforementioned duplexer 209 is used to isolate the 4G signal sent by the 4G radio frequency transceiver 201 and the 4G signal received by the 4G antenna 203; the aforementioned first radio frequency switch 210 is used To realize the switch between receiving and sending 4G signals, the aforementioned first radio frequency switch 210 is also used to switch between different 4G frequency bands; the aforementioned second radio switch 210 is used to switch between receiving and sending 5G signals, and the aforementioned first radio frequency switch 210 is used to switch between receiving and sending 5G signals.
  • the second RF switch 213 is also used to switch between different 5G frequency bands; the above-mentioned first coupler 211 is used to monitor the power of 4G signals, which is fed back to the 4G RF transceiver 201; the above-mentioned second coupler 212 is used to monitor the power of 5G signals , Feedback to the 5G radio frequency transceiver 202; the above controller 214 is used to control the 4G radio frequency transceiver 201 and the 5G radio frequency transceiver 202 to send and receive signals, and also to control the phase shift degree of the phase shifter 20522 and the attenuation value of the attenuator 20523.
  • the 4G signal when the 4G radio frequency transceiver 201 sends out a 4G signal, the 4G signal contains the 4G original signal and the interference signal sent by the 4G radio frequency transceiver 201.
  • the 4G signal is amplified by the second power amplifier 207 and then transmitted to the first Three couplers 2051, after the third coupler 2051 splits the 4G signal, one of the 4G signals will be output through the 4G antenna 203, and the other 4G signal will pass through the first filter 20521 to filter out the 4G original signal in the 4G signal.
  • the interference signal is phase-shifted by the phase shifter 20522, then the amplitude is attenuated by the attenuator 20523, and finally delayed by the delayer 2053, the adjusted interference signal will be transmitted to 5G The signal receiving channel.
  • the standard for the phase shifter to shift the phase of the interference signal is to make the phase of the interference signal through path 1 to point B differ by 180 degrees from the phase of the interference signal through path 2 to point B.
  • the standard for the attenuator to attenuate the amplitude of the interference signal is: it needs to meet the same loss of path 1 and path 2, that is, a suitable amplitude attenuation value must be added to path 1 so that the interference signal can pass through path 1 to point B The amplitude of is equal to the amplitude of the interference signal through path 2 to point B.
  • path 1 is: point A-third coupler-first filter-phase shifter- Attenuator-delayer-point B
  • path 2 is: point A-third coupler-duplexer-first RF switch-first coupler-4G antenna-5G antenna-second coupler-second RF Switch-point B.
  • the attenuation value of the above-mentioned attenuator is related to the distance between the 4G antenna and the 5G antenna.
  • the energy attenuation from point A to point B in path 1 can be simulated, and the signal transceiver device can actually perform the 5G signal To determine the above-mentioned attenuation value.
  • the attenuation value of the attenuator can be adjusted appropriately according to the different frequency bands.
  • the phase shift degree of the interference signal by the phase shifter needs to be combined with the phase shift degree of the third coupler to perform phase shift.
  • the third coupler shifts the phase of the interference signal by 85 degrees.
  • the total phase shift is 0.8 degrees.
  • the first filter is phase shifted by 0.5 degrees
  • the attenuator is shifted by 0.2 degrees
  • the delayer is shifted by 0.5 degrees.
  • the attenuation value of the interference signal from point A to the interference antenna in path 2 is determined by simulation or test
  • the attenuation value of the interference signal from the 5G antenna in path 2 to point B is determined by simulation or test. It is 1dB, assuming that the isolation from the 4G antenna to the 5G antenna is 30dB.
  • the signal transceiving device provided by the embodiment of the present disclosure adds a signal processing module to the related signal transceiving device, so that the signal transceiving device can solve the signal interference existing between the first antenna and the second antenna in the signal transceiving device problem.
  • the signal processing module adjusts the interference signal in the first signal sent by the first transceiver module to the signal processing module, so that the signal processing module can send to the transmission channel between the input terminal of the second transceiver module and the second antenna
  • the adjusted interference signal because the phase of the adjusted interference signal is opposite to the phase of the interference signal in the first signal, and the amplitude of the adjusted interference signal is the same as the amplitude of the interference signal, so that the first antenna
  • the interference signal in the first signal is coupled to the second antenna
  • the interference signal can be canceled with the adjusted interference signal in the transmission channel, so that the second transceiver module can receive the signal received by the second antenna.
  • the first target signal avoids the interference of the interference signal coupled to the second antenna from the first antenna to the first target signal.
  • the embodiments of the present disclosure provide an electronic device, which includes the above-mentioned signal transceiving device.
  • the description of the specific structure of the signal transceiving device refer to the specific description in the above-mentioned first embodiment, which will not be repeated here.
  • the above-mentioned electronic device further includes a processor, wherein:
  • the processor is configured to send the target phase offset and the target amplitude offset to the signal transceiver, so that the signal transceiver adjusts the interference in the second one of the two first signals according to the target phase offset
  • the phase of the signal and the amplitude of the interference signal are adjusted according to the target amplitude offset.
  • the aforementioned electronic device is an electronic device in which a 4G antenna and a 5G antenna coexist.
  • the aforementioned electronic device may be a mobile terminal device or a non-mobile terminal device.
  • the mobile terminal device can be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook or a personal digital assistant (PDA)
  • the non-mobile terminal device may be a personal computer (PC), a television (television, TV), a teller machine or a self-service machine, etc.; the embodiment of the present disclosure does not specifically limit it.
  • the embodiments of the present disclosure provide an electronic device that includes a signal transceiving device.
  • the signal transceiving device adds a signal processing module so that the signal transceiving device can resolve the difference between the first antenna and the second antenna in the signal transceiving device.
  • the signal processing module adjusts the interference signal in the first signal sent by the first transceiver module to the signal processing module, so that the signal processing module can send to the transmission channel between the input terminal of the second transceiver module and the second antenna
  • the adjusted interference signal because the phase of the adjusted interference signal is opposite to the phase of the interference signal in the first signal, and the amplitude of the adjusted interference signal is the same as the amplitude of the interference signal, so that the first antenna
  • the interference signal in the first signal is coupled to the second antenna
  • the interference signal can be canceled with the adjusted interference signal in the transmission channel, so that the second transceiver module can receive the signal received by the second antenna.
  • the first target signal avoids the interference of the interference signal coupled to the second antenna from the first antenna to the first target signal.
  • FIG. 10 is a schematic diagram of the hardware structure of a terminal device that implements various embodiments of the present disclosure.
  • the terminal device 400 includes, but is not limited to: a radio frequency unit 401, a network module 402, an audio output unit 403, Input unit 404, sensor 405, display unit 406, user input unit 407, interface unit 408, memory 409, processor 410, power supply 411 and other components.
  • a radio frequency unit 401 for example, a radio frequency unit 401, a radio frequency unit 401, a network module 402, an audio output unit 403, Input unit 404, sensor 405, display unit 406, user input unit 407, interface unit 408, memory 409, processor 410, power supply 411 and other components.
  • Those skilled in the art can understand that the structure of the terminal device 400 shown in FIG. 10 does not constitute a limitation on the terminal device.
  • the terminal device 400 may include more or fewer components than shown in the figure, or combine certain components, or Different component arrangements.
  • the terminal device 400 includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a vehicle-mounted terminal device, a wearable device, a pedometer, and the like.
  • the above-mentioned radio frequency unit 401 includes: a signal transceiving device 4011.
  • the signal transceiving device 4011 may be the signal transceiving device shown in the foregoing first embodiment.
  • the terminal equipment provided by the embodiments of the present disclosure includes a signal transceiving device.
  • the signal transceiving device adds a signal processing module so that the signal transceiving device can solve the problem between the first antenna and the second antenna in the signal transceiving device.
  • the existing signal interference problem is a signal transceiving device.
  • the signal processing module adjusts the interference signal in the first signal sent by the first transceiver module to the signal processing module, so that the signal processing module can send to the transmission channel between the input terminal of the second transceiver module and the second antenna
  • the adjusted interference signal because the phase of the adjusted interference signal is opposite to the phase of the interference signal in the first signal, and the amplitude of the adjusted interference signal is the same as the amplitude of the interference signal, so that the first antenna
  • the interference signal in the first signal is coupled to the second antenna
  • the interference signal can be canceled with the adjusted interference signal in the transmission channel, so that the second transceiver module can receive the signal received by the second antenna.
  • the first target signal avoids the interference of the interference signal coupled to the second antenna from the first antenna to the first target signal.
  • the radio frequency unit 401 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 410; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 401 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 401 can also communicate with the network and other devices through a wireless communication system.
  • the terminal device 400 provides users with wireless broadband Internet access through the network module 402, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 403 can convert the audio data received by the radio frequency unit 401 or the network module 402 or stored in the memory 409 into audio signals and output them as sounds. Moreover, the audio output unit 403 may also provide audio output related to a specific function performed by the terminal device 400 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 403 includes a speaker, a buzzer, and a receiver.
  • the input unit 404 is used to receive audio or video signals.
  • the input unit 404 may include a graphics processing unit (GPU) 4041 and a microphone 4042.
  • the graphics processor 4041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 406.
  • the image frame processed by the graphics processor 4041 may be stored in the memory 409 (or other storage medium) or sent via the radio frequency unit 401 or the network module 402.
  • the microphone 4042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 401 in the case of a telephone call mode for output.
  • the terminal device 400 also includes at least one sensor 405, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 4061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 4061 and the display panel 4061 when the terminal device 400 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when it is stationary, and can be used to identify the posture of the terminal device (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 405 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 406 is used to display information input by the user or information provided to the user.
  • the display unit 406 may include a display panel 4061, and the display panel 4061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 407 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal device 400.
  • the user input unit 407 includes a touch panel 4071 and other input devices 4072.
  • the touch panel 4071 also called a touch screen, can collect user touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 4071 or near the touch panel 4071. operating).
  • the touch panel 4071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 410, the command sent by the processor 410 is received and executed.
  • the touch panel 4071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 407 may also include other input devices 4072.
  • other input devices 4072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 4071 can cover the display panel 4061.
  • the touch panel 4071 detects a touch operation on or near it, it transmits it to the processor 410 to determine the type of the touch event.
  • the type of event provides corresponding visual output on the display panel 4061.
  • the touch panel 4071 and the display panel 4061 are used as two independent components to implement the input and output functions of the terminal device 400, in some embodiments, the touch panel 4071 and the display panel 4061 may be combined.
  • the input and output functions of the terminal device 400 are realized by integration, which is not specifically limited here.
  • the interface unit 408 is an interface for connecting an external device with the terminal device 400.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 408 may be used to receive input (for example, data information, power, etc.) from an external device and transmit the received input to one or more elements in the terminal device 400 or may be used to connect to the terminal device 400 and external Transfer data between devices.
  • the memory 409 can be used to store software programs and various data.
  • the memory 409 may mainly include a storage program area and a storage data area.
  • the storage program area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 409 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 410 is the control center of the terminal device 400, which uses various interfaces and lines to connect the various parts of the entire terminal device 400, runs or executes the software programs and/or modules stored in the memory 409, and calls and stores them in the memory 409 Perform various functions of the terminal device 400 and process data, thereby monitoring the terminal device 400 as a whole.
  • the processor 410 may include one or more processing units; optionally, the processor 410 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, and application programs, etc.
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 410.
  • the terminal device 400 may also include a power source 411 (such as a battery) for supplying power to various components.
  • a power source 411 such as a battery
  • the power source 411 may be logically connected to the processor 410 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal device 400 includes some functional modules not shown, which will not be repeated here.
  • the technical solution of the present disclosure essentially or the part that contributes to the related technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk). ) Includes several instructions to make a terminal device (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present disclosure.
  • a terminal device which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transceivers (AREA)
  • Noise Elimination (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种信号收发装置和电子设备,该信号收发装置包括:第一收发模块、第二收发模块、第一天线、第二天线以及信号处理模块,信号处理模块用于将第一收发模块发送至信号处理模块的第一信号拆分为两路第一信号,将第一路第一信号发送至第一天线,获取并调节第二路第一信号中的干扰信号,并向第二收发模块的输入端发送调节后的干扰信号;第二收发模块,用于接收第二天线接收的第二信号中的第一目标信号;第二信号包括第一天线耦合至第二天线的干扰信号,该干扰信号在信号处理模块的输出端和第二天线间的传输通道中与该调节后的干扰信号对消。

Description

信号收发装置和电子设备
相关申请的交叉引用
本公开主张在2019年06月27日提交国家知识产权局、申请号为201910570457.9、申请名称为“信号收发装置和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种信号收发装置和电子设备。
背景技术
目前,在5G非独立(non stand alone,NSA)组网架构中,终端设备的信号收发端通常配置有多根天线,同时,由于NSA组网架构中的4G基站和5G基站是共存的,因此,终端设备的信号收发端同时配置有4G天线和5G天线,从而使得终端设备能够通过4G天线和5G天线分别收发4G信号和5G信号。
然而,由于终端设备内部空间有限,使得终端设备中的4G天线与5G天线之间的间距较小,从而导致4G天线与5G天线之间产生干扰,进而导致4G天线接收到的4G信号失真,或者5G天线接收到的5G信号失真。
例如,当终端设备中的4G天线发送4G信号、且5G天线接收5G信号时,由于4G天线与5G天线之间存在干扰,从而导致终端设备中的5G天线在接收到5G信号的同时还会接收到4G天线所发出的干扰信号,进而导致5G天线接收的5G信号失真。
发明内容
本公开实施例提供一种信号收发装置和电子设备,以解决终端设备中多个天线之间存在信号干扰的问题。
为了解决上述技术问题,本公开实施例是这样实现的:
第一方面,本公开实施例提供了一种信号收发装置,该装置包括:第一收发模块、第二收发模块、第一天线、第二天线以及信号处理模块,其中:第一收发模块的输出端与信号处理模块的输入端连接;信号处理模块的第一输出端与第一天线连接,信号处理模块的第二输出端与第二收发模块的输入端和第二天线之间的传输通道连接;第二收发模块与第二天线连接;
信号处理模块,用于将第一收发模块发送至信号处理模块的第一信号拆分为两路第一信号,第一信号包括干扰信号,还用于通过第一输出端将第一路第一信号发送至第一天线,以及获取并调节第二路第一信号中的干扰信号,并通过第二输出端向第二收发模块的输入端发送调节后的干扰信号;
第二收发模块,用于接收第二天线接收的第二信号中的第一目标信号;
其中,第二信号包括第一天线耦合至第二天线的第一路第一信号中的干扰信号,第一路第一信号中的干扰信号的相位与调节后的干扰信号的相位相反、且第一路第一信号中的干扰信号的幅度与调节后的干扰信号的幅度相同,以使第一路第一信号中的干扰信号在传输通道中与调节后的干扰信号对消。
第二方面,本公开实施例还提供了一种电子设备,该电子设备包括第一方面提供的信号收发装置。
在本公开实施例中,通过在相关的信号收发装置中增加一个信号处理模块,从而使得该信号收发装置能够解决该信号收发装置中第一天线与第二天线之间存在的信号干扰问题。即信号处理模块通过对第一收发模块发送至该信号处理模块的第一信号中的干扰信号进行调节,使得该信号处理模块能够向第二收发模块的输入端与第二天线间的传输通道发送调节后的干扰信号,由于该调节后的干扰信号的相位与该第一信号中的干扰信号的相位相反、且该调节后的干扰信号的幅度与该干扰信号的幅度相同,从而在第一天线将第一信号中的干扰信号耦合至第二天线时,使得该干扰信号能够在该传输通道中与该调节后的干扰信号对消,进而使得第二收发模块能够接收到第二天线所接收的第一目标信号,避免了第一天线耦合至第二天线的干扰信号对第一目标信号的干扰。
附图说明
图1为本公开实施例提供的一种相关信号收发装置的结构示意图;
图2为本公开实施例提供的一种信号收发装置的结构示意图之一;
图3为本公开实施例提供的一种信号收发装置的结构示意图之二;
图4为本公开实施例提供的一种信号收发装置的结构示意图之三;
图5为本公开实施例提供的一种信号收发装置的结构示意图之四;
图6为本公开实施例提供的一种信号收发装置的结构示意图之五;
图7为本公开实施例提供的一种信号收发装置的结构示意图之六;
图8为本公开实施例提供的一种信号收发装置的结构示意图之七;
图9为本公开实施例提供的一种信号收发装置的结构示意图之八;
图10为本公开实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
图1为相关典型的4G天线与5G天线共存(即4G信号和5G信号不共用天线)的4G+5G双连接的信号收发装置的结构示意图,如图1所示,该信号收发装置100包括4G射频收发器101、5G射频收发器102、第一功率放大模组103、第二功率放大模组104,双工器105、第一射频开关106、第二射频开关107、第一耦合器108、第二耦合器109、4G天线110以及5G天线111,其中:上述的4G射频收发器101、第一功率放大模组103、双工器105、第一射频开关106、第一耦合器108以及4G天线110依次连接,并且上述的第一耦合器108与上述的4G射频收发器101连接;上述的5G射频收发器102、第二功率放大模组104、第二射频开关107、第二耦合器109以及5G天线111依次连接,且上述的第二耦合器109与上述的5G射频收发器102连接。
示例性的,上述4G射频收发器101用于接收或发送4G信号;上述的5G射频收发器102用于接收或发送5G信号;上述的第一功率放大模组103以及第二功率放大模组104用于放大信号的功率;上述的双工器105用于隔离4G射频收发器101发送的4G信号和4G天线接 收到的4G信号;上述的第一射频开关106用于实现4G信号的接收与发送的切换,上述的第一射频开关106还用于实现不同4G频段间的切换;上述的第二射频开关107用于实现5G信号的接收与发送的切换,上述的第二射频开关107还用于实现不同5G频段间的切换;4G天线110用于将4G射频收发器101发出的4G信号传输至4G基站,或者,用于接收4G基站传输的4G信号;上述第一耦合器108用于监控4G信号的功率,反馈至4G射频收发器101;上述第二耦合器109用于监控5G信号的功率,反馈至5G射频收发器102。
示例性的,以4G射频收发器101发送4G信号、且5G射频收发器102接收5G信号为例,4G射频收发器101在产生4G原始信号的同时,会产生二次谐波(即干扰信号),即4G射频收发器101产生的4G信号中包含:4G射频收发器101产生的4G原始信号和上述干扰信号,该4G信号通过第一耦合器108耦合至4G天线110后,4G天线110会将4G原始信号发送至对应的4G基站。同时,若该干扰信号的频率刚好落在5G天线111接收5G信号的接收频段中,则4G天线110会将该干扰信号耦合至5G天线111,从而使得5G天线111在接收5G原始信号的同时,还会接收到上述的干扰信号,该干扰信号会对该5G原始信号造成干扰。
例如,当终端设备工作在4G B3频段(即上行频率为:1710MHz至1785MHz,下行频率为:1805MHz至1880MHz)时,假设4G射频收发器101在产生频率为1750MHz的一次谐波的情况下,还产生了频率为3500MHz的二次谐波。若终端设备同时工作在5G N77频段(即上行频率和下行频率均为:3300MHz至4200MHz),则该二次谐波的频率刚好落在终端设备接收5G信号的频段中,因此,终端设备会同时接收5G信号和该二次谐波,该二次谐波会对终端设备接收的5G信号造成干扰。
为了解决上述问题,本公开实施例提供了一种信号收发装置,通过在相关的信号收发装置中增加一个信号处理模块,从而使得该信号收发装置能够解决该信号收发装置中第一天线与第二天线之间存在的信号干扰问题。即信号处理模块通过对第一收发模块发送至该信号处理模块的第一信号中的干扰信号进行调节,使得该信号处理模块能够向第二收发模块的输入端与第二天线间的传输通道发送调节后的干扰信号,由于该调节后的干扰信号的相位与该第一信号中的干扰信号的相位相反、且该调节后的干扰信号的幅度与该干扰信号的幅度相同,从而在第一天线将第一信号中的干扰信号耦合至第二天线时,使得该干扰信号能够在该传输通道中与该调节后的干扰信号对消,进而使得第二收发模块能够接收到第二天线所接收的第一目标信号,避免了第一天线耦合至第二天线的干扰信号对第一目标信号的干扰。
本公开实施例中所提及的“对消”,是指利用射频干扰对消技术将两个相位相反、幅度相同的信号相互抵消。其中,上述的射频干扰对消技术是指:利用矢量的合成叠加原理,将干扰信号比作直角空间坐标系中的一个矢量,通过找到一个与该矢量具有相同信息特征(如,信号的幅度)的反相矢量,即找到一个与该干扰信号相位相反、幅度相同的信号,将这两个矢量合成,从而抵消掉该干扰信号。
需要说明的是,上述的幅度相同的信号是指两信号的幅度间的绝对差值大于或等于0、且小于或等于预定阈值,即两信号的幅度可以趋于相同。
例如,矢量A为干扰信号,矢量B为与矢量A具有相同信息特征的等幅度反相矢量,用于抵消干扰信号,对这两者进行合成叠加,得到的矢量C趋于零,即干扰信号几乎消失。可以理解的是,“对消”的过程就是矢量A与矢量B合成叠加的过程。
本公开实施例中所提及的“耦合”,是指两个或两个以上的电路元件或电网络的输入与输出之间存在紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现象。例如, 4G天线将干扰信号耦合至5G天线的过程,相当于4G天线将干扰信号传输至5G天线。
需要说明的是,本文中的“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
需要说明的是,本文中的“多个”是指两个或多于两个。
需要说明的是,本公开实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本公开实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更可选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
需要说明的是,为了便于清楚描述本公开实施例的技术方案,在本公开的实施例中,采用了“第一”、“第二”等字样对功能或作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。例如,第一信号和第二信号是用于区别不同的信号,而不是用于描述信号的特定顺序。
第一实施例:
下面将结合附图对本公开实施例提供的信号收发装置进行详细描述。
图2为本公开的实施例提供的一种信号收发装置的结构示意图,如图2所示,该信号收发装置200包括:第一收发模块201、第二收发模块202、第一天线203、第二天线204以及信号处理模块205,其中:第一收发模块201的输出端201b与信号处理模块205的输入端205a连接;信号处理模块205的第一输出端205b与第一天线203连接,信号处理模块205的第二输出端205c与第二收发模块202的输入端202a与第二天线204间的传输通道连接;第二收发模块202与第二天线204连接。
上述信号处理模块205,用于将第一收发模块201发送至该信号处理模块205的第一信号拆分为两路第一信号,该第一信号包括干扰信号。
上述信号处理模块205,还用于通过信号处理模块205的第一输出端205b将两路第一信号中的第一路第一信号发送至第一天线203,以及获取并调节两路第一信号中的第二路第一信号中的干扰信号,并通过信号处理模块205的第二输出端205c向第二收发模块202的输入端202a发送调节后的干扰信号。
上述第二收发模块202,用于接收第二天线204接收的第二信号中的第一目标信号。
其中,第二信号包括第一天线耦合至第二天线的该第一路第一信号中的干扰信号,该第一路第一信号中的干扰信号的相位与调节后的干扰信号的相位相反、且该第一路第一信号中的干扰信号的幅度与调节后的干扰信号的幅度相同,以使该第一路第一信号中的干扰信号在传输通道中与调节后的干扰信号对消。
可以理解的是,上述第一路第一信号中的干扰信号的相位与调节后的干扰信号的相位相反具体指:该第一路第一信号中的干扰信号的相位与调节后的干扰信号的相位相差180度。
需要说明的是,在理想状态下,上述信号处理模块205可以将第二路第一信号中的干扰信号的相位调整成与该第一路第一信号中的干扰信号的相位相差180度,并将第二路第一信号中的干扰信号的幅度调整成与该第一路第一信号中的干扰信号的幅度相等,但在实际应用场景中,由于受到信号处理模块205的硬件或外部环境的影响,上述信号处理模块205并不能将该第二路第一信号中的干扰信号调整成与该第一路第一信号中的干扰信号的相位相反、幅度相等的信号,即上述的信号处理装置并不能完全实现对消,但可以对第二信号中的干扰信号进行很大程度的消减。
示例性的,上述的第一信号还包括:第二目标信号,该第二目标信号为上述的第一收发模块201所产生的原始信号,而上述的干扰信号通常为第一收发模块201在产生第二目标信号的同时所生成的二次谐波或者其他高次谐波。
示例性的,当上述第一收发模块为4G射频收发器、且上述第二收发模块为5G射频收发器时,上述第一信号为4G信号,上述第二信号可以为5G信号,上述的第一目标信号为5G原始信号,上述的第二目标信号为4G原始信号;或者,当上述第一收发模块为5G射频收发器、且上述第二收发模块为4G射频收发器时,上述第一信号为5G信号,上述第二信号可以为4G信号,上述的第一目标信号为4G原始信号,上述的第一目标信号为5G原始信号。
需要说明的是,上述的信号处理模块205的第一输出端205b和第二输出端205c可以为不同的输出端,也可以为相同的输出端,本公开对此不做限制。
示例性的,上述信号处理模块205在调整干扰信号时,可以按照目标相位偏移量调整第二路第一信号中的干扰信号的相位,并按照目标幅度偏移量调整第二路第一信号中的干扰信号的幅度。其中,上述的目标相位偏移量可以为预定阈值,也可以按照实际应用场景灵活设定,本公开对此不作限定,同时,上述的目标幅度偏移量可以为预定阈值,也可以按照实际应用场景灵活设定,本公开对此不作限定。需要说明的是,上述的目标相位偏移量以及目标幅度偏移量可以是通过对干扰信号在该信号处理装置中传输的过程进行仿真而得到的。
可选地,如图3所示,上述信号处理模块205包括:分路单元2051和与该分路单元2051连接的信号调整单元2052,其中:上述分路单元2051的输入端2051a与第一收发模块201的输出端201b连接,分路单元2051的第一输出端2051b与第一天线203连接,分路模块2051的第二输出端2051c与信号调整单元2052的输入端2052a连接,信号调整单元2052的输出端2052b与第二收发模块202的输入端202a和第二天线204之间的传输通道连接。
示例性的,上述的分路单元2051,用于将第一路第一信号分成两路第一信号,将两路第一信号中的第一路第一信号传输至第一天线203,将第二路第一信号传输至信号调整单元2052;上述的信号调整单元2052,用于对分路模块单元2051传输的第一路第一信号进行滤波,获取该第一信号中的干扰信号并调节该干扰信号,然后通过信号调整单元2052的输出端2052b向第二收发模块202的输入端202a发送调节后的干扰信号。
示例性的,上述分路单元可以为耦合器(例如,定向耦合器),也可以为功率分配器,本公开对比不做限制。示例性的,上述的耦合器可以为以下任一项:5DB耦合器、6DB耦合器、7DB耦合器、10DB耦合器,具体的可以根据实际使用需求确定,本公开对此不作限定;上述的功率分配器时可以为以下任一项:二功率分配器、三功率分配器或者四功率分配器,具体的可以根据实际使用需求确定,本公开对此不作限定。
需要说明的是,由于耦合器一般会移相0~90度,因此,本公开中的信号处理模块需要使得该第二路第一信号中的干扰信号相位从耦合器的耦合端(即分路单元的输入端)传输至5G RX传输通道(即第二收发模块的输入端和第二天线之间的传输通道)正好移相180度。
可选地,在本公开实施例中,结合图3,如图4、5所示,上述信号处理模块205还包括:延时单元2053,其中,延时单元2053,用于将上述第二路第一信号中的干扰信号的输出时间延时第一预设时长。其中,上述的第一预设时长可以为预定阈值,也可以按照实际应用场景灵活设定,本公开对此不作限定。
示例性的,上述的延时单元2053可以为RC微分电路,也可以为RC微分电路、计时器和比价器构成的IC芯片,本公开对此不作限制。
在第一种可能的连接方式中,如图4所示,分路单元2051的第二输出端2051c与延时单 元2053的输入端2053a连接,延时单元2053的输出端2053b与信号调整单元2052的输入端2052a连接,信号调整单元2052的输出端2052b和第二收发模块202的输入端202a与第二天线204之间的传输通道连接。
在第二种可能的连接方式中,如图5所示,延时单元2053的输入端2053a与信号调整单元2052的输出端2052b连接,延时单元2053的输出端2053b与第二收发模块202的输入端202a和第二天线204之间的传输通道连接。
进一步可选地,如图6、7所示,上述信号调整单元2052包括:第一滤波器20521、移相器20522和衰减器20523,其中:
第一滤波器20521,用于滤除第二路第一信号中的第二目标信号,以得到第二路第一信号中的干扰信号。
上述移相器20522,用于调节第二路第一信号中的干扰信号的相位。
上述衰减器20523,用于调节第二路第一信号中的干扰信号的幅度。
在一种可能的连接方式中,如图6所示,分路单元2051的第二输出端2051c、第一滤波器20521、移相器20522、衰减器20523以及传输通道依次连接。具体的,分路单元2051的第二输出端2051c与第一滤波器20521的输入端20521a连接,第一滤波器20521的输出端20521b与移相器20522的输入端20522a连接,移相器20522的输出端20522b与衰减器20523的输入端20523a连接,衰减器20523的输出端20523b与第二收发模块202的输入端202a和第二天线204之间的传输通道连接,其中:
上述的第一滤波器20521用于对分路单元2051传输的第一信号进行滤波,得到第一信号中的干扰信号并将该干扰信号发送至移相器20522;上述的移相器20522用于将接收到的干扰信号进行相位调整并将调整相位后的干扰信号发送至衰减器20523;上述的衰减器20523用于将接收到的调整相位后的干扰信号进行幅度调整,并将调整了相位以及幅度的干扰信号发送至向第二收发模块202的输入端202a与第二天线204的传输通道。
在另一种可能的连接方式中,如图7所示,分路单元2051的第二输出端2051c、第一滤波器20521、衰减器20523、移相器20522以及传输通道依次连接。具体的,分路单元2051的第二输出端2051c与第一滤波器20521的输入端20521a连接,第一滤波器20521的输出端20521b与衰减器20523的输入端20523a连接,衰减器20523的输出端20523b与移相器20522的输入端20522a连接,移相器20522的输出端20522b与第二收发模块202的输入端202a和第二天线204之间的传输通道连接,其中:
上述的第一滤波器20521用于对分路单元2051传输的第一信号进行滤波,得到第一信号中的干扰信号并将该干扰信号发送至衰减器20523;上述的衰减器20523用于将接收到的干扰信号进行幅度调整并将调整幅度后的干扰信号发送至移相器20522;上述的移相器20522用于将接收到的调整幅度后的干扰信号进行相位调整,并将调整了幅度以及相位的干扰信号发送至向第二收发模202与第二天线204的传输通道。
可选地,在图6、7所示的信号收发装置的结构基础上,上述信号调整单元2052还包括:延时器20524,该延时器用于将第二路第一信号中的干扰信号的输出时间延时至第二预设时长。其中,上述的第二预设时长可以为预定阈值,也可以按照实际应用场景灵活设定,本公开对此不作限定。
示例性的,该延时器可以设置在第一滤波器20521、移相器20522和衰减器20523之间的任意位置,即分路单元2051的第二输出端2051c、延时器20524、第一滤波器20521、衰减器20523、移相器20522以及传输通道依次连接,或者,分路单元2051的第二输出端2051c、 第一滤波器20521、延时器20524、衰减器20523、移相器20522以及传输通道依次连接,或者,分路单元2051的第二输出端2051c、第一滤波器20521、衰减器20523、延时器20524、移相器20522以及传输通道依次连接,或者,分路单元2051的第二输出端2051c、第一滤波器20521、衰减器20523、移相器20522、延时器20524以及传输通道依次连接,本公开对此不作限制。
例如,以第一天线为4G天线、第二天线为5G天线为例,第一滤波器20521可以通过滤波4G TX的一次谐波,以得到4G TX二次谐波,该4G TX二次谐波经过延时器延时后,通过移相器进行移相,最后通过衰减器进行幅度衰减,然后,将调节后的4G TX二次谐波传输至5GRX接收通道中。
可选地,在本公开实施例中,结合图2,如图8所示,上述信号收发装置200还包括:第一功率放大模组206,其中:第一功率放大模组206分别与第二收发模块202的输出端和第二天线204连接,信号处理模块205的第二输出端205c与第一功率放大模组206和第二天线204之间的传输通道连接;上述第一功率放大模组206包括:第一功率放大器和第二滤波器,上述第一功率放大模组206用于放大信号功率。
可选地,在本公开实施例中,结合图2,如图8所示,上述信号收发装置200还包括:第二功率放大器207,其中,第二功率放大器207的输入端207a与第一收发模块201的输出端201b连接,第二功率放大器207的输出端207b与信号处理模块205的输入端205a连接。
举例说明,结合图8以及图6,如图9所示,以分路单元2051为耦合器(即图9中的第三耦合器)、第一收发模块201为4G射频收发器、第二收发模块202为5G射频收发器、第一天线203为4G天线、第二天线204为5G天线、延时单元2053为延时器为例,在图6以及图8所示的信号收发装置的结构的基础上,该信号收发装置还包括:第二功率放大模组208、双工器209、第一射频开关210、第一耦合器211、第二耦合器212、第二射频开关213以及控制器214,其中:
示例性的,上述4G射频收发器201用于接收或发送4G信号;上述的5G射频收发器202用于接收或发送5G信号;上述的第一功率放大模组206、第二功率放大模组208以及第二功率放大器207用于放大信号的功率;上述的双工器209用于隔离4G射频收发器201发送的4G信号和4G天线203接收到的4G信号;上述的第一射频开关210用于实现4G信号的接收与发送的切换,上述的第一射频开关210还用于实现不同4G频段间的切换;上述的第二射频开关210用于实现5G信号的接收与发送的切换,上述的第二射频开关213还用于实现不同5G频段间的切换;上述第一耦合器211用于监控4G信号的功率,反馈至4G射频收发器201;上述第二耦合器212用于监控5G信号的功率,反馈至5G射频收发器202;上述控制器214用于控制4G射频收发器201和5G射频收发器202收发信号,还用于控制移相器20522的移相度数和衰减器20523的衰减值。
示例性的,当4G射频收发器201发出4G信号时,该4G信号中包含4G射频收发器201发出的4G原始信号和干扰信号,该4G信号经过第二功率放大器207进行功率放大后传输至第三耦合器2051,第三耦合器2051在将4G信号分路后,其中一路4G信号会通过4G天线203输出,另一路4G信号会通过第一滤波器20521滤除4G信号中的4G原始信号,以得到4G信号中的干扰信号,该干扰信号通过移相器20522进行移相,接着通过衰减器20523进行幅度衰减,最后经延时器2053延时后,会将调节后的干扰信号传输至5G信号的接收通道中。
移相器对干扰信号的相位进行移相的标准是:使得干扰信号经过路径1到B点的相位与干扰信号经过路径2到B点的相位相差180度。此外,衰减器在对干扰信号的幅度进行衰减 的标准是:需要满足路径1与路径2的损耗相同,即在路径1必须加上合适的幅度衰减值,以使干扰信号经过路径1到B点的幅度与干扰信号经过路径2到B点的幅度相等。具体的,如图9所示,从A点到B点的两条路径分别为路径1和路径2,其中:路径1为:A点-第三耦合器-第一滤波器-移相器-衰减器-延时器-B点;路径2为:A点-第三耦合器-双工器-第一射频开关-第一耦合器-4G天线-5G天线-第二耦合器-第二射频开关-B点。
应注意的是,上述的衰减器的衰减值与4G天线和5G天线之间的距离有关,可以通过仿真路径1中从A点到B点的能量衰减,以及结合该信号收发装置实际对5G信号的接收灵敏度,来确定出上述的衰减值。需要说明的是,不同频带下,衰减器的衰减值可以按照频带的不同进行适当调整。
应注意的是,由于第三耦合器一般会移相0~90度,因此,移相器对干扰信号的移相度数需要结合第三耦合器的移相度数进行移相。
例如,假设第三耦合器的对干扰信号移相的度数为85度,通过对干扰信号从路径1的A点到B点的移相仿真,如果干扰信号经过路线1到达B点的仿真过程中总共移相0.8度,如,第一滤波器移相0.5度,衰减器移相0.2度,延时器移相0.5度,路径2理想的状态下是没有任何移相的,因此,移相器需移相的度数为:180-85-0.8-0.5-0.5-0.2=93度。
例如,假设通过仿真或者测试确定干扰信号在路径2中的A点到干扰天线的衰减值为2dB(分贝),假设通过仿真或者测试确定干扰信号在路径2中的5G天线到B点的衰减值为1dB,假设4G天线到5G天线的隔离度为30dB。该干扰信号在路径2中的衰减值为33dB+3dB=33dB,即该干扰信号从A点通过4G天线和5G天线耦合至B点的过程中能量衰减了33dB。假设通过仿真或测试确定干扰信号在路径1中总共损耗为3dB,那么衰减器的衰减值为33dB-3dB=30dB。
本公开实施例提供的信号收发装置,通过在相关的信号收发装置中增加一个信号处理模块,从而使得该信号收发装置能够解决该信号收发装置中第一天线与第二天线之间存在的信号干扰问题。即信号处理模块通过对第一收发模块发送至该信号处理模块的第一信号中的干扰信号进行调节,使得该信号处理模块能够向第二收发模块的输入端与第二天线间的传输通道发送调节后的干扰信号,由于该调节后的干扰信号的相位与该第一信号中的干扰信号的相位相反、且该调节后的干扰信号的幅度与该干扰信号的幅度相同,从而在第一天线将第一信号中的干扰信号耦合至第二天线时,使得该干扰信号能够在该传输通道中与该调节后的干扰信号对消,进而使得第二收发模块能够接收到第二天线所接收的第一目标信号,避免了第一天线耦合至第二天线的干扰信号对第一目标信号的干扰。
第二实施例:
本公开实施例提供一种电子设备,该电子设备包括上述的信号收发装置,该信号收发装置的具体结构的描述可参照上述第一实施例中的具体描述,此处不再赘述。
可选地,在本公开实施例中,上述的电子设备还包括处理器,其中:
处理器,用于向信号收发装置发送目标相位偏移量和目标幅度偏移量,以便该信号收发装置根据目标相位偏移量调节两路第一信号中的第二路第一信号中的干扰信号的相位以及根据目标幅度偏移量调节上述干扰信号的幅度。
在本公开实施例中,上述的电子设备为4G天线和5G天线共存的电子设备。
示例性的,上述的电子设备可以为移动终端设备,也可以为非移动终端设备。移动终端设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal  digital assistant,PDA)等;非移动终端设备可以为个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等;本公开实施例不作具体限定。
本公开实施例提供一种电子设备,该电子设备包括信号收发装置,该信号收发装置通过增加一个信号处理模块,从而使得该信号收发装置能够解决该信号收发装置中第一天线与第二天线之间存在的信号干扰问题。即信号处理模块通过对第一收发模块发送至该信号处理模块的第一信号中的干扰信号进行调节,使得该信号处理模块能够向第二收发模块的输入端与第二天线间的传输通道发送调节后的干扰信号,由于该调节后的干扰信号的相位与该第一信号中的干扰信号的相位相反、且该调节后的干扰信号的幅度与该干扰信号的幅度相同,从而在第一天线将第一信号中的干扰信号耦合至第二天线时,使得该干扰信号能够在该传输通道中与该调节后的干扰信号对消,进而使得第二收发模块能够接收到第二天线所接收的第一目标信号,避免了第一天线耦合至第二天线的干扰信号对第一目标信号的干扰。
第三实施例:
以电子设备为终端设备为例,图10为实现本公开各个实施例的一种终端设备的硬件结构示意图,该终端设备400包括但不限于:射频单元401、网络模块402、音频输出单元403、输入单元404、传感器405、显示单元406、用户输入单元407、接口单元408、存储器409、处理器410、以及电源411等部件。本领域技术人员可以理解,图10中示出的终端设备400的结构并不构成对终端设备的限定,终端设备400可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端设备400包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、以及计步器等。
其中,上述射频单元401,包括:信号收发装置4011,该信号收发装置4011可以为上述第一实施例所示的信号收发装置,对于该信号收发装置4011的结构可参照第一实施例中的具体描述,此处不在赘述。
本公开实施例提供的终端设备,该终端设备包括信号收发装置,该信号收发装置通过增加一个信号处理模块,从而使得该信号收发装置能够解决该信号收发装置中第一天线与第二天线之间存在的信号干扰问题。即信号处理模块通过对第一收发模块发送至该信号处理模块的第一信号中的干扰信号进行调节,使得该信号处理模块能够向第二收发模块的输入端与第二天线间的传输通道发送调节后的干扰信号,由于该调节后的干扰信号的相位与该第一信号中的干扰信号的相位相反、且该调节后的干扰信号的幅度与该干扰信号的幅度相同,从而在第一天线将第一信号中的干扰信号耦合至第二天线时,使得该干扰信号能够在该传输通道中与该调节后的干扰信号对消,进而使得第二收发模块能够接收到第二天线所接收的第一目标信号,避免了第一天线耦合至第二天线的干扰信号对第一目标信号的干扰。
应理解的是,本公开实施例中,射频单元401可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器410处理;另外,将上行的数据发送给基站。通常,射频单元401包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元401还可以通过无线通信系统与网络和其他设备通信。
终端设备400通过网络模块402为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元403可以将射频单元401或网络模块402接收的或者在存储器409中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元403还可以提供与终端设备400执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音 频输出单元403包括扬声器、蜂鸣器以及受话器等。
输入单元404用于接收音频或视频信号。输入单元404可以包括图形处理器(Graphics Processing Unit,GPU)4041和麦克风4042,图形处理器4041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元406上。经图形处理器4041处理后的图像帧可以存储在存储器409(或其它存储介质)中或者经由射频单元401或网络模块402进行发送。麦克风4042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元401发送到移动通信基站的格式输出。
终端设备400还包括至少一种传感器405,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板4061的亮度,接近传感器可在终端设备400移动到耳边时,关闭显示面板4061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器405还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元406用于显示由用户输入的信息或提供给用户的信息。显示单元406可包括显示面板4061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板4061。
用户输入单元407可用于接收输入的数字或字符信息,以及产生与终端设备400的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元407包括触控面板4071以及其他输入设备4072。触控面板4071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板4071上或在触控面板4071附近的操作)。触控面板4071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器410,接收处理器410发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板4071。除了触控面板4071,用户输入单元407还可以包括其他输入设备4072。具体地,其他输入设备4072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板4071可覆盖在显示面板4061上,当触控面板4071检测到在其上或附近的触摸操作后,传送给处理器410以确定触摸事件的类型,随后处理器410根据触摸事件的类型在显示面板4061上提供相应的视觉输出。虽然在图10中,触控面板4071与显示面板4061是作为两个独立的部件来实现终端设备400的输入和输出功能,但是在某些实施例中,可以将触控面板4071与显示面板4061集成而实现终端设备400的输入和输出功能,具体此处不做限定。
接口单元408为外部装置与终端设备400连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元408可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备400内的一个或多个元件或者可以用于在终端设备400和外 部装置之间传输数据。
存储器409可用于存储软件程序以及各种数据。存储器409可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器409可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器410是终端设备400的控制中心,利用各种接口和线路连接整个终端设备400的各个部分,通过运行或执行存储在存储器409内的软件程序和/或模块,以及调用存储在存储器409内的数据,执行终端设备400的各种功能和处理数据,从而对终端设备400进行整体监控。处理器410可包括一个或多个处理单元;可选地,处理器410可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器410中。
终端设备400还可以包括给各个部件供电的电源411(比如电池),可选地,电源411可以通过电源管理系统与处理器410逻辑连接,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备400包括一些未示出的功能模块,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (10)

  1. 一种信号收发装置,所述装置包括:第一收发模块、第二收发模块、第一天线、第二天线以及信号处理模块,其中:所述第一收发模块的输出端与所述信号处理模块的输入端连接;所述信号处理模块的第一输出端与所述第一天线连接,所述信号处理模块的第二输出端与所述第二收发模块的输入端和所述第二天线之间的传输通道连接;所述第二收发模块与所述第二天线连接;
    所述信号处理模块,用于将所述第一收发模块发送至所述信号处理模块的第一信号拆分为两路第一信号,所述两路第一信号包括第一路第一信号和第二路第一信号,所述第一信号包括干扰信号,还用于通过所述第一输出端将所述第一路第一信号发送至所述第一天线,以及获取并调节所述第二路第一信号中的干扰信号,并通过所述第二输出端向所述第二收发模块的输入端发送调节后的干扰信号;
    所述第二收发模块,用于接收所述第二天线接收的第二信号中的第一目标信号;
    其中,所述第二信号包括所述第一天线耦合至所述第二天线的所述第一路第一信号中的干扰信号,所述第一路第一信号中的干扰信号的相位与所述调节后的干扰信号的相位相反、且所述第一路第一信号中的干扰信号的幅度与所述调节后的干扰信号的幅度相同,以使所述第一路第一信号中的干扰信号在所述传输通道中与所述调节后的干扰信号对消。
  2. 根据权利要求1所述的信号收发装置,其中,所述信号处理模块在调节所述干扰信号时,具体用于:根据目标相位偏移量调节所述第二路第一信号中的干扰信号的相位,并根据目标幅度偏移量调节所述第二路第一信号中的干扰信号的幅度。
  3. 根据权利要求1所述的信号收发装置,其中,所述信号处理模块包括:分路单元和与所述分路单元连接的信号调整单元,其中:
    所述分路单元的输入端与所述第一收发模块的输出端连接,所述分路单元的第一输出端与所述第一天线连接,所述分路单元的第二输出端与所述信号调整单元的输入端连接,所述信号调整单元的输出端与所述传输通道连接。
  4. 根据权利要求3所述的信号收发装置,其中,所述信号处理模块还包括:延时单元,其中:
    所述分路单元的第二输出端与所述延时单元的输入端连接,所述延时单元的输出端与所述信号调整单元的输入端连接;或者,所述延时单元的输入端与所述信号调整单元的输出端连接,所述延时单元的输出端与所述传输通道连接;
    所述延时单元,用于将所述第二路第一信号中的干扰信号的输出时间延时第一预设时长。
  5. 根据权利要求3或4所述的信号收发装置,其中,所述分路单元包括:耦合器或功率分配器。
  6. 根据权利要求3或4所述的信号收发装置,其中,所述信号调整单元包括:第一滤波器、移相器和衰减器,其中:
    所述分路单元的第二输出端、所述第一滤波器、所述移相器、所述衰减器以及所述传输通道依次连接;或者,所述分路单元的第二输出端、所述第一滤波器、所述衰减器、所述移相器以及所述传输通道依次连接;所述第一信号还包括:第二目标信号;
    所述第一滤波器,用于滤除所述第二路第一信号中的所述第二目标信号,以得到所述第二路第一信号中的所述干扰信号;
    所述移相器,用于调节所述第二路第一信号中的干扰信号的相位;
    所述衰减器,用于调节所述第二路第一信号中的干扰信号的幅度。
  7. 根据权利要求1所述的信号收发装置,其中,所述信号收发装置还包括:第一功率放大模组,所述第一功率放大模组分别与所述第二收发模块的输出端和所述第二天线连接,所述信号处理模块的第二输出端与所述第一功率放大模组和所述第二天线之间的传输通道连接;
    其中,所述第一功率放大模组包括:第一功率放大器和第二滤波器。
  8. 根据权利要求1所述的信号收发装置,其中,所述信号收发装置还包括:第二功率放大器,其中,所述第二功率放大器的输入端与所述第一收发模块的输出端连接,所述第二功率放大器的输出端与所述信号处理模块的输入端连接。
  9. 一种电子设备,所述电子设备包括权利要求1至8任一项所述的信号收发装置。
  10. 根据权利要求9所述的电子设备,其中,所述电子设备还包括:与所述信号收发装置连接的处理器,其中:
    所述处理器,用于向所述信号收发装置发送目标相位偏移量和目标幅度偏移量,以便所述信号收发装置根据目标相位偏移量调节第二路第一信号中的干扰信号的相位以及根据目标幅度偏移量调节所述第二路第一信号中的干扰信号的幅度。
PCT/CN2020/092517 2019-06-27 2020-05-27 信号收发装置和电子设备 WO2020259184A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910570457.9 2019-06-27
CN201910570457.9A CN110474656B (zh) 2019-06-27 2019-06-27 信号收发装置和电子设备

Publications (1)

Publication Number Publication Date
WO2020259184A1 true WO2020259184A1 (zh) 2020-12-30

Family

ID=68507057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092517 WO2020259184A1 (zh) 2019-06-27 2020-05-27 信号收发装置和电子设备

Country Status (2)

Country Link
CN (1) CN110474656B (zh)
WO (1) WO2020259184A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113992233A (zh) * 2021-10-28 2022-01-28 维沃移动通信有限公司 天线切换装置、方法和电子设备
CN114978201A (zh) * 2021-02-25 2022-08-30 Oppo广东移动通信有限公司 射频前端模组及电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110445506A (zh) * 2019-06-27 2019-11-12 维沃移动通信有限公司 信号收发装置和电子设备
CN110474656B (zh) * 2019-06-27 2022-02-22 维沃移动通信有限公司 信号收发装置和电子设备
CN113037325A (zh) * 2019-12-25 2021-06-25 航天信息股份有限公司 一种防干扰电路及etc手持读写器
CN114070339B (zh) * 2020-07-31 2023-06-20 华为技术有限公司 同频收发器共存装置、方法以及计算机存储介质
CN112532271A (zh) * 2020-12-07 2021-03-19 维沃移动通信有限公司 射频电路和电子设备
CN112737604B (zh) * 2020-12-29 2022-06-21 Oppo广东移动通信有限公司 天线切换电路、方法及电子设备
CN112886981B (zh) * 2021-01-25 2022-06-03 维沃移动通信有限公司 射频电路、电子设备及射频控制方法
CN114499558B (zh) * 2022-02-16 2024-01-16 成都市联洲国际技术有限公司 同频干扰抵消装置
CN114513215B (zh) * 2022-02-18 2023-12-01 维沃移动通信有限公司 电子设备的信号处理方法和电子设备
CN115833854A (zh) * 2023-02-09 2023-03-21 四川九强通信科技有限公司 一种无人机通信链路抗干扰系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237906A (zh) * 2010-04-20 2011-11-09 英特赛尔美国股份有限公司 使用信号对消改善天线隔离的系统和方法
CN105637770A (zh) * 2013-10-16 2016-06-01 株式会社村田制作所 收发装置
US20160249346A1 (en) * 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
WO2019005145A1 (en) * 2017-06-30 2019-01-03 Intel IP Corporation IMPROVING ANTENNA INSULATION
CN110445506A (zh) * 2019-06-27 2019-11-12 维沃移动通信有限公司 信号收发装置和电子设备
CN110474656A (zh) * 2019-06-27 2019-11-19 维沃移动通信有限公司 信号收发装置和电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110212696A1 (en) * 2010-02-26 2011-09-01 Intersil Americas Inc. System and Method for Reducing In-Band Interference for a Shared Antenna
CN103873399B (zh) * 2012-12-11 2018-03-09 华为技术有限公司 信号干扰处理方法、装置及中继设备
CN105099495B (zh) * 2015-08-06 2018-05-08 惠州Tcl移动通信有限公司 一种收发共用天线的同时同频全双工终端及其通信方法
CN105391664A (zh) * 2015-10-16 2016-03-09 哈尔滨工业大学深圳研究生院 基于mimo的lte全双工系统中模拟干扰抵消方法
CN109861703B (zh) * 2017-11-30 2020-09-18 华为技术有限公司 无线设备及无线局域网信号接收方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237906A (zh) * 2010-04-20 2011-11-09 英特赛尔美国股份有限公司 使用信号对消改善天线隔离的系统和方法
CN105637770A (zh) * 2013-10-16 2016-06-01 株式会社村田制作所 收发装置
US20160249346A1 (en) * 2015-02-19 2016-08-25 Corning Optical Communications Wireless Ltd. Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (das)
WO2019005145A1 (en) * 2017-06-30 2019-01-03 Intel IP Corporation IMPROVING ANTENNA INSULATION
CN110445506A (zh) * 2019-06-27 2019-11-12 维沃移动通信有限公司 信号收发装置和电子设备
CN110474656A (zh) * 2019-06-27 2019-11-19 维沃移动通信有限公司 信号收发装置和电子设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114978201A (zh) * 2021-02-25 2022-08-30 Oppo广东移动通信有限公司 射频前端模组及电子设备
CN114978201B (zh) * 2021-02-25 2024-02-02 Oppo广东移动通信有限公司 射频前端模组及电子设备
CN113992233A (zh) * 2021-10-28 2022-01-28 维沃移动通信有限公司 天线切换装置、方法和电子设备
CN113992233B (zh) * 2021-10-28 2023-02-03 维沃移动通信有限公司 天线切换装置、方法和电子设备

Also Published As

Publication number Publication date
CN110474656B (zh) 2022-02-22
CN110474656A (zh) 2019-11-19

Similar Documents

Publication Publication Date Title
WO2020259184A1 (zh) 信号收发装置和电子设备
WO2020259183A1 (zh) 信号收发装置和电子设备
WO2020238450A1 (zh) 天线控制方法和折叠屏终端
WO2021042892A1 (zh) 网络射频结构、射频控制方法及电子设备
CN109725680B (zh) 一种移动终端及天线控制方法
WO2021115250A1 (zh) 功率控制装置、方法及电子设备
WO2020259296A1 (zh) 射频电路及终端
CN110350941B (zh) 信号收发装置、电子设备及控制方法
CN110212877B (zh) 一种电路控制方法、电子设备及射频电路
US11936474B2 (en) Transmission antenna switching method and terminal device
WO2020216178A1 (zh) 功率检测电路及终端
WO2021129750A1 (zh) 射频电路、电子设备及srs发送方法
WO2020216180A1 (zh) 功率检测电路及终端
CN109379145B (zh) 一种信号处理电路、终端设备及信号处理方法
CN110336623B (zh) 功率检测方法、装置及移动终端
WO2020215930A1 (zh) 干扰处理方法及移动终端
CN111313915B (zh) 一种电子设备
CN108832297B (zh) 一种天线工作方法和移动终端
WO2021129835A1 (zh) 音量控制方法、设备及计算机可读存储介质
WO2021012871A1 (zh) 设置延时的方法及设备
US20220394786A1 (en) Session Information Processing Method, and Electronic Device
CN110557166B (zh) 一种通信电路的调整方法及终端
WO2022166877A1 (zh) Wi-Fi上行数据发送方法、装置、电子设备及存储介质
US11979204B2 (en) Antenna adjusting method and device, and terminal
US20210204294A1 (en) Communication method for mobile terminal and mobile terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831507

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20831507

Country of ref document: EP

Kind code of ref document: A1