WO2020258993A1 - 纳米压印模组及其压印方法 - Google Patents

纳米压印模组及其压印方法 Download PDF

Info

Publication number
WO2020258993A1
WO2020258993A1 PCT/CN2020/084318 CN2020084318W WO2020258993A1 WO 2020258993 A1 WO2020258993 A1 WO 2020258993A1 CN 2020084318 W CN2020084318 W CN 2020084318W WO 2020258993 A1 WO2020258993 A1 WO 2020258993A1
Authority
WO
WIPO (PCT)
Prior art keywords
nano
nanoimprint
imprint
adhesive layer
electrode
Prior art date
Application number
PCT/CN2020/084318
Other languages
English (en)
French (fr)
Inventor
王健
李建
张文余
黄东升
徐诗雨
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2020258993A1 publication Critical patent/WO2020258993A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping

Definitions

  • the present disclosure relates to the field of display technology, in particular to a nano-imprint module and an imprint method thereof.
  • Nanoimprinting is a new pattern transfer technology that is different from traditional photolithography. It can "copy” nanopatterns from a template to a substrate, and has the advantages of high yield, low cost and simple process.
  • the embodiment of the present disclosure provides a nano-imprint module, including:
  • the substrate is arranged opposite to the template
  • a nanoimprint structure located on the surface of the template facing the substrate;
  • a nanoimprint adhesive layer located on the surface of the substrate facing the template
  • the electrode structure is located between the template and the substrate;
  • the electrode structure is configured to contact the nano-imprinted structure in the nano-imprinted adhesive layer under voltage driving
  • the droplets have wettability.
  • the electrode structure includes: a driving electrode and a reference electrode; the reference electrode is arranged opposite to the driving electrode.
  • the reference electrode and the driving electrode are both located between the substrate and the nanoimprint adhesive layer.
  • the reference electrode and the driving electrode are both located on the side of the nanoimprint structure facing away from the template.
  • the reference electrode and the driving electrode are located on the same layer, and the driving electrode and the reference electrode are alternately arranged.
  • the reference electrode and the driving electrode are located in different layers.
  • the reference electrode is located on the side of the nanoimprint structure facing away from the template, and the driving electrode is located on the side of the nanoimprint structure. Between the substrate and the nanoimprint adhesive layer.
  • the above-mentioned nanoimprint module provided by the embodiment of the present disclosure, it further includes: a first dielectric layer and a first hydrophobic layer which are sequentially stacked on the outermost surface of the nanoimprint structure.
  • Floor a first dielectric layer and a first hydrophobic layer which are sequentially stacked on the outermost surface of the nanoimprint structure.
  • nanoimprint module provided by the embodiment of the present disclosure, it further includes: a second hydrophobic layer disposed in contact with the surface of the nanoimprint adhesive layer facing the substrate , And a second dielectric layer disposed in contact with the surface of the second hydrophobic layer facing the substrate.
  • an embodiment of the present disclosure also provides an imprinting method of the aforementioned nanoimprint module provided by the embodiment of the present disclosure, including:
  • a pattern complementary to the nano-imprint structure is printed on the nano-imprint adhesive layer.
  • printing a pattern complementary to the nano-imprint structure on the nano-imprint adhesive layer specifically includes:
  • the nano-imprinted adhesive layer is cured by ultraviolet light, so that a pattern complementary to the nano-imprinted structure is printed on the nano-imprinted adhesive layer.
  • the nanoimprinting adhesive layer is cured by ultraviolet light.
  • the nanometer after applying voltage to the electrode structure for a preset time and stopping the application of voltage to the electrode structure, the nanometer is cured by ultraviolet light. Embossed rubber layer.
  • Figure 1 is a schematic diagram of a structure of a nano-imprint module in related technologies
  • Figure 2 is a schematic diagram of another structure of the nanoimprint module in the related technology
  • FIG. 3 is a schematic diagram of a structure of a nanoimprint module provided by an embodiment of the disclosure.
  • FIG. 4 is a schematic diagram of another structure of a nanoimprint module provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic diagram of another structure of a nanoimprint module provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic diagram of another structure of a nanoimprint module provided by an embodiment of the disclosure.
  • FIG. 7 is a flowchart of an imprinting method of a nanoimprint module provided by an embodiment of the disclosure.
  • Figure 1 is a set of nanoimprint modules used in related technologies, including a template 1 and a substrate 2, which are arranged oppositely.
  • the template 1 has a nanoimprint structure 3
  • the substrate 2 has a nanoimprint Adhesive layer 4
  • nano-imprint technology is to copy the pattern of nano-imprint structure 3 to nano-imprint adhesive layer 4, by contacting the nano-imprint structure 3 and nano-imprint adhesive layer 4 in Fig.
  • a certain pressure is applied to print the nano-imprint structure 3 into the nano-imprint adhesive layer 4, and then the nano-imprint adhesive layer 4 is cured by laser, and finally the template 1 with the nano-imprint structure 3 is demolded to form a picture 2 shows the structure, it can be seen that the pattern of the nano-imprint structure 3 is printed on the nano-imprint adhesive layer 4.
  • the key link is the preparation of high-precision templates and the reuse of templates.
  • it is necessary to perform anti-sticking treatment on the template, increase the viscosity of the substrate, and maintain a moderate imprinting force.
  • the contact angle between the gap of the template and the droplets of the UV imprint glue becomes larger, resulting in insufficient filling of the nanostructure of the template by the UV imprint glue.
  • the contact angle of the template to the UV embossing glue drops gradually becomes smaller, and the filling is improved, but it is easy to cause demolding failure.
  • the embodiments of the present disclosure provide a nanoimprint module and an imprinting method thereof.
  • the nanoimprint provided by the embodiments of the present disclosure is described below with reference to the accompanying drawings. Specific implementations of the module and its imprinting method are described in detail.
  • each layer of the film in the drawings do not reflect the true ratio of the nanoimprint module, and the purpose is only to illustrate the present disclosure.
  • the nanoimprint module provided by the embodiment of the present disclosure, as shown in FIGS. 3 to 6, specifically includes: a template 1 and a substrate 2 which are arranged oppositely, the template 1 has a nanoimprint structure 3 on the side facing the substrate 2, and the substrate 2 faces
  • the template 1 has a nanoimprint adhesive layer 4 on one side; it also includes an electrode structure 5 between the template 1 and the substrate 2;
  • the electrode structure 5 is configured to be driven by a voltage so that the nano-imprint adhesive layer 5 is The droplets contacted by the imprinting structure 3 have wettability.
  • an electrode structure between the template and the substrate is added to the above-mentioned nanoimprint module provided by the embodiments of the present disclosure, and the nanoimprint structure on the side of the template and the nanoimprint adhesive layer on the side of the substrate are pressed.
  • the wettability of the droplets of the nanoimprint adhesive layer on the nanoimprint structure is changed , That is, changing the contact angle between the droplet and the nanoimprint structure, the droplet can spread on the surface of the nanoimprint structure, and the solid-liquid contact surface has a tendency to expand, that is, the adhesion force of the droplet to the surface of the nanoimprint structure is greater than its Cohesion makes the droplets in the nano-imprint adhesive layer that are in contact with the nano-imprint structure have wettability, so that the droplets of the nano-imprint adhesive layer can fully fill the nano-imprint structure.
  • the nano-imprint module provided by the embodiments of the present disclosure solves the problem that the contact angle between the template gap and the UV imprint glue droplets becomes larger due to the anti-sticking treatment of the template, so that the UV imprint glue cannot fill the nanostructure of the template. Full question.
  • the electrode structure 5 may specifically include: a driving electrode 51 and a reference electrode 52; and a driving electrode 51 It is arranged opposite to the reference electrode 52.
  • the voltage applied to the driving electrode 51 and the reference electrode 52 are different, so that an electric field is formed between the two to control the wettability of the nanoimprint adhesive layer 5.
  • the driving electrode 51 and the reference electrode 52 may be located between the substrate 2 and the nanoimprint adhesive layer 4; the driving electrode 51 and the reference electrode 52 may Located on different floors.
  • the nano-imprint structure may further include: a first dielectric layer 61 and a first hydrophobic layer 71 stacked on the outermost surface of the nano-imprint structure 3, and a surface on the side of the nano-imprint adhesive layer 4 facing the substrate 2
  • the second hydrophobic layer 72 and the second dielectric layer 62 are provided in contact with each other.
  • both the driving electrode 51 and the reference electrode 52 may be planar electrodes or strip-shaped electrodes. In the first embodiment of the present disclosure, both the driving electrode 51 and the reference electrode 52 are strip-shaped electrodes as an example.
  • the hydrophobic layer can ensure that the droplets of the nanoimprint adhesive layer 4 have good wettability. Thereby, the morphology of the droplets of the nano-imprint adhesive layer 4 is adjusted to change the contact angle between the droplets of the nano-imprint adhesive layer 4 and the nano-imprint structure 3.
  • the solid-liquid contact surface has a tendency to expand, that is, the adhesion force of the droplet to the surface of the nanoimprint structure 3 is greater than its cohesive force, so that the droplet of the nanoimprint adhesive layer 4 in contact with the nanoimprint structure 3 has The wettability, so that the droplets of the nano-imprint adhesive layer 4 can fully fill the nano-imprint structure 3.
  • the method of fabricating the driving electrode 51 and the reference electrode 52 on the substrate 2 includes but is not limited to any one of chemical vapor deposition, PCVD, and magnetron sputtering.
  • the material of the driving electrode 51 and the reference electrode 52 includes but is not limited to aluminum. , ITO, copper, chromium and their combinations, the temperature used to make the driving electrode 51 and the reference electrode 52 can be room temperature-400°C.
  • the first dielectric layer 61 is fabricated on the template 1, and the second dielectric layer 62 is fabricated on the substrate 2.
  • the methods used include, but are not limited to, any one of spin coating, spray coating, and PVD.
  • the material of layer 61 and second dielectric layer 62 includes one of acrylic (molecular weight 20-200,000), epoxy resin (molecular weight 20-200,000), polyurethane type (molecular weight 20-200,000) Or combination.
  • the first hydrophobic layer 71 is made by spraying or spin coating on the template 1, and the second hydrophobic layer 72, the first hydrophobic layer 71 and the second hydrophobic layer 72 are made on the substrate 2 by spraying or spin coating.
  • the material is one or a combination of polytetrafluoroethylene, polyvinylidene fluoride, and organic fluorine compounds.
  • the driving electrode 51, the reference electrode 52, and the second dielectric layer are sequentially formed on the substrate 2 by using the above-mentioned production method of the film layers. 62.
  • the difference between FIG. 4 and FIG. 3 is that the driving electrode 51 and the reference electrode 52 are located on the same layer, and the driving electrode 51 and the reference electrode 52 are alternately Arrangement; the structure of other layers is the same. Since the driving electrode 51 and the reference electrode 52 are located on the same layer in the structure of FIG. 4, the thickness of the nanoimprint module and the flatness of the nanoimprint adhesive layer 4 can be further reduced. Specifically, the driving electrode 51 and the reference electrode 52 may both be strip electrodes.
  • the nanoimprint module shown in FIG. 4 has the same function and imprint principle as the nanoimprint module shown in FIG.
  • the nano-imprint structure 3 on the side of 1 and the nano-imprint adhesive layer 4 on the side of the substrate 2 are imprinted, it is ensured that the droplets of the nano-imprint adhesive layer 4 have good wettability, so that the nano-imprint adhesive layer The droplets of 4 fully fill the nano-imprint structure 3.
  • each film layer of FIG. 4 shown in the second embodiment is the same as the manufacturing methods and materials of each film layer of FIG. 3 shown in the first embodiment.
  • the manufacturing methods and materials of each film layer of FIG. 4 shown in the second embodiment are the same as the manufacturing methods and materials of each film layer of FIG. 3 shown in the first embodiment.
  • the driving electrode 51, the reference electrode 52, and the reference electrode 52 are sequentially formed on the substrate 2 by adopting the method of fabricating each film layer mentioned in the first embodiment.
  • the difference between FIG. 5 and FIG. 3 is that the reference electrode 52 is located on the side of the nanoimprint structure 3 facing away from the template 1, and the driving electrode 51 It is located between the substrate 2 and the nanoimprinted adhesive layer 4, that is, the reference electrode 52 is located between the nanoimprint structure 3 and the first dielectric layer 61, and the driving electrode 51 is located between the substrate 2 and the second dielectric layer 62; other film layers
  • the reference electrode 52 is located on the side of the nanoimprint structure 3 facing away from the template 1
  • the driving electrode 51 It is located between the substrate 2 and the nanoimprinted adhesive layer 4, that is, the reference electrode 52 is located between the nanoimprint structure 3 and the first dielectric layer 61, and the driving electrode 51 is located between the substrate 2 and the second dielectric layer 62; other film layers
  • FIG. 5 the difference between FIG. 5 and FIG. 3 is that the reference electrode 52 is located between the nanoimprint structure 3 and the first dielectric layer 61, and the driving electrode 51 is located between the substrate 2 and the second dielectric layer 62;
  • the driving electrode 51 and the reference electrode 52 when a voltage is applied to the driving electrode 51 and the reference electrode 52, since the reference electrode 52 is located on the side of the nanoimprint structure 3 facing away from the template 1, the droplets of the nanoimprint adhesive layer 4 can have good wettability. It is wet, so that the nano-imprinted adhesive layer 4 is fully filled in the nano-imprinted structure 3; however, since the structure of the nano-imprinted structure 3 is a microstructure, it is difficult to evaporate the reference electrode 52 on it, so the implementation of the present disclosure Examples
  • the structure of the driving electrode 51 and the reference electrode 52 in the first embodiment and the second embodiment is preferred. Specifically, the driving electrode 51 and the reference electrode 52 in FIG. 5 may both be planar electrodes or strip-shaped electrodes.
  • the nano imprint layer 5 has the same function and pressure as the nanoimprint module shown in FIG.
  • the printing principle is the same.
  • the droplets of the nano imprint layer 4 can be guaranteed to have good wettability. , So that the droplets of the nano-imprinted adhesive layer 4 fill the nano-imprint structure 3 sufficiently.
  • each film layer of FIG. 5 shown in the third embodiment are the same as the manufacturing methods and materials of each film layer of FIG. 3 shown in the first embodiment.
  • the manufacturing methods and materials of each film layer of FIG. 5 shown in the third embodiment are the same as the manufacturing methods and materials of each film layer of FIG. 3 shown in the first embodiment.
  • the driving electrode 51 and the first film layer are sequentially formed on the substrate 2 by using the method of fabricating the film layers mentioned in the first embodiment.
  • the second dielectric layer 62, the second hydrophobic layer 72 and the nano-imprint adhesive layer 4; the nano-imprint structure 3, the reference electrode 52, the first dielectric layer 61 and the first hydrophobic layer 7 are sequentially formed on the template 1.
  • the difference between FIG. 6 and FIG. 3 is that the driving electrode 51 and the reference electrode 52 are both located on the side of the nanoimprint structure 3 facing away from the template 1.
  • the structure of the other layers is the same.
  • the nanoimprint structure 3 illustrated in FIG. 6 only schematically illustrates the positional relationship between the driving electrode 51 and the reference electrode 52 and the nanoimprint structure 3, and does not represent the actual microstructure of the nanoimprint structure 3.
  • the driving electrode 51 and the reference electrode 52 in FIG. 6 may both be planar electrodes or strip-shaped electrodes.
  • the driving electrode 51 and the reference electrode 52 are both located on the side of the nano-imprint structure 3 facing away from the template 1, it can better make the nano-imprint glue
  • the droplets of the layer 4 have good wettability, so that the nano-imprint adhesive layer 4 is fully filled in the nano-imprint structure 3.
  • the structure of the nanoimprinted structure 3 is a microstructure, it is more difficult to evaporate the driving electrode 51 and the reference electrode 52 on it. Therefore, the driving electrodes 51 and the driving electrodes 51 and the reference electrodes in the first and second embodiments of the present disclosure are preferred.
  • Reference electrode 52 structure since the structure of the nanoimprinted structure 3 is a microstructure, it is more difficult to evaporate the driving electrode 51 and the reference electrode 52 on it. Therefore, the driving electrodes 51 and the driving electrodes 51 and the reference electrodes in the first and second embodiments of the present disclosure are preferred.
  • Reference electrode 52 structure since the structure of the nanoimprinted structure 3 is a microstructure, it is more difficult to evaporate the driving electrode 51 and the reference electrode 52 on it.
  • the driving electrode 51 and the reference electrode 52 in FIG. 6 may both be planar electrodes or strip-shaped electrodes.
  • the nano-imprint module shown in FIG. 6 and the nano-imprint module shown in FIG. The printing principle is the same.
  • the droplets of the nano imprint layer 4 can be guaranteed to have good wettability. , So that the droplets of the nano-imprinted adhesive layer 4 fill the nano-imprint structure 3 sufficiently.
  • each film layer of FIG. 6 shown in the fourth embodiment is the same as the manufacturing methods and materials of each film layer of FIG. 3 shown in the first embodiment.
  • the manufacturing methods and materials of each film layer of FIG. 6 shown in the fourth embodiment are the same as the manufacturing methods and materials of each film layer of FIG. 3 shown in the first embodiment.
  • the second dielectric layer 62 is sequentially formed on the substrate 2 by using the method of making each film layer as described in the first embodiment.
  • the second hydrophobic layer 72 and the nano-imprint adhesive layer 4; the nano-imprint structure 3, the reference electrode 52, the first dielectric layer 61, the driving electrode 51, the first dielectric layer 61 and the first hydrophobic layer are sequentially formed on the template 1. 7.
  • the low-viscosity glue when the viscosity of the nano-imprint glue is low (about 10cps), the low-viscosity glue can fill the larger gaps (30-100 microns) of the nano-imprint structure better, but it is affected by the interfacial tension.
  • the liquid droplets are meniscus; when the gap of the nanoimprint structure is moderate, it is difficult to fill due to the hydrophobic treatment of the template, and the reproducibility of the morphology is poor.
  • the nanoimprint module provided by the embodiment of the present disclosure, since the electrode structure, hydrophobic layer and dielectric layer are added, when the nanoimprint structure on the template side and the nanoimprint adhesive layer on the substrate side are imprinted , By applying voltage to the electrode structure, the low-viscosity nano-imprint adhesive layer can be wetted on the nano-imprint structure, so that the low-viscosity nano-imprint adhesive layer can be printed on the nano-imprint The structure is fully filled.
  • the nanoimprint module provided by the embodiment of the present disclosure, since the electrode structure, hydrophobic layer and dielectric layer are added, when the nanoimprint structure on the template side and the nanoimprint adhesive layer on the substrate side are imprinted , By applying a voltage to the electrode structure, the high-viscosity nano-imprinting adhesive layer can be wetted on the nano-imprint structure, so that the high-viscosity nano-imprinting adhesive layer can be printed on the nano-imprint The structure is fully filled.
  • the aforementioned nano-imprint module provided by the embodiments of the present disclosure is suitable for filling nano-imprint glue with any viscosity.
  • the four embodiments listed in the present disclosure are only part of the structure of the drive electrode 51 and the reference electrode 52 in the present disclosure.
  • the structure of the drive electrode 51 and the reference electrode 52 can be designed as required, as long as It can realize that when the nano-imprint structure on the template side and the nano-imprint adhesive layer on the substrate side are imprinted, a voltage is applied to the electrode structure, so that the droplets of the nano-imprint adhesive layer can be moisturized on the nano-imprint structure.
  • the wetness which can make the droplets of the nano-imprint adhesive layer to be fully filled in the nano-imprint structure, are all protected by the present disclosure.
  • the nanoimprint module includes a first hydrophobic layer and a second hydrophobic layer as examples.
  • the above nanoimprint mold The first hydrophobic layer and the second hydrophobic layer may not be provided in the group.
  • the embodiments of the present disclosure also provide an imprinting method of the above-mentioned nanoimprint module provided by the embodiments of the present disclosure, as shown in FIG. 7, which may specifically include:
  • S702 Apply a voltage to the electrode structure to make the liquid droplets in the nano-imprint adhesive layer in contact with the nano-imprint structure have wettability;
  • S703 Print a pattern complementary to the nano-imprint structure on the nano-imprint adhesive layer.
  • a voltage is applied to the electrode structure when imprinting the nanoimprint structure on the side of the template and the nanoimprint adhesive layer on the side of the substrate, and by changing
  • the voltage between the droplets of the nano-imprint adhesive layer and the nano-imprint structure changes the wettability of the droplets of the nano-imprint adhesive layer on the nano-imprint structure, that is, the change between the droplets and the nano-imprint structure
  • the contact angle of the liquid droplet can be spread on the surface of the nanoimprint structure, and the solid-liquid contact surface has a tendency to expand. That is, the adhesion force of the droplet to the surface of the nanoimprint structure is greater than its cohesive force.
  • the droplets of the glue layer have wettability, so the droplets of the nano-imprint glue layer can fully fill the nano-imprint structure.
  • printing a pattern complementary to the nano-imprint structure on the nano-imprint adhesive layer may specifically include:
  • the nano-imprint adhesive layer is cured by ultraviolet light, so that the pattern complementary to the nano-imprint structure is printed on the nano-imprint adhesive layer.
  • the nano-imprinting adhesive layer may be cured by ultraviolet light;
  • the nano-imprint adhesive layer can be cured by ultraviolet light.
  • the nanoimprint module and the imprint method thereof provided by the embodiments of the present disclosure include: a template and a substrate disposed oppositely, the side of the template facing the substrate has a nanoimprint structure, and the side of the substrate facing the template has a nanoimprint structure.
  • the imprinting adhesive layer also includes an electrode structure located between the template and the substrate; the present disclosure applies voltage to the electrode structure when imprinting the nanoimprinting structure on the side of the template and the nanoimprinting adhesive layer on the side of the substrate,
  • the wettability of the droplets of the nanoimprint adhesive layer on the nanoimprint structure is changed, that is, the droplet and the nanoimprint structure are changed
  • the contact angle between the droplets can spread on the surface of the nanoimprint structure, and the solid-liquid contact surface has a tendency to expand, that is, the adhesion force of the droplet to the surface of the nanoimprint structure is greater than its cohesive force, so that the contact with the nanoimprint structure
  • the droplets of the nano-imprint adhesive layer have wettability, so the droplets of the nano-imprint adhesive layer can fully fill the nano-imprint structure.
  • the nanoimprint module provided by the embodiment of the present disclosure solves the problem that the contact angle between the template gap and the UV imprint glue droplet becomes larger due to the anti-adhesion treatment of the template, which causes the UV imprint glue to not fill the nanostructure of the template. Full question.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Printing Methods (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

本公开提供了一种纳米压印模组及其压印方法,在模板一侧的纳米压印结构与基板一侧的纳米压印胶层压印时,对电极结构施加电压,通过改变纳米压印胶层液滴与纳米压印结构之间的电压,来改变纳米压印胶层液滴在纳米压印结构上的润湿性,即改变液滴与纳米压印结构之间的接触角,液滴在纳米压印结构表面能铺展,固液接触面有扩大趋势,即液滴对纳米压印结构表面的附着力大于其内聚力,使与纳米压印结构接触的纳米压印胶层液滴具有润湿性,可以使纳米压印胶层液滴对纳米压印结构填充充分。因此本公开的纳米压印模组解决了因对模板进行抗粘处理导致模板与纳米压印胶层液滴的接触角变大,导致纳米压印胶对模板的纳米结构填充不充分的问题。

Description

纳米压印模组及其压印方法
相关申请的交叉引用
本公开要求在2019年06月24日提交中国专利局、申请号为201910549453.2、申请名称为“一种纳米压印模组及其压印方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,特别涉及一种纳米压印模组及其压印方法。
背景技术
纳米压印是一种不同于传统光刻技术的全新图形转移技术,其能够把纳米图形从模板“复制”到基板上,具有产量高、成本低和工艺简单的优点。
发明内容
本公开实施例提供了一种纳米压印模组,包括:
模板;
基板,与所述模板相对设置;
纳米压印结构,位于所述模板面向所述基板一侧的表面;
纳米压印胶层,位于所述基板面向所述模板一侧的表面;
电极结构,位于所述模板与所述基板之间;
在所述纳米压印结构与所述纳米压印胶层进行压印时,所述电极结构被配置为在电压的驱动下,使所述纳米压印胶层中与所述纳米压印结构接触的液滴具有润湿性。
可选地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,所述电极结构包括:驱动电极和参考电极;所述参考电极与所述驱动电极相对设置。
可选地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,所述参考电极和所述驱动电极均位于所述基板与所述纳米压印胶层之间。
可选地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,所述参考电极和所述驱动电极均位于所述纳米压印结构背向所述模板的一侧。
可选地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,所述参考电极和所述驱动电极位于同一层,且所述驱动电极和所述参考电极交替排列。
可选地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,所述参考电极和所述驱动电极位于不同层。
可选地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,所述参考电极位于所述纳米压印结构背向所述模板的一侧,所述驱动电极位于所述基板与所述纳米压印胶层之间。
可选地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,还包括:位于所述纳米压印结构最外侧表面依次层叠设置的第一介电层和第一疏水层。
可选地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,还包括:位于所述纳米压印胶层面向所述基板一侧的表面接触设置的第二疏水层,以及位于所述第二疏水层面向所述基板一侧的表面接触设置的第二介电层。
相应地,本公开实施例还提供了一种本公开实施例提供的上述纳米压印模组的压印方法,包括:
将所述模板一侧的纳米压印结构与所述基板一侧的纳米压印胶层进行压印;
向所述电极结构加载电压,使所述纳米压印胶层中与所述纳米压印结构接触的液滴具有润湿性;
将与所述纳米压印结构互补的图形印制在所述纳米压印胶层上。
可选地,在具体实施时,在本公开实施例提供的上述压印方法中,将与 所述纳米压印结构互补的图形印制在所述纳米压印胶层上,具体包括:
采用紫外光固化所述纳米压印胶层,使与所述纳米压印结构互补的图形印制在所述纳米压印胶层上。
可选地,在具体实施时,在本公开实施例提供的上述压印方法中,向所述电极结构加载电压预设时间后,采用紫外光固化所述纳米压印胶层。
可选地,在具体实施时,在本公开实施例提供的上述压印方法中,向所述电极结构加载电压预设时间且停止向所述电极结构加载电压后,采用紫外光固化所述纳米压印胶层。
附图说明
图1为相关技术中纳米压印模组的一种结构示意图;
图2为相关技术中纳米压印模组的另一种结构示意图;
图3为本公开实施例提供的纳米压印模组的一种结构示意图;
图4为本公开实施例提供的纳米压印模组的另一种结构示意图;
图5为本公开实施例提供的纳米压印模组的另一种结构示意图;
图6为本公开实施例提供的纳米压印模组的另一种结构示意图;
图7为本公开实施例提供的纳米压印模组的压印方法的流程图。
具体实施方式
如图1和图2所示,图1为一组相关技术中采用的纳米压印模组,包括相对设置的模板1和基板2,模板1具有纳米压印结构3,基板2具有纳米压印胶层4,纳米压印技术就是要把纳米压印结构3的图形复制到纳米压印胶层4上,通过将图1中的纳米压印结构3和纳米压印胶层4进行接触,然后施加一定压力,使纳米压印结构3印制到纳米压印胶层4中,再通过激光固化纳米压印胶层4,最后将具有纳米压印结构3的模板1进行脱模处理,形成图2所示的结构,可以看出纳米压印结构3的图形印制到了纳米压印胶层4上。
在纳米压印技术中,关键环节是高精度模板的制备和模板的重复利用。 为了提高模板的使用寿命,需对模板进行抗粘处理、对基板进行增粘处理,并保持适度的压印力。然而模板进行抗粘处理之后,模板缝隙与UV压印胶液滴的接触角变大,导致UV压印胶对模板的纳米结构填充不充分。随着模板的重复利用,模板对UV压印胶液滴的接触角逐渐变小,填充有所改善,但极易造成脱模失败。
基于此,本公开实施例提供了一种纳米压印模组及其压印方法,为了使本公开的目的,技术方案和优点更加清楚,下面结合附图,对本公开实施例提供的纳米压印模组及其压印方法的具体实施方式进行详细地说明。
附图中各层薄膜厚度和形状不反映纳米压印模组的真实比例,目的只是示意说明本公开内容。
本公开实施例提供的纳米压印模组,如图3至图6所示,具体包括:相对设置的模板1和基板2,模板1面向基板2一侧具有纳米压印结构3,基板2面向模板1一侧具有纳米压印胶层4;还包括位于模板1与基板2之间的电极结构5;
在模板1一侧的纳米压印结构3与基板2一侧的纳米压印胶层4进行压印时,电极结构5被配置为在电压的驱动下,使纳米压印胶层5中与纳米压印结构3接触的液滴具有润湿性。
具体地,在本公开实施例提供的上述纳米压印模组中增加了位于模板与基板之间的电极结构,在模板一侧的纳米压印结构与基板一侧的纳米压印胶层进行压印时,通过对电极结构施加电压,以改变纳米压印胶层的液滴与纳米压印结构之间的电压,来改变纳米压印胶层的液滴在纳米压印结构上的润湿性,即改变液滴与纳米压印结构之间的接触角,液滴在纳米压印结构表面能铺展,固液接触面有扩大的趋势,即液滴对纳米压印结构表面的附着力大于其内聚力,使纳米压印胶层中与纳米压印结构接触的液滴具有润湿性,因此可以使纳米压印胶层的液滴对纳米压印结构填充充分。因此,本公开实施例提供的纳米压印模组解决了因对模板进行抗粘处理导致模板缝隙与UV压印胶液滴的接触角变大,使得UV压印胶对模板的纳米结构填充不充分的问 题。
具体地,在具体实施时,在本公开实施例提供的上述纳米压印模组中,如图3至图6所示,电极结构5可以具体包括:驱动电极51和参考电极52;驱动电极51与参考电极52相对设置。驱动电极51和参考电极52加载的电压不同,以使两者之间形成电场控制纳米压印胶层5的液滴润湿性。
下面通过几个具体实施例对本公开实施例提供的上述纳米压印模组的结构进行详细说明。
实施例一:
在本公开实施例提供的纳米压印模组中,如图3所示,驱动电极51和参考电极52可以均位于基板2与纳米压印胶层4之间;驱动电极51和参考电极52可以位于不同层。该纳米压印结构还可以包括:位于纳米压印结构3最外侧表面依次层叠设置的第一介电层61和第一疏水层71,以及位于纳米压印胶层4面向基板2一侧的表面接触设置的第二疏水层72和第二介电层62。具体地,驱动电极51和参考电极52均可以为面状电极或条形电极,本公开实施例一中是以驱动电极51和参考电极52均为条形电极为例。
在具体实施时,如图3所示,在模板1一侧的纳米压印结构3与基板2一侧的纳米压印胶层4进行压印时,对驱动电极51和参考电极52施加一定电压(如10-50V)。由于在模板1一侧和在基板2一侧均设置有疏水层,在驱动电极51和参考电极52施加电压时,疏水层可以保证纳米压印胶层4的液滴具有良好的润湿性,从而调控纳米压印胶层4的液滴形貌,来改变纳米压印胶层4的液滴与纳米压印结构3之间的接触角。在电压的控制下固液接触面有扩大的趋势,即液滴对纳米压印结构3表面的附着力大于其内聚力,使与纳米压印结构3接触的纳米压印胶层4的液滴具有润湿性,因此可以使纳米压印胶层4的液滴对纳米压印结构3填充充分。
具体地,在基板2上制作驱动电极51和参考电极52的方法包括但不限于化学气相沉积、PCVD、磁控溅射其中任意一种,驱动电极51和参考电极52的材料包括但不限于铝、ITO、铜、铬及其它们的组合物,制作驱动电极 51和参考电极52所用温度可以为室温-400℃。
具体地,在模板1上制作第一介电层61,以及在基板2上制作第二介电层62,所用的方法包括但不限于旋涂、喷涂、PVD其中任意一种,第一介电层61和第二介电层62的材料包括丙烯酸酯类(分子量2千-20万)、环氧树脂类(分子量2千-20万)、聚氨酯类(分子量2千-20万)其中之一或组合。
具体地,在模板1上采用喷涂或旋涂的方式制作第一疏水层71,在基板2上采用喷涂或旋涂的方式制作第二疏水层72,第一疏水层71和第二疏水层72的材料为聚四氟乙烯、聚偏二氟乙烯、有机氟化合物其中之一或组合。
在具体实施时,在制作图3中基板2上的各膜层时,通过采用上述所说的各膜层的制作方式,在基板2上依次形成驱动电极51、参考电极52、第二介质层62、第二疏水层72和纳米压印胶层4。
实施例二:
在本公开实施例提供的纳米压印模组中,如图4所示,图4与图3的不同之处在于驱动电极51和参考电极52位于同一层,且驱动电极51和参考电极52交替排列;其它膜层的结构相同。图4的结构由于驱动电极51和参考电极52位于同一层,可以进一步减小纳米压印模组的厚度和纳米压印胶层4的平整度。具体地,驱动电极51和参考电极52可以均为条形电极,图4所示的纳米压印模组与图1所示的纳米压印模组的功能和压印原理相同,能够使在模板1一侧的纳米压印结构3与基板2一侧的纳米压印胶层4进行压印时,保证纳米压印胶层4的液滴具有良好的润湿性,从而使纳米压印胶层4的液滴对纳米压印结构3填充充分。
具体地,实施例二中所示的图4的各膜层的制作方法和材料等均与实施例一中所示的图3的各膜层的制作方法和材料等相同,具体详见实施例一,在此不做赘述。
在具体实施时,在制作图4中基板2上的各膜层时,通过采用上述实施例一中所说的各膜层的制作方式,在基板2上依次形成驱动电极51、参考电 极52、第二介质层62、第二疏水层72和纳米压印胶层4。
实施例三:
在本公开实施例提供的纳米压印模组中,如图5所示,图5与图3的不同之处在于参考电极52位于纳米压印结构3背向模板1的一侧,驱动电极51位于基板2与纳米压印胶层4之间,即参考电极52位于纳米压印结构3与第一介质层61之间,驱动电极51位于基板2与第二介质层62之间;其它膜层的结构相同。图5的结构在对驱动电极51和参考电极52施加电压时,由于参考电极52位于纳米压印结构3背向模板1的一侧,可以使纳米压印胶层4的液滴具有良好的润湿性,使纳米压印胶层4充分填充于纳米压印结构3内;但是由于纳米压印结构3的结构是微结构,在其上面蒸镀参考电极52的难度较大,因此本公开实施例优选实施例一和实施例二中的驱动电极51和参考电极52结构。具体地,图5中的驱动电极51和参考电极52可以均为面状电极或条形电极,图5所示的纳米压印模组与图1所示的纳米压印模组的功能和压印原理相同,能够使在模板1一侧的纳米压印结构3与基板2一侧的纳米压印胶层4进行压印时,保证纳米压印胶层4的液滴具有良好的润湿性,从而使纳米压印胶层4的液滴对纳米压印结构3填充充分。
具体地,实施例三中所示的图5的各膜层的制作方法和材料等均与实施例一中所示的图3的各膜层的制作方法和材料等相同,具体详见实施例一,在此不做赘述。
在具体实施时,在制作图5中模板1和基板2上的各膜层时,通过采用上述实施例一中所说的各膜层的制作方式,在基板2上依次形成驱动电极51、第二介质层62、第二疏水层72和纳米压印胶层4;在模板1上依次形成纳米压印结构3、参考电极52、第一介质层61和第一疏水层7。
实施例四:
在本公开实施例提供的纳米压印模组中,如6所示,图6与图3的不同之处在于驱动电极51和参考电极52均位于纳米压印结构3背向模板1的一侧,其它膜层的结构相同。图6中示意的纳米压印结构3仅是示意性说明驱 动电极51和参考电极52与纳米压印结构3的位置关系,不代表纳米压印结构3的真实微结构。具体地,图6中的驱动电极51和参考电极52可以均为面状电极或条形电极。图6的结构在对驱动电极51和参考电极52施加电压时,由于驱动电极51和参考电极52均位于纳米压印结构3背向模板1的一侧,因此可以更好的使纳米压印胶层4的液滴具有良好的润湿性,使纳米压印胶层4充分填充于纳米压印结构3内。但是,由于纳米压印结构3的结构是微结构,在其上面蒸镀驱动电极51和参考电极52的难度较大,因此本公开实施例优选实施例一和实施例二中的驱动电极51和参考电极52结构。
具体地,图6中的驱动电极51和参考电极52可以均为面状电极或条形电极,图6所示的纳米压印模组与图1所示的纳米压印模组的功能和压印原理相同,能够使在模板1一侧的纳米压印结构3与基板2一侧的纳米压印胶层4进行压印时,保证纳米压印胶层4的液滴具有良好的润湿性,从而使纳米压印胶层4的液滴对纳米压印结构3填充充分。
具体地,实施例四中所示的图6的各膜层的制作方法和材料等均与实施例一中所示的图3的各膜层的制作方法和材料等相同,具体详见实施例一,在此不做赘述。
在具体实施时,在制作图6中模板1和基板2上的各膜层时,通过采用上述实施例一中所说的各膜层的制作方式,在基板2上依次形成第二介质层62、第二疏水层72和纳米压印胶层4;在模板1上依次形成纳米压印结构3、参考电极52、第一介质层61、驱动电极51、第一介质层61和第一疏水层7。
在具体实施时,当纳米压印胶的粘度较低时(10cps左右),低粘度的胶液对纳米压印结构的较大缝隙(30-100微米)填充较好,但受界面张力影响胶液液滴呈弯月面;对于纳米压印结构的缝隙适中时,因模板的疏水处理,则难以填充,形貌重现性差。而采用本公开实施例提供的纳米压印模组,由于增加设置了电极结构、疏水层和介质层,在模板一侧的纳米压印结构与基板一侧的纳米压印胶层进行压印时,通过对电极结构施加电压,能够使低粘度的纳米压印胶层的液滴在纳米压印结构上具有润湿性,从而可以使低粘度 的纳米压印胶层的液滴在纳米压印结构内填充充分。
当纳米压印胶的粘度较高时(0.5万-3万cps),高粘度的胶液对纳米压印结构的对较大缝隙(30-100微米)难以填充完全,甚至无填充;对于纳米压印结构的缝隙适中时,不易受界面接触角影响,但需一定压印力。而采用本公开实施例提供的纳米压印模组,由于增加设置了电极结构、疏水层和介质层,在模板一侧的纳米压印结构与基板一侧的纳米压印胶层进行压印时,通过对电极结构施加电压,能够使高粘度的纳米压印胶层的液滴在纳米压印结构上具有润湿性,从而可以使高粘度的纳米压印胶层的液滴在纳米压印结构内填充充分。
因此,本公开实施例提供的上述纳米压印模组适用于任意粘度的纳米压印胶的填充。
需要说明的是,本公开上述列举的四个实施例只是本公开中驱动电极51和参考电极52的部分实施例结构,具体实施时,可以根据需要设计驱动电极51和参考电极52的结构,只要能够实现在模板一侧的纳米压印结构与基板一侧的纳米压印胶层进行压印时,对电极结构施加电压,能够使纳米压印胶层的液滴在纳米压印结构上具有润湿性,可以使纳米压印胶层的液滴在纳米压印结构内填充充分均属于本公开保护的内容。
需要说明的是,本公开上述列举的四个实施例中均是以纳米压印模组中包括第一疏水层和第二疏水层为例进行说明的,当然具体实施时,上述纳米压印模组中也可以不设置第一疏水层和第二疏水层。
基于同一发明构思,本公开实施例还提供了一种本公开实施例提供的上述纳米压印模组的压印方法,如图7所示,具体可以包括:
S701、将模板一侧的纳米压印结构与基板一侧的纳米压印胶层进行压印;
S702、向电极结构加载电压,使纳米压印胶层中与纳米压印结构接触的液滴具有润湿性;
S703、将与纳米压印结构互补的图形印制在纳米压印胶层上。
本公开实施例提供的上述纳米压印模组的压印方法,通过在模板一侧的 纳米压印结构与基板一侧的纳米压印胶层进行压印时,对电极结构施加电压,通过改变纳米压印胶层的液滴与纳米压印结构之间的电压,来改变纳米压印胶层的液滴在纳米压印结构上的润湿性,即改变液滴与纳米压印结构之间的接触角,液滴在纳米压印结构表面能铺展,固液接触面有扩大的趋势,即液滴对纳米压印结构表面的附着力大于其内聚力,使与纳米压印结构接触的纳米压印胶层的液滴具有润湿性,因此可以使纳米压印胶层的液滴对纳米压印结构填充充分。
具体地,在具体实施时,在本公开实施例提供的上述压印方法中,将与纳米压印结构互补的图形印制在纳米压印胶层上,具体可以包括:
采用紫外光固化纳米压印胶层,使与纳米压印结构互补的图形印制在纳米压印胶层上。
具体地,在具体实施时,在本公开实施例提供的上述压印方法中,可以向电极结构加载电压预设时间后,采用紫外光固化纳米压印胶层;或,
可以向电极结构加载电压预设时间且停止向电极结构加载电压后,采用紫外光固化纳米压印胶层。
本公开实施例提供的纳米压印模组及其压印方法,该纳米压印模组包括:相对设置的模板和基板,模板面向基板一侧具有纳米压印结构,基板面向模板一侧具有纳米压印胶层;还包括位于模板与基板之间的电极结构;本公开通过在模板一侧的纳米压印结构与基板一侧的纳米压印胶层进行压印时,对电极结构施加电压,通过改变纳米压印胶层的液滴与纳米压印结构之间的电压,来改变纳米压印胶层的液滴在纳米压印结构上的润湿性,即改变液滴与纳米压印结构之间的接触角,液滴在纳米压印结构表面能铺展,固液接触面有扩大的趋势,即液滴对纳米压印结构表面的附着力大于其内聚力,使与纳米压印结构接触的纳米压印胶层的液滴具有润湿性,因此可以使纳米压印胶层的液滴对纳米压印结构填充充分。因此,本公开实施例提供的纳米压印模组解决了因对模板进行抗粘处理导致模板缝隙与UV压印胶液滴的接触角变大,导致UV压印胶对模板的纳米结构填充不充分的问题。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (13)

  1. 一种纳米压印模组,其中,包括:
    模板;
    基板,与所述模板相对设置;
    纳米压印结构,位于所述模板面向所述基板一侧的表面;
    纳米压印胶层,位于所述基板面向所述模板一侧的表面;
    电极结构,位于所述模板与所述基板之间;
    在所述纳米压印结构与所述纳米压印胶层进行压印时,所述电极结构被配置为在电压的驱动下,使所述纳米压印胶层中与所述纳米压印结构接触的液滴具有润湿性。
  2. 如权利要求1所述的纳米压印模组,其中,所述电极结构包括:驱动电极和参考电极;所述参考电极与所述驱动电极相对设置。
  3. 如权利要求2所述的纳米压印模组,其中,所述参考电极和所述驱动电极均位于所述基板与所述纳米压印胶层之间。
  4. 如权利要求2所述的纳米压印模组,其中,所述参考电极和所述驱动电极均位于所述纳米压印结构背向所述模板的一侧。
  5. 如权利要求3或4所述的纳米压印模组,其中,所述参考电极和所述驱动电极位于同一层,且所述驱动电极和所述参考电极交替排列。
  6. 如权利要求3或4所述的纳米压印模组,其中,所述参考电极和所述驱动电极位于不同层。
  7. 如权利要求2所述的纳米压印模组,其中,所述参考电极位于所述纳米压印结构背向所述模板的一侧,所述驱动电极位于所述基板与所述纳米压印胶层之间。
  8. 如权利要求1-4或7任一项所述的纳米压印模组,其中,还包括:位于所述纳米压印结构最外侧表面依次层叠设置的第一介电层和第一疏水层。
  9. 如权利要求1-4或7任一项所述的纳米压印模组,其中,还包括:位 于所述纳米压印胶层面向所述基板一侧的表面接触设置的第二疏水层,以及位于所述第二疏水层面向所述基板一侧的表面接触设置的第二介电层。
  10. 一种如权利要求1-9任一项所述的纳米压印模组的压印方法,其中,包括:
    将所述模板一侧的纳米压印结构与所述基板一侧的纳米压印胶层进行压印;
    向所述电极结构加载电压,使所述纳米压印胶层中与所述纳米压印结构接触的液滴具有润湿性;
    将与所述纳米压印结构互补的图形印制在所述纳米压印胶层上。
  11. 如权利要求10所述的压印方法,其中,将与所述纳米压印结构互补的图形印制在所述纳米压印胶层上,具体包括:
    采用紫外光固化所述纳米压印胶层,使与所述纳米压印结构互补的图形印制在所述纳米压印胶层上。
  12. 如权利要求11所述的压印方法,其中,向所述电极结构加载电压预设时间后,采用紫外光固化所述纳米压印胶层。
  13. 如权利要求11所述的压印方法,其中,向所述电极结构加载电压预设时间且停止向所述电极结构加载电压后,采用紫外光固化所述纳米压印胶层。
PCT/CN2020/084318 2019-06-24 2020-04-10 纳米压印模组及其压印方法 WO2020258993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910549453.2A CN110133962A (zh) 2019-06-24 2019-06-24 一种纳米压印模组及其压印方法
CN201910549453.2 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020258993A1 true WO2020258993A1 (zh) 2020-12-30

Family

ID=67579251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084318 WO2020258993A1 (zh) 2019-06-24 2020-04-10 纳米压印模组及其压印方法

Country Status (2)

Country Link
CN (1) CN110133962A (zh)
WO (1) WO2020258993A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110133962A (zh) * 2019-06-24 2019-08-16 京东方科技集团股份有限公司 一种纳米压印模组及其压印方法
CN112340693B (zh) * 2020-09-29 2023-08-25 清华大学 制备具有表面微结构涂层的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090028224A (ko) * 2007-09-14 2009-03-18 삼성전자주식회사 나노 임프린트 리소그래피 공정
US20110193263A1 (en) * 2010-02-09 2011-08-11 Samsung Electronics Co., Ltd. Nano imprint apparatus and method of fabricating semiconductor device using the same
CN103926789A (zh) * 2014-02-07 2014-07-16 南方科技大学 纳米压印模板、系统以及压印方法
CN109188862A (zh) * 2018-10-11 2019-01-11 京东方科技集团股份有限公司 压印结构及其制造方法、压印模板
CN109343306A (zh) * 2018-10-12 2019-02-15 京东方科技集团股份有限公司 压印模板及利用其进行压印的方法
CN110133962A (zh) * 2019-06-24 2019-08-16 京东方科技集团股份有限公司 一种纳米压印模组及其压印方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090028224A (ko) * 2007-09-14 2009-03-18 삼성전자주식회사 나노 임프린트 리소그래피 공정
US20110193263A1 (en) * 2010-02-09 2011-08-11 Samsung Electronics Co., Ltd. Nano imprint apparatus and method of fabricating semiconductor device using the same
CN103926789A (zh) * 2014-02-07 2014-07-16 南方科技大学 纳米压印模板、系统以及压印方法
CN109188862A (zh) * 2018-10-11 2019-01-11 京东方科技集团股份有限公司 压印结构及其制造方法、压印模板
CN109343306A (zh) * 2018-10-12 2019-02-15 京东方科技集团股份有限公司 压印模板及利用其进行压印的方法
CN110133962A (zh) * 2019-06-24 2019-08-16 京东方科技集团股份有限公司 一种纳米压印模组及其压印方法

Also Published As

Publication number Publication date
CN110133962A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
TWI574912B (zh) 大區域壓印微影術
WO2020258993A1 (zh) 纳米压印模组及其压印方法
JP4671860B2 (ja) インプリント・リソグラフィ
US20070059497A1 (en) Reversal imprint technique
KR101444604B1 (ko) 클리쉐 및 이를 포함하는 인쇄 장치
US20040197712A1 (en) System for contact printing
TW200405850A (en) Embossing method and apparatus
CN108287383B (zh) 一种金属线栅偏振片、其制作方法、显示面板及显示装置
JP2006289983A (ja) ロールツーロール輪転印刷法を用いた電子素子の製造方法及び製造装置
US20110189329A1 (en) Ultra-Compliant Nanoimprint Lithography Template
US20070048448A1 (en) Patterning method using coatings containing ionic components
CN101051184A (zh) 大面积微纳结构软压印方法
Lan Large-area nanoimprint lithography and applications
TW200950973A (en) Intaglio printing plate, production method for intaglio printing plate, production method for electronic substrate, and production method for display device
JP5220326B2 (ja) 印刷方法及び印刷装置
Lan et al. Survey on roller-type nanoimprint lithography (RNIL) process
WO2013119083A1 (ko) 관통홀을 가지는 프리스탠딩한 고분자 멤브레인 및 그 제조방법
CN102211441B (zh) 辊模、制造辊模的方法及采用辊模形成薄膜图案的方法
Yoon et al. Toward residual-layer-free nanoimprint lithography in large-area fabrication
Peng et al. Continuous roller nanoimprinting: next generation lithography
KR101086083B1 (ko) 자외선 롤 나노임프린트 리소그래피용 투명 롤 몰드 제작
KR101367784B1 (ko) 쿠션성을 가지는 그라비아판 및 그 제조방법
KR100703552B1 (ko) 양각 도장법을 이용한 전자종이 표시소자의 제조방법
KR102128175B1 (ko) 나노 임프린트 방식을 이용한 나노구조의 양면 패턴 형성 방법
US20220121114A1 (en) Large area seamless master and imprint stamp manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832184

Country of ref document: EP

Kind code of ref document: A1