WO2020258613A1 - 量子点发光材料及其制作方法 - Google Patents

量子点发光材料及其制作方法 Download PDF

Info

Publication number
WO2020258613A1
WO2020258613A1 PCT/CN2019/112644 CN2019112644W WO2020258613A1 WO 2020258613 A1 WO2020258613 A1 WO 2020258613A1 CN 2019112644 W CN2019112644 W CN 2019112644W WO 2020258613 A1 WO2020258613 A1 WO 2020258613A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
transport layer
luminescent material
injection layer
Prior art date
Application number
PCT/CN2019/112644
Other languages
English (en)
French (fr)
Inventor
何波
吴永伟
江沛
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/624,550 priority Critical patent/US11549057B2/en
Publication of WO2020258613A1 publication Critical patent/WO2020258613A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • This application relates to the field of electronic display, and in particular to a quantum dot luminescent material and a manufacturing method thereof.
  • quantum dot film is usually added to the display panel.
  • the quantum dot film is composed of inorganic nanocrystals that can emit light efficiently.
  • quantum dots Compared with traditional organic phosphors, quantum dots have the advantages of adjustable luminous wavelength, high luminous efficiency, small particle size, high color saturation, low cost, and high stability.
  • the quantum material layer in the quantum dot film is usually prepared by a solution method.
  • This method has low manufacturing cost and high yield, which is conducive to mass production.
  • organic ligands on the surface of quantum dots in order to maintain the stability of quantum dots in solution, it is necessary to generate organic ligands on the surface of quantum dots to offset the van der Waals attraction between quantum dots.
  • This layer of organic ligands greatly hinders the transfer of charges between quantum dots, severely reduces the mobility of carriers in the quantum dot material, and makes its conductivity insufficient.
  • This application provides a quantum dot luminescent material and a manufacturing method thereof, which improves the carrier mobility in the quantum dot luminescent material.
  • the present application provides a quantum dot luminescent material.
  • the quantum dot luminescent material includes:
  • a hole injection layer comprising uniformly distributed nickel oxide and graphene oxide
  • a hole transport layer is located on the hole injection layer;
  • a quantum dot light emitting layer is located on the hole transport layer, and the quantum dot light emitting layer includes evenly distributed perovskite nanodots;
  • An electron transport layer the electron transport layer is located on the quantum dot light-emitting layer
  • the electron injection layer is located on the electron transport layer.
  • a method for preparing a quantum dot luminescent material includes:
  • the hole injection layer including uniformly distributed nickel oxide and graphene oxide;
  • the quantum dot light-emitting layer comprising evenly distributed perovskite nanodots
  • An electron injection layer is formed on the electron transport layer.
  • the substrate is transparent conductive glass.
  • the method for forming a hole injection layer on the substrate includes the following steps:
  • the precursor liquid after ultrasound is coated on the substrate.
  • the method for configuring the nickel oxide precursor is:
  • the mixed solution was stirred at 65 degrees Celsius for 2 hours and then left for 24 hours to obtain the nickel oxide precursor.
  • the mass percentage of graphene in the graphene oxide suspension is 0.4 to 0.6 wt%, and The volume ratio of the nickel oxide precursor liquid and the graphene oxide suspension liquid is between 1:0.025 and 1:0.1.
  • the ultrasound time is greater than or equal to 20 minutes.
  • the material forming the hole transport layer is diphenylamine.
  • the material forming the quantum dot light-emitting layer is perovskite.
  • the method of forming the electron transport layer is:
  • the thickness of the electron injection layer is less than or equal to 40 nm.
  • graphene oxide is added to the hole injection layer of the quantum dot luminescent material, which effectively improves the mobility of carriers in the quantum dot luminescent material, thereby improving the conductivity of the quantum dot luminescent material.
  • FIG. 1 is a schematic diagram of the structure of a quantum dot luminescent material in a specific embodiment of the application
  • Fig. 2 is a flowchart of a method for manufacturing a quantum dot luminescent material in a specific embodiment of the application;
  • Figure 3 is a brightness-voltage curve of a quantum dot luminescent material in a specific embodiment of the application
  • Figure 4 is a photometric efficiency-voltage curve of a quantum dot luminescent material in a specific embodiment of the application
  • Fig. 5 is an external quantum efficiency-voltage curve of a quantum dot luminescent material in a specific embodiment of the application.
  • the present application provides a quantum dot luminescent material and a manufacturing method thereof, which can improve the carrier mobility in the quantum dot luminescent material.
  • FIG. 1 is a schematic diagram of the structure of a quantum dot luminescent material in a specific embodiment of the application.
  • the quantum dot luminescent material is generally used in organic self-luminous diodes.
  • an organic self-luminous diode can be formed by disposing a cathode and an anode on two opposite surfaces of the quantum dot light-emitting film. Since the structure of the organic self-luminous diode is a mature technology in the field, in this embodiment, only the structure of the quantum dot light-emitting material is described.
  • the quantum dot light-emitting material includes: a hole injection layer 20, a hole transport layer 30, a quantum dot light-emitting layer, an electron transport layer 50, and an electron injection layer 60.
  • the hole injection layer 20 includes uniformly distributed nickel oxide (NiOx) and graphene oxide (rGO). Wherein, the mass ratio of the nickel oxide and graphene oxide is between 1:0.025 and 1:0.1.
  • the hole transport layer 30 is located on the hole injection layer 20.
  • the material forming the hole transport layer 30 may be diphenylamine.
  • the TFB material is preferably used, namely poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl) ) Diphenylamine).
  • the quantum dot light emitting layer 40 is located on the hole transport layer 30, and the quantum dot light emitting layer 40 includes evenly distributed perovskite nanodots.
  • the electron transport layer 50 is located on the quantum dot light-emitting layer 40.
  • the electron injection layer 60 is located on the electron transport layer 50.
  • FIG. 2 is a flowchart of a method for manufacturing a quantum dot luminescent material in a specific embodiment of the application. The method includes:
  • a hole injection layer 20 is formed on the substrate 10, and the hole injection layer 20 includes uniformly distributed nickel oxide and graphene oxide;
  • a quantum dot light emitting layer 40 is formed on the hole transport layer 30, and the quantum dot light emitting layer 40 includes evenly distributed perovskite nanodots;
  • An electron injection layer 60 is formed on the electron transport layer 50.
  • the substrate 10 is transparent conductive glass.
  • the substrate 10 is a carrier for making the quantum dot luminescent material, and on the other hand, it also serves as an anode in an organic light emitting diode. Therefore, the substrate 10 is made of conductive material.
  • the substrate 10 in order to enhance light transmittance, is made of transparent conductive material indium tin oxide (Indium tin oxide). Tin Oxides, ITO) or fluorine-doped zinc oxide.
  • the substrate 10 can also be made of reflective metal.
  • the substrate 10 needs to be pretreated.
  • the pretreatment sequence is: ultrasonically clean the substrate 10 with deionized water, acetone, and alcohol for 15 minutes, then dry with nitrogen, and treat with ultraviolet light for 10 minutes.
  • the method of forming the hole injection layer 20 on the substrate 10 includes the following steps.
  • the nickel oxide precursor solution is configured.
  • the method for configuring the nickel oxide precursor is: dissolving nickel acetate tetrahydrate and ethanolamine in ethylene glycol monomethyl ether to form a mixed solution, the molar ratio of the nickel acetate tetrahydrate and ethanolamine is 1:1, and the mixing The concentration of nickel oxide in the solution is 0.2 mol/ml. After that, the mixed solution was stirred at 65 degrees Celsius for 2 hours and then left for 24 hours to obtain the nickel oxide precursor.
  • a graphene oxide suspension is added to the nickel oxide precursor.
  • the mass percentage of graphene in the graphene oxide suspension is 0.4 to 0.6 wt%, and the volume ratio of the nickel oxide precursor to the graphene oxide suspension is between 1:0.025 and 1:0.1 .
  • the precursor liquid mixed into the graphene oxide is subjected to ultrasound, so that the nickel oxide particles and the graphene oxide particles are fully mixed.
  • the ultrasound time is greater than or equal to 20 minutes.
  • the precursor liquid after ultrasound is sprayed on the substrate 10.
  • the method of coating is as follows: place the pretreated substrate 10 in a spin-coating homogenizer, drop 10 ⁇ L of solution per square centimeter, the rotation speed is 2000 rpm, and the time is 30 seconds. After annealing in air, the annealing temperature is 150°C and the time is 5min. In this embodiment, preferably, the above steps are repeated three times, and after the third coating is finished, annealing is carried out at 480° C. for 2 hours to obtain nickel oxide particles and graphene oxide particles that are fully mixed to the hole injection layer 20.
  • the material forming the hole transport layer 30 is diphenylamine.
  • TFB material is used, namely poly(9,9-dioctylfluorene-CO-N-(4-butylphenyl)diphenylamine).
  • the method for forming the hole transport layer 30 is as follows: weigh 8 mg of TFB powder, dissolve it in 1 ml of chlorobenzene solution, and let it stand until TFB is completely dissolved. Drop 10 ⁇ L of the solution per square centimeter on the hole injection layer 20, the rotation speed is 3000 rpm, the time is 45 seconds, the annealing is in nitrogen, the temperature is 120° C., and the time is 20 minutes.
  • the material forming the quantum dot light-emitting layer 40 is perovskite (CsPbX 3 , X is a halogen atom).
  • the method for forming the quantum dot light-emitting layer 40 is: dissolving 0.4 mol of CsX powder and 0.4 mol of PbX 2 in 10 ml of dimethyl sulfoxide (DMSO) solution, and sonicating at 30° C. until the powder is completely dissolved . Add 0.5ml oleic acid and 1ml oleylamine to the above solution to prepare a precursor solution. Take 1ml of the above precursor solution and add it dropwise to vigorously stirred toluene to prepare the original quantum dot solution.
  • DMSO dimethyl sulfoxide
  • the process parameters of spin-coating deposition of the perovskite quantum dot light-emitting layer are: the concentration of the quantum dot solution is 18mg/ml, 10 ⁇ L solution is added dropwise per square centimeter, the speed is 2000rpm, the time is 45s, and the solvent is volatilized at room temperature under nitrogen protection.
  • the method of forming the electron transport layer 50 is: providing TPBi, namely 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) As the material of the electron transport layer 50.
  • TPBi 2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)
  • the TPBi material is vapor-deposited in a vacuum chamber, and the pressure of the vacuum chamber is less than or equal to 10 -3 Pa.
  • the thickness of the electron injection layer 60 is less than or equal to 40 nm.
  • a cathode is further formed on the electron injection layer 60.
  • the material forming the cathode may be metal such as aluminum or silver, or transparent conductive material such as ITO.
  • FIG. 3 is the brightness-voltage curve of the quantum dot luminescent material in a specific embodiment of the application
  • FIG. 4 is the luminosity of the quantum dot luminescent material in a specific embodiment of the application
  • FIG. 5 is an external quantum efficiency-voltage curve of a quantum dot luminescent material in a specific embodiment of the application. It can be seen that after adding graphene oxide to the hole injection layer 20 of the quantum dot luminescent material, the brightness, luminosity efficiency and external quantum efficiency of the quantum dot luminescent material have been significantly improved compared to the prior art. Therefore, the present application effectively improves the mobility of carriers in the quantum dot luminescent material, and further improves the conductivity of the quantum dot luminescent material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

量子点发光材料及其制作方法。所述量子点发光材料包括:空穴注入层(20)、空穴传输层(30)、量子点发光层(40)、电子传输层(50)和电子注入层(60)。所述量子点发光层(40)位于所述空穴传输层(30)上,所述量子点发光层(40)包括均匀分布的钙钛矿纳米点。

Description

量子点发光材料及其制作方法 技术领域
本申请涉及电子显示领域,尤其涉及一种量子点发光材料及其制作方法。
背景技术
为了改善有机发光二极管(organic light emitting diode, OLED)显示面板的显示效果,现有技术中,通常在显示面板中加入量子点薄膜。量子点薄膜由能够高效发光的无机纳米晶体构成。相对于传统的有机荧光粉,量子点具有发光波长可调、发光效率高、颗粒尺寸小、色彩饱和度高、成本低、稳定性高等优点。
技术问题
现有技术中,量子点薄膜中的量子材料层通常采用溶液法制备。这种方法具有制作的成本低、产率大,有利于大规模量产。但是容易法制备的过程中,为了维持量子点在溶液中的稳定性,需要在量子点表面产生有机配体以抵消量子点之间的范德瓦耳斯吸引力。这层有机配体极大的阻碍了电荷在量子点之间的传输,严重的减小了量子点材料中载流子的迁移率,使其导电性不足。
技术解决方案
本申请提供了一种量子点发光材料及其制作方法,提高了量子点发光材料中的载流子迁移率。
本申请提供了一种量子点发光材料,所述量子点发光材料包括:
空穴注入层,所述空穴注入层包括均匀分布的氧化镍和氧化石墨烯;
空穴传输层,所述空穴传输层位于所述空穴注入层上;
量子点发光层,所述量子点发光层位于所述空穴传输层上,所述量子点发光层包括均匀分布的钙钛矿纳米点;
电子传输层,所述电子传输层位于所述量子点发光层上;
电子注入层,所述电子注入层位于所述电子传输层上。
相应的,一种量子点发光材料的制备方法,其中,该方法包括:
提供基板;
在所述基板上形成空穴注入层,所述空穴注入层包括均匀分布的氧化镍和氧化石墨烯;
在所述空穴注入层上形成空穴传输层;
在所述空穴传输层上形成量子点发光层,所述量子点发光层包括均匀分布的钙钛矿纳米点;
在所述量子点发光层上形成电子传输层;
在所述电子传输层上形成电子注入层。
根据本申请的其中一个方面,所述基板为透明导电玻璃。
根据本申请的其中一个方面,在所述基板上形成空穴注入层的方法包括以下步骤:
配置氧化镍前驱液;
在所述氧化镍前驱液中加入氧化石墨烯悬浊液;
将混入氧化石墨烯的前驱液进行超声;
将超声之后的前驱液璇涂在所述基板上。
根据本申请的其中一个方面,配置所述氧化镍前驱液的方法为:
将四水合醋酸镍和乙醇胺溶解在乙二醇单甲醚中形成混合溶液,所述四水合醋酸镍和乙醇胺的摩尔比为1:1;
将所述混合溶液在65摄氏度下搅拌2小时后放置24小时,得到所述氧化镍前驱液。
根据本申请的其中一个方面,在所述氧化镍前驱液中加入氧化石墨烯悬浊液的步骤中,所述氧化石墨烯悬浊液中石墨烯的质量百分比为0.4~0.6wt%,所述氧化镍前驱液和所述氧化石墨烯悬浊液的体积比介于1:0.025和1:0.1之间。
根据本申请的其中一个方面,将混入氧化石墨烯的前驱液进行超声时,超声的时间大于或等于20分钟。
根据本申请的其中一个方面,形成所述空穴传输层的材料为二苯胺。
根据本申请的其中一个方面,形成所述量子点发光层的材料为钙钛矿。
根据本申请的其中一个方面,形成所述电子传输层的方法为:
提供TPBi材料;
在真空腔中蒸镀所述TPBi材料,所述真空腔的压强小于或等于10 -3Pa;
所述电子注入层的厚度小于或等于40nm。
有益效果
本申请在量子点发光材料的空穴注入层中加入了氧化石墨烯,有效的提高了量子点发光材料中载流子的迁移率,进而提高了量子点发光材料导电性。
附图说明
图1为本申请的一个具体实施例中的量子点发光材料的结构示意图;
图2为本申请的一个具体实施例中的量子点发光材料的制作方法的流程图;
图3为本申请的一个具体实施例中的量子点发光材料的亮度-电压曲线;
图4为本申请的一个具体实施例中的量子点发光材料的光度效率-电压曲线;
图5为本申请的一个具体实施例中的量子点发光材料的外量子效率-电压曲线。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
本申请提供了一种量子点发光材料及其制作方法,能够提高量子点发光材料中的载流子迁移率。
参见图1,图1为本申请的一个具体实施例中的量子点发光材料的结构示意。所述量子点发光材料通常应用在有机自发光二极管中。在实际中,在所述量子点发光薄膜的两个相对的表面上跟别设置阴极和阳极即可构成一个有机自发光二极管。由于所述有机自发光二极管的结构为本领域中的成熟技术,因此在本实施例中,仅仅对所述量子点发光材料的结构进行说明。
本实施例中,所述量子点发光材料包括:空穴注入层20、空穴传输层30、量子点发光层、电子传输层50和电子注入层60。
所述空穴注入层20包括均匀分布的氧化镍(NiOx)和氧化石墨烯(rGO)。其中,所述氧化镍和氧化石墨烯的质量比介于1:0.025和1:0.1之间。
所述空穴传输层30位于所述空穴注入层20上。形成所述空穴传输层30的材料可以是二苯胺,在本实施例中,优选的采用TFB 材料,即聚 (9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)。
所述量子点发光层40位于所述空穴传输层30上,所述量子点发光层40包括均匀分布的钙钛矿纳米点。
所述电子传输层50位于所述量子点发光层40上。所述电子注入层60位于所述电子传输层50上。
下面将结合附图对本申请中的量子点发光材料的制作方法进行详细说明。本申请还提供了一种量子点发光材料的制备方法。参见图2,图2为本申请的一个具体实施例中的量子点发光材料的制作方法的流程图。该方法包括:
提供基板10;
在所述基板10上形成空穴注入层20,所述空穴注入层20包括均匀分布的氧化镍和氧化石墨烯;
在所述空穴注入层20上形成空穴传输层30;
在所述空穴传输层30上形成量子点发光层40,所述量子点发光层40包括均匀分布的钙钛矿纳米点;
在所述量子点发光层40上形成电子传输层50;
在所述电子传输层50上形成电子注入层60。
在本实施例中,所述基板10为透明导电玻璃。所述基板10一方面是制作所述量子点发光材料的载体,另一方面也作为有机子发光二极管中的阳极。因此,所述基板10采用导电材料制作。在本实施例中,为了增强光线透过率,所述基板10采用透明导电材料氧化铟锡(Indium Tin Oxides, ITO)或掺氟氧化锌制成。在其他实施例中,所述基板10也可以采用反光金属制作。
本实施例中,需要对基板10进行预处理。预处理的顺序是:使用去离子水、丙酮、酒精对基板10各进行超声清洗15分钟,然后使用氮气吹干,紫外光照射处理10分钟。
本实施例中,在所述基板10上形成空穴注入层20的方法包括以下步骤。
首先,配置氧化镍前驱液。配置所述氧化镍前驱液的方法为:将四水合醋酸镍和乙醇胺溶解在乙二醇单甲醚中形成混合溶液,所述四水合醋酸镍和乙醇胺的摩尔比为1:1,所述混合溶液中氧化镍的浓度为0.2mol/ml。之后,将所述混合溶液在65摄氏度下搅拌2小时后放置24小时,得到所述氧化镍前驱液。
之后,在所述氧化镍前驱液中加入氧化石墨烯悬浊液。所述氧化石墨烯悬浊液中石墨烯的质量百分比为0.4~0.6wt%,所述氧化镍前驱液和所述氧化石墨烯悬浊液的体积比介于1:0.025和1:0.1之间。
之后,将混入氧化石墨烯的前驱液进行超声,使氧化镍粒子和氧化石墨烯粒子充分混合。在本实施例中,将混入氧化石墨烯的前驱液进行超声时,超声的时间大于或等于20分钟。
之后,将超声之后的前驱液璇涂在所述基板10上。在本实施例中,璇涂的方法为:把预处理之后的基板10置于旋涂匀胶机里,每平方厘米滴加10μL溶液,转速是2000rpm,时间为30s。之后在空气中退火,退火温度为150℃,时间为5min。本实施例中,优选的,重复上述步骤三次,并在第三次璇涂结束后,在480℃下退火2小时,获得氧化镍粒子和氧化石墨烯粒子充分混合对空穴注入层20。
本实施例中,形成所述空穴传输层30的材料为二苯胺。优选的采用TFB 材料,即聚 (9,9-二辛基芴-CO-N-(4-丁基苯基)二苯胺)。本实施例中,形成实施空穴传输层30的方法为:称取TFB粉末8mg,溶于1ml的氯苯溶液中,静置至TFB完全溶解。在上述空穴注入层20上每平方厘米滴加10μL溶液,转速是3000rpm,时间为45s, 氮气中退火,温度为120℃,时间为20min。
本实施例中,形成所述量子点发光层40的材料为钙钛矿(CsPbX 3,X为卤素原子)。形成所述量子点发光层40的方法为:将0.4mol的CsX粉末和0.4mol的PbX 2溶于10ml的二甲基亚砜(DMSO)溶液中,在30℃下超声至所述粉末完全溶解。取0.5ml油酸和1ml油胺加入上述溶液中,制备前驱液。取1ml上述前驱液,滴加入剧烈搅拌的甲苯中,制得量子点原溶液。将量子点原溶液和乙酸乙酯以体积比1:3的比例加入离心管,8000rpm离心6-15分钟。之后倒掉上清液,沉淀再溶解于0.8ml正己烷。之后将溶液再次以5000rpm的转速离心3分钟,取出上清液,并将上清液稀释到18mg/ml。旋涂沉积钙钛矿量子点发光层的工艺参数为:量子点溶液浓度为18mg/ml,每平方厘米滴加10μL溶液,转速是2000rpm,时间为45s, 氮气保护中常温挥发溶剂。
本实施例中,形成所述电子传输层50的方法为:提供TPBi,即2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)作为电子传输层50的材料。具体的,在真空腔中蒸镀所述TPBi材料,所述真空腔的压强小于或等于10 -3Pa。所述电子注入层60的厚度小于或等于40nm。
本实施例中,在形成电子注入层60之后,进一步在所述电子注入层60上形成阴极。形成所述阴极的材料可以是铝或者银等金属,也可以是ITO等透明导电材料。
参见图3、图4和图5,图3为本申请的一个具体实施例中的量子点发光材料的亮度-电压曲线,图4为本申请的一个具体实施例中的量子点发光材料的光度效率-电压曲线,图5为本申请的一个具体实施例中的量子点发光材料的外量子效率-电压曲线。可以看出,在量子点发光材料的空穴注入层20中加入了氧化石墨烯之后,量子点发光材料的亮度、光度效率和外量子效率相比于现有技术均有了显著提升。因此,本申请有效的提高了量子点发光材料中载流子的迁移率,进而提高了量子点发光材料导电性。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (10)

  1. 一种量子点发光材料,其中,所述量子点发光材料包括:
    空穴注入层,所述空穴注入层包括均匀分布的氧化镍和氧化石墨烯;
    空穴传输层,所述空穴传输层位于所述空穴注入层上;
    量子点发光层,所述量子点发光层位于所述空穴传输层上,所述量子点发光层包括均匀分布的钙钛矿纳米点;
    电子传输层,所述电子传输层位于所述量子点发光层上;
    电子注入层,所述电子注入层位于所述电子传输层上。
  2. 一种量子点发光材料的制备方法,其中,该方法包括:
    提供基板;
    在所述基板上形成空穴注入层,所述空穴注入层包括均匀分布的氧化镍和氧化石墨烯;
    在所述空穴注入层上形成空穴传输层;
    在所述空穴传输层上形成量子点发光层,所述量子点发光层包括均匀分布的钙钛矿纳米点;
    在所述量子点发光层上形成电子传输层;
    在所述电子传输层上形成电子注入层。
  3. 根据权利要求2所述的量子点发光材料的制备方法,其中,所述基板为透明导电玻璃。
  4. 根据权利要求3所述的量子点发光材料的制备方法,其中,在所述基板上形成空穴注入层的方法包括以下步骤:
    配置氧化镍前驱液;
    在所述氧化镍前驱液中加入氧化石墨烯悬浊液;
    将混入氧化石墨烯的前驱液进行超声;
    将超声之后的前驱液璇涂在所述基板上。
  5. 根据权利要求4所述的量子点发光材料的制备方法,其中,配置所述氧化镍前驱液的方法为:
    将四水合醋酸镍和乙醇胺溶解在乙二醇单甲醚中形成混合溶液,所述四水合醋酸镍和乙醇胺的摩尔比为1:1;
    将所述混合溶液在65摄氏度下搅拌2小时后放置24小时,得到所述氧化镍前驱液。
  6. 根据权利要求5所述的量子点发光材料的制备方法,其中,在所述氧化镍前驱液中加入氧化石墨烯悬浊液的步骤中,所述氧化石墨烯悬浊液中石墨烯的质量百分比为0.4~0.6wt%,所述氧化镍前驱液和所述氧化石墨烯悬浊液的体积比介于1:0.025和1:0.1之间。
  7. 根据权利要求4所述的量子点发光材料的制备方法,其中,将混入氧化石墨烯的前驱液进行超声时,超声的时间大于或等于20分钟。
  8. 根据权利要求2所述的量子点发光材料的制备方法,其中,形成所述空穴传输层的材料为二苯胺。
  9. 根据权利要求2所述的量子点发光材料的制备方法,其中,形成所述量子点发光层的材料为钙钛矿。
  10. 根据权利要求2所述的量子点发光材料的制备方法,其中,形成所述电子传输层的方法为:
    提供TPBi材料;
    在真空腔中蒸镀所述TPBi材料,所述真空腔的压强小于或等于10 -3Pa;
    所述电子注入层的厚度小于或等于40nm。
PCT/CN2019/112644 2019-06-26 2019-10-23 量子点发光材料及其制作方法 WO2020258613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/624,550 US11549057B2 (en) 2019-06-26 2019-10-23 Quantum dot luminescent material an method of producing thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910562782.0 2019-06-26
CN201910562782.0A CN110311046A (zh) 2019-06-26 2019-06-26 量子点发光材料及其制作方法

Publications (1)

Publication Number Publication Date
WO2020258613A1 true WO2020258613A1 (zh) 2020-12-30

Family

ID=68077446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112644 WO2020258613A1 (zh) 2019-06-26 2019-10-23 量子点发光材料及其制作方法

Country Status (3)

Country Link
US (1) US11549057B2 (zh)
CN (1) CN110311046A (zh)
WO (1) WO2020258613A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110311046A (zh) 2019-06-26 2019-10-08 深圳市华星光电半导体显示技术有限公司 量子点发光材料及其制作方法
WO2023062672A1 (ja) * 2021-10-11 2023-04-20 シャープディスプレイテクノロジー株式会社 発光素子、表示装置及び表示装置の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233447A1 (en) * 2014-10-02 2016-08-11 Samsung Electronics Co., Ltd. Stretchable/foldable optoelectronic device, method of manufacturing the same, and apparatus including the stretchable/foldable optoelectronic device
CN106450021A (zh) * 2016-11-24 2017-02-22 南方科技大学 一种有机电致发光器件及其制备方法
CN106784202A (zh) * 2017-02-28 2017-05-31 Tcl集团股份有限公司 Qled器件及其制备方法
CN108807604A (zh) * 2017-04-27 2018-11-13 Tcl集团股份有限公司 MXn薄膜的制备方法及其应用
CN110311046A (zh) * 2019-06-26 2019-10-08 深圳市华星光电半导体显示技术有限公司 量子点发光材料及其制作方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105733574B (zh) * 2016-01-31 2018-06-12 南京理工大学 一种低温溶液法制备钙钛矿量子点的方法
CN107058984A (zh) 2017-03-29 2017-08-18 华南理工大学 一种基于静电诱导的图形化量子点薄膜制备方法
CN107204401A (zh) * 2017-06-05 2017-09-26 京东方科技集团股份有限公司 一种qled器件及其制作方法
CN107501269B (zh) * 2017-08-08 2019-06-18 华中科技大学 有机脒分子n型掺杂剂及其在半导体光电器件中的应用
CN108192606A (zh) 2018-03-08 2018-06-22 河北工业大学 全无机钙钛矿量子点制备方法
CN109004091B (zh) 2018-06-11 2020-06-30 南京理工大学 一种基于室温钙钛矿材料的量子点发光二极管及其制备方法
CN109354059B (zh) 2018-10-24 2020-12-29 中国科学院福建物质结构研究所 一种无机钙钛矿量子点的固相合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160233447A1 (en) * 2014-10-02 2016-08-11 Samsung Electronics Co., Ltd. Stretchable/foldable optoelectronic device, method of manufacturing the same, and apparatus including the stretchable/foldable optoelectronic device
CN106450021A (zh) * 2016-11-24 2017-02-22 南方科技大学 一种有机电致发光器件及其制备方法
CN106784202A (zh) * 2017-02-28 2017-05-31 Tcl集团股份有限公司 Qled器件及其制备方法
CN108807604A (zh) * 2017-04-27 2018-11-13 Tcl集团股份有限公司 MXn薄膜的制备方法及其应用
CN110311046A (zh) * 2019-06-26 2019-10-08 深圳市华星光电半导体显示技术有限公司 量子点发光材料及其制作方法

Also Published As

Publication number Publication date
CN110311046A (zh) 2019-10-08
US20210403806A1 (en) 2021-12-30
US11549057B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
CN101405888B (zh) 纳米结构的电致发光器件以及显示器
WO2017161615A1 (zh) 量子点发光器件及其制备方法及液晶显示装置
WO2021103471A1 (zh) 一种自组装多维量子阱CsPbX 3钙钛矿纳米晶电致发光二极管
CN102610725B (zh) 一种半导体量子点发光二极管及其制备方法
CN108075020B (zh) 一种基于铯铅卤钙钛矿薄膜材料的发光二极管及其制备方法
WO2014206026A1 (zh) 双面显示装置及其制备方法
US11502268B2 (en) Electron transport layer including stacked electron transport film, and method of manufacturing the same, light-emitting device and display apparatus
CN105161585B (zh) 一种纤维状量子点发光二极管及其制备方法
WO2017010124A1 (ja) 有機薄膜積層体及び有機エレクトロルミネッセンス素子
CN105206753A (zh) 有机发光元件
JP6549434B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2020258613A1 (zh) 量子点发光材料及其制作方法
CN105304829A (zh) 一种双面发光量子点发光二极管及其制备方法
US10297795B2 (en) Treatment method of emitting layer raw material in OLED and application
TW201419610A (zh) 透明導電膜及包含其之有機發光裝置
WO2021035912A1 (zh) 白光量子点发光二极管器件及其制备方法
JP2007059195A (ja) 上面発光型有機電界発光素子
KR101549357B1 (ko) 이방성 금속 나노입자를 이용하는 고효율 전계발광소자
WO2022143568A1 (zh) 复合电子传输材料及其制备方法和发光二极管
TWI662730B (zh) 製備有機發光二極體之熱轉印膜及其製備方法
WO2021129710A1 (zh) 量子点发光二极管的制备方法
WO2019095501A1 (zh) 一种oled器件及制备方法
US11302886B2 (en) Perovskite light-emitting device, preparation method thereof, and display
US11063098B2 (en) Method for fabricating display panel having carbon quantum dot layer
CN110660922A (zh) 管状双异质结纳米材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934661

Country of ref document: EP

Kind code of ref document: A1