WO2020258552A1 - 一种列车供电系统、方法及列车 - Google Patents

一种列车供电系统、方法及列车 Download PDF

Info

Publication number
WO2020258552A1
WO2020258552A1 PCT/CN2019/108112 CN2019108112W WO2020258552A1 WO 2020258552 A1 WO2020258552 A1 WO 2020258552A1 CN 2019108112 W CN2019108112 W CN 2019108112W WO 2020258552 A1 WO2020258552 A1 WO 2020258552A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power supply
contactor
train
power
Prior art date
Application number
PCT/CN2019/108112
Other languages
English (en)
French (fr)
Inventor
廖洪涛
王位
刘华
袁新亮
许良中
高红娜
秦庆民
张振华
陈哲
Original Assignee
中车株洲电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车有限公司 filed Critical 中车株洲电力机车有限公司
Priority to EP19934892.1A priority Critical patent/EP3988375A4/en
Publication of WO2020258552A1 publication Critical patent/WO2020258552A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/02Electric propulsion with power supply external to the vehicle using dc motors
    • B60L9/14Electric propulsion with power supply external to the vehicle using dc motors fed from different kinds of power-supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/18Current collectors for power supply lines of electrically-propelled vehicles using bow-type collectors in contact with trolley wire
    • B60L5/22Supporting means for the contact bow
    • B60L5/24Pantographs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/30Electric propulsion with power supply external to the vehicle using ac induction motors fed from different kinds of power-supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/08Three-wire systems; Systems having more than three wires
    • H02J1/084Three-wire systems; Systems having more than three wires for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • This application relates to the technical field of railway locomotives, in particular to a train power supply system; and also relates to a train power supply method, a train, and a computer-readable storage medium.
  • the power supply mode of the train is to provide AC1500V or AC1000V or DC3kV or DC1.5kV power supply to the towed passenger vehicles through the power car or locomotive.
  • the power car or locomotive For the case of AC25kV/50Hz, AC15kV/16.7Hz, the power car Or after the locomotive provides AC1500V or AC1000V power to the passenger vehicle, the passenger vehicle needs to rectify the AC power through its own auxiliary inverter system to achieve the purpose of supplying power to the auxiliary load.
  • train power supply method can be applied to a variety of grid suppression modes, it is necessary to configure an AC/DC rectifier module, a DC/AC inverter module, an isolation module, etc. on each passenger vehicle, resulting in higher train power supply costs.
  • the purpose of this application is to provide a train power supply system, method, train and computer-readable storage medium, which can be applied to a variety of grid voltage working conditions and can effectively reduce the power supply cost of the train.
  • the present application provides a train power supply system, including: a control module, a power supply input module, a precharge module, a rectifier module, a power supply output module, and a DC return module; wherein the precharge module includes a DC precharge module Charging module and AC pre-charging module;
  • the control module is configured to control the on-off state of the contactor in the power supply input module according to the current grid voltage working condition, so that the power supply input module outputs the power corresponding to the current grid voltage working condition to the preset Charging module and output via said pre-charging module;
  • the rectifier module is used to convert the alternating current output by the alternating current precharging module into direct current
  • the power supply output module is used to output the DC power output by the DC pre-charging module or the DC power output by the rectification module to each passenger car.
  • the power supply input module includes: a first contactor, a second contactor, and a third contactor;
  • One end of the first contactor is connected to a 1500V AC power source, the other end of the first contactor is connected to the input end of the AC precharging module; one end of the second contactor is connected to a 1000V AC power source, and the second The other end of the contactor is connected to the input end of the AC precharging module; one end of the third contactor is connected to 3000V direct current or 1500V direct current, and the other end of the third contactor is connected to the input end of the direct current precharging module .
  • the DC pre-charging module includes:
  • One end of the fourth contactor is connected to the first end of the inductor, and the other end of the fourth contactor is connected to the power supply output module; the fifth contactor is connected in series with the first resistor and then connected to the The sixth contactor is connected in parallel, and the first common end is connected to the second end of the inductor, the second common end is connected to the output end of the power supply input module; the third end of the inductor is connected to the power supply output module.
  • the AC pre-charging module includes: a seventh contactor, an eighth contactor, a second resistor, and a fuse;
  • the seventh contactor is connected in series with the second resistor and then connected in parallel with the eighth contactor, and the first common terminal is connected to the power supply input module and the fuse is connected in series to the rectifier module.
  • the common terminal is connected to the rectifier module.
  • the power supply output module includes:
  • the direct current return module includes a ninth contactor.
  • this application also provides a train, the power car or locomotive of the train is provided with the train power supply system as described in any one of the above.
  • this application also provides a train power supply method, including:
  • the power source is a DC power source
  • the DC pre-charging module When the power source is a DC power source, turn on the DC pre-charging module and perform a step-down and voltage stabilization process on the DC power source before outputting to each passenger car;
  • the AC pre-charging module is closed and the AC power source is rectified to obtain a DC power source, and the DC power source obtained by the rectification process is subjected to a step-down and voltage stabilization process and then output to each of the passenger cars.
  • the closing the corresponding contactor in the power supply input module according to the current grid voltage working condition to access the power source corresponding to the current grid voltage working condition includes:
  • the first contactor in the power supply input module is closed to access 1500V AC power
  • the second contactor in the power supply input module is closed to access 1000V AC power
  • the third contactor in the power supply input module is closed to connect to the corresponding direct current power supply.
  • this application also provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the above Steps of train power supply method.
  • the train power supply system includes: a control module, a power supply input module, a precharge module, a rectifier module, a power supply output module, and a DC return module; wherein the precharge module includes a DC precharge module and an AC precharge module
  • the control module is used to control the switching state of the contactor in the power supply input module according to the current grid voltage condition, so that the power supply input module outputs the power corresponding to the current grid voltage condition to the
  • the pre-charging module is used to output the pre-charging module; the rectifying module is used to convert the alternating current output by the alternating-current pre-charging module into direct current; the power supply output module is used to output the direct current
  • the direct current or the direct current output by the rectifier module is output to each passenger car.
  • the train power supply system provided by this application can access the power supply corresponding to the current grid voltage working condition by controlling the corresponding contactor in the power supply input module through the control module, which can adapt to various grid voltage working conditions and improve the train Applicability. Furthermore, for the current grid voltage working condition with AC power, the train power supply system provided by this application can rectify the AC power through the rectifier module, and output the rectified DC power to each passenger vehicle.
  • the train power supply system regardless of the current grid voltage status is DC power or AC power, the final output to each passenger car is DC power. Therefore, each section of passenger vehicles does not need to be rectified, so each section of passenger vehicles does not need to be equipped with a rectifier module. Thereby effectively reducing the power supply cost of the train.
  • the train power supply method, train, and computer-readable storage medium provided in this application all have the above technical effects.
  • Fig. 1 is a schematic diagram of a train power supply system provided by an embodiment of the application
  • Fig. 2 is a schematic flowchart of a train power supply method provided by an embodiment of the application.
  • the core of this application is to provide a train power supply system, method, train, and computer-readable storage medium, which can be applied to a variety of grid voltage working conditions and can effectively reduce the power supply cost of the train.
  • FIG. 1 is a schematic diagram of a train power supply system provided by an embodiment of the application; referring to FIG. 1, it can be seen that the train power supply system includes:
  • Control module power supply input module, precharge module, rectifier module, power supply output module, and DC return module; among them, the precharge module includes a DC precharge module and an AC precharge module; the control module is used to control the current network voltage conditions The switch state of the contactor in the power supply input module, so that the power supply input module outputs the power corresponding to the current network voltage condition to the precharge module and output through the precharge module; the rectifier module is used to transfer the AC power output by the AC precharge module Converted into direct current; the power supply output module is used to output the direct current output from the direct current pre-charging module or the direct current output from the rectifier module to each passenger car.
  • the train power supply system is installed in the power car or locomotive of the train, and the control module therein is mainly responsible for controlling the closing of the corresponding contactor in the power supply input module according to the current grid voltage condition, so that the power supply input module is connected to the current grid voltage working condition. And further output the power to the pre-charging module.
  • the power supply input module includes a first contactor KM1, a second contactor KM2, and a third contactor KM3; one end of the first contactor KM1 is connected to a 1500V AC power supply, and the first contactor KM1
  • the other end of the second contactor KM2 is connected to the input end of the AC pre-charging module; one end of the second contactor KM2 is connected to the 1000V AC power source, the other end of the second contactor KM2 is connected to the input end of the AC pre-charging module; one end of the third contactor KM3 is connected to 3000V Direct current or 1500V direct current, the other end of the third contactor KM3 is connected to the input end of the DC pre-charging module.
  • each contactor corresponds to the grid voltage working condition and can meet the power supply requirements of the following vehicles in the four grid voltage states.
  • the control module can make the power supply input module output the corresponding power to the DC precharge module or the AC precharge module by closing the corresponding contactor.
  • one end of the first contactor KM1 in the power supply input module is connected to a 1500V AC power source, which can be specifically connected to a position on the power supply winding where the output voltage is 1500V AC power, and the other end of the first contactor KM1 is connected to an AC pre-charging module Therefore, when the first contactor KM1 is closed, the 1500V AC power can be connected, and the 1500V AC power can be further output to the AC pre-charging module.
  • One end of the second contactor KM2 in the power supply input module is connected to a 1000V AC power source, which can be specifically connected to the power supply winding where the output voltage is 1000V AC power source.
  • the other end of the second contactor KM2 is connected to the input end of the AC precharge module Therefore, when the second contactor KM2 is closed, a 1000V AC power source can be connected, and the 1000V AC power source is further output to the AC precharge module.
  • One end of the third contactor KM3 in the power supply input module is connected to 3000V direct current or 1500V direct current, which is determined by the current network voltage working condition. If the current network voltage working condition is 3000V direct current, one end of the third contactor KM3 is connected to 3000V direct current; If the current grid voltage is 1500V DC, one end of the third contactor KM3 is connected to 1500V DC.
  • the other end of the third contactor KM3 is connected to the input end of the DC pre-charging module, so that when the third contactor KM3 is closed, the power supply input module can access the corresponding DC power, and further output the connected DC power to the DC pre-charging module. Charging module.
  • the pre-charging module includes a DC pre-charging module and an AC pre-charging module, and its main function is to reduce the impact current, filter and so on. If the power supply input module is connected to a DC power supply, the DC power supply is directly output to the power supply output module through the DC pre-charging module. If the power supply input module is connected to AC power, the AC pre-charging module outputs the AC power to the rectifier module to convert the AC power to DC power by using the rectifier module, and then output the converted DC power to the power supply output module.
  • the aforementioned DC pre-charging module includes a fourth contactor KM4, a fifth contactor KM5, a sixth contactor KM6, an inductor, and a first resistor R1; one end of the fourth contactor KM4 is connected The first end of the inductor, the other end of the fourth contactor KM4 is connected to the power supply output module; the fifth contactor KM5 is connected in series with the first resistor R1 and then connected in parallel with the sixth contactor KM6, and the first common end is connected to the second end of the inductor , The second common end is connected to the output end of the power supply input module; the third end of the inductor is connected to the power supply output module.
  • one end of the fourth contactor KM4 is connected to the first end of the inductor (the two ends of the first end that are not inductance, specifically the middle part of the inductor), and the other end of the fourth contactor KM4 is connected to the power output module ;
  • the fifth contactor KM5 is connected in series with the first resistor R1 and then connected in parallel with the sixth contactor KM6, and the first common end is connected to the second end of the inductor, and the second common end is connected to the output end of the power input module; the third end of the inductor Connect the power output module.
  • the charging pretreatment can be realized by first closing the fifth contactor KM5, opening the sixth contactor KM6, and then opening the fifth contactor KM5 and closing the sixth contactor KM6 to reduce Impulse current under DC power supply.
  • the above-mentioned AC pre-charging module includes a seventh contactor KM7, an eighth contactor KM8, a second resistor R2, and a fuse FU; after the seventh contactor KM7 is connected in series with the second resistor R2 It is connected in parallel with the eighth contactor KM8, and the first common terminal is connected to the power supply input module and the fuse FU is connected in series to connect to the rectifier module, and the second common terminal is connected to the rectifier module.
  • the seventh contactor KM7 is connected in series with the second resistor R2 and then connected in parallel with the eighth contactor KM8, and the first common terminal is connected to the power supply input module, and the fuse FU is connected in series to the rectifier module, and the second common terminal is connected to the rectifier Module.
  • the charging pretreatment is realized by first closing the seventh contactor KM7, disconnecting the eighth contactor KM8, then disconnecting the seventh contactor KM7 and closing the eighth contactor KM8 to reduce Inrush current under AC power.
  • the power supply output module is used to receive the DC power output by the DC precharging module or the DC power output by the rectifier module, and further output the received DC power to each passenger car of the train.
  • the power supply output module includes a buck and a regulator.
  • the power supply output module receives the DC power output by the DC pre-charging module or the DC power output by the rectifier module, first performs a step-down process and a voltage stabilization process on the DC power, and then outputs the DC power after the step-down process and the voltage stabilization process through the connection bus
  • each passenger vehicle further inverts, isolates and filters the DC voltage and supplies power to the auxiliary load.
  • the above-mentioned step-down device can choose an existing DC-DC converter
  • the above-mentioned voltage stabilizing module is mainly composed of diodes, capacitors, contactors, controllable components, resistors, etc., for details, please refer to the composition and The working principle is fine.
  • the train power supply system is also provided with a DC return module.
  • the reflux module includes a ninth contactor KM9. Close this ninth contactor KM9 to achieve DC return.
  • the train power supply system provided by this application can be connected to the power supply corresponding to the current network voltage working condition by controlling the corresponding contactor in the power supply input module through the control module, and can be applied to a variety of network voltage working conditions. Improve the applicability of the train. Furthermore, for the current grid voltage working condition with AC power, the train power supply system provided by this application can rectify the AC power through the rectifier module, and output the rectified DC power to each passenger vehicle.
  • the train power supply system regardless of the current grid voltage status is DC power or AC power, the final output to each passenger car is DC power. Therefore, each section of passenger vehicles does not need to be rectified, so each section of passenger vehicles does not need to be equipped with a rectifier module. Thereby effectively reducing the power supply cost of the train.
  • FIG. 2 is a schematic diagram of a train power supply method provided by an embodiment of the application; as shown in conjunction with Figure 2, the train power supply method includes:
  • S101 Close the corresponding contactor in the power supply input module according to the current grid voltage working condition to access the power source corresponding to the current grid voltage working condition;
  • closing the corresponding contactor in the power supply input module according to the current grid voltage condition to access the power source corresponding to the current grid voltage condition includes:
  • the first contactor in the power supply input module is closed to access 1500V AC power
  • the second contactor in the power supply input module is closed to access 1000V AC power
  • the third contactor in the power supply input module is closed to connect to the corresponding direct current power supply.
  • the application also provides a train, the train or locomotive is provided with the train power supply system as described in any one of the above.
  • the train power supply system capable of rectifying as described above is installed on a motor car or a locomotive, the passenger car of the train provided in this application is no longer equipped with a rectifier module.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the computer-readable storage medium may include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc., which can store program codes Medium.
  • the steps of the method or algorithm described in the embodiments disclosed in this document can be directly implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all in the technical field. Any other known storage medium.

Abstract

一种列车供电系统、方法、列车以及计算机可读存储介质,包括控制模块、供电输入模块、预充电模块、整流模块、供电输出模块以及直流回流模块;其中,预充电模块包括直流预充电模块与交流预充电模块;控制模块,用于根据当前网压工况控制供电输入模块中接触器的开关状态,以使供电输入模块输出与当前网压工况相对应的电源至预充电模块并经由预充电模块输出;整流模块,用于将交流预充电模块输出的交流电转化为直流电;供电输出模块,用于将直流预充电模块输出的直流电或整流模块输出的直流电输出至各客车。能够适用于多种网压制式,且可有效降低列车的供电成本。

Description

一种列车供电系统、方法及列车
本申请要求于2019年6月28日提交至中国专利局、申请号为201910576239.6、发明名称为“一种列车供电系统、方法及列车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及铁路机车技术领域,特别涉及一种列车供电系统;还涉及一种列车供电方法、列车以及计算机可读存储介质。
背景技术
目前,铁路的网压制式存在多种,如:AC25kV/50Hz、AC15kV/16.7Hz、DC3kV、DC1.5kV等。并且列车供电方式均为通过动力车或者机车提供AC1500V或AC1000V或DC3kV或DC1.5kV的电源给被牵引的客运车辆,其中,对于网压制式为AC25kV/50Hz、AC15kV/16.7Hz的情况,动力车或机车提供AC1500V或AC1000V的电源给客运车辆后,进一步需客运车辆通过自身的辅助逆变系统对交流电源进行整流处理,以实现向辅助负载供电的目的。上述列车供电方式虽然可以适用于多种网压制式,但需在每节客运车辆上配置AC/DC整流模块、DC/AC逆变模块、隔离模块等,从而导致列车供电成本较高。
有鉴于此,如何提供一种列车供电方案,可以适用于多种网压工况且能够降低列车的供电成本是本领域技术人员亟待解决的技术问题。
发明内容
本申请的目的是提供一种列车供电系统、方法、列车以及计算机可读存储介质,能够适用于多种网压工况,且可有效降低列车的供电成本。
为解决上述技术问题,本申请提供了一种列车供电系统,包括:控制模块、供电输入模块、预充电模块、整流模块、供电输出模块以及直流回流模块;其中,所述预充电模块包括直流预充电模块与交流预充电模块;
所述控制模块,用于根据当前网压工况控制所述供电输入模块中接触器的开关状态,以使所述供电输入模块输出与所述当前网压工况相对应的 电源至所述预充电模块并经由所述预充电模块输出;
所述整流模块,用于将所述交流预充电模块输出的交流电转化为直流电;
所述供电输出模块,用于将所述直流预充电模块输出的直流电或所述整流模块输出的直流电输出至各客车。
可选的,所述供电输入模块包括:第一接触器、第二接触器以及第三接触器;
所述第一接触器的一端连接1500V交流电源,所述第一接触器的另一端连接所述交流预充电模块的输入端;所述第二接触器的一端连接1000V交流电源,所述第二接触器的另一端连接所述交流预充电模块的输入端;所述第三接触器的一端连接3000V直流电或1500V直流电,所述第三接触器的另一端连接所述直流预充电模块的输入端。
可选的,所述直流预充电模块包括:
第四接触器、第五接触器、第六接触器、电感以及第一电阻;
所述第四接触器的一端连接所述电感的第一端,所述第四接触器的另一端连接所述供电输出模块;所述第五接触器与所述第一电阻串联后与所述第六接触器并联,且第一公共端连接所述电感的第二端,第二公共端连接所述供电输入模块的输出端;所述电感的第三端连接所述供电输出模块。
可选的,所述交流预充电模块包括:第七接触器、第八接触器、第二电阻以及熔断器;
所述第七接触器与所述第二电阻串联后与所述第八接触器并联,且第一公共端连接所述供电输入模块并串接所述熔断器后连接所述整流模块,第二公共端连接所述整流模块。
可选的,所述供电输出模块包括:
降压器与稳压器。
可选的,所述直流回流模块包括第九接触器。
为解决上述技术问题,本申请还提供了一种列车,所述列车的动力车或机车设置有如上述任一项所述的列车供电系统。
为解决上述技术问题,本申请还提供了一种列车供电方法,包括:
根据当前网压工况闭合供电输入模块中的相应接触器以接入所述当前 网压工况对应的电源;
当所述电源为直流电源时,闭合直流预充电模块并对所述直流电源进行降压稳压处理后输出至各客车;
当所述电源为交流电源时,闭合交流预充电模块并对所述交流电源进行整流处理得到直流电源,以及对整流处理得到的直流电源进行降压稳压处理后输出至各所述客车。
可选的,所述根据当前网压工况闭合供电输入模块中的相应接触器以接入所述当前网压工况对应的电源,包括:
若所述当前网压工况为25kV交流电,则闭合供电输入模块中的第一接触器,以接入1500V的交流电源;
若所述当前网压工况为15kV的交流电,则闭合所述供电输入模块中的第二接触器,以接入1000V的交流电源;
若所述当前网压工况为3kV的直流电或1.5kV的直流电,则闭合所述供电输入模块中的第三接触器,以接入对应的直流电源。
为解决上述技术问题,本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一项所述的列车供电方法的步骤。
本申请所提供的列车供电系统,包括:控制模块、供电输入模块、预充电模块、整流模块、供电输出模块以及直流回流模块;其中,所述预充电模块包括直流预充电模块与交流预充电模块;所述控制模块,用于根据当前网压工况控制所述供电输入模块中接触器的开关状态,以使所述供电输入模块输出与所述当前网压工况相对应的电源至所述预充电模块并经由所述预充电模块输出;所述整流模块,用于将所述交流预充电模块输出的交流电转化为直流电;所述供电输出模块,用于将所述直流预充电模块输出的直流电或所述整流模块输出的直流电输出至各客车。
可见,本申请所提供的列车供电系统,通过控制模块控制供电输入模块中相应的接触器即可接入与当前网压工况相对应的电源,能够适用多种网压工况,提高了列车的适用性。进一步,对于当前网压工况为交流电源的情况,本申请所提供的列车供电系统可通过整流模块对交流电源进行整流处理,并将整流完成后的直流电源输出给各节客运车辆。该列车供电系 统,无论当前网压状态为直流电源还是交流电源,最终输出至各客运车的均为直流电源,于是,各节客运车辆无需进行整流操作,因此各节客运车辆无需配置整流模块,从而有效的降低了列车的供电成本。
本申请所提供的列车供电方法、列车以及计算机可读存储介质,均具有上述技术效果。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例所提供的一种列车供电系统的示意图;
图2为本申请实施例所提供的一种列车供电方法的流程示意图。
具体实施方式
本申请的核心是提供一种列车供电系统、方法、列车以及计算机可读存储介质,能够适用于多种网压工况,且可有效降低列车的供电成本。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,图1为本申请实施例所提供的一种列车供电系统的示意图;参考图1可知,该列车供电系统包括:
控制模块、供电输入模块、预充电模块、整流模块、供电输出模块以及直流回流模块;其中,预充电模块包括直流预充电模块与交流预充电模块;控制模块,用于根据当前网压工况控制供电输入模块中接触器的开关状态,以使供电输入模块输出与当前网压工况相对应的电源至预充电模块并经由预充电模块输出;整流模块,用于将交流预充电模块输出的交流电转化为直流电;供电输出模块,用于将直流预充电模块输出的直流电或整 流模块输出的直流电输出至各客车。
具体的,列车供电系统设置于列车的动力车或机车,其中的控制模块主要负责根据当前网压工况控制供电输入模块中的相应接触器闭合,以使供电输入模块接入与当前网压工况相适应的电源,并进一步输出该电源至预充电模块。
其中,在一种具体的实施方式中,供电输入模块包括第一接触器KM1、第二接触器KM2以及第三接触器KM3;第一接触器KM1的一端连接1500V交流电源,第一接触器KM1的另一端连接交流预充电模块的输入端;第二接触器KM2的一端连接1000V交流电源,第二接触器KM2的另一端连接交流预充电模块的输入端;第三接触器KM3的一端连接3000V直流电或1500V直流电,第三接触器KM3的另一端连接直流预充电模块的输入端。
具体的,本实施例中,供电输入模块中设置有3个接触器,各接触器与网压工况相对应,能够满足四种网压状态下列车的供电需求。在不同的网压工况下,控制模块通过闭合相应的接触器即可使供电输入模块输出对应的电源至直流预充电模块或交流预充电模块。具体而言,供电输入模块中的第一接触器KM1的一端连接1500V交流电源,具体可连接于供电绕组上输出电压为1500V交流电源的位置,第一接触器KM1的另一端连接交流预充电模块的输入端,从而当闭合第一接触器KM1时,即可接入1500V的交流电源,并进一步将此1500V的交流电源输出至交流预充电模块。供电输入模块中的第二接触器KM2的一端连接1000V的交流电源,具体可连接于供电绕组上输出电压为1000V交流电源的位置,第二接触器KM2的另一端连接交流预充电模块的输入端,从而当闭合第二接触器KM2时,即可接入1000V的交流电源,并进一步将此1000V的交流电源输出至交流预充电模块。供电输入模块中的第三接触器KM3的一端连接3000V直流电或1500V直流电,具体由当前网压工况决定,若当前网压工况为3000V直流电,则第三接触器KM3的一端连接3000V直流电;若当前网压工况为1500V直流电,则第三接触器KM3的一端连接1500V直流电。第三接触器KM3的另一端连接直流预充电模块的输入端,从而,当第三接触器KM3闭合时,供电输入模块即可接入相应的直流电,并进一步将 接入的直流电输出至直流预充电模块。
预充电模块,包括直流预充电模块与交流预充电模块,其主要功能是减少冲击电流、进行滤波等。若供电输入模块接入直流电源,则该直流电源经直流预充电模块直接输出至供电输出模块。若供电输入模块接入交流电,则交流预充电模块将该交流电输出至整流模块,以利用整流模块进行电压转换,将交流电转换为直流电,进而输出转换后的直流电至供电输出模块。
其中,在一种具体的实施方式中,上述直流预充电模块包括第四接触器KM4、第五接触器KM5、第六接触器KM6、电感以及第一电阻R1;第四接触器KM4的一端连接电感的第一端,第四接触器KM4的另一端连接供电输出模块;第五接触器KM5与第一电阻R1串联后与第六接触器KM6并联,且第一公共端连接电感的第二端,第二公共端连接供电输入模块的输出端;电感的第三端连接供电输出模块。
具体的,第四接触器KM4的一端连接电感的第一端(该第一端非电感的两个端部,具体可为电感的中间部位),第四接触器KM4的另一端连接供电输出模块;第五接触器KM5与第一电阻R1串联后与第六接触器KM6并联,且第一公共端连接电感的第二端,第二公共端连接供电输入模块的输出端;电感的第三端连接供电输出模块。当电源为直流电源时,可通过先闭合第五接触器KM5、断开第六接触器KM6,后再断开第五接触器KM5、闭合第六接触器KM6的方式实现充电预处理,以减少直流电源下的冲击电流。
另外,在一种具体的实施方式中,上述交流预充电模块包括第七接触器KM7、第八接触器KM8、第二电阻R2以及熔断器FU;第七接触器KM7与第二电阻R2串联后与第八接触器KM8并联,且第一公共端连接供电输入模块并串接熔断器FU后连接整流模块,第二公共端连接整流模块。
具体的,第七接触器KM7与第二电阻R2串联后与第八接触器KM8并联,且第一公共端连接供电输入模块,并串接熔断器FU后连接整流模块,第二公共端连接整流模块。当供电输入模块接入交流电时,通过先闭合第七接触器KM7、断开第八接触器KM8,后断开第七接触器KM7、闭合第八接触器KM8的方式实现充电预处理,以减少交流电源下的冲击电 流。
供电输出模块用于接收直流预充电模块输出的直流电或者整流模块输出的直流电,并进一步将接收到的直流电输出至列车的各客车。
其中,在一种具体的实施方式中,供电输出模块包括降压器与稳压器。
具体的,供电输出模块接收直流预充电模块输出的直流电或者整流模块输出的直流电,首先对此直流电进行降压处理与稳压处理,进而将降压处理、稳压处理后的直流电通过连接母线输出给各客运车辆,各客运车辆再进一步对直流电压进行逆变、隔离滤波后等处理后为辅助负载供电。其中,上述降压器可选用现有的DC-DC转化器,上述稳压模块主要由二极管、电容、接触器、可控元器件、电阻等构成,具体可参考现有稳压模块的组成与工作原理即可。
另外,为满足直流电源的回流需要,列车供电系统还设置有直流回流模块。在一种具体的实施方式中,回流模块包括第九接触器KM9。闭合此第九接触器KM9即可实现直流回流。
综上所述,本申请所提供的列车供电系统,通过控制模块控制供电输入模块中相应的接触器即可接入与当前网压工况相对应的电源,能够适用多种网压工况,提高了列车的适用性。进一步,对于当前网压工况为交流电源的情况,本申请所提供的列车供电系统可通过整流模块对交流电源进行整流处理,并将整流完成后的直流电源输出给各节客运车辆。该列车供电系统,无论当前网压状态为直流电源还是交流电源,最终输出至各客运车的均为直流电源,于是,各节客运车辆无需进行整流操作,因此各节客运车辆无需配置整流模块,从而有效的降低了列车的供电成本。
本申请还提供了一种列车供电方法,下文描述的该列车供电方法可以与上文描述的列车供电系统相互对应参照。请参考图2,图2为本申请实施例所提供的列车供电方法的示意图;结合图2所示,该列车供电方法包括:
S101:根据当前网压工况闭合供电输入模块中的相应接触器以接入所述当前网压工况对应的电源;
S102:当所述电源为直流电源时,闭合直流预充电模块并对所述直流 电源进行降压稳压处理后输出至各客车;
S103:当所述电源为交流电源时,闭合交流预充电模块并对所述交流电源进行整流处理得到直流电源,以及对整流处理得到的直流电源进行降压稳压处理后输出至各所述客车。
在上述实施例的基础上,可选的,根据当前网压工况闭合供电输入模块中的相应接触器以接入所述当前网压工况对应的电源,包括:
若所述当前网压工况为25kV交流电,则闭合供电输入模块中的第一接触器,以接入1500V的交流电源;
若所述当前网压工况为15kV的交流电,则闭合所述供电输入模块中的第二接触器,以接入1000V的交流电源;
若所述当前网压工况为3kV的直流电或1.5kV的直流电,则闭合所述供电输入模块中的第三接触器,以接入对应的直流电源。
对于本申请所提供的方法的介绍请参照上述系统的实施例,本申请在此不做赘述。
本申请还提供了一种列车,该列车的动车或机车设置有如上述任一项所述的列车供电系统。在动车或机车设置如上述所述的可进行整流的列车供电系统的基础上,本申请所提供的列车的客车不在设置有整流模块。
对于本申请所提供的列车的介绍请参照上述列车供电系统的实施例,本申请在此不做赘述。
本申请还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如下的步骤:
根据当前网压工况闭合供电输入模块中的相应接触器以接入所述当前网压工况对应的电源;当所述电源为直流电源时,闭合直流预充电模块并对所述直流电源进行降压稳压处理后输出至各客车;当所述电源为交流电源时,闭合交流预充电模块并对所述交流电源进行整流处理得到直流电源,以及对整流处理得到的直流电源进行降压稳压处理后输出至各所述客车。
该计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory, RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
对于本申请所提供的计算机可读存储介质的介绍请参照上述方法实施例,本申请在此不做赘述。
说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置、设备以及计算机可读存储介质而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦写可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上对本申请所提供的列车供电系统、方法、列车以及计算机可读存储介质进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围。

Claims (10)

  1. 一种列车供电系统,其特征在于,包括:控制模块、供电输入模块、预充电模块、整流模块、供电输出模块以及直流回流模块;其中,所述预充电模块包括直流预充电模块与交流预充电模块;
    所述控制模块,用于根据当前网压工况控制所述供电输入模块中接触器的开关状态,以使所述供电输入模块输出与所述当前网压工况相对应的电源至所述预充电模块并经由所述预充电模块输出;
    所述整流模块,用于将所述交流预充电模块输出的交流电转化为直流电;
    所述供电输出模块,用于将所述直流预充电模块输出的直流电或所述整流模块输出的直流电输出至各客车。
  2. 根据权利要求1所述的列车供电系统,其特征在于,所述供电输入模块包括:第一接触器、第二接触器以及第三接触器;
    所述第一接触器的一端连接1500V交流电源,所述第一接触器的另一端连接所述交流预充电模块的输入端;所述第二接触器的一端连接1000V交流电源,所述第二接触器的另一端连接所述交流预充电模块的输入端;所述第三接触器的一端连接3000V直流电或1500V直流电,所述第三接触器的另一端连接所述直流预充电模块的输入端。
  3. 根据权利要求2所述的列车供电系统,其特征在于,所述直流预充电模块包括:
    第四接触器、第五接触器、第六接触器、电感以及第一电阻;
    所述第四接触器的一端连接所述电感的第一端,所述第四接触器的另一端连接所述供电输出模块;所述第五接触器与所述第一电阻串联后与所述第六接触器并联,且第一公共端连接所述电感的第二端,第二公共端连接所述供电输入模块的输出端;所述电感的第三端连接所述供电输出模块。
  4. 根据权利要求3所述的列车供电系统,其特征在于,所述交流预充电模块包括:第七接触器、第八接触器、第二电阻以及熔断器;
    所述第七接触器与所述第二电阻串联后与所述第八接触器并联,且第一公共端连接所述供电输入模块并串接所述熔断器后连接所述整流模块,第二公共端连接所述整流模块。
  5. 根据权利要求4所述的列车供电系统,其特征在于,所述供电输出模块包括:
    降压器与稳压器。
  6. 根据权利要求5所述的列车供电系统,其特征在于,所述直流回流模块包括第九接触器。
  7. 一种列车,其特征在于,所述列车的动力车或机车设置有如权利要求1至6任一项所述的列车供电系统。
  8. 一种列车供电方法,其特征在于,包括:
    根据当前网压工况闭合供电输入模块中的相应接触器以接入所述当前网压工况对应的电源;
    当所述电源为直流电源时,闭合直流预充电模块并对所述直流电源进行降压稳压处理后输出至各客车;
    当所述电源为交流电源时,闭合交流预充电模块并对所述交流电源进行整流处理得到直流电源,以及对整流处理得到的直流电源进行降压稳压处理后输出至各所述客车。
  9. 根据权利要求8所述的列车供电方法,其特征在于,所述根据当前网压工况闭合供电输入模块中的相应接触器以接入所述当前网压工况对应的电源,包括:
    若所述当前网压工况为25kV交流电,则闭合供电输入模块中的第一接触器,以接入1500V的交流电源;
    若所述当前网压工况为15kV的交流电,则闭合所述供电输入模块中的第二接触器,以接入1000V的交流电源;
    若所述当前网压工况为3kV的直流电或1.5kV的直流电,则闭合所述供电输入模块中的第三接触器,以接入对应的直流电源。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求8或9任一项所述的列车供电方法的步骤。
PCT/CN2019/108112 2019-06-28 2019-09-26 一种列车供电系统、方法及列车 WO2020258552A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19934892.1A EP3988375A4 (en) 2019-06-28 2019-09-26 TRAIN AND TRAIN POWER SUPPLY SYSTEM AND METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910576239.6 2019-06-28
CN201910576239.6A CN110254243B (zh) 2019-06-28 2019-06-28 一种列车供电系统、方法及列车

Publications (1)

Publication Number Publication Date
WO2020258552A1 true WO2020258552A1 (zh) 2020-12-30

Family

ID=67922886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108112 WO2020258552A1 (zh) 2019-06-28 2019-09-26 一种列车供电系统、方法及列车

Country Status (3)

Country Link
EP (1) EP3988375A4 (zh)
CN (1) CN110254243B (zh)
WO (1) WO2020258552A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949151A (zh) * 2021-10-19 2022-01-18 浙江德升新能源科技有限公司 一种储能变流器黑启动供电电路

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112238763B (zh) * 2020-10-23 2022-05-13 中车株洲电力机车有限公司 一种充电电路及其控制装置、控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401433A (zh) * 2013-06-24 2013-11-20 北京千驷驭电气有限公司 适用多供电模式的混合动力动车组牵引变流器
US20150042176A1 (en) * 2011-11-09 2015-02-12 Electric Power Research Institute, China Southern Power Grid Multi-functional direct current ice melting automatic switching circuit and switching method thereof
CN105459839A (zh) * 2015-11-24 2016-04-06 唐山轨道客车有限责任公司 双制式受流系统和方法
CN108068835A (zh) * 2017-12-15 2018-05-25 石家庄国祥运输设备有限公司 一种应用于轨道交通空调变频系统的预充电控制系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009095080A (ja) * 2007-10-04 2009-04-30 Toshiba Corp 交流電車の補助電源装置
WO2014010079A1 (ja) * 2012-07-13 2014-01-16 三菱電機株式会社 電力変換装置、電気車及び空ノッチ試験の制御方法
CN104242681B (zh) * 2014-09-11 2017-08-25 株洲南车时代电气股份有限公司 一种电力机车的列车供电柜
CN104467455A (zh) * 2014-12-04 2015-03-25 株洲南车时代电气股份有限公司 一种多流制变流装置
CN108819800B (zh) * 2018-06-26 2021-06-01 贾晶艳 多流制电力机车的网侧变流装置的处理方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150042176A1 (en) * 2011-11-09 2015-02-12 Electric Power Research Institute, China Southern Power Grid Multi-functional direct current ice melting automatic switching circuit and switching method thereof
CN103401433A (zh) * 2013-06-24 2013-11-20 北京千驷驭电气有限公司 适用多供电模式的混合动力动车组牵引变流器
CN105459839A (zh) * 2015-11-24 2016-04-06 唐山轨道客车有限责任公司 双制式受流系统和方法
CN108068835A (zh) * 2017-12-15 2018-05-25 石家庄国祥运输设备有限公司 一种应用于轨道交通空调变频系统的预充电控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988375A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949151A (zh) * 2021-10-19 2022-01-18 浙江德升新能源科技有限公司 一种储能变流器黑启动供电电路

Also Published As

Publication number Publication date
EP3988375A1 (en) 2022-04-27
EP3988375A4 (en) 2023-07-26
CN110254243A (zh) 2019-09-20
CN110254243B (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
US10994623B2 (en) Apparatus for energy transfer using converter and method of manufacturing same
Youssef et al. Design and development of an efficient multilevel DC/AC traction inverter for railway transportation electrification
CN106451696B (zh) 具有固态开关控制的无变压器电流隔离车载充电器
CN110120752A (zh) 功率变换器及其控制方法
US11264821B2 (en) Bidirectional on-board charger and method of controlling the same
WO2014206185A1 (zh) 一种接触网和储能装置混合供电的动车组牵引系统
WO2020258552A1 (zh) 一种列车供电系统、方法及列车
CN101238635A (zh) 用于牵引应用的多级ac/dc转换器
JPH1094108A (ja) 種々の交流または直流電圧から変換器を使用して牽引システムに直流電圧電源を供給する装置および方法
CN109450285B (zh) 轨道交通车辆主辅一体化模式能量双向流动辅助供电系统
JP2014027790A (ja) 駆動システムおよびこれを搭載した鉄道車両
CN108312889B (zh) 用于地铁车辆的大功率高效率的双向充电机
WO2021114332A1 (zh) 一种多流制变流器
CN103738153B (zh) 一种新能源汽车的电驱动系统
CN211606377U (zh) 一种列车及其双流制的列车的牵引系统
WO2014119374A1 (ja) プリチャージ回路
KR101449305B1 (ko) 차량용 파워컨트롤모듈
CN212323740U (zh) 一种城轨交通牵引供电系统的综合治理装置
CN112810506B (zh) 一种列车供电系统及方法
CN111864752A (zh) 城轨交通牵引供电系统的综合治理装置及其综合治理方法
CN220359039U (zh) 磁集成电路及电动汽车
Dolgushin et al. Auxiliary Large Power Converter Supplying with 2.1… 4.7 kV DC Contact Line for Russian Railways
Makoschitz et al. Input Impedance Modeling of Three-Level Multi-Stage NPC Topology
CN209870023U (zh) 一种汽车电动空调控制电路
WO2020119273A1 (zh) 一种列车及其多流制的列车变流系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019934892

Country of ref document: EP