WO2020119273A1 - 一种列车及其多流制的列车变流系统 - Google Patents

一种列车及其多流制的列车变流系统 Download PDF

Info

Publication number
WO2020119273A1
WO2020119273A1 PCT/CN2019/113011 CN2019113011W WO2020119273A1 WO 2020119273 A1 WO2020119273 A1 WO 2020119273A1 CN 2019113011 W CN2019113011 W CN 2019113011W WO 2020119273 A1 WO2020119273 A1 WO 2020119273A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectifier
inductance
output
power
module
Prior art date
Application number
PCT/CN2019/113011
Other languages
English (en)
French (fr)
Inventor
邹档兵
郭君博
徐绍龙
章志兵
丁懿
刘大
Original Assignee
株洲中车时代电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株洲中车时代电气股份有限公司 filed Critical 株洲中车时代电气股份有限公司
Priority to EP19895349.9A priority Critical patent/EP3842276A4/en
Publication of WO2020119273A1 publication Critical patent/WO2020119273A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/30Electric propulsion with power supply external to the vehicle using ac induction motors fed from different kinds of power-supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to the technical field of electric trains, in particular to a train and its multi-stream train converter system.
  • the domestic traditional AC drive locomotives, motor cars and urban rail vehicles can only operate under one grid voltage system, that is, 25kV/50Hz on the trunk line or DC1500V/750V on the urban railroad.
  • the train converter system can meet the requirements of the dual-stream grid voltage system.
  • the requirements for train converter systems are getting higher and higher.
  • the train converter systems are required to be suitable for 4 types of grid suppression, usually to meet the requirements of AC25kV/50Hz, AC15kV/16.7Hz, DC3000V and DC1500V at the same time.
  • 4 kinds of power supply system For example, in the European and African railways, due to historical reasons, the power supply system is complex. When the train travels across the country and across regions, these four power supply systems need to be met.
  • the object of the present invention is to provide a train and its multi-stream train converter system, so that the train converter system meets at least four common power supply systems.
  • the present invention provides the following technical solutions:
  • a multi-stream train variable flow system including:
  • the first input terminal is connected to the AC input, and the second input terminal is connected to the DC input.
  • the transformer module is used to output the same voltage magnitude to the rectifier through the first output end and the second output end when AC power of different voltage magnitudes is received AC power; when DC power is received, the received DC power is output to the second end of the inductance module through the third output terminal, wherein the AC power has a voltage type of N, and the DC power has a voltage type of M, N, M All are positive integers and N ⁇ 2, M ⁇ 2;
  • the inductance module of the device is used to connect the first end and the second end of itself when the transformer module receives the kth alternating current, and to control the equivalent between the first end and the second end of the own
  • the inductance is a preset equivalent inductance corresponding to the kth alternating current; where k is a positive integer and N ⁇ k ⁇ 1; it is also used to control its first end and the first end when the transformer module receives direct current Turn off between the two terminals, and control the conduction between the second terminal and the third terminal;
  • the first end is connected to the second output end of the rectifier, and the second end is grounded to the target switch tube;
  • a first capacitor connected between the second end and the second output end of the rectifier
  • the first input terminal is connected to the first output terminal of the rectifier, and the second input terminal is connected to the second output terminal of the rectifier, which is used for a post-stage circuit that supplies power to the load;
  • the target switch unit connected to the second end of the rectifier at the second end, the target switch tube and the target switch unit are only turned on when the transformer module receives DC power;
  • the rectifier is used to control the on and off of its own switching device according to the corresponding rules when the transformer module receives different direct current, so that the magnitude of the voltage provided to the subsequent circuit remains consistent.
  • the voltage transformation module includes:
  • the first end of the primary winding is connected to the AC input as the first input end of the transformer module, the second end of the primary winding is grounded, and a traction transformer with N+1 ports is sequentially arranged on the secondary winding.
  • the N+1 end of the secondary winding serves as the second input of the transformer module;
  • the first end of the secondary winding serves as the third output of the transformer module, and the The first end and the first end of the primary winding are the same name end of the traction transformer;
  • N+1 switching tubes wherein the first end of the first switching tube is connected to the first end of the secondary winding, and the second end of the first switching tube serves as the first output terminal of the transformer module
  • the first end of the i-th switching tube is connected to the i-th end of the secondary winding, and the second end is connected to the second input end of the rectifier, i is Positive integer and 2 ⁇ i ⁇ N+1;
  • the N types of AC power received by the transformer module are sequentially reduced in order from the first to the Nth, the first switch tube is only turned on when the traction transformer receives the AC power, and the i-th switch tube It only conducts when the traction transformer receives the i-1th alternating current.
  • the inductance module includes:
  • N inductance units wherein the second end of the jth inductance unit is connected to the first end of the j-1th inductance unit, j is a positive integer and 2 ⁇ j ⁇ N; the second end of the first inductance unit is used as the The second end of the inductance module, the first end of the Nth inductance unit serves as the third end of the inductance module;
  • N switching units wherein the first end of the mth switching unit is connected to the first end of the mth inductance unit, the second end of the mth switching unit is connected to the first output end of the rectifier, and m is positive Integer and 1 ⁇ m ⁇ N; the m-th switching unit is turned on only when the transformer module receives the m-th alternating current.
  • N of the switch tubes and the target switch tube are all arranged in the first isolation switch box, and N of the switch units and the target switch unit are all arranged in the second isolation switch box.
  • the value of N is 2, and the value of M is 2.
  • it also includes:
  • the first input terminal is connected to the first output terminal of the rectifier, and the second input terminal is connected to the auxiliary inverter circuit of the second output terminal of the rectifier.
  • it also includes:
  • the first input end is connected to the first output end of the rectifier, and the second input end is connected to the fire-free loopback circuit connected to the second output end of the rectifier.
  • the rectifier is a four-quadrant rectifier.
  • the four-quadrant rectifier is a PWM four-quadrant rectifier.
  • a train includes the multi-stream train conversion system described in any one of the above.
  • At least two types of DC grid voltage standards and at least two types of AC grid voltage standards can be supported.
  • the transformer module receives alternating current with different voltage levels
  • the alternating current with the same voltage level can be output to the rectifier through the first output terminal and the second output terminal, so that the voltage levels applied to the subsequent circuit can be the same.
  • the inductance module conducts between its first end and its second end, and controls the equivalent inductance between its own first end and its second end to correspond to the current AC
  • the set equivalent inductance makes the filter circuit of the intermediate link meet the current voltage requirements.
  • the transformer module When the DC power is received, the transformer module outputs the DC power to the second terminal of the inductor module through the third output terminal, and the second terminal of the inductor module is now connected to the third terminal, and then input to the target switch unit to
  • the rectifier by controlling the on-off of the controllable switch in the rectifier, can make the voltage provided to the subsequent stage circuit maintain the same size. Therefore, the solution of the present application can support at least four grid voltage standards.
  • FIG. 1 is a schematic structural diagram of a multi-stream train converter system in the present invention
  • FIG. 2 is a schematic structural diagram of a multi-stream train converter system according to a specific embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a multi-stream train converter system according to another embodiment of the present invention.
  • the core of the present invention is to provide a multi-stream train converter system that can support at least 4 grid voltage systems.
  • FIG. 1 is a schematic structural diagram of a multi-stream train converter system according to the present invention, including:
  • the first input terminal is connected to the AC input, and the second input terminal is connected to the DC input of the transformer module 10, which is used to output the same to the rectifier 50 through the first output terminal and the second output terminal when receiving alternating current of different voltage magnitudes AC power with a voltage level; when DC power is received, the received DC power is output to the second end of the inductance module 20 through the third output terminal, wherein the AC power has a voltage type of N, and the DC power has a voltage type of M, N, M are all positive integers and N ⁇ 2, M ⁇ 2.
  • the transformer module 10 can receive N different types of AC power, which means that the transformer module 10 can receive AC power of different voltages in different occasions, and does not mean that N types of The alternating current is applied to the transformer module 10. The same is true for direct current.
  • the transformer module 10 receives the AC input through the first input terminal, for example, it is used to receive two AC inputs of AC25kV and AC15kV in FIG. 1, and the second input terminal is used to receive DC input, as shown in FIG. 1 for receiving DC3000V and DC1500V.
  • Two kinds of DC input In FIG. 1, in order to facilitate port identification, “1 in” represents the first input terminal of the transformer module 10, correspondingly, “2 in” represents the second input terminal of the transformer module 10, and “1 out” represents the In the first output terminal of the voltage transformer module 10, “2 output” indicates the second output terminal of the transformer module 10, and “3 output” indicates the third output terminal of the transformer module 10.
  • the 1, 2, and 3 in the inductor module 20 represent the first end, the second end, and the third end of the inductor module 20, respectively.
  • the transformer module 10 can control the status of its own related devices so that its first output terminal and second output terminal serve as the output terminal of the alternating current, and output the same voltage to the rectifier 50 Alternating current.
  • the transformer module 10 does not change the voltage level of the received DC power, and directly outputs through the third output terminal, and it should be noted that when receiving DC power, the transformer module 10 usually makes its own The first output terminal and the second input terminal are kept in a disconnected state, and the second output terminal and the second input terminal are also kept in a disconnected state.
  • the first end is connected to the first output end of the rectifier 50, the second end is connected to the first end of the first capacitor and the third output end of the transformer module 10, and the third end is connected to the first end of the target switch unit 30
  • the inductance module 20 is used to connect the first end and the second end of the transformer when the transformer module 10 receives the kth alternating current, and to control the equivalent inductance between the first end and the second end
  • the preset equivalent inductance of the kth alternating current where k is a positive integer and N ⁇ k ⁇ 1; also used to control the shutdown between the first end and the second end of the transformer module 10 when it receives direct current , And control the conduction between its second end and its third end.
  • the inductor module 20 adjusts the inductor module 20 to meet the filtering requirements of different types of AC input voltage. Specifically, when the transformer module 10 receives the k-th alternating current, the inductance module 20 conducts between its first end and its second end, and controls the equivalent inductance between its first end and its second end to correspond The preset equivalent inductance of the kth alternating current, so that the filter circuit of the intermediate circuit meets the requirements of the alternating current at the current frequency. That is to say, when receiving different AC power, the equivalent inductance between the first end and the second end of the inductance module 20 is different, so as to meet the filtering requirements of the AC power of different frequencies.
  • the inductance module 20 can control the first end and the second end of the self-off, and control the second end and the third end of the self-conduction, so that the direct current from the inductor The second end of the module 20 flows in and flows out from the third end of the inductor module 20.
  • the specific structure of the inductor module 20 can be set according to actual needs, as long as it can meet the requirements of the solution of the present application, and does not affect the implementation of the present invention.
  • the first end is connected to the second output end of the rectifier 50, and the second end is grounded to the target switch tube 40.
  • Both the target switch tube 40 and the target switch unit 30 can be commonly used switching devices, for example, they can both be disconnectors, that is, the switch tube and the switch unit are not limited to the two must be different switch forms, but only to facilitate the two devices. distinguish.
  • a first capacitor C connected between the second end and the second output end of the rectifier 50.
  • the type and specific parameters of the first capacitor C can be set and selected according to actual needs, for example, it is selected as an electrolytic capacitor suitable for the occasion of large voltage.
  • the first capacitor C and the inductor module 20 serve as a filter circuit of the intermediate link, and filter the output of the rectifier 50.
  • the first input terminal is connected to the first output terminal of the rectifier 50, and the second input terminal is connected to the second output terminal of the rectifier 50, and is used for the post-stage circuit 60 for supplying power to the load.
  • the specific structure of the post-stage circuit 60 can refer to the existing design, which is usually an inverter circuit.
  • the solution of the present application does not require adjustment to the post-stage circuit 60.
  • the target switch unit 30 connected to the second end and the second input end of the rectifier 50, the target switch tube 40 and the target switch unit 30 are only turned on when the transformer module 10 receives DC power;
  • the rectifier 50 is used to control the turning on and off of its own switching device according to the corresponding rules when the transformer module 10 receives different direct currents, so that the magnitude of the voltage supplied to the post-stage circuit 60 remains consistent.
  • the target switch unit 30 When the transformer module 10 receives DC power, the target switch unit 30 is turned on, and the DC power can be input to the second input terminal of the rectifier 50 through the target switch unit 30. After the target switch tube 40 is grounded, the rectifier 50 and the inductor module 20 can form a boost circuit.
  • the boost ratio By controlling the switching of the related switching devices in the rectifier 50, that is, adjusting the duty cycle, the boost ratio can be adjusted so that When the module 10 receives different DC power, the magnitude of the voltage supplied to the subsequent circuit 60 remains the same.
  • the rectifier 50 may also be controlled not to boost.
  • the state of the transformer module 10, the inductor module 20, the target switching unit 30, and the target switching tube 40 can be adjusted, and the specifications of the rectifier 50 are not required
  • the specifications of the post-stage circuit 60 are adjusted, that is, under the premise that the rectifier 50 and the post-stage circuit 60 of the same specification can meet at least four grid voltage standards.
  • At least two types of DC grid voltage standards and at least two types of AC grid voltage standards can be supported.
  • the transformer module receives alternating current with different voltage levels
  • the alternating current with the same voltage level can be output to the rectifier through the first output terminal and the second output terminal, so that the voltage levels applied to the subsequent circuit can be the same.
  • the inductance module conducts between its first end and its second end, and controls the equivalent inductance between its own first end and its second end to correspond to the current AC current.
  • the set equivalent inductance makes the filter circuit of the intermediate link meet the current voltage requirements.
  • the transformer module When the DC power is received, the transformer module outputs the DC power to the second terminal of the inductor module through the third output terminal, and the second terminal of the inductor module is now connected to the third terminal, and then input to the target switch unit to
  • the rectifier by controlling the on-off of the controllable switch in the rectifier, can make the voltage provided to the subsequent stage circuit maintain the same size. Therefore, the solution of the present application can support at least four grid voltage standards.
  • the transformer module 10 includes:
  • the first end of the primary winding is connected to the AC input as the first input end of the transformer module 10, the second end of the primary winding is grounded, and the traction transformer 11 with N+1 ports is sequentially arranged on the secondary winding, and the secondary winding
  • the N+1 terminal of the transformer is used as the second input terminal of the transformer module 10; the first terminal of the secondary winding is used as the third output terminal of the transformer module 10, and the first terminal of the secondary winding and the primary winding first
  • the end is the same name end of the traction transformer 11;
  • N+1 switch tubes wherein the first end of the first switch tube Q1 is connected to the first end of the secondary winding, and the second end of the first switch tube Q1 is used as the first output terminal of the transformer module 10 for Connected to the first input end of the rectifier 50, the first end of the i-th switch tube is connected to the i-th end of the secondary winding, and the second end is connected to the second input end of the rectifier 50, i is a positive integer and 2 ⁇ i ⁇ N+1;
  • the N types of AC power received by the transformer module 10 are sequentially reduced in order from the first to the Nth, the first switching tube Q1 is only turned on when the traction transformer 11 receives the AC power, and the i-th switching tube is only in the traction transformer 11 Conducted when receiving the i-1th AC power.
  • N+1 output ports are provided on the secondary winding, which are sequentially called the first end, the second end, and the N+1 end of the secondary winding in order, and the secondary winding’s
  • the first end and the first end of the primary winding are the same-named ends of the traction transformer 11.
  • the N+1 end of the secondary winding and the second end of the primary winding are the same-named ends of the traction transformer 11.
  • the voltage between the first and second ends of the secondary winding is the lowest, the voltage between the first and third ends of the secondary winding is the second, and the voltage of the secondary winding is the second.
  • the voltage between terminal 1 and terminal N+1 is the highest.
  • the first switch Q1 is connected to the first end of the secondary winding and the first input end of the rectifier 50, and when receiving AC power, the first switch Q1 remains in a conductive state.
  • the second switch tube Q2 to the N+1 switch tube QN+1 are respectively connected to the ports of the corresponding secondary windings, and are all connected to the second input terminal of the rectifier 50.
  • the N types of AC power are sequentially referred to as the first AC power, the second AC power, and the N-th AC power in order of increasing voltage. That is, the voltage of the first alternating current is the highest, and the voltage of the Nth alternating current is the lowest.
  • the first switch Q1 and the second switch Q2 are turned on, and the third switch Q3 to the N+1 switch QN+1 are all turned off.
  • the second alternating current among the N+1 switch tubes
  • the first switch tube Q1 and the third switch tube Q3 are turned on, and the rest are turned off. That is, when receiving the i-1th AC power, among the N+1 switching tubes, only the first switching tube Q1 and the i-th switching tube are turned on, i is a positive integer and 2 ⁇ i ⁇ N+1.
  • the number of specific ports of the secondary winding and the position of each port on the secondary winding can be set according to the actual situation, usually according to the respective voltage levels of the N types of AC power that the train needs to support Design the port of the secondary winding.
  • the design of N+1 switch tubes realizes the adjustment of the voltage of different alternating currents, and the implementation of the solution is simple and convenient.
  • the inductance module 20 may include:
  • N inductance units wherein the second end of the jth inductance unit is connected to the first end of the j-1th inductance unit, j is a positive integer and 2 ⁇ j ⁇ N; the second end of the first inductance unit G1 serves as an inductance The second end of the module 20, and the first end of the Nth inductance unit GN serve as the third end of the inductance module 20;
  • N switching units wherein the first end of the mth switching unit is connected to the first end of the mth inductance unit, the second end of the mth switching unit is connected to the first output of the rectifier 50, m is a positive integer and 1 ⁇ m ⁇ N; the mth switch unit is only turned on when the transformer module 10 receives the mth AC power.
  • N inductance units are connected in series, and the equivalent inductance between the first end and the second end of the inductance module 20 is changed by turning on and off the N switching units. Specifically, when receiving the first alternating current, only the first switching unit q1 of the N switching units is turned on. At this time, the equivalent inductance between the first end and the second end of the inductance module 20 is the first inductance unit.
  • each inductance unit can also be set according to actual needs.
  • the simple solution is to set an inductance.
  • it can also be a combination of multiple inductances.
  • inductance L2 and inductance L3 It can be regarded as the second inductance unit G2.
  • the N switching units can generally be disconnecting switches.
  • this embodiment shows a specific N switching unit on and off mode, in other embodiments, according to the specific frequency of the AC power received, to adjust each switch appropriately
  • the switching of the unit does not affect the implementation of the present invention.
  • other switch forms may also be used to control the inductance module 20, that is, the specific configuration of the inductance module 20 may have other ways, as long as the state of the inductance module 20 can meet the corresponding AC power pair when receiving different AC power The requirements of the inductance in the filter circuit are sufficient.
  • the N switch tubes and the target switch tube 40 may all be provided in the first isolation switch box, and the N switch units and the target switch unit 30 may be provided in the second isolation switch box. in.
  • the N switch units and the target switch unit 30 may be provided in the second isolation switch box. in.
  • the first and second isolation switch boxes can be installed in the traction transformer 11 car, which can shorten the electrical
  • the length of the wire reduces the difficulty of wiring and improves the electromagnetic compatibility of the vehicle.
  • the method further includes:
  • the first input terminal is connected to the first output terminal of the rectifier 50, and the second input terminal is connected to the auxiliary inverter circuit of the second output terminal of the rectifier 50.
  • the auxiliary inverter circuit may include an auxiliary inverter and an auxiliary transformer, which are used to convert direct current into three-phase alternating current of variable frequency and variable voltage to power the auxiliary load of the locomotive.
  • the first input terminal may be connected to the first output terminal of the rectifier 50, and the second input terminal may be connected to the fire-free loopback circuit connected to the second output terminal of the rectifier 50.
  • Fire-free loopback circuit is usually used for fire-free loopback in rescue mode.
  • two rectifiers 50 and respective subsequent circuits are provided in the train converter system. That is, two sets of power supply systems are shown, but some devices are multiplexed. For example, there is no need to set up two transformer modules, only one traction transformer with double secondary windings is required, and each secondary winding has 3 outputs end.
  • the two sets of power supply systems can share the inductance module.
  • the inductance module includes inductance L1, inductance L2, inductance L3 and switch S5, switch S6 and switch S7.
  • an inductor may be used instead of the inductor L2 and the inductor L3, that is, one end of the inductor is connected to the inductor L1, and the other end is connected to the second input ends of the two rectifiers 50, and
  • the method of FIG. 3 is equivalent to setting up DC circuits for the two power supply systems separately, that is, by individually controlling the on and off of S3 and S4, the opening and closing of a certain DC circuit can be adjusted separately.
  • an isolation switch S2 When receiving AC power, the isolation switch S2 is opened, and when receiving DC power, the isolation switch S2 is closed.
  • the values of N and M are both 2.
  • a switch S1 is also provided on the DC power supply circuit for controlling the opening and closing of the DC input.
  • the auxiliary inverter converts the DC power into a variable frequency High-voltage three-phase alternating current powers the auxiliary load of the locomotive.
  • the isolation switches S11, S13, S21, S23 and S5, S6 of the 14 isolation switches are closed, and the rest are opened.
  • the isolation switches S1, S2, S3, S4 and S8 of the 14 isolation switches are closed, and the rest are opened.
  • the grid voltage is input to the rectifier 50 through the secondary winding and the secondary filter reactor, and then flows into the intermediate circuit through the rectifier 50.
  • the inverter converts the direct current into three-phase alternating current with variable frequency and variable voltage and supplies it to the traction motor.
  • the auxiliary inverter converts direct current into constant frequency and constant voltage alternating current to power the auxiliary load of the locomotive.
  • the secondary filter reactor described here is the equivalent reactance composed of L1, L2 and L3.
  • the rectifier 50 may not boost the input DC power, and when receiving the DC1500V power supply, by controlling the switching device in the rectifier 50, the rectifier 50 realizes the boost chopper function and raises the intermediate voltage to DC3000V supplies power to the inverter.
  • the rectifier 50 of the present application needs to be combined with a secondary filter reactor to achieve boosting
  • the rectifier 50 can usually be a four-quadrant rectifier 50.
  • the PWM four-quadrant rectifier 50 is a better choice among the four-quadrant rectifiers 50.
  • An embodiment of the present invention further provides a train, which may include the multi-stream train conversion system in any of the above embodiments, and it may be referred to the above corresponding to each other, and the description will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Rectifiers (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种列车及其多流制的列车变流系统,包括:变压模块,当接收不同的交流电时,向整流器输出相同电压大小的交流电;当接收到直流电时,向电感模块输出直流电;电感模块,用于当变压模块接收第k交流电时,将自身第一端与第二端之间导通,并且控制自身第一端与自身第二端之间的等效电感为对应于第k交流电的预设的等效电感,当变压模块接收直流电时,将该直流电输入至整流器;目标开关管;第一电容;后级电路;目标开关单元;整流器,用于在变压模块接收不同的直流电时,按照相应的规则控制自身的开关器件的通断,以使提供至后级电路的电压大小保持一致。应用本申请的方案,支持至少4种电网电压制式。

Description

一种列车及其多流制的列车变流系统
本申请要求于2018年12月11日提交至中国专利局、申请号为201811511592.8、发明名称为“一种列车及其多流制的列车变流系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电力列车技术领域,特别是涉及一种列车及其多流制的列车变流系统。
背景技术
国内传统的交流传动机车、动车及城轨车辆,都只能在一种电网电压制式下运行,即干线上的25kV/50Hz或者城轨铁路上的DC1500V/750V。随着经济的发展,部分城市已经开始尝试干线铁路和城轨铁路的无缝对接,即列车的变流系统能够满足双流制的电网电压制式的要求。
但现今对列车变流系统的要求越来越高,部分场合中,要求列车的变流系统适用于4种网压制式,通常是要求同时满足AC25kV/50Hz,AC15kV/16.7Hz,DC3000V和DC1500V这4种供电制式。例如在欧洲、非洲铁路中,由于历史原因供电制式复杂,列车跨国跨区域行驶时,便需要满足这4种供电制式。
综上所述,如何使得列车变流系统满足至少4种常用的供电制式,是目前本领域技术人员急需解决的技术问题。
发明内容
本发明的目的是提供一种列车及其多流制的列车变流系统,以使得列车变流系统满足至少4种常用的供电制式。
为解决上述技术问题,本发明提供如下技术方案:
一种多流制的列车变流系统,包括:
第一输入端与交流输入连接,第二输入端与直流输入连接的变压模块,用于当接收到不同电压大小的交流电时,通过第一输出端以及第二输出端 向整流器输出相同电压大小的交流电;当接收到直流电时,通过第三输出端向电感模块的第二端输出接收到的所述直流电,其中,交流电的电压种类为N种,直流电的电压种类为M种,N,M均为正整数且N≥2,M≥2;
第一端与所述整流器的第一输出端连接,第二端与第一电容的第一端以及所述变压模块的第三输出端连接,第三端与目标开关单元的第一端连接的所述电感模块,用于当所述变压模块接收第k交流电时,将自身第一端与第二端之间导通,并且控制自身第一端与自身第二端之间的等效电感为对应于所述第k交流电的预设的等效电感;其中,k为正整数且N≥k≥1;还用于当所述变压模块接收直流电时,控制自身第一端与第二端之间关断,并控制自身第二端与自身第三端之间导通;
第一端与所述整流器的第二输出端连接,第二端接地的目标开关管;
第二端与所述整流器的第二输出端连接的第一电容;
第一输入端与所述整流器的第一输出端连接,第二输入端与所述整流器的第二输出端连接,用于为负载供电的后级电路;
第二端与所述整流器的第二输入端连接的所述目标开关单元,所述目标开关管和所述目标开关单元均仅在所述变压模块接收直流电时导通;
所述整流器,用于在所述变压模块接收不同的直流电时,按照相应的规则控制自身的开关器件的通断,以使提供至所述后级电路的电压大小保持一致。
优选的,所述变压模块包括:
原边绕组的第一端作为所述变压模块的第一输入端与交流输入连接,所述原边绕组的第二端接地,副边绕组上依次设置N+1个端口的牵引变压器,所述副边绕组的第N+1端作为所述变压模块的第二输入端;所述副边绕组的第1端作为所述变压模块的第三输出端,且所述副边绕组的第1端与所述原边绕组的第一端为所述牵引变压器的同名端;
N+1个开关管,其中,第1开关管的第一端与所述副边绕组的第1端连接,所述第1开关管的第二端作为所述变压模块的第一输出端,用于与所述整流器的第一输入端连接,第i开关管的第一端与所述副边绕组的第i端连接,第二端与所述整流器的第二输入端连接,i为正整数且2≤i≤N+1;
其中,所述变压模块接收的N种交流电,电压大小按照第1至第N的顺序依次降低,所述第1开关管仅在所述牵引变压器接收交流电时导通,所述第i开关管仅在所述牵引变压器接收第i-1交流电时导通。
优选的,所述电感模块包括:
N个电感单元,其中,第j电感单元的第二端与第j-1电感单元的第一端连接,j为正整数且2≤j≤N;第1电感单元的第二端作为所述电感模块的第二端,第N电感单元的第一端作为所述电感模块的第三端;
N个开关单元,其中,第m开关单元的第一端与第m电感单元的第一端连接,所述第m开关单元的第二端与所述整流器的第一输出端连接,m为正整数且1≤m≤N;所述第m开关单元仅在所述变压模块接收第m交流电时导通。
优选的,N个所述开关管以及所述目标开关管均设置在第一隔离开关箱中,N个所述开关单元以及所述目标开关单元均设置在第二隔离开关箱中。
优选的,所述N的取值为2,所述M的取值为2。
优选的,还包括:
第一输入端与所述整流器的第一输出端连接,第二输入端与所述整流器的第二输出端连接的辅助逆变电路。
优选的,还包括:
第一输入端与所述整流器的第一输出端连接,第二输入端与所述整流器的第二输出端连接的无火回送电路。
优选的,所述整流器为四象限整流器。
优选的,所述四象限整流器为PWM四象限整流器。
一种列车,包括上述任一项所述的多流制的列车变流系统。
应用本发明实施例所提供的技术方案,可以支持至少2种直流电网电压制式以及至少2种交流电网电压制式。具体的,当变压模块接收到不同电压大小的交流电时,可以通过第一输出端以及第二输出端向整流器输出相同电压大小的交流电,这样可以使得施加在后级电路上的电压大小相同。并且当接收到某一种交流电时,电感模块将自身第一端与第二端之间导通, 并且控制自身第一端与自身第二端之间的等效电感为对应于当前交流电的预设的等效电感,也就使得中间环节的滤波电路符合当前的电压要求。而当接收到直流电时,变压模块会通过第三输出端向电感模块的第二端输出该直流电,而电感模块的第二端此时与第三端导通,进而通过目标开关单元输入至整流器,通过控制整流器中的可控开关的通断,可以使得提供至所述后级电路的电压大小保持一致。因此,本申请的方案可以支持至少4种电网电压制式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中一种多流制的列车变流系统的结构示意图;
图2为本发明一种具体实施方式的多流制的列车变流系统的结构示意图;
图3为本发明另一种具体实施方式的多流制的列车变流系统的结构示意图。
具体实施方式
本发明的核心是提供一种多流制的列车变流系统,可以支持至少4种电网电压制式。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明中一种多流制的列车变流系统的结构示意 图,包括:
第一输入端与交流输入连接,第二输入端与直流输入连接的变压模块10,用于当接收到不同电压大小的交流电时,通过第一输出端以及第二输出端向整流器50输出相同电压大小的交流电;当接收到直流电时,通过第三输出端向电感模块20的第二端输出接收到的直流电,其中,交流电的电压种类为N种,直流电的电压种类为M种,N,M均为正整数且N≥2,M≥2。
可以理解的是,本申请中,变压模块10可以接收N种不同类型的交流电,指的是变压模块10可以在不同场合中接收不同电压大小的交流电,并不是指在同一时刻将N种交流电施加在变压模块10上。直流电亦是如此。
变压模块10通过第一输入端接收交流输入,例如图1中用于接收AC25kV以及AC15kV这两种交流输入,第二输入端用于接收直流输入,如图1中用于接收DC3000V以及DC1500V这两种直流输入。在图1中为了便于端口的分辨,用“1入”表示变压模块10的第一输入端,相应的,“2入”表示变压模块10的第二输入端,“1出”表示变压模块10的第一输出端,“2出”表示变压模块10的第二输出端,“3出”表示变压模块10的第三输出端。而电感模块20中的1,2以及3分别表示的是电感模块20的第一端,第二端以及第三端。
当接收不同电压大小的交流电时,变压模块10可以通过控制自身的相关器件的状态,使得自身的第一输出端以及第二输出端作为交流电的输出端,并且向整流器50输出相同电压大小的交流电。而当接收直流电时,变压模块10不对接收到的直流电的电压大小进行改变,直接通过第三输出端进行输出,并且需要指出的是,当接收直流电时,变压模块10通常要使得自身的第一输出端与第二输入端之间保持为断开状态,自身的第二输出端与第二输入端之间也保持断开状态。
第一端与整流器50的第一输出端连接,第二端与第一电容的第一端以及变压模块10的第三输出端连接,第三端与目标开关单元30的第一端连接的电感模块20,用于当变压模块10接收第k交流电时,将自身第一端 与第二端之间导通,并且控制自身第一端与自身第二端之间的等效电感为对应于第k交流电的预设的等效电感;其中,k为正整数且N≥k≥1;还用于当变压模块10接收直流电时,控制自身第一端与第二端之间关断,并控制自身第二端与自身第三端之间导通。
在实际应用中,通常不同的电网电压制式,除了电压大小不同以外,电压频率通常也不同。因此,对于不同种类的交流输入,在中间回路的滤波上,需要配置对应的滤波电路,本申请的方案通过对电感模块20的调节以满足不同种类的交流输入电压的滤波需求。具体的,当变压模块10接收第k交流电时,电感模块20将自身第一端与第二端之间导通,并且控制自身第一端与自身第二端之间的等效电感为对应于第k交流电的预设的等效电感,以使得中间回路的滤波电路符合当前频率下的交流电的要求。也就是说,在接收不同的交流电时,电感模块20的第一端与第二端之间的等效电感不同,以满足不同频率的交流电的滤波需求。
而当变压模块10接收直流电时,电感模块20可以控制自身第一端与第二端之间关断,并控制自身第二端与自身第三端之间导通,使得此时直流电从电感模块20的第二端流入,并从电感模块20的第三端流出。
电感模块20具体的构成可以根据实际需要进行设定,只要能够满足本申请方案的要求即可,并不影响本发明的实施。
第一端与整流器50的第二输出端连接,第二端接地的目标开关管40。
目标开关管40以及目标开关单元30均可以为常用的开关器件,例如可以均为隔离开关,即开关管和开关单元并不是限定二者必须为不同的开关形式,仅是便于将两个器件进行区分。
第二端与整流器50的第二输出端连接的第一电容C。
第一电容C的类型以及具体参数均可以根据实际需要进行设定和选取,例如选取为适用于大电压的场合中的电解电容。在交流电模式下,第一电容C与电感模块20作为中间环节的滤波电路,对整流器50的输出进行滤波。
第一输入端与整流器50的第一输出端连接,第二输入端与整流器50的第二输出端连接,用于为负载供电的后级电路60。
后级电路60的具体结构可以参照现有的设计,通常为逆变电路,本申请的方案不需要对后级电路60做出调整。
第二端与整流器50的第二输入端连接的目标开关单元30,目标开关管40和目标开关单元30均仅在变压模块10接收直流电时导通;
整流器50,用于在变压模块10接收不同的直流电时,按照相应的规则控制自身的开关器件的通断,以使提供至后级电路60的电压大小保持一致。
当变压模块10接收直流电时,目标开关单元30导通,直流电便可以经过目标开关单元30输入至整流器50的第二输入端。目标开关管40接地之后,整流器50以及电感模块20便可以构成升压电路,通过控制整流器50中的相关开关器件的通断,即调节占空比,便可以调节升压比例,使得在变压模块10接收不同的直流电时,提供至后级电路60的电压大小保持一致。当然,如果变压模块10接收的直流电的电压较大,符合后级电路60所需要的电压大小时,也可以控制整流器50不进行升压。
本申请的方案中,当接收不同的交流电或者直流电时,通过对变压模块10,电感模块20,目标开关单元30以及目标开关管40的状态进行调整即可,并不需要对整流器50的规格以及后级电路60的规格进行调整,即实现了在同一规格的整流器50以及后级电路60的前提下,可以满足至少4种电网电压制式。
应用本发明实施例所提供的技术方案,可以支持至少2种直流电网电压制式以及至少2种交流电网电压制式。具体的,当变压模块接收到不同电压大小的交流电时,可以通过第一输出端以及第二输出端向整流器输出相同电压大小的交流电,这样可以使得施加在后级电路上的电压大小相同。并且当接收到某一种交流电时,电感模块将自身第一端与第二端之间导通,并且控制自身第一端与自身第二端之间的等效电感为对应于当前交流电的预设的等效电感,也就使得中间环节的滤波电路符合当前的电压要求。而当接收到直流电时,变压模块会通过第三输出端向电感模块的第二端输出该直流电,而电感模块的第二端此时与第三端导通,进而通过目标开关单元输入至整流器,通过控制整流器中的可控开关的通断,可以使得提供至 所述后级电路的电压大小保持一致。因此,本申请的方案可以支持至少4种电网电压制式。
在本发明的一种具体实施方式中,可参阅图2,变压模块10包括:
原边绕组的第一端作为变压模块10的第一输入端与交流输入连接,原边绕组的第二端接地,副边绕组上依次设置N+1个端口的牵引变压器11,副边绕组的第N+1端作为变压模块10的第二输入端;副边绕组的第1端作为变压模块10的第三输出端,且副边绕组的第1端与原边绕组的第一端为牵引变压器11的同名端;
N+1个开关管,其中,第1开关管Q1的第一端与副边绕组的第1端连接,第1开关管Q1的第二端作为变压模块10的第一输出端,用于与整流器50的第一输入端连接,第i开关管的第一端与副边绕组的第i端连接,第二端与整流器50的第二输入端连接,i为正整数且2≤i≤N+1;
其中,变压模块10接收的N种交流电,电压大小按照第1至第N的顺序依次降低,第1开关管Q1仅在牵引变压器11接收交流电时导通,第i开关管仅在牵引变压器11接收第i-1交流电时导通。
在图2的实施方式中,副边绕组上设置有N+1个输出端口,按照顺序依次称为副边绕组的第1端,第2端,直至第N+1端,并且副边绕组的第1端与原边绕组的第一端为牵引变压器11的同名端,相应的,副边绕组的第N+1端与原边绕组的第二端为牵引变压器11的同名端。显然,当接收相同大小的交流电时,副边绕组的第1端与第2端之间的电压最低,副边绕组的第1端与第3端之间的电压次之,副边绕组的第1端与第N+1端之间的电压最高。
第1开关管Q1与副边绕组的第1端以及整流器50的第一输入端连接,当接收交流电时,第1开关管Q1保持导通状态。第2开关管Q2至第N+1开关管QN+1分别与各自对应的副边绕组的端口连接,并且均与整流器50的第二输入端连接。
该种实施方式中,按照电压大小由高至低的顺序,将N种交流电依次称为第1交流电,第2交流电,直至第N交流电。即第1交流电的电压最高,第N交流电的电压最低。当接收第1交流电时,第1开关管Q1以及 第2开关管Q2导通,第3开关管Q3至第N+1开关管QN+1均关断。相应的,当接收第2交流电时,N+1个开关管中,第1开关管Q1以及第3开关管Q3导通,剩余的关断。即接收第i-1交流电时,N+1个开关管中,仅第1开关管Q1以及第i开关管导通,i为正整数且2≤i≤N+1。
在具体实施时,副边绕组的具体的端口的数量以及每个端口在副边绕组上的位置,均可以根据实际情况进行设定,通常是根据列车所需要支持的N种交流电各自的电压大小进行副边绕组的端口设计。该种实施方式中,通过N+1个开关管的设计实现了对不同交流电的电压大小的调节,方案的实施简单方便。
在本发明的一种具体实施方式中,电感模块20可以包括:
N个电感单元,其中,第j电感单元的第二端与第j-1电感单元的第一端连接,j为正整数且2≤j≤N;第1电感单元G1的第二端作为电感模块20的第二端,第N电感单元GN的第一端作为电感模块20的第三端;
N个开关单元,其中,第m开关单元的第一端与第m电感单元的第一端连接,第m开关单元的第二端与整流器50的第一输出端连接,m为正整数且1≤m≤N;第m开关单元仅在变压模块10接收第m交流电时导通。
该种实施方式中,将N个电感单元串联,并且通过N个开关单元各自的通断来改变电感模块20的第一端与第二端之间的等效电感。具体的,当接收第1交流电时,N个开关单元中仅第1开关单元q1导通,此时电感模块20的第一端与第二端之间的等效电感即为第一电感单元的等效电感,而当接收第2交流电时,N个开关单元中仅第2开关单元q2导通,此时电感模块20的第一端与第二端之间的等效电感即为第1电感单元G1的等效电感与第2电感单元G2的等效电感的和。
各电感单元的内部结构也可以根据实际需要进行设定,简单的方案便是设置一个电感即可,当然,也可以是多个电感的组合,例如图3的实施发送中,电感L2和电感L3可以视为是第2电感单元G2。N个开关单元通常均可以为隔离开关。
并且需要说明的是,该种实施方式中示出了一种具体的N个开关单元的通断方式,在其他实施方式中,可以根据具体接收的交流电的频率不同, 来相适应地调整各个开关单元的通断,并不影响本发明的实施。此外,也可以采用其他的开关形式用于进行电感模块20的控制,即电感模块20的具体构成可以有其他方式,只要使得当接收不同的交流电时,电感模块20的状态能够满足相应的交流电对滤波电路中的电感的要求即可。
在本发明的一种具体实施方式中,可以将N个开关管以及目标开关管40均设置在第一隔离开关箱中,将N个开关单元以及目标开关单元30均设置在第二隔离开关箱中。以方便工作人员对各个开关单元以及各个开关管的通断的调节。并且这样的设置方式,并不会改变由整流器50以及后级电路60构成的牵引变流器的对外接口,即牵引变流器内部并无状态切换开关,方便实施。
进一步地,考虑到牵引变压器11和牵引变流器通常安装在不同的车厢底部,相距较远,因此可以将第一隔离开关箱以及第二隔离开关箱均设置在牵引变压器11车,可以缩短电气导线长度,降低布线难度,提升整车的电磁兼容性能。
在本发明的一种具体实施方式中,可参阅图3,还包括:
第一输入端与整流器50的第一输出端连接,第二输入端与整流器50的第二输出端连接的辅助逆变电路。
辅助逆变电路中可以包括辅助逆变器以及辅助变压器,用于将直流电转变为变频变压的三相交流电给机车辅助负载供电。
在本发明的一种具体实施方式中,还可以包括:第一输入端与整流器50的第一输出端连接,第二输入端与整流器50的第二输出端连接的无火回送电路。无火回送电路通常用于救援模式下的无火回送。
并且需要说明的是,在图3的实施方式中,列车变流系统中设置了两个整流器50以及各自连接的后级电路。即示出了两组供电系统,但部分器件实现了复用,例如无需设置两个变压模块,只需要一个带有双副边绕组的牵引变压器即可,每个副边绕组具有3个输出端。两组供电系统可以共用电感模块,电感模块包括了电感L1,电感L2,电感L3以及开关S5,开关S6以及开关S7。
并且需要说明的是,该种实施方式中,也可以使用一个电感取代电感 L2以及电感L3,即将该电感的一端与电感L1连接,另一端与两个整流器50的第二输入端均连接,而图3的这种方式,相当于是为两路供电系统分别设置直流回路,即可以通过分别控制S3以及S4的通断,单独调节某一路直流回路的开启以及关断。此外,由于需要使用两个副边绕组,因此需要增设隔离开关S2,当接收交流电时,隔离开关S2断开,当接收直流电时,隔离开关S2闭合。在图3的实施方式中,N和M的取值均为2。并且图3中还在直流供电回路上设置了开关S1,用于控制直流输入的开闭。
对于图3中的14个隔离开关,即隔离开关S1,S2,S3,S4,S5,S6,S7,S8,S21,S22,S23,S11,S12,S13,当列车接收AC25kV/50Hz时,将图3中的将隔离开关S11,S12,S21,S22以及S7闭合,剩余的断开。通过S12、S22的闭合,选择合适的副边绕组,通过S7的闭合,选择合适的二次谐振电感。副边绕组的交流电压经过整流后输出到中间回路,中间回路消除中间电压的二次谐波,逆变器将直流电转变为三相交流电给牵引电机供电,辅助逆变器将直流电转变为变频变压的三相交流电给机车辅助负载供电。相应的,当接收AC15kV/16.7Hz时,将14个隔离开关中的隔离开关S11,S13,S21,S23以及S5,S6闭合,剩余的断开。
当接收DC3000V或者接收DC1500V时,均是将14个隔离开关中的隔离开关S1,S2,S3,S4以及S8闭合,剩余的断开。电网电压经副边绕组和二次滤波电抗器后输入至整流器50,再经由整流器50流入中间回路。逆变器将直流电转变为可变频可变压的三相交流电供给牵引电机。辅助逆变器将直流电转变为恒频恒压的交流电为机车辅助负载供电。此处描述的二次滤波电抗器即为由L1,L2以及L3构成的等效电抗。
当接收DC3000V供电时,整流器50可以不对输入的直流电进行升压,而当接收DC1500V供电时,通过对整流器50中的开关器件的控制,使得整流器50实现升压斩波功能,将中间电压升至DC3000V给逆变器供电。
考虑到本申请的整流器50需要结合二次滤波电抗器实现升压,因此整流器50通常可以为四象限整流器50,进一步的,PWM四象限整流器50是四象限整流器50中的较佳选择。
本发明实施例还提供了一种列车,可以包括上述任一实施例中多流制 的列车变流系统,与上文相互对应参照即可,此处不重复说明。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的技术方案及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (10)

  1. 一种多流制的列车变流系统,其特征在于,包括:
    第一输入端与交流输入连接,第二输入端与直流输入连接的变压模块,用于当接收到不同电压大小的交流电时,通过第一输出端以及第二输出端向整流器输出相同电压大小的交流电;当接收到直流电时,通过第三输出端向电感模块的第二端输出接收到的所述直流电,其中,交流电的电压种类为N种,直流电的电压种类为M种,N,M均为正整数且N≥2,M≥2;
    第一端与所述整流器的第一输出端连接,第二端与第一电容的第一端以及所述变压模块的第三输出端连接,第三端与目标开关单元的第一端连接的所述电感模块,用于当所述变压模块接收第k交流电时,将自身第一端与第二端之间导通,并且控制自身第一端与自身第二端之间的等效电感为对应于所述第k交流电的预设的等效电感;其中,k为正整数且N≥k≥1;还用于当所述变压模块接收直流电时,控制自身第一端与第二端之间关断,并控制自身第二端与自身第三端之间导通;
    第一端与所述整流器的第二输出端连接,第二端接地的目标开关管;
    第二端与所述整流器的第二输出端连接的第一电容;
    第一输入端与所述整流器的第一输出端连接,第二输入端与所述整流器的第二输出端连接,用于为负载供电的后级电路;
    第二端与所述整流器的第二输入端连接的所述目标开关单元,所述目标开关管和所述目标开关单元均仅在所述变压模块接收直流电时导通;
    所述整流器,用于在所述变压模块接收不同的直流电时,按照相应的规则控制自身的开关器件的通断,以使提供至所述后级电路的电压大小保持一致。
  2. 根据权利要求1所述的多流制的列车变流系统,其特征在于,所述变压模块包括:
    原边绕组的第一端作为所述变压模块的第一输入端与交流输入连接,所述原边绕组的第二端接地,副边绕组上依次设置N+1个端口的牵引变压器,所述副边绕组的第N+1端作为所述变压模块的第二输入端;所述副边绕组的第1端作为所述变压模块的第三输出端,且所述副边绕组的第1端 与所述原边绕组的第一端为所述牵引变压器的同名端;
    N+1个开关管,其中,第1开关管的第一端与所述副边绕组的第1端连接,所述第1开关管的第二端作为所述变压模块的第一输出端,用于与所述整流器的第一输入端连接,第i开关管的第一端与所述副边绕组的第i端连接,第二端与所述整流器的第二输入端连接,i为正整数且2≤i≤N+1;
    其中,所述变压模块接收的N种交流电,电压大小按照第1至第N的顺序依次降低,所述第1开关管仅在所述牵引变压器接收交流电时导通,所述第i开关管仅在所述牵引变压器接收第i-1交流电时导通。
  3. 根据权利要求2所述的多流制的列车变流系统,其特征在于,所述电感模块包括:
    N个电感单元,其中,第j电感单元的第二端与第j-1电感单元的第一端连接,j为正整数且2≤j≤N;第1电感单元的第二端作为所述电感模块的第二端,第N电感单元的第一端作为所述电感模块的第三端;
    N个开关单元,其中,第m开关单元的第一端与第m电感单元的第一端连接,所述第m开关单元的第二端与所述整流器的第一输出端连接,m为正整数且1≤m≤N;所述第m开关单元仅在所述变压模块接收第m交流电时导通。
  4. 根据权利要求3所述的多流制的列车变流系统,其特征在于,N个所述开关管以及所述目标开关管均设置在第一隔离开关箱中,N个所述开关单元以及所述目标开关单元均设置在第二隔离开关箱中。
  5. 根据权利要求1所述的多流制的列车变流系统,其特征在于,所述N的取值为2,所述M的取值为2。
  6. 根据权利要求1所述的多流制的列车变流系统,其特征在于,还包括:
    第一输入端与所述整流器的第一输出端连接,第二输入端与所述整流器的第二输出端连接的辅助逆变电路。
  7. 根据权利要求6所述的多流制的列车变流系统,其特征在于,还包括:
    第一输入端与所述整流器的第一输出端连接,第二输入端与所述整流 器的第二输出端连接的无火回送电路。
  8. 根据权利要求1至7任一项所述的多流制的列车变流系统,其特征在于,所述整流器为四象限整流器。
  9. 根据权利要求8所述的多流制的列车变流系统,其特征在于,所述四象限整流器为PWM四象限整流器。
  10. 一种列车,其特征在于,包括如权利要求1至9任一项所述的多流制的列车变流系统。
PCT/CN2019/113011 2018-12-11 2019-10-24 一种列车及其多流制的列车变流系统 WO2020119273A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19895349.9A EP3842276A4 (en) 2018-12-11 2019-10-24 TRAIN AND ITS MULTI-CURRENT POWER CONVERSION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811511592.8A CN111313718A (zh) 2018-12-11 2018-12-11 一种列车及其多流制的列车变流系统
CN201811511592.8 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020119273A1 true WO2020119273A1 (zh) 2020-06-18

Family

ID=71077104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113011 WO2020119273A1 (zh) 2018-12-11 2019-10-24 一种列车及其多流制的列车变流系统

Country Status (3)

Country Link
EP (1) EP3842276A4 (zh)
CN (1) CN111313718A (zh)
WO (1) WO2020119273A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104467455A (zh) * 2014-12-04 2015-03-25 株洲南车时代电气股份有限公司 一种多流制变流装置
CN104477054A (zh) * 2014-11-28 2015-04-01 湖南大学 一种基于全功率器件的多流制牵引传动系统及方法
CN104553832A (zh) * 2014-11-28 2015-04-29 湖南大学 基于LC Plus四象限变流器振荡回路的变压器铁心剩磁的去磁系统及方法
CN107627862A (zh) * 2016-07-19 2018-01-26 株洲中车时代电气股份有限公司 一种多流制变流设备
KR20180078422A (ko) * 2016-12-29 2018-07-10 한국철도기술연구원 다권선 고주파 변압기를 이용한 철도차량용 반도체 변압기

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2862742A1 (de) * 2013-10-16 2015-04-22 Siemens Aktiengesellschaft Mehrsystem-Stromrichteranordnung
CN103754123B (zh) * 2014-01-21 2016-03-30 湖南大学 基于单相多绕组牵引变压器的多流制牵引供电系统及方法
CN204179953U (zh) * 2014-11-19 2015-02-25 株洲南车时代电气股份有限公司 牵引变流装置及模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104477054A (zh) * 2014-11-28 2015-04-01 湖南大学 一种基于全功率器件的多流制牵引传动系统及方法
CN104553832A (zh) * 2014-11-28 2015-04-29 湖南大学 基于LC Plus四象限变流器振荡回路的变压器铁心剩磁的去磁系统及方法
CN104467455A (zh) * 2014-12-04 2015-03-25 株洲南车时代电气股份有限公司 一种多流制变流装置
CN107627862A (zh) * 2016-07-19 2018-01-26 株洲中车时代电气股份有限公司 一种多流制变流设备
KR20180078422A (ko) * 2016-12-29 2018-07-10 한국철도기술연구원 다권선 고주파 변압기를 이용한 철도차량용 반도체 변압기

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3842276A4

Also Published As

Publication number Publication date
CN111313718A (zh) 2020-06-19
EP3842276A1 (en) 2021-06-30
EP3842276A4 (en) 2022-05-11

Similar Documents

Publication Publication Date Title
CN110139775B (zh) 用于控制电动或混合车辆上车载的充电设备的方法
US10873265B2 (en) Bidirectional three-phase direct current (DC)/DC converters
US10696183B2 (en) Transformer apparatus for a charging station for electrically charging vehicles and having at least two charging points
CN206698126U (zh) 一种牵引动力装置
JP2017528105A (ja) エネルギー貯蔵器を充電するための装置
EP3874587A1 (en) On-board chargers (obc)
CN102687384A (zh) Ac/dc转换器电路
US10141858B2 (en) Power converter for electric locomotive
US5546295A (en) Electrical power converter, power supply, and inverter with series-connected switching circuits
CN104485821A (zh) 配电用直流变压器装置
US20150043254A1 (en) Grid feed apparatus, energy feed system and method for operating a grid feed apparatus
US11736027B2 (en) Isolated and reconfigurable power converter
CN108092371A (zh) 充放电装置
CN111313679B (zh) 供电系统及充电设备
CN109818504A (zh) 一种宽范围串并联无缝转换的谐振变换器
US5717579A (en) Power supply unit, more specifically battery charger for electric vehicles and the like
KR20210018598A (ko) 차량용 전력 변환 시스템 및 그 제어 방법
WO2020119273A1 (zh) 一种列车及其多流制的列车变流系统
CN217692677U (zh) 一种厂用电力电子变压系统
JP7440586B2 (ja) 電力調整回路
CN108258697B (zh) 电能质量综合治理和功率优化的能量路由器
US9490720B1 (en) Power conversion with solid-state transformer
Sepetci et al. Design and simulation of a high power quality regenerative PWM rectifier system for 1 MW electric locomotives
Liu et al. A compact power converter for high current and low voltage applications
EP3581429B1 (en) Traction converter with ac and dc operation modes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895349

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019895349

Country of ref document: EP

Effective date: 20210323

NENP Non-entry into the national phase

Ref country code: DE