WO2020258350A1 - 一种传感器及电子设备 - Google Patents

一种传感器及电子设备 Download PDF

Info

Publication number
WO2020258350A1
WO2020258350A1 PCT/CN2019/094134 CN2019094134W WO2020258350A1 WO 2020258350 A1 WO2020258350 A1 WO 2020258350A1 CN 2019094134 W CN2019094134 W CN 2019094134W WO 2020258350 A1 WO2020258350 A1 WO 2020258350A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensitive
film
flange
sensor
substrate
Prior art date
Application number
PCT/CN2019/094134
Other languages
English (en)
French (fr)
Inventor
邹泉波
丁凯文
Original Assignee
歌尔微电子有限公司
北京航空航天大学青岛研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔微电子有限公司, 北京航空航天大学青岛研究院 filed Critical 歌尔微电子有限公司
Publication of WO2020258350A1 publication Critical patent/WO2020258350A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance

Definitions

  • the present invention relates to the field of measurement. More specifically, the present invention relates to a sensor, such as a microphone, a displacement sensor, etc.; the present invention also relates to an electronic device using the sensor.
  • a sensor such as a microphone, a displacement sensor, etc.
  • the present invention also relates to an electronic device using the sensor.
  • the flat capacitor includes a substrate and a back plate and a diaphragm formed on the substrate. There is a gap between the back plate and the diaphragm, so that the back plate and the diaphragm constitute a flat plate. Capacitor sensing structure.
  • An object of the present invention is to provide a new technical solution for the sensor.
  • a sensor including a substrate and a sensitive film connected to the substrate.
  • the sensitive film is suspended on the substrate and is configured to be perpendicular to the substrate when subjected to an external force. Deformation occurs in the direction of the film surface; magnetoresistance is also provided on the sensitive film;
  • the fixing part is not sensitive to external forces; the fixing part and the sensitive film are located in the same plane, and the fixing part is provided with a wire adjacent to the magnetic resistance. It is configured to pass current to generate a magnetic field induced by the magnetoresistance.
  • the fixed part and the sensitive film are obtained by patterning the same film layer.
  • the sensitive film and the fixed part are arranged oppositely; wherein the side of the sensitive film away from the fixed part is connected to the substrate, and the side of the sensitive film adjacent to the fixed part is provided with comb-shaped sensitive Flange; the side of the fixed portion away from the sensitive film is connected to the substrate, and the side of the fixed portion adjacent to the sensitive film is provided with a fixed flange corresponding to the sensitive flange and in a comb tooth shape; The magnetic resistance is arranged on the sensitive flange; the wire is arranged on the fixed flange.
  • one wire is provided on the fixing flanges on opposite sides of the magnetic resistance, and the two wires are arranged along the extension direction of the respective fixing flanges, and the direction of the current flowing in is the same.
  • one end of the two wires has a current inlet end, and the other end respectively extends to the fixing part along the respective fixing flanges and conducts together, and is led out through the same current outlet end.
  • one of the magnetic resistors corresponds to the current flowing through the wire, and the direction of the current flowing through the wire corresponding to the other magnetic resistor is opposite.
  • At least four magnetic resistances to form at least one Wheatstone bridge.
  • the sensitive film includes a first film body and a second film body disposed oppositely, and the first film body is connected to the substrate on a side away from the second film body, and the second film body is away from the second film body.
  • One side of a membrane body is connected to the substrate; the side of the first membrane body adjacent to the second membrane body is provided with a first sensitive flange extending in the direction of the second membrane body, and the second membrane body A side adjacent to the first membrane body is provided with a second sensitive flange extending in the direction of the first membrane body; the second sensitive flange is arranged opposite to the first sensitive flange, and the magnetic resistance is provided with at least two, Are respectively located on the first sensitive flange and the second sensitive flange;
  • the fixed part is located between the first film body and the second film body, and the wire located on the fixed part passes between the two magnetic resistors and is configured to be induced by the two magnetic resistors.
  • the senor is a microphone, a gas sensor, a temperature sensor, a humidity sensor, or a displacement sensor.
  • an electronic device including the above-mentioned sensor.
  • the sensitive film and the fixed part are located in the same plane, which can avoid problems such as alignment of the traditional sensor structure during manufacturing, thereby improving the manufacturing accuracy of the detection structure and ensuring the performance of the sensor.
  • Figure 1 is a top view of the sensor of the present invention.
  • Fig. 2 is a partial enlarged view of the matching position of the sensitive flange and the fixed flange in Fig. 1.
  • Fig. 3 is a plan view of another embodiment of the sensor of the present invention.
  • Fig. 4 is a schematic diagram of the magnetic resistance of the present invention in the magnetic field generated by the wire.
  • the sensor provided by the present invention may be a microphone, a temperature sensor, a humidity sensor, a gas sensor, a displacement sensor or other sensors well known to those skilled in the art.
  • a temperature sensor when applied to a temperature sensor, the sensitive film is sensitive to the outside temperature, and changes in the outside temperature will drive the sensitive film to deform.
  • a driving rod can be set to connect with the sensitive film, and the sensitive film is pushed by the driving rod to deform or shift, which will not be listed here.
  • the present invention provides a sensor, which includes a substrate and a sensitive film connected to the substrate, and the sensitive film is suspended on the substrate.
  • the sensitive film When the sensitive film is subjected to external force, such as external sound pressure, the sensitive film can deform in a direction perpendicular to the film surface.
  • a magnetoresistance is also provided on the sensitive film, so that the magnetoresistance can be displaced with the deformation of the sensitive film.
  • It also includes a fixed part connected to the substrate, which is not sensitive to external forces; the fixed part and the sensitive film are located in the same plane, and the fixed part is provided with a wire adjacent to the magnetic resistance.
  • the wire is configured to pass current to generate The magnetic field induced by the magnetoresistance.
  • the magnetoresistance of the present invention can be selected, for example, a giant magnetoresistive sensor (GMR), a tunnel magnetoresistive sensor (TMR), an anisotropic magnetoresistive sensor (AMR), or other magnetoresistance known to those skilled in the art.
  • GMR giant magnetoresistive sensor
  • TMR tunnel magnetoresistive sensor
  • AMR anisotropic magnetoresistive sensor
  • FIGS 1 and 2 show schematic diagrams of the first embodiment of the sensor of the present invention.
  • the sensitive film 1 and the fixed portion 5 are located at opposite ends of the same plane.
  • the sensitive film 1 and the fixed portion 5 can be obtained by patterning the same film layer. For example, a film layer can be deposited first, and the film layer can be patterned to obtain a pattern of the sensitive film 1 and the fixed portion 5, and then the sensitive film 1 can be released by processes such as etching the sacrificial layer.
  • the sensitive film 1 and the fixed portion 5 are derived from the same film layer, it is necessary to ensure the sensitivity of the sensitive film 1 and ensure that the fixed portion 5 will not be displaced or deformed with changes in external pressure during design.
  • the sensitive film 1 is arranged opposite to the fixed portion 5, wherein the side of the sensitive film 1 away from the fixed portion 5 is connected to a substrate (not shown in the view), for example, connected to the substrate through a first anchor point 1a; the sensitive film 1 The remaining part of the film is suspended on the substrate, so that when the sensitive film 1 receives an external force, it can deform in a direction perpendicular to its film surface. The deformation and displacement of the sensitive film 1 on the side away from its anchor point is the largest. Therefore, a comb-shaped sensitive flange can be provided on the side of the sensitive film 1 adjacent to the fixed portion 5.
  • FIGS. 1 and 2 there are four sensitive flanges, which are respectively marked as two first sensitive flanges 10 and two second sensitive flanges 11. Two first sensitive flanges 10 are arranged adjacently, and two second sensitive flanges 11 are arranged adjacently. The four sensitive flanges are arranged in a comb-tooth shape at intervals and extend toward the fixing portion 5.
  • a first magnetic resistor 3 is provided on the two first sensitive flanges 10 respectively, and a second magnetic resistor 4 is provided on the two second sensitive flanges 11 respectively.
  • the pinning directions of the first magnetic resistor 3 and the second magnetic resistor 4 are the same, for example, they both face the right as shown in FIG. This is because when the magnetoresistance is made on the same film layer through the MEMS process, the magnetoresistance with different pinning directions cannot be selected, or the process is difficult.
  • the magnetoresistance can be formed on the sensitive flange in a manner well known to those skilled in the art, for example, can be formed on the sensitive film 1 by layer-by-layer deposition, etching, etc., and then the first sensitive flange 10, The second sensitive flange 11 will not be described in detail here.
  • the fixing portion 5 is connected to the substrate on the side away from the sensitive film 1, for example, connected to the substrate via the second anchor point 5a, and the fixing portion 5 is not sensitive to external forces. For example, when the external sound is transmitted, the sensitive membrane 1 is deformed under the action of sound pressure, while the fixing part 5 remains stationary.
  • the area of the combination between the fixed portion 5 and the substrate can be increased, for example, the fixed portion 5 is not suspended relative to the substrate, or the lateral dimension of the fixed portion 5 can be reduced. , I will not elaborate here.
  • the side of the fixing part 5 adjacent to the sensitive film 1 is provided with a fixing flange corresponding to the sensitive flange.
  • the number of the fixed flanges is determined according to the number of sensitive flanges, so that each sensitive flange has a fixed flange on both sides.
  • there are six fixed flanges which are respectively marked as three first fixed flanges 50 corresponding to the first sensitive flange 10, and three corresponding to the second sensitive flange 11.
  • a second fixed flange 51 are cross-fitted with sensitive flanges.
  • first fixing flange 50 and the second fixing flange 51 between the first sensitive flange 10 and the second sensitive flange 11 may be independent; or may be integrated , As a fixed flange.
  • the wire 6 is arranged at a position corresponding to the magnetic resistance on the fixed flange, so that each magnetic resistance can induce the magnetic field generated by the corresponding wire 6 through current.
  • the first magnetic resistance 3 corresponds to two wires, which are two first wires 60 on the first fixing flanges 50 on both sides of the first magnetic resistance 3, and the first wires 60 are along the first fixing flange 50.
  • the extension direction of ⁇ is extended, and is arranged adjacent to the first magnetic resistance 3, and the distance makes the magnetic field generated by the first magnetic resistance 3 react.
  • the two first wires 60 are arranged in parallel, and the direction of the current flowing through them is the same. For example, in the direction shown in FIG. 2, the direction of the current in the two first wires 60 is downward.
  • the first magnetic resistor 3 with the pinning direction to the right is between the two first wires 60. When the first magnetic resistor 3 moves up and down with the sensitive film 1, it can output signals symmetrically to the positive and negative magnetic fields.
  • first magnetic resistor 3 can be located at the center between the two first wires 60 or can be biased toward one of the first wires 60.
  • the two first wires 60 can be connected in parallel, that is, one end of the two first wires 60 has a current inlet end, and the other end respectively extends along the respective first fixing flanges 50 to the fixing portion 5 and conducts it. Connected together, and lead out through the same current outlet, refer to Figure 2.
  • Figure 4 shows a schematic diagram of magnetoresistance in a magnetic field formed by two energized wires.
  • the magnetic field in the Z-axis direction satisfies the following formula:
  • a 1 and a 2 represent the distance between the two wires and the magnetoresistance (GMR); I 1 and I 2 represent the current in the two wires; Z represents the displacement of the magnetoresistance in the direction perpendicular to the sensitive film; ⁇ 0 is constant.
  • the distance between the wire and the magnetic resistance needs to be controlled to ensure that the magnetic resistance can work in its linear detection area.
  • the arrangement of the second magnetic resistor 4 and the second fixing flange 51 on the second sensitive flange 11 is the same as the arrangement of the first sensitive flange 10, the first magnetic resistor 3, and the first fixing flange 50. Let me explain in detail.
  • the direction of the current in the two second wires 61 on the two second fixing flanges 51 is opposite to the direction of the current in the first wire 60.
  • the current direction of the second wire 61 is all upward.
  • One end of the two second wires 61 each has a current outlet end, and the other end respectively extends along the respective second fixing flange 51 to the fixing portion 5 and conducts together, and is introduced through the same current inlet end, Refer to Figure 2.
  • the current direction of the first wire 60 and the second wire 61 are different, which makes the first magnetic resistance 3 and the second magnetic resistance 4
  • the change is the opposite. For example, when the first magnetic resistance 3 becomes larger, the second magnetic resistance 4 becomes smaller; or, when the first magnetic resistance 3 becomes smaller, the second magnetic resistance 4 becomes larger.
  • magnetoresistance can also be made into a “dead resistance” or a “fixed resistance”, that is, it does not change with the deformation of the sensitive film 1.
  • the current direction in the first wire and the second wire can also be adjusted to adjust the specific detection method of the Wheatstone bridge.
  • the senor of the present invention can form a plurality of Wheatstone bridges through the above-mentioned magnetoresistance, which will not be described in detail here.
  • a magnetoresistive structure can also be provided on other sides of the sensitive film 1, and a magnetoresistive structure can also be provided in the middle region of the sensitive film.
  • the sensitive film includes a first film body 70 and a second film body 71 arranged oppositely, the first film body 70 and the second film body 71 are arranged opposite to each other, and the two There is a gap between.
  • the side of the first film body 70 away from the second film body 71 is connected to the substrate (not shown in the view), for example, connected to the substrate through the first anchor point 70a.
  • the remaining positions of the first film body 70 are suspended on the substrate, so that when the first film body 70 receives an external force, it can deform or shift in a direction perpendicular to its film surface.
  • the deformation and displacement of the side of the first membrane body 70 away from the anchor point are the greatest. Therefore, a first sensitive flange 70 b extending in the direction of the second film body 71 can be provided at the middle position of the first film body 70 adjacent to the second film body 71.
  • the first sensitive flange 70b is provided with one.
  • multiple first sensitive flanges 70b can be provided, which will not be described in detail here.
  • the side of the second film body 71 away from the first film body 70 is connected to the substrate (not shown in the view), for example, connected to the substrate through a second anchor point 71a.
  • the remaining positions of the second membrane body 71 are suspended on the substrate, so that when the second membrane body 71 is subjected to an external force, it can be deformed or displaced in a direction perpendicular to its membrane surface.
  • the deformation and displacement of the side of the second membrane body 71 away from the anchor point are the greatest. Therefore, a second sensitive flange 71 b extending in the direction of the first film body 70 can be provided in the middle of the second film body 71 adjacent to the first film body 70.
  • One second sensitive flange 71b is provided, and is arranged directly opposite to the first sensitive flange 70b.
  • the second sensitive flanges 71b are correspondingly provided with a plurality of them, and are directly opposite to the first sensitive flanges 70b.
  • a first magnetic resistance 72 and a second magnetic resistance 73 are respectively provided on the first sensitive flange 70b and the second sensitive flange 71b.
  • the two magnetic resistances can be formed on the two sensitive protrusions in a manner well known to those skilled in the art. Marginally.
  • the pinning directions of the first magnetic resistor 72 and the second magnetic resistor 73 may be, for example, toward the right as shown in FIG. 3.
  • the fixing part is located between the first film body 70 and the second film body 71 and passes through the gap between the first film body 70 and the second film body 71.
  • the wires on the fixed part pass between the two magnetic resistances and are induced by the two magnetic resistances respectively.
  • the fixing part can be in the shape of a dumbbell as a whole, which includes support parts 74 on both sides, and the outside of the support part 74 can be connected to the substrate through a third anchor point 74a; it also includes a connecting part located between the two support parts 74 75.
  • the size of the connecting portion 75 in the width direction is smaller than the width size of the supporting portion 74, and passes between the first sensitive flange 70b and the second sensitive flange 71b.
  • the wire includes an induction wire 76 extending on the connecting portion 75 and a connecting wire 77 located on the supporting portion 74, through which current can be introduced and drawn out of the induction wire 76.
  • the induction wire 76 cooperates with two magnetic resistances.
  • the magnetic field generated by the sensing wire 76 can be sensed by the moving first magnetic resistor 72 and the second magnetic resistor 73 at the same time to output a changing electrical signal .
  • the first film body 70, the second film body 71, and the fixing portion can be obtained by patterning the same film layer.
  • a film layer can be deposited first, the first magnetoresistor 72 and the second magnetoresistor 73 can be fabricated at the corresponding positions of the film layer, and the sensing wire 76 and the connecting wire 77 can be fabricated.
  • patterns of the first film body 70, the second film body 71, the supporting portion 74, and the connecting portion 75 can be produced by patterning, and finally the first film body 70 and the second film body 71 are released by etching the sacrificial layer.
  • This MEMS process of deposition, patterning, and etching belongs to the common knowledge of those skilled in the art and will not be described in detail here.
  • the sensitive film and the fixed part are located in the same plane, which can avoid problems such as alignment of the traditional sensor structure during manufacturing, thereby improving the manufacturing accuracy of the detection structure and ensuring the performance of the sensor.
  • the sensor of the present invention can be applied to electronic equipment. For this reason, the present invention also provides an electronic equipment including the above-mentioned sensor.
  • the electronic device may be a smart phone, a tablet computer, a smart watch, a smart bracelet, a smart glasses, and other electronic device terminals well known to those skilled in the art, which will not be listed here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种传感器及电子设备,包括衬底以及连接在衬底上的敏感膜(1),敏感膜(1)悬置在衬底上且被配置为当受到外力时,在垂直于其膜面的方向上发生形变;在敏感膜(1)上还设置有磁阻;还包括连接在衬底上的固定部(5),固定部(5)对外力不敏感;固定部(5)与敏感膜(1)位于同一平面内,固定部(5)上邻近磁阻的位置设置有导线(6),所述导线(6)被配置为通入电流以产生被所述磁阻感应的磁场。通过敏感膜(1)和固定部(5)位于同一平面内,可以避免传统传感器结构在制造时的对准等问题,由此可以提高检测结构的制作精度,保证了传感器的性能。

Description

一种传感器及电子设备 技术领域
本发明涉及测量领域,更准备地说,本发明涉及一种传感器,例如麦克风、位移传感器等;本发明还涉及一种应用此传感器的电子设备。
背景技术
现有的传感器,例如麦克风、位移传感器等,均是通过平板电容器的原理进行检测。例如在麦可风的结构中,平板电容器包括衬底以及形成在衬底上的背极板、振膜,背极板与振膜之间具有间隙,使得背极板、振膜构成了平板式的电容器感测结构。
但是鉴于电容器感测结构无法解决的声阻、后腔等、检测灵敏度低等问题,磁传感器逐渐成为检测领域的趋势。现有的磁传感器中,GMR和磁铁放置在相对移动的平面上,声压会使振膜在平面外变形,从而改变GMR和磁铁之间的间隙。这种结构的传感器,需要精确控制GMR和磁铁在三维方向上的位置,这对于半导体制造来说是非常不容易的。
发明内容
本发明的一个目的是提供一种传感器的新技术方案。
根据本发明的第一方面,提供了一种传感器,包括衬底以及连接在衬底上的敏感膜,所述敏感膜悬置在衬底上,且被配置为当受到外力时,在垂直于其膜面的方向上发生形变;在所述敏感膜上还设置有磁阻;
还包括连接在衬底上的固定部,所述固定部对外力不敏感;所述固定部与敏感膜位于同一平面内,所述固定部上邻近磁阻的位置设置有导线,所述导线被配置为通入电流以产生被所述磁阻感应的磁场。
可选地,所述固定部、敏感膜通过对同一膜层的图案化处理得到。
可选地,所述敏感膜、固定部相对设置;其中,所述敏感膜远离固定 部的一侧连接在衬底上,所述敏感膜邻近固定部的一侧设置有呈梳齿状的敏感凸缘;所述固定部远离敏感膜的一侧连接在衬底上,所述固定部邻近敏感膜的一侧设置有与敏感凸缘对应配合在一起且呈梳齿状的固定凸缘;所述磁阻设置在敏感凸缘上;所述导线设置在固定凸缘上。
可选地,所述磁阻相对两侧的固定凸缘上各设有一条所述导线,所述两条导线沿着各自固定凸缘的延伸方向排布,且通入的电流方向相同。
可选地,所述两条导线的一端各有一个电流入线端,另一端分别沿着各自的固定凸缘延伸到固定部上并导通在一起,且通过同一个电流出线端引出。
可选地,至少两个磁阻中,其中一个磁阻对应导线中通入的电流,与另一个磁阻对应导线中通入的电流方向相反。
可选地,所述磁阻至少设置有四个,以构成至少一个惠斯通电桥。
可选地,所述敏感膜包括相对设置的第一膜体、第二膜体,所述第一膜体远离第二膜体的一侧连接在衬底上,所述第二膜体远离第一膜体的一侧连接在衬底上;所述第一膜体邻近所述第二膜体的一侧设置有朝向第二膜体方向延伸的第一敏感凸缘,所述第二膜体邻近所述第一膜体的一侧设置有朝向第一膜体方向延伸的第二敏感凸缘;第二敏感凸缘与第一敏感凸缘相对设置,所述磁阻设置有至少两个,分别位于第一敏感凸缘、第二敏感凸缘上;
所述固定部位于第一膜体、第二膜体之间,位于固定部上的所述导线穿过两个磁阻之间,并被配置为被两个磁阻感应。
可选地,所述传感器为麦克风、气体传感器、温度传感器、湿度传感器或者位移传感器。
根据本发明的另一方面,还提供了一种电子设备,包括上述的传感器。
根据本公开的一个实施例,敏感膜和固定部位于同一平面内,可以避免传统传感器结构在制造时的对准等问题,由此可以提高检测结构的制作精度,保证了传感器的性能。
通过以下参照附图对本发明的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本发明的实施例,并且连同其说明一起用于解释本发明的原理。
图1是本发明传感器的俯视图。
图2是图1中敏感凸缘和固定凸缘配合位置的局部放大图。
图3是本发明传感器另一实施方式的俯视图。
图4是本发明磁阻在导线产生的磁场中的示意图。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
本发明提供的传感器,其可以是麦克风、温度传感器、湿度传感器、气体传感器、位移传感器或者本领域技术人员所熟知的其它传感器。例如当应用到温度传感器中时,其敏感膜对外界的温度敏感,外界温度的变化会驱动敏感膜发生形变。当应用到位移传感器中时,可以设置一驱动杆与敏感膜连接在一起,通过驱动杆推动敏感膜发生形变或位移,在此不再一一列举。
为了便于描述,现以麦克风为例,对本发明的技术方案进行详尽的描述。
本发明提供了一种传感器,包括衬底以及连接在衬底上的敏感膜,敏感膜悬置在衬底上。当敏感膜受到外力时,例如受到外界的声压时,敏感膜可以在垂直于其膜面的方向上发生形变。在敏感膜上还设置有磁阻,使得磁阻可以随着敏感膜的形变而发生位移。
还包括连接在衬底上的固定部,固定部对外力不敏感;固定部与敏感膜位于同一平面内,固定部上邻近磁阻的位置设置有导线,导线被配置为通入电流以产生被所述磁阻感应的磁场。
当导线通入电流后,会在导线周围的空间产生圆形磁场。导线中流过的电流越大,产生的磁场越强,这是本领域技术人员所熟知的电生磁现象。敏感膜在受到外力发生形变或者位移时,会改变磁阻的位置,从而使得磁阻可以感应周围磁场的变化,并输出变大或者变小的电信号,以此来表征敏感膜的形变程度。当然,也可以通过磁阻构成的惠斯通电桥来获得变化的电信号,这属于本领域技术人员的公知常识。
本发明的磁阻可以选用例如巨磁阻传感器(GMR)、隧道磁阻传感器(TMR)、各向异性磁阻传感器(AMR)或者本领域技术人员所熟知的其它磁阻等。通过采用高灵敏度的巨磁阻传感器(GMR)、隧道磁阻传感器(TMR)或各向异性磁阻传感器(AMR)来获得检测的电信号,可以保证检测机构的电学性能。
图1、图2示出了本发明传感器第一实施方式的示意图。
参考图1、图2,敏感膜1、固定部5位于同一平面内的相对两端,敏感膜1和固定部5可以通过对同一膜层进行图案化处理得到。例如可以首先沉积膜层,对膜层进行图案化处理,从而得到敏感膜1、固定部5的图形,后续可以通过腐蚀牺牲层等工艺来释放敏感膜1等。当然,由于敏感膜1和固定部5来源于同一膜层,因此在设计的时候,需要保证敏感膜1的灵敏度,以及保证固定部5不会随着外界的压力变化而发生位移、形变等。
敏感膜1与固定部5相对设置,其中,敏感膜1远离固定部5的一侧 连接在衬底(视图未给出)上,例如通过第一锚固点1a连接在衬底上;敏感膜1的其余部分悬空在衬底上,使得当敏感膜1受到外力时,可以在垂直于其膜面的方向上发生形变。敏感膜1远离其锚固点的一侧的形变、位移程度最大。故可以在敏感膜1邻近固定部5的一侧设置有呈梳齿状的敏感凸缘。
在图1、图2示意出的实施例中,敏感凸缘设置有四个,分别记为两个第一敏感凸缘10,两个第二敏感凸缘11。两个第一敏感凸缘10相邻设置,两个第二敏感凸缘11相邻设置。四个敏感凸缘间隔设置呈梳齿状,且朝向固定部5的方向延伸。
在两个第一敏感凸缘10上分别设置有一个第一磁阻3,在两个第二敏感凸缘11上分别设置有一个第二磁阻4。第一磁阻3、第二磁阻4的钉扎方向相同,例如均朝向图2所示的右方。这是由于通过MEMS工艺在同一膜层上制作磁阻时,无法选择不同钉扎方向的磁阻,或者说工艺难度大。
磁阻可以通过本领域技术人员所熟知的方式形成在敏感凸缘上,例如可以通过逐层沉积、刻蚀等工艺形成在敏感膜1上,后续通过图形化处理得到第一敏感凸缘10、第二敏感凸缘11,在此不再具体说明。
固定部5远离敏感膜1的一侧连接在衬底上,例如通过第二锚固点5a连接在衬底上,且使该固定部5对外力不敏感。例如当外界的声音传递过来后,敏感膜1在声压的作用下发生变形,而固定部5则保持不动。
要想保证固定部5对外力不敏感,可以在提高固定部5与衬底之间的结合的面积,例如使固定部5相对于衬底不悬空,也可以是减少固定部5横向的尺寸等,在此不再具体说明。
固定部5邻近敏感膜1的一侧设置有与敏感凸缘对应配合在一起的固定凸缘。该固定凸缘的数量根据敏感凸缘的数量而定,以使得每个敏感凸缘的两侧各有一个固定凸缘。在图1示出的实施例中,固定凸缘设置有六个,分别记为与第一敏感凸缘10对应的三个第一固定凸缘50,以及与第二敏感凸缘11对应的三个第二固定凸缘51。这些固定凸缘与敏感凸缘交叉配合在一起。
当然,对于本领域的技术人员而言,第一敏感凸缘10、第二敏感凸缘 11之间的第一固定凸缘50、第二固定凸缘51可以是独立的;也可以是一体的,作为一个固定凸缘。
导线6则设置在固定凸缘上与磁阻对应的位置,以使每个磁阻可以感应对应导线6通入电流后产生的磁场。
具体地,参考图2,第一磁阻3对应两条导线,分别为位于其两侧第一固定凸缘50上的两条第一导线60,第一导线60沿着第一固定凸缘50的延伸方向延伸,且邻近第一磁阻3设置,该间距使得其产生的磁场可以被第一磁阻3反应到。
两条第一导线60平行设置,且其通入的电流方向相同,例如图2的图示方向,两条第一导线60中电流的方向均朝下。钉扎方向朝右的第一磁阻3在两条第一导线60之间,第一磁阻3在随着敏感膜1上下运动时,可以对正负磁场有对称的信号输出。
在此需要注意的是,第一磁阻3可以位于两条第一导线60之间的中心位置,也可以偏向其中某一条第一导线60。
该两条第一导线60可以并联在一起,即两条第一导线60的一端各有一个电流入线端,另一端分别沿着各自的第一固定凸缘50延伸到固定部5上并导通在一起,且通过同一个电流出线端引出,参考图2。
图4示出了磁阻在两个通电导线形成的磁场中的示意图。在Z轴方向上的磁场满足以下公式:
Figure PCTCN2019094134-appb-000001
其中,a 1、a 2表示两条导线至磁阻(GMR)的距离;I 1、I 2表示两条导线中的电流;Z表示磁阻在垂直于敏感膜方向上的位移;μ 0为常数。
需要控制导线与磁阻之间的距离,保证磁阻可以工作在其线性检测区域内。
第二敏感凸缘11上第二磁阻4及第二固定凸缘51的设置方式与第一敏感凸缘10、第一磁阻3、第一固定凸缘50的布置方式相同,在此不再具体说明。
与第一固定凸缘50不同的是,两个第二固定凸缘51上的两条第二导 线61的电流方向与第一导线60中电流的方向相反。参考图2的视图方向,第二导线61的电流方向均朝上。两条第二导线61的一端各有一个电流出线端,另一端分别沿着各自的第二固定凸缘51延伸到固定部5上并导通在一起,且通过同一个电流入线端引入,参考图2。
当敏感膜1在声压的作用下向下或者向上发生形变、位移时,由于第一导线60、第二导线61的电流方向不同,这就使得第一磁阻3与第二磁阻4的变化是相反的。例如第一磁阻3变大时,第二磁阻4变小;或者是,第一磁阻3变小时,则第二磁阻4变大。这些磁阻配合在一起可以构成惠斯通电桥。
当然,对于本领域的技术人员而言,也可以将某些磁阻做成“死电阻”或者“固定电阻”,即不随着敏感膜1的变形而变化。还可以调整第一导线、第二导线中的电流方向等,来调整惠斯通电桥的具体检测方式,这些不同的惠斯通电桥属于本领域技术人员的公知常识,在此不再具体说明。
另外,本发明的传感器,通过上述的磁阻可以构成多个惠斯通电桥,在此不再具体说明。还可以在敏感膜1的其它侧边设置磁阻的结构,还可以在敏感膜的中部区域设置磁阻结构。
在本发明另一个实施例中,参考图3,敏感膜包括相对设置的第一膜体70、第二膜体71,第一膜体70、第二膜体71正对设置,且二者之间具有间隙。
第一膜体70远离第二膜体71的一侧连接在衬底(视图未给出)上,例如通过第一锚点70a连接在衬底上。第一膜体70其余的位置均悬空在衬底上,使得当第一膜体70受到外力时,可以在垂直于其膜面的方向上发生形变或位移。第一膜体70远离其锚固点的一侧的形变、位移程度最大。故可以在第一膜体70邻近第二膜体71一侧的中部位置设置有朝向第二膜体71方向延伸的第一敏感凸缘70b。
在图3的实施例中,第一敏感凸缘70b设置有一个。对于本领域的技术人员而言,第一敏感凸缘70b可以设置多个,在此不再具体说明。
第二膜体71远离第一膜体70的一侧连接在衬底(视图未给出)上,例如通过第二锚点71a连接在衬底上。第二膜体71其余的位置均悬空在衬 底上,使得当第二膜体71受到外力时,可以在垂直于其膜面的方向上发生形变或位移。且第二膜体71远离其锚固点的一侧的形变、位移程度最大。故可以在第二膜体71邻近第一膜体70一侧的中部位置设置有朝向第一膜体70方向延伸的第二敏感凸缘71b。
第二敏感凸缘71b设置有一个,且与第一敏感凸缘70b正对设置。当然,当第一敏感凸缘70b设置有多个时,第二敏感凸缘71b相应设置多个,并与第一敏感凸缘70b一一正对。
分别在第一敏感凸缘70b、第二敏感凸缘上71b上设置第一磁阻72、第二磁阻73,两个磁阻可以通过本领域技术人员所熟知的方式形成在两个敏感凸缘上。第一磁阻72、第二磁阻73的钉扎方向例如可以朝向如图3所示的右方。
固定部位于第一膜体70、第二膜体71之间,并穿过第一膜体70、第二膜体71之间的间隙。位于固定部上的导线穿过两个磁阻之间,并分别被两个磁阻感应。
固定部整体可以呈哑铃型,其包括位于两侧的支撑部74,该支撑部74的外侧可以通过第三锚点74a连接在衬底上;还包括位于两个支撑部74之间的连接部75。该连接部75在宽度方向上的尺寸小于支撑部74的宽度尺寸,且穿过第一敏感凸缘70b和第二敏感凸缘71b之间。导线包括在连接部75上延伸的感应导线76,以及位于支撑部74上的连接导线77,通过连接导线77可以将电流引入、引出感应导线76。该感应导线76与两个磁阻配合在一起。当第一膜体70、第二膜体71发生形变或者位移时,该感应导线76产生的磁场可以被运动的第一磁阻72、第二磁阻73同时感应到,以输出变化的电信号。
本发明的传感器,第一膜体70、第二膜体71、固定部可以通过对同一膜层的图案化处理得到。例如可以首先沉积膜层,在膜层的相应位置制作第一磁阻72、第二磁阻73,制作感应导线76、连接导线77。后续可通过图案化处理制作出第一膜体70、第二膜体71及支撑部74、连接部75的图案,最终通过腐蚀牺牲层来释放第一膜体70、第二膜体71。这种沉积、图案化、腐蚀的MEMS工艺属于本领域技术人员的公知常识,在此不再具体 说明。
本发明的传感器,敏感膜和固定部位于同一平面内,可以避免传统传感器结构在制造时的对准等问题,由此可以提高检测结构的制作精度,保证了传感器的性能。
本发明的传感器可以应用到电子设备中,为此本发明还提供了一种电子设备,包括上述的传感器。该电子设备可以是智能手机、平板电脑、智能手表、智能手环、智能眼镜等本领域技术人员所熟知的电子设备终端,在此不再一一列举。
虽然已经通过例子对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (10)

  1. 一种传感器,其特征在于,包括衬底以及连接在衬底上的敏感膜,所述敏感膜悬置在衬底上,且被配置为当受到外力时,在垂直于其膜面的方向上发生形变;在所述敏感膜上还设置有磁阻;
    还包括连接在衬底上的固定部,所述固定部对外力不敏感;所述固定部与敏感膜位于同一平面内,所述固定部上邻近磁阻的位置设置有导线,所述导线被配置为通入电流以产生被所述磁阻感应的磁场。
  2. 根据权利要求1所述的传感器,其特征在于,所述固定部、敏感膜通过对同一膜层的图案化处理得到。
  3. 根据权利要求1所述的传感器,其特征在于,所述敏感膜、固定部相对设置;其中,所述敏感膜远离固定部的一侧连接在衬底上,所述敏感膜邻近固定部的一侧设置有呈梳齿状的敏感凸缘;所述固定部远离敏感膜的一侧连接在衬底上,所述固定部邻近敏感膜的一侧设置有与敏感凸缘对应配合在一起且呈梳齿状的固定凸缘;所述磁阻设置在敏感凸缘上;所述导线设置在固定凸缘上。
  4. 根据权利要求3所述的传感器,其特征在于,所述磁阻相对两侧的固定凸缘上各设有一条所述导线,所述两条导线沿着各自固定凸缘的延伸方向排布,且通入的电流方向相同。
  5. 根据权利要求3所述的传感器,其特征在于,所述两条导线的一端各有一个电流入线端,另一端分别沿着各自的固定凸缘延伸到固定部上并导通在一起,且通过同一个电流出线端引出。
  6. 根据权利要求3所述的传感器,其特征在于,至少两个磁阻中,其中一个磁阻对应导线中通入的电流,与另一个磁阻对应导线中通入的电流方向相反。
  7. 根据权利要求3所述的传感器,其特征在于,所述磁阻至少设置有四个,以构成至少一个惠斯通电桥。
  8. 根据权利要求3所述的传感器,其特征在于,所述敏感膜包括相对设置的第一膜体、第二膜体,所述第一膜体远离第二膜体的一侧连接在 衬底上,所述第二膜体远离第一膜体的一侧连接在衬底上;所述第一膜体邻近所述第二膜体的一侧设置有朝向第二膜体方向延伸的第一敏感凸缘,所述第二膜体邻近所述第一膜体的一侧设置有朝向第一膜体方向延伸的第二敏感凸缘;第二敏感凸缘与第一敏感凸缘相对设置,所述磁阻设置有至少两个,分别位于第一敏感凸缘、第二敏感凸缘上;
    所述固定部位于第一膜体、第二膜体之间,位于固定部上的所述导线穿过两个磁阻之间,并被配置为被两个磁阻感应。
  9. 根据权利要求1所述的传感器,其特征在于,所述传感器为麦克风、气体传感器、温度传感器、湿度传感器或者位移传感器。
  10. 电子设备,其特征在于,包括根据权利要求1至9任一项所述的传感器。
PCT/CN2019/094134 2019-06-25 2019-07-01 一种传感器及电子设备 WO2020258350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910557212.2A CN110345972B (zh) 2019-06-25 2019-06-25 一种传感器及电子设备
CN201910557212.2 2019-06-25

Publications (1)

Publication Number Publication Date
WO2020258350A1 true WO2020258350A1 (zh) 2020-12-30

Family

ID=68183033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094134 WO2020258350A1 (zh) 2019-06-25 2019-07-01 一种传感器及电子设备

Country Status (2)

Country Link
CN (1) CN110345972B (zh)
WO (1) WO2020258350A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630705A (zh) * 2021-07-30 2021-11-09 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995871B (zh) * 2021-03-01 2022-11-22 歌尔微电子股份有限公司 Mems传感器及电子设备
CN113630704B (zh) * 2021-07-30 2023-03-28 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252298A1 (en) * 2007-04-16 2008-10-16 Anritsu Company Broadband micro-machined thermal power sensor
CN102457801A (zh) * 2010-11-01 2012-05-16 北京卓锐微技术有限公司 差分mems电容式麦克风及其制备方法
CN103499796A (zh) * 2013-09-30 2014-01-08 东南大学 一种梳齿结构的微机电磁场传感器
CN105547531A (zh) * 2016-01-19 2016-05-04 东南大学 一种高灵敏电容式压力传感器及其制作方法
CN109788403A (zh) * 2018-12-24 2019-05-21 歌尔股份有限公司 检测膜体、传感器及电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100343303B1 (ko) * 1998-11-04 2002-07-15 모리시타 요이찌 전자형 전기 음향 변환기
CA2383901A1 (en) * 1999-09-06 2001-03-15 Peter U. Scheel A pressure transducer
CN200976674Y (zh) * 2006-11-09 2007-11-14 上海哈依投资咨询有限公司 薄型高音扬声器
US20090243058A1 (en) * 2008-03-31 2009-10-01 Yamaha Corporation Lead frame and package of semiconductor device
CN101415137B (zh) * 2008-11-14 2012-06-06 瑞声声学科技(深圳)有限公司 电容式麦克风
CN104795508B (zh) * 2015-04-21 2017-03-15 苏州大学 一种柔性oled器件结构及其制备方法
CN106954164B (zh) * 2016-01-06 2020-05-08 中芯国际集成电路制造(上海)有限公司 麦克风结构及其制造方法
CN105611473A (zh) * 2016-03-28 2016-05-25 歌尔声学股份有限公司 一种振膜-音圈组件和系统及调节振动音圈平衡的方法
CN207123293U (zh) * 2017-08-01 2018-03-20 歌尔科技有限公司 可变电容器、麦克风、压力和气体传感器、惯性传感器
CN107421525A (zh) * 2017-08-15 2017-12-01 中北大学 一种隧道磁阻非谐振式三轴mems陀螺
CN108650606B (zh) * 2018-06-25 2020-05-29 歌尔股份有限公司 麦克风
CN109246566B (zh) * 2018-10-09 2020-05-12 歌尔股份有限公司 Mems传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080252298A1 (en) * 2007-04-16 2008-10-16 Anritsu Company Broadband micro-machined thermal power sensor
CN102457801A (zh) * 2010-11-01 2012-05-16 北京卓锐微技术有限公司 差分mems电容式麦克风及其制备方法
CN103499796A (zh) * 2013-09-30 2014-01-08 东南大学 一种梳齿结构的微机电磁场传感器
CN105547531A (zh) * 2016-01-19 2016-05-04 东南大学 一种高灵敏电容式压力传感器及其制作方法
CN109788403A (zh) * 2018-12-24 2019-05-21 歌尔股份有限公司 检测膜体、传感器及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630705A (zh) * 2021-07-30 2021-11-09 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备
CN113630705B (zh) * 2021-07-30 2023-03-28 歌尔微电子股份有限公司 微机电系统麦克风、麦克风单体及电子设备

Also Published As

Publication number Publication date
CN110345972B (zh) 2021-12-31
CN110345972A (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN109941956B (zh) Mems传感器及电子设备
WO2020258350A1 (zh) 一种传感器及电子设备
CN105093138B (zh) 磁场检测传感器及使用其的磁场检测装置
US9983271B2 (en) Measurement method for measuring an external magnetic field and manufacturing method of a magnetic field sensing module
JP2008515043A (ja) 入力装置用の磁気センサ
JP6367458B2 (ja) センサ
JP7188775B2 (ja) シングル・チップ二軸磁気抵抗角度センサ
US20220155105A1 (en) Magnetoresistive inertial sensor chip
US20170108559A1 (en) Magnetic field sensing apparatus
US20090315554A1 (en) Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
CN111885472A (zh) 微机电系统麦克风、麦克风单体及电子设备
JP6820367B2 (ja) 位置センサおよび位置感知方法
CN109218870A (zh) 一种麦克风
WO2020258349A1 (zh) 一种晶圆级的磁传感器及电子设备
CN106443525B (zh) 扭转式微机械磁场传感器及其制备方法
JP6717442B2 (ja) 磁気センサおよび電流センサ
CN208300024U (zh) Mems麦克风
JP4921327B2 (ja) 磁気リニア測定装置
CN113613152A (zh) 微机电系统麦克风、麦克风单体及电子设备
JP2019074522A (ja) 一体型磁気構造体
CN112995871B (zh) Mems传感器及电子设备
WO2017199787A1 (ja) 磁気センサ
JP2005221418A (ja) 圧力センサ
CN113630705B (zh) 微机电系统麦克风、麦克风单体及电子设备
JP5959686B1 (ja) 磁気検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934478

Country of ref document: EP

Kind code of ref document: A1