WO2020256343A1 - 누수관리 시스템 및 이를 이용한 누수위치 예측 방법 - Google Patents

누수관리 시스템 및 이를 이용한 누수위치 예측 방법 Download PDF

Info

Publication number
WO2020256343A1
WO2020256343A1 PCT/KR2020/007591 KR2020007591W WO2020256343A1 WO 2020256343 A1 WO2020256343 A1 WO 2020256343A1 KR 2020007591 W KR2020007591 W KR 2020007591W WO 2020256343 A1 WO2020256343 A1 WO 2020256343A1
Authority
WO
WIPO (PCT)
Prior art keywords
leak
vibration sound
sound wave
leakage
pipe
Prior art date
Application number
PCT/KR2020/007591
Other languages
English (en)
French (fr)
Inventor
나광윤
Original Assignee
주식회사 에스씨솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스씨솔루션 filed Critical 주식회사 에스씨솔루션
Priority to CN202080044738.1A priority Critical patent/CN114096823A/zh
Publication of WO2020256343A1 publication Critical patent/WO2020256343A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the present invention relates to a leak management system and a leak location prediction method capable of predicting a leak location from a detected vibration sound wave.
  • the correlation detection method is a method of finding a leak point by installing acoustic sensors on both sides of a water pipe and calculating the time difference at which the leaking sound detected from both sensors arrives.
  • Patent Document 1 Patent Publication No. 10-2010-0014046, Water supply pipe leak suspected section detector and leak consultation section detection system
  • Patent Document 2 Registered Patent Publication No. 10-1454288, leak detection system
  • Patent Document 3 Registered Patent Publication No. 10-1563279, A leak location detection method and a leak location detection system based on the elastic wave velocity measured by section in a pipe
  • Patent Document 4 Publication No. 10-2011-0032272, Leak detection apparatus and method
  • An object of the present invention is to provide a leak management system and a leak location prediction method capable of learning a change in vibrational sound waves according to a temporal change, and detecting a leak location or a possible leak location using a leak model according to the learning. .
  • an object of the present invention is to provide a leak management system and a leak location prediction method capable of detecting an abnormal vibration sound wave transmitted from a pipe and detecting a location of the corresponding vibration sound wave.
  • the present invention uses the delay time of the airwave RF to synchronize the detection time of the vibration sound waves of sensors installed spaced apart from each other, and to remove the temporal error that may occur from the detection time of the vibration sound wave to the calculation of the leak location. It is an object to provide a system and a method for predicting a leak location.
  • the leak management system includes a detection unit 100-N installed in a pipe and acquiring and detecting airwave RF and vibrational sound waves, and learning change data of vibrational sound waves according to temporal changes, and status information and vibration of the pipe. It comprises a management server 200 for outputting the location information of sound waves, and a terminal 300 for visually providing a detection mark according to the status information of the pipe and the location information of the vibration sound wave.
  • the change data of the vibration sound wave according to the temporal change may be signal change data of the vibration sound wave according to the leakage of the pipe.
  • the management server when the management server is out of the leakage vibration frequency band, the management server generates a leakage possible signal as status information.
  • the management server 200 receives a leak learning module 210 that obtains a leak model from the collected leak data, and the vibration sound wave transmitted from the detection unit 100-N, and uses the leak model.
  • the signal analysis module 220 that outputs the state information of, and receives the airwave RF and vibration sound waves transmitted from the detection unit 100-N, calculates the location of the vibration sound waves, and outputs the location information of the vibration sound waves. It includes a coordinate calculation module 230.
  • the leak location detection method includes the steps of learning the collected leak data to obtain a leak model (S100), receiving airwave RF and vibration sound waves from the detection unit (S200), and using the leak model, It includes the step of outputting the state information of the pipe from the transmitted vibration sound wave (S300), and the step of outputting the position information of the vibration sound wave from the transmitted air wave RF and the vibration sound wave (S400).
  • the collected leak data may be signal change data of a vibration sound wave according to a leak in a pipe.
  • the step of obtaining a leak model according to the present invention includes receiving the collected leak data (S110), learning the leak data to obtain a leak model (S120), and storing the obtained leak model. It includes a step (S130).
  • the leakage model has a leakage vibration frequency band indicating a frequency domain range of a vibration sound wave generated by leakage by learning.
  • status information of a pipe and location information of a vibration sound wave are transmitted to a terminal, and a leak mark or a possible leak mark is displayed on the screen of the terminal.
  • the present invention it is possible to learn change data of a vibration sound wave according to a temporal change, and predict a leak state or a possible leak state of a pipe using a leak model according to the learning.
  • the present invention it is possible to detect an abnormal vibration sound wave from a pipe, and predict a possible leak point of the pipe based on a change in the vibration sound wave.
  • a temporal error that may occur from the time of detection of the vibrational sound to the calculation of the leak location can be eliminated by synchronizing the detection time of the vibrational sound wave of sensors installed spaced apart from each other using the delay time of the airwave RF.
  • the field worker by looking at the detection mark displayed on the pipe map screen of the terminal, the field worker can easily know the possible leak location of the pipe.
  • FIG. 1 shows a water leakage management system according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing a method for predicting a leak location according to the present invention.
  • FIG. 3 is a flowchart showing a method of learning a leak model according to the present invention.
  • FIG. 4 is a flowchart illustrating a method of obtaining location information of a vibrating sound wave according to the present invention.
  • FIG. 5 is a schematic diagram showing the installation of a detection unit in a pipe.
  • FIG. 6 is a diagram illustrating a method of synchronizing first and second vibration sound waves according to the present invention.
  • Terms such as “unit”, “module”, “device”, “terminal”, “server”, and “system” used in the embodiments may be a combination of hardware and software.
  • the hardware may be a data processing device including a CPU or another processor, and the software may refer to a thread of execution, a program, and the like executed in the hardware.
  • FIG. 1 shows a water leakage management system according to an embodiment of the present invention.
  • the leak management system is installed in a pipe and learns the detection unit 100-N for acquiring and detecting airwave RF and vibration sound waves, and learning change data of leakage vibration sound waves according to time changes, and A management server 200 for outputting status information and location information of the vibration sound wave, and a terminal 300 visually providing a detection mark according to the status information of the pipe and the location information of the vibration sound wave are included.
  • the change data of the leakage vibration sound wave according to the temporal change may be at least one of change data of the vibration sound wave according to the leakage of the pipe and the change data of the leakage vibration sound wave according to the material of the pipe.
  • Signals and data between the detection unit 100-N, the management server 200, and the terminal 300 may be transmitted through wired communication, wireless communication, 3G, 4G, or other communication methods using cables.
  • the wired/wireless communication may be one or more communication methods selected from the group consisting of LAN, GSM, WCDMA, CDMA, Bluetooth, Zigbee, Wi-Fi, VoIP, LTE, and the like, and is not limited to these communication methods.
  • the detection unit (100-N, where N is a natural number) is installed in the pipe.
  • a fluid may move through the pipe, and the fluid may be a gas or a liquid.
  • the piping is a water supply pipe and the fluid is water.
  • a plurality of detection units 100-N are installed at a predetermined distance from the pipe.
  • the detection unit includes a sensor 110-N that detects vibrational sound waves, an RF receiving module 120-N that acquires radio frequency (RF), and a communication module 130-N that transmits vibrational sound and airwave RF to the management server. ) Can be included.
  • a first detection unit and a second detection unit may be installed at a location spaced apart from the pipe PW by a predetermined distance, and the first and second sensors may detect vibrational sound waves generated between the first and second detection units. I can.
  • the RF receiving module 120-N acquires an over-the-air RF.
  • the airwave RF may be an AM broadcast signal or an FM broadcast signal. As will be described later, airwave RF is used for synchronization of vibrational sound waves.
  • the management server 200 may be a computer device including a signal and data processing processor and a communication module. Input devices such as a mouse and keyboard may be connected to the management server, and output devices such as monitors and printers may be connected to the management server.
  • the management server learns a leak model from the collected leak data. Learning of the leak model may be performed using a neural network.
  • the management server outputs piping status information from the vibration sound wave input using the leak model. In addition, the management server outputs the location information of the vibration sound wave from the input air wave RF and vibration sound wave.
  • the management server 200 includes a leak learning module 210, a signal analysis module 220, a coordinate calculation module 230, and a communication module 240.
  • the leak learning module 210 acquires a leak model.
  • the leak learning module learns and updates a leak model from the collected leak data.
  • the collected water leakage data may be change data of the leakage vibration sound wave according to the temporal change.
  • the collected leakage data may be at least one of change data of vibration sound waves generated from leakage of a pipe and change data of leakage vibration sound waves according to a material of the pipe.
  • the leakage model has a leakage vibration sound wave range, that is, a leakage vibration frequency band by learning.
  • the leakage vibration frequency band may be a frequency range of vibration sound waves generated by leakage in the pipe.
  • the leakage vibration sound wave generated due to leakage may be a frequency range of a vibration sound wave having a predetermined frequency band according to a material or the like.
  • the signal analysis module 220 receives vibrational sound waves transmitted from the detection unit 100-N, and outputs pipe condition information using a leak model. At this time, the state information of the pipe may be a leak signal or a leak possible signal.
  • the signal analysis module outputs pipe condition information from the input vibration sound wave.
  • the status information may be a leaking signal or a leaking possible signal.
  • a leakage signal when the input vibration sound wave is within the leakage vibration frequency band, a leakage signal may be output, and when the input vibration sound wave is outside the leakage vibration frequency band, a leakage enable signal may be output.
  • the vibration frequency out of the leakage vibration frequency band may be an aging of the connecting member of the pipe out of the vibration frequency band generated by the leakage, vibration frequency due to corrosion of the pipe, and the like.
  • Analysis of the vibration sound wave using the leak model may be performed by a fast Fourier transform, and may be performed using the second and third harmonics included in the frequency of the vibration sound wave.
  • the coordinate calculation module 230 receives airwave RF and vibration sound waves transmitted from the detection unit 100-N, calculates the location of the vibration sound waves, and outputs location information of the vibration sound waves.
  • the location information may be coordinate data of a location where a vibration sound wave is generated.
  • the coordinate calculation module may align the vibrating sound waves based on the air wave RF, and calculate a difference in arrival time of the aligned vibrating sound waves to calculate the generation position of the vibrating sound waves.
  • the communication module 240 outputs pipe condition information and location information of vibration sound waves to the terminal.
  • the terminal 300 may be a device carried by a field worker.
  • the terminal 300 receives pipe status information and location information of vibration sound waves from the management server 200 and provides a leak location to a field worker.
  • the terminal may include a GPS module, a map information module, a display module, and a communication module.
  • a pipe line may be displayed on a display screen of the terminal by overlapping a map, and a detection mark may be visually displayed at at least one of the pipe lines.
  • the detection mark may be a leak mark or a leak mark.
  • FIG. 2 is a flowchart showing a method for predicting a leak location according to the present invention.
  • the leak location prediction method includes the steps of obtaining a leak model by learning the collected leak data (S100), receiving the airwave RF and vibration sound waves from the detection unit (S200), and using the leak model, It includes the step of outputting the state information of the pipe from the received vibration sound wave (S300), and the step of outputting the position information of the vibration sound wave from the transmitted air wave RF and the vibration sound wave (S400).
  • a leak model is obtained by learning the collected leak data.
  • the leakage data may be change data of a leakage vibration sound wave according to a temporal change, and change data of a leakage vibration sound wave according to a material of a pipe.
  • step S200 an air wave RF and a vibration sound wave are transmitted from the detection unit.
  • the over-the-air RF may be an AM signal or an FM signal.
  • the transmitted vibrational sound wave is input to the signal analysis module and the coordinate calculation module, and the airwave RF is input to the coordinate calculation module.
  • step S300 the signal analysis module outputs state information of the pipe.
  • the signal analysis module outputs pipe condition information from the input vibration sound wave using the learned leak model.
  • the state information of the pipe may be a leak signal or a leak possible signal.
  • the signal analysis module outputs a leakage signal when the input vibration sound wave is within the leakage vibration frequency band of the learned leakage model, and outputs a leak-proof signal when the input vibration sound wave is outside the leakage vibration frequency band of the learned leakage model.
  • step S400 the coordinate calculation module outputs location information of the vibration sound wave.
  • the coordinate calculation module calculates the location information of the vibration sound wave from the input air wave RF and the vibration sound wave.
  • the location information of the vibration sound wave may be coordinate data of a location where the vibration sound wave is generated.
  • step S300 and step S400 may be processed simultaneously, and the processed progress may be transmitted to the terminal.
  • a map image in which piping lines are overlapped may be displayed on the screen of the terminal, and a detection mark may be displayed on at least one of the piping lines.
  • the detection mark may be a leak mark or a leak mark
  • the leak mark may be a mark where leakage occurs
  • the leak mark may be a mark according to surface corrosion of a pipe.
  • An operator carrying a terminal can visually check whether a leak is occurring at a corresponding point and whether there is a possibility of a leak by looking at the detection mark displayed on the screen of the terminal.
  • FIG. 3 is a flowchart showing a method of learning a leak model according to the present invention.
  • Each step of the learning method of a leak model according to an embodiment of the present invention is described as being performed in a leak learning module, but according to the embodiment, the steps are processed in a separate device and the processing result may be transmitted to the management server.
  • the learning method of a leak model according to the present invention includes receiving the collected leak data (S110), learning the leak data to obtain a leak model (S120), and storing the obtained leak model (S130). ).
  • the leak learning module receives the collected leak data.
  • the leak data may be stored in a storage space of a learning module connected to the leak learning module, or may be stored in a storage space of a leak detection server.
  • the collected leak data may be change data of a leak vibration sound wave according to a temporal change.
  • the collected leakage data may be at least one of change data of a leakage vibration sound wave generated from a leakage of a pipe, and change data of a leakage vibration sound wave according to a material of the pipe.
  • step S120 the leak learning module acquires a leak model by learning the collected leak data.
  • the leak model acquires a leak vibration frequency band.
  • the leakage vibration frequency band may be a frequency range of vibration sound waves generated by leakage in the pipe.
  • the leak learning module stores the obtained leak model.
  • the learned leak model may be stored in a learning module storage space connected to the leak learning module, or in a storage space of a leak management server.
  • FIG. 4 is a flowchart illustrating a method of obtaining location information of a vibrating sound wave according to the present invention.
  • the method of obtaining the location information of the vibrating sound wave includes the step of receiving the air wave RF and the vibration sound wave (S410), detecting the delay time of the air wave RF, and aligning the vibration sound wave with the detected delay time. And synchronizing the vibration sound waves (S420), and calculating the difference in arrival time from the synchronized vibration sound waves and calculating coordinate data (S430).
  • FIG. 5 is a schematic diagram showing the installation of a detection unit in a pipe.
  • a first detection unit 100-1 and a second detection unit 100-2 are installed at a predetermined distance D in the pipe.
  • Reference numeral LP indicates the location of the vibration sound wave.
  • the RF receiving module of the detection unit acquires over-the-air RF.
  • the sensor of the detection unit detects the vibration sound wave transmitted to the pipe PW.
  • the first RF receiving module of the first detecting unit and the second RF receiving module of the second detecting unit respectively acquire first and second over-the-air RF.
  • the first sensor of the first detection unit and the second sensor of the second detection unit detect first and second vibration sound waves, respectively.
  • the first detection unit and the second detection unit transmit the first and second airwaves RF and the first and second vibrational sound waves to the management server.
  • the first communication module of the first detection unit transmits the first airwave RF and the first vibration sound wave to the management server, and the second communication module of the second detection unit manages the second airwave RF and the second vibration sound wave. Transfer to.
  • step S410 the coordinate calculation module receives the first and second airwaves RF and the first and second vibrational sound waves.
  • step S420 a delay time between the first and second airwaves RF transmitted from the first and second detection units is detected, and the first and second vibrational waves are aligned based on the detected delay time. Synchronize vibrational sound waves.
  • FIG. 6 is a diagram illustrating a method of synchronizing first and second vibration sound waves according to the present invention.
  • FIG. 6(a) shows the aerial wave RF (RF-1) and the vibration sound wave (LF-1) acquired by the first detection unit
  • FIG. 6(b) is the aerial wave RF (RF-2) acquired by the second detection unit.
  • vibration sound wave (LF-2) is the vibration sound wave (LF-2).
  • the delay time ⁇ t is detected by comparing the airwaves RF (RF-1 and RF-2).
  • the delay time ( ⁇ t) can be detected using Cross Correlation.
  • the vibration sound waves are aligned by setting the detected delay time as a correction value.
  • 6(c) shows the alignment of the vibrating sound wave LF-2 by the delay time ⁇ t, which is a correction value.
  • the difference in arrival time (Td) can be obtained from the synchronized vibration sound wave.
  • the difference in arrival time is shown in 3.
  • step S430 location information on which the vibration sound wave is generated is obtained from the difference in arrival time.
  • position information that is, coordinate data, where the vibration sound wave is generated in the pipe is obtained.
  • a method of obtaining such coordinate data may be performed by a known calculation method or acquisition method.
  • the operation by the leak management method according to an embodiment of the present invention may be implemented at least partially as a computer program and recorded on a computer-readable recording medium.
  • the recording medium includes all types of recording devices that store data that can be read by a computer.
  • examples of the computer-readable recording medium may be ROM, RAM, HDD, SDD, optical data storage device, cloud, etc., and programs stored in the computer-readable recording medium are stored in a computer system connected via a network. It can also be run distributedly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Tourism & Hospitality (AREA)
  • Water Supply & Treatment (AREA)
  • Human Resources & Organizations (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

본 발명에 따른 누수관리 시스템 및 누수위치 예측 방법에 대한 것이다. 본 발명에 따른 누수관리 시스템은, 배관에 설치되고 공중파 RF와 진동음파를 획득 및 검출하는 검출부(100-N)와, 시간적 변화에 따른 진동음파의 변화 데이터를 학습하고, 배관의 상태정보와 진동음파의 위치정보를 출력하는 관리서버(200)와, 상기 배관의 상태정보와 진동음파의 위치정보에 따라 탐지표식를 시각적으로 제공하는 단말기(300)를 포함하여 이루어진다. 본 발명에 따른 누수위치 예측 방법은, 수집된 누수 데이터를 학습하여 누수모델을 획득하는 단계(S100)와, 검출부로부터 공중파 RF 및 진동음파를 전송받는 단계(S200)와, 누수 모델을 이용하여, 전송받은 진동음파로부터 배관의 상태정보를 출력하는 단계(S300)와, 전송받은 공중파 RF 및 진동음파로부터 진동음파의 위치정보를 출력하는 단계(S400)를 포함한다.

Description

누수관리 시스템 및 이를 이용한 누수위치 예측 방법
본 발명은 검출되는 진동음파로부터 누수 위치를 예측할 수 있는 누수관리 시스템 및 누수위치 예측 방법에 관한 것이다.
생활수준의 향상으로 매년 물의 사용은 날로 증가되고 있다. 물을 공급하기 위한 수도관은 일반적으로 지하에 매설되는데, 매설된 수도관은 충격, 노후화 등 여러 가지 요인으로 인해 누수가 발생한다. 누수 발생 지점을 찾기 위하여 많은 노력과 연구가 있어 왔지만, 여전히 누수가 발생하는 지점을 정확히 찾는 것은 여간 쉬운 일이 아니다.
누수지점을 찾기 위한 방법으로서 음향 탐지법, 상관식 탐지법 등이 있다. 상관식 탐지법은 상수도관의 양측에 음향 센서를 설치하고, 양측 센서로부터 검출되는 누수음이 도달하는 시간차이를 계산하여 누수 지점을 찾는 방법이다.
그러나 상수도관의 재질, 수도관 속에 물의 량, 수도관을 주변의 흙 상태, 수도관의 접속구 등 여러 가지 요인으로 누수음의 전파 속도가 차이가 있어 정확한 누수지점을 찾기에는 어려움이 있었다.
〈선행기술문헌〉
(특허문헌1) 공개특허공보 제10-2010-0014046호, 상수도 배급수관 누수혐의구간검출기 및 누수협의구간검출 시스템
(특허문헌2) 등록특허공보 제10-1454288호, 누수 탐지 시스템
(특허문헌3) 등록특허공보 제10-1563279호, 배관에서 구간별로 측정된 탄성파 속도에 기반한 누수 위치 탐지 방법 및 누수 위치 탐지 시스템
(특허문헌4) 공개특허공보 제10-2011-0032272호, 누수탐지 장치 및 방법
본 발명은 시간적 변화에 따른 진동음파의 변화를 학습하고, 학습에 따른 누수 모델을 이용하여 누수위치 또는 누수가능위치를 탐지할 수 있는 누수관리 시스템 및 누수위치 예측 방법을 제공하려는 데 그 목적이 있다.
또한 본 발명은 배관으로부터 전달되는 비정상적 진동음파를 검출하고 해당 진동음파의 발생지점을 탐지할 수 있는 누수관리 시스템 및 누수위치 예측 방법을 제공하려는 데 그 목적이 있다.
또한 본 발명은 공중파 RF의 지연시간을 이용하여, 서로 이격되어 설치된 센서의 진동음파 검출시점을 동기화하고, 진동음파의 검출시점부터 누수위치 계산까지 발생될 수 있는 시간적 오차를 제거할 수 있는 누수관리 시스템 및 누수위치 예측 방법을 제공하려는 데 그 목적이 있다.
본 발명의 해결하고자 하는 과제는 언급한 과제로 제한되지 않는다. 언급하지 않은 다른 기술적 과제들은 이하의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 누수관리 시스템은, 배관에 설치되고 공중파 RF와 진동음파를 획득 및 검출하는 검출부(100-N)와, 시간적 변화에 따른 진동음파의 변화 데이터를 학습하고, 배관의 상태정보와 진동음파의 위치정보를 출력하는 관리서버(200)와, 상기 배관의 상태정보와 진동음파의 위치정보에 따라 탐지표식를 시각적으로 제공하는 단말기(300)를 포함하여 이루어진다.
일 실시 예로서, 시간적 변화에 따른 진동음파의 변화 데이터는 배관의 누수에 따른 진동음파의 신호변화 데이터일 수 있다.
일 실시 예로서, 관리서버는 누수 진동주파수 대역을 벗어나는 경우, 상태정보로서 누수가능신호를 생성한다.
본 발명에 따른 관리서버(200)는 수집된 누수 데이터로부터 누수 모델을 획득하는 누수학습 모듈(210)과, 검출부(100-N)로부터 전송되는 진동음파를 입력받고, 누수 모델을 이용하여, 배관의 상태정보를 출력하는 신호분석 모듈(220)과, 검출부(100-N)로부터 전송되는 공중파 RF와 진동음파를 입력받고, 진동음파의 발생위치를 계산한 후, 진동음파의 위치정보를 출력하는 좌표계산 모듈(230)을 포함한다.
본 발명에 따른 누수위치 탐지 방법은, 수집된 누수 데이터를 학습하여 누수 모델을 획득하는 단계(S100)와, 검출부로부터 공중파 RF 및 진동음파를 전송받는 단계(S200)와, 누수 모델을 이용하여, 전송받은 진동음파로부터 배관의 상태정보를 출력하는 단계(S300)와, 전송받은 공중파 RF 및 진동음파로부터 진동음파의 위치정보를 출력하는 단계(S400)를 포함한다.
일 실시 예로서, 수집된 누수 데이터는 배관의 누수에 따른 진동음파의 신호변화 데이터일 수 있다.
본 발명에 따른 누수 모델을 획득하는 단계(S100)는, 수집된 누수 데이터를 입력받는 단계(S110)와, 누수 데이터를 학습하여 누수 모델을 획득하는 단계(S120)와, 획득된 누수 모델을 저장하는 단계(S130)를 포함한다.
일 실시 예로서, 누수 모델은 학습에 의해 누수로 인해 발생되는 진동음파의 주파수 영역범위를 나타내는 누수 진동주파수 대역을 가진다.
일 실시 예로서, 배관의 상태정보와 진동음파의 위치정보는 단말기로 전송되고, 단말기의 화면에는 누수표식 또는 누수가능표식을 디스플레이한다.
본 발명에 따르면, 시간적 변화에 따른 진동음파의 변화 데이터를 학습하고, 학습에 따른 누수 모델을 이용하여 배관의 누수상태 또는 누수가능상태를 예측할 수 있다.
본 발명에 따르면 배관으로부터 비정상적 진동음파를 검출하고, 진동음파의 변화에 기초하여 배관의 누수 가능지점을 예측할 수 있다.
본 발명에 따르면, 공중파 RF의 지연시간을 이용하여, 서로 이격되어 설치된 센서의 진동음파 검출시점을 동기화함으로써 진동음파의 검출시점부터 누수위치 계산까지 발생될 수 있는 시간적 오차를 제거할 수 있다.
본 발명에 따르면, 단말기의 배관지도 화면에 표시되는 탐지표식을 보고, 현장 작업자는 배관의 누수가능위치를 쉽게 알 수 있다.
도 1은 본 발명의 일 실시예에 따른 누수관리 시스템을 나타낸 것이다.
도 2는 본 발명에 따른 누수위치 예측 방법을 나타내는 흐름도이다.
도 3은 본 발명에 따른 누수 모델의 학습방법을 나타내는 흐름도이다.
도 4는 본 발명에 따른 진동음파의 위치정보를 획득하는 방법을 나타내는 흐름도이다.
도 5는 배관에 검출부를 설치한 것을 나타낸 개략도이다.
도 6은 본 발명에 따른 제1 및 제2 진동음파를 동기화하는 방법을 설명하는 도면이다.
〈부호의 설명〉
100-N : 검출부
110-N : 센서
120-N : RF 수신모듈
130-N : (검출부의) 통신모듈
200 : 관리서버
210 : 누수학습 모듈
220 : 신호분석 모듈
230 : 좌표계산 모듈
240 : (관리서버의) 통신모듈
300 : 단말기
PW : 배관
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 실시 예들에 사용된 "부", "모듈", "장치", "단말기", "서버", "시스템" 등의 용어는 하드웨어와 소프트웨어가 조합된 구성일 수 있다. 하드웨어는 CPU 또는 다른 프로세서(processor)를 포함하는 데이터 처리 기기일 수 있으며, 소프트웨어는 하드웨어에서 실행되는 스레드(thread of execution), 프로그램(program) 등을 지칭할 수 있다.
도 1은 본 발명의 일 실시예에 따른 누수관리 시스템을 나타낸 것이다.
본 발명의 일 실시예에 따른 누수관리 시스템은 배관에 설치되고 공중파 RF와 진동음파를 획득 및 검출하는 검출부(100-N)와, 시간적 변화에 따른 누수 진동음파의 변화 데이터를 학습하고, 배관의 상태정보와 진동음파의 위치정보를 출력하는 관리서버(200)와, 상기 배관의 상태정보와 진동음파의 위치정보에 따라 탐지표식를 시각적으로 제공하는 단말기(300)를 포함하여 이루어진다.
실시 예로서, 시간적 변화에 따른 누수 진동음파의 변화 데이터는 배관의 누수에 따른 진동음파의 변화 데이터, 배관의 재질에 따른 누수 진동음파의 변화 데이터 중 적어도 어느 하나일 수 있다.
검출부(100-N), 관리서버(200), 단말기(300) 사이의 신호 및 데이터는 케이블을 이용한 유선 통신, 무선 통신, 3G, 4G, 혹은 그 이외의 통신방식으로 전송할 수 있다. 실시 예로서, 유무선 통신은 LAN, GSM, WCDMA, CDMA, Bluetooth, Zigbee, Wi-Fi, VoIP, LTE 등으로 이루어진 군으로부터 선택되는 하나 이상의 통신방식일 수 있으며, 또한 이러한 통신방식으로 한정되지 않는다.
검출부(100-N, N은 자연수)는 배관에 설치된다. 배관에는 유체가 이동할 수 있으며, 유체는 기체 또는 액체일 수 있다. 본 발명에서는 배관은 상수도관이고, 유체는 물(water)인 것으로 하여 설명한다.
검출부(100-N)는 배관에서 소정 거리 이격된 곳에 복수 개 설치된다. 검출부는 진동음파를 검출하는 센서(110-N)와 공중파 RF(radio frequency)를 획득하는 RF 수신모듈(120-N)과, 진동음파와 공중파 RF를 관리서버로 전송하는 통신모듈(130-N)을 포함할 수 있다.
일 실시 예로서, 배관(PW)의 소정거리 이격된 위치에 제1 검출부와 제2 검출부를 설치할 수 있으며, 제1 및 제2 센서는 제1 및 제2 검출부 사이에서 발생하는 진동음파를 검출할 수 있다.
RF 수신모듈(120-N)은 공중파 RF를 획득한다. 공중파 RF는 AM 방송신호 또는 FM 방송신호일 수 있다. 후술하겠지만 공중파 RF는 진동음파의 동기화를 위해 사용된다.
관리서버(200)는 신호 및 데이터 처리 프로세서와 통신모듈을 포함하는 컴퓨텅 장치일 수 있다. 관리서버에는 마우스, 키보드와 같은 입력장치가 연결될 수 있으며, 또한 관리서버에는 모니터, 프린터와 같은 출력장치가 연결될 수 있다.
관리서버는 수집된 누수 데이터로부터 누수 모델을 학습한다. 이러한 누수 모델의 학습은 뉴럴 네트워크(neural network)를 이용하여 수행될 수 있다.
또한 관리서버는 누수 모델을 이용하여 입력되는 진동음파로부터 배관의 상태정보를 출력한다. 또한 관리서버는 입력되는 공중파 RF와 진동음파로부터 진동음파의 위치정보를 출력한다.
본 발명에 따른 관리서버(200)는 누수학습 모듈(210), 신호분석 모듈(220), 좌표계산 모듈(230), 통신모듈(240)을 포함한다.
누수학습 모듈(210)은 누수 모델을 획득한다. 누수학습 모듈은 수집된 누수 데이터로부터 누수 모델을 학습하고 업데이트한다. 이때, 수집된 누수 데이터는 시간적 변화에 따른 누수 진동음파의 변화 데이터일 수 있다. 일 실시 예로 서 수집된 누수 데이터는 배관의 누수로부터 발생되는 진동음파의 변화 데이터, 배관의 재질에 따른 누수 진동음파의 변화 데이터 중 적어도 어느 하나일 수 있다.
누수 모델은 학습에 의해 누수 진동음파 범위 즉, 누수 진동주파수대역을 갖는다. 이때, 누수 진동주파수 대역은 배관에서 누수로 인해 발생되는 진동음파의 주파수 영역범위일 수 있다.
일 실시 예로서 누수로 인해 발생되는 누수 진동음파는 재질 등에 따라 소정의 주파수 대역을 가지는 진동음파의 주파수 영역범위일 수 있다.
신호분석 모듈(220)은 검출부(100-N)로부터 전송되는 진동음파를 입력받고, 누수 모델을 이용하여 배관의 상태정보를 출력한다. 이때 배관의 상태정보는 누수신호 또는 누수가능신호일 수 있다.
신호분석 모듈은 입력되는 진동음파로부터 배관의 상태정보를 출력한다. 상기 상태정보는 누수신호 또는 누수가능신호일 수 있다.
일 실시 예로서, 입력된 진동음파가 누수 진동주파수 대역 이내인 경우 누수신호를 출력하고, 입력된 진동음파가 누수 진동주파수 대역을 벗어나는 경우 누수가능신호를 출력할 수 있다. 여기서 누수 진동주파수 대역을 벗어나는 진동주파수는 누수로 인해 발생되는 진동주파수 대역을 벗어나는 배관의 연결부재의 노후화, 배관의 부식에 따른 진동주파수 등일 수 있다.
상기 누수 모델을 이용한 진동음파의 분석은 고속 푸리에 변환(fast fourier transform)에 의해 수행될 수 있으며, 진동음파의 주파수에 포함된 제2 고조파, 제3 고조파를 통해 수행될 수 있다.
좌표계산 모듈(230)은 검출부(100-N)로부터 전송되는 공중파 RF와 진동음파를 입력받고 진동음파의 발생위치를 계산한 후, 진동음파의 위치정보를 출력한다. 여기서 위치정보는 진동음파가 발생하고 있는 위치의 좌표 데이터일 수 있다.
일 실시 예로서, 좌표계산 모듈은 공중파 RF를 기초로 진동음파를 정렬하고, 정렬된 진동음파의 도달시간 차이를 계산하여 진동음파의 발생위치를 계산할 수 있다.
통신모듈(240)은 배관의 상태정보와 진동음파의 위치정보를 단말기로 출력한다.
단말기(300)는 현장 작업자가 휴대하는 장치일 수 있다. 단말기(300)는 관리서버(200)로부터 배관의 상태정보와 진동음파의 위치정보를 전송받고 현장 작업자에게 누수위치를 제공한다. 단말기는 GPS모듈, 지도정보모듈, 디스플레이모듈, 통신모듈을 포함할 수 있다.
일 실시 예로서 단말기의 디스플레이 화면에는 지도에 중첩하여 배관라인이 표시될 수 있으며, 배관라인의 중 적어도 어느 하나의 지점에는 탐지표식이 시각적으로 표시될 수 있다. 상기 탐지표식은 누수표식 또는 누수가능표식일 수 있다.
이하, 본 발명에 따른 누수관리 시스템을 이용한 누수위치 예측 방법에 대하여 설명한다.
도 2는 본 발명에 따른 누수위치 예측 방법을 나타내는 흐름도이다.
본 발명에 따른 누수위치 예측 방법은 수집된 누수 데이터를 학습하여 누수 모델을 획득하는 단계(S100)와, 검출부로부터 공중파 RF 및 진동음파를 전송받는 단계(S200)와, 누수 모델을 이용하여, 전송받은 진동음파로부터 배관의 상태정보를 출력하는 단계(S300)와, 전송받은 공중파 RF 및 진동음파로부터 진동음파의 위치정보를 출력하는 단계(S400)를 포함한다.
단계 S100에서, 수집된 누수 데이터를 학습하여 누수 모델을 획득한다. 일 실시예로서 누수 데이터는 시간적 변화에 따른 누수 진동음파의 변화 데이터, 배관의 재질에 따른 누수 진동음파의 변화 데이터일 수 있다.
단계 S200에서, 검출부로부터 공중파 RF 및 진동음파를 전송받는다. 일 실시 예로서 공중파 RF는 AM 신호 또는 FM 신호일 수 있다.
한편, 전송되는 진동음파는 신호분석 모듈과 좌표계산 모듈로 입력되고, 공중파 RF는 좌표계산 모듈로 입력된다.
단계 S300에서, 신호분석 모듈은 배관의 상태정보를 출력한다. 신호분석모듈은 학습된 누수 모델을 이용하여, 입력되는 진동음파로부터 배관의 상태정보를 출력한다. 일 실시 예로서, 배관의 상태정보는 누수 신호 또는 누수가능신호 일 수 있다.
신호분석 모듈은 입력되는 진동음파가 학습된 누수 모델의 누수 진동주파수 대역 이내인 경우 누수신호를 출력하고, 입력되는 진동음파가 학습된 누수 모델의 누수 진동주파수 대역을 벗어나는 경우 누수가능신호를 출력한다.
단계 S400에서, 좌표계산 모듈은 진동음파의 위치정보를 출력한다. 좌표계산 모듈은 입력되는 공중파 RF와 진동음파로부터 진동음파의 위치정보를 계산한다. 일 실시 예로서 진동음파의 위치정보는 진동음파가 발생되는 위치의 좌표 데이터일 수 있다.
다른 실시 예로서, 단계 S300과 단계 S400은 동시에 처리될 수 있으며, 처리된 경과를 단말기로 전송할 수 있다.
이후, 배관의 상태정보와 진동음파의 위치정보는 단말기로 전송된다. 단말기의 화면에는 배관라인이 중첩된 지도 이미지가 표시될 수 있고, 배관라인의 중 적어도 어느 하나의 지점에는 탐지표식이 디스플레이될 수 있다.
일 실시 예로서, 탐지표식은 누수표식 또는 누수가능표식일 수 있으며, 누수표식은 누수가 발생하고 있는 표식일 수 있고, 누수가능표식은 배관의 표면부식에 따른 표식일 수 있다.
단말기를 휴대하는 작업자는 단말기의 화면에 나타나는 탐지표식을 보고 해당 지점에서 누수가 발생되고 있는지, 그리고 누수가 발생될 수 있는 가능성이 있는지를 시각적으로 확인할 수 있다.
이하, 본 발명에 따른 누수학습 모듈에서 수행되는 누수 모델의 학습에 대하여 설명한다.
도 3은 본 발명에 따른 누수 모델의 학습방법을 나타내는 흐름도이다.
본 발명의 일 실시 예에 따른 누수 모델의 학습방법의 각 단계들은 누수학습 모듈에서 이루어지는 것으로 하여 설명되나, 실시 예에 따라 별도의 장치에서 처리되고, 처리 결과를 관리서버로 전송할 수 있다.
본 발명에 따른 누수 모델의 학습방법은, 수집된 누수 데이터를 입력받는 단계(S110)와, 누수 데이터를 학습하여 누수 모델을 획득하는 단계(S120)와, 획득된 누수 모델을 저장하는 단계(S130)를 포함한다.
단계 S110에서, 누수학습 모듈은 수집된 누수 데이터를 입력받는다. 누수 데이터는 누수학습 모듈에 연결되는 학습모듈 저장공간에 저장될 수도 있고, 누수탐지 서버의 저장공간에 저장될 수 있다.
수집된 누수 데이터는 시간적 변화에 따른 누수 진동음파의 변화 데이터일 수 있다. 예컨대, 수집된 누수 데이터는 배관의 누수로부터 발생되는 누수진동음파의 변화 데이터, 배관의 재질에 따른 누수 진동음파의 변화 데이터 중 적어도 어느 하나일 수 있다.
단계 S120에서, 누수학습 모듈은 수집된 누수 데이터를 학습하여 누수 모델을 획득한다.
일 실시 예로서 학습에 의해 누수 모델은 누수 진동주파수 대역을 획득한다. 여기서 누수 진동주파수 대역은 배관에서 누수로 인해 발생되는 진동음파의 주파수 영역범위일 수 있다.
단계 S130에서, 누수학습 모듈은 획득된 누수 모델을 저장한다. 일 실시 예로서 학습된 누수 모델은 누수학습 모듈에 연결되는 학습모듈 저장공간에 저장될 수도 있고, 누수관리 서버의 저장공간에 저장될 수 있다.
이하, 본 발명에 따른 좌표계산 모듈에서 진동음파의 위치정보를 획득하는 방법에 대하여 설명한다.
도 4는 본 발명에 따른 진동음파의 위치정보를 획득하는 방법을 나타내는 흐름도이다.
본 발명의 실시 예에 따른 진동음파의 위치정보를 획득하는 방법은, 공중파 RF와 진동음파를 입력받는 단계(S410)와, 공중파 RF의 지연시간을 검출하고, 검출된 지연시간으로 진동음파를 정렬하여 진동음파를 동기화하는 단계(S420)와, 동기화된 진동음파로부터 도달시간 차이를 계산하고 좌표 데이터를 산출하는 단계(S430)를 포함한다.
도 5는 배관에 검출부를 설치한 것을 나타낸 개략도이다.
도 5를 참조하면, 배관에 제1 검출부(100-1)와 제2 검출부(100-2)가 소정 간격(D)을 두고 설치되어 있다. 도면부호 LP는 진동음파의 발생위치를 나타낸 것이다.
본 발명에 따른 검출부의 RF 수신모듈은 공중파 RF를 획득한다. 또한 검출부의 센서는 배관(PW)으로 전달되는 진동음파를 검출한다.
일 실시 예로서, 제1 검출부의 제1 RF 수신모듈과 제2 검출부의 제2 RF 수신모듈는 각각 제1 및 제2 공중파 RF를 획득한다. 또한 제1 검출부의 제1 센서와 제2 검출부의 제2 센서는 각각 제1 및 제2 진동음파를 검출한다.
이어서, 제1 검출부와 제2 검출부는 제1 및 제2 공중파 RF와 제1 및 제2 진동음파를 관리서버로 전송한다.
일 실시 예로서 제1 검출부의 제1 통신모듈은 제1 공중파 RF와 제1 진동음파를 관리서버로 전송하고, 제2 검출부의 제2 통신모듈은 제2 공중파 RF와 제2 진동음파를 관리서버로 전송한다.
단계 S410에서, 좌표계산 모듈은 제1 및 제2 공중파 RF와 제1 및 제2 진동음파를 입력받는다.
단계 S420에서, 제1 및 제2 검출부로부터 전송되는 제1 및 제2 공중파 RF 사이의 지연시간을 검출하고, 검출된 지연시간을 기초로 제1 및 제2 진동음파를 정렬하여 제1 및 제2 진동음파를 동기화한다.
도 6은 본 발명에 따른 제1 및 제2 진동음파를 동기화하는 방법을 설명하는 도면이다.
도 6(가)는 제1 검출부에서 획득한 공중파 RF(RF-1)와 진동음파(LF-1)를 나타낸 것이며, 도 6(나)는 제2 검출부에서 획득한 공중파 RF(RF-2)와 진동음파(LF-2)를 나타낸 것이다.
먼저, 도 6의 ①을 참조하면, 공중파 RF(RF-1, RF-2)를 비교하여 지연시간(Δt)을 검출한다. 상기 지연시간(Δt)은 Cross Correlation을 이용하여 검출할 수 있다.
이어서, ②를 참조하면, 검출한 지연시간을 보정값으로 설정하여 진동음파를 정렬한다. 도 6(다)는 보정값인 지연시간(Δt)으로 진동음파(LF-2)를 정렬하는 것을 보여준다. 진동음파(LF-2)를 지연시간 즉, 보정값 만큼 보정함으로써, 제1 진동음파(LF-1)와 제2 진동음파(LF-2)는 동일시점에 검출한 진동음파로서 사용할 수 있다.
이와 같은 과정을 거쳐 동기화된 진동음파로부터 도달시간 차이(Td)를 얻을 수 있다. 도달시간 차이는 ③에서 보여준다.
단계 S430에서, 도달시간 차이로부터 진동음파가 발생된 위치정보를 획득한다.
제1 진동음파(LF-1)와 제2 진동음파(LF-2)의 도달시간 차이(Td)를 기초로 배관에서 진동음파가 발생된 위치정보 즉, 좌표 데이터를 획득한다. 이러한 좌표 데이터를 획득하는 방법은 알려진 계산방식 또는 획득방식에 의해 수행될 수 있다.
본 발명의 실시 예에 따른 누수관리 방법에 의한 동작은 적어도 부분적으로 컴퓨터 프로그램으로 구현되고 컴퓨터로 읽을 수 있는 기록매체에 기록될 수 있다. 실시 예로서 기록매체는 컴퓨터에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다.
일 실시 예로서, 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, HDD, SDD, 광 데이터 저장장치, 클라우드 등일 수 있으며, 컴퓨터가 읽을 수 있는 기록매체에 저장된 프로그램은 네트워크로 연결된 컴퓨터 시스템에 분산되어 실행될 수도 있다.
이상, 본 발명을 구체적인 실시예를 통하여 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상의 범위내에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.

Claims (5)

  1. 배관에 설치되고 공중파 RF와 진동음파를 획득 및 검출하는 검출부(100-N)와,
    시간적 변화에 따른 누수 진동음파의 변화 데이터를 학습하고, 배관의 상태정보와 진동음파의 위치정보를 출력하는 관리서버(200)와,
    상기 배관의 상태정보와 진동음파의 위치정보에 따라 탐지표식를 시각적으로 제공하는 단말기(300)를 포함하여 이루어지고,
    상기 시간적 변화에 따른 진동음파의 변화 데이터는 배관의 누수에 따른 진동음파의 변화 데이터이고,
    상기 관리서버는 누수 진동주파수 대역을 벗어나는 경우, 상태정보로서 누수가능신호를 생성하는 것을 특징으로 하는 누수관리 시스템.
  2. 청구항 1에 있어서,
    상기 관리서버(200)는
    수집된 누수 데이터로부터 누수 모델을 획득하는 누수학습 모듈(210)과,
    검출부(100-N)로부터 전송되는 진동음파를 입력받고, 누수 모델을 이용하여, 배관의 상태정보를 출력하는 신호분석 모듈(220)과,
    검출부(100-N)로부터 전송되는 공중파 RF와 진동음파를 입력받고, 진동음파의 발생위치를 계산한 후, 진동음파의 위치정보를 출력하는 좌표계산 모듈(230)을 포함하는 것을 특징으로 하는 누수관리 시스템.
  3. 수집된 누수 데이터를 학습하여 누수 모델을 획득하는 단계(S100)와,
    검출부로부터 공중파 RF 및 진동음파를 전송받는 단계(S200)와,
    누수 모델을 이용하여, 전송받은 진동음파로부터 배관의 상태정보를 출력하는 단계(S300)와,
    전송받은 공중파 RF 및 진동음파로부터 진동음파의 위치정보를 출력하는 단계(S400)를 포함하고,
    상기 수집된 누수 데이터는 배관의 누수에 따른 진동음파의 변화데이터이고,
    상기 관리서버는 누수 진동주파수 대역을 벗어나는 경우, 상태정보로서 누수 가능신호를 생성하는 것을 특징으로 하는 누수위치 예측 방법.
  4. 청구항 3에 있어서,
    상기 누수 모델을 획득하는 단계(S100)는
    수집된 누수 데이터를 입력받는 단계(S110)와,
    누수 데이터를 학습하여 누수 모델을 획득하는 단계(S120)와,
    획득된 누수 모델을 저장하는 단계(S130)를 포함하고,
    상기 누수 모델은 누수로 인해 발생되는 진동음파의 주파수 영역범위를 나타내는 누수 진동주파수 대역을 갖는 것을 특징으로 하는 누수위치 탐지 방법.
  5. 청구항 3에 있어서,
    상기 배관의 상태정보와 진동음파의 위치정보는 단말기로 전송되고, 단말기의 화면에는 누수표식 또는 누수가능표식을 나타내는 탐지표식을 디스플레이되는 것을 특징으로 하는 누수위치 탐지 방법.
PCT/KR2020/007591 2019-06-17 2020-06-11 누수관리 시스템 및 이를 이용한 누수위치 예측 방법 WO2020256343A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080044738.1A CN114096823A (zh) 2019-06-17 2020-06-11 漏水管理系统及利用其的漏水位置预测方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190071350A KR102036649B1 (ko) 2019-06-17 2019-06-17 누수관리 시스템 및 이를 이용한 누수위치 예측 방법
KR10-2019-0071350 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020256343A1 true WO2020256343A1 (ko) 2020-12-24

Family

ID=68420408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/007591 WO2020256343A1 (ko) 2019-06-17 2020-06-11 누수관리 시스템 및 이를 이용한 누수위치 예측 방법

Country Status (3)

Country Link
KR (1) KR102036649B1 (ko)
CN (1) CN114096823A (ko)
WO (1) WO2020256343A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112923245A (zh) * 2021-02-03 2021-06-08 宁波水表(集团)股份有限公司 一种供水管网漏损探查的方法
CN116576405A (zh) * 2023-07-12 2023-08-11 上海电机学院 一种风管泄漏信号检测方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102036649B1 (ko) * 2019-06-17 2019-10-25 주식회사 에스씨솔루션 누수관리 시스템 및 이를 이용한 누수위치 예측 방법
KR102493362B1 (ko) * 2020-09-21 2023-01-31 한국수자원공사 Ai를 이용한 상수도 실시간 사고감지 시스템 및 그 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107085B1 (ko) * 2009-09-22 2012-01-20 주식회사 센서웨이 누수 탐지 장치 및 방법
US20170178311A1 (en) * 2015-12-20 2017-06-22 Prophecy Sensors, Llc Machine fault detection based on a combination of sound capture and on spot feedback
WO2017199455A1 (ja) * 2016-05-19 2017-11-23 株式会社 東芝 漏水判定装置及び漏水判定方法
US20180300639A1 (en) * 2017-04-13 2018-10-18 Oracle International Corporation Novel autonomous artificially intelligent system to predict pipe leaks
KR20190018293A (ko) * 2017-08-14 2019-02-22 오토시맨틱스 주식회사 딥러닝을 통한 음향기반 상수도 누수 진단 방법
KR102036649B1 (ko) * 2019-06-17 2019-10-25 주식회사 에스씨솔루션 누수관리 시스템 및 이를 이용한 누수위치 예측 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100014046A (ko) 2008-08-01 2010-02-10 도지현 상수도 배·급수관 누수혐의구간검출기 및 누수혐의구간검출 시스템
KR101454288B1 (ko) 2014-05-02 2014-10-27 에스케이건설 주식회사 누수 탐지 시스템
KR101563279B1 (ko) 2015-03-11 2015-10-27 주식회사 하이드로넷 배관에서 구간별로 측정된 탄성파 속도에 기반한 누수 위치 탐지 방법 및 누수 위치 탐지 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101107085B1 (ko) * 2009-09-22 2012-01-20 주식회사 센서웨이 누수 탐지 장치 및 방법
US20170178311A1 (en) * 2015-12-20 2017-06-22 Prophecy Sensors, Llc Machine fault detection based on a combination of sound capture and on spot feedback
WO2017199455A1 (ja) * 2016-05-19 2017-11-23 株式会社 東芝 漏水判定装置及び漏水判定方法
US20180300639A1 (en) * 2017-04-13 2018-10-18 Oracle International Corporation Novel autonomous artificially intelligent system to predict pipe leaks
KR20190018293A (ko) * 2017-08-14 2019-02-22 오토시맨틱스 주식회사 딥러닝을 통한 음향기반 상수도 누수 진단 방법
KR102036649B1 (ko) * 2019-06-17 2019-10-25 주식회사 에스씨솔루션 누수관리 시스템 및 이를 이용한 누수위치 예측 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112923245A (zh) * 2021-02-03 2021-06-08 宁波水表(集团)股份有限公司 一种供水管网漏损探查的方法
CN112923245B (zh) * 2021-02-03 2024-02-13 宁波水表(集团)股份有限公司 一种供水管网漏损探查的方法
CN116576405A (zh) * 2023-07-12 2023-08-11 上海电机学院 一种风管泄漏信号检测方法及系统
CN116576405B (zh) * 2023-07-12 2023-10-31 上海电机学院 一种风管泄漏信号检测方法及系统

Also Published As

Publication number Publication date
KR102036649B1 (ko) 2019-10-25
CN114096823A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2020256343A1 (ko) 누수관리 시스템 및 이를 이용한 누수위치 예측 방법
WO2018143625A1 (ko) 구조물의 정밀 계측 시스템 및 그 방법
WO2016085091A1 (ko) 상수도 계량기 및 이를 이용한 상수도 관제시스템
KR101107085B1 (ko) 누수 탐지 장치 및 방법
US7974314B2 (en) Synchronization of multiple data source to a common time base
WO2011068380A4 (ko) 영상신호와 센서신호의 동기화 시스템 및 방법
WO2016175501A1 (ko) 걸음 인지 시스템 및 그 방법, 그리고 이 방법을 처리하는 프로그램이 기록된 저장 매체
WO2014106976A1 (ko) 무선 신호 처리 장치와 위치 측정 장치, 및 그의 위치 측정 방법
US20140260638A1 (en) Automated fault localization in pipelines and electrical power transmission lines
WO2019088693A1 (ko) 건축물 지진 피해 예측 및 분석 시스템, 방법 및 상기 방법을 실행시키기 위한 컴퓨터 판독 가능한 프로그램을 기록한 기록 매체
WO2017160026A2 (ko) 무선 통신 시스템에서 액세스 포인트를 이용한 위치 추정 방법 및 장치
JPWO2014155792A1 (ja) 配管異常検知データロガー装置、配管構造及び配管異常検知システム
WO2012002617A1 (ko) 전력 품질 측정 장치 및 방법
WO2011007982A2 (en) Device and method of estimating location of terminal using sequences transmitted from base stations
WO2022191353A1 (ko) 휴대형 상수관로 누수음 수집 장치 및 이를 이용한 누수음 관리 운영 시스템
WO2016200175A1 (ko) 가상 비콘을 이용한 위치 측정 시스템 및 그 방법
WO2023101130A1 (ko) 누수 의심 구간 탐지 시스템 및 방법
WO2018164331A1 (ko) 변압기 수소 가스 감시 시스템, 장치 및 방법
JP3829966B2 (ja) 同時多点測定装置
JP2005062124A (ja) 電線又はケーブルの絶縁劣化領域診断システム及び方法
JP2006242826A (ja) 遠隔振動監視装置
JPH1164152A (ja) ガス配管の漏洩位置標定方法および装置
KR102036642B1 (ko) 누수관리 시스템 및 이를 이용한 누수정보 제공 방법
WO2013069910A1 (ko) 시간 동기화 방식이 적용된 무선 통신 모듈을 장착한 혈당 측정기 시스템
WO2020209513A1 (ko) 부분방전 진단 및 위치 검출 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826820

Country of ref document: EP

Kind code of ref document: A1