WO2020255477A1 - 管継手、及び管継手セット - Google Patents

管継手、及び管継手セット Download PDF

Info

Publication number
WO2020255477A1
WO2020255477A1 PCT/JP2020/005174 JP2020005174W WO2020255477A1 WO 2020255477 A1 WO2020255477 A1 WO 2020255477A1 JP 2020005174 W JP2020005174 W JP 2020005174W WO 2020255477 A1 WO2020255477 A1 WO 2020255477A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
downstream
upstream
throttle
fluid
Prior art date
Application number
PCT/JP2020/005174
Other languages
English (en)
French (fr)
Inventor
昭彦 堀江
Original Assignee
三桜工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三桜工業株式会社 filed Critical 三桜工業株式会社
Priority to MX2021015232A priority Critical patent/MX2021015232A/es
Priority to US17/612,819 priority patent/US20220221094A1/en
Priority to CN202080043018.3A priority patent/CN113950592A/zh
Priority to BR112021023877A priority patent/BR112021023877A2/pt
Publication of WO2020255477A1 publication Critical patent/WO2020255477A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L29/00Joints with fluid cut-off means
    • F16L29/007Joints with cut-off devices controlled separately
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L35/00Special arrangements used in connection with end fittings of hoses, e.g. safety or protecting devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K15/00Check valves
    • F16K15/02Check valves with guided rigid valve members
    • F16K15/06Check valves with guided rigid valve members with guided stems
    • F16K15/063Check valves with guided rigid valve members with guided stems the valve being loaded by a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L29/00Joints with fluid cut-off means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/01Control of flow without auxiliary power
    • G05D7/0126Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs
    • G05D7/0133Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs within the flow-path
    • G05D7/014Control of flow without auxiliary power the sensing element being a piston or plunger associated with one or more springs within the flow-path using sliding elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K2200/00Details of valves
    • F16K2200/40Bleeding means in closed position of the valve, e.g. bleeding passages
    • F16K2200/401Bleeding means in closed position of the valve, e.g. bleeding passages arranged on the closure member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/30Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses comprising parts inside the hoses only

Definitions

  • the present invention relates to a pipe fitting and a pipe fitting set.
  • the connector housing of the valve built-in connector is provided with a tube connection portion on one side in the axial direction and a pipe insertion portion on the other side in the axial direction. And the valve accommodating portion between the tube connecting portion and the pipe insertion portion.
  • valve accommodating portion is formed so as to have a sufficiently large inner diameter, and the valve main body and the compression coil spring for urging the valve main body to one side in the axial direction so as to abut on the inner surface of the housing are provided in the valve accommodating portion. Contain.
  • Conventional pipe fittings have a throttle portion with a throttle hole that limits the flow rate of fluid passing through, and a valve unit that opens the flow port of the flow path when a flow rate that exceeds the flow rate limited by the throttle hole flows. It has.
  • a flow rate limiting portion for limiting the flow rate of the fluid passing through the flow port opened by the valve unit was not provided.
  • An object of the present invention is to obtain a configuration that limits the flow rate of the fluid passing through the flow port opened by the valve unit.
  • the pipe joint according to the first aspect of the present invention has a main body in which a flow path through which a fluid flows is formed, and an upstream narrowing hole in which an upstream drawing hole for limiting a flow rate through which the fluid passes is formed inside the main body.
  • the upstream throttle hole formed in the upstream throttle portion limits the flow rate of the fluid flowing into the pipe joint. Further, when a fluid having a flow rate exceeding the passing flow rate limited by the upstream throttle hole flows through the pipe joint, the valve unit opens the blocked flow port.
  • downstream throttle hole of the downstream throttle portion arranged on the downstream side of the valve unit in the fluid flow direction limits the flow rate of the fluid passing through the flow port opened by the valve unit.
  • the hole diameter of the downstream drawing hole is larger than the hole diameter of the upstream drawing hole.
  • the hole diameter of the downstream drawing hole is larger than the hole diameter of the upstream drawing hole. Therefore, in the initial small flow rate region where the fluid begins to flow into the pipe joint, the flow rate through which the fluid passes is restricted by the upstream throttle hole, and in the large flow region where the flow rate of the fluid flowing into the pipe joint increases, the downstream throttle hole Can limit the flow rate of the fluid through it.
  • downstream throttle portion is arranged on the downstream side of the valve unit in the flow direction and is visible from the outside of the main body.
  • the downstream throttle portion is arranged on the downstream side of the valve unit in the flow direction and is visible from the outside of the main body. Therefore, by visually observing the pipe joint from the downstream side in the fluid flow direction, it is possible to confirm that the genuine product of the downstream side drawing portion is attached to the main body.
  • the valve unit includes a valve body that is movable in the flow direction, an urging portion that urges the valve body toward the upstream side in the flow direction, and the flow of the urging portion.
  • the valve unit includes a support portion that supports an end portion on the downstream side in the direction, and a contact portion that faces the flow path and comes into contact with the valve body urged by the urging portion. It is characterized in that the downstream side throttle portion suppresses the escape from the main body to the downstream side in the flow direction.
  • the valve unit is prevented from coming out from the main body to the downstream side in the flow direction by the downstream throttle portion. In this way, it is possible to prevent the valve unit from coming out from the main body to the downstream side in the fluid flow direction without using a dedicated component for suppressing the valve unit from coming out from the main body.
  • the pipe joint set according to the fifth aspect of the present invention has a main body in which a flow path through which a fluid flows is formed inside, and an upstream side in which an upstream drawing hole for limiting a flow rate through which the fluid passes is formed inside the main body.
  • a valve unit that opens the flow port that was blocked in the flow path when a fluid with a flow rate exceeding the passing flow rate limited by the throttle portion and the upstream throttle hole flows, and the valve in the flow direction of the fluid.
  • a pipe joint having a flow rate limiting portion that is arranged on the downstream side of the unit and limits the flow rate of the fluid passing through the flow port, and a downstream throttle hole that limits the flow rate of the fluid passing through the flow port are formed.
  • a plurality of types of downstream sides having a wall portion and an outer peripheral portion that is coupled to the wall portion and meshes with the inner peripheral surface of the main body, and has different performances for limiting a passing flow rate due to different hole diameters of the downstream side drawing holes. It is characterized in that it includes a throttle portion, and each of the plurality of types of downstream throttle portions can function as the flow rate limiting portion.
  • each of the plurality of types of downstream throttle portions having different performances for limiting the passing flow rate due to the different pore diameters functions as a flow rate limiting portion for limiting the passing flow rate of the fluid passing through the distribution port.
  • FIGS. 1 to 10 An example of a pipe joint and a pipe joint set according to an embodiment of the present invention will be described with reference to FIGS. 1 to 10.
  • the arrow R shown in each figure indicates the radial direction of the pipe joint, and the arrow W indicates the longitudinal direction of the pipe joint, indicating the flow direction of fuel gas, which is an example of a fluid.
  • the fuel refueling system 100 in which this pipe joint is used will be described.
  • the fuel refueling system 100 includes a fuel tank 110, a filler pipe 114 for supplying fuel to the fuel tank 110, and a return pipe 116 for returning fuel gas, which is fuel vapor in the fuel tank 110, to the filler pipe 114. ing.
  • the return pipe 116 has a first pipe 116a connected to the fuel tank 110 and a second pipe 116b connected to the filler pipe 114.
  • the pipe joint 10 is used to connect the first pipe 116a and the second pipe 116b.
  • the arrow UP shown in FIG. 8 indicates an upper direction in the direction of gravity.
  • the pressure of the fuel gas in the fuel tank 110 is controlled by the pipe joint 10 controlling the passing flow rate of the fuel gas flowing through the pipe joint 10.
  • the details of the configuration in which the pipe joint 10 controls the flow rate of the fuel gas flowing through the pipe joint 10 will be described later.
  • the pipe joint 10 has a main body 12 in which a flow path 20 extending in a fuel gas flow direction (hereinafter, “gas flow direction”), which is an example of a fluid, is formed therein, and a flowing fuel gas (hereinafter referred to as “gas flow direction”).
  • gas flow direction a fuel gas flow direction
  • gas flow direction a flowing fuel gas
  • the upstream throttle portion 30 in which the upstream throttle hole 30a that limits the passing flow rate of the "gas" is formed, the valve body 40 that can move in the gas flow direction, and the valve body 40 upstream in the gas flow direction. It includes an urging spring 36 that urges the side.
  • the pipe joint 10 includes a support portion 52b for supporting the urging spring 36, and an accommodating portion 46 for accommodating the upstream throttle portion 30, the valve body 40, and the urging spring 36 inside. Further, the pipe joint 10 is formed with a downstream throttle hole 62 that limits the flow rate of gas passing through the flow port 38 (see FIG. 4) opened by the valve body 40 moving to the downstream side in the gas flow direction.
  • the downstream side throttle portion 60 is provided.
  • the main body 12 is integrally formed of a resin material, and as shown in FIGS. 1 and 6, a flow path 20 extending in the gas flow direction is formed inside. Further, the main body 12 has a first insertion portion 14 inserted into the end portion of the first pipe 116a, a second insertion portion 16 into which the end portion of the second pipe 116b is inserted, and the first insertion portion 14 and the second. It has a connecting portion 18 for connecting the inserting portion 16. The first insertion portion 14, the connecting portion 18, and the second insertion portion 16 are arranged in this order from the upstream side (left side in the figure) to the downstream side (right side in the figure) in the gas flow direction.
  • the first insertion portion 14 has a cylindrical shape extending in the gas flow direction, and an uneven portion (reference numeral omitted) for preventing the first pipe 116a from coming off is peripherally formed on the outer peripheral surface of the first insertion portion 14. It is formed so as to extend in the direction.
  • the second insertion portion 16 has a cylindrical shape extending in the gas flow direction, and a concave-convex portion (reference numeral omitted) for preventing the second pipe 116b from coming off is peripherally formed on the outer peripheral surface of the second insertion portion 16. It is formed so as to extend in the direction.
  • the connecting portion 18 has a cylindrical shape extending in the gas flow direction. Further, a large-diameter abutting portion 18a to which the end of the first pipe 116a abuts is formed in the portion of the connecting portion 18 on the first insertion portion 14 side, and the portion of the connecting portion 18 on the second insertion portion 16 side. Is formed with a large-diameter abutting portion 18b with which the end of the second pipe 116b abuts.
  • Flow path 20- In the flow path 20 formed in the main body 12, a funnel-shaped inflow portion 22, a first arrangement portion 24 in which the accommodating portion 46 is arranged, a second arrangement portion 26 in which the downstream side throttle portion 60 is arranged, and The columnar outflow portion 28 is formed in this order from the upstream side to the downstream side in the gas flow direction.
  • the inflow portion 22 is formed in a part of the first insertion portion 14 and the connecting portion 18, and the funnel whose diameter is larger on the upstream side in the gas flow direction than on the downstream side in the gas flow direction. It is said to be in shape. Instead of the funnel-shaped inflow portion 22, a cylindrical inflow portion having a constant inner diameter with respect to the gas flow direction may be provided.
  • the accommodating portion 46 is arranged in the first arrangement portion 24, and the first arrangement portion 24 is formed in a part of the connecting portion 18 and a part of the second insertion portion 16.
  • the first arrangement portion 24 has a columnar shape having a larger diameter than the small diameter portion of the inflow portion 22.
  • a stepped surface 18c facing the downstream side in the gas flow direction is formed between the inflow portion 22 and the first arrangement portion 24, and a stepped portion is formed on the stepped surface 18c.
  • the downstream side throttle portion 60 is arranged in the second arrangement portion 26, and the second arrangement portion 26 is formed in a part of the second insertion portion 16.
  • a concave-convex portion (reference numeral omitted) for preventing the downstream narrowing portion 60 from coming out to the downstream side in the gas flow direction is provided in the circumferential direction. It is formed by extending to.
  • the outflow portion 28 is formed in a part of the second insertion portion 16, and has a columnar shape having a larger diameter than the flow path 20, the first arrangement portion 24, and the second arrangement portion 26.
  • each component arranged in the flow path 20 when each component arranged in the flow path 20 is assembled to the main body 12, each component is assembled inside the main body 12 from the outflow portion 28 side.
  • the accommodating portion 46 is arranged in the first arrangement portion 24 of the flow path 20. As shown in FIGS. 1 and 6, the accommodating portion 46 is divided into an upstream accommodating portion 48 on the upstream side in the gas flow direction and a downstream accommodating portion 50 on the downstream side in the gas flow direction. ..
  • the upstream accommodating portion 48 is integrally formed of a resin material, and as shown in FIG. 5, a cylindrical portion, a cylindrical portion 48a, and a flange formed on the upstream portion of the cylindrical portion 48a in the gas flow direction.
  • the outer peripheral surface of the cylindrical portion 48a is in contact with the inner peripheral surface 12a of the main body 12 forming the first arrangement portion 24 in the radial direction of the pipe joint 10 (hereinafter referred to as “pipe radial direction”). ..
  • the flange portion 48b is provided so as to narrow the opening of the portion of the cylindrical portion 48a on the upstream side in the gas flow direction, and is in contact with the stepped surface 18c of the connecting portion 18 in the gas flow direction.
  • the flange portion 48b is formed with a corner portion 42 (see FIG. 2) formed in the valve body 40 and in contact with the conical surface 40a described later so as to face the flow path 20.
  • the corner portion 42 is an example of a contact portion.
  • the downstream accommodating portion 50 is integrally formed of a resin material, and is connected to the cylindrical cylindrical portion 50a and the inner peripheral surface of the cylindrical portion 50a as shown in FIG. 5, in the circumferential direction of the cylindrical portion 50a. It has four ribs 50b arranged at similar intervals.
  • the cross-sectional shape of the cylindrical portion 50a is the same as the cross-sectional shape of the cylindrical portion 48a, and the length of the cylindrical portion 50a in the gas flow direction is longer than the length of the cylindrical portion 48a in the gas flow direction. Then, the outer peripheral surface of the cylindrical portion 50a is in contact with the inner peripheral surface 12a of the main body 12 forming the first arrangement portion 24 in the pipe radial direction.
  • the plate surface of the rib 50b faces the circumferential direction of the cylindrical portion 50a, and is L-shaped when viewed from the circumferential direction of the cylindrical portion 50a.
  • the rib 50b has a base portion 52a extending in the gas flow direction and a support portion 52b protruding in the pipe radial direction from a portion of the base portion 52a on the downstream side in the gas flow direction.
  • the support portion 52b supports the end portion of the urging spring 36 on the downstream side in the flow direction.
  • Upstream throttle portion 30, valve body 40 The upstream throttle portion 30 and the valve body 40 are integrally formed of a resin material, and are accommodated inside the accommodating portion 46 as shown in FIGS. 1 and 5.
  • the upstream drawing portion 30 has a cylindrical shape extending in the gas flow direction, and an upstream drawing hole 30a having a circular cross section is formed inside.
  • the "throttle hole” is a through hole in which the flow path area is smaller than the immediately preceding flow path area, for example, the flow path area is 50% or less as compared with the immediately preceding flow path area. It is a through hole that limits the flow rate of gas passing through.
  • valve body 40 has a collar shape formed on the upstream side portion of the upstream throttle portion 30 in the gas flow direction, and the outer shape of the valve body 40 has a circular shape when viewed from the gas flow direction. Further, the valve body 40 is formed with a conical surface 40a facing upstream in the gas flow direction.
  • the valve body 40 has a guide portion 34 whose base end portion is connected to the conical surface 40a and extends upstream in the gas flow direction.
  • the guide portions 34 are arranged at the same intervals in the circumferential direction of the upstream side throttle portion 30. Then, the guide portion 34 comes into contact with the inner peripheral surface 12a of the main body 12 forming the inflow portion 22 in the pipe radial direction, so that the upstream side throttle portion 30 and the valve body 40 are guided in the gas flow direction. There is. In other words, the guide portion 34 makes the upstream throttle portion 30 and the valve body 40 movable in the gas flow direction.
  • the urging spring 36 is a compression coil spring, which is housed inside the accommodating portion 46 and extends in the gas flow direction as shown in FIGS. 1 and 5. Further, a cylindrical upstream throttle portion 30 is inserted inside the urging spring 36. The urging spring 36 is sandwiched between the support portion 52b and the valve body 40 in the gas flow direction.
  • the urging spring 36 is an example of the urging portion.
  • the urging spring 36 urges the valve body 40 to the upstream side in the gas flow direction, so that the conical surface 40a of the valve body 40 becomes the corner portion 42 of the upstream accommodating portion 48, as shown in FIG. Pressed and the conical surface 40a comes into contact with the corner 42.
  • the distribution port 38 (see FIG. 4) formed between the corner portion 42 and the conical surface 40a is closed.
  • the urging spring 36 contracts due to the pressure of the gas transmitted to the urging spring 36 via the valve body 40.
  • the valve body 40 pushed by the flowing gas moves to the downstream side in the gas flow direction, and the upstream end of the base 52a of the rib 50b in the gas flow direction. Contact and stop.
  • the conical surface 40a of the valve body 40 is separated from the corner portion 42, and the flow port 38 through which the gas flows is opened.
  • valve body 40 that can move in the gas flow direction
  • the urging spring 36 that urges the valve body 40 to the upstream side in the gas flow direction
  • the support portion that supports the end portion of the urging spring 36.
  • a valve unit 44 that opens and closes the flow port 38 is configured to include 52b and a corner portion 42 that comes into contact with the conical surface 40a of the valve body 40 urged by the urging spring 36.
  • downstream drawing portion 60 is integrally formed of a resin material, and is arranged on the downstream side of the valve unit 44 and visually recognizable from the outside of the main body 12, as shown in FIGS. 1 and 5. There is.
  • the downstream drawing portion 60 has a cylindrical outer peripheral portion 60a that meshes with the inner peripheral surface 12a of the main body 12 and a wall portion 60b in which the downstream drawing hole 62 is formed. Then, in the outer peripheral portion 60a of the downstream side throttle portion 60, the portion on the upstream side in the gas flow direction is in contact with the accommodating portion 46 in the gas flow direction.
  • the outer peripheral portion 60a is formed with an uneven portion (reference numeral omitted) that meshes with the inner peripheral surface 12a of the main body 12 extending in the circumferential direction. Further, the wall portion 60b extends so as to expand in the radial direction and is coupled to the outer peripheral portion 60a, and the wall portion 60b is formed with a circular downstream drawing hole 62 when viewed from the gas flow direction. Further, the hole diameter of the downstream side throttle hole 62 is larger than the hole diameter of the upstream side throttle hole 30a formed in the upstream side throttle portion 30.
  • the downstream throttle hole 62 limits the flow rate of gas passing through the flow port 38 opened by the valve unit 44.
  • the downstream throttle unit 60 functions as a flow rate limiting unit that limits the flow rate of the gas passing through the flow port 38 opened by the valve unit 44. Further, the valve unit 44 is prevented from coming out from the main body 12 to the downstream side in the gas flow direction by the downstream side throttle portion 60.
  • downstream throttle portion 60 since the downstream throttle portion 60 is separated from the main body 12, only the hole diameter is larger than the hole diameter d1 of the downstream throttle hole 62 of the downstream throttle portion 60.
  • a downstream throttle portion 260 having a different performance of limiting the passing flow rate from the downstream throttle portion 60 due to the formation of the 262 can be attached to the main body 12 (see FIG. 9).
  • the pipe joint 210 to which the downstream drawing portion 260 shown in FIG. 9 is attached is different from the pipe joint 10 in the performance of limiting the passing flow rate.
  • the downstream throttle portion 60 has a performance of limiting the passing flow rate by forming the downstream throttle hole 362 having a hole diameter d3 that is larger than the hole diameter d2 of the downstream throttle hole 262 of the downstream throttle portion 260.
  • a downstream side diaphragm 360 different from 260 can be attached to the main body 12 (see FIG. 10).
  • the pipe joint 310 to which the downstream throttle portion 360 shown in FIG. 10 is attached is different from the pipe joints 10 and 210 in the performance of limiting the passing flow rate.
  • a pipe fitting set 200 having various types of pipe fittings 10, 210, and 310.
  • the horizontal axis of the graph shown in FIG. 7 shows the pressure of the gas flowing into the pipe joint 10
  • the vertical axis shows the flow rate of the gas passing through the pipe joint 10.
  • the valve body 40 when the flow rate of the gas flowing from the first pipe 116a into the pipe joint 10 exceeds the passing flow rate limited by the upstream throttle hole 30a, the valve body 40 is set as shown in FIGS. 3 and 4.
  • the pressure of the gas transmitted to the urging spring 36 via the urging spring 36 causes the urging spring 36 to contract.
  • the valve body 40 pushed by the flowing gas moves to the downstream side in the gas flow direction and stops in contact with the upstream end of the base portion 52a of the rib 50b in the gas flow direction. Then, the conical surface 40a of the valve body 40 is separated from the corner portion 42, and the flow port 38 through which the gas flows is opened.
  • the gas having a flow rate exceeding the passing flow rate limited by the flow side throttle hole 30a passes through the inflow portion 22, the upstream side throttle hole 30a and the flow port 38, the downstream side throttle hole 62, and the outflow portion 28 in this order. Flow (see arrow in the figure).
  • the downstream throttle hole 62 whose hole diameter is larger than the hole diameter of the upstream throttle hole 30a limits the passing flow rate of the gas up to the flow rate L2 or less shown in the graph of FIG.
  • the flow rate of gas passing through the pipe joint 10 is restricted by the downstream throttle hole 62 until the flow rate of gas passing through the pipe joint 10 exceeds L1 and is L2 or less.
  • the passing flow rate is restricted by the upstream side throttle hole 30a in the small flow rate region, and in the large flow rate region, the passing flow rate is limited.
  • the passing flow rate is limited by the downstream throttle hole 62.
  • downstream throttle portion 60 in which the downstream throttle hole 62 is formed is separated from the main body 12, a plurality of types of downstream throttle portions having different diameters of the downstream throttle holes are prepared. As a result, it is possible to prepare a plurality of types of pipe joints having different performances for limiting the passing flow rate of gas in a large flow rate region.
  • the hole diameter of the downstream side throttle hole 62 is larger than the hole diameter of the upstream side throttle hole 30a. Therefore, in the initial small flow rate region where the gas starts to flow into the pipe joint 10, the passing flow rate of the gas is restricted by the upstream throttle hole 30a, and in the large flow rate region where the flow rate of the gas flowing into the pipe joint 10 increases, the downstream side.
  • the gas passage flow rate can be limited by the side throttle hole 62.
  • downstream throttle portion 60 is arranged on the downstream side of the valve unit 44 in the gas flow direction and is visible from the outside of the main body 12. Therefore, for example, when there are a plurality of types of downstream throttle portions having different diameters of the downstream throttle holes, the pipe joint 10 is visually inspected from the downstream side in the gas flow direction, so that the downstream throttle portion is erroneously assembled. Can be confirmed. In other words, by visually observing the pipe joint 10 from the downstream side in the gas flow direction, it can be confirmed that the genuine product of the downstream side throttle portion is attached.
  • valve unit 44 is prevented from coming out from the main body 12 to the downstream side in the gas flow direction by the downstream side throttle portion 60. In this way, it is possible to prevent the valve unit 44 from coming out from the main body 12 to the downstream side in the gas flow direction without using a dedicated component for suppressing the valve unit 44 from coming out from the main body 12.
  • a pipe fitting set 200 including 10, 210 and 310 can be obtained.
  • a pipe joint set 200 equipped with the above can be obtained.
  • the present invention has been described in detail with respect to a specific embodiment, the present invention is not limited to such an embodiment, and various other embodiments are possible within the scope of the present invention. It is obvious to the trader.
  • the upstream throttle portion 30 and the valve body 40 are integrally formed, but they may be separate bodies.
  • one upstream diaphragm hole 30a is formed in the upstream diaphragm portion 30, but a plurality of upstream diaphragm holes 30a may be formed.
  • one downstream throttle hole 62 is formed in the downstream throttle portion 60, a plurality of downstream throttle holes 62 may be formed.
  • gas is used as an example of the fluid, but any fluid may be used as long as it is a gas or a liquid.
  • the color may be changed between a plurality of types of downstream side throttle portions 60, 260, 360. As a result, it is easy to confirm from the outside which downstream side throttle portion is attached to the main body 12.
  • the 200 pipe joint set 200 includes three types of pipe joints 10, 210, and 310, but may be two types or four or more types. (Explanation of sign)
  • Pipe fitting 12 Main body 20 Flow path 30 Upstream side squeezing part 30a Upstream side squeezing hole 36 Biasing spring (example of urging part) 38 Distribution port 40 Valve body 42 Corner (example of contact) 44 Valve unit 52b Support part 60 Downstream side throttle part 60a Outer circumference 60b Wall part 62 Downstream side throttle hole 200 Pipe fitting set 210 Pipe fitting 260 Downstream side throttle part 262 Downstream side throttle hole 310 Pipe fitting 360 Downstream side throttle part 362 Downstream side Aperture hole

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Safety Valves (AREA)
  • Joints That Cut Off Fluids, And Hose Joints (AREA)
  • Pipe Accessories (AREA)
  • Check Valves (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Lift Valve (AREA)

Abstract

弁ユニットによって開放された流通口を通過した流体の通過流量を制限する構成を得ることができる管継手、及び管継手セットを得る。 上流側絞り部の上流側絞り孔は、流体の通過流量を制限する。弁ユニットは、上流側絞り孔で制限される通過流量を超えた流量の流体が流れると、流路において閉塞されていた流通口を開放する。弁ユニットの下流側に配置された下流側絞り部の下流側絞り孔は、流通口を通過した流体の通過流量を制限する。

Description

管継手、及び管継手セット
 本発明は、管継手、及び管継手セットに関する。
 特許文献1(特開2004-116733号公報)に記載のバルブ内蔵コネクタ(管継手)では、バルブ内蔵コネクタのコネクタハウジングを、軸方向一方側のチューブ接続部と、軸方向他方側のパイプ挿入部と、チューブ接続部及びパイプ挿入部の間のバルブ収容部と、から一体的に構成する。
 さらに、バルブ収容部を十分大きな内径を有するように形成しておき、バルブ収容部内に、バルブ本体と、ハウジング内面に当接するようにバルブ本体を軸方向一方側に付勢する圧縮コイルスプリングとを収容する。
特開2004-116733号公報
 従来の管継手は、流体の通過流量を制限する絞り孔が形成された絞り部と、絞り孔で制限される通過流量を超えた流量が流れると、流路の流通口を開放する弁ユニットとを備えている。ここで、流体の流れ方向において絞り部の下流側には、弁ユニットによって開放された流通口を通過した流体の通過流量を制限する流量制限部は設けられていなかった。
 本発明の課題は、弁ユニットによって開放された流通口を通過した流体の通過流量を制限する構成を得ることである。
 本発明の第1態様に係る管継手は、流体が流れる流路が内部に形成された本体と、前記本体の内部で、流体の通過流量を制限する上流側絞り孔が形成された上流側絞り部と、前記上流側絞り孔で制限される通過流量を超えた流量の流体が流れると、前記流路において閉塞されていた流通口を開放する弁ユニットと、流体の流れ方向において、前記弁ユニットの下流側に配置され、前記流通口を通過した流体の通過流量を制限する下流側絞り孔が形成された下流側絞り部と、を備えることを特徴とする。
 上記構成によれば、上流側絞り部に形成された上流側絞り孔が、管継手に流入した流体の通過流量を制限する。さらに、上流側絞り孔で制限される通過流量を超えた流量の流体が管継手に流れると、閉塞されていた流通口を弁ユニットが開放する。
 また、流体の流れ方向において弁ユニットの下流側に配置された下流側絞り部の下流側絞り孔は、弁ユニットによって開放された流通口を通過した流体の通過流量を制限する。
 このように、流体の流れ方向において弁ユニットの下流側に下流側絞り部を配置することで、弁ユニットによって開放された流通口を通過した流体の通過流量を制限する構成を得ることができる。
 上記態様において、前記下流側絞り孔の孔径は、前記上流側絞り孔の孔径と比して大きいことを特徴とする。
 上記構成によれば、下流側絞り孔の孔径は、上流側絞り孔の孔径と比して大きい。このため、流体が管継手に流入し始める初期の小流量領域では、上流側絞り孔によって流体の通過流量を制限し、管継手に流入する流体の流量が増える大流量領域では、下流側絞り孔によって流体の通過流量を制限することができる。
 上記態様において、前記下流側絞り部は、前記流れ方向において前記弁ユニットの下流側で、かつ、前記本体の外部から目視可能に配置されていることを特徴とする。
 上記構成によれば、下流側絞り部は、流れ方向において弁ユニットの下流側で、かつ、本体の外部から目視可能に配置されている。このため、流体の流れ方向の下流側から管継手を目視することで、下流側絞り部の正規品が本体に取り付けられていることを確認することができる。
 上記態様において、前記弁ユニットは、前記流れ方向に移動可能とされる弁体と、前記弁体を前記流れ方向の上流側に向けて付勢する付勢部と、前記付勢部の前記流れ方向の下流側の端部を支持する支持部と、前記流路に臨んでおり、前記付勢部によって付勢された前記弁体と接触する接触部と、を備え、前記弁ユニットは、前記下流側絞り部によって前記本体から前記流れ方向の下流側へ抜け出るのが抑制されていることを特徴とする。
 上記構成によれば、弁ユニットは、下流側絞り部によって前記本体から前記流れ方向の下流側へ抜け出るのが抑制されている。このように、弁ユニットが本体から抜け出るのを抑制する専用部品を用いることなく、弁ユニットが本体から流体の流れ方向の下流側へ抜け出るのを抑制することができる。
 本発明の第5態様に係る管継手セットは、流体が流れる流路が内部に形成された本体と、前記本体の内部で、流体の通過流量を制限する上流側絞り孔が形成された上流側絞り部と、前記上流側絞り孔で制限される通過流量を超えた流量の流体が流れると、前記流路において閉塞されていた流通口を開放する弁ユニットと、流体の流れ方向において、前記弁ユニットの下流側に配置され、前記流通口を通過した流体の通過流量を制限する流量制限部と、を有する管継手と、前記流通口を通過した流体の流量を制限する下流側絞り孔が形成された壁部及び前記壁部と結合し前記本体の内周面と噛み合う外周部を有し、前記下流側絞り孔の孔径が互いに異なることで通過流量を制限する性能が異なる複数種類の下流側絞り部と、を備え、前記複数種類の下流側絞り部のそれぞれは、前記流量制限部として機能させることが可能なことを特徴とする。
 上記構成によれば、孔径が互いに異なることで通過流量を制限する性能が異なる複数種類の下流側絞り部のそれぞれが、流通口を通過した流体の通過流量を制限する流量制限部として機能する。これにより、共通の本体に対して、孔径の異なる複数種類の下流側絞り部を組み合わせることで、通過流量を制限する性能が異なる複数種類の管継手が得られる。
 本発明によれば、弁ユニットによって開放された流通口を通過した流体の通過流量を制限する構成を得ることができる。
本発明の実施形態に係る管継手を示した断面図である。 本発明の実施形態に係る管継手を示し、流体の流れを追加した断面図である。 本発明の実施形態に係る管継手を示し、流体の流れを追加した断面図である。 本発明の実施形態に係る管継手を示し、流体の流れを追加した断面図である。 本発明の実施形態に係る管継手に備えられた上流側絞り部、及び下流側絞り部等を示した分解斜視図である。 本発明の実施形態に係る管継手を示した分解斜視図である。 本発明の実施形態に係る管継手の性能をグラフで示した図面である。 本発明の実施形態に係る管継手が採用された燃料給油システムを示した概略構成図である。 本発明の実施形態に係る管継手を示した断面図である。 本発明の実施形態に係る管継手を示した断面図である。
 本発明の実施形態に係る管継手、管継手セットの一例を、図1~図10を用いて説明する。なお、各図中に示す矢印Rは管継手の径方向を示し、矢印Wは管継手の長手方向であって、流体の一例である燃料ガスの流れ方向を示す。先ず、この管継手が用いられる燃料給油システム100について説明する。
 (管継手10が用いられる燃料給油システム100)
 図8に示されるように、管継手10は、燃料給油システム100の一部に用いられる。燃料給油システム100は、燃料タンク110と、燃料を燃料タンク110へ供給するためのフィラーパイプ114と、燃料タンク110内の燃料の蒸気である燃料ガスをフィラーパイプ114に戻す戻し管116とを備えている。
 さらに、戻し管116は、燃料タンク110に接続されている第一管116aと、フィラーパイプ114に接続されている第二管116bとを有している。そして、管継手10は、第一管116aと第二管116bとを結合するために用いられている。なお、図8に示す矢印UPは、重力方向の上方を示す。
 この構成において、燃料タンク110内で燃料ガスの圧力が高くなった場合には、フィラーパイプ114を通して燃料を燃料タンク110に供給することができなくなる。このため、燃料タンク110内の燃料ガスが、燃料タンク110から戻し管116を通ってフィラーパイプ114に戻される。これより、燃料タンク110内で燃料ガスの圧力が高くなった場合でも、フィラーパイプ114を通して燃料を燃料タンク110へ供給することができる。
 ここで、管継手10を流れる燃料ガスの通過流量を管継手10が制御することで、燃料タンク110内の燃料ガスの圧力が制御されるようになっている。なお、管継手10が管継手10を流れる燃料ガスの通過流量を制御する構成については、詳細を後述する。
 (管継手10の全体構成)
 管継手10は、図1に示されるように、流体の一例である燃料ガスの流れ方向(以下「ガス流れ方向」)に延びる流路20が内部に形成された本体12と、流れる燃料ガス(以下「ガス」)の通過流量を制限する上流側絞り孔30aが形成された上流側絞り部30と、ガス流れ方向に移動可能とされる弁体40と、弁体40をガス流れ方向の上流側へ付勢する付勢ばね36と、を備えている。さらに、管継手10は、付勢ばね36を支持する支持部52bが形成されると共に上流側絞り部30、弁体40及び付勢ばね36を内部に収容する収容部46を備えている。また、管継手10は、弁体40がガス流れ方向の下流側へ移動することで開放された流通口38(図4参照)を通過したガスの通過流量を制限する下流側絞り孔62が形成された下流側絞り部60を備えている。
 〔本体12〕
 本体12は、樹脂材料で一体的に形成されており、図1、図6に示されるように、内部にガス流れ方向に延びている流路20が形成されている。また、本体12は、第一管116aの端部に挿入される第一挿入部14と、第二管116bの端部が挿入される第二挿入部16と、第一挿入部14と第二挿入部16とを連結する連結部18とを有している。そして、第一挿入部14、連結部18、及び第二挿入部16は、この順番で、ガス流れ方向の上流側(図中左側)から下流側(図中右側)へ並んでいる。
 -第一挿入部14、第二挿入部16、連結部18-
 第一挿入部14は、ガス流れ方向に延びている円筒状とされ、第一挿入部14の外周面には、第一管116aが抜けるのを防止するための凹凸部(符号省略)が周方向に延びて形成されている。
 第二挿入部16は、ガス流れ方向に延びている円筒状とされ、第二挿入部16の外周面には、第二管116bが抜けるのを防止するための凹凸部(符号省略)が周方向に延びて形成されている。
 連結部18は、ガス流れ方向に延びている円筒状とされている。さらに、連結部18の第一挿入部14側の部分には、第一管116aの端が突き当たる大径化された突当部18aが形成され、連結部18の第二挿入部16側の部分には、第二管116bの端が突き当たる大径化された突当部18bが形成されている。
 -流路20-
 本体12に形成された流路20には、漏斗状の流入部22、収容部46が配置されている第一配置部24、下流側絞り部60が配置されている第二配置部26、及び円柱状の流出部28が、ガス流れ方向の上流側から下流側へこの順番で形成されている。
 流入部22は、第一挿入部14及び連結部18の一部に形成されており、ガス流れ方向の上流側の部分がガス流れ方向の下流側の部分と比して大径化された漏斗状とされている。なお、漏斗状の流入部22の代わりに、ガスの流れ方向に対して内径が一定である円筒状の流入部を設けることもできる。
 第一配置部24には、前述したように収容部46が配置されており、第一配置部24は、連結部18の一部、及び第二挿入部16の一部に形成されている。この第一配置部24は、流入部22の小径部分と比して大径化された円柱状とされている。そして、流入部22と第一配置部24との間には、ガス流れ方向の下流側を向いた段差面18cが形成されており、この段差面18cには、段部が形成されている。
 第二配置部26には、前述したように下流側絞り部60が配置されており、第二配置部26は、第二挿入部16の一部に形成されている。この第二配置部26を形成している本体12の内周面12aには、下流側絞り部60がガス流れ方向の下流側へ抜けるのを防止するための凹凸部(符号省略)が周方向に延びて形成されている。
 流出部28は、第二挿入部16の一部に形成されており、流路20、第一配置部24及び第二配置部26と比して大径化された円柱状とされている。
 この構成において、流路20に配置される各部品を本体12に組み付ける場合には、各部品は、流出部28側から、本体12の内部に組み付けられる。
 〔収容部46〕
 収容部46は、前述したように、流路20の第一配置部24に配置されている。収容部46は、図1、図6に示されるように、ガス流れ方向の上流側の上流収容部48と、ガス流れ方向の下流側の下流収容部50とに分割されるようになっている。
 -上流収容部48-
 上流収容部48は、樹脂材料で一体的に形成されており、図5に示されるように、円筒状と円筒部48aと、円筒部48aのガス流れ方向の上流側の部分に形成されたフランジ部48bとを有し、円筒部48aの外周面が第一配置部24を形成する本体12の内周面12aと、管継手10の径方向(以下「管径方向」)で接触している。さらに、フランジ部48bは、円筒部48aのガス流れ方向の上流側の部分の開口を狭くするように設けられており、連結部18の段差面18cと、ガス流れ方向で接触している。さらに、フランジ部48bには、弁体40に形成された後述する錐面40aと接触する角部42(図2参照)が、流路20に臨むように形成されている。この角部42は、接触部の一例である。
 -下流収容部50-
 下流収容部50は、樹脂材料で一体的に形成されており、図5に示されるように、円筒状の円筒部50aと、円筒部50aの内周面に連結され、円筒部50aの周方向に同様の間隔で配置された4個のリブ50bと有している。
 円筒部50aの断面形状は、円筒部48aの断面形状と同様されており、円筒部50aのガス流れ方向の長さは、円筒部48aのガス流れ方向の長さと比して長くされている。そして、円筒部50aの外周面が第一配置部24を形成する本体12の内周面12aと、管径方向で接触している。
 リブ50bは、板面が円筒部50aの周方向を向いており、円筒部50aの周方向から見てL字状とされている。リブ50bは、ガス流れ方向に延びている基部52aと、基部52aにおいてガス流れ方向の下流側の部分から、管径方向に突出する支持部52bとを有している。この支持部52bが、付勢ばね36の流れ方向の下流側の端部を支持している。
 この構成において、上流収容部48と下流収容部50とが組み合わされた状態で、収容部46の内部に上流側絞り部30等が配置される空間が形成される。
 〔上流側絞り部30、弁体40〕
 上流側絞り部30と弁体40とは、樹脂材料で一体的に形成されており、図1、図5に示されるように、収容部46の内部に収容されている。
 -上流側絞り部30-
 上流側絞り部30は、ガス流れ方向に延びる円筒状とされ、内部に断面円状の上流側絞り孔30aが形成されている。ここで、「絞り孔」とは、流路面積が直前の流路面積と比して小さくなる貫通孔、例えば、流路面積が直前の流路面積と比して50〔%〕以下となる貫通孔であって、ガスの通過流量を制限する貫通孔である。
 -弁体40-
 弁体40は、上流側絞り部30においてガス流れ方向の上流側の部分に形成された鍔状とされ、弁体40の外形は、ガス流れ方向から見て円状とされている。さらに、弁体40には、ガス流れ方向の上流側を向くと共に錐状の錐面40aが形成されている。
 さらに、弁体40は、錐面40aに基端部が連結され、ガス流れ方向の上流側に延びる案内部34を有している。案内部34は、上流側絞り部30の周方向に同様の間隔で配置されている。そして、案内部34が、流入部22を形成する本体12の内周面12aと管径方向で接触することで、上流側絞り部30及び弁体40がガス流れ方向に案内するようになっている。換言すれば、案内部34によって、上流側絞り部30及び弁体40は、ガス流れ方向に移動可能とされている。
 〔付勢ばね36〕
 付勢ばね36は、圧縮コイルスプリングであって、図1、図5に示されるように、収容部46の内部に収容され、ガス流れ方向に延びている。さらに、付勢ばね36の内部に円筒状の上流側絞り部30が挿入されている。そして、付勢ばね36は、ガス流れ方向において、支持部52bと弁体40とに挟まれている。付勢ばね36は、付勢部の一例である。
 この構成において、付勢ばね36が弁体40をガス流れ方向上流側に付勢することで、図2に示されるように、弁体40の錐面40aが上流収容部48の角部42に押し付けられ、錐面40aが角部42と接触する。この状態で、角部42と錐面40aとの間に形成される流通口38(図4参照)が閉塞されている。
 これに対して、ガスの流量が上流側絞り孔30aで制限される通過流量を超えると、弁体40を介して付勢ばね36に伝達したガスの圧力によって、付勢ばね36が縮む。付勢ばね36が縮むことで、図4に示されるように、流れるガスに押された弁体40は、ガス流れ方向の下流側へ移動し、リブ50bの基部52aのガス流れ方向の上流端と接触して停止する。これにより、弁体40の錐面40aが角部42と離間して、ガスが流れる流通口38が開放される。
 このように、ガス流れ方向に移動可能とされる弁体40と、弁体40をガス流れ方向の上流側に付勢する付勢ばね36と、付勢ばね36の端部を支持する支持部52bと、付勢ばね36によって付勢された弁体40の錐面40aと接触する角部42とを含んで、流通口38を開閉する弁ユニット44が構成されている。
 〔下流側絞り部60〕
 下流側絞り部60は、樹脂材料で一体的に形成されており、図1、図5に示されるように、弁ユニット44の下流側で、かつ、本体12の外部から目視可能に配置されている。
 下流側絞り部60は、本体12の内周面12aと噛み合う円筒状の外周部60aと、下流側絞り孔62が形成された壁部60bとを有している。そして、下流側絞り部60の外周部60aにおいてガス流れ方向の上流側の部分が、収容部46とガス流れ方向で接触している。
 外周部60aには、本体12の内周面12aと噛み合う凹凸部(符号省略)が周方向に延びて形成されている。さらに、壁部60bは、径方向に広がるように延びて外周部60aに結合されており、壁部60bには、ガス流れ方向から見て円状の下流側絞り孔62が形成されている。また、この下流側絞り孔62の孔径は、上流側絞り部30に形成された上流側絞り孔30aの孔径と比して大きくされている。
 この構成において、下流側絞り孔62は、弁ユニット44によって開放された流通口38を通過したガスの通過流量を制限する。このように、下流側絞り部60は、弁ユニット44によって開放された流通口38を通過したガスの通過流量を制限する流量制限部として機能している。さらに、弁ユニット44は、下流側絞り部60によって本体12からガス流れ方向の下流側へ抜け出るのが抑制されている。
 一方、下流側絞り部60が本体12に対して別体とされることで、下流側絞り部60の下流側絞り孔62の孔径d1に対して孔径だけを大きくした孔径d2の下流側絞り孔262が形成されることで通過流量を制限する性能が下流側絞り部60に対して異なる下流側絞り部260を本体12に取り付けることができる(図9参照)。この場合には、図9に示す下流側絞り部260が取り付けられた管継手210は、管継手10とは通過流量を制限する性能が異なる。
 さらに、下流側絞り部260の下流側絞り孔262の孔径d2に対して孔径だけを大きくした孔径d3の下流側絞り孔362が形成されることで通過流量を制限する性能が下流側絞り部60、260に対して異なる下流側絞り部360を本体12に取り付けることができる(図10参照)。この場合には、図10に示す下流側絞り部360が取り付けられた管継手310は、管継手10、210とは通過流量を制限する性能が異なる。
 このように、下流側絞り部60、260、360を本体12に対して別体とすることで、下流側絞り孔62、262、362の孔径が異なることで通過流量を制限する性能が異なる複数種類の管継手10、210、310を備えた管継手セット200となる。
 (作用)
 第一管116aから管継手10に流入するガスの流量が、上流側絞り孔30aで制限される通過流量以下の場合には、図2に示されるように、付勢ばね36の付勢力によって付勢されている弁体40は、管継手10に流入するガスの圧力によって移動しない。このため、弁体40の錐面40aと上流収容部48の角部42との接触が維持され、流通口38(図4参照)が閉塞される。これにより、流入したガスは、流入部22、上流側絞り孔30a、下流側絞り孔62、及び流出部28をこの順番で流れる(図中の矢印参照)。
 ここで、管継手10に流入するガスの圧力と管継手10を通過するガスの流量との関係について説明する。図7に示すグラフの横軸は、管継手10に流入するガスの圧力を示し、縦軸は、管継手10を通過するガスの流量を示す。圧力がP1以下で、弁体40の錐面40aと、上流収容部48の角部42との接触は維持されており、上流側絞り孔30aによって、ガスの通過流量が制限される。このグラフからわかるように、管継手10を通過するガスの流量がL1以下まで、上流側絞り孔30aによってガスの通過流量が制限される。
 一方、第一管116aからガスが管継手10に流入するガスの流量が、上流側絞り孔30aで制限される通過流量を超えると、図3、図4に示されるように、弁体40を介して付勢ばね36に伝達したガスの圧力によって、付勢ばね36が縮む。付勢ばね36が縮むことで、流れるガスに押された弁体40は、ガス流れ方向の下流側へ移動し、リブ50bの基部52aのガス流れ方向の上流端と接触して停止する。そして、弁体40の錐面40aが角部42と離間して、ガスが流れる流通口38が開放される。
 これにより、流側絞り孔30aで制限される通過流量を超えた流量のガスは、流入部22、上流側絞り孔30a及び流通口38、下流側絞り孔62、並びに流出部28をこの順番で流れる(図中の矢印参照)。
 そして、孔径が上流側絞り孔30aの孔径と比して大きくされた下流側絞り孔62によって、図7のグラフで示す流量L2以下まで、ガスの通過流量が制限される。このグラフからわかるように、管継手10を通過するガスの流量がL1を超えてL2以下まで、下流側絞り孔62によってガスの通過流量が制限される。
 このように、下流側絞り孔62の孔径を上流側絞り孔30aの孔径と比して大きくすることで、小流量領域では、上流側絞り孔30aによって通過流量が制限され、大流量領域では、下流側絞り孔62によって通過流量が制限される。
 (まとめ)
 以上説明したように、上流側絞り孔30aに対してガス流れ方向の下流側に、下流側絞り孔62を設けることで。弁ユニット44によって開放された流通口38を通過したガスの通過流量を制限することができる。
 また、下流側絞り孔62が形成された下流側絞り部60が、本体12に対して別体とされることで、下流側絞り孔の孔径のみが異なる複数種類の下流側絞り部を準備することで、大流量領域でのガスの通過流量を制限する性能が異なる複数種類の管継手を準備することができる。
 また、下流側絞り孔62の孔径は、上流側絞り孔30aの孔径と比して大きい。このため、ガスが管継手10に流入し始める初期の小流量領域では、上流側絞り孔30aによってガスの通過流量を制限し、管継手10に流入するガスの流量が増える大流量領域では、下流側絞り孔62によってガスの通過流量を制限することができる。
 また、下流側絞り部60は、ガス流れ方向において、弁ユニット44の下流側で、かつ、本体12の外部から目視可能に配置されている。このため、例えば、下流側絞り孔の孔径のみが異なる複数種類の下流側絞り部が存在する場合に、ガス流れ方向の下流側から管継手10を目視することで、下流側絞り部の誤組を確認することができる。換言すれば、ガス流れ方向の下流側から管継手10を目視することで、下流側絞り部の正規品が取り付けられていることを確認することができる。
 また、弁ユニット44は、下流側絞り部60によって本体12からガス流れ方向の下流側へ抜け出るのが抑制されている。このように、弁ユニット44が本体12から抜け出るのを抑制する専用部品を用いることなく、弁ユニット44が本体12からガス流れ方向の下流側へ抜け出るのを抑制することができる。
 また、下流側絞り部60、260、360を本体12に対して別体とすると、下流側絞り孔62、262、362の孔径を異なることで通過流量を制限する性能が異なる複数種類の管継手10、210、310を備えた管継手セット200を得ることができる。換言すれば、共通の本体12に対して、孔径の異なる複数種類の下流側絞り部60、260、360を組み合わせることで、通過流量を制限する性能が異なる複数種類の管継手10、210、310を備えた管継手セット200を得ることができる。さらに換言すれば、下流側絞り部60、260、360を本体12に対して別体とすることで、求められる通過流量を制限する性能に基づいて、複数種類の管継手10、210、310から一の管継手を選ぶことができる。
 なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、上記実施形態では、上流側絞り部30と弁体40とは、一体的に形成されたが、別体であってもよい。
 また、上記実施形態では、上流側絞り孔30aは、上流側絞り部30に1個形成されたが、複数個形成されてもよい。さらに、下流側絞り孔62は、下流側絞り部60に1個形成されたが、複数個形成されてもよい。
 また、上記実施形態では、流体の一例としてガスを用いて説明したが、流体であれば、気体でもよく液体でもよい。
 また、上記実施形態では、特に説明しなかったが、複数種類の下流側絞り部60、260、360間で、色を変えてもよい。これにより、どの下流側絞り部が本体12に取り付けられているかが、外部から容易に確認される。
 また、上記実施形態では、200 管継手セット200は、3種類の管継手10、210、310を備えたが、2種類であってもよく、4種類以上であってもよい。
(符号の説明)
10  管継手
12  本体
20  流路
30  上流側絞り部
30a 上流側絞り孔
36  付勢ばね(付勢部の一例)
38  流通口
40  弁体
42  角部(接触部の一例)
44  弁ユニット
52b 支持部
60  下流側絞り部
60a 外周部
60b 壁部
62  下流側絞り孔
200 管継手セット
210 管継手
260 下流側絞り部
262 下流側絞り孔
310 管継手
360 下流側絞り部
362 下流側絞り孔

Claims (5)

  1.  流体が流れる流路が内部に形成された本体と、
     前記本体の内部で、流体の通過流量を制限する上流側絞り孔が形成された上流側絞り部と、
     前記上流側絞り孔で制限される通過流量を超えた流量の流体が流れると、前記流路において閉塞されていた流通口を開放する弁ユニットと、
     流体の流れ方向において、前記弁ユニットの下流側に配置され、前記流通口を通過した流体の通過流量を制限する下流側絞り孔が形成された下流側絞り部と、
     を備える管継手。
  2.  前記下流側絞り孔の孔径は、前記上流側絞り孔の孔径と比して大きい請求項1に記載の管継手。
  3.  前記下流側絞り部は、前記流れ方向において前記弁ユニットの下流側で、かつ、前記本体の外部から目視可能に配置されている請求項1又は2に記載の管継手。
  4.  前記弁ユニットは、
     前記流れ方向に移動可能とされる弁体と、
     前記弁体を前記流れ方向の上流側に向けて付勢する付勢部と、
     前記付勢部の前記流れ方向の下流側の端部を支持する支持部と、
     前記流路に臨んでおり、前記付勢部によって付勢された前記弁体と接触する接触部と、を備え、
     前記弁ユニットは、前記下流側絞り部によって前記本体から前記流れ方向の下流側へ抜け出るのが抑制されている請求項1~3の何れか1項に記載の管継手。
  5.  流体が流れる流路が内部に形成された本体と、前記本体の内部で、流体の通過流量を制限する上流側絞り孔が形成された上流側絞り部と、前記上流側絞り孔で制限される通過流量を超えた流量の流体が流れると、前記流路において閉塞されていた流通口を開放する弁ユニットと、流体の流れ方向において、前記弁ユニットの下流側に配置され、前記流通口を通過した流体の通過流量を制限する流量制限部と、を有する管継手と、
     前記流通口を通過した流体の流量を制限する下流側絞り孔が形成された壁部及び前記壁部と結合し前記本体の内周面と噛み合う外周部を有し、前記下流側絞り孔の孔径が互いに異なることで通過流量を制限する性能が異なる複数種類の下流側絞り部と、を備え、
     前記複数種類の下流側絞り部のそれぞれは、前記流量制限部として機能させることが可能な管継手セット。
PCT/JP2020/005174 2019-06-20 2020-02-10 管継手、及び管継手セット WO2020255477A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2021015232A MX2021015232A (es) 2019-06-20 2020-02-10 Racor para tubos y conjunto de racores para tubos.
US17/612,819 US20220221094A1 (en) 2019-06-20 2020-02-10 Tube fitting and tube fitting set
CN202080043018.3A CN113950592A (zh) 2019-06-20 2020-02-10 管接头以及管接头组件
BR112021023877A BR112021023877A2 (pt) 2019-06-20 2020-02-10 Encaixe de tubo e conjunto de encaixes de tubo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019114625A JP2021001634A (ja) 2019-06-20 2019-06-20 管継手、及び管継手セット
JP2019-114625 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020255477A1 true WO2020255477A1 (ja) 2020-12-24

Family

ID=73995449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005174 WO2020255477A1 (ja) 2019-06-20 2020-02-10 管継手、及び管継手セット

Country Status (6)

Country Link
US (1) US20220221094A1 (ja)
JP (1) JP2021001634A (ja)
CN (1) CN113950592A (ja)
BR (1) BR112021023877A2 (ja)
MX (1) MX2021015232A (ja)
WO (1) WO2020255477A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549811B1 (ja) * 2018-10-02 2019-07-24 明彦 山口 レンジフードやファンの汚染防止技術

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650869U (ja) * 1979-09-27 1981-05-06
JP2003028010A (ja) * 2001-07-12 2003-01-29 Tokai Rubber Ind Ltd バルブ内蔵コネクタ
JP2004144251A (ja) * 2002-10-25 2004-05-20 Fuji Bc Engineering Co Ltd 流体機器及び流体機器のオリフィス孔径変更方法
JP2005163836A (ja) * 2003-11-28 2005-06-23 Tokai Rubber Ind Ltd バルブ内蔵コネクタ
JP2010048360A (ja) * 2008-08-22 2010-03-04 Sanoh Industrial Co Ltd 管継手

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678066A (en) * 1951-05-15 1954-05-11 J C Carter Company Fluid flow control device
JPS485293Y1 (ja) * 1966-08-06 1973-02-10
GB1503658A (en) * 1974-07-16 1978-03-15 Hanson Bdc Ltd Flow limiting devices
US4009592A (en) * 1976-02-09 1977-03-01 Ford Motor Company Multiple stage expansion valve for an automotive air conditioning system
US4624444A (en) * 1985-10-28 1986-11-25 Masco Corporation Control stop for flushing system
US4700750A (en) * 1985-10-31 1987-10-20 Bendix Engine Components Limited Hydrocarbon flow rate regulator
US4860795A (en) * 1988-03-03 1989-08-29 Oten Peter D Venturi block having cut off
US6289924B1 (en) * 2000-02-24 2001-09-18 Richard C. Kozinski Variable flow area refrigerant expansion device
JP5942770B2 (ja) * 2012-10-17 2016-06-29 トヨタ紡織株式会社 オイルミストセパレータ
JP6450562B2 (ja) * 2014-10-27 2019-01-09 株式会社ジェイテクト 減圧弁
GB2533642B (en) * 2014-12-24 2017-09-27 Cameron Int Corp Valve assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650869U (ja) * 1979-09-27 1981-05-06
JP2003028010A (ja) * 2001-07-12 2003-01-29 Tokai Rubber Ind Ltd バルブ内蔵コネクタ
JP2004144251A (ja) * 2002-10-25 2004-05-20 Fuji Bc Engineering Co Ltd 流体機器及び流体機器のオリフィス孔径変更方法
JP2005163836A (ja) * 2003-11-28 2005-06-23 Tokai Rubber Ind Ltd バルブ内蔵コネクタ
JP2010048360A (ja) * 2008-08-22 2010-03-04 Sanoh Industrial Co Ltd 管継手

Also Published As

Publication number Publication date
CN113950592A (zh) 2022-01-18
JP2021001634A (ja) 2021-01-07
US20220221094A1 (en) 2022-07-14
BR112021023877A2 (pt) 2022-01-18
MX2021015232A (es) 2022-07-12

Similar Documents

Publication Publication Date Title
EP0779948B1 (de) Flüssigkeitsfilter mit eingebautem druckregler
JP5121829B2 (ja) 圧力レギュレータ用の流れ制御デバイス
US6397884B1 (en) Connection structure and valved connection member
US4105050A (en) Integral flanged elastomeric flow restrictor
US7617814B2 (en) Fuel pump module having a direct mounted jet pump and methods of assembly
WO2020255477A1 (ja) 管継手、及び管継手セット
KR20100080403A (ko) 동심 통로를 통과하는 유동 제어에 관한 방법, 장치 및/또는 시스템
CN105437956A (zh) 加油辅助用具
US8640733B1 (en) Excess flow cartridge
JP5266124B2 (ja) ガス燃料用噴射弁
JP2005163836A (ja) バルブ内蔵コネクタ
JP3209783U (ja) 管接続継手
KR102641641B1 (ko) 체크 밸브
US20150219232A1 (en) Membrane style excess flow valve
JP2005344796A (ja) 流体機器
JP2012167650A (ja) ガス燃料用噴射弁
CA2906568A1 (en) Spherical contact ball joint style spool relief valve
JP2019039333A (ja) 圧力調節装置
US9638151B2 (en) Flow-through fitting and filter assembly
JP2009180377A (ja) バルブ内蔵コネクタ
DE102004041290B4 (de) Filteranordnung mit Rückschlagventil
JP2009264507A (ja) 給油装置
US20150068620A1 (en) Pressure regulating valve assembly
JP6591177B2 (ja) ガス供給装置
JP2019023505A (ja) パイロット式減圧弁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827558

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021023877

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021023877

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211126

122 Ep: pct application non-entry in european phase

Ref document number: 20827558

Country of ref document: EP

Kind code of ref document: A1