WO2020254145A1 - Procede de fabrication additive par faisceau laser d'une piece mecanique a fonction technique et/ou decorative et piece mecanique a fonction technique et/ou decorative - Google Patents

Procede de fabrication additive par faisceau laser d'une piece mecanique a fonction technique et/ou decorative et piece mecanique a fonction technique et/ou decorative Download PDF

Info

Publication number
WO2020254145A1
WO2020254145A1 PCT/EP2020/065925 EP2020065925W WO2020254145A1 WO 2020254145 A1 WO2020254145 A1 WO 2020254145A1 EP 2020065925 W EP2020065925 W EP 2020065925W WO 2020254145 A1 WO2020254145 A1 WO 2020254145A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
manufacturing
layer
laser beam
metallic material
Prior art date
Application number
PCT/EP2020/065925
Other languages
English (en)
Inventor
Csilla Miko
Anaïs BRAIT
Original Assignee
The Swatch Group Research And Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Swatch Group Research And Development Ltd filed Critical The Swatch Group Research And Development Ltd
Priority to JP2021574969A priority Critical patent/JP7359877B2/ja
Priority to EP20730297.7A priority patent/EP3986643A1/fr
Priority to CN202080045980.0A priority patent/CN114007781A/zh
Priority to US17/619,873 priority patent/US20220410269A1/en
Publication of WO2020254145A1 publication Critical patent/WO2020254145A1/fr
Priority to JP2023133417A priority patent/JP2023164848A/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials
    • G04D3/0069Watchmakers' or watch-repairers' machines or tools for working materials for working with non-mechanical means, e.g. chemical, electrochemical, metallising, vapourising; with electron beams, laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/052Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B37/00Cases
    • G04B37/22Materials or processes of manufacturing pocket watch or wrist watch cases
    • G04B37/225Non-metallic cases
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B45/00Time pieces of which the indicating means or cases provoke special effects, e.g. aesthetic effects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a method of additive manufacturing by laser beam of mechanical parts.
  • the present invention also relates to such mechanical parts, in particular obtained by implementing the additive manufacturing process.
  • the method of selective melting by means of a laser beam is a rapid prototyping technique by melting a powder of a metallic material by means of a laser beam such as a CO2 carbon dioxide laser or a YAG laser, the maximum power of which is typically between 100 Watts and 2 to 3 kilowatts.
  • This selective melting process is used to create, stratum after stratum, three-dimensional objects from powders of metallic materials which are brought to their melting temperature by the energy supplied by the laser beam.
  • the conventional laser additive manufacturing process begins with the development of a CAD (Computer Aided Design) type computer file which will allow the volume of the part that one seeks to design to be defined.
  • This computer file includes one or more strata to two dimensions which, when superimposed, make it possible to reconstitute the part that one wishes to design.
  • the laser beam After having spread a layer of uniform thickness of a metallic material in the powder state on a platform of a laser beam additive manufacturing machine, the laser beam traces a first 2D layer on the surface of the powder layer metallic. Under the effect of the light energy provided by the laser beam, the metal powder melts and then solidifies according to the outline of the first 2-dimensional layer used to control the movement of the laser beam. A new layer of metal powder is spread over the entire surface of the platform, then the process of bringing the metal powder particles to their melting temperature by means of the laser beam is repeated until the part is finished.
  • the manufacture of the part by additive printing is done directly on the surface of the platform as described above. In some cases, this manufacturing begins with the production, layer after layer, of a support on the platform, and continues with the production of the part itself.
  • the support in this case serves to mechanically support the part as it is manufactured on the platform of the printing machine and allows the heat produced by the melting of the metal powder to be removed by means of the laser beam.
  • the part thus obtained must then be carefully removed from the platform of the additive manufacturing machine and cleaned of the unfused powder which surrounds it. If the part was manufactured with a support, the part is separated from the latter.
  • Another laser beam additive manufacturing technique is to have a substrate that is installed in the machine before the start of manufacturing operations. This substrate on which the part will be manufactured comes flush with the surface of the platform of the additive manufacturing machine.
  • the substrate which is metallic, makes it possible to efficiently remove the heat caused by the fusion of the powder and therefore to relax at least in part the thermal stresses which are present in the part being manufactured. Additional heat treatment after printing the part will completely eliminate thermal stresses.
  • the metal powder by means of which the part is manufactured is most often of the same nature as the material from which the substrate is made because this promotes the attachment of the part to the substrate. Sometimes the composition of the alloy the powder is made from varies slightly from the alloy composition of the substrate. It has also already been proposed to use, to manufacture the part, a powder made from a metal different from that in which the substrate is made, this for cost reasons, for example when a precious metal is used to make the part, or good when using a different metal to machine such as titanium.
  • the choice of material for the substrate and for the part manufactured by additive printing on the substrate has most often been limited to the same metal for the substrate. substrate and workpiece.
  • the object of the present invention is to provide an additive manufacturing process by laser making it possible to vary the choices of materials which can be used to produce mechanical parts in a reliable and reproducible manner.
  • the present invention relates to a method of additive manufacturing by laser of a mechanical part having a technical and / or decorative function, this mechanical part comprising a substrate and a structure formed on the substrate by additive manufacturing by laser, this method comprising the steps of:
  • - acquire a laser beam the operation of which will be controlled by means of a computer into which is introduced a 2-dimensional CAD computer file which corresponds to the structure of the desired mechanical part, or else a CAD computer file 3-dimensional which is cut into 2-dimensional layers which, once superimposed, make it possible to form the structure of the desired mechanical part, another computer file containing the operating parameters of the laser beam;
  • - have a substrate made of a ceramic material whose melting point is higher than the temperature involved in additive manufacturing by laser;
  • the present invention provides an additive manufacturing process by laser allowing the joint use of a solid ceramic substrate and a metal powder to produce mechanical parts with a technical and / or decorative function of very high quality. It has in fact been observed that the metallic structure obtained by laser fusion adheres sufficiently to the ceramic substrate on which this structure is manufactured and makes it possible to obtain mechanical parts which can be directly used in the objects in which the latter are intended to be mounted. This result is quite surprising given that a priori, the chemical affinity (ionic / covalent) between the metal atoms linked together by ionic bonds and the oxygen contained in the ceramics whose atoms are linked by covalent bonds is weak.
  • the titanium atoms associate well with the oxygen contained in the ceramic substrate to form molecules of titanium dioxide PO2.
  • the aluminum atoms have a good affinity for the oxygen atoms of a substrate made of alumina, sapphire or zirconia, for example.
  • the substrate belongs to the mechanical part with a technical and / or decorative function that results from the process of the invention; this substrate is an integral part of this mechanical part, and is not intended to be separated from the structure obtained by laser additive manufacturing at the end of the process. Indeed, it has been observed that this structure adheres sufficiently well to the surface of the substrate on which it was produced so that the resulting mechanical part can be integrated as it is into the object for which it is intended.
  • the perilous step of separating the part obtained by additive laser manufacturing from the platform of the additive manufacturing machine is avoided, so that the risks of plastic deformation which can lead to the destruction of the piece, are avoided.
  • avoiding this separation step saves time, in particular because it is not necessary to have to fix, for example by gluing, the parts obtained by additive manufacturing on separate substrates.
  • the substrate can be subjected to a surface treatment
  • the surface treatment consists of an ion implantation operation, a plasma torch treatment or a physical vapor deposition treatment
  • the substrate is preheated prior to the step of selective melting of the layer of powdered material; - the substrate is preheated to a temperature not exceeding 400 ° C;
  • the thickness of the substrate is at least 100 ⁇ m
  • the neutral gas is argon and the volume concentration of oxygen in the manufacturing chamber is less than 0.5%;
  • the ceramic material is chosen from the group formed by borosilicate glass, alumina, sapphire, titanium boride, titanium oxide PO2, titanium carbide, tungsten carbide, silicon nitride, zirconia, emerald, ruby and diamond;
  • the metallic material is chosen from the group formed by aluminum, steel, titanium, zirconium, palladium, platinum, silver and gold;
  • the thickness of a layer of material deposited on the substrate is between 20 ⁇ m and 45 ⁇ m;
  • the laser beam is of the Nd: YAG type
  • the maximum power of the laser beam is between 100 Watts and 300 Watts;
  • the 2-dimensional layer of the desired mechanical part has a contour which delimits at least one surface.
  • the size of the particles which form the powders is between 5 ⁇ m and 63 ⁇ m
  • the powders of materials used are of the D10-D90 type, that is to say that 90% of the particles which form these powders have a diameter less than 63 ⁇ m, and 10% of these particles have a diameter less than 5 ⁇ m .
  • the present invention also relates to a mechanical part with a technical and / or decorative function, this mechanical part comprising a ceramic substrate and a metal structure formed on the substrate by additive manufacturing by laser. It will be noted in particular that subjecting the ceramic substrate to a surface treatment by ion implantation, plasma torch or physical vapor deposition prior to the step of selective melting of the layer of powdered metallic material makes it possible to further improve the force. attachment of the structure formed on the substrate with the latter.
  • FIG. 1 is a schematic representation of a laser beam additive manufacturing facility suitable for implementing the method according to the invention
  • FIG. 2 is a detailed schematic view which illustrates the situation of the additive manufacturing installation before the start of the additive manufacturing process
  • FIG. 3 is a detailed schematic view which illustrates the deposition of the first layer of powder material to be fused onto the substrate
  • FIG. 4 is a schematic detail view which illustrates the removal of excess powder material
  • FIG. 5 is a detailed schematic view which illustrates the step of selective melting by means of a laser beam of the first layer of powder material
  • FIG. 6 is a detailed schematic view which illustrates the step of selectively melting a layer of additional powder material
  • - Figure 7 is a detailed schematic view which illustrates the final step of cleaning the substrate
  • FIG. 8 schematically illustrates a substrate preparation step by means of a plasma torch prior to the deposition of a first layer of powder material to be fused on the substrate.
  • the present invention proceeds from the general inventive idea of producing mechanical parts with a technical and / or decorative function in a single piece by means of an additive manufacturing process by laser beam. More specifically, the invention relates to an additive manufacturing process by laser beam in which the joint use of a solid ceramic substrate and a metal powder to produce the structure by laser additive manufacturing makes it possible to obtain mechanical parts with a function. very high quality technical and / or decorative. It has in fact been observed that the metal structure obtained by laser fusion sufficiently adheres to the ceramic substrate on which this structure is made and makes it possible to obtain mechanical parts that can be directly used in the objects in which they are intended to be mounted. It seems that this is due in particular to the good chemical affinity (ionic / covalent) between the metal atoms and the oxygen contained in the ceramics.
  • titanium atoms combine well with the oxygen contained in the ceramic substrate to form molecules of titanium dioxide T1O2.
  • aluminum atoms have a great affinity for the oxygen atoms of a substrate such as alumina, sapphire or zirconia. The invention thus demonstrates that it is possible to combine or link together materials which, until now, were considered incompatible.
  • the ceramic substrate when we want to grow a gold structure by fusion laser on a ceramic substrate, it will be preferable to subject the ceramic substrate beforehand to a surface treatment, for example of the ion implantation, plasma torch or even physical vapor deposition type.
  • the gas used to create the torch will preferably be compressed air containing 22% oxygen and approximately 70% nitrogen.
  • the ceramic substrate used to make the desired mechanical part is an integral part of this mechanical part and therefore does not need to be separated from the latter once the manufacturing process is complete.
  • This ceramic substrate is therefore not intended to be sacrificed and will serve as a permanent support for the structure obtained through laser additive manufacturing with which it forms the mechanical part according to the invention. The risks of deforming or even destroying this structure that were encountered in the prior art during the separation of such a structure from its manufacturing substrate are thus avoided.
  • one begins by providing a substrate on which a structure will be grown by additive manufacturing by means of a laser beam.
  • the shapes and dimensions of the substrate are chosen as a function of the subsequent use which will be made of the mechanical part resulting from the implementation of the present method. It will suffice for the substrate to have at least one flat surface on which the additive manufacturing operation can be carried out. For reasons of strength, however, it is preferred that the thickness of the substrate is not less than 100 ⁇ m.
  • This substrate is made of a ceramic material, the melting point of which is higher than the temperature involved in additive manufacturing by laser melting.
  • the substrate is made of a ceramic material such as alumina AI2O3, sapphire, titanium oxide PO2 or else zirconia ZrÜ2.
  • Ceramic materials which are also suitable are silicon nitride S13N4 and titanium carbide TiC.
  • a layer of a material in the powder state is deposited on this substrate which will then be selectively fused by means of the laser beam.
  • This pulverulent material is different from the material in which the substrate is made.
  • This pulverulent material is a metallic material such as aluminum, gold, platinum, titanium, steel or even zirconium.
  • the choice will preferably be made on a 6061 aluminum alloy comprising between 95.85 and 98.56% by weight of aluminum, 0.4 to 0.8% by weight of silicon, a maximum of 0.7% by weight of iron (no minimum required), 0.15 to 0.4% by weight of copper, a maximum of 0.15% by weight of manganese (no minimum required), between 0.8 and 1.2% of magnesium, between 0.04 and 0.35% of chromium, a maximum of 0.25% by weight of zinc (no minimum required), a maximum of 0.15% by weight of titanium (no minimum required), the concentration of other elements not to exceed 0.05% by weight each, the total concentration of these other elements must not exceed 0.15% by weight.
  • the 6061 aluminum powder used in the context of the present invention is formed from a mixture of particles whose diameter is between 5 and 63 ⁇ m.
  • Parts made by depositing 10 to 20 layers of the aluminum powder detailed above have been structured on a zirconia substrate. Likewise, a zirconia substrate was used to fabricate parts from TiAl6V4 titanium powder.
  • gold it is preferably 18 carat gold containing 750 thousandths of pure gold, 50 thousandths of silver and 198.5 thousandths of copper.
  • the gold powder used in the context of the present invention is formed from a mixture of particles whose diameter is between 5 and 45 ⁇ m. Parts made by depositing 10 to 20 layers of the gold powder detailed above have been structured on sapphire and zirconia substrates.
  • the layer of powder material is spread over the substrate, it is leveled by mechanical sweeping to present a substantially uniform thickness, typically in the range of 15-50 ⁇ m. It will be understood that during this scanning operation, the powder particles whose diameter or at least one dimension exceeds the thickness of the layer are removed from the substrate.
  • the manufacturing enclosure is closed and an atmosphere of neutral gas is created in the volume of this enclosure.
  • the neutral gas chosen is preferably, but not limited to, argon, and the volume concentration of oxygen in the manufacturing chamber is less than 0.5%.
  • the laser device used in the context of the present invention is for example a Yb: YAG type laser, the maximum power of which is equal to 100 Watts and which emits continuously.
  • the power thereof is set at a working value of between 10 and 35 Watts and its speed of movement on the surface of the substrate is between 100 and 700 mm / s.
  • the laser beam melts the layer of powder material spread on the substrate in a pattern determined by a computer in which a computer CAD file is stored.
  • This file corresponds to one or more 2-dimensional layers which, once superimposed, make it possible to form in the layer of powder material the structure of the desired mechanical part.
  • Another computer file containing, for each stratum of the desired mechanical part, the operating parameters of the laser beam such as the power of the laser beam, the speed of movement of the laser beam and the path that this laser beam must travel is also used.
  • Each stratum of molten material therefore has a thickness of between 15 ⁇ m and 50 ⁇ m.
  • the thickness of the final structure can be of the order of 500 ⁇ m to 1 mm. The only difference between these values lies in the manufacturing time which is all the longer as the final structure is thick.
  • the excess material is removed and then a second layer of powdered material is deposited on the substrate.
  • a second layer of powdered material is deposited on the substrate. which can be the same as that used to make the first layer or it can be different.
  • the operations are repeated until the desired mechanical part consisting of the substrate and the structure formed on the substrate by additive laser manufacturing is obtained.
  • the resulting mechanical part is taken out of the manufacturing enclosure, excess material is removed and the assembly is cleaned. The resulting mechanical part is ready for use.
  • FIG. 1 is a schematic representation of an additive manufacturing installation by laser beam which is suitable for implementing the method according to the invention.
  • this additive manufacturing installation comprises a manufacturing enclosure 2 inside which is arranged a platform 4 on which is placed a substrate 6.
  • the platform 4 is coupled with a first piston 8 so that it can be moved vertically from bottom to top and from top to bottom.
  • the additive manufacturing installation 1 also comprises a first reservoir 10 and a second reservoir 12 both arranged inside the manufacturing enclosure 2.
  • the first reservoir 10 inside which a second piston 14 moves is used for storage of a powder material to be fused.
  • the second reservoir 12 serves as a receptacle for the excess powder of the material to be fused as well as for the waste resulting from the selective melting step.
  • the manufacturing enclosure 2 also contains a laser beam 16 arranged directly above the platform 4 on which the substrate 6 is placed as well as a transfer head 18 for the powder of the material to be fused.
  • the substrate 6 is placed flush with a printing surface 20 by actuating, if necessary, the first piston 8 which controls the movements of the platform 4 on which the substrate 6 is placed.
  • the second piston 14 is actuated so as to bring a quantity of powder 22 of the material to be fused to the height of the printing surface 20.
  • the transfer head 18 is responsible for bringing the quantity of powder 22 of the material to be fused onto the substrate 6.
  • the transfer head 18 is equipped with a first and a second scraper. 24 and 26 which can be selectively raised or lowered.
  • the transfer head 18 is translated to the left of the figure, the first squeegee 24 being raised so as not to oppose the advancement of the quantity of powder 22, and the second scraper 26 being lowered in order to be able to move this quantity of powder 22.
  • the transfer head 18 is moved to the right of the figure with the first squeegee 24 lowered and the second squeegee 26 raised to level and compact the layer of powder material 28 which has been fed onto the substrate. 6.
  • the layer of powder material 28 is melted using the laser beam 16.
  • the operation of the laser beam 16 will be controlled by means of a computer into which is introduced a CAD computer file which is cut into one or more layers which, once superimposed, make it possible to form the structure 30 of the desired mechanical part 32.
  • the platform 4 on which the substrate 6 is placed is lowered by actuating the first piston 8 in order to again bring the substrate 6 on the surface of which the first layer of powder material 28 flush with the printing surface 20. Then, if it is desired to structure a new layer of powder material on the surface of the substrate 6, the operations which have been detailed above in conjunction with Figures 2 to 5.
  • the desired structure 30 is obtained by having subjected the first layer of powder material 28 to a selective melting step by means of the laser beam 16, it is possible, if necessary, to clean the mechanical part 32 formed by the substrate. 6 and the structure 30 for example by means of a vacuum cleaner 34 (see FIG. 7).

Abstract

L'invention concerne un procédé de fabrication additive par laser d'une pièce mécanique (32) à fonction technique et/ou décorative, ce procédé comprenant les étapes de : - se munir d'un faisceau laser (16) dont le fonctionnement va être commandé au moyen d'un ordinateur dans lequel est introduit un fichier informatique CAO qui est découpé en une ou plusieurs strates qui, une fois superposées, permettent de former la structure (30) de la pièce mécanique (32) recherchée; - se munir d'un substrat (6) réalisé en un matériau céramique et le disposer dans une enceinte de fabrication (2) dans laquelle on crée une atmosphère d'un gaz neutre; - déposer sur le substrat (6) au moins une première couche (28) d'une poudre d'un premier matériau métallique à fusionner; - égaliser la première couche (28) du premier matériau métallique à fusionner; - soumettre au moyen du faisceau laser (16) la première couche (28) du premier matériau métallique à une étape de fusion sélective en accord avec le fichier informatique CAO; - le cas échéant, déposer sur le substrat (6) une deuxième couche d'une poudre du premier matériau métallique ou bien d'un deuxième matériau métallique qui est différent du premier matériau métallique; - égaliser la deuxième couche et soumettre cette deuxième couche à une étape de fusion sélective au moyen du faisceau laser (16); - le cas échéant, répéter les opérations jusqu'à obtenir la pièce mécanique (32) recherchée; - sortir la pièce mécanique (32) de l'enceinte de fabrication (2), enlever le surplus de matériau et nettoyer l'ensemble et, le cas échéant, soumettre la pièce à des opérations de finition comme le polissage.

Description

P ROCE DE DE FAB RICATION AD D ITIVE PAR FAISCEAU
LAS ER D’U N E P I ECE M ECAN IQU E A FON CTION TECH N IQU E
ET/OU DECORATIVE ET PI ECE MECAN IQU E A FONCTION
TECH N IQU E ET/OU DECO RATIVE
Domaine technique de l’invention
La présente invention concerne un procédé de fabrication additive par faisceau laser de pièces mécaniques. La présente invention concerne également de telles pièces mécaniques notamment obtenues par la mise en œuvre du procédé de fabrication additive.
Arrière-plan technologique de l’invention
La technique de fabrication additive par fusion laser de pièces métalliques est connue depuis plus de deux décennies et est employée en particulier dans le domaine de la construction aéronautique et automobile.
Brièvement décrit, le procédé de fusion sélective au moyen d’un faisceau laser, également connu sous sa dénomination anglo-saxonne Sélective Laser Melting ou SLM, est une technique de prototypage rapide par fusion d’une poudre d’un matériau métallique au moyen d’un faisceau laser tel qu’un laser au dioxyde de carbone CO2 ou un laser YAG dont la puissance maximale est typiquement comprise entre 100 Watts et 2 à 3 kilowatts. Ce procédé de fusion sélective est utilisé pour créer, strate après strate, des objets tridimensionnels à partir de poudres de matériaux métalliques qui sont portées à leur température de fusion grâce à l’énergie fournie par le faisceau laser.
Le procédé classique de fabrication additive par laser commence par l’élaboration d’un fichier informatique de type CAO (Conception Assistée par Ordinateur) qui va permettre de définir le volume de la pièce que l’on cherche à concevoir. Ce fichier informatique comprend une ou plusieurs strates à deux dimensions qui, lorsqu’on les superpose, permettent de reconstituer la pièce que l’on souhaite concevoir.
Après avoir étalé une couche d’épaisseur uniforme d’un matériau métallique à l’état de poudre sur une plateforme d’une machine de fabrication additive par faisceau laser, le faisceau laser trace une première strate 2D sur la surface de la couche de poudre métallique. Sous l’effet de l’énergie lumineuse apportée par le faisceau laser, la poudre métallique fond, puis se solidifie conformément au tracé de la première strate à 2 dimensions utilisée pour commander le déplacement du faisceau laser. Une nouvelle couche de poudre métallique est étalée sur toute la surface de la plateforme, puis le processus consistant à porter les particules de poudre métallique à leur température de fusion au moyen du faisceau laser est répété jusqu’à ce que la pièce soit terminée.
La fabrication de la pièce par impression additive se fait directement à la surface de la plateforme comme décrit ci-dessus. Dans certains cas, cette fabrication débute par la réalisation, couche après couche, d’un support sur la plateforme, et se poursuit par la réalisation de la pièce proprement dite. Le support sert dans ce cas à soutenir mécaniquement la pièce au fur et à mesure de sa fabrication sur la plateforme de la machine d’impression et permet d’évacuer la chaleur produite par la fusion de la poudre métallique au moyen du faisceau laser.
La pièce ainsi obtenue doit ensuite être précautionneusement retirée de la plateforme de la machine de fabrication additive et nettoyée de la poudre non fusionnée qui l’entoure. Dans le cas où la pièce a été fabriquée avec un support, on sépare la pièce de ce dernier.
L’un des inconvénients des procédés de fabrication additive par laser classiques réside dans le fait qu’après achèvement de la pièce recherchée, cette pièce doit être désolidarisée de la plateforme de la machine de fabrication additive puis, le cas échéant, détachée de son support. Il s’agit là d’une opération délicate qui demande beaucoup de temps et au cours de laquelle, malgré les précautions prises, de nombreuses pièces se déforment plastiquement et doivent être mises au rebut.
Une autre technique de fabrication additive par faisceau laser consiste à se munir d’un substrat que l’on installe dans la machine avant le début des opérations de fabrication. Ce substrat sur lequel la pièce va être fabriquée vient à fleur avec la surface de la plateforme de la machine de fabrication additive.
Le substrat qui est métallique permet d’évacuer efficacement la chaleur provoquée par la fusion de la poudre et donc de relaxer au moins en partie les contraintes thermiques qui sont présentes dans la pièce en cours de fabrication. Un traitement thermique additionnel après impression de la pièce permettra d’éliminer complètement les contraintes thermiques. La poudre métallique au moyen de laquelle la pièce est fabriquée est le plus souvent de même nature que le matériau dans lequel est réalisé le substrat car cela favorise l’accrochage de la pièce sur le substrat. Parfois, la composition de l’alliage dans lequel est réalisée la poudre varie légèrement par rapport à la composition de l’alliage du substrat. Il a déjà également été proposé d’utiliser pour fabriquer la pièce une poudre réalisée dans un métal différent de celui dans lequel est réalisé le substrat, ceci pour des raisons de coût par exemple lorsqu’on utilise un métal précieux pour réaliser la pièce, ou bien lorsqu’on utilise un métal différent à usiner comme le titane.
Par conséquent, jusqu’à présent, pour la fabrication additive de pièces au moyen d’un faisceau laser, le choix du matériau pour le substrat et pour la pièce fabriquée par impression additive sur le substrat se limitait le plus souvent au même métal pour le substrat et la pièce. Dans quelques cas, il a été proposé de réaliser la pièce dans un alliage métallique légèrement différent de celui dans lequel est réalisé le substrat ou bien dans un matériau dont on a montré qu’il était compatible avec le matériau du substrat.
Résumé de l’invention La présente invention a pour but de procurer un procédé de fabrication additive par laser permettant de varier les choix des matériaux utilisables pour réaliser des pièces mécaniques de manière fiable et reproductible.
A cet effet, la présente invention a pour objet un procédé de fabrication additive par laser d’une pièce mécanique à fonction technique et/ou décorative, cette pièce mécanique comprenant un substrat et une structure formée sur le substrat par fabrication additive par laser, ce procédé comprenant les étapes de :
- se munir d’un faisceau laser dont le fonctionnement va être commandé au moyen d’un ordinateur dans lequel est introduit un fichier informatique CAO à 2 dimensions qui correspond à la structure de la pièce mécanique recherchée, ou bien d’un fichier informatique CAO à 3 dimensions qui est découpé en strates à 2 dimensions qui, une fois superposées, permettent de former la structure de la pièce mécanique recherchée, un autre fichier informatique renfermant les paramètres de fonctionnement du faisceau laser ;
- se munir d’un substrat réalisé en un matériau céramique dont la température de fusion est supérieure à la température mise en jeu par la fabrication additive par laser ;
- disposer le substrat sur une plateforme d’une enceinte de fabrication ;
- fermer l’enceinte de fabrication et créer dans cette enceinte de fabrication une atmosphère d’un gaz neutre ;
- déposer sur le substrat au moins une première couche d’une poudre d’au moins un premier matériau métallique à fusionner ;
- égaliser la première couche du premier matériau métallique à fusionner afin que cette première couche présente une épaisseur sensiblement uniforme ; - activer le faisceau laser et soumettre au moyen de ce faisceau laser la première couche du premier matériau métallique à une étape de fusion sélective en accord avec le fichier informatique CAO qui correspond à la strate à 2 dimensions de la structure de la pièce mécanique recherchée ;
- déposer sur le substrat au moins une deuxième couche d’une poudre métallique du même matériau que celui à l’aide duquel a été réalisée la première couche ou bien d’un deuxième matériau métallique qui est différent du premier matériau métallique ;
- égaliser la deuxième couche et soumettre cette deuxième couche à une étape de fusion sélective au moyen du faisceau laser en accord avec la strate à deux dimensions suivante du fichier informatique CAO ;
- le cas échéant, répéter les opérations jusqu’à obtenir la pièce mécanique recherchée constituée du substrat et de la structure formée sur le substrat par fabrication additive par laser ; - sortir la pièce mécanique de l’enceinte de fabrication, enlever le surplus de matériau métallique et nettoyer l’ensemble, et
- le cas échéant, soumettre la pièce à des opérations de finition comme le polissage.
Grâce à ces caractéristiques, la présente invention procure un procédé de fabrication additive par laser permettant l’utilisation conjointe d’un substrat céramique massif et d’une poudre métallique pour réaliser des pièces mécaniques à fonction technique et/ou décorative de très grande qualité. On a en effet observé que la structure métallique obtenue par fusion laser adhère suffisamment au substrat céramique sur lequel cette structure est fabriquée et permet d’obtenir des pièces mécaniques pouvant être directement utilisées dans les objets dans lesquels ces dernières sont destinées à être montées. Ce résultat est assez surprenant étant donné qu’a priori, l’affinité chimique (ionique/covalence) entre les atomes de métal liés entre eux par des liaisons ioniques et l’oxygène renfermé dans les céramiques dont les atomes sont liés par des liaisons covalentes est faible. Néanmoins, il a notamment été observé que les atomes de titane s’associent bien avec l’oxygène renfermé dans le substrat en céramique pour former des molécules de dioxyde de titane PO2. De même, les atomes d’aluminium ont une bonne affinité pour les atomes d’oxygène d’un substrat en alumine, en saphir ou en zircone par exemple.
Le substrat appartient à la pièce mécanique à fonction technique et/ou décorative qui résulte du procédé de l’invention ; ce substrat fait partie intégrante de cette pièce mécanique, et n’est pas destiné à être séparé de la structure obtenue par fabrication additive laser à l’issue du procédé. En effet, on a remarqué que cette structure adhère suffisamment bien à la surface du substrat sur lequel elle a été réalisée pour que la pièce mécanique résultante puisse être intégrée telle quelle dans l’objet auquel elle est destinée. Ainsi, grâce à l’invention, on évite l’étape périlleuse consistant à séparer la pièce obtenue par fabrication additive laser de la plateforme de la machine de fabrication additive, de sorte que les risques de déformation plastique qui peuvent conduire à la destruction de la pièce, sont évités. De même, éviter cette étape de séparation permet de gagner du temps, notamment parce qu’il n’est pas nécessaire de devoir fixer, par exemple par collage, les pièces obtenues par fabrication additive sur des substrats séparés.
Selon des formes spéciales d’exécution de l’invention :
- avant l’étape de fusion sélective de la couche de matériau en poudre, on peut soumettre le substrat à un traitement de surface ;
- le traitement de surface consiste en une opération d’implantation ionique, en un traitement par torche plasma ou en un traitement de dépôt physique en phase vapeur ;
- le substrat est préchauffé préalablement à l’étape de fusion sélective de la couche de matériau en poudre ; - le substrat est préchauffé jusqu’à une température n’excédant pas 400°C ;
- l’épaisseur du substrat est d’au moins 100 pm ;
- le gaz neutre est de l’argon et la concentration volumique en oxygène dans l’enceinte de fabrication est inférieure à 0.5% ;
- le matériau céramique est choisi dans le groupe formé par le verre borosilicate, l’alumine, le saphir, le borure de titane, l’oxyde de titane PO2, le carbure de titane, le carbure de tungstène, le nitrure de silicium, la zircone, l’émeraude, le rubis et le diamant ;
- le matériau métallique est choisi dans le groupe formé par l’aluminium, l’acier, le titane, le zirconium, le palladium, le platine, l’argent et l’or ;
- l’épaisseur d’une couche du matériau déposée sur le substrat est comprise entre 20 pm et 45 pm ;
- le faisceau laser est de type Nd : YAG ;
- la puissance maximale du faisceau laser est comprise entre 100 Watts et 300 Watts ;
- la strate à 2 dimensions de la pièce mécanique recherchée présente un contour qui délimite au moins une surface.
- la taille des particules qui forment les poudres est comprise entre 5 pm et 63 pm, et
- les poudres de matériaux utilisées sont de type D10-D90, c’est-à-dire que 90% des particules qui forment ces poudres ont un diamètre inférieur à 63 pm, et 10% de ces particules ont un diamètre inférieur à 5 pm.
La présente invention concerne également une pièce mécanique à fonction technique et/ou décorative, cette pièce mécanique comprenant un substrat en céramique et une structure métallique formée sur le substrat par fabrication additive par laser. On notera en particulier que soumettre le substrat céramique à un traitement de surface par implantation ionique, torche plasma ou dépôt physique en phase vapeur préalablement à l’étape de fusion sélective de la couche de matériau métallique en poudre permet d’améliorer davantage encore la force d’accrochage de la structure formée sur le substrat avec ce dernier.
Brève description des figures
D’autres caractéristiques et avantages de la présente invention ressortiront plus clairement de la description détaillée qui suit d’un exemple de mise en œuvre du procédé de fabrication additive selon l’invention, cet exemple étant donné à titre purement illustratif et non limitatif seulement en liaison avec le dessin annexé sur lequel :
- la figure 1 est une représentation schématique d’une installation de fabrication additive par faisceau laser qui convient pour la mise en œuvre du procédé selon l’invention ;
- la figure 2 est une vue schématique de détail qui illustre la situation de l’installation de fabrication additive avant le début du procédé de fabrication additive ;
- la figure 3 est une vue schématique de détail qui illustre le dépôt de la première couche de matériau en poudre à fusionner sur le substrat ;
- la figure 4 est une vue schématique de détail qui illustre l’enlèvement du matériau en poudre en excès ;
- la figure 5 est une vue schématique de détail qui illustre l’étape de fusion sélective au moyen d’un faisceau laser de la première couche de matériau en poudre ;
- la figure 6 est une vue schématique de détail qui illustre l’étape de fusion sélective d’une couche de matériau en poudre supplémentaire ; - la figure 7 est une vue schématique de détail qui illustre l’étape finale de nettoyage du substrat, et
- la figure 8 illustre schématiquement une étape de préparation du substrat au moyen d’une torche à plasma préalablement au dépôt d’une première couche de matériau en poudre à fusionner sur le substrat.
Description détaillée d’un mode de réalisation de l’invention
La présente invention procède de l’idée générale inventive qui consiste à réaliser des pièces mécaniques à fonction technique et/ou décorative d’un seul tenant au moyen d’un procédé de fabrication additive par faisceau laser. Plus précisément, l’invention concerne un procédé de fabrication additive par faisceau laser dans lequel l’utilisation conjointe d’un substrat céramique massif et d’une poudre métallique pour réaliser la structure par fabrication additive laser permet d’obtenir des pièces mécaniques à fonction technique et/ou décorative de très grande qualité. On a en effet observé que la structure métallique obtenue par fusion laser adhère suffisamment au substrat céramique sur lequel cette structure est fabriquée et permet d’obtenir des pièces mécaniques pouvant être directement utilisées dans les objets dans lesquels ces dernières sont destinées à être montées. Il semble que cela soit dû en particulier à la bonne affinité chimique (ionique/covalence) entre les atomes de métal et l’oxygène renfermé dans les céramiques. Ainsi, les atomes de titane s’associent bien avec l’oxygène renfermé dans le substrat en céramique pour former des molécules de dioxyde de titane T1O2. De même, les atomes d’aluminium ont une grande affinité pour les atomes d’oxygène d’un substrat en alumine, en saphir ou en zircone par exemple. L’invention démontre ainsi qu’il est possible de combiner ou de lier entre eux des matériaux qui, jusqu’à présent, étaient considérés comme incompatibles.
Par contre, on a observé que l’on ne retrouvait pas la même affinité pour l’oxygène renfermé dans le matériau céramique dans le cas de l’or. C’est pourquoi, lorsque l’on souhaite faire croître une structure en or par fusion laser sur un substrat céramique, on préférera soumettre préalablement le substrat céramique à un traitement de surface par exemple du type implantation ionique, torche plasma ou bien encore dépôt physique en phase vapeur. Dans le cas d’un traitement plasma, le gaz utilisé pour créer la torche sera de préférence de l’air comprimé renfermant 22% d’oxygène et environ 70% d’azote.
Le substrat céramique utilisé pour réaliser la pièce mécanique recherchée fait partie intégrante de cette pièce mécanique et ne nécessite donc pas d’être dissocié de cette dernière une fois le procédé de fabrication terminé. Ce substrat céramique n’est donc pas destiné à être sacrifié et va servir de support permanent pour la structure obtenue grâce à la fabrication additive laser avec laquelle elle forme la pièce mécanique selon l’invention. Les risques de déformer, voire de détruire cette structure que l’on rencontrait dans l’art antérieur lors de la séparation d’une telle structure de son substrat de fabrication sont ainsi évités.
Conformément au procédé selon l’invention, on commence par se munir d’un substrat sur lequel on va faire croître une structure par fabrication additive au moyen d’un faisceau laser. Les formes et dimensions du substrat sont choisies en fonction de l’utilisation ultérieure qui sera faite de la pièce mécanique résultant de la mise en œuvre du présent procédé. Il suffira que le substrat présente au moins une surface plane sur laquelle pourra être réalisée l’opération de fabrication additive. Pour des questions de solidité, on préférera cependant que l’épaisseur du substrat ne soit pas inférieure à 100 pm. Ce substrat est réalisé en un matériau céramique dont la température de fusion est supérieure à la température mise en jeu par la fabrication additive par fusion laser. Le substrat est réalisé en un matériau céramique tel que l’alumine AI2O3, le saphir, l’oxyde de titane PO2 ou bien la zircone ZrÜ2. D’autres matériaux céramiques convenant également bien sont le nitrure de silicium S13N4 et le carbure de titane TiC. Une fois le substrat sélectionné et introduit dans une enceinte de fabrication, on dépose sur ce substrat une couche d’un matériau à l’état de poudre que l’on fera ensuite fusionner de manière sélective au moyen du faisceau laser. Ce matériau pulvérulent est différent du matériau dans lequel est réalisé le substrat. Ce matériau pulvérulent est un matériau métallique tel que de l’aluminium, de l’or, du platine, du titane, de l’acier ou bien encore du zirconium.
Dans le cas de l’aluminium, le choix se portera de préférence sur un alliage d’aluminium 6061 comprenant entre 95.85 et 98.56% en poids d’aluminium, 0.4 à 0.8% en poids de silicium, un maximum de 0.7% en poids de fer (pas de minimum requis), 0.15 à 0.4% en poids de cuivre, un maximum de 0.15% en poids de manganèse (pas de minimum requis), entre 0.8 et 1.2% de magnésium, entre 0.04 et 0.35% de chrome, un maximum de 0.25% en poids de zinc (pas de minimum requis), un maximum de 0.15% en poids de titane (pas de minimum requis), la concentration des autres éléments ne devant pas excéder 0.05% en poids chacun, la concentration totale de ces autres éléments ne devant pas excéder 0.15% en poids. La poudre d’aluminium 6061 utilisée dans le cadre de la présente invention est formée d’un mélange de particules dont le diamètre est compris entre 5 et 63 pm.
Des pièces réalisées par dépôt de 10 à 20 couches de la poudre d'aluminium détaillée ci-dessus ont été structurées sur un substrat en zircone. De même, un substrat en zircone a été utilisé pour fabriquer des pièces à partir d’une poudre de titane TiAl6V4.
Dans le cas de l’or, il s’agit préférentiellement d’or 18 carats renfermant 750 millièmes d’or pur, 50 millièmes d’argent et 198.5 millièmes de cuivre. La poudre d’or utilisée dans le cadre de la présente invention est formée d’un mélange de particules dont le diamètre est compris entre 5 et 45 pm. Des pièces réalisées par dépôt de 10 à 20 couches de la poudre d'or détaillée ci-dessus ont été structurées sur des substrats en saphir et en zircone.
Une fois la couche de matériau en poudre étalée sur le substrat, elle est égalisée par balayage mécanique afin de présenter une épaisseur sensiblement uniforme, typiquement de l’ordre de 15-50 pm. On comprendra qu’au cours de cette opération de balayage, les particules de poudre dont le diamètre ou l’une au moins des dimensions excède l’épaisseur de la couche sont enlevées du substrat.
Une fois la couche de matériau en poudre égalisée, l’enceinte de fabrication est refermée et on crée dans le volume de cette enceinte une atmosphère de gaz neutre. Le gaz neutre choisi est préférentiellement, mais non limitativement, de l’argon, et la concentration volumique en oxygène dans l’enceinte de fabrication est inférieure à 0.5%. Le dispositif laser utilisé dans le cadre de la présente invention est par exemple un laser de type Yb : YAG, dont la puissance maximale est égale à 100 Watts et qui émet en continu. A titre d’exemple préféré mais non limitatif, selon le type de faisceau laser choisi, la puissance de celui-ci est fixée à une valeur de travail comprise entre 10 et 35 Watts et sa vitesse de déplacement à la surface du substrat est comprise entre 100 et 700 mm/s. Le faisceau laser fait fondre la couche de matériau en poudre répandue sur le substrat selon un tracé déterminé par un ordinateur dans lequel est stocké un fichier informatique CAO. Ce fichier correspond à une ou plusieurs strates à 2 dimensions qui, une fois superposées, permettent de former dans la couche de matériau en poudre la structure de la pièce mécanique recherchée. Un autre fichier informatique renfermant, pour chaque strate de la pièce mécanique recherchée, les paramètres de fonctionnement du faisceau laser tels que la puissance du faisceau laser, la vitesse de déplacement du faisceau laser et le tracé que ce faisceau laser doit parcourir est également utilisé. Chaque strate de matériau fondu a donc une épaisseur comprise entre 15 pm et 50 pm. L’épaisseur de la structure finale peut être de l’ordre de 500 pm à 1 mm. La seule différence entre ces valeurs réside dans le temps de fabrication qui est d’autant plus long que la structure finale est épaisse.
Après avoir structuré la première couche de matériau en poudre en faisant fusionner ce matériau de manière sélective conformément aux instructions renfermées dans le fichier informatique CAO, on enlève le surplus de matériau, puis on dépose sur le substrat une deuxième couche d’un matériau en poudre qui peut être le même que celui utilisé pour réaliser la première couche ou bien être différent. Finalement, on répète les opérations jusqu’à obtenir la pièce mécanique recherchée constituée du substrat et de la structure formée sur le substrat par fabrication additive par laser. La pièce mécanique résultante est sortie de l’enceinte de fabrication, on enlève le surplus de matériau et on nettoie l’ensemble. La pièce mécanique résultante est prête à l’emploi.
La figure 1 est une représentation schématique d’une installation de fabrication additive par faisceau laser qui convient pour la mise en œuvre du procédé selon l’invention. Désignée dans son ensemble par la référence numérique générale 1 , cette installation de fabrication additive comprend une enceinte de fabrication 2 à l’intérieur de laquelle est agencée une plateforme 4 sur laquelle est posé un substrat 6. Préférentiellement, la plateforme 4 est couplée avec un premier piston 8 afin de pouvoir être déplacée verticalement de bas en haut et de haut en bas. L’installation de fabrication additive 1 comprend également un premier réservoir 10 et un second réservoir 12 tous deux disposés à l’intérieur de l’enceinte de fabrication 2. Le premier réservoir 10 à l’intérieur duquel se déplace un second piston 14 sert au stockage d’un matériau en poudre à fusionner. Quant au second réservoir 12, il sert de réceptacle aux excès de poudre du matériau à fusionner ainsi qu’aux déchets issus de l’étape de fusion sélective. L’enceinte de fabrication 2 renferme également un faisceau laser 16 disposé à l’aplomb de la plateforme 4 sur laquelle est posée le substrat 6 ainsi qu’une tête de transfert 18 de la poudre du matériau à fusionner.
A la figure 2, le substrat 6 est mis à fleur avec une surface d’impression 20 en actionnant, si nécessaire, le premier piston 8 qui commande les déplacements de la plateforme 4 sur laquelle est placé le substrat 6. Dans le même temps, on actionne le second piston 14 de façon à amener une quantité de poudre 22 du matériau à fusionner à la hauteur de la surface d’impression 20.
A la figure 3, la tête de transfert 18 se charge d’amener la quantité de poudre 22 du matériau à fusionner sur le substrat 6. A cette fin, la tête de transfert 18 est équipée d’une première et d’une seconde raclette 24 et 26 qui peuvent être sélectivement soulevées ou abaissées. Comme visible sur la figure 3, pour amener la quantité de poudre 22 sur le substrat 6, la tête de transfert 18 est translatée vers la gauche de la figure, la première raclette 24 étant soulevée pour ne pas s’opposer à l’avancement de la quantité de poudre 22, et la seconde raclette 26 étant abaissée afin de pouvoir déplacer cette quantité de poudre 22.
Inversement, à la figure 4, la tête de transfert 18 est déplacée vers la droite de la figure avec la première raclette 24 abaissée et la seconde raclette 26 soulevée pour niveler et tasser la couche de matériau en poudre 28 qui a été amenée sur le substrat 6.
A la figure 5, on procède à la fusion de la couche de matériau en poudre 28 à l’aide du faisceau laser 16. A cet effet, le fonctionnement du faisceau laser 16 va être commandé au moyen d’un ordinateur dans lequel est introduit un fichier informatique CAO qui est découpé en une ou plusieurs strates qui, une fois superposées, permettent de former la structure 30 de la pièce mécanique 32 recherchée.
A la figure 6, la plateforme 4 sur laquelle est placé le substrat 6 est abaissée par actionnement du premier piston 8 afin d’amener à nouveau le substrat 6 sur la surface duquel a été structurée la première couche de matériau en poudre 28 à fleur avec la surface d’impression 20. Ensuite, si l’on souhaite structurer une nouvelle couche de matériau en poudre sur la surface du substrat 6, on répète les opérations qui ont été détaillées ci-dessus en liaison avec les figures 2 à 5.
Finalement, quand la structure 30 recherchée est obtenue en ayant soumis la première couche de matériau en poudre 28 à une étape de fusion sélective au moyen du faisceau laser 16, on peut, si cela est nécessaire, nettoyer la pièce mécanique 32 formée par le substrat 6 et la structure 30 par exemple au moyen d’un aspirateur 34 (voir figure 7).
Pour améliorer l’adhésion de la structure 30 obtenue par fabrication additive au moyen du faisceau laser 16 sur le substrat 6, il est possible, avant le début des opérations de fabrication, de soumettre le substrat 6 à un traitement de surface au moyen d’une torche plasma 36 (voir figure 8).
Il va de soi que la présente invention n’est pas limitée au mode de réalisation qui vient d’être décrit et que diverses modifications et variantes simples peuvent être envisagées par l’homme du métier sans sortir du cadre de l’invention tel que défini par les revendications annexées. On comprendra notamment qu’au sens de la présente invention et de ses modes d’exécution particuliers, on entend par « pièce mécanique » des pièces qui peuvent être sollicitées mécaniquement comme des maillons d’un bracelet de montre, mais également des pièces qui n’ont qu’une fonction décorative telles qu’un cadran pour une pièce d’horlogerie à la surface duquel a été fabriquée une structure matérielle. Nomenclature
1. Installation de fabrication additive par faisceau laser
2. Enceinte de fabrication
4. Plateforme
6. Substrat
8. Premier piston
10. Premier réservoir
12. Second réservoir
14. Second piston
16. Faisceau laser
18. Tête de transfert
20. Surface d’impression
22. Quantité de poudre
24. Première raclette
26. Seconde raclette
28. Couche de matériau en poudre
30. Structure
32. Pièce mécanique
34. Aspirateur
36. Torche plasma

Claims

REVEN D ICATIONS
1. Procédé de fabrication additive par laser d’une pièce mécanique (32) à fonction technique et/ou décorative, cette pièce mécanique (32) comprenant un substrat (6) et une structure (30) formée sur le substrat (6) par fabrication additive par laser, ce procédé comprenant les étapes de :
- se munir d’un faisceau laser (16) dont le fonctionnement va être commandé au moyen d’un ordinateur dans lequel est introduit un fichier informatique CAO qui est découpé en une ou plusieurs strates qui, une fois superposées, permettent de former la structure de la pièce mécanique recherchée, un autre fichier informatique renfermant les paramètres de fonctionnement du faisceau laser ;
- se munir d’un substrat (6) réalisé en un matériau céramique dont la température de fusion est supérieure à la température mise en jeu par la fabrication additive par laser ; - disposer le substrat (6) sur une plateforme dans une enceinte de fabrication (2) ;
- fermer l’enceinte de fabrication (2) et créer dans cette enceinte de fabrication (2) une atmosphère d’un gaz neutre ;
- déposer sur le substrat (6) au moins une première couche (28) d’une poudre d’au moins un premier matériau métallique à fusionner ;
- égaliser la première couche (28) du premier matériau métallique à fusionner afin que cette première couche (28) présente une épaisseur sensiblement uniforme ;
- activer le faisceau laser (16) et soumettre au moyen de ce faisceau laser (16) la première couche du premier matériau métallique à une étape de fusion sélective en accord avec le fichier informatique CAO qui correspond à la strate à 2 dimensions de la structure (30) de la pièce mécanique (32) recherchée ; - déposer sur le substrat (6) au moins une deuxième couche d’une poudre du même matériau métallique que celui à l’aide duquel a été réalisée la première couche (28) ou bien d’un deuxième matériau métallique qui est différent du premier matériau métallique ;
- égaliser la deuxième couche et soumettre cette deuxième couche à une étape de fusion sélective au moyen du faisceau laser (16) en accord avec la strate à deux dimensions suivante du fichier informatique CAO ;
- le cas échéant, répéter les opérations jusqu’à obtenir la pièce mécanique (32) recherchée constituée du substrat (6) et de la structure (30) formée sur le substrat (6) par fabrication additive par laser ;
- sortir la pièce mécanique (32) de l’enceinte de fabrication (2), enlever le surplus de matériau métallique et nettoyer l’ensemble, et
- le cas échéant, soumettre la pièce mécanique (32) à des opérations de finition comme le polissage.
2. Procédé de fabrication selon la revendication 1 , caractérisé en ce qu’avant l’étape de fusion sélective de la couche (28) de matériau en poudre, on soumet le substrat (6) à un traitement de surface.
3. Procédé de fabrication selon la revendication 2, caractérisé en ce que le traitement de surface consiste en une opération d’implantation ionique, en un traitement plasma ou en un traitement de dépôt physique en phase vapeur.
4. Procédé de fabrication selon l’une des revendications 1 à 3, caractérisé en ce que le substrat (6) est préchauffé préalablement à l’étape de fusion sélective de la couche (28) de matériau en poudre.
5. Procédé de fabrication selon la revendication 4, caractérisé en ce que le substrat (6) est préchauffé jusqu’à une température n’excédant pas 400°C.
6. Procédé de fabrication selon l’une des revendications 1 à 5, caractérisé en ce que l’épaisseur du substrat (6) est d’au moins 100 pm.
7. Procédé de fabrication selon l’une des revendications 1 à 6, caractérisé en ce que le gaz neutre est de l’argon et la concentration volumique en oxygène dans l’enceinte de fabrication est inférieure à 0.5%.
8. Procédé de fabrication selon l’une des revendications 1 à 7, caractérisé en ce que le matériau céramique est choisi dans le groupe formé par le verre borosilicate, l’alumine, le saphir, le borure de titane, l’oxyde de titane PO2, le carbure de titane, le carbure de tungstène, le nitrure de silicium, la zircone, l’émeraude, le rubis et le diamant.
9. Procédé de fabrication selon l’une des revendications 1 à 8, caractérisé en ce que le matériau métallique est choisi dans le groupe formé par l’aluminium, l’acier, le platine, l’or, l’argent, le palladium, le zirconium et le titane.
10. Procédé de fabrication selon la revendication 9, caractérisé en ce que l’on utilise une poudre d’aluminium 6061 dont les particules ont un diamètre compris entre 5 et 63 pm.
1 1. Procédé de fabrication selon la revendication 9, caractérisé en ce que l’on utilise une poudre d’or 18 carats 750 millièmes dont les particules ont un diamètre compris entre 5 et 45 pm.
12. Procédé de fabrication selon l’une des revendications 10 et 1 1 , caractérisé en ce que les poudres de matériaux utilisées sont de type D10- D90, c’est-à-dire que 90% des particules qui forment ces poudres ont un diamètre inférieur à 63 pm, et 10% de ces particules ont un diamètre inférieur à 5 pm.
13. Procédé de fabrication selon l’une des revendications 1 à 12, caractérisé en ce que l’épaisseur d’une couche du matériau déposée sur le substrat (6) est comprise entre 10 pm et 50 pm.
14. Procédé de fabrication selon la revendication 13, caractérisé en ce que le nombre de couches de matériau déposées sur le substrat est compris entre 10 et 20.
15. Procédé de fabrication selon l’une des revendications 8 à 14, caractérisé en ce que la puissance du faisceau laser est fixée à une valeur de travail comprise entre 10 et 35 Watts et en ce que sa vitesse de déplacement à la surface du substrat (6) est comprise entre 100 et 700 mm/s.
16. Procédé de fabrication selon la revendication 15, caractérisé en ce que le faisceau laser (16) est de type Yb : YAG.
17. Procédé de fabrication selon l’une des revendications 8 à 16, caractérisé en ce que la strate à 2 dimensions de la pièce mécanique (32) recherchée présente un contour qui délimite au moins une surface.
18. Pièce mécanique à fonction technique et/ou décorative, cette pièce mécanique (32) comprenant un substrat (6) réalisé en un matériau céramique et une structure (30) réalisée en un matériau métallique et formée sur le substrat (6) par fabrication additive par laser.
PCT/EP2020/065925 2019-06-19 2020-06-09 Procede de fabrication additive par faisceau laser d'une piece mecanique a fonction technique et/ou decorative et piece mecanique a fonction technique et/ou decorative WO2020254145A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021574969A JP7359877B2 (ja) 2019-06-19 2020-06-09 技術的及び/又は装飾的機能を有する機械部品のレーザビーム付加製造の方法、並びに技術的及び/又は装飾的機能を有する機械部品
EP20730297.7A EP3986643A1 (fr) 2019-06-19 2020-06-09 Procede de fabrication additive par faisceau laser d'une piece mecanique a fonction technique et/ou decorative et piece mecanique a fonction technique et/ou decorative
CN202080045980.0A CN114007781A (zh) 2019-06-19 2020-06-09 具有技术功能和/或装饰功能的机械部件的激光束增材制造方法以及具有技术功能和/或装饰功能的机械部件
US17/619,873 US20220410269A1 (en) 2019-06-19 2020-06-09 Method for laser beam additive manufacturing of a mechanical part with technical and/or decorative function and mechanical part with technical and/or decorative function
JP2023133417A JP2023164848A (ja) 2019-06-19 2023-08-18 技術的及び/又は装飾的機能を有する機械部品のレーザビーム付加製造の方法、並びに技術的及び/又は装飾的機能を有する機械部品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19181282.5 2019-06-19
EP19181282 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020254145A1 true WO2020254145A1 (fr) 2020-12-24

Family

ID=66999617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/065925 WO2020254145A1 (fr) 2019-06-19 2020-06-09 Procede de fabrication additive par faisceau laser d'une piece mecanique a fonction technique et/ou decorative et piece mecanique a fonction technique et/ou decorative

Country Status (5)

Country Link
US (1) US20220410269A1 (fr)
EP (1) EP3986643A1 (fr)
JP (2) JP7359877B2 (fr)
CN (1) CN114007781A (fr)
WO (1) WO2020254145A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078693A1 (fr) * 2021-11-02 2023-05-11 Officine Panerai Ag Composant horloger contrasté réalisé en impression multi-métallique
WO2023242751A1 (fr) * 2022-06-15 2023-12-21 Manufacture D'horlogerie Audemars Piguet Sa Procédé pour la fabrication d'une pièce à base de plusieurs métaux précieux et pièce résultante

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220258242A1 (en) * 2019-06-27 2022-08-18 The Regents Of The University Of California Additive-free manufacturing of geometrically complex components for electrical energy storage systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291286A1 (en) * 2002-11-08 2010-11-18 Howmedica Osteonics Corp. Laser-produced porous surface
US20150209889A1 (en) * 2014-01-24 2015-07-30 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
CH710543A2 (fr) * 2014-12-19 2016-06-30 Omega Sa Procédé de réalisation d'un élément décoré d'une pièce d'horlogerie ou de bijouterie, et élément réalisé par le procédé.
US20170252854A1 (en) * 2016-03-07 2017-09-07 Haraeus Deutschland Gmbh & Co. Kg Noble-metal powder and the use thereof for producing components
CN108411296A (zh) * 2018-02-13 2018-08-17 上海楚越机械设备有限公司 一种电阻加热元件的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2337667B1 (fr) 2008-10-20 2013-02-27 Ivoclar Vivadent AG Dispositif et procédé de traitement d un matériau photopolymérisable permettant la réalisation par couches de corps moulés
GB2489493B (en) * 2011-03-31 2013-03-13 Norsk Titanium Components As Method and arrangement for building metallic objects by solid freeform fabrication
EP2784045A1 (fr) * 2013-03-29 2014-10-01 Osseomatrix Procédé sélectif de frittage/fusion laser
EP2893994B1 (fr) * 2014-01-14 2020-07-15 General Electric Technology GmbH Procédé de fabrication d'un composant métallique ou céramique par fusion laser sélective
JP6535785B2 (ja) * 2018-05-08 2019-06-26 三菱重工業株式会社 三次元積層装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291286A1 (en) * 2002-11-08 2010-11-18 Howmedica Osteonics Corp. Laser-produced porous surface
US20150209889A1 (en) * 2014-01-24 2015-07-30 Lincoln Global, Inc. Method and system for additive manufacturing using high energy source and hot-wire
CH710543A2 (fr) * 2014-12-19 2016-06-30 Omega Sa Procédé de réalisation d'un élément décoré d'une pièce d'horlogerie ou de bijouterie, et élément réalisé par le procédé.
US20170252854A1 (en) * 2016-03-07 2017-09-07 Haraeus Deutschland Gmbh & Co. Kg Noble-metal powder and the use thereof for producing components
CN108411296A (zh) * 2018-02-13 2018-08-17 上海楚越机械设备有限公司 一种电阻加热元件的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SYED-KHAJA AARIEF ET AL: "Is selective laser melting (SLM) an alternative for high-temperature mechatronic integrated devices? methodology, hurdles and prospects", 2016 12TH INTERNATIONAL CONGRESS MOLDED INTERCONNECT DEVICES (MID), IEEE, 28 September 2016 (2016-09-28), pages 1 - 5, XP033003268, ISBN: 978-1-5090-5426-8, [retrieved on 20161108], DOI: 10.1109/ICMID.2016.7738929 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023078693A1 (fr) * 2021-11-02 2023-05-11 Officine Panerai Ag Composant horloger contrasté réalisé en impression multi-métallique
WO2023242751A1 (fr) * 2022-06-15 2023-12-21 Manufacture D'horlogerie Audemars Piguet Sa Procédé pour la fabrication d'une pièce à base de plusieurs métaux précieux et pièce résultante

Also Published As

Publication number Publication date
JP7359877B2 (ja) 2023-10-11
JP2023164848A (ja) 2023-11-14
CN114007781A (zh) 2022-02-01
US20220410269A1 (en) 2022-12-29
JP2022538983A (ja) 2022-09-07
EP3986643A1 (fr) 2022-04-27

Similar Documents

Publication Publication Date Title
EP3986643A1 (fr) Procede de fabrication additive par faisceau laser d'une piece mecanique a fonction technique et/ou decorative et piece mecanique a fonction technique et/ou decorative
EP2066598B1 (fr) Procede d'assemblage de pieces en ceramique refractaire par frittage a chaud avec champ electrique pulse (" sps ")
EP0660140B1 (fr) Procédé de réalisation d'une structure en relief sur un support en matériau semi-conducteur
EP2925470B1 (fr) Procédé de fabrication additive d'une pièce par fusion sélective ou frittage sélectif de lits de poudre à compacité optimisée par faisceau de haute énergie
EP3090645B1 (fr) Procédé de montage d'un élément décoratif sur un support et ledit support
FR2804245A1 (fr) Procede de formation d'une couche mince cristalline contenant du silicium
EP1846588B1 (fr) Procédé d'élaboration par projection thermique d'une cible à base de silicium et de zirconium
FR2645337A1 (fr) Procede de formation de terminaisons de condensateurs ceramiques a faible inductance par des techniques de pellicules minces, et condensateur obtenu
FR2984781A1 (fr) Procede d'assemblage par brasage d'un substrat comprenant du pyrocarbone avec des pieces comprenant du pyrocarbone.
EP3365131A1 (fr) Procede de fabrication par fusion et compression isostatique a chaud
EP2365741A1 (fr) Procede de metallisation de vias borgnes
CH716026B1 (fr) Procédé de fabrication additive par faisceau laser d'une pièce mécanique à fonction technique et/ou décorative et pièce mécanique à fonction technique et/ou décorative.
EP3495894A1 (fr) Procédé de fabrication d'un composant horloger
WO2003037823A1 (fr) Procede de metallisation et/ou de brasage par un alliage de silicium de pieces en ceramique oxyde non mouillable par ledit alliage
WO2017121746A1 (fr) Procédé et installation de fabrication d'un objet tridimensionnel
FR3071178A1 (fr) Procede de fabrication d'une piece de turbomachine par fabrication additive et frittage flash
EP2422365B1 (fr) Procédé de transfert d'au moins une couche micro-technologique
CH707351A2 (fr) Pièce de décoration sertie invisible.
FR2944914A1 (fr) Procede de transfert d'au moins une couche micro-technologique
FR2903810A1 (fr) Procede de nanostructuration de la surface d'un substrat
WO2018154252A1 (fr) Procédé de fabrication d'un élément dentaire par impression tridimensionnelle
EP2796065B1 (fr) Pièce de décoration sertie invisible
WO2022269143A1 (fr) Procédé de fabrication de miroir par impression 3d
EP4144464A1 (fr) Procédé de fabrication d'une pièce en métal noble et installation pour mettre en oeuvre le procédé
EP4249645A1 (fr) Procédé pour fabriquer une pluralité de micropièces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20730297

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2021574969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020730297

Country of ref document: EP

Effective date: 20220119