WO2020253847A1 - 一种电机及包括该电机的设备 - Google Patents

一种电机及包括该电机的设备 Download PDF

Info

Publication number
WO2020253847A1
WO2020253847A1 PCT/CN2020/097213 CN2020097213W WO2020253847A1 WO 2020253847 A1 WO2020253847 A1 WO 2020253847A1 CN 2020097213 W CN2020097213 W CN 2020097213W WO 2020253847 A1 WO2020253847 A1 WO 2020253847A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
stator
permanent magnet
units
adjacent
Prior art date
Application number
PCT/CN2020/097213
Other languages
English (en)
French (fr)
Inventor
侯唯敏
何国斌
Original Assignee
侯唯敏
南方电机科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 侯唯敏, 南方电机科技有限公司 filed Critical 侯唯敏
Publication of WO2020253847A1 publication Critical patent/WO2020253847A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Definitions

  • the present invention relates to the field of electromagnetic technology, in particular to a motor and equipment including the motor.
  • embodiments of the present invention provide a motor and a device including the motor.
  • the present invention provides a motor.
  • the motor includes a stator, a mover, and a stator permanent magnet assembly and/or a mover permanent magnet assembly;
  • the stator includes N magnetically conductive stator units, and the mover includes a magnetically conductive
  • the N stator units include N stator yokes;
  • the N mover units include N mover yokes; where N is an integer greater than or equal to 2;
  • the N stator units and the N moving subunits are arranged in pairs along a first direction; and an air gap is formed between the N stator units and the N moving subunits; and an edge is formed in the air gap.
  • N-1 stator unit gaps are formed between adjacent stator units of the N stator units;
  • N-1 mover unit gaps are formed between adjacent mover units of the N mover units;
  • the stator permanent magnet assembly is arranged in at least part of the N-1 stator unit gaps and/or on the N stator units; and/or
  • the permanent magnet assembly of the mover is arranged in at least part of the gaps of the N-1 mover units and/or on the N mover units.
  • the N stator yokes are connected into one body by a stator magnetic material connection part; and/or
  • the N mover yokes are connected into one body through the mover magnetic conductive material connection part.
  • stator permanent magnet assembly when the stator permanent magnet assembly is arranged on at least part of the N-1 stator unit gaps; the magnetic field polarization direction of the stator permanent magnet assembly corresponds to the first direction; and/or
  • stator permanent magnet assembly When the stator permanent magnet assembly is arranged on at least a part of the N stator units; the direction of the magnetic field generated by the stator permanent magnet assembly in the air gap corresponds to the second direction; and/or
  • the mover permanent magnet assembly When the mover permanent magnet assembly is arranged on at least part of the N-1 mover unit gaps; the magnetic field polarization direction of the mover permanent magnet assembly corresponds to the first direction; and/or
  • the direction of the magnetic field generated by the mover permanent magnet assembly in the air gap corresponds to the second direction.
  • the motor includes the stator permanent magnet assembly and the mover permanent magnet assembly
  • the stator permanent magnet assembly and the mover permanent magnet assembly on the paired stator unit and mover unit The direction of the magnetic field formed by the magnet assembly in the air gap is the same.
  • stator permanent magnet assembly may be arranged on at least part of the N stator yokes of the N stator units; and/or the mover permanent magnet assembly may be arranged on at least part of the N movers The N mover yokes of the unit.
  • stator permanent magnet assembly and/or the mover permanent magnet assembly arranged on the yoke are distributed in an annular shape;
  • stator permanent magnet assembly and/or the mover permanent magnet assembly arranged on the yoke are distributed in a straight line.
  • each of the N stator yoke portions extends to the mover along the moving direction to form a plurality of large teeth; at least a large slot is formed between adjacent large teeth; Windings are arranged in part of the large slots;
  • the large teeth correspond to the surface of the mover to form a plurality of first small teeth along the moving direction of the mover, and first small grooves are formed between adjacent first small teeth;
  • the surface of the large tooth corresponding to the mover is a smooth surface.
  • At least part of the N stator units are provided with a first permanent magnet in at least part of the first small slot.
  • a seventh permanent magnet is arranged in at least part of the large groove.
  • a plurality of second small teeth are formed on the surface of the N mover yokes corresponding to the stator along the moving direction of the mover, and second small slots are formed between adjacent second small teeth.
  • At least part of the second small grooves in at least part of the N mover units are provided with a second permanent magnet.
  • the directions of the magnetic fields generated by the adjacent stator permanent magnet assemblies in the air gap are opposite; and/or
  • the directions of the magnetic fields generated by the adjacent stator permanent magnet assemblies in the air gap are opposite; and/or
  • the directions of the magnetic fields generated by the adjacent mover permanent magnet assemblies in the air gap are opposite; and/or
  • the directions of the magnetic fields generated by the adjacent mover permanent magnet assemblies in the air gap are opposite.
  • the adjacent mover units are staggered by a certain distance along the moving direction of the mover; wherein,
  • the certain distance allows the adjacent stator permanent magnet assembly and/or the adjacent mover permanent magnet assembly to be along the first section between the adjacent stator unit and the adjacent mover unit.
  • the direction of the magnetic field generated in the air gap corresponding to one direction is the same.
  • a plurality of second small teeth are formed on the surface of the N mover yokes corresponding to the stator along the moving direction of the mover, and second small slots are formed between adjacent second small teeth.
  • the adjacent mover units are staggered by 0.5 pitch of the second small teeth along the moving direction of the mover.
  • the first direction is the axial direction; the second direction is the radial direction; or
  • the motor is a linear motor; the first direction is a direction perpendicular to the moving direction of the mover; the second direction is a direction passing through the air gap between the stator and the mover.
  • the present invention provides a device including at least one of the above-mentioned motors.
  • the first permanent magnet assembly and/or the second permanent magnet assembly on a motor that includes N stator units and N mover units, when the motor is used as a motor, greater electromagnetic torque/output is generated; Therefore, when the motor is used as a generator, it can increase the power density of power generation.
  • Fig. 1 is a schematic diagram of the overall structure of a motor provided by an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of two stator units of a motor provided by an embodiment of the present invention
  • FIG. 2B is a first schematic view of the two stator units of a motor provided by an embodiment of the present invention taken along the axial direction
  • FIG. 2C is an embodiment of the present invention The provided second schematic diagram of the two stator units of the motor cut along the axial direction.
  • FIG. 3 is a schematic view of the two stator units of the motor provided by the embodiment of the present invention, which are cut along the axial direction after the third permanent magnet and the fifth permanent magnet are arranged.
  • Fig. 4 is a schematic view of the two moving subunits of the motor provided by the embodiment of the present invention cut along the axial direction.
  • Fig. 5 is a schematic view of the two moving subunits of the motor provided by the embodiment of the present invention, which are cut along the axial direction after the fourth permanent magnet and the fifth permanent magnet are arranged.
  • FIG. 6A is a partial plan view of the cogging surfaces of two adjacent mover units of a motor provided by an embodiment of the present invention
  • FIG. 6B is a partial plane view of the cogging surfaces of three adjacent mover units of a motor provided by an embodiment of the present invention Schematic diagram
  • Figure 6C is a partial schematic diagram of the cogging surfaces of two adjacent mover units of the motor provided by an embodiment of the present invention.
  • FIG. 7A is a first plan schematic view of one of the large teeth of the stator unit of the motor provided by the embodiment of the present invention
  • FIG. 7B is a second plan view of one of the large teeth of the stator unit of the motor provided by the embodiment of the present invention
  • FIG. 7C It is a third schematic plan view of one of the large teeth of the stator unit of the motor provided by the embodiment of the present invention.
  • FIG. 8A is a first partial schematic view of the cogging arrangement of the stator and mover of the motor provided by the embodiment of the present invention
  • FIG. 8B is the first partial view of the cogging arrangement of the stator and mover of the motor provided by the embodiment of the present invention
  • FIG. 9A is a first schematic diagram of the fifth permanent magnet of the ring arrangement structure provided in the stator yoke of the motor provided by the embodiment of the invention
  • FIG. 9B is the ring provided in the stator yoke of the motor provided by the embodiment of the invention
  • FIG. 9C is the third schematic diagram of the fifth permanent magnet in the annular arrangement structure provided in the stator yoke of the motor provided by the embodiment of the present invention.
  • FIG. 10A is a first schematic diagram of the fifth permanent magnet of the linear arrangement structure provided in the stator yoke of the motor provided by the embodiment of the present invention
  • FIG. 10B is the linear arrangement structure provided in the stator yoke of the motor provided by the embodiment of the present invention
  • FIG. 10C is the third schematic diagram of the fifth permanent magnet in the linear arrangement structure provided in the stator yoke of the motor provided by the embodiment of the present invention.
  • FIG. 11A is a schematic diagram of an axial cross-section of an axial flux rotating machine provided by an embodiment of the present invention
  • FIG. 11B is a schematic diagram of a stator surface of the mover of an axial flux rotating machine provided by an embodiment of the present invention
  • 11C is A schematic diagram of a stator of an axial flux rotating machine provided by an embodiment of the invention.
  • an embodiment of the present invention provides a motor 10.
  • the motor may be various types of motors currently or developed in the future with the following structure.
  • the relative movement of the stator and mover of the motor can be divided into rotating motors (as shown in Figure 1). ) Or a linear motor (as shown in Figure 8A or 8B); taking the flux trend of a rotating motor as an example, it can include an axial flux rotating motor (as shown in Figure 11A-11C), a radial flux rotating motor (such as (Shown in Figure 1) or axial-radial hybrid magnetic flux rotating machine (illustration omitted).
  • the motor can be a motor that converts electrical energy into kinetic energy for output; it can also be a generator that converts kinetic energy into electrical energy for output.
  • the two can be realized by using the same structure. By using different electrical and mechanical connections for the same structure, the functions of a generator or a motor can be realized respectively.
  • the motor 10 includes a stator 11, a mover 12, and a stator permanent magnet assembly and/or a mover permanent magnet assembly;
  • the stator 11 includes N stator units 111, 112 that are magnetically conductive;
  • the mover 12 includes N magnetically conductive N moving subunits 121, 122;
  • N stator units 111, 112 include N stator yokes 1113, 1123 (as shown in Figure 2A or 2B);
  • N moving subunits 121, 122 include N moving The sub-yoke parts 1213 and 1223 (as shown in FIG. 4 or 5); where N is an integer greater than or equal to 2.
  • this specific embodiment takes N equal to 2 as an example for detailed description.
  • the N stator units and the N mover units can be made of various magnetically conductive materials that are currently or will be developed in the future, such as commonly used silicon steel sheets, iron powder or pure iron.
  • stator 11 and the mover 12 can be arranged opposite to each other on one side (as shown in Figures 1, 8A or 11A).
  • stator 11 can be two parts, and they are located on both sides of the first mover 12 ( Figures are omitted), or the mover has two parts (12, 12') located on both sides of the stator 11 (as shown in Figure 8B), or as shown in Figure 11C, the mover part is omitted in the figure, and the stator
  • the two sides of the axis Y can be respectively provided with movers.
  • stator 11 and the mover 12 are arranged opposite to each other on one side, the stator 11 may be located on any side of the mover 12.
  • this specific embodiment takes the motor as a radial flux rotating motor, and the stator 11 is located at the radial inner side of the mover 12 as an example for further detailed description, as shown in FIG. 1.
  • the N stator units 111, 112 and the N mover units 121, 122 are arranged in pairs along the first direction; and an air gap is formed between the N stator units 111, 112 and the N mover units 121, 122, in the air gap A magnetic field is formed along a second direction; wherein the second direction is perpendicular to the first direction.
  • the first direction and the second direction have different meanings.
  • the first direction is the axial direction Y; the second direction is the radial direction;
  • the motor when the motor is a linear motor; the first direction is a direction perpendicular to the second direction; the second direction is a direction crossing the air gap between the stator and the mover.
  • the motor when the motor is an axial flux rotating motor, the first direction is radial; the second direction is axial Y, then N stator units 111, 112 and N
  • the moving subunits 121, 122 are arranged in pairs along the radial direction; and an air gap is formed between the N stator units 111, 112 and the N moving subunits 121, 122, and a magnetic field along the axis Y is formed in the air gap.
  • a stator unit gap N1 is formed between adjacent stator units, and a total of N-1 stator unit gaps N1 are formed between the adjacent stator units among the N stator units 111 and 112; N-1 mover unit gaps are formed between adjacent mover units in the subunits 121 and 122.
  • adjacent refers to adjacent, for example: the first stator unit and the second stator unit are called adjacent, the second stator unit and the third stator unit are called adjacent..., and so on, the Nth stator
  • the unit and the N-1th stator unit can be called adjacent; in the same way, the Nth mover unit and the N-1th mover unit are called adjacent.
  • N stator units 111 and 112 pass through the stator gap N1 and/or N mover units pass through the mover gap (the mover unit part is omitted in FIG. 2C) They are completely independent of each other; then each paired stator unit and mover unit form respective magnetic field line loops H', H";
  • the mover gap In addition to N1, the N stator yokes of the N stator units 111 and 112 are connected by the stator magnetic material connection part 13; and/or the N mover yokes of the N mover units are connected by the mover magnetic material
  • the connecting portion 14 (as shown in Figure 4 or 5) is connected into one body; then the N stator units and the N mover units jointly form an integral magnetic field line loop H, which respectively form respective magnetic field lines compared to the above embodiment
  • the circuit can reduce the reluctance of the magnetic circuit of the entire motor.
  • the integration can be prefabricated as a whole, or can be realized by splicing.
  • each of the N stator yokes may be a prefabricated whole, spliced by multiple parts, or composed of multiple parts separated by a certain distance from each other; and/or, N mover yokes
  • Each of the mover yokes can be a prefabricated whole, spliced by multiple parts, or composed of multiple parts separated by a certain distance from each other.
  • the stator permanent magnet assembly may be arranged in at least part (part of or all) of the N-1 stator unit gaps and/or on the N stator units 111, 112; and/or
  • the permanent magnet assembly of the mover may be arranged in at least part of the gaps of the N-1 mover units and/or on the N mover units 121, 122.
  • stator permanent magnet assembly and the mover permanent magnet assembly body can be a single piece or multiple pieces, and the multiple pieces of permanent magnets can be designed arbitrarily.
  • the Halbach structure or the simplified Halbach structure is a special type of the multiple pieces of permanent magnets. Structure.
  • the electromagnetic torque of the motor depends on the current in the winding and the magnetic field generated by the permanent magnet.
  • the greater the effective magnetic field generated by the permanent magnet the greater the electromagnetic torque of the motor, and this increase in electromagnetic torque will not increase the copper loss of the motor.
  • the magnetic field generated by the first permanent magnet assembly and/or the second permanent magnet assembly can interact with the magnetic field generated by the winding current on the motor to generate effective torque. Therefore, when the motor is used as a motor, It can produce greater electromagnetic torque/output; in the same way, when the motor is used as a generator, the power density of power generation can be increased.
  • the volume of the motor remains the same, when the motor is used as a motor, the torque/output of the motor under the same load current can be increased; when the motor is used as a generator, the power density of power generation can be increased; The volume and weight of the motor can be reduced when the output torque/force, or the power density of the power generation remains unchanged.
  • stator and/or mover permanent magnet assembly is arranged on the stator unit, mover unit, stator unit gap and/or mover unit gap, the processing and installation cost of the permanent magnet can be reduced, thereby reducing the manufacturing of the motor cost.
  • stator permanent magnet assembly may be arranged in at least part of the N-1 stator unit gaps and/or on the N stator units 111 and 112; and/or the mover permanent magnet assembly may be arranged at least Part of the gaps of N-1 mover units and/or on the N mover units 121 and 122 will be described in further detail:
  • the stator permanent magnet assembly is a third permanent magnet M3 arranged in at least part of N-1 stator unit gaps N1;
  • the mover permanent magnet assembly is a fourth permanent magnet M4 arranged in at least part of N-1 mover unit gaps N2.
  • the stator permanent magnet assembly may be arranged on the N stator yokes of at least part of the N stator units; and/or the mover permanent magnet assembly may be arranged on at least part of the N mover units On the yoke of the N movers.
  • the stator permanent magnet assembly and the mover permanent magnet assembly can also be arranged in any other positions of the stator unit and the mover unit that meet any requirements that can form a magnetic field superposition in the air gap.
  • the fifth permanent magnet M5 is arranged on the N stator yoke parts 113.
  • the fifth permanent magnets are arranged in a ring shape.
  • the annular fifth permanent magnet M5 can be prefabricated as a whole or a plurality of separate parts are spliced to form an annular feature permanent magnet M5 (as shown in FIG. 9A As shown); or by a plurality of permanent magnets spaced a certain distance from each other arranged in the circumferential direction to form a ring-shaped fifth permanent magnet M5' ( Figure 9B); or by a plurality of permanent magnets separated by a certain distance and at a certain angle The magnets are arranged in the circumferential direction into a fifth permanent magnet M5" ( Figure 9C).
  • the fifth permanent magnets are arranged in a straight line.
  • the fifth permanent magnet M5 can be prefabricated as a whole or a plurality of separate parts are spliced into a straight line arrangement (as shown in Fig. 10A), or a plurality of pieces are arranged in a straight line at a certain distance.
  • the fifth permanent magnet M5' (as shown in FIG. 10B), or adjacent permanent magnets are arranged at a certain distance and at a certain angle to form a fifth permanent magnet M5" (as shown in FIG. 10C).
  • the sixth permanent magnet M6 is arranged on the N mover yokes 123.
  • the sixth permanent magnets M6 are arranged in a ring shape.
  • it can be a sixth permanent magnet that is prefabricated as a whole or is formed by splicing a plurality of separate parts into a circular ring; or a sixth permanent magnet that is arranged in the circumferential direction with a plurality of permanent magnets spaced apart from each other to form a circular ring. Permanent magnets; or a plurality of permanent magnets spaced at a certain distance and at a certain angle are arranged in the circumferential direction to form the sixth permanent magnet.
  • the sixth permanent magnets M6 are arranged in a straight line.
  • the sixth permanent magnet can be prefabricated as a whole or a plurality of separate parts are spliced into a linear arrangement; or a plurality of permanent magnets are arranged at a certain distance in a straight line; or adjacent permanent magnets are arranged at a certain distance and at a certain angle.
  • the magnetic field polarization direction of the stator permanent magnet assembly corresponds to the first direction
  • the direction of the magnetic field generated by the stator permanent magnet assembly in the air gap corresponds to the second direction
  • the magnetic field polarization direction of the mover permanent magnet assembly corresponds to the first direction
  • the direction of the magnetic field generated by the permanent magnet assembly of the mover in the air gap corresponds to the second direction.
  • each permanent magnet can make full use of its material to generate the largest possible magnetic field in the air gap of the motor, so that when the motor is a motor, the largest possible electromagnetic torque/output can be generated .
  • the power density of power generation can be increased.
  • stator unit and mover unit arranged in pairs of the motor include stator permanent magnet assemblies and mover permanent magnet assemblies arranged in pairs
  • stator permanent magnet assemblies and mover permanent magnet assemblies arranged in pairs are The direction of the magnetic field formed by the magnet assembly in the air gap.
  • the direction of the magnetic field formed by the first permanent magnet and the second permanent magnet in the air gap is the same.
  • stator permanent magnet assembly and the mover permanent magnet assembly arranged in pairs can form a magnetic field superposition with each other, thereby further increasing the magnetic flux density passing through the air gap.
  • each of the N stator yokes of the N stator units 111, 112 moves along the direction of the mover (for example, in a radial flux rotating machine, it can be called (In the "circumferential direction") extending toward the mover unit to form a plurality of large teeth T, and large slots are formed between adjacent large teeth T; the winding L is arranged in at least part of the large slots.
  • the windings can be arranged in the large slots in a concentrated or distributed manner.
  • a seventh permanent magnet M7 (as shown in FIG. 8A) may be provided in the large groove.
  • the large slots corresponding to the positions of the N stator units in the first direction can share the same winding L (as shown in FIG. 1); or the large slots on each stator unit 111, 112 Set up separate windings L (picture omitted)
  • the large teeth may be various types of large teeth, such as shoe-shaped teeth (as shown in FIG. 1), or straight teeth (illustration omitted).
  • the multiple large teeth T'of the stator unit correspond to the end surface of the mover to form multiple first small teeth 1111' along the moving direction of the mover, and adjacent first small teeth 1111' A first small groove 1112' is formed therebetween.
  • the small groove 1112' may be an open groove (as shown in FIG. 7C), a closed groove (illustration omitted), or a half-opened groove (illustration omitted).
  • At least part of the first small groove 1112 is provided with a first permanent magnet M1; in one embodiment, the direction of the magnetic field formed by the first permanent magnet M1 in the air gap corresponds to the first permanent magnet M1 Two directions.
  • the surface of the corresponding mover of the plurality of large teeth T" is smooth, that is, the surface of the large teeth is not provided with the first small teeth and the second small groove, and/or the first permanent magnet.
  • the N mover yokes of 121 and 122 of the N mover units form a plurality of second small teeth along the direction of movement corresponding to the surface of the stator.
  • a second small groove is formed between the second small teeth;
  • At least a part of the second small groove is provided with a second permanent magnet M2; in one embodiment, the direction of the magnetic field formed by the second permanent magnet M2 in the air gap corresponds to the second direction.
  • the first permanent magnet provided in each first small slot and the second permanent magnet provided in the second small slot can be a single piece or multiple pieces, and the multiple pieces of permanent magnets can be designed as desired, among which Halbach structure or The simplified Halbach structure is a special structure of multiple permanent magnets.
  • a plurality of second small teeth 1211, 1221 are formed along the moving direction of the mover.
  • the second small grooves 1212, 1222 are formed between the two second small teeth.
  • the directions of the magnetic fields generated by the adjacent stator permanent magnet assemblies in the air gap may be opposite or the same;
  • the directions of the magnetic fields generated by the adjacent stator permanent magnet assemblies in the air gap may be opposite or the same; and / or
  • the directions of the magnetic fields generated by the adjacent mover permanent magnet assemblies in the air gap may be opposite or the same; and / or
  • the directions of the magnetic fields generated by the adjacent mover permanent magnet assemblies in the air gap may be opposite or the same.
  • the adjacent N-1 stator unit gaps refer to the adjacent stator unit gaps among the N-1 stator unit gaps;
  • the adjacent N-1 mover unit gaps refer to N-1 mover unit gaps
  • adjacent stator permanent magnet assemblies refer to the general term of two stator permanent magnet assemblies respectively arranged in adjacent N-1 stator unit gaps; adjacent mover permanent magnet assemblies refer to the two stator permanent magnet assemblies respectively arranged in adjacent A collective term for the two mover permanent magnet assemblies in the gap of N-1 mover units.
  • the two adjacent mover units 121, 122 of the N mover units 121, 122 are staggered along the direction of movement of the motor A certain distance, which makes the adjacent stator permanent magnet assembly and/or mover permanent magnet assembly corresponding in the first direction between the adjacent mover units and the adjacent stator units arranged in pairs
  • the direction of the magnetic field generated in the air gap is the same, thereby increasing the torque/output of the motor or the power density of the power generation.
  • the adjacent stator permanent magnet assembly and/or the adjacent mover permanent magnet assembly produce the magnetic field in the air gap in opposite directions
  • the corresponding two adjacent mover units move along the mover
  • the direction is staggered by a certain distance, which makes the adjacent stator permanent magnet assembly and/or mover permanent magnet assembly generate the same direction of the magnetic field in the air gap corresponding to the position along the first direction, so as to make the adjacent mover unit into the same direction.
  • the magnetic field in the same direction is generated in the adjacent stator units, thereby increasing the torque/output of the motor or the power density of power generation.
  • a plurality of second small teeth 1211, 1221 are formed along the moving direction of the mover, and adjacent When the second small grooves 1212, 1222 are formed between the two second small teeth; among the N mover units 121, 122, the adjacent two mover units 121, 122 are staggered by 0.5 second in the direction of movement of the motor. Tooth distance d.
  • the first mover unit 121 and the second mover unit 122 are staggered by the pitch d of the second small teeth by 0.5; for another example, as shown in FIG.
  • the first mover unit 121 and the second mover unit 122 are staggered by a distance d of 0.5 second small teeth along the moving direction of the mover; and between the second mover unit 122 and the third mover unit 125 The movement direction of the mover opposite to the above-mentioned direction is shifted by 0.5 second small tooth pitch d.
  • stator and/or the stator and/or the permanent magnet assembly of the mover unit on the mover unit form the magnetic field in the air gap with the direction of the second
  • the magnetization direction of the stator and/or mover permanent magnet assembly on the stator and/or mover unit is opposite, then the stator and/or mover permanent magnet assembly on the second stator and/or mover unit generates in the air gap
  • the magnetic field enters the stator from the mover at the second small tooth part, and enters the mover from the stator at the second small slot.
  • stator and/or mover permanent magnet assembly produces the same magnetic field direction in the air gaps of the first mover unit and the second mover unit along the first direction.
  • the adjacent stator units arranged in pairs of adjacent mover units can generate magnetic fields in the same direction, thereby increasing the overall torque/output of the motor or the power density of power generation.
  • the embodiment of the present invention also provides a device (the drawings are omitted), and the device includes at least one of the above-mentioned motors.
  • the device may be an automated device or a semi-automated device.
  • automated or semi-automated equipment can be applied to various fields, such as industry, education, nursing, entertainment, or medical treatment.
  • robots such as manipulators or humanoid robots
  • robots can be regarded as advanced automation equipment.
  • the device may also be a power generating device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

本发明提供一种电机,该电机包括:定子、动子、及定子永磁体组件和/或动子永磁体组件;定子包括导磁的N个定子单元,动子包括导磁的N个动子单元;N个定子单元包括N个定子轭部;N个动子单元包括N个动子轭部;其中,N为大于等于2的整数;N个定子单元和N个动子单元沿第一方向成对设置;且N个定子单元和N个动子单元之间形成气隙;气隙中形成沿第二方向的磁场;其中,第二方向垂直于第一方向;N个定子单元中的相邻定子单元之间形成N-1个定子单元空隙;N个动子单元中的相邻动子单元之间形成N-1个动子单元空隙;定子永磁体组件可设置在至少部分N-1个定子单元空隙中和/或N个定子单元上;和/或动子永磁体组件可设置在至少部分N-1个动子单元空隙中和/或N个动子单元上,采用本发明的技术方案,可以增大电磁转矩/出力,或增加发电的功率密度。

Description

一种电机及包括该电机的设备 技术领域
本发明涉及电磁技术领域,具体涉及一种电机及包括该电机的设备。
背景技术
近两年随着社会和科技的高速发展,人们对能输出大扭矩/出力、或输出大的发电量的电机的需求越来越大。
但是,目前为止,电机在这方面的表现仍不能满足人们的需求。
发明内容
有鉴于此,本发明实施例提供一种电机及包括该电机的设备。
本发明提供一种电机,所述电机包括:定子、动子、及定子永磁体组件和/或动子永磁体组件;所述定子包括导磁的N个定子单元,所述动子包括导磁的N个动子单元;所述N个定子单元包括N个定子轭部;所述N个动子单元包括N个动子轭部;其中,N为大于等于2的整数;
所述N个定子单元和所述N个动子单元沿第一方向成对设置;且所述N个定子单元和所述N个动子单元之间形成气隙;所述气隙中形成沿第二方向的磁场;其中,所述第二方向垂直于所述第一方向;
所述N个定子单元中的相邻定子单元之间形成N-1个定子单元空隙;所述N个动子单元中的相邻动子单元之间形成N-1个动子单元空隙;
所述定子永磁体组件设置在至少部分所述N-1个定子单元空隙中和/或所述N个定子单元上;和/或
所述动子永磁体组件设置在至少部分所述N-1个动子单元空隙中和/或所述N个动子单元上。
优选的,所述N个定子轭部通过定子导磁材料连接部连成一体;和/或
所述N个动子轭部通过动子导磁材料连接部连成一体。
优选的,当所述定子永磁体组件设置在至少部分所述N-1个定子单元空 隙上;所述定子永磁体组件的磁场极化方向对应所述第一方向;和/或
当所述定子永磁体组件设置在至少部分所述N个定子单元上;所述定子永磁体组件在气隙中产生的磁场方向对应所述第二方向;和/或
当所述动子永磁体组件设置在至少部分所述N-1个动子单元空隙上;所述动子永磁体组件的磁场极化方向对应所述第一方向;和/或
当所述动子永磁体组件设置在至少部分所述N个动子单元上;所述动子永磁体组件在气隙中产生的磁场方向对应所述第二方向。
优选的,当所述电机包括所述定子永磁体组件和所述动子永磁体组件,位于所述成对设置的定子单元和动子单元上的所述定子永磁体组件和所述动子永磁体组件在所述气隙中形成的磁场方向相同。
优选的,所述定子永磁体组件可以设置在至少部分所述N个定子单元的所述N个定子轭部上;和/或所述动子永磁体组件设置在至少部分所述N个动子单元的所述N个动子轭部上。
优选的,当所述电机为旋转电机,设置在轭部的所述定子永磁体组件和/或所述动子永磁体组件成圆环状分布;或
当所述电机为直线电机,设置在轭部的所述定子永磁体组件和/或所述动子永磁体组件成直线分布。
优选的,所述N个定子轭部中的每个定子轭部沿所述动子运动方向向所述动子延伸形成多个大齿;相邻的所述大齿之间形成大槽;至少部分所述大槽中设置绕组;
所述大齿对应所述动子的表面沿所述动子运动方向形成多个第一小齿,相邻的所述第一小齿之间形成第一小槽;或
所述大齿对应所述动子的表面为光滑表面。
优选的,当所述电机形成所述第一小槽,至少部分所述N个定子单元的至少部分所述第一小槽内设置第一永磁体。
优选的,至少部分所述大槽内设置第七永磁体。
优选的,所述N个动子轭部上对应所述定子的表面沿所述动子运动方向形成多个第二小齿,相邻的第二小齿之间形成第二小槽。
优选的,至少部分所述N个动子单元中的至少部分所述第二小槽内设置第二永磁体。
优选的,当相邻的所述N-1个定子单元空隙设置相邻的定子永磁体组件,所述相邻的定子永磁体组件在所述气隙中产生的磁场方向相反;和/或
当相邻的所述N个定子单元设置相邻的定子永磁体组件,所述相邻的定子永磁体组件在所述气隙中产生的磁场方向相反;和/或
当相邻的所述N-1个动子单元空隙设置相邻的动子永磁体组件,所述相邻的动子永磁体组件在所述气隙中产生的磁场方向相反;和/或
当相邻的所述N个动子单元设置相邻的动子永磁体组件,所述相邻的动子永磁体组件在所述气隙中产生的磁场方向相反。
优选的,所述相邻动子单元沿动子运动方向错开一定距离;其中,
所述一定距离使得所述相邻的定子永磁体组件和/或所述相邻的动子永磁体组件在所述相邻的定子单元和所述相邻的动子单元之间沿所述第一方向对应的所述气隙中产生的磁场方向相同。
优选的,所述N个动子轭部上对应所述定子的表面沿所述动子运动方向形成多个第二小齿,相邻的第二小齿之间形成第二小槽。
优选的,所述相邻动子单元沿动子运动方向错开0.5个所述第二小齿的齿距。
优选的,当所述电机为径向磁通旋转电机,所述第一方向为轴向;所述第二方向为径向;或
当所述电机为直线电机;所述第一方向为与所述动子运动方向垂直的方向;所述第二方向为所述穿越定子与动子之间的气隙的方向。
本发明提供一种设备,所述设备包括至少一个上面任一项所述的电机。
通过在包括N个定子单元和N个动子单元的电机上设置第一永磁体组件和/或第二永磁体组件,因此当电机作为电动机时,从而产生更大的电磁转矩/出力;同理,当电机作为发电机时,可以增加发电的功率密度。
附图说明
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的电机整体结构示意图。
图2A为本发明实施例提供的电机的两个定子单元的示意图;图2B为本发明实施例提供的电机的两个定子单元沿轴向剖开的第一示意图;图2C为本发明实施例提供的电机的两个定子单元沿轴向剖开的第二示意图。
图3为本发明实施例提供的电机的两个定子单元设置第三永磁体和第五永磁体后沿轴向剖开的示意图。
图4为本发明实施例提供的电机的两个动子单元沿轴向剖开的示意图。
图5为本发明实施例提供的电机的两个动子单元设置第四永磁体和第五永磁体后沿轴向剖开的示意图。
图6A为本发明实施例提供的电机的相邻两个动子单元齿槽表面的局部平面示意图;图6B为本发明实施例提供的电机的相邻三个动子单元齿槽表面的局部平面示意图;图6C为本发明实施例提供的电机的相邻两个动子单元齿槽表面的局部示意图。
图7A为本发明实施例提供的电机的定子单元的其中一个大齿的第一平面示意图;图7B为本发明实施例提供的电机的定子单元的其中一个大齿的第二平面示意图;图7C为本发明实施例提供的电机的定子单元的其中一个大齿的第三平面示意图。
图8A为本发明实施例提供的电机的定子和动子相对部分的齿槽排列的第一局部示意图;图8B为本发明实施例提供的电机的定子和动子相对部分的齿槽排列的第二局部示意图。
图9A为本发明实施例提供的电机的定子轭部中设置的圆环排列结构的第五永磁体的第一示意图;图9B为本发明实施例提供的电机的定子轭部中设置的圆环排列结构的第五永磁体的第二示意图;图9C为本发明实施例提供的电 机的定子轭部中设置的圆环排列结构的第五永磁体的第三示意图。
图10A为本发明实施例提供的电机的定子轭部中设置的直线排列结构的第五永磁体的第一示意图;图10B为本发明实施例提供的电机的定子轭部中设置的直线排列结构的第五永磁体的第二示意图;图10C为本发明实施例提供的电机的定子轭部中设置的直线排列结构的第五永磁体的第三示意图。
图11A为本发明实施例提供的轴向磁通旋转电机的轴向剖面示意图;图11B为本发明实施例提供的轴向磁通旋转电机的动子的面对定子面的示意图;11C为本发明实施例提供的轴向磁通旋转电机的定子的示意图。
附图符号说明:10电机;11定子;12动子;111、112定子单元;1113、1123定子轭部;121、122、123动子单元;1213、1223动子轭部;13定子导磁材料连接部;1111第一小齿;1112第一小槽;M1第一永磁体;M2第二永磁体;M3第三永磁体;M4第四永磁体;M5第五永磁体;M6第六永磁体;M7第七永磁体;T大齿;L绕组;N1相邻定子单元空隙;Y轴向。
具体实施方式
为了使本领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都应当属于本发明保护的范围。
如图1所示,本发明实施例提供一种电机10。
具体的,该电机可以为具有下述结构的现在已有或将来开发的各种类型的电机,比如:以电机的定子和动子的相对运动方式划分可以包括:旋转电机(如图1所示)或直线电机(如图8A或8B所示);以旋转电机的磁通走向为例,可以包括轴向磁通旋转电机(如图11A-11C所示)、径向磁通旋转电机(如图1所示)或轴向-径向混合磁通旋转电机(省略附图)。
具体的,该电机即可以为将电能转换成动能输出的电动机;也可以为将动能转化为电能输出的发电机。二者之间在一些情况中是可以采用同一结构实现 的,通过对相同的结构采用不同的电连接和机械连接的方式,从而分别实现发电机或电动机的功能。
继续如图1所示,该电机10包括定子11、动子12、及定子永磁体组件和/或动子永磁体组件;定子11包括导磁的N个定子单元111、112;动子12包括导磁的N个动子单元121、122;N个定子单元111、112包括N个定子轭部1113、1123(如图2A或2B所示);N个动子单元121、122包括N个动子轭部1213、1223(如图4或5所示);其中,N为大于等于2的整数,为方便理解,本具体实施例以N等于2为例详细说明。
具体的,N个定子单元和N个动子单元可以采用现在已有或将来发开的各种可导磁的材料制成,比如:常用的硅钢片、铁粉或纯铁等等制成。
具体的,定子11和动子12可以单侧相对设置(如图1、8A或11A所示),除此之外,定子11可以为两个部分,且分别位于第动子12的两侧(省略附图),或者动子为两个部分(12、12’)分别位于定子11的两侧(如图8B所示),或如图11C所示,图中省略了动子部分,定子的轴向Y的两侧可以分别对应设置动子。
进一步,当定子11和动子12单侧相对设置,定子11可以位于动子12的任意一侧。为方便理解,本具体实施例以电机为径向磁通旋转电机,定子11位于动子12的径向内侧为例进一步详细说明,如图1所示。
N个定子单元111、112和N个动子单元121、122沿第一方向成对设置;且N个定子单元111、112和N个动子单元121、122之间形成气隙,气隙中形成沿第二方向的磁场;其中,第二方向垂直于第一方向。
具体的,根据不同的电机,第一方向和第二方向代表不同的含义。
比如:如图1所示,当该电机10为径向磁通旋转电机10,第一方向为轴向Y;第二方向为径向;
如图8A或8B所示,当该电机为直线电机;第一方向为与第二方向垂直的方向;第二方向为穿越定子与动子之间的气隙的方向。
如图11A-11C所示,当所述电机为轴向磁通旋转电机,所述第一方向为径向;所述第二方向为轴向Y,则N个定子单元111、112和N个动子单元121、 122沿径向成对设置;且N个定子单元111、112和N个动子单元121、122之间形成气隙,气隙中形成沿轴向Y的磁场。
如图2B所示,相邻的定子单元之间形成定子单元空隙N1,则N个定子单元111、112中的相邻的定子单元之间共形成N-1个定子单元空隙N1;N个动子单元121、122中的相邻的动子单元之间形成N-1个动子单元空隙。
其中,相邻是指邻接,比如:第一个定子单元和第二个定子单元称为邻接,第二个定子单元和第三个定子单元称为邻接……,依此类推,第N个定子单元和第N-1个定子单元可以称为邻接;同理,第N个动子单元和第N-1个动子单元称为邻接。
在一个实施例中,如图2C所示,N个定子单元111、112之间通过定子空隙N1和/或N个动子单元之间通过动子空隙(附图2C中省略动子单元部分)彼此间隔完全独立;则每个成对设置的定子单元和动子单元之间分别形成各自的磁力线回路H’、H”;
在一个实施例中,如图2B所示,N个定子单元111、112之间除了定子空隙N1和/或N个动子单元之间(附图2B中省略动子单元部分)除动子空隙N1之外,N个定子单元111、112的N个定子轭部通过定子导磁材料连接部13连成一体;和/或N个动子单元的N个动子轭部通过动子导磁材料连接部14(如图4或5所示)连成一体;则N个定子单元和N个动子单元之间共同形成一个整体的磁力线回路H,相对上面实施例所述的分别形成各自的磁力线回路,可以减小整个电机的磁路的磁阻。
具体的,连成一体可以是预制成一体,也可以通过拼接的方式实现。
具体的,N个定子轭部中的每个定子轭部可以为预制的整体、由多个部分拼接而成,或者由多个部分彼此间隔一定距离组成;和/或,N个动子轭部中的每个动子轭部可以为预制的整体、由多个部分拼接而成,或者由多个部分彼此间隔一定距离组成。
定子永磁体组件可设置在至少部分(部分或全部)N-1个定子单元空隙中和/或N个定子单元111、112上;和/或
动子永磁体组件可设置在至少部分N-1个动子单元空隙中和/或N个动子 单元121、122上。
具体的,定子永磁体组件和动子永磁体组件体可以为单片或多片,多片永磁体可以根据设计成任意,其中Halbach结构或简化的Halbach结构为多片永磁体的其中一种特殊的结构。
以电机为旋转电动机为例,由于电机的电磁转矩取决于绕组中的电流大小和永磁体产生的磁场。在绕组电流相同的情况下,永磁体产生的有效磁场越大,电机的电磁转矩也越大,而且这种电磁转矩的增加不会增加电机的铜耗。通过在包括N个定子单元和N个动子单元的电机上设置第一永磁体组件和/或第二永磁体组件,第一永磁体组件和/或第二永磁体组件产生的磁通通过定子、气隙和动子构成回路,在气隙中每个永磁体产生的磁场重叠,大大提高了永磁体产生的磁场。由于巧妙的永磁体的布置,第一永磁体组件和/或第二永磁体组件产生的磁场都能与电机上的绕组电流产生的磁场相互作用,产生有效转矩,因此当电机作为电动机时,可以产生更大的电磁转矩/出力;同理,当电机作为发电机时,可以增加发电的功率密度。
另外,在电机的体积不变的情况下,当该电机作为电动机时,可以增加电机在相同负载电流下的转矩/出力;当电机作为发电机时,可以增加发电的功率密度;而在电机的输出的转矩/力,或发电功率密度不变的情况下,可以减少电机的体积和重量。
另外,由于将定子和/或动子永磁体组件设置在定子单元、动子单元、定子单元空隙和/或动子单元空隙上,可以降低永磁体的加工、安装成本低,从而减少电机的制造成本。
具体的,为方便理解,对上述定子永磁体组件可设置在至少部分N-1个定子单元空隙中和/或N个定子单元111、112上;和/或动子永磁体组件可设置在至少部分N-1个动子单元空隙中和/或N个动子单元121、122上进行进一步详细说明:
在一个实施例中,如图3所示,定子永磁体组件为至少部分N-1个定子单元空隙N1内设置的第三永磁体M3;
在一个实施例中,如图3所示,动子永磁体组件为至少部分N-1个动子单元空隙N2内设置的第四永磁体M4。
在一个实施例中,如图3所示,定子永磁体组件可以设置在至少部分N个定子单元的N个定子轭部上;和/或动子永磁体组件设置在至少部分N个动子单元的N个动子轭部上。除此之外,定子永磁体组件和动子永磁体组件也可以设置在定子单元和动子单元的其它任意满足可以在气隙中形成磁场叠加的任意需要的位置上。
为方便理解,下面进一步详细说明:
在一个实施例中,如图3所示,第五永磁体M5设置在N个定子轭部113上。
进一步,在一个实施例中,当电机为旋转电机,第五永磁体成圆环状排列。
具体的,如图9A、9B或9C所示,该圆环状的第五永磁体M5可以预制成一体或者由多个单独的部分拼接而成圆环状地物永磁体M5(如图9A所示);或者由多个永磁体彼此间隔一定距离沿圆周方向排列拼成圆环状的第五永磁体M5’(如图9B);或者由多个间隔一定距离并成一定夹角的永磁体沿圆周方向排列成第五永磁体M5”(如图9C)。
进一步,在一个实施例中,当电机为直线电机,第五永磁体成直线排列。
具体的,如图9A、9B或9C所示,第五永磁体M5可以预制成一体或者由多个单独的部分拼接而成直线排列(如图10A),或者多个间隔一定距离直线排列成第五永磁体M5’(如图10B),或者相邻的永磁体间隔一定距离并成一定夹角排列成第五永磁体M5”(如图10C)。
如图5所示,在一个实施例中,第六永磁体M6设置在N个动子轭部123上。
进一步,在一个实施例中,当电机为旋转电机,第六永磁体M6成圆环状排列。
具体的,可以为预制成一体或者由多个单独的部分拼接而成圆环状地第六永磁体;或者由多个永磁体彼此间隔一定距离沿圆周方向排列拼成圆环状的第六永磁体;或者由多个间隔一定距离并成一定夹角的永磁体沿圆周方向排列成 第六永磁体。
进一步,在一个实施例中,当电机为直线电机,第六永磁体M6成直线排列。
具体的,第六永磁体可以预制成一体或者由多个单独的部分拼接而成直线排列;或者多个间隔一定距离直线排列;或者相邻的永磁体间隔一定距离并成一定夹角排列。
具体的,有关第六永磁体的其它相关描述参见上面第五永磁体中的描述,在此不再赘述。
在一个实施例中,当定子永磁体组件设置在至少部分N-1个定子单元空隙上时,定子永磁体组件的磁场极化方向对应所述第一方向;和/或
当定子永磁体组件设置在至少部分N个定子单元上时,定子永磁体组件在气隙中产生的磁场方向对应第二方向;和/或
当动子永磁体组件设置在至少部分所述N-1个动子单元空隙上时,动子永磁体组件的磁场极化方向对应第一方向;和/或
当动子永磁体组件设置在至少部分N个动子单元上时,动子永磁体组件在气隙中产生的磁场方向对应第二方向。
其中,上述对应是指相同或大致相同。
通过上述磁场极化方向的设置,每一个永磁体都能充分利用其材料在电机的气隙中产生尽可能大的磁场,从而当电机为电动机时,可以产生尽可能大的电磁转矩/出力。另外,同理,当电机为发电机时,可以增加发电的功率密度。
在一个实施例中,当电机的成对设置的定子单元和动子单元上包括成对设置的定子永磁体组件和动子永磁体组件,则该成对设置的定子永磁体组件和动子永磁体组件在气隙中形成的磁场方向相同。比如:第一永磁体和第二永磁体在气隙中形成的磁场方向相同。
这样成对设置的定子永磁体组件和动子永磁体组件彼此之间可以形成磁场的叠加,从而可以进一步增加气隙中通过的磁通密度。
如图2所示,在一个实施例中,N个定子单元111、112的N个定子轭部中的每个定子轭部沿动子运动方向(比如:在径向磁通旋转电机中可以称为“圆周方向”)向动子单元延伸形成多个大齿T,相邻的大齿T之间形成大槽;绕组L设置在至少部分大槽中。
具体的,绕组可以集中或者分布的方式设置在大槽中。
在一个实施例中,大槽内还可以设置第七永磁体M7(如图8A所示)。
进一步,在一个实施例中,可以N个定子单元沿第一方向位置对应的各个大槽共用同一个绕组L(如图1所示);也可以每个定子单元111、112上的大槽内分别设置各自独立的绕组L(省略附图)
具体的,该大齿可以为各种类型的大齿,比如:靴型齿(如图1所示)、或者直齿(省略附图)等等。
如图7B所示,在一个实施例中,定子单元的多个大齿T’对应动子的端面沿动子运动方向形成多个第一小齿1111’,相邻的第一小齿1111’之间形成第一小槽1112’,具体的,该小槽1112’可以为开口槽(如图7C所示)、闭口槽(省略附图)或者半开口槽(省略附图)等等。
如图7A所示,进一步,在一个实施例中,至少部分第一小槽1112内设置第一永磁体M1;在一个实施例中,第一永磁体M1在气隙中形成的磁场方向对应第二方向。
如图7C所示,在一个实施例中,多个大齿T”的对应动子的表面光滑,即大齿表面不设置第一小齿和第二小槽,和/或第一永磁体。
如图1或4所示,在一个实施例中,N个动子单元中121、122的N个动子轭部对应定子的表面沿运动运动方向形成多个第二小齿,相邻的两个第二小齿之间形成第二小槽;
进一步,在一个实施例中,至少部分第二小槽内设置第二永磁体M2;在一个实施例中,第二永磁体M2在气隙中形成的磁场方向对应第二方向。
具体的,每个第一小槽内设置的第一永磁体和第二小槽内设置的第二永磁体可以为单片或多片,多片永磁体可以根据设计成任意,其中Halbach结构或 简化的Halbach结构为多片永磁体的其中一种特殊的结构。
在一个实施例中,如图4或5所示,根据上面实施例所述,当N个动子轭部对应定子的面沿动子运动方向形成多个第二小齿1211、1221,相邻的两个第二小齿之间形成第二小槽1212、1222。
在一个实施例中,当相邻的N-1个定子单元空隙中设置相邻的定子永磁体组件,相邻的定子永磁体组件在气隙中产生的磁场方向可以相反或相同;和/或
在一个实施例中,如图3所示,当相邻的N个定子单元上设置相邻的定子永磁体组件,相邻的定子永磁体组件在气隙中产生的磁场方向可以相反或相同;和/或
在一个实施例中,当相邻的N-1个动子单元空隙中设置相邻的动子永磁体组件,相邻的动子永磁体组件在气隙中产生的磁场方向可以相反或相同;和/或
在一个实施例中,当相邻的N个动子单元上设置相邻的动子永磁体组件,相邻的动子永磁体组件在气隙中产生的磁场方向可以相反或相同。
其中,相邻的N-1个定子单元空隙是指N-1个定子单元空隙中彼此邻接的定子单元空隙;相邻的N-1个动子单元空隙是指N-1个动子单元空隙中彼此邻接的动子单元空隙;具体含义参见上面实施例有关相邻的定子单元的说明,在此不再赘述。
其中,相邻的定子永磁体组件是指分别设置在相邻的N-1个定子单元空隙中的两个定子永磁体组件的统称;相邻的动子永磁体组件是指分别设置在相邻的N-1个动子单元空隙中的两个动子永磁体组件的统称。
进一步,在一个实施例中,根据上面实施例所述,当相邻的N-1个定子单元空隙和/或相邻的N个定子单元分别设置相邻的定子永磁体组件,且相邻的定子永磁体组件在气隙中产生的磁场方向相反;和/或当相邻的N-1个动子单元空隙和/或相邻的N个动子单元分别设置相邻的动子永磁体组件,且相邻的动子永磁体组件在所述气隙中产生的磁场方向相反时,N个动子单元121、122 的其中相邻的两个动子单元121、122沿电机的运动方向错开一定距离,该距离使得相邻的定子永磁体组件和/或动子永磁体组件在相邻的成对设置的相邻的动子单元和相邻的定子单元之间沿第一方向位置对应的气隙中产生的磁场方向相同,从而增大电机的转矩/出力,或发电的功率密度。
采用上面结构的电机,当相邻的定子永磁体组件和/或相邻的动子永磁体组件在气隙中产生的磁场方向相反,使得对应的相邻的两个动子单元沿动子运动方向错开一定距离,该距离使得相邻的定子永磁体组件和/或动子永磁体组件在沿第一方向位置对应的气隙中产生的磁场方向相同,从而使得与相邻的动子单元成对设置的相邻的定子单元中产生同一个方向的磁场,从而增大电机的转矩/出力,或发电的功率密度。
进一步,在一个实施例中,如图4、5或6A-6C所示,当N个动子轭部对应定子的面沿动子运动方向形成多个第二小齿1211、1221,相邻的两个第二小齿之间形成第二小槽1212、1222时;N个动子单元121、122的其中相邻的两个动子单元121、122沿电机的运动方向错开0.5个第二小齿的距离d。具体的,比如,如图6A所示,其中,第一动子单元121与第二动子单元122之间错开0.5个第二小齿的齿距d的距离;又比如,如图6B所示,第一动子单元121与第二动子单元122之间沿动子的运动方向错开0.5个第二小齿的距离d;而第二动子单元122又与第三动子单元125之间沿与上述方向相反的动子运动方向错开0.5个第二小齿的齿距d的距离。
根据上面的结构,如图6C所示,假设在第1定子单元和/或第2动子单元上的定子永磁体组件和/或动子永磁体组件产生的磁场在第二小齿部是从定子进入动子,在第二小槽是从动子进入定子,由于第一定子和/或动子单元上的定子和/或动子永磁体组件在气隙中形成的磁场方向与第二定子和/或动子单元上的定子和/或动子永磁体组件的磁化方向相反,那么在第二定子和/或动子单元上的定子和/或动子永磁体组件在气隙中产生的磁场在第二小齿部是从动子进入定子,在第二小槽部是从定子进入动子,当把相邻的第二动子单元与第一动子单元沿动子运动方向错开了0.5个动子齿距后,定子和/或动子永磁体组件在在第一动子单元及第二动子单元沿第一方向相应位置的气隙中产生的 磁场方向相同,则在与相邻的动子单元成对设置的相邻的定子单元上就能产生相同方向的磁场,从而增大电机整体的转矩/出力,或发电的功率密度。
本发明实施例还提供一种设备(省略附图),该设备包括至少一个上面任一项所述的电机。
在一些优选实施例中,该设备可以为自动化设备或半自动化设备。
需要说明的是,所述自动化或半自动化设备可以为应用于各个领域,比如:工业、教育、护理、娱乐或医疗等等。
在一些优选实施例中,机器人(比如:机械手或人形机器人)可以看做是高级的自动化设备。
在一些实施例中,该设备也可以为发电设备。
有关电机的相关描述参见上面的实施例,在此不再重复赘述。
当元件被表述“设置在”另一个元件上,它可以固定于另一个元件上,或者相对另一个元件可活动的连接。当一个元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书使用的术语“纵向”、“横向”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的属于只是为了描述具体的实施方式的目的,不是用于限制本发明。
本文术语中“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如:A和/或B,可以表示单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明的权利要求书和说明书及上述附图中的术语“第一”、“第二”、“第三”等等(如果存在)是用来区别类似的对象,而不必用于描述特定的顺序或 先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如:包括了一系列结构或模块等的产品或设备不必限于清楚地列出的那些结构或模块,而是包括没有清楚地列出的或对于这些产品或设备固有的其它结构或模块。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其它实施例的相关描述。
需要说明的是,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的结构和模块并不一定是本发明所必须的。
以上对本发明实施例所提供的电机及包括该电机的设备进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,不应理解为对本发明的限制。本技术领域的技术人员,依据本发明的思想,在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (17)

  1. 一种电机,其特征在于,所述电机包括:定子、动子、及定子永磁体组件和/或动子永磁体组件;所述定子包括导磁的N个定子单元,所述动子包括导磁的N个动子单元;所述N个定子单元包括N个定子轭部;所述N个动子单元包括N个动子轭部;其中,N为大于等于2的整数;
    所述N个定子单元和所述N个动子单元沿第一方向成对设置;且所述N个定子单元和所述N个动子单元之间形成气隙;所述气隙中形成沿第二方向的磁场;其中,所述第二方向垂直于所述第一方向;
    所述N个定子单元中的相邻定子单元之间形成N-1个定子单元空隙;所述N个动子单元中的相邻动子单元之间形成N-1个动子单元空隙;
    所述定子永磁体组件设置在至少部分所述N-1个定子单元空隙中和/或所述N个定子单元上;和/或
    所述动子永磁体组件设置在至少部分所述N-1个动子单元空隙中和/或所述N个动子单元上。
  2. 根据权利要求1所述的电机,其特征在于,所述N个定子轭部通过定子导磁材料连接部连成一体;和/或
    所述N个动子轭部通过动子导磁材料连接部连成一体。
  3. 根据权利要求1或2所述的电机,其特征在于,当所述定子永磁体组件设置在至少部分所述N-1个定子单元空隙上,所述定子永磁体组件的磁场极化方向对应所述第一方向;和/或
    当所述定子永磁体组件设置在至少部分所述N个定子单元上,所述定子永磁体组件在气隙中产生的磁场方向对应所述第二方向;和/或
    当所述动子永磁体组件设置在至少部分所述N-1个动子单元空隙上,所述动子永磁体组件的磁场极化方向对应所述第一方向;和/或
    当所述动子永磁体组件设置在至少部分所述N个动子单元上,所述动子永磁体组件在气隙中产生的磁场方向对应所述第二方向。
  4. 根据权利要求1或2所述的电机,其特征在于,当所述电机包括所述定子永磁体组件和所述动子永磁体组件,位于所述成对设置的定子单元和动子 单元上的所述定子永磁体组件和所述动子永磁体组件在所述气隙中形成的磁场方向相同。
  5. 根据权利要求1或2所述的电机,其特征在于,所述定子永磁体组件可以设置在至少部分所述N个定子单元的所述N个定子轭部上;和/或所述动子永磁体组件设置在至少部分所述N个动子单元的所述N个动子轭部上。
  6. 根据权利要求1或2所述的电机,其特征在于,当所述电机为旋转电机,设置在轭部的所述定子永磁体组件和/或所述动子永磁体组件成圆环状分布;或
    当所述电机为直线电机,设置在轭部的所述定子永磁体组件和/或所述动子永磁体组件成直线分布。
  7. 根据权利要求1或2所述的电机,其特征在于,所述N个定子轭部中的每个定子轭部沿所述动子运动方向向所述动子延伸形成多个大齿;相邻的所述大齿之间形成大槽;至少部分所述大槽中设置绕组;
    所述大齿对应所述动子的表面沿所述动子运动方向形成多个第一小齿,相邻的所述第一小齿之间形成第一小槽;或
    所述大齿对应所述动子的表面为光滑表面。
  8. 根据权利要求7所述的电机,其特征在于,当所述电机形成所述第一小槽,至少部分所述N个定子单元的至少部分所述第一小槽内设置第一永磁体。
  9. 根据权利要求7所述的电机,其特征在于,至少部分所述大槽内设置第七永磁体。
  10. 根据权利要求1或2所述的电机,其特征在于,所述N个动子轭部上对应所述定子的表面沿所述动子运动方向形成多个第二小齿,相邻的第二小齿之间形成第二小槽。
  11. 根据权利要求10所述的电机,其特征在于,至少部分所述N个动子单元中的至少部分所述第二小槽内设置第二永磁体。
  12. 根据权利要求1或2所述的电机,其特征在于,当相邻的所述N-1个定子单元空隙设置相邻的定子永磁体组件,所述相邻的定子永磁体组件在所 述气隙中产生的磁场方向相反;和/或
    当相邻的所述N个定子单元设置相邻的定子永磁体组件,所述相邻的定子永磁体组件在所述气隙中产生的磁场方向相反;和/或
    当相邻的所述N-1个动子单元空隙设置相邻的动子永磁体组件,所述相邻的动子永磁体组件在所述气隙中产生的磁场方向相反;和/或
    当相邻的所述N个动子单元设置相邻的动子永磁体组件,所述相邻的动子永磁体组件在所述气隙中产生的磁场方向相反。
  13. 根据权利要求12所述的电机,其特征在于,所述相邻动子单元沿动子运动方向错开一定距离;其中,
    所述一定距离使得所述相邻的定子永磁体组件和/或所述相邻的动子永磁体组件在所述相邻的定子单元和所述相邻的动子单元之间沿所述第一方向对应的所述气隙中产生的磁场方向相同。
  14. 根据权利要求12所述的电机,其特征在于,所述N个动子轭部上对应所述定子的表面沿所述动子运动方向形成多个第二小齿,相邻的第二小齿之间形成第二小槽。
  15. 根据权利要求14所述的电机,其特征在于,所述相邻动子单元沿动子运动方向错开0.5个所述第二小齿的齿距。
  16. 根据权利要求1或2所述的电机,其特征在于,当所述电机为径向磁通旋转电机,所述第一方向为轴向;所述第二方向为径向;或
    当所述电机为轴向磁通旋转电机,所述第一方向为径向;所述第二方向为轴向;或
    当所述电机为直线电机;所述第一方向为与所述动子运动方向垂直的方向;所述第二方向为所述穿越定子与动子之间的气隙的方向。
  17. 一种设备,其特征在于,所述设备包括至少一个权利要求1-16任一项所述的电机。
PCT/CN2020/097213 2019-06-21 2020-06-19 一种电机及包括该电机的设备 WO2020253847A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910544447.8 2019-06-21
CN201910544447.8A CN110380533A (zh) 2019-06-21 2019-06-21 一种电机及包括该电机的设备

Publications (1)

Publication Number Publication Date
WO2020253847A1 true WO2020253847A1 (zh) 2020-12-24

Family

ID=68250564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097213 WO2020253847A1 (zh) 2019-06-21 2020-06-19 一种电机及包括该电机的设备

Country Status (2)

Country Link
CN (1) CN110380533A (zh)
WO (1) WO2020253847A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110380533A (zh) * 2019-06-21 2019-10-25 侯唯敏 一种电机及包括该电机的设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851559A1 (fr) * 1996-12-31 1998-07-01 Valeo Electronique Machine électrique de type synchrone
CN202160020U (zh) * 2011-04-25 2012-03-07 上海电机学院 外转子双凸极永磁电机
CN103124109A (zh) * 2013-03-15 2013-05-29 湖北工业大学 一种定子带永磁环连续极永磁同步电动机
CN203859652U (zh) * 2014-04-10 2014-10-01 南京工业大学 一种新型轴向磁通双凸极永磁发电机
CN104319976A (zh) * 2014-11-18 2015-01-28 南京航空航天大学 内电枢磁场增强型永磁磁通切换直线电机
CN104604109A (zh) * 2012-08-24 2015-05-06 三菱电机株式会社 旋转电动机及内燃机用增压器
CN206370761U (zh) * 2016-11-11 2017-08-01 南方电机科技有限公司 一种高扭矩的电动机及包括该电动机的机器人
CN107181382A (zh) * 2017-07-19 2017-09-19 沈阳工业大学 一种转子错角定子隔磁式轴向永磁辅助双凸极电机
CN110380533A (zh) * 2019-06-21 2019-10-25 侯唯敏 一种电机及包括该电机的设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0902393D0 (en) * 2009-02-13 2009-04-01 Isis Innovation Elaectric machine - modular
CN103269133A (zh) * 2013-06-06 2013-08-28 王新 一种环体盒结构横向磁通永磁或磁阻永磁电机
CN104901511B (zh) * 2015-06-04 2018-03-09 哈尔滨工业大学 一种横向磁通高速超导电机系统
CN106787306B (zh) * 2017-01-23 2019-02-19 北京理工大学 一种径向分段模块化的开关磁通盘式电机
CN109861484A (zh) * 2019-04-08 2019-06-07 合肥学院 定子永磁型双极性聚磁式横向磁通永磁同步电机
CN210404876U (zh) * 2019-06-21 2020-04-24 侯唯敏 一种电机及包括该电机的设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0851559A1 (fr) * 1996-12-31 1998-07-01 Valeo Electronique Machine électrique de type synchrone
CN202160020U (zh) * 2011-04-25 2012-03-07 上海电机学院 外转子双凸极永磁电机
CN104604109A (zh) * 2012-08-24 2015-05-06 三菱电机株式会社 旋转电动机及内燃机用增压器
CN103124109A (zh) * 2013-03-15 2013-05-29 湖北工业大学 一种定子带永磁环连续极永磁同步电动机
CN203859652U (zh) * 2014-04-10 2014-10-01 南京工业大学 一种新型轴向磁通双凸极永磁发电机
CN104319976A (zh) * 2014-11-18 2015-01-28 南京航空航天大学 内电枢磁场增强型永磁磁通切换直线电机
CN206370761U (zh) * 2016-11-11 2017-08-01 南方电机科技有限公司 一种高扭矩的电动机及包括该电动机的机器人
CN107181382A (zh) * 2017-07-19 2017-09-19 沈阳工业大学 一种转子错角定子隔磁式轴向永磁辅助双凸极电机
CN110380533A (zh) * 2019-06-21 2019-10-25 侯唯敏 一种电机及包括该电机的设备

Also Published As

Publication number Publication date
CN110380533A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
JP5703168B2 (ja) モータ
US20210234415A1 (en) Rotating electric machine
US20160276880A1 (en) Transverse flux machine
CN112564346B (zh) 一种高转矩密度轴向磁场永磁电机转子结构及其电机
JP6370676B2 (ja) 超電導回転電機ステータ及び超電導回転電機
US11056957B2 (en) Rotary electric machine equipped with magnetic flux variable mechanism
Hekmati et al. Radial-flux permanent-magnet limited-angle torque motors
WO2020253847A1 (zh) 一种电机及包括该电机的设备
WO2019228326A1 (zh) 一种轴向磁通马达的定子、轴向磁通马达及自动化设备
CN108880182B (zh) 一种分裂齿模块化游标永磁直线电机
WO2014041768A1 (ja) 超電導界磁極
JP2016518097A (ja) 磁束スイッチング変調磁極機械
CN210404876U (zh) 一种电机及包括该电机的设备
JP2016201961A (ja) アキシャルギャップ型永久磁石式回転機用回転子およびアキシャルギャップ型永久磁石式回転機
US20210218291A1 (en) Stator, motor, and automation equipment
JP6177865B2 (ja) 少なくとも1つの一次磁気回路及び少なくとも2つの二次磁気回路を有する他励電気機械
WO2021104123A1 (zh) 一种电机及包括该电机的设备
JP2007082300A (ja) コア及びそれを備える電動機
TWI478466B (zh) 直驅馬達裝置及其製造方法
US11482894B2 (en) Electric machine with combined axial- and radial-flux
CN101771326A (zh) 一种具有双层气隙的圆筒形直线电机
Kwon et al. Influence of a novel flux‐absorbing structure on the performance of a surface‐mounted permanent‐magnet motor with overhang
He et al. Comparative study of two degree-of-freedom rotary-linear machines with permanent-magnet mover for high dynamic performance
JP2004236495A (ja) 励磁機およびそれを用いた同期機
JP6190694B2 (ja) ロータ、ステータ、及び、モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20825857

Country of ref document: EP

Kind code of ref document: A1