WO2019228326A1 - 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 - Google Patents
一种轴向磁通马达的定子、轴向磁通马达及自动化设备 Download PDFInfo
- Publication number
- WO2019228326A1 WO2019228326A1 PCT/CN2019/088743 CN2019088743W WO2019228326A1 WO 2019228326 A1 WO2019228326 A1 WO 2019228326A1 CN 2019088743 W CN2019088743 W CN 2019088743W WO 2019228326 A1 WO2019228326 A1 WO 2019228326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bidirectional
- salient pole
- pole
- stator
- magnetic flux
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/12—Stationary parts of the magnetic circuit
- H02K1/14—Stator cores with salient poles
- H02K1/145—Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K21/00—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
- H02K21/12—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
- H02K21/24—Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K3/00—Details of windings
- H02K3/04—Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
- H02K3/18—Windings for salient poles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2201/00—Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
- H02K2201/12—Transversal flux machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K2213/00—Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
- H02K2213/03—Machines characterised by numerical values, ranges, mathematical expressions or similar information
Definitions
- the present invention relates to the field of drive technology, and in particular, to a stator of an axial magnetic flux motor, an axial magnetic flux motor, and automation equipment.
- the present invention provides a stator of an axial flux motor, an axial flux motor, and an automation device.
- a first aspect of the present invention provides a stator of an axial magnetic flux motor, the stator including a stator core and a winding; the stator core including a plurality of independent units; the winding including a first winding and a second winding;
- Each independent unit includes a first bidirectional salient pole disposed axially and second bidirectional salient poles located on both sides of the first bidirectional salient pole;
- the phase difference between the current passing through the first winding and the second winding is 180 degrees.
- the width of the first bidirectional salient pole is larger than the width of the second bidirectional salient pole.
- D is the width of the first bidirectional salient pole
- d is the width of the second bidirectional salient pole
- the first bidirectional salient pole includes a first pole post and first end portions respectively located at two ends of the first pole post, and two ends of the first end portion remote from the first pole post form at least two First first teeth, a first virtual slot is formed between two adjacent first teeth; or
- the first bidirectional salient pole includes a first pole post and a first end portion located at both ends of the first pole post; the second bidirectional salient pole includes a second pole post and a first pole post located at both ends of the second pole post. Both ends; or
- the first bidirectional salient pole includes a first pole post, and the second bidirectional salient pole includes a second pole post; or
- the first bidirectional salient pole includes a first pole post, at least two first small teeth are formed at two ends of the first pole post, and a first virtual groove is formed between two adjacent first small teeth;
- the second bidirectional salient pole includes a second pole post, at least two second small teeth are formed at two ends of the second pole post, and a second virtual groove is formed between two adjacent second small teeth.
- the first bidirectional salient pole includes the first virtual groove
- at least a part of the first virtual groove is provided with a first permanent magnet.
- the second bidirectional salient pole includes a second pole post and second end portions respectively located at two ends of the second pole post, and two ends of the second end portion remote from the second pole post form at least two Two second small teeth, a second virtual slot is formed between two adjacent second small teeth; or
- the second bidirectional salient pole includes a second pole post and second end portions located at both ends of the second pole post; or
- the second bidirectional salient pole includes a second pole post;
- the second bidirectional salient pole includes a second pole post, at least two second small teeth are formed at two ends of the second pole post, and a second virtual groove is formed between two adjacent second small teeth.
- a second permanent magnet is disposed at least in part of the second virtual slot.
- an axial flux motor includes the stator according to any one of the above.
- the motor further includes a first mover and a second mover.
- the mover and the second mover are disposed on both sides of the stator in the axial direction, so that the magnetic flux flowing out of the first bidirectional salient pole flows through the first mover and the second The bidirectional salient pole and the second mover return to the first bidirectional salient pole.
- At least two third small teeth are respectively formed on the end faces of the first mover and the second mover corresponding to the stator, and a third virtual slot is formed between two adjacent third small teeth.
- a third permanent magnet is disposed in at least part of the third virtual slot.
- a connecting post is provided between the first mover and the second mover, so that the relative position between the first mover and the second mover is fixed.
- a third aspect of the present invention provides an automation device including the axial magnetic flux motor described in any one of the above.
- the technical solution of the stator, the axial magnetic flux motor and the automatic equipment using the axial magnetic flux motor of the present invention has the following beneficial effects:
- the motor using the stator of the embodiment of the present invention forms a scheme of isolated winding based on the principle of forming a plurality of independent magnetic field line circuit units, the motor has improved fault tolerance when the magnetic circuit is decoupled.
- the motor using the stator of the embodiment of the present invention divides the main magnetic flux flowing out of the first bidirectional salient pole to the two sides through the first mover, the second bidirectional salient pole, and the second mover to return to the first bidirectional salient, respectively.
- the poles can reduce the thickness of the yoke part of the stator core and the mover core, respectively, so as to reduce the weight and volume of the motor as a whole, while reducing the iron consumption.
- the motor using the stator of the embodiment of the present invention uses a bidirectional first bidirectional salient pole and a second bidirectional salient pole, the corresponding first mover and second mover can both output or output torque, so the axial direction is increased.
- the overall output / torque of the magnetic flux motor has increased the application range of the motor.
- the magnetic modulation effect of the virtual groove is passed. , Can increase the output / torque of the axial flux motor.
- the first bidirectional salient pole of the stator of the axial flux motor includes the first virtual slot, at least part of the first virtual slot is embedded with a permanent magnet; or the second bidirectional salient pole includes the second virtual slot, at least part of the second The permanent magnet is embedded in the virtual slot; or the first mover and the second mover include a third virtual slot, and at least part of the third virtual slot is embedded in the permanent magnet, so the magnetic density of the magnetic circuit can be increased and the magnetic leakage at the tooth end can be reduced.
- the magnetic adjustment characteristics of the vernier motor can be combined to improve the output / torque of the axial flux motor.
- the first bidirectional salient pole of the stator includes the first virtual slot
- the second bidirectional salient pole includes the second virtual slot
- the first mover and the second mover include the third virtual slot.
- FIG. 1 is a schematic structural diagram of an embodiment of a stator of an axial magnetic flux rotating motor or a stator of an axial magnetic flux linear motor provided by the present invention.
- FIG. 2 is a schematic structural diagram of an embodiment of a stator of an axial magnetic flux rotary motor or a stator of an axial magnetic flux linear motor provided by the present invention.
- FIG. 3 is a schematic structural diagram of an embodiment of a stator of an axial magnetic flux rotary motor provided by the present invention.
- FIG. 4 is a schematic structural diagram of an embodiment of a mover of an axial magnetic flux rotation motor provided by the present invention.
- FIG. 5 is a schematic structural diagram of an embodiment of an axial magnetic flux rotation motor provided by the present invention.
- FIG. 6 is a first schematic structural diagram of an embodiment of an independent unit of a stator of an axial magnetic flux rotary motor or an axial magnetic flux linear motor provided by the present invention.
- FIG. 7 is a schematic diagram of a second structure of an embodiment of an independent unit of a stator of an axial magnetic flux rotary motor or an axial magnetic flux linear motor provided by the present invention.
- FIG. 8 is a third structural schematic diagram of an embodiment of an independent unit of a stator of an axial magnetic flux rotary motor or an axial magnetic flux linear motor provided by the present invention.
- the invention provides a stator of an axial magnetic flux motor, an axial magnetic flux motor and automation equipment. Based on the principle of a unit motor, the reliability of the motor is improved.
- FIG. 1 is a schematic structural diagram of an embodiment of a stator of an axial magnetic flux rotating motor or a stator of an axial magnetic flux linear motor provided by the present invention.
- FIG. 2 is a schematic structural diagram of an embodiment of a stator of an axial magnetic flux rotary motor or a stator of an axial magnetic flux linear motor provided by the present invention.
- FIG. 3 is a schematic structural diagram of an embodiment of a stator of an axial magnetic flux rotary motor provided by the present invention.
- FIG. 4 is a schematic structural diagram of an embodiment of a mover of an axial magnetic flux rotation motor provided by the present invention.
- FIG. 5 is a schematic structural diagram of an embodiment of an axial magnetic flux rotation motor provided by the present invention.
- An embodiment of the present invention provides a stator of an axial magnetic flux motor.
- the axial magnetic flux motor may include an axial magnetic flux rotating motor 10 (as shown in FIG. 2 and FIG. 5) or an axial magnetic flux based on a movement mode.
- Linear motor 10 shown in Figure 2).
- an embodiment of the present invention provides a stator.
- the stator includes a stator core 11 and a winding 12.
- the stator core 11 includes a plurality of independent units L, and the plurality of independent units may be arranged in a lateral direction X (such as a linear motor shown in FIG. 1) or in a circumferential direction O (such as a rotary motor shown in FIG. 3);
- the winding 12 includes a plurality of first windings 121 and a plurality of second windings 122;
- the distance between the individual units can be designed as desired.
- the number of independent units can be set to any number greater than or equal to 2 as needed.
- Each independent unit L includes a first bidirectional salient pole 112 disposed in the axial direction Y and two sides of the first bidirectional salient pole 112 (as shown in FIG. 1, the linear motor is on both sides in the lateral direction X, as shown in FIG. 3).
- the rotating motor is a second bidirectional salient pole 113 on both sides of the circumferential direction O).
- the first bidirectional salient pole of each independent unit L and the second bidirectional salient poles on both sides can make certain parts connected to form a whole, such as the ends of the first salient pole and the second salient poles on both sides. Connected as a whole (not shown in the figure); the first salient pole and the second salient poles on both sides can be independent from each other, that is, separated by a certain distance from each other (as shown in Figure 1 or 3), preferably separated by a certain distance The distance can prevent magnetic leakage, and the distance can be designed as desired.
- the first bidirectional salient pole 112 is wound around the first winding 121; the second bidirectional salient pole 113 is wound around the second winding 122; the first winding 121 and the second winding 122 pass a current through The phase difference is 180 degrees.
- the first bidirectional salient pole of each independent unit L and the second bidirectional salient poles on both sides and the first mover and the second mover form an independent axial magnetic line of force T loop unit respectively.
- the winding Since the first winding is wound directly on the first bidirectional salient pole and the second winding is wound on the second bidirectional salient pole, the winding is simple to manufacture, the end length is short, and the copper loss is reduced.
- a second bidirectional salient pole is provided on each side of the first bidirectional salient pole, and a second bidirectional salient pole 113 may be provided on each side of each first bidirectional salient pole 112 (as shown in FIG. 1-5).
- any two or more second bidirectional salient poles may be provided on both sides of each first bidirectional salient pole.
- the independent unit L includes a first two-way salient pole 112 and corresponding second two-way salient poles 113 on both sides.
- the axial magnetic flux motor 10 of the stator passes through the first two-way salient poles 112 and the magnetic field lines T flowing out to the two sides pass through the first mover 21 and are respectively attracted by the magnetic field of the second two-way salient poles 113 correspondingly provided on both sides.
- the second bidirectional salient pole 113 passes through the second mover 22, and returns to the first bidirectional salient pole 112, thereby forming an independent magnetic line of force composed of the first bidirectional salient pole 112 and the second bidirectional salient pole 113 corresponding to both sides
- the T loop unit therefore, on the integral axial flux motor 10, a plurality of independent magnetic line of force T loop independent units composed of a first bidirectional salient pole and second bidirectional salient poles on both sides are formed.
- the motor using the stator according to the embodiment of the present invention makes the magnetic circuits of the independent units of the entire motor decoupled based on the principle of forming a plurality of independent magnetic field line circuit units, thereby improving the fault tolerance performance of the motor.
- the stators can be reduced respectively.
- the thickness of the yoke portion of the iron core and the mover core reduces the weight and volume of the motor as a whole, while reducing iron consumption.
- the use of a bidirectional first salient pole and a bidirectional second salient pole allows both the first mover and the second mover to output a force (linear motor) or output a torque (rotary motor), thereby increasing the axial magnetic flux.
- the output / torque of the motor increases the output / torque of the axial magnetic flux motor as a whole; and because different movers can play different driving roles, the application range of the motor is increased.
- the width of the first bidirectional salient pole and the width of the second bidirectional salient pole may be in any proportion.
- the width of the first bidirectional salient pole 112 is preferably larger than that of the second bidirectional salient pole.
- the width of the pole 113 Therefore, even if the requirements of the magnetic flux shunt are met, the iron loss can be better reduced.
- the width ratio relationship between the first bidirectional salient pole and the second bidirectional salient pole may be arbitrary. In some preferred embodiments, 1.5 ⁇ D / d ⁇ 2.5; wherein D is the width of the first bidirectional salient pole, and d is the width of the second bidirectional salient pole, so as to further meet the requirements of magnetic flux shunting. Good to reduce iron loss.
- FIG. 6 is a first schematic structural diagram of an embodiment of an independent unit of a stator of an axial magnetic flux rotary motor or an axial magnetic flux linear motor provided by the present invention.
- 7 is a schematic diagram of a second structure of an embodiment of an independent unit of a stator of an axial magnetic flux rotary motor or an axial magnetic flux linear motor provided by the present invention.
- FIG. 8 is a third structural schematic diagram of an embodiment of an independent unit of a stator of an axial magnetic flux rotary motor or an axial magnetic flux linear motor provided by the present invention.
- the plurality of first bidirectional salient poles may include, but is not limited to, the following forms:
- the first bidirectional salient pole 112 includes a first pole post 1121 and first end portions 1122 located at both ends of the first pole post 1121.
- the first end portion 1122 is far away from At least two first small teeth 1123 are formed at two ends of the first pole post 1121, and a first virtual slot 1124 is formed between two adjacent first small teeth 1123.
- the first dummy slot is provided to adjust the magnetic flux, thereby increasing the output / torque of the axial flux motor.
- the first bidirectional salient pole 112 includes a first pole post and first ends 1122 located at both ends of the first pole post 1121.
- the first bidirectional salient pole 112 includes a first pole post 1121.
- the first bidirectional salient pole 112 includes a first pole post 1121, and two ends of the first pole post 1121 respectively form at least two first small teeth 1123, and two adjacent second A first dummy groove 1124 is formed between a small tooth 1123.
- the first dummy slot is provided to adjust the magnetic flux, thereby increasing the output / torque of the axial flux motor.
- the plurality of second bidirectional salient poles may include but are not limited to the following forms:
- the second bidirectional salient pole 113 includes a second pole post 1131 and a second pole. At least two second end portions 1132 at both ends of the post 1131, and the two ends of the second end portion 1132 away from the second pole post 1131 form at least two second small teeth 1133, and a second virtual space is formed between two adjacent second small teeth 1133. Slot 1134. The second dummy slot is provided to adjust the magnetic flux, thereby increasing the output / torque of the axial flux motor.
- the second bidirectional salient pole 113 includes a second pole post 1131 and a second pole post 1131. Second end portion 1132 at both ends.
- the second bidirectional salient pole 113 includes a second pole post 1131.
- the second bidirectional salient pole 113 includes the second pole post 1131, At least two second small teeth 1133 are formed at the ends, and a second virtual slot 1134 is formed between two adjacent second small teeth 1133.
- the second dummy slot is provided to adjust the magnetic flux, thereby increasing the output / torque of the axial flux motor.
- the width D of the first bidirectional salient pole 112 described in the above embodiment generally refers to the width D of the first pole post 1121, but may also be the width of the first end portion, and the like.
- the width d of the second salient pole 112 described in the above embodiment generally refers to the width d of the second pole post 1121, but may also be the width of the second end portion.
- the first bidirectional salient pole and the second bidirectional salient pole may be combined using the same embodiment structure.
- the first two-way salient poles 112 and the second two-way salient poles 113 each adopt the structure of the respective first embodiment above (as shown in Figs. 1 and 3); in other embodiments, the first two-way salient poles 112 may also be used.
- the salient poles and the second bidirectional salient poles are selected and combined in different embodiments.
- the first bidirectional salient poles adopt the structure of the first embodiment
- the second bidirectional salient poles adopt the structure of the third embodiment (not shown in the figure).
- first virtual slot 1124 and the second virtual slot 1134 in the above embodiments may be, but are not limited to, an open slot (as shown in FIGS. 1 and 3) and a closed slot (the opening of the open slot) The end forms a closed) or semi-closed slot (the open end of the open slot is half closed).
- the first bidirectional salient pole when the first bidirectional salient pole includes the first virtual slot, at least a part of the first virtual slot is embedded with a first permanent magnet, preferably in each first virtual slot. Both are provided with permanent magnets (as shown in Figures 1 and 3).
- the second bidirectional salient pole when the second bidirectional salient pole includes a second virtual slot, at least a part of the second virtual slot is inlaid with a second permanent magnet, and preferably, a permanent magnet is disposed in each second virtual slot.
- One permanent magnet can be set in the first virtual slot and / or the second virtual slot where the permanent magnet is set (as shown in Figures 1 and 3), or multiple permanent magnets can be set, for example, a Halbach array permanent magnet (not shown in the figure) Out).
- the above-mentioned stator motor can increase the magnetic density of the magnetic circuit and reduce the magnetic leakage at the tooth end. At the same time, the magnetic adjustment characteristics of the vernier motor can be combined, thereby increasing the output / torque of the
- the present invention further provides an axial magnetic flux motor 10.
- the axial magnetic flux motor 10 includes a stator according to any one of the foregoing embodiments, and the stator The first two-way salient pole 112 and the second two-way salient pole 113 of the first and second movers 21 and 22 arranged axially correspondingly, a gap exists between the stator and the first and second movers 21 and 22 to form Magnetic gap.
- the axial flux motor of the stator according to the embodiment of the present invention is based on the principle of forming a plurality of independent magnetic field line circuit units, so that the magnetic circuit of each independent unit of the entire motor is decoupled, thereby improving the axial magnetic flux. Motor fault tolerance.
- the stators can be reduced respectively.
- the thickness of the yoke portion of the iron core and the mover core reduces the weight and volume of the motor as a whole, while reducing iron consumption.
- both the first mover and the second mover can output power (linear motor) or output torque (rotary motor), so the axial magnetic flux motor is improved. Output / torque.
- the first mover 21 and the second mover 22 respectively form at least two third small teeth 211 and 221 corresponding to the surfaces of the stator, two adjacent two A third virtual slot 212, 222 is formed between each of the third small teeth 211, 221.
- the third virtual slot is provided to adjust the magnetic flux, thereby increasing the output / torque of the axial flux motor.
- the third virtual slot 22 may be an open slot (as shown in FIG. 1), a closed slot or a semi-closed slot.
- a plurality of third virtual slots may be provided with a permanent magnet in part of the third virtual slot, or a permanent magnet may be provided in each of the third virtual slots; each third virtual slot may be provided with a permanent magnet, or a plurality of permanent slots may be provided. Magnets, such as Halbach array permanent magnets.
- the third dummy slot preferably corresponds to the sizes of the first dummy slot and the second dummy slot, but may be inconsistent.
- the motor of the mover described above can increase the magnetic density of the magnetic circuit and reduce the magnetic leakage at the tooth end.
- the magnetic adjustment characteristics of the vernier motor can be combined, thereby increasing the output / torque of the axial flux motor.
- the first mover 21 and the second mover 22 include third virtual grooves 212 and 222.
- a permanent cavity is provided.
- the axial flux motor using such a stator and a mover can further increase the magnetic density of the magnetic circuit and reduce the magnetic leakage at the tooth end.
- the magnetic tuning characteristics of the vernier motor can be combined, thereby improving the axial flux motor. Output / torque.
- a connecting post 223 may be provided between the first mover 21 and the second mover 22, so that the relative position between the first mover 21 and the second mover 22 is fixed.
- the present invention further provides an automation device (not shown in the figure), which includes at least one motor described in the above embodiment.
- the automation equipment may include applications in various fields such as industry, medical treatment, life, transportation, etc. Among them, the robot may be regarded as a high-end automation equipment.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
Abstract
本发明提供一种轴向磁通马达的定子、轴向磁通马达及自动化设备。一种轴向磁通马达的定子,所述定子包括定子铁芯和绕组;所述定子铁芯包括多个独立单元;所述绕组包括第一绕组和第二绕组;每个独立单元包括轴向设置的第一双向凸极和位于所述第一双向凸极两侧的第二双向凸极;所述第一双向凸极上缠绕所述第一绕组;所述第二双向凸极上缠绕所述第二绕组;所述第一绕组和所述第二绕组通过电流的相位差为180度。采用本发明的技术方案,基于单元马达的原理,从而即提高了轴向磁通马达的可靠性。
Description
本发明涉及驱动技术领域,具体涉及一种轴向磁通马达的定子、轴向磁通马达及自动化设备。
随着自动化技术的发展,人们对马达的可靠性、加工便利性等方面有了更高的要求,现有的马达往往难以满足人们的需求。
发明内容
有鉴于此,本发明提供一种轴向磁通马达的定子、轴向磁通马达及自动化设备。
本发明第一方面提供一种轴向磁通马达的定子,所述定子包括定子铁芯和绕组;所述定子铁芯包括多个独立单元;所述绕组包括第一绕组和第二绕组;
每个独立单元包括轴向设置的第一双向凸极和位于所述第一双向凸极两侧的第二双向凸极;
所述第一双向凸极上缠绕所述第一绕组;所述第二双向凸极上缠绕所述第二绕组;
所述第一绕组和所述第二绕组通过电流的相位差为180度。
进一步,所述第一双向凸极的宽度大于所述第二双向凸极的宽度。
进一步,所述第一双向凸极的宽度和所述第二双向凸极的宽度比例关系为:
1.5≤D/d≤2.5;
其中,D为第一双向凸极的宽度,d为第二双向凸极的宽度。
进一步,所述第一双向凸极包括第一极柱和分别位于所述第一极柱两端的第一端部,所述第一端部远离所述第一极柱的两端分别形成至少两个第一小 齿,相邻两个所述第一小齿之间形成第一虚槽;或
所述第一双向凸极包括第一极柱和位于所述第一极柱两端的第一端部;所述第二双向凸极包括第二极柱和位于所述第二极柱两端的第二端部;或
所述第一双向凸极包括第一极柱,所述第二双向凸极包括第二极柱;或
所述第一双向凸极包括第一极柱,所述第一极柱的两端分别形成至少两个第一小齿,相邻两个所述第一小齿之间形成第一虚槽;所述第二双向凸极包括第二极柱,所述第二极柱的两端分别形成至少两个第二小齿,相邻两个所述第二小齿之间形成第二虚槽。
进一步,当所述第一双向凸极包括所述第一虚槽,至少部分所述第一虚槽内设置第一永磁体。
进一步,所述第二双向凸极包括第二极柱和分别位于所述第二极柱两端的第二端部,所述第二端部远离所述第二极柱的两端分别形成至少两个第二小齿,相邻两个所述第二小齿之间形成第二虚槽;或
所述第二双向凸极包括第二极柱和位于所述第二极柱两端的第二端部;或
所述第二双向凸极包括第二极柱;或
所述第二双向凸极包括第二极柱,所述第二极柱的两端分别形成至少两个第二小齿,相邻两个所述第二小齿之间形成第二虚槽。
进一步,当所述第二双向凸极包括所述第二虚槽,至少部分所述第二虚槽内设置第二永磁体。
本发明第二方面提供一种轴向磁通马达,所述轴向磁通马达包括上面任意一项所述的定子,所述马达还包括第一动子和第二动子,所述第一动子和所述第二动子分别设置在所述定子的轴向两侧,使得所述第一双向凸极流出的磁通分别向两侧流经所述第一动子、所述第二双向凸极和所述第二动子回到所述第一双向凸极。
进一步,所述第一动子和所述第二动子对应所述定子的端面分别形成至少两个第三小齿,相邻两个所述第三小齿之间形成第三虚槽。
进一步,至少部分所述第三虚槽内设置第三永磁体。
进一步,所述第一动子和所述第二动子之间设置连接柱,从而使得所述第一动子和所述第二动子之间的相对位置固定。
本发明第三方面提供一种自动化设备,所述自动化设备包括上面任意一项所述的轴向磁通马达。
采用本发明的轴向磁通马达的定子、轴向磁通马达及自动化设备的技术方案具有如下的有益效果:
1、由于采用本发明实施例的定子的马达在基于形成多个独立的磁力线回路单元的原理下,形成隔绝绕组的方案,使得马达在磁路解耦的情况下,提高了马达的容错性能。
2、由于采用本发明实施例的定子的马达将第一双向凸极流出的主磁通分别向两侧分流经第一动子、第二双向凸极和第二动子回到第一双向凸极,可以分别减小定子铁芯和动子铁芯的轭部的厚度,从而即降低马达整体的重量和体积,又同时减小铁耗。
3、由于采用本发明实施例的定子的马达采用双向第一双向凸极和第二双向凸极,使得对应的第一动子和第二动子都可以出力或输出扭矩,因此即提高轴向磁通马达整体的出力/扭矩,又增加了马达的应用范围。
4、由于第一双向凸极包括第一虚槽,或第二双向凸极包括第二虚槽,或第一动子和第二动子包括第三虚槽,因此通过虚槽的调磁作用,可以提高轴向磁通马达的出力/扭矩。
5、由于轴向磁通马达的定子的第一双向凸极包括第一虚槽内,至少部分第一虚槽内嵌入永磁体;或第二双向凸极包括第二虚槽,至少部分第二虚槽内嵌入永磁体;或第一动子和第二动子包括第三虚槽,至少部分第三虚槽内嵌入永磁体,因此可以提高磁路的磁铁密度,减小齿端漏磁,同时可以组合游标电机的调磁特性,从而提高轴向磁通马达的出力/扭矩。
6、由于同时使得定子的第一双向凸极包括第一虚槽,第二双向凸极包括第二虚槽,第一动子和第二动子包括第三虚槽,在至少部分多个第一虚槽、第 二虚槽和第三虚槽内都设置永磁体,因此采用这样的定子和动子的轴向磁通马达可以进一步提高磁路的磁铁密度,减小齿端漏磁,同时可以组合游标电机的调磁特性,从而提高了轴向磁通马达的扭矩或出力。
7、由于直接在第一双向凸极上缠绕第一绕组,在第二凸极上缠绕第二绕组,采用这种集中绕组的缠绕方式,因此绕组制作简单,端部长度短,减小铜耗。
8、由于第一双向凸极的宽度大于第二双向凸极的宽度,从而使得即满足磁通分流的要求又能更好的减少铁损。
9、由于1.5≤D/d≤2.5;其中,D为第一双向凸极的宽度,d为第二双向凸极的宽度,从而进一步使得即满足磁通分流的要求又能更好的减少铁损。
为了更清楚地说明本发明实施例技术方案,下面将对实施例和现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明提供的轴向磁通旋转马达的定子的横向展开或轴向磁通线性马达的定子的实施例的结构示意图。
图2为本发明提供的轴向磁通旋转马达的定子的横向展开或轴向磁通线性马达的定子的实施例的结构示意图。
图3为本发明提供的轴向磁通旋转马达的定子的实施例的结构示意图。
图4为本发明提供的轴向磁通旋转马达的动子的实施例的结构示意图。
图5为本发明提供的轴向磁通旋转马达的实施例的结构示意图。
图6为本发明提供的轴向磁通旋转马达横向展开或轴向磁通线性马达的定子的其中一个独立单元的实施例的第一结构示意图。
图7为本发明提供的轴向磁通旋转马达横向展开或轴向磁通线性马达的定子的其中一个独立单元的实施例的第二结构示意图。
图8为本发明提供的轴向磁通旋转马达横向展开或轴向磁通线性马达的定子的其中一个独立单元的实施例的第三结构示意图。
为了使本领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都应当属于本发明保护的范围。
本发明提供一种轴向磁通马达的定子、轴向磁通马达及自动化设备,基于单元马达的原理,从而提高了马达的可靠性。
图1为本发明提供的轴向磁通旋转马达的定子的横向展开或轴向磁通线性马达的定子的实施例的结构示意图。图2为本发明提供的轴向磁通旋转马达的定子的横向展开或轴向磁通线性马达的定子的实施例的结构示意图。图3为本发明提供的轴向磁通旋转马达的定子的实施例的结构示意图。图4为本发明提供的轴向磁通旋转马达的动子的实施例的结构示意图。图5为本发明提供的轴向磁通旋转马达的实施例的结构示意图。
本发明实施例提供一种轴向磁通马达的定子,该轴向磁通马达以运动方式为依据可以包括轴向磁通旋转马达10(如图2、图5所示)或轴向磁通线性马达10(如图2所示)。
如图1、3所示,本发明实施例提供一种定子。该定子包括定子铁芯11和绕组12。
所述定子铁芯11包括多个独立单元L,多个独立单元可以沿横向X(如图1所示的线性马达)或沿周向O(如图3所示的旋转马达)排列;所述绕组12包括多个第一绕组121和多个第二绕组122;
需要说明的是,各独立单元之间的间距可以根据需要设计成任意。独立单元的个数可以根据需要设置成大于等于2的任意个。
每个独立单元L包括轴向Y设置的第一双向凸极112和位于所述第一双向凸极112两侧(如图1所示,线性马达为沿横向X两侧,如图3所示,旋转马达为沿周向O两侧)的第二双向凸极113。
每个独立单元L的第一双向凸极和两侧的第二双向凸极之间可以使得某些部位连接从而形成一个整体,比如:第一凸极和两侧的第二凸极的端部处连接成一个整体(图未示意出);也可以第一凸极和两侧的第二凸极彼此独立,即彼此之间分开一定的距离(如图1或3所示),优选分开一定距离,这样可以防止产生漏磁,该距离可以根据需要设计成任意。
所述第一双向凸极112上缠绕所述第一绕组121;所述第二双向凸极113上缠绕所述第二绕组122;所述第一绕组121和所述第二绕组122通过电流的相位差为180度。使得每个独立单元L的第一双向凸极分别与其两侧的第二双向凸极和第一动子和第二动子之间形成独立的轴向磁力线T回路单元。
由于直接在第一双向凸极上缠绕第一绕组,在第二双向凸极上缠绕第二绕组,因此绕组制作简单,端部长度短,减小铜耗。
需要说明的是,第一双向凸极的两侧分别设置第二双向凸极,可以为每个第一双向凸极112的两侧分别设置一个第二双向凸极113(如图1-5所示);除此之外,也可以在每个第一双向凸极的两侧设置2个以上的任意个数的第二双向凸极(图未示意出)。
如图2所示,以定子的其中一个独立单元L,该独立单元L包括一个第一双向凸极112及两侧设置的对应第二双向凸极113为例进行说明,采用该定子的轴向磁通马达10,由于第一绕组121和第二绕组122通过的电流的相位差为180度,使得第一双向凸极112和对应第二双向凸极113上产生的磁场方向相反,因此,采用该定子的轴向磁通马达10,由第一双向凸极112向两侧流出的磁力线T,经第一动子21,在两侧对应设置的第二双向凸极113的磁场吸引下分别通过对应第二双向凸极113,再经过第二动子22,回到第一双向凸极112,从而形成由该第一双向凸极112与两侧对应第二双向凸极113构成的独立的磁力线T回路单元,因此,在一个整体轴向磁通马达10上,形成了多个由第一双向凸极和两侧的第二双向凸极构成的多个独立的磁力线T回路独立单元。
因此采用本发明实施例所述的定子的马达,在基于形成多个独立的磁力线回路单元的原理下,使得整个马达的各个独立单元磁路解耦,因此提高了马达的容错性能。
另一方面,由于将第一双向凸极流出的主磁通分别向两侧分流经第一动子、第二双向凸极和第二动子回到第一双向凸极,可以分别减小定子铁芯和动子铁芯的轭部的厚度,从而即降低马达整体的重量和体积,又同时减小铁耗。
再一方面,由于采用双向第一凸极和双向第二凸极,使得第一动子和第二动子都可以出力(线性马达)或输出扭矩(旋转马达),因此即提高轴向磁通马达的出力/扭矩,因此即提高轴向磁通马达整体的出力/扭矩;又因为不同的动子可以起到不同的驱动作用,因此增加了马达的应用范围。
需要说明的是,第一双向凸极跟第二双向凸极的宽度可以为任意比例关系,在一些实施例中,如图1所示,优选第一双向凸极112的宽度大于第二双向凸极113的宽度。从而使得即满足磁通分流的要求又能更好的减少铁损。
进一步,只要保证第一双向凸极的宽度大于第二双向凸极的宽度,第一双向凸极和第二双向凸极之间的宽度比例关系可以为任意。在一些优选实施例中,1.5≤D/d≤2.5;其中,D为第一双向凸极的宽度,d为第二双向凸极的宽度,从而进一步使得即满足磁通分流的要求又能更好的减少铁损。
图6为本发明提供的轴向磁通旋转马达横向展开或轴向磁通线性马达的定子的其中一个独立单元的实施例的第一结构示意图。图7为本发明提供的轴向磁通旋转马达横向展开或轴向磁通线性马达的定子的其中一个独立单元的实施例的第二结构示意图。图8为本发明提供的轴向磁通旋转马达横向展开或轴向磁通线性马达的定子的其中一个独立单元的实施例的第三结构示意图。
在一些实施例中,所述多个第一双向凸极可以包括但不限于如下几种形式:
如图1、3所示,在第一实施例中,所述第一双向凸极112包括第一极柱1121和位于第一极柱1121两端的第一端部1122,第一端部1122远离第一极柱1121的两端分别形成至少两个第一小齿1123,相邻两个第一小齿1123之间形成第一虚槽1124。通过设置第一虚槽,起到调磁作用,从而提高轴向磁通马达的出力/扭矩。
如图6所示,在第二实施例中,所述第一双向凸极112包括第一极柱和1121位于第一极柱1121两端的第一端部1122。
如图8所示,在第三实施例中,第一双向凸极112包括第一极柱1121。
如图7所示,在第四实施例中,第一双向凸极112包括第一极柱1121,第一极柱1121的两端分别形成至少两个第一小齿1123,相邻两个第一小齿1123之间形成第一虚槽1124。通过设置第一虚槽,起到调磁作用,从而提高轴向磁通马达的出力/扭矩。
在一些实施例中,所述多个第二双向凸极可以包括但不限于如下几种形式:
如图1、图3所示,在第一实施例中,采用与第一双向凸极的第一实施例相同的结构,即第二双向凸极113包括第二极柱1131和位于第二极柱1131两端的第二端部1132,第二端部1132远离第二极柱1131的两端分别形成至少两个第二小齿1133,相邻两个第二小齿1133之间形成第二虚槽1134。通过设置第二虚槽,起到调磁作用,从而提高轴向磁通马达的出力/扭矩。
如图6所示,在第二实施例中,采用与第一双向凸极的第二实施例相同的结构,即第二双向凸极113包括第二极柱1131和和位于第二极柱1131两端的第二端部1132。
如图8所示,在第三实施例中,采用与第一双向凸极的第三实施例相同的结构,即第二双向凸极113包括第二极柱1131。
如图7所示,在第四实施例中,采用与第一双向凸极的第四实施例相同的结构,即第二双向凸极113包括第二极柱1131,第二极柱1131的两端分别形成至少两个第二小齿1133,相邻两个第二小齿1133之间形成第二虚槽1134。通过设置第二虚槽,起到调磁作用,从而提高轴向磁通马达的出力/扭矩。
需要说明的是,上面实施例所述的第一双向凸极112的宽度D通常是指第一极柱1121的宽度D,但也可以为第一端部的宽度等。上面实施例所述的第二凸极112的宽度d通常是指第二极柱1121的宽度d,但也可以为第二端部的宽度。
根据上面各个实施例所述的第一双向凸极和第二双向凸极的结构,在一些实施例中,可以第一双向凸极和第二双向凸极都采用相同的实施例结构进行组 合,比如:第一双向凸极112和第二双向凸极113都分别采用上面各自的第一实施例的结构(如图1、图3所示);在另一些实施例中,也可以第一双向凸极和第二双向凸极选择不同实施例的结构进行组合,比如:第一双向凸极采用第一实施例结构,第二双向凸极采用第三实施例结构(图未示意出)。
需要说明的是,上面各个实施例中的第一虚槽1124和第二虚槽1134可以为但不限于一端开口的开口槽(如图1、图3所示)、闭口槽(开口槽的开口端形成闭合)或半闭口槽(开口槽的开口端半闭合)。
进一步,在一些实施例中,根据上面的实施例所述,当第一双向凸极包括第一虚槽时,至少部分第一虚槽内镶嵌第一永磁体,优选每个第一虚槽内都设置永磁体(如图1、图3所示)。当第二双向凸极包括第二虚槽时,至少部分第二虚槽内镶嵌第二永磁体,优选每个第二虚槽内设置永磁体。设置永磁体的第一虚槽和/或第二虚槽内可以设置一个永磁体(如图1、图3所示),也可以设置多个永磁体,比如,Halbach阵列永磁体(图未示意出)。采用上面所述的定子的马达可以提高磁路的磁铁密度,减小齿端漏磁,同时可以组合游标电机的调磁特性,从而提高了轴向磁通马达的出力/扭矩。
如图2、图5所示,在一些实施例中,本发明还提供一种轴向磁通马达10,该轴向磁通马达10包括上面任意一个实施例所述的定子和与所述定子的第一双向凸极112和第二双向凸极113轴向对应设置的第一动子21和第二动子22,定子和第一动子21和第二动子22之间存在间隙以形成磁隙。
有关定子的结构参见上面实施例中的描述,在此不再重复赘述。
因此采用本发明实施例所述的定子的轴向磁通马达,在基于形成多个独立的磁力线回路单元的原理下,使得整个马达的各个独立单元磁路解耦,因此提高了轴向磁通马达的容错性能。
另一方面,由于将第一双向凸极流出的主磁通分别向两侧分流经第一动子、第二双向凸极和第二动子回到第一双向凸极,可以分别减小定子铁芯和动子铁芯的轭部的厚度,从而即降低马达整体的重量和体积,又同时减小铁耗。
再一方面,由于采用第一双向凸极和第二双向凸极,使得第一动子和第二 动子都可以出力(线性马达)或输出扭矩(旋转马达),因此提高轴向磁通马达的出力/扭矩。
在一些实施例中,如图2、图4所示,所述第一动子21和第二动子22对应所述定子的面分别形成至少两个第三小齿211、221,相邻两个所述第三小齿211、221之间形成第三虚槽212、222。通过设置第三虚槽,起到调磁作用,从而提高轴向磁通马达的出力/扭矩。
该第三虚槽22可以为开口槽(如图1所示)、闭口槽或半闭口槽。
多个第三虚槽中可以部分第三虚槽内设置永磁体,也可以每个第三虚槽内设置永磁体;每个第三虚槽内可以设置一个永磁体,也可以设置多个永磁体,比如,Halbach阵列永磁体。
第三虚槽优选与第一虚槽和第二虚槽的大小相对应,但也可以不一致。采用上面所述的动子的马达,可以提高磁路的磁铁密度,减小齿端漏磁,同时可以组合游标电机的调磁特性,从而提高了轴向磁通马达的出力/扭矩。
如图2、5所示,在一些实施例中,根据上面实施例所述,当同时使得定子的第一双向凸极112包括第一虚槽1124,第二双向凸极113包括第二虚槽1134,第一动子21和第二动子22包括第三虚槽212、222,在至少部分多个第一虚槽1124、第二虚槽1134和第三虚槽212、222内都设置永磁体,采用这样的定子和动子的轴向磁通马达可以进一步提高磁路的磁铁密度,减小齿端漏磁,同时可以组合游标电机的调磁特性,从而提高了轴向磁通马达的出力/扭矩。
在一些实施例中,第一动子21和第二动子22之间可以设置连接柱223,从而使得第一动子21和第二动子22之间的相对位置固定。
在一些实施例中,本发明还提供一种自动化设备(图未示意出),所述自动化设备包括至少一个上面实施例所述的马达。
所述自动化设备可以包括应用在工业、医疗、生活、交通等等各种领域;其中,机器人可以看作是一种高端的自动化设备。
有关马达的相关描述参见上面实施例,在此不再重复赘述。
当一个元件被表述“固定于”、“固定在”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的属于只是为了描述具体的实施方式的目的,不是用于限制本发明。
本文术语中“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如:A和/或B,可以表示单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本发明的权利要求书和说明书及上述附图中的术语“第一”、“第二”、“第三”等等(如果存在)是用来区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”“具有”以及他们的任何变形,意图在于覆盖不排他的包含。例如:包括了一系列步骤或者模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或者模块,而是包括没有清楚地列出的或对于这些过程、方法、系统、产品或设备固有的其它步骤或模块。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其它实施例的相关描述。
需要说明的是,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的结构和模块并不一定是本发明所必须的。
以上对本发明实施例所提供的轴向磁通马达的定子、轴向磁通马达及自动化设备进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,不应理解为对本发明的限制。本技术领域的技术人员,依据本 发明的思想,在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
Claims (12)
- 一种轴向磁通马达的定子,其特征在于,所述定子包括定子铁芯和绕组;所述定子铁芯包括多个独立单元;所述绕组包括第一绕组和第二绕组;所述多个独立单元中的每个独立单元包括轴向设置的第一双向凸极和位于所述第一双向凸极两侧的第二双向凸极;所述第一双向凸极上缠绕所述第一绕组;所述第二双向凸极上缠绕所述第二绕组;所述第一绕组和所述第二绕组通过电流的相位差为180度。
- 根据权利要求1所述的轴向磁通马达的轴向磁通马达的定子,其特征在于,所述第一双向凸极的宽度大于所述第二双向凸极的宽度。
- 根据权利要求2所述的定子,其特征在于,所述第一双向凸极的宽度和所述第二双向凸极的宽度比例关系为:1.5≤D/d≤2.5;其中,D为第一双向凸极的宽度,d为第二双向凸极的宽度。
- 根据权利要求1或2或3所述的轴向磁通马达的定子,其特征在于,所述第一双向凸极包括第一极柱和分别位于所述第一极柱两端的第一端部,所述第一端部远离所述第一极柱的两端分别形成至少两个第一小齿,相邻两个所述第一小齿之间形成第一虚槽;或所述第一双向凸极包括第一极柱和位于所述第一极柱两端的第一端部;所述第二双向凸极包括第二极柱和位于所述第二极柱两端的第二端部;或所述第一双向凸极包括第一极柱,所述第二双向凸极包括第二极柱;或所述第一双向凸极包括第一极柱,所述第一极柱的两端分别形成至少两个第一小齿,相邻两个所述第一小齿之间形成第一虚槽;所述第二双向凸极包括第二极柱,所述第二极柱的两端分别形成至少两个第二小齿,相邻两个所述第二小齿之间形成第二虚槽。
- 根据权利要求4所述的轴向磁通马达的定子,其特征在于,当所述第一双向凸极包括所述第一虚槽,至少部分所述第一虚槽内设置第一永磁体。
- 根据权利要求1或2或3所述的轴向磁通马达的定子,其特征在于,所述 第二双向凸极包括第二极柱和分别位于所述第二极柱两端的第二端部,所述第二端部远离所述第二极柱的两端分别形成至少两个第二小齿,相邻两个所述第二小齿之间形成第二虚槽;或所述第二双向凸极包括第二极柱和位于所述第二极柱两端的第二端部;或所述第二双向凸极包括第二极柱;或所述第二双向凸极包括第二极柱,所述第二极柱的两端分别形成至少两个第二小齿,相邻两个所述第二小齿之间形成第二虚槽。
- 根据权利要求6所述的轴向磁通马达的定子,其特征在于,当所述第二双向凸极包括所述第二虚槽,至少部分所述第二虚槽内设置第二永磁体。
- 一种轴向磁通马达,其特征在于,所述轴向磁通马达包括权利要求1-7任意一项所述的定子,所述马达还包括第一动子和第二动子,所述第一动子和所述第二动子分别设置在所述定子的轴向两侧,使得所述第一双向凸极流出的磁通分别向两侧流经所述第一动子、所述第二双向凸极和所述第二动子回到所述第一双向凸极。
- 根据权利要求8所述的轴向磁通马达,其特征在于,所述第一动子和所述第二动子对应所述定子的端面分别形成至少两个第三小齿,相邻两个所述第三小齿之间形成第三虚槽。
- 根据权利要求9所述的轴向磁通马达,其特征在于,至少部分所述第三虚槽内设置第三永磁体。
- 根据权利要求8或9或10所述的轴向磁通马达,其特征在于,所述第一动子和所述第二动子之间设置连接柱,从而使得所述第一动子和所述第二动子之间的相对位置固定。
- 一种自动化设备,所述自动化设备包括权利要求8-11任意一项所述的轴向磁通马达。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810530254.2 | 2018-05-29 | ||
CN201810530254.2A CN108574350B (zh) | 2018-05-29 | 2018-05-29 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019228326A1 true WO2019228326A1 (zh) | 2019-12-05 |
Family
ID=63572189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/088743 WO2019228326A1 (zh) | 2018-05-29 | 2019-05-28 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108574350B (zh) |
WO (1) | WO2019228326A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4084298A1 (en) * | 2021-04-27 | 2022-11-02 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | An electric machine with two-phase planar lorentz coils and a ring-shaped halbach array for high torque density and high-precision applications |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108574350B (zh) * | 2018-05-29 | 2021-04-02 | 南方电机科技有限公司 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
CN112564442A (zh) * | 2020-12-01 | 2021-03-26 | 东南大学 | 一种轴向磁场双转子永磁游标电机 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005261083A (ja) * | 2004-03-11 | 2005-09-22 | Nissan Motor Co Ltd | 回転電機の冷却構造 |
CN102396134A (zh) * | 2009-02-13 | 2012-03-28 | Isis创新有限公司 | 电机-冷却 |
CN104335467A (zh) * | 2012-04-26 | 2015-02-04 | 菲艾姆股份有限公司 | 电机 |
US20160072362A1 (en) * | 2014-09-05 | 2016-03-10 | Steve Michael Kube | Hybrid Axial Flux Machines and Mechanisms |
CN108574350A (zh) * | 2018-05-29 | 2018-09-25 | 南方电机科技有限公司 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005073450A (ja) * | 2003-08-27 | 2005-03-17 | Matsushita Electric Ind Co Ltd | モータジェネレータ |
JP6226867B2 (ja) * | 2012-08-16 | 2017-11-08 | 株式会社ミツバ | ブラシレスモータ及びブラシレスモータ用ロータ |
GB2534195B (en) * | 2015-01-16 | 2018-02-21 | Yasa Ltd | Axial flux machine manufacture |
GB201518387D0 (en) * | 2015-10-16 | 2015-12-02 | Yasa Motors Ltd | Axial flux machine |
JP2018061392A (ja) * | 2016-10-07 | 2018-04-12 | 株式会社デンソー | 電機子および回転電機 |
CN106849409B (zh) * | 2016-11-11 | 2020-10-30 | 南方电机科技有限公司 | 一种包括halbach阵列的电机及包括该电机的设备 |
CN107579606B (zh) * | 2017-09-20 | 2019-08-02 | 江苏大学 | 一种低振噪性能的分数槽集中绕组永磁电机及设计方法 |
CN208674974U (zh) * | 2018-05-29 | 2019-03-29 | 南方电机科技有限公司 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
-
2018
- 2018-05-29 CN CN201810530254.2A patent/CN108574350B/zh active Active
-
2019
- 2019-05-28 WO PCT/CN2019/088743 patent/WO2019228326A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005261083A (ja) * | 2004-03-11 | 2005-09-22 | Nissan Motor Co Ltd | 回転電機の冷却構造 |
CN102396134A (zh) * | 2009-02-13 | 2012-03-28 | Isis创新有限公司 | 电机-冷却 |
CN104335467A (zh) * | 2012-04-26 | 2015-02-04 | 菲艾姆股份有限公司 | 电机 |
US20160072362A1 (en) * | 2014-09-05 | 2016-03-10 | Steve Michael Kube | Hybrid Axial Flux Machines and Mechanisms |
CN108574350A (zh) * | 2018-05-29 | 2018-09-25 | 南方电机科技有限公司 | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4084298A1 (en) * | 2021-04-27 | 2022-11-02 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | An electric machine with two-phase planar lorentz coils and a ring-shaped halbach array for high torque density and high-precision applications |
WO2022228773A1 (en) * | 2021-04-27 | 2022-11-03 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | An electric machine with two-phase planar lorentz coils and a ring-shaped halbach array for high torque density and high-precision applications |
Also Published As
Publication number | Publication date |
---|---|
CN108574350B (zh) | 2021-04-02 |
CN108574350A (zh) | 2018-09-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019228326A1 (zh) | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 | |
US11056957B2 (en) | Rotary electric machine equipped with magnetic flux variable mechanism | |
CN103929026B (zh) | 永磁电机 | |
CN107425626A (zh) | 一种内置式切向励磁游标永磁电机 | |
CN109149800B (zh) | 一种9n/10n极分段转子开关磁阻电机 | |
WO2019228328A1 (zh) | 一种定子、马达及自动化设备 | |
WO2021104123A1 (zh) | 一种电机及包括该电机的设备 | |
TWI661664B (zh) | 馬達 | |
CN115603536A (zh) | 基于直流偏置的双定子混合励磁磁通反向电机 | |
CN110649729B (zh) | 一种多励磁单极游标永磁电机 | |
CN108880182B (zh) | 一种分裂齿模块化游标永磁直线电机 | |
CN105529843B (zh) | 一种模块化开关磁通力矩电机 | |
CN108964391B (zh) | 一种6n/5n极分段转子开关磁阻电机 | |
CN111030402B (zh) | 方向性硅钢片轴向磁场电动机 | |
CN107359712A (zh) | 绕组模块化永磁电机 | |
CN106787569A (zh) | 一种磁悬浮磁通切换电机 | |
CN206650564U (zh) | 一种磁悬浮磁通切换电机 | |
CN208674974U (zh) | 一种轴向磁通马达的定子、轴向磁通马达及自动化设备 | |
CN210404876U (zh) | 一种电机及包括该电机的设备 | |
WO2020253847A1 (zh) | 一种电机及包括该电机的设备 | |
CN106685176A (zh) | 一种带有补偿模块的永磁直线电机 | |
US11139727B2 (en) | Permanent magnet electrical machine for reducing detent force | |
CN211239460U (zh) | 三相永磁同步电机及具有其的吸尘器 | |
CN208862641U (zh) | 一种定子、马达及自动化设备 | |
CN217656478U (zh) | 一种电机及包括该电机的设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19810528 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19810528 Country of ref document: EP Kind code of ref document: A1 |