WO2020253448A1 - 激光投影设备 - Google Patents

激光投影设备 Download PDF

Info

Publication number
WO2020253448A1
WO2020253448A1 PCT/CN2020/090952 CN2020090952W WO2020253448A1 WO 2020253448 A1 WO2020253448 A1 WO 2020253448A1 CN 2020090952 W CN2020090952 W CN 2020090952W WO 2020253448 A1 WO2020253448 A1 WO 2020253448A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser light
laser
driving
emitting chip
circuit
Prior art date
Application number
PCT/CN2020/090952
Other languages
English (en)
French (fr)
Inventor
吴凯
崔荣荣
陈许
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Publication of WO2020253448A1 publication Critical patent/WO2020253448A1/zh
Priority to US17/491,458 priority Critical patent/US11831126B2/en
Priority to US18/518,185 priority patent/US20240097400A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • G03B21/008Projectors using an electronic spatial light modulator but not peculiar thereto using micromirror devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/142Adjusting of projection optics
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3164Modulator illumination systems using multiple light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • H01S5/4093Red, green and blue [RGB] generated directly by laser action or by a combination of laser action with nonlinear frequency conversion

Definitions

  • This application belongs to the field of laser projection display, and particularly relates to a laser projection device.
  • Laser projection equipment such as ultra-short-focus laser TVs are widely used in the display field because of their advantages of high color purity, large color gamut, and high brightness.
  • the current laser TV includes a light source system to provide a three-color projection light source for the laser TV.
  • the light source system usually includes a laser light source, a fluorescent wheel, and a color filter wheel.
  • the laser light source is usually a blue laser for emitting blue laser light.
  • the blue laser is irradiated on three different areas of the fluorescent wheel sequentially to generate three-color light, and the three-color light is filtered through the color filter wheel in order to obtain three-color light with higher purity.
  • the light source system irradiates the blue laser to the fluorescent wheel to generate three-color light, this increases the control requirements for the fluorescent wheel, and the color effect of the three-color light generated by the fluorescent wheel is poor. Therefore, a full three-color light source system came into being.
  • the laser light source of the full three-color light source system includes three-color lasers to directly generate three-color light.
  • the present application provides a laser projection device, including: a laser light source, and a laser light source driving device connected to the laser light source, the laser light source including a laser assembly packaged with a three-color laser light emitting chip; driving of the laser light source
  • the device includes:
  • the display control circuit is connected to the three laser drive circuits, and is used to generate three pulse width modulated PWM signals corresponding to the three-color laser light emitting chip based on the three primary color components of the image to be displayed, and each of the The PWM signal is transmitted to the corresponding laser drive circuit; and the three enable signals corresponding to the three-color laser light emitting chip are respectively transmitted to the corresponding laser drive circuit;
  • Each of the laser driving circuits is used to load the driving voltage or driving current to the pins of the laser light emitting chip of the corresponding color according to the voltage of the received PWM signal when the received enable signal is at an effective potential .
  • Figure 1 is a schematic diagram of a partial structure of a light source system
  • FIG. 2 is a schematic structural diagram of a laser projection device provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a laser projection device provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a digital-to-analog converter provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a selection circuit corresponding to a red laser light emitting chip provided by an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a selection circuit corresponding to a green laser light emitting chip provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a selection circuit corresponding to a blue laser light-emitting chip provided by an embodiment of the present application.
  • FIG. 8 is a partial structural diagram of a laser light source driving device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a laser driving circuit corresponding to a red laser light-emitting chip provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a laser driving circuit corresponding to a green laser light emitting chip provided by an embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of a laser driving circuit corresponding to a blue laser light emitting chip provided by an embodiment of the present application;
  • FIG. 12 is a schematic diagram of the internal structure of a driving chip provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a laser board provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a sequence of an enable signal provided by an embodiment of the present application.
  • 15 is a schematic structural diagram of a laser light source provided by an embodiment of the present application.
  • FIG. 16 is an equivalent circuit diagram of a laser light source provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of a laser projection device provided by an embodiment of the present application.
  • FIG. 1 shows a schematic diagram of a partial structure of a light source system.
  • the current full three-color light source system usually includes a laser light source 10, two dichroic mirrors 20, a reflector 30, a diffusion wheel 40 and an optical rod 50.
  • the laser light source 10 may include a laser assembly packaged with a three-color laser light-emitting chip.
  • the laser assembly includes: two red laser light-emitting chips 101 for emitting red laser light, one green laser light-emitting chip 102 for emitting green laser light, and one A blue laser light emitting chip 103 that emits blue laser light.
  • the red laser light emitted by the two red laser light emitting chips 101 can all be transmitted to the diffuser wheel 40 through a dichroic mirror 201.
  • the green laser light emitted by the green laser light emitting chip 102 can be first reflected by another dichroic mirror 202 to the one dichroic mirror 201, and then transmitted to the diffusion wheel 40 through the one dichroic mirror 201.
  • the blue laser light emitted by the blue laser light emitting chip 103 can be first reflected by the reflecting mirror 30 to the other dichroic mirror 202, and then sequentially transmitted through the other dichroic mirror 202 and the one dichroic mirror 201 until it is diffused.
  • the laser light irradiated on the diffuser wheel 40 is irradiated into the light rod 50 after being homogenized by the diffuser wheel 40, and under the uniform light effect of the light rod 50, a three-color light source is realized.
  • the embodiment of the present application provides a laser projection device.
  • the light source system of the laser projection equipment includes a laser light source 10 and a laser light source driving device 00 connected to the laser light source 10.
  • the laser light source 10 includes a laser assembly packaged with a three-color laser light emitting chip.
  • the embodiment of the present application takes the three-color laser light emitting chip including the red laser light emitting chip 100a, the green laser light emitting chip 100b and the blue laser light emitting chip 100c as an example for description.
  • the laser light source driving device 00 may include: a display control circuit 01 and three laser driving circuits 02 corresponding to the three-color laser light-emitting chip, and the three laser driving circuits 02 are respectively connected to the pins corresponding to the three-color laser light-emitting chip.
  • the display control circuit 01 is connected to three laser driving circuits 02 respectively.
  • the display control circuit 01 is used to generate three pulse width modulation (PWM, Pulse Width Modulation) signals corresponding to the three-color laser light emitting chip based on the three primary color components of the image to be displayed, and transmit each PWM signal to the corresponding laser drive circuit 02.
  • the three enable signals corresponding to the three-color laser light-emitting chip are respectively transmitted to the corresponding laser driving circuit 02.
  • the PWM signal is used to control the brightness of the laser.
  • the enable signal corresponding to the laser light emitting chip of each color may be generated based on the lighting duration of the laser light emitting chip of the corresponding color in the driving period, and may be used to control the lighting duration of the laser light emitting chip of the corresponding color.
  • Each laser drive circuit 02 is used to load the corresponding drive voltage or drive current according to the voltage of the received PWM signal when the received enable signal is at an effective potential (for example, high potential, also called high level) Color laser light emitting on the pins of the chip.
  • an effective potential for example, high potential, also called high level
  • the laser light source 10 includes a laser component packaged with a three-color laser light emitting chip.
  • the three-color laser light emitting chip includes a red laser light emitting chip 100a, a green laser light emitting chip 100b, and a blue laser light emitting chip 100c.
  • the driving device for the laser light source may include three laser driving circuits 02 corresponding to the laser light emitting chips of the three colors.
  • the display control circuit 01 can generate the red PWM signal R_PWM corresponding to the red laser light emitting chip based on the red primary color component of the image to be displayed, and generate the green PWM signal G_PWM corresponding to the green laser light emitting chip based on the green primary color component of the image to be displayed.
  • the blue primary color component of the displayed image generates a blue PWM signal B_PWM corresponding to the blue laser light emitting chip.
  • the display control circuit 01 can generate an enable signal R_EN corresponding to the red laser light-emitting chip based on the lighting time of the red laser light-emitting chip in the driving cycle, and generate the enable signal R_EN corresponding to the red laser light-emitting chip in the driving cycle.
  • the enable signal G_EN corresponding to the green laser light-emitting chip generates an enable signal B_EN corresponding to the blue laser light-emitting chip based on the lighting duration of the blue laser light-emitting chip in the driving period.
  • the display control circuit can generate the PWM signal and the enable signal corresponding to the laser light emitting chip of each color, and can transmit the generated signal to the corresponding laser driver According to the PWM signal and the enable signal, the laser driving circuit can then load the driving voltage or driving current to the pins of the laser light emitting chip of the corresponding color, thereby driving the laser light emitting chip of each color to emit light, thereby achieving Independent control of the laser light emitting chip of each color.
  • the display control circuit 01 may be a digital light processing (DLP, Digital Light Processing) chip, and the DLP chip may be a DLPC6421 chip, or the DLP chip may be a DDP4422 chip.
  • DLP digital light processing
  • Fig. 3 is a schematic structural diagram of a laser projection device provided by an embodiment of the present application.
  • the driving device 00 of the laser light source may further include: a digital to analog converter (DAC, Digital to Analog Converter) 03.
  • the digital-to-analog converter 03 is connected to the display control circuit 01 and the three laser drive circuits 02 respectively.
  • the display control circuit 01 is used to transmit three PWM signals to the digital-to-analog converter 03.
  • the digital-to-analog converter 03 is used to convert each received PWM signal into an analog signal, and transmit each analog signal to the corresponding laser driving circuit 02.
  • Fig. 4 is a schematic structural diagram of a digital-to-analog converter provided by an embodiment of the present application.
  • the digital-to-analog converter 03 has at least three input pins, INA pin, INB pin and INC pin, and three VOUTA pin, VOUTB pin and VOUTC pin. Output pin.
  • the digital-to-analog converter 03 may also include /PD pin, IDVCC pin, VCC pin, REF pin, GND1 pin, GND2 pin, REFSEL pin, and IDLSEL pin.
  • the INA pin, the INB pin and the INC pin can all be connected to the display control circuit 01, and are respectively used to access the red PWM signal R_PWM, the green PWM signal G_PWM and the blue PWM signal B_PWM transmitted by the display control circuit 01.
  • the VOUTA pin, VOUTB pin and VOUTC pin can be connected to the three laser drive circuits 02 respectively, which are used to output the analog signal R1_PWM converted from the red PWM signal R_PWM to the laser drive circuit corresponding to the red laser light emitting chip.
  • the analog signal G1_PWM converted from the PWM signal G_PWM is output to the laser driving circuit corresponding to the green laser light-emitting chip, and the analog signal B1_PWM converted from the blue PWM signal B_PWM is output to the laser driving circuit corresponding to the blue laser light-emitting chip.
  • the analog signal B1_PWM, the analog signal G1_PWM, and the analog signal R1_PWM are all analog DC voltage signals.
  • the /PD pin, IDVCC pin, VCC pin, and REF pin are all grounded through a capacitor C1 and a capacitor C2 connected in parallel, and they are all connected to the power supply terminal VCC1.
  • the GND1 pin, GND2 pin and IDLSEL pin are all grounded.
  • the REFSEL pin is connected to the power supply terminal VCC2 and one end of the capacitor C3, and the other end of the capacitor C3 is grounded. Among them, the voltage provided by the power supply terminal VCC1 and the power supply terminal VCC2 may both be 5V (volts).
  • the parameters of the capacitor C1, the capacitor C2, and the capacitor C3 are all 100nF (nanofarad)/16V (that is, the capacitance of the capacitor C1, the capacitor C2, and the capacitor C3 are all 100nF, and the rated voltage is 16V).
  • the laser light source driving device 00 further includes: three selection circuits 04 corresponding to the three-color laser light emitting chip.
  • Each selection circuit 04 is respectively connected to a display control circuit 01, a digital-to-analog converter 03 and a corresponding laser driving circuit 02.
  • the display control circuit 01 is also used to transmit each enable signal to the corresponding selection circuit 04.
  • the digital-to-analog converter 03 is also used to transmit each analog signal to the corresponding selection circuit 04.
  • Each selection circuit 04 is used to transmit the received analog signal to the corresponding laser drive circuit 02 when the received enable signal is at a valid potential.
  • the driving device 00 of the laser light source may include three selection circuits 04 corresponding to the three color lasers.
  • the display control circuit 01 can transmit the enable signal R_EN corresponding to the red laser light emitting chip, the enable signal G_EN corresponding to the green laser light emitting chip, and the enable signal B_EN corresponding to the blue laser light chip to the corresponding selection circuit 04 respectively.
  • the digital-to-analog converter 03 can transmit the analog signal R1_PWM corresponding to the red PWM signal, the analog signal G1_PWM corresponding to the green PWM signal, and the analog signal B1_PWM corresponding to the blue PWM signal to the corresponding selection circuit 04 respectively.
  • the selection circuit 04 corresponding to the red laser light-emitting chip can transmit the analog signal R1_PWM to the corresponding laser driving circuit 02 when the received enable signal R_EN is at an effective potential.
  • the selection circuit 04 corresponding to the green laser light-emitting chip may transmit the analog signal G1_PWM to the corresponding laser driving circuit 02 when the received enable signal G_EN is at an effective potential.
  • the selection circuit 04 corresponding to the blue laser light-emitting chip can transmit the analog signal B1_PWM to the corresponding laser driving circuit 02 when the received enable signal B_EN is at an effective potential.
  • FIG. 5 is a schematic structural diagram of a selection circuit corresponding to a red laser light emitting chip provided by an embodiment of the present application.
  • the embodiment of the present application uses a selection circuit corresponding to the red laser light emitting chip as an example to describe the structure of the selection circuit.
  • the selection circuit 04a corresponding to the red laser light emitting chip may include: an adaptor circuit 041 and a selection subcircuit 042.
  • the adaptor circuit 041 is respectively connected with the display control circuit 01 and the selector circuit 042, and is used to convert the voltage of the received enable signal R_EN to the rated voltage of the selector circuit 042, and to convert the voltage-converted enable signal R_EN Transfer to the selector circuit 042.
  • the selection sub-circuit 042 is also connected to the digital-to-analog converter 03 for transmitting the received analog signal R1_PWM to the corresponding laser driving circuit 02 when the received enable signal R_EN is at an effective potential.
  • the adaptor circuit 041 may include an operational amplifier A1, a resistor R1, a capacitor C4, and a capacitor C5.
  • the operational amplifier A1 has at least a first port, a second port, a third port, a fourth port, and a fifth port. Both the first port and the third port are grounded.
  • the second port is connected to the display control circuit 01 for receiving the enable signal R_EN.
  • the second port is also connected to one end of the parallel resistor R1 and capacitor C4, and the other end of the parallel resistor R1 and capacitor C4 is grounded.
  • the capacitor C4 can be used to filter out the spike part of the enable signal R_EN, or to filter out the The larger ripple of the enable signal R_EN.
  • the fourth port is connected to the selection sub-circuit 042.
  • the fifth port is respectively connected to the power terminal VCC3 and one end of the capacitor C5, and the other end of the capacitor C5 is grounded.
  • the selection sub-circuit 042 may include a one-of-two selector 0421.
  • the two-to-one selector 0421 may include two input pins, the SEL pin and the A pin, and two output pins, the B0 pin and the B1 pin.
  • the one-of-two selector 0421 also includes a VCC pin and a GND pin.
  • the SEL pin is respectively connected to the fourth port of the operational amplifier A1 in the adaptor circuit 041 and one end of the resistor R2, and the other end of the resistor R2 is connected to the power terminal VCC4.
  • the VCC pin is respectively connected to the power terminal VCC5 and one end of the capacitor C6, and the other end of the capacitor C6 is grounded.
  • the A pin is connected to the VOUTA pin of the digital-to-analog converter 03, and one end of the parallel resistor R3 and capacitor C7 to receive the analog signal R1_PWM transmitted by the digital-to-analog converter 03, and the parallel connection of the resistor R3 and the capacitor C7 The other end is grounded.
  • the capacitor C7 can be used to filter out the spikes of the analog signal R1_PWM, or , To filter out the larger part of the ripple of the analog signal R1_PWM.
  • the B1 pin is connected to the laser drive circuit 02 corresponding to the red laser light-emitting chip, and is used to provide the selected red PWM analog signal R2_PWM signal for the laser drive circuit. Both the GND pin and the B0 pin are grounded.
  • the voltage provided by the power terminal VCC3, the power terminal VCC4, and the power terminal VCC5 may all be 5V.
  • the resistance value of the resistor R1 to the resistor R3 can be 10k ⁇ (k ⁇ ).
  • the parameters of the capacitor C4 and the capacitor C7 can be 100n/16V/NC (that is, the capacitance of the capacitor C4 and the capacitor C7 are both 100nF, and the rated voltage is 16V, and the capacitor C4 and the capacitor C7 are spare capacitors. Connection), the parameters of the capacitor C5 and the capacitor C6 can be 100n/16V.
  • the B1 pin When the enable signal R_EN input by the SEL pin is at an effective potential, the B1 pin can output the analog signal R1_PWM input by the A pin to realize the synchronization of the enable signal and the analog signal.
  • the adaptor circuit 041 since the adaptor circuit 041 can realize the level conversion of the enable signal, the voltage of the enable signal transmitted by the display control circuit 01 can be adapted to the voltage of the SEL port of the selector circuit 042, ensuring that the selector The normal operation of circuit 042.
  • each adaptor circuit 041 can convert the 3.3V enable signal into a 5V enable signal through the operational amplifier A1, and transmit the converted enable signal to the SEL pin of the selection subcircuit 042.
  • FIG. 6 is a schematic structural diagram of a selection circuit 04b corresponding to a green laser light-emitting chip provided by an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a selection circuit 04c corresponding to a blue laser light-emitting chip provided by an embodiment of the present application.
  • the selection circuit 04a corresponding to the red laser light emitting chip shown in FIG. 5, which will not be repeated in this embodiment of the application.
  • the laser light source driving device 00 further includes: a buffer circuit 05, and the buffer circuit 05 is respectively connected to the display control circuit 01, the digital-to-analog converter 03 and the selection circuit 04.
  • the display control circuit 01 is used to transmit each PWM signal and each enable signal to the buffer circuit 05.
  • the buffer circuit 05 is used to buffer each received PWM signal and each enable signal separately, output each buffered PWM signal to the digital-to-analog converter 03, and buffer each of the The enable signal is output to the corresponding selection circuit 04.
  • FIG. 8 is a partial structural diagram of a laser light source driving device provided by an embodiment of the present application.
  • the buffer circuit 05 may include a buffer chip U1.
  • the display control circuit 01 can include the GPIO-04 pin for outputting the red PWM signal R_PWM, the GPIO-05 pin for outputting the green PWM signal G_PWM, the GPIO-06 pin for outputting the blue PWM signal B_PWM, and the It is used to output the GPIO-24 pin of the enable signal R_EN corresponding to the red laser emitting chip, the GPIO-25 pin used to output the enable signal G_EN corresponding to the green laser emitting chip and the corresponding enable signal used to output the blue laser emitting chip.
  • the GPIO-26 pin of the signal B_EN The GPIO-26 pin of the signal B_EN.
  • Buffer chip U1 can include A1 to A3 pins, A5 to A7 pins, A10 pins, a total of seven input pins, and Y1 to Y3 pins, Y5 to Y7 pins, and Y10 pins, a total of seven output pins.
  • the U1 also includes Pin, GND pin, VCC pin and Pin.
  • the A1 pin is respectively connected to the GPIO-04 pin and one end of the resistor R4 for receiving the red PWM signal R_PWM provided by the display control circuit 01.
  • the A2 pin is respectively connected to the GPIO-05 pin and one end of the resistor R5 to receive the green PWM signal G_PWM provided by the display control circuit 01.
  • the A3 pin is respectively connected to the GPIO-06 pin and one end of the resistor R6 to receive the blue PWM signal B_PWM provided by the display control circuit 01.
  • the A5 pin is respectively connected to the GPIO-24 pin and one end of the resistor R9 to receive the enable signal R_EN provided by the display control circuit 01.
  • the A6 pin is respectively connected to the GPIO-25 pin and one end of the resistor R8 to receive the enable signal G_EN provided by the display control circuit 01.
  • the A7 pin is respectively connected to the GPIO-26 pin and one end of the resistor R7 to receive the enable signal B_EN provided by the display control circuit 01.
  • the other end of resistor R4, the other end of resistor R5, the other end of resistor R6, the other end of resistor R7, the other end of resistor R8, the other end of resistor R9, Pin and The pins are all grounded.
  • the VCC pin is respectively connected to one end of the inductor L1 and one end of the capacitor C8, the other end of the inductor L1 is connected to the power terminal VCC6, and the other end of the capacitor C8 is grounded.
  • the Y1 pin is connected to the INA pin of the digital-to-analog converter 03, and is used to provide the buffered red PWM signal R_PWM for the digital-to-analog converter 03.
  • the Y2 pin is connected to the INB pin of the digital-to-analog converter 03, and is used to provide the buffered green PWM signal G_PWM for the digital-to-analog converter 03.
  • the Y3 pin is connected to the INC pin of the digital-to-analog converter 03, and is used to provide the digital-to-analog converter 03 with the buffered blue PWM signal B_PWM.
  • the Y5 pin is connected to the second port of the operational amplifier A1 in the selection circuit 04 corresponding to the red laser light-emitting chip, and is used to provide the enable signal R_EN for the selection circuit 04.
  • the Y6 pin is connected to the second port of the operational amplifier A1 in the selection circuit 04 corresponding to the green laser light-emitting chip, and is used to provide the enable signal G_EN for the selection circuit 04.
  • the Y7 pin is connected to the second port of the operational amplifier A1 in the selection circuit 04 corresponding to the blue laser light emitting chip, and is used to provide the enable signal B_EN for the selection circuit 04.
  • the A10 pin is respectively connected to the master control port LMPCTRL and the external master control port EN.
  • the master control port LMPCTRL can be connected to the display control circuit 01, and the external master control port EN can be connected to an external microcontroller.
  • the Y10 pin is connected to the external power supply circuit connected to the power pin of the driver chip U2.
  • the total control port LMPCTRL and the external total control port EN are both used to control the potential of the LED_EN signal output by the Y10 pin of the Buffer chip U1. Wherein, when the LED_EN signal is at an effective potential, the external power supply circuit can supply power to the drive chip U2, and when the LED_EN signal is at an invalid potential, the external power supply circuit stops supplying power to the drive chip U2.
  • the voltage provided by the power terminal VCC6 may be 3V.
  • the resistance value of the resistor R4 to the resistor R9 may be 10k ⁇ .
  • the parameter of the capacitor C8 can be 100n/16V.
  • the model of the inductor L1 can be BLM15AG121SN1D.
  • the PWM signal and the enable signal transmitted by the display control circuit 01 are transmitted to the subsequent circuit through the buffer circuit, the driving capability of the PWM signal and the enable signal transmitted to the subsequent circuit is enhanced, and the stable and efficient operation of the subsequent circuit is ensured.
  • FIG. 9 is a schematic structural diagram of a laser driving circuit corresponding to a red laser light-emitting chip provided by an embodiment of the present application. Taking the structure shown in FIG. 9 as an example, the structure of the laser driving circuit will be described.
  • the laser driving circuit 02a corresponding to the red laser light emitting chip may include: a driving chip U2 and an external sub-circuit connected to the driving chip U2. The external sub-circuit is also connected to the pins of the corresponding red laser light emitting chip.
  • the external sub-circuit is used to detect the driving current of the pin of the corresponding red laser light-emitting chip and transmit the driving current to the driving chip.
  • the driving chip U2 is used to adjust the duty cycle of the driving signal output to the external sub-circuit according to the driving current when the enable signal is received as an effective potential.
  • the external sub-circuit is also used to adjust the driving voltage according to the duty cycle of the driving signal.
  • the driver chip U2 includes at least an rt pin, a drv pin, an isen pin, an adim pin, and a pwm pin.
  • the external sub-circuit can include a positive output port LD3+ and a negative output port LD3-.
  • the adim pin of the driving chip U2 can be connected to the selection circuit 04 corresponding to the red laser light-emitting chip through a voltage divider resistor, for example, can be connected to the B1 pin of the two-to-one selector 0421 in the selection circuit 04 for receiving the The red PWM signal R2_PWM provided by the selection circuit 04.
  • the adim pin of the driving chip U2 can be connected to one end of the resistor R10 and one end of the resistor R11, the other end of the resistor R10 is grounded, and the capacitor C9 is connected in parallel with the resistor R10, and the other end of the resistor R11
  • One end is connected to one end of the resistor R12, and the other end of the resistor R12 is connected to the selection circuit 04 corresponding to the red laser light emitting chip for receiving the red PWM signal R2_PWM provided by the selection circuit 04.
  • the other end of the resistor R12 is also connected to one end of the resistor R13, and the other end of the resistor R13 is grounded.
  • the resistor R10, resistor R11, and resistor R12 are voltage dividing resistors, which can divide the red PWM signal R2_PWM provided by the selection circuit 04, so that the voltage of the divided analog signal can match the rated voltage of the adim pin of the driving chip U2 .
  • the isen pin of the driver chip U2 can be connected with a sampling resistor.
  • the isen pin of the driving chip U2 can be connected to one end of the sampling resistor Risen through a resistor R14, and one end of the sampling resistor Risen is also connected to the negative output port LD3 -, and the isen pin of the driving chip U2 can pass through the capacitor C10 Connect to the other end of the sampling resistor Risen, and the other end of the sampling resistor Risen is grounded.
  • the sampling resistor Risen may include a resistor R15, a resistor R16, a resistor R17, and a resistor R18 connected in parallel.
  • the driving chip U2 can detect the driving current of the red laser light emitting chip through the sampling resistor Risen.
  • the drv pin of the driving chip U2 can be connected to the switching field effect transistor Q1.
  • the drv pin of the driving chip U2 may be connected to the gate of the switching field effect transistor Q1.
  • the source of the switching FET Q1 is respectively connected to one end of the sampling resistor Risen and one end of the transformer L2, and the other end of the transformer L2 is connected to the negative output port LD3 ⁇ .
  • the drain of the switching field effect transistor Q1 is connected to the power supply terminal VDD2.
  • the signal output by the drv pin of the driving chip U2 can control the switching state of the switching field effect transistor Q1, so that the switching field effect transistor Q1 is connected to the power supply terminal VDD2 and one end of the transformer L2 when the switching field effect tube Q1 is in the on state, thereby changing through the transformer L2
  • the output voltage of the negative output port LD3 ⁇ may be a Metal Oxide Semiconductor (MOS, Metal Oxide Semiconductor) field effect transistor.
  • the drv pin of the driver chip U2 can be connected to one end of the diode D1 and one end of the resistor R19, the other end of the diode D1 is connected to one end of the resistor R20, and the other end of the resistor R19 and the other end of the resistor R20 are both connected to the switch
  • the gate of the field effect transistor Q1 is connected, and the other end of the resistor R19 and the other end of the resistor R20 are also connected to one end of the sampling resistor Risen through the resistor R21.
  • the drain of the switching field effect transistor Q1 can be connected to the power terminal VDD2 through two parallel diodes D2, and the power terminal VDD2 is also connected to one end of the capacitor C11, and the other end of the capacitor C11 is grounded.
  • the source of the switching FET Q1 can be connected to the transformer L2 through a capacitor C12.
  • the pwm pins of the driver chip U2 can be connected to one end of the resistor R22 and one end of the resistor R23 respectively, and the other end of the resistor R22 is connected to the display control circuit 01 for receiving the corresponding use of the red laser light emitting chip provided by the display control circuit 01 Can signal R_EN.
  • the other end of the resistor R23 is grounded, and the capacitor C13 is connected in parallel with the resistor R23.
  • the rt pin of the driving chip U2 can be connected to one end of the resistor R24, and the other end of the resistor R24 is grounded.
  • the switching frequency of the switching FET Q1 can be determined by the resistance value of the resistor R24. Among them, the switching frequency of the switching FET Q1.
  • the driving chip U2 may also include a VCC pin, an st pin, a vref pin, and a GND pin.
  • the VCC pin of the driver chip U2 can be connected to one end of the capacitor C14 and one end of the resistor R25, the other end of the capacitor C14 is grounded, and the other end of the resistor R25 is connected to the power supply terminal VDD1.
  • the st pin of the driver chip U2 can be connected to one end of the resistor R26.
  • the other end of the resistor R26 is connected to one end of the resistor R27 and the base of the transistor B1.
  • the other end of the resistor R27 is connected to the emitter and the alarm terminal of the transistor B1.
  • FLG is connected, and the collector of transistor B1 is grounded.
  • the alarm terminal FLG is used to output an alarm signal to the external power supply circuit connected to the power supply pin of the driving chip U2 when the laser driving circuit 02 generates an abnormal current, so that the external power supply circuit stops supplying power to the driving chip U2.
  • the vref pin of the driver chip U2 can be connected to one end of the capacitor C15, and the other end of the capacitor C15 is grounded.
  • the GND pin of the driving chip U2 is grounded, and the positive output port LD3+ and the negative output port LD3 are respectively connected to both ends of the capacitor C16.
  • the voltage provided by the power supply terminal VDD2 may be 63V.
  • the resistance values of the resistance R15, the resistance R16 and the resistance R18 are all 0.3 ⁇ (Ohm).
  • the resistance of resistor R17 is 5.1 ⁇ .
  • the resistance value of the resistor R20 is 22 ⁇ .
  • the resistance value of the resistor 25 is 27 ⁇ .
  • the resistance value of the resistance R14, the resistance R22 and the resistance R26 is 1k ⁇ .
  • the resistance values of the resistor R11 and the resistor R12 are both 3.3k ⁇ .
  • the resistance values of the resistance R10, the resistance R21 and the resistance R27 are all 10k ⁇ .
  • the resistance value of the resistor R23 is 20k ⁇ .
  • the resistance value of the resistor R24 is 51k ⁇ .
  • the resistance value of the resistor R19 is 68k ⁇ .
  • the resistance value of the resistor R13 is 100k ⁇ .
  • the parameters of capacitor C9, capacitor C10, capacitor C11, capacitor C12, capacitor C13, capacitor C14, capacitor C15, and capacitor C16 can be 22nF/50V, 100pF (picofarad)/50V, 100nF/250V, 100pF/1000V, 100pF/ 50V, 1uF (micro method)/50V, 1uF/50V and 1uF/100V.
  • FIG. 12 is a schematic diagram of the internal structure of a driving chip provided by an embodiment of the present application.
  • the driver chip U2 may include: divider x1, switching frequency square wave generator hfosc, voltage limiter max, comparator lm1, comparator lm2, comparator lm3, buffer m1, resistor r21 and capacitor c21.
  • the adim pin of the driver chip U2 can be connected to one end of the divider x1.
  • the divider x1 is used to divide the PWM signal transmitted by the adim pin by the reduction factor k, which can be equal to 10.
  • the other end of the divider x1 is connected to one end of the voltage limiter max, and the voltage limiter max is connected to determine the output signal ADJ according to the voltage of the signal output by the divider x1.
  • the output signal ADJ output by the voltage limiter max is the signal output by the divider x1; when the divider x1 outputs When the voltage of the signal is greater than the upper limit voltage, the voltage of the output signal ADJ output by the voltage limiter max is the upper limit voltage.
  • Each of the comparator lm1 and the comparator lm3 has two input terminals, a positive input terminal and a negative input terminal, and an output terminal.
  • the comparator lm2 has three input terminals, a positive input terminal, a negative input terminal, and an enable input terminal, and an output terminal.
  • the positive input end of the comparator lm1 is connected to the other end of the voltage limiter max.
  • the negative input end of the comparator lm1 is respectively connected to one end of the resistor r21 and one end of the capacitor c21, and the other end of the resistor r21 is connected to the isen pin.
  • the output end of the comparator lm1 can be connected to the other end of the capacitor c21.
  • the comparator lm1 is used to compare the voltage of the positive input terminal and the negative input terminal. When the voltage at the positive input terminal of the comparator lm1 is greater than the voltage at the negative input terminal (that is, the product of the drive current of the isen pin and the resistance r21), the output logic value of the comparator lm1 may be 1. When the voltage at the positive input terminal of the comparator lm1 is less than the voltage at the negative input terminal, the output logic value of the comparator lm1 may be zero.
  • the positive input terminal of the comparator lm2 is connected to the output terminal of the comparator lm1.
  • the negative input terminal of the comparator lm2 is connected to one end of the switching frequency square wave generator hfosc, and the other end of the switching frequency square wave generator hfosc is connected to the rt pin.
  • the enable input terminal of the comparator lm2 is connected to the output terminal of the comparator lm3, and the switching frequency square wave generator hfosc is used to generate a square wave of the switching frequency according to the switching frequency determined by the resistance of the resistor R24.
  • the output terminal of the comparator lm2 is connected to one end of the buffer m1, and the other end of the buffer m1 is connected to the pin drv.
  • the buffer m1 is used to enhance the driving capability of the signal output from the output terminal of the comparator lm2.
  • the comparator lm2 is used to compare the voltage of the positive input terminal and the negative input terminal when the enable input terminal is valid. When the voltage at the positive input terminal of the comparator lm2 is greater than the voltage at the negative input terminal, the output logic value of the comparator lm2 is 1. When the voltage at the positive input terminal of the comparator lm2 is less than the voltage at the negative input terminal, the output logic value of the comparator lm2 0.
  • the positive input terminal of the comparator lm3 is connected to the pwm pin, and the negative input terminal of the comparator lm3 is connected to the DC power supply terminal, and the voltage of the DC power supply terminal may be 1V.
  • the comparator lm3 is used for the voltage between the positive input terminal and the negative input terminal. When the voltage at the positive input terminal of the comparator lm3 is greater than the voltage at the negative input terminal, the output logic value of the comparator lm3 is 1; when the voltage at the positive input terminal of the comparator lm3 is less than the voltage at the negative input terminal, the output logic value of the comparator lm3 0.
  • the enable signal R_EN corresponding to the red laser light emitting chip input from the pwm pin of the driving chip U2 is the enable signal of the driving chip U2.
  • the driving chip U2 works normally.
  • the driving chip U2 can adjust the duty cycle of the driving signal output by the drv pin according to the voltage of the R_PWM signal input from the adim pin and the driving current of the red laser light-emitting chip input from the isen pin, thereby adjusting the negative output port through an external sub-circuit
  • the output voltage of the LD3-further realizes the adjustment of the driving voltage applied to the red laser light-emitting chip, so that the red laser light-emitting chip works at a constant current.
  • the enable signal R_EN is at an invalid potential, the driving chip U2 stops working, and the red laser light emitting chip does not emit light.
  • the voltage of the adim pin of the driving chip U2 in the laser driving circuit 02 can satisfy:
  • U R2_PWM is the voltage of the red PWM signal received by the laser driving circuit 02, in millivolts.
  • the drive current provided by the laser drive circuit 02 to the corresponding laser light-emitting chip can be:
  • k is the reduction factor of the divider x1 in the driver chip U2.
  • each electronic component connected to the driving chip U2 may be a component in an external sub-circuit.
  • the three laser driving circuits 02 have the same structure.
  • the structure of the red laser drive circuit 02a corresponding to the red laser light-emitting chip shown in FIG. 9 is taken as an example for description.
  • the laser drive circuit corresponding to other color lasers such as the green laser light-emitting chip shown in FIG. 10.
  • the structure, connection relationship and working principle of the corresponding green laser drive circuit 02b and the blue laser drive circuit 02c corresponding to the blue laser light-emitting chip shown in FIG. 11 can refer to the red laser drive circuit 02a.
  • the laser driving circuit can drive the corresponding laser light-emitting chip to emit light in a boost driving mode or a step-down driving mode.
  • the boost driving may refer to raising a lower power supply voltage provided by the power supply to the working voltage of the laser light emitting chip, so that the laser light emitting chip can work normally under a constant current.
  • the step-down driving may refer to lowering the higher power supply voltage provided by the power supply to the working voltage of the laser light emitting chip, so that the laser light emitting chip can work normally under a constant current.
  • the laser driving circuit provided in the embodiments of the present application may use a step-down driving method to drive the corresponding laser light emitting chip to emit light. Wherein, the ratio of the typical voltage value of the working voltage to the power supply voltage may range from 85% to 95%.
  • Table 1 shows the correspondence between the constant current of the red laser light emitting chip, the green laser light emitting chip and the blue laser light emitting chip and the typical voltage value of the working voltage.
  • the constant current of the red laser light-emitting chip is 3A, and its typical voltage is 24.6V.
  • the constant working current required by the green laser light-emitting chip is 1.6A, and its typical voltage is 28.5V.
  • the constant working current required by the blue laser light-emitting chip is 2.25A, and its typical voltage is 27V.
  • the power supply voltage provided by the power supply connected to the laser driving circuit corresponding to the red laser light emitting chip may be 25.9V-28.9V, for example, 25.9V, 27V, 28V, and 28.9V.
  • the initial voltage value of the laser driving circuit corresponding to the green laser light emitting chip may be 30V-33.5V, for example, it may be 30V, 32V, and 33.5V.
  • the initial voltage value of the laser driving circuit corresponding to the blue laser light emitting chip can be 28.5V-31.7V, for example, it can be 28.5V, 30V, and 31.7V.
  • the driving device of the laser light source further includes a laser plate, and the laser plate is used to connect multiple laser light emitting chips in series.
  • FIG. 13 is a schematic structural diagram of a laser board provided by an embodiment of the present application.
  • the laser board may be an XP socket.
  • the XP socket can include a total of 8 ports from port 1 to port 8.
  • port 1 can be connected to the negative output port of the laser drive circuit 02
  • port 7 can be connected to the positive output port of the laser drive circuit 02.
  • Port 2 is used to connect to the negative pin of the laser light-emitting chip
  • port 8 is used to connect to the positive pin of the laser light-emitting chip.
  • the three-color laser light-emitting chip includes two red laser light-emitting chips, one blue laser light-emitting chip and one green laser light-emitting chip connected in series.
  • Port 1 of the laser board can be connected to the negative output port LD3-of the laser drive circuit 02a corresponding to the red laser light-emitting chip shown in Figure 9, and port 7 can be connected to the laser drive circuit 02a corresponding to the red laser light-emitting chip shown in Figure 9
  • the positive output port of LD3+ is connected, port 2 can be connected to the negative pin of the red laser light-emitting chip, and port 8 can be connected to the positive pin of the red laser light-emitting chip.
  • the driving period of each laser light source may include: a sequential output stage and a superimposed output stage.
  • the timing output stage the time periods during which the three enable signals generated by the display control circuit are at effective potentials do not overlap with each other; in the superimposed output stage, M enable signals of the three enable signals generated by the display control circuit are at effective potentials
  • M is a positive integer greater than 1 and less than three.
  • the three-color laser light-emitting chip includes a red laser light-emitting chip, a green laser light-emitting chip, and a blue laser light-emitting chip.
  • the driving period of each laser light source may include: a sequential output phase, a first superimposed output phase, and a second superimposed output phase.
  • the red enable signal R_EN corresponding to the red laser light-emitting chip, the green enable signal G_EN corresponding to the green laser light-emitting chip, and the blue enable signal B_EN corresponding to the blue laser light-emitting chip generated by the display control circuit Followed by the effective potential.
  • the red enable signal R_EN and the green enable signal G_EN generated by the display control circuit are both at an effective potential.
  • both the green enable signal G_EN and the blue enable signal B_EN are at an effective potential.
  • the driving period T is 1/240 Hz.
  • the duration R2 during which the red enable signal R_EN is at an effective potential accounts for 14.65% of the driving period T, and the green enable
  • the time period B2 during which the signal G_EN is at an effective potential accounts for 46.97% of the driving period T, and the time period G2 during which the blue enable signal B_EN is at an effective potential accounts for 11.38% of the driving period T.
  • the duration of the first superimposed output stage Y accounts for 16% of the driving period T.
  • the duration of the second superimposed output stage C accounts for 11% of the driving period T.
  • the ratio of the length of time each enable signal is at the effective potential in each driving period may be determined according to the optimal color coordinate required by the image quality of the laser projection device of the laser light source.
  • the optimal color coordinate may be a fixed color coordinate determined in advance based on market research and user experience. Then, according to the optimal color coordinate, the proportion of the lighting time of the three-color laser light emitting chip in each driving cycle is determined. After that, the duty cycle of the enable signal corresponding to each laser is determined according to the duty cycle.
  • R1: G1: B1 2:3:1.
  • R1, G1, and B1 respectively refer to the duration of the red enable signal at the effective potential, the duration of the green enable signal at the effective potential, and the duration of the blue enable signal at the effective potential in each driving cycle.
  • R2, G2, and B2 refer to the duration of the red enable signal at the effective potential, the duration of the green enable signal at the effective potential, and the duration of the blue enable signal at the effective potential in the sequence output phase in turn.
  • Y refers to the duration of the first superimposed output stage;
  • C refers to the duration of the second superimposed output stage.
  • the brightness of the laser light source is increased without changing the proportion of the lighting duration of each laser light-emitting chip in the driving period (that is, without changing the proportion of the primary colors in the original white balance).
  • the red laser light emitting chip and the green laser light emitting chip are lighted up at the same time, and the laser light source emits yellow light.
  • the green laser light-emitting chip and the blue laser light-emitting chip are simultaneously lit, and the laser light source emits cyan light. Therefore, if the image displayed by the laser device has yellow color, the laser light source can emit yellow light in the first superimposed output stage, so the display effect of the image can be effectively improved. In the same way, if the image displayed by the laser device has a cyan color, since the laser light source can emit cyan light in the second superimposed output stage, the display effect of the image can also be effectively improved.
  • the red laser, green laser and blue laser can be superimposed to generate white laser.
  • the blue laser emitting chip and the output laser of the first superimposed output stage can also generate white light
  • the laser output in the second superimposed output stage can also generate white light, so the display brightness of each color of the laser light source is also increased, so that each color in the image displayed by the laser device is more vivid and has a wider color gamut.
  • the above-mentioned laser light source 10 may be a multi-chip laser (MCL, Multichiped Laser).
  • MCL multi-chip laser
  • a modular laser also called a bank laser
  • the MCL has a smaller volume relative to the bank laser, the volume of the laser light source is reduced.
  • Each laser light emitting chip may include a plurality of transistor outlines (TO, Transistor Outline) connected in series.
  • FIG. 15 is a schematic structural diagram of a laser light source provided by an embodiment of the present application.
  • each laser light emitting chip may include 5 TOs connected in series. That is, the laser light source 10 can adopt a 4 ⁇ 5 layout, and the laser light source includes 20 TOs in total.
  • each laser light emitting chip may include 6 TOs connected in series. That is, the laser light source 10 can adopt a 4 ⁇ 6 layout, and the laser light source includes a total of 24 TOs.
  • each laser light emitting chip may include 7 TOs connected in series. That is, the laser light source 10 can adopt a 4 ⁇ 7 layout, and the laser light source includes 28 TOs in total.
  • a plurality of laser light emitting chips of the same color may be all arranged on a laser board and connected in series, and the laser board may be connected to the laser driving circuit 02.
  • the multiple laser units can be connected in series in two ways: wired series and board series.
  • Wire series connection refers to connecting multiple laser units end to end in sequence through wires.
  • the board series connection refers to the connection of multiple laser light emitting chips end to end through the layout wiring in the process of drawing the layout of the laser board.
  • the multiple laser light-emitting chips of the same color are connected in series through the laser plate, the multiple laser light-emitting chips connected in series can be equivalent to one laser light-emitting chip.
  • the three-color laser light-emitting chip may include two red laser light-emitting chips, one green laser light-emitting chip, and one blue laser light-emitting chip connected in series.
  • Two red laser light emitting chips are connected in series, and the two red laser light emitting chips connected in series are arranged on a laser board, and the laser board is connected with a corresponding laser drive circuit.
  • the green laser light-emitting chip and the blue laser light-emitting chip are respectively directly connected to the corresponding laser driving circuit in the driving device.
  • FIG. 16 is an equivalent circuit diagram of a laser light source provided by an embodiment of the present application.
  • the illustrated laser light source 10 includes a laser assembly packaged with two red laser light emitting chips 100a, one green laser light emitting chip 100b, and one blue laser light emitting chip 100c.
  • a red laser light emitting chip 100a includes pins 0 and 1
  • another red laser light emitting chip 100a includes pins 2 and 3
  • a green laser light emitting chip 100b includes pins 4 and 5
  • blue The laser light emitting chip 100c includes a pin 6 and a pin 7.
  • pin 0 can be connected to the pin 3
  • the pin 2 can be connected to the port 8 of the laser board
  • the pin 1 can be connected to the port 2 of the laser board, thereby realizing the series connection of the two red laser light emitting chips 100a.
  • Pin 4 can be connected to the positive output port LD1+ of the laser drive circuit 02 corresponding to the green laser light-emitting chip
  • pin 5 can be connected to the negative output port LD1-of the laser drive circuit 02 corresponding to the green laser light-emitting chip.
  • Pin 6 can be connected to the positive output port LD2+ of the laser drive circuit 02 corresponding to the blue laser light-emitting chip, and pin 7 can be connected to the negative output port LD2-of the laser drive circuit 02 corresponding to the blue laser light-emitting chip.
  • the laser projection device in addition to the light source system 1000, the laser projection device also includes an illumination system 2000 and a lens system 3000 that are sequentially arranged along the beam transmission direction of the laser light source 10 in the light source system 1000.
  • the illumination system 2000 may include an optical machine, which is used to modulate the laser light to generate an image beam when irradiated by the laser light emitted by the laser light source.
  • the lens system 3000 is used to project the image beam onto the projection screen.
  • the light source system 1000, the illumination system 2000, and the lens system 3000 can be collectively referred to as an optical engine module.
  • the laser projection device may also include a heat dissipation system, a housing, and a sound system.
  • the display control circuit can generate the PWM signal and the enable signal corresponding to the laser light emitting chip of each color, and can transmit the generated signal to the corresponding laser driver According to the PWM signal and the enable signal, the laser driving circuit can then load the driving voltage or driving current to the pins of the laser light emitting chip of the corresponding color, thereby driving the laser light emitting chip of each color to emit light, thereby achieving Independent control of each color laser emitting chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

本申请是关于一种激光投影设备,属于激光投影显示领域。激光投影设备包括:激光光源,以及与激光光源连接的激光光源的驱动装置,激光光源包括封装有三色激光发光芯片的激光器组件,激光光源的驱动装置包括:显示控制电路以及与三色激光发光芯片对应的三个激光器驱动电路,三个激光器驱动电路分别与三色激光发光芯片对应的引脚连接。显示控制电路与三个激光器驱动电路连接,用于将每个PWM信号传输至对应的激光器驱动电路;以及,将三个使能信号分别传输至对应的激光器驱动电路。激光器驱动电路用于在接收到的使能信号为有效电位时,将驱动电压或驱动电流加载至对应颜色的激光发光芯片的引脚上。本申请实现了对具有较多激光器的激光光源的驱动。

Description

激光投影设备
本申请要求于2019年6月20日提交中国专利局、申请号为201910537287.4,申请名称为“激光投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于激光投影显示领域,特别涉及一种激光投影设备。
背景技术
诸如超短焦激光电视等激光投影设备因其具有色彩纯度高、色域大和亮度高等优点,被广泛应用于显示领域。
目前的激光电视包括光源系统以为激光电视提供三色的投影光源。该光源系统通常包括激光光源、荧光轮和滤色轮,该激光光源通常为用于出射蓝色激光的蓝色激光器。该蓝色激光时序性地照射至荧光轮的三个不同的区域上,从而产生三色光,该三种颜色的光依次通过滤色轮进行过滤处理,得到纯度更高的三色光。但是,由于该光源系统通过将蓝色激光照射至荧光轮以产生三色光,这样提升了对荧光轮的控制要求,且荧光轮产生的三色光的颜色效果较差。因此,一种全三色光源系统应运而生,该全三色光源系统的激光光源包括三种颜色的激光器,以便直接产生三色光。
由于全三色光源系统中激光光源包括的激光器数量的增多,因此,亟需一种可以控制具有较多激光器的激光光源的驱动装置的激光投影设备。
申请内容
本申请提供了一种激光投影设备,包括:激光光源,以及与所述激光光源连接的激光光源的驱动装置,所述激光光源包括封装有三色激光发光芯片的激光器组件;所述激光光源的驱动装置包括:
显示控制电路以及与所述三色激光发光芯片对应的三个激光器驱动电路,所述三个激光器驱动电路分别与所述三色激光发光芯片对应的引脚连接;
所述显示控制电路与三个所述激光器驱动电路连接,用于基于待显示图像的三个基色分量生成与所述三色激光发光芯片对应的三个脉冲宽度调制PWM 信号,将每个所述PWM信号传输至对应的所述激光器驱动电路;以及,将所述三色激光发光芯片对应的三个使能信号分别传输至对应的激光器驱动电路;
每个所述激光器驱动电路用于在接收到的使能信号为有效电位时,根据接收到的所述PWM信号的电压,将驱动电压或驱动电流加载至对应颜色的激光发光芯片的引脚上。
附图说明
为了更清楚地说明本申请的实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种光源系统的局部结构示意图;
图2是本申请实施例提供的一种激光投影设备的结构示意图;
图3是本申请实施例提供的一种激光投影设备的结构示意图;
图4是本申请实施例提供的一种数模转换器的结构示意图;
图5是本申请实施例提供的一种红色激光发光芯片对应的选择电路的结构示意图;
图6是本申请实施例提供的一种绿色激光发光芯片对应的选择电路的结构示意图;
图7是本申请实施例提供的一种蓝色激光发光芯片对应的选择电路的结构示意图;
图8是本申请实施例提供的一种激光光源的驱动装置的局部结构示意图;
图9是本申请实施例提供的一种红色激光发光芯片对应的激光器驱动电路的结构示意图;
图10是本申请实施例提供的一种绿色激光发光芯片对应的激光器驱动电路的结构示意图;
图11是本申请实施例提供的一种蓝色激光发光芯片对应的激光器驱动电路的结构示意图;
图12是本申请实施例提供的一种驱动芯片的内部结构示意图;
图13是本申请实施例提供的一种激光板的结构示意图;
图14是本申请实施例提供的使能信号的时序示意图;
图15是本申请实施例提供的一种激光光源的结构示意图;
图16是本申请实施例提供的一种激光光源的等效电路图;
图17是本申请实施例提供的一种激光投影设备的结构示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述,显然,所描述的实施例仅仅是本申请一部份实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
请参考图1,其示出了一种光源系统的局部结构示意图。如图1所示,目前的全三色光源系统通常包括激光光源10、两个二向色镜20、反射镜30、扩散轮40和光棒50。激光光源10可以包括封装有三色激光发光芯片的激光器组件,该激光器组件包括:两个用于发出红色激光的红色激光发光芯片101、一个用于发出绿色激光的绿色激光发光芯片102和一个用于发出蓝色激光的蓝色激光发光芯片103。其中,两个红色激光发光芯片101发出的红色激光均可以经过一个二向色镜201透射至扩散轮40上。绿色激光发光芯片102发出的绿色激光可以先经过另一个二向色镜202反射至该一个二向色镜201上,然后经过该一个二向色镜201透射至扩散轮40上。蓝色激光发光芯片103发出的蓝色激光可以先经过反射镜30反射至另一个二向色镜202上,然后依次经过该另一个二向色镜202和该一个二向色镜201透射至扩散轮40上。照射至扩散轮40上的激光经过扩散轮40的匀光后,照射至光棒50内,在该光棒50的匀光作用下,实现三色光源。
但是,由于上述激光光源包括的激光发光芯片数量的增多,因此,亟需一种可以控制具有较多激光发光芯片的激光光源的驱动装置的激光投影设备。
本申请实施例提供了一种激光投影设备。如图2所示,该激光投影设备的光源系统包括:激光光源10,以及与该激光光源10连接的激光光源的驱动装置00,激光光源10包括封装有三色激光发光芯片的激光器组件。示例的,本申请实施例以该三色激光发光芯片包括为红色激光发光芯片100a、绿色激光发光芯 片100b和蓝色激光发光芯片100c为例进行说明。
该激光光源的驱动装置00可以包括:显示控制电路01以及与三色激光发光芯片对应的三个激光器驱动电路02,该三个激光器驱动电路02分别与三色激光发光芯片对应的引脚连接。
参考图2可以看出,显示控制电路01分别与三个激光器驱动电路02连接。显示控制电路01用于基于待显示图像的三个基色分量生成与三色激光发光芯片对应的三个脉冲宽度调制(PWM,Pulse Width Modulation)信号,将每个PWM信号传输至对应的激光器驱动电路02。以及,将三色激光发光芯片对应的三个使能信号分别传输至对应的激光器驱动电路02。其中,PWM信号用于控制激光器的亮度。每个颜色的激光发光芯片对应的使能信号可以是基于对应颜色的激光发光芯片在驱动周期内的点亮时长生成的,可以用于控制该对应颜色的激光发光芯片的点亮时长。
每个激光器驱动电路02用于在接收到的使能信号为有效电位(例如,高电位,又称高电平)时,根据接收到的PWM信号的电压,将驱动电压或驱动电流加载至对应颜色的激光发光芯片的引脚上。
示例的,如图2所示,在本申请实施例中,激光光源10包括包括封装有三色激光发光芯片的激光器组件。该三色激光发光芯片包括红色激光发光芯片100a、绿色激光发光芯片100b和蓝色激光发光芯片100c。则激光光源的驱动装置可以包括与该三个颜色的激光发光芯片对应的三个激光器驱动电路02。
该显示控制电路01可以基于待显示图像的红色基色分量生成与红色激光发光芯片对应的红色PWM信号R_PWM,基于待显示图像的绿色基色分量生成与绿色激光发光芯片对应的绿色PWM信号G_PWM,基于待显示图像的蓝色基色分量生成与蓝色激光发光芯片对应的蓝色PWM信号B_PWM。并且,该显示控制电路01可以基于红色激光发光芯片在驱动周期内的点亮时长,生成与红色激光发光芯片对应的使能信号R_EN,基于绿色激光发光芯片在驱动周期内的点亮时长,生成与绿色激光发光芯片对应的使能信号G_EN,基于蓝色激光发光芯片在驱动周期内的点亮时长,生成与蓝色激光发光芯片对应的使能信号B_EN。
综上所述,本申请实施例提供的激光投影设备中,显示控制电路可以生成与每个颜色的激光发光芯片对应的PWM信号和使能信号,并可以将生成的信号传输至对应的激光器驱动电路,该激光器驱动电路进而可以根据该PWM信号和 使能信号将驱动电压或驱动电流加载至对应颜色的激光发光芯片的引脚上,从而驱动每个颜色的激光发光芯片发光,由此实现了对每个颜色的激光发光芯片的独立控制。
可选的,该显示控制电路01可以为数字光处理(DLP,Digital Light Processing)芯片,该DLP芯片可以是DLPC6421芯片,或者,该DLP芯片可以是DDP4422芯片。
图3是本申请实施例提供的一种激光投影设备的结构示意图。如图3所示,激光光源的驱动装置00还可以包括:数模转换器(DAC,Digital to analog converter)03。数模转换器03分别与显示控制电路01和三个激光器驱动电路02连接。
其中,显示控制电路01用于将三个PWM信号传输至数模转换器03。数模转换器03用于将接收到的每个PWM信号转换为模拟信号,并将每个模拟信号传输至对应的激光器驱动电路02。
图4是本申请实施例提供的一种数模转换器的结构示意图。如图3和图4所示,该数模转换器03至少具有INA引脚、INB引脚和INC引脚共三个输入引脚,以及VOUTA引脚、VOUTB引脚和VOUTC引脚共三个输出引脚。该数模转换器03还可以包括/PD引脚、IDVCC引脚、VCC引脚、REF引脚、GND1引脚、GND2引脚、REFSEL引脚和IDLSEL引脚。
其中,INA引脚、INB引脚和INC引脚可以均与显示控制电路01连接,分别用于接入显示控制电路01传输的红色PWM信号R_PWM,绿色PWM信号G_PWM以及蓝色PWM信号B_PWM。
VOUTA引脚、VOUTB引脚和VOUTC引脚可以分别与三个激光器驱动电路02连接,分别用于将由红色PWM信号R_PWM转换得到模拟信号R1_PWM输出至与红色激光发光芯片对应的激光器驱动电路,将由绿色PWM信号G_PWM转换得到模拟信号G1_PWM输出至与绿色激光发光芯片对应的激光器驱动电路,以及将由蓝色PWM信号B_PWM转换得到模拟信号B1_PWM输出至与蓝色激光发光芯片对应的激光器驱动电路。该模拟信号B1_PWM、模拟信号G1_PWM以及模拟信号R1_PWM均为模拟直流电压信号。
/PD引脚、IDVCC引脚、VCC引脚和REF引脚均通过并联的电容C1和电容C2接地,且均与电源端VCC1连接。GND1引脚、GND2引脚和IDLSEL引脚均接地,REFSEL引脚分别与电源端VCC2和电容C3的一端连接,电容C3的另一端接 地。其中,电源端VCC1和电源端VCC2提供的电压均可以为5V(伏特)。电容C1、电容C2和电容C3的参数均为100nF(纳法)/16V(也即是,电容C1、电容C2和电容C3的电容容量均为100nF,额定电压均为16V)。
可选的,如图3所示,激光光源的驱动装置00还包括:与三色激光发光芯片对应的三个选择电路04。每个选择电路04分别与显示控制电路01、数模转换器03以及对应的一个激光器驱动电路02连接。
其中,显示控制电路01,还用于将每个使能信号传输至对应的选择电路04。数模转换器03,还用于将每个模拟信号传输至对应的选择电路04。每个选择电路04,用于在接收到的使能信号为有效电位时,将接收到的模拟信号传输至对应的激光器驱动电路02。
示例的,如图3所示,该激光光源的驱动装置00可以包括与该三个颜色的激光器对应的三个选择电路04。
显示控制电路01可以将红色激光发光芯片对应的使能信号R_EN、绿色激光发光芯片对应的使能信号G_EN,以及蓝色激光发光芯片对应的使能信号B_EN分别传输至对应的选择电路04。数模转换器03可以将红色PWM信号对应的模拟信号R1_PWM、绿色PWM信号对应的模拟信号G1_PWM,以及蓝色PWM信号对应的模拟信号B1_PWM分别传输至对应的选择电路04。
红色激光发光芯片对应的选择电路04可以在接收到的使能信号R_EN为有效电位时,将模拟信号R1_PWM传输至对应的激光器驱动电路02。绿色激光发光芯片对应的选择电路04可以在接收到的使能信号G_EN为有效电位时,将模拟信号G1_PWM传输至对应的激光器驱动电路02。蓝色激光发光芯片对应的选择电路04可以在接收到的使能信号B_EN为有效电位时,将模拟信号B1_PWM传输至对应的激光器驱动电路02。
图5是本申请实施例提供的一种红色激光发光芯片对应的选择电路的结构示意图,本申请实施例以该红色激光发光芯片对应的选择电路为例,对选择电路的结构进行说明。参考图5,该红色激光发光芯片对应的选择电路04a可以包括:适配子电路041和选择子电路042。
适配子电路041分别与显示控制电路01和选择子电路042连接,用于将接收到的使能信号R_EN的电压转换至选择子电路042的额定电压,并将电压转换后的使能信号R_EN传输至选择子电路042。
选择子电路042还与数模转换器03连接,用于在接收到的使能信号R_EN为有效电位时,将接收到的模拟信号R1_PWM传输至对应的激光器驱动电路02。
可选的,参考图5,该适配子电路041可以包括运算放大器A1、电阻R1、电容C4和电容C5。运算放大器A1至少具有第一端口、第二端口、第三端口、第四端口以及第五端口。第一端口和第三端口均接地。第二端口与显示控制电路01连接,用于接收使能信号R_EN。该第二端口还与并联的电阻R1和电容C4的一端连接,并联后的电阻R1和电容C4的另一端接地。其中,当接收的使能信号R_EN中包含有尖刺,或者该使能信号R_EN的纹波较大时,电容C4可以用于滤除该使能信号R_EN的尖刺部分,或者,滤除该使能信号R_EN的纹波较大的部分。第四端口与选择子电路042连接。第五端口分别与电源端VCC3和电容C5的一端连接,电容C5的另一端接地。
参考图5,该选择子电路042可以包括二选一选择器0421。二选一选择器0421可以包括SEL引脚和A引脚共两个输入引脚,B0引脚和B1引脚共两个输出引脚。该二选一选择器0421还包括VCC引脚和GND引脚。SEL引脚分别与适配子电路041中运算放大器A1的第四端口和电阻R2的一端连接,电阻R2的另一端与电源端VCC4连接。VCC引脚分别与电源端VCC5和电容C6的一端连接,电容C6的另一端接地。A引脚分别与数模转换器03的VOUTA引脚,以及并联的电阻R3和电容C7的一端连接,用于接收数模转换器03传输的模拟信号R1_PWM,并联后的电阻R3和电容C7的另一端接地。其中,当接收的数模转换器03传输的模拟信号R1_PWM中包含有尖刺,或者该模拟信号R1_PWM的纹波较大时,电容C7可以用于滤除该模拟信号R1_PWM的尖刺部分,或者,滤除该模拟信号R1_PWM的纹波较大的部分。B1引脚与红色激光发光芯片对应的激光器驱动电路02连接,用于为该激光器驱动电路提供经过选择后的红色PWM模拟信号R2_PWM信号。GND引脚和B0引脚均接地。
其中,电源端VCC3、电源端VCC4和电源端VCC5提供的电压均可以为5V。电阻R1至电阻R3的阻值均可以为10kΩ(千欧)。电容C4和电容C7的参数可以为100n/16V/NC(也即是电容C4和电容C7的电容容量均为100nF,额定电压均为16V,且该电容C4和电容C7为备用电容,可以暂不连接),电容C5和电容C6的参数可以为100n/16V。
当SEL引脚输入的使能信号R_EN为有效电位时,B1引脚可以输出由A引 脚输入的模拟信号R1_PWM,实现使能信号和模拟信号的同步。同时,由于适配子电路041可以实现对使能信号的电平转换,使得由显示控制电路01传输的使能信号的电压大小可以适配选择子电路042的SEL端口的电压大小,保证选择子电路042的正常工作。
示例的,假设显示控制电路01输出的每个使能信号的电压为3.3V,选择子电路042中,SEL引脚的额定电压为5V。每个适配子电路041可以通过该运算放大器A1将3.3V的使能信号转换成5V的使能信号,将转换后的使能信号传输至选择子电路042的SEL引脚。
图6是本申请实施例提供的一种绿色激光发光芯片对应的选择电路04b的结构示意图,图7是本申请实施例提供的一种蓝色激光发光芯片对应的选择电路04c的结构示意图。该两个选择电路的结构和连接关系均可以参考图5所示的红色激光发光芯片对应的选择电路04a,本申请实施例对此不再赘述。
可选的,如图3所示,激光光源的驱动装置00还包括:缓冲电路05,缓冲电路05分别与显示控制电路01、数模转换器03和选择电路04连接。
该显示控制电路01,用于将每个PWM信号和每个使能信号传输至缓冲电路05。缓冲电路05,用于对接收到的每个PWM信号和每个使能信号分别进行缓冲处理,将缓冲处理后的每个PWM信号输出至数模转换器03,并将缓冲处理后的每个使能信号输出至对应的选择电路04。
示例的,图8是本申请实施例提供的一种激光光源的驱动装置的局部结构示意图。如图3和图8所示,该缓冲电路05可以包括缓冲(Buffer)芯片U1。显示控制电路01可以包括用于输出红色PWM信号R_PWM的GPIO‐04引脚、用于输出绿色PWM信号G_PWM的GPIO‐05引脚、用于输出蓝色PWM信号B_PWM的GPIO‐06引脚、用于输出红色激光发光芯片对应的使能信号R_EN的GPIO‐24引脚、用于输出绿色激光发光芯片对应的使能信号G_EN的GPIO‐25引脚和用于输出蓝色激光发光芯片对应的使能信号B_EN的GPIO‐26引脚。
Buffer芯片U1可以包括A1至A3引脚,A5至A7引脚,A10引脚共七个输入引脚,以及Y1至Y3引脚,Y5至Y7引脚,Y10引脚共七个输出引脚。该U1还包括
Figure PCTCN2020090952-appb-000001
引脚、GND引脚、VCC引脚和
Figure PCTCN2020090952-appb-000002
引脚。
其中,A1引脚分别与GPIO‐04引脚和电阻R4的一端连接,用于接收该显示控制电路01提供的红色PWM信号R_PWM。A2引脚分别与GPIO‐05引脚和电 阻R5的一端连接,用于接收该显示控制电路01提供的绿色PWM信号G_PWM。A3引脚分别与GPIO‐06引脚和电阻R6的一端连接,用于接收该显示控制电路01提供的蓝色PWM信号B_PWM。
A5引脚分别与GPIO‐24引脚和电阻R9的一端连接,用于接收该显示控制电路01提供的使能信号R_EN。A6引脚分别与GPIO‐25引脚和电阻R8的一端连接,用于接收该显示控制电路01提供的使能信号G_EN。A7引脚分别与GPIO‐26引脚和电阻R7的一端连接,用于接收该显示控制电路01提供的使能信号B_EN。
电阻R4的另一端、电阻R5的另一端、电阻R6的另一端、电阻R7的另一端、电阻R8的另一端、电阻R9的另一端、
Figure PCTCN2020090952-appb-000003
引脚以及
Figure PCTCN2020090952-appb-000004
引脚均接地。VCC引脚分别与电感L1的一端和电容C8的一端连接,且电感L1另一端与电源端VCC6连接,电容C8的另一端接地。
Y1引脚与数模转换器03的INA引脚连接,用于为该数模转换器03提供经过缓冲处理后的红色PWM信号R_PWM。Y2引脚与数模转换器03的INB引脚连接,用于为该数模转换器03提供经过缓冲处理后的绿色PWM信号G_PWM。Y3引脚与数模转换器03的INC引脚连接,用于为该数模转换器03提供经过缓冲处理后的蓝色PWM信号B_PWM。
Y5引脚与红色激光发光芯片对应的选择电路04中运算放大器A1的第二端口连接,用于为该选择电路04提供使能信号R_EN。Y6引脚与绿色激光发光芯片对应的选择电路04中运算放大器A1的第二端口连接,用于为该选择电路04提供使能信号G_EN。Y7引脚与蓝色激光发光芯片对应的选择电路04中运算放大器A1的第二端口连接,用于为该选择电路04提供使能信号B_EN。
A10引脚分别与总控制端口LMPCTRL和外接总控制端口EN连接,该总控制端口LMPCTRL可以与显示控制电路01连接,外接总控制端口EN可以与外接单片机连接。Y10引脚与该驱动芯片U2的电源引脚所连接的外接供电电路连接。总控制端口LMPCTRL和外接总控制端口EN均用于控制Buffer芯片U1的Y10引脚输出的LED_EN信号的电位。其中,在该LED_EN信号为有效电位时,外接供电电路可以向驱动芯片U2供电,在该LED_EN信号为无效电位时,外接供电电路停止向驱动芯片U2供电。
其中,电源端VCC6提供的电压可以为3V。电阻R4至电阻R9的阻值可以为10kΩ。电容C8的参数可以为100n/16V。电感L1的型号可以为 BLM15AG121SN1D。
由于显示控制电路01传输的PWM信号和使能信号通过缓冲电路传输至后续电路,因此,增强了传输至后续电路的PWM信号和使能信号的驱动能力,保障了后续电路的稳定高效运行。
图9是本申请实施例提供的一种红色激光发光芯片对应的激光器驱动电路的结构示意图。以图9所示的结构为例,对该激光器驱动电路的结构进行说明。如图9所示,红色激光发光芯片对应的激光器驱动电路02a可以包括:驱动芯片U2以及与该驱动芯片U2连接的外接子电路。该外接子电路还与对应的红色激光发光芯片的引脚连接。
外接子电路用于检测对应的红色激光发光芯片的引脚的驱动电流,并将驱动电流传输至驱动芯片。驱动芯片U2,用于在接收到使能信号为有效电位时,根据驱动电流调节向外接子电路输出的驱动信号的占空比。外接子电路,还用于根据驱动信号的占空比,调节驱动电压。
参考图9,该驱动芯片U2至少包括rt引脚、drv引脚、isen引脚、adim引脚和pwm引脚。外接子电路可以包括正极输出端口LD3+和负极输出端口LD3‐。
其中,驱动芯片U2的adim引脚可以通过分压电阻与红色激光发光芯片对应的选择电路04连接,例如可以与该选择电路04中二选一选择器0421的B1引脚连接,用于接收该选择电路04提供的红色PWM信号R2_PWM。
示例地,如图9所示,驱动芯片U2的adim引脚可以分别与电阻R10的一端和电阻R11的一端连接,该电阻R10的另一端接地,且电容C9与电阻R10并联,电阻R11的另一端与电阻R12的一端连接,该电阻R12的另一端与红色激光发光芯片对应的选择电路04连接,用于接收该选择电路04提供的红色PWM信号R2_PWM。该电阻R12的另一端还与电阻R13的一端连接,电阻R13的另一端接地。该电阻R10、电阻R11和电阻R12为分压电阻,能够对选择电路04提供的红色PWM信号R2_PWM进行分压,使得分压后的模拟信号的电压可以匹配驱动芯片U2的adim引脚的额定电压。
驱动芯片U2的isen引脚可以与采样电阻连接。示例地,驱动芯片U2的isen引脚可以通过电阻R14与采样电阻Risen的一端连接,该采样电阻Risen的一端还与负极输出端口LD3‐连接,且该驱动芯片U2的isen引脚可以通过电容C10与采样电阻Risen的另一端连接,该采样电阻Risen的另一端接地。其中,采样 电阻Risen可以包括并联的电阻R15、电阻R16、电阻R17和电阻R18。该驱动芯片U2可以通过采样电阻Risen实现对红色激光发光芯片的驱动电流的检测。
驱动芯片U2的drv引脚可以与开关场效应管Q1连接。示例地,驱动芯片U2的drv引脚可以与开关场效应管Q1的栅极连接。开关场效应管Q1的源极分别与采样电阻Risen的一端和变压器L2的一端连接,该变压器L2的另一端与负极输出端口LD3‐连接。开关场效应管Q1的漏极与电源端VDD2连接。驱动芯片U2的drv引脚输出的信号可以控制开关场效应管Q1的开关状态,从而使得该开关场效应管Q1在导通状态下,连通电源端VDD2与变压器L2的一端,从而通过变压器L2改变负极输出端口LD3‐的输出电压。其中,开关场效应管可以是金属‐氧化物半导体(MOS,Metal Oxide Semiconductor)场效应晶体管。
示例的,驱动芯片U2的drv引脚可以分别与二极管D1的一端和电阻R19的一端连接,二极管D1的另一端和电阻R20的一端连接,电阻R19的另一端和电阻R20的另一端均与开关场效应管Q1的栅极连接,且电阻R19的另一端和电阻R20的另一端还均通过电阻R21与采样电阻Risen的一端连接。开关场效应管Q1的漏极可以通过两个并联的二极管D2与电源端VDD2连接,且电源端VDD2还与电容C11的一端连接,该电容C11的另一端接地。开关场效应管Q1的源极可以通过电容C12与变压器L2连接。
驱动芯片U2的pwm引脚可以分别与电阻R22的一端和电阻R23的一端连接,电阻R22的另一端与显示控制电路01连接,用于接收该显示控制电路01提供的红色激光发光芯片对应的使能信号R_EN。电阻R23的另一端接地,电容C13与电阻R23并联。
驱动芯片U2的rt引脚可以与电阻R24的一端连接,该电阻R24的另一端接地。开关场效应管Q1的开关频率可以由该电阻R24的阻值决定。其中,该开关场效应管Q1的开关频率。
进一步的,驱动芯片U2还可以包括VCC引脚、st引脚、vref引脚和GND引脚。
驱动芯片U2的VCC引脚可以分别与电容C14的一端和电阻R25的一端连接,电容C14的另一端接地,电阻R25的另一端与电源端VDD1连接。
驱动芯片U2的st引脚可以与电阻R26的一端连接,该电阻R26的另一端分别与电阻R27的一端和三极管B1的基极连接,电阻R27的另一端分别与三极 管B1的发射极和告警端FLG连接,三极管B1的集电极接地。该告警端FLG用于在激光器驱动电路02产生电流异常时,向驱动芯片U2的电源引脚所连接的外接供电电路输出告警信号,以使得该外接供电电路停止向驱动芯片U2供电。驱动芯片U2的vref引脚可以电容C15的一端连接,电容C15的另一端接地。驱动芯片U2的GND引脚接地,且正极输出端口LD3+与负极输出端口LD3‐分别与电容C16的两端连接。
其中,电源端VDD2提供的电压可以为63V。电阻R15、电阻R16和电阻R18的阻值均为0.3Ω(欧)。电阻R17的阻值为5.1Ω。电阻R20的阻值为22Ω。电阻25的阻值为27Ω。电阻R14、电阻R22和电阻R26的阻值为1kΩ。电阻R11和电阻R12的阻值均为3.3kΩ。电阻R10、电阻R21和电阻R27的阻值均为10kΩ。电阻R23的阻值为20kΩ。电阻R24的阻值为51kΩ。电阻R19的阻值为68kΩ。电阻R13的阻值为100kΩ。电容C9、电容C10、电容C11、电容C12、电容C13、电容C14、电容C15和电容C16的参数依次可以为22nF/50V、100pF(皮法)/50V、100nF/250V、100pF/1000V、100pF/50V、1uF(微法)/50V、1uF/50V和1uF/100V。
图12是本申请实施例提供的一种驱动芯片的内部结构示意图。如图12所示,该驱动芯片U2可以包括:除法器x1、开关频率方波发生器hfosc、限压器max、比较器lm1、比较器lm2、比较器lm3、缓冲器m1、电阻r21和电容c21。
驱动芯片U2的adim引脚可以与除法器x1的一端连接。该除法器x1用于将adim引脚传输的PWM信号和缩减系数k相除,该缩减系数k可以等于10。该除法器x1的另一端与限压器max的一端连接,限压器max连接用于根据除法器x1输出的信号的电压确定输出信号ADJ。当除法器x1输出的信号的电压小于或等于限压器max的上限电压,例如300mV(毫伏)时,限压器max输出的输出信号ADJ为除法器x1输出的信号;当除法器x1输出的信号的电压大于该上限电压时,限压器max输出的输出信号ADJ的电压为上限电压。
比较器lm1和比较器lm3中的每个比较器均具有正极输入端和负极输入端共二个输入端,以及一个输出端。比较器lm2具有正极输入端、负极输入端和使能输入端共三个输入端,以及一个输出端。
比较器lm1的正极输入端与限压器max的另一端连接。比较器lm1的负极输入端分别与电阻r21的一端和电容c21的一端连接,电阻r21的另一端与isen引脚连接。比较器lm1的输出端可以电容c21的另一端连接。比较器lm1用于 比较其正极输入端和负极输入端的电压大小。当比较器lm1的正极输入端的电压大于负极输入端的电压(即isen引脚的驱动电流与电阻r21的乘积)时,比较器lm1的输出逻辑值可以为1。当比较器lm1的正极输入端的电压小于负极输入端的电压时,比较器lm1的输出逻辑值可以为0。
比较器lm2的正极输入端与比较器lm1的输出端连接。比较器lm2的负极输入端与开关频率方波发生器hfosc的一端连接,开关频率方波发生器hfosc的另一端与rt引脚连接。比较器lm2的使能输入端与比较器lm3的输出端连接,该开关频率方波发生器hfosc用于根据电阻R24的电阻确定的开关频率,生成该开关频率的方波。比较器lm2的输出端与缓冲器m1的一端连接,缓冲器m1另一端与引脚drv连接,该缓冲器m1用于增强比较器lm2输出端输出的信号的驱动能力。该比较器lm2用于在其使能输入端有效时,比较其正极输入端与负极输入端的电压大小。当比较器lm2的正极输入端的电压大于负极输入端的电压时,比较器lm2的输出逻辑值为1;当比较器lm2的正极输入端的电压小于负极输入端的电压时,比较器lm2的输出逻辑值为0。
比较器lm3的正极输入端与pwm引脚连接,比较器lm3的负极输入端与直流电源端连接,该直流电源端的电压可以为1V。该比较器lm3用于其正极输入端与负极输入端的电压大小。当比较器lm3的正极输入端的电压大于负极输入端的电压时,比较器lm3的输出逻辑值为1;当比较器lm3的正极输入端的电压小于负极输入端的电压时,比较器lm3的输出逻辑值为0。
根据上述对驱动芯片U2的描述可知,驱动芯片U2的pwm引脚输入的红色激光发光芯片对应的使能信号R_EN即为该驱动芯片U2的使能信号。当该使能信号R_EN为有效电位时,驱动芯片U2正常工作。驱动芯片U2可以根据adim引脚输入的R_PWM信号的电压和isen引脚输入的红色激光发光芯片的驱动电流,调整drv引脚输出的驱动信号的占空比,从而通过外接子电路调整负极输出端口LD3‐的输出电压,进而实现对加载至红色激光发光芯片的驱动电压的调整,使得该红色激光发光芯片在恒定电流下工作。当该使能信号R_EN为无效电位时,驱动芯片U2停止工作,红色激光发光芯片不发光。
参考图9和图12可以看出,在本申请实施例中,该激光器驱动电路02中驱动芯片U2的adim引脚的电压可以满足:
Figure PCTCN2020090952-appb-000005
其中,U R2_PWM为激光器驱动电路02接收到的的红色PWM信号的电压,单位为毫伏。
相应的,该激光器驱动电路02通过向对应的激光发光芯片提供的驱动电流可以为:
Figure PCTCN2020090952-appb-000006
其中,k为驱动芯片U2中除法器x1的缩减系数。R isen为上述采样电阻,单位为欧姆。即R isen=R15//R16//R17//R18。
需要说明的是,上述激光器驱动电路02中,该驱动芯片U2所连接的各个电子元器件均可以为外接子电路中的元器件。
需要说明的是,三个激光器驱动电路02的结构均相同。本申请实施例中,以图9所示的红色激光发光芯片对应的红色激光器驱动电路02a的结构为例进行说明,其他颜色的激光器对应的激光器驱动电路(如图10所示的绿色激光发光芯片对应的绿色激光器驱动电路02b以及如图11所示的蓝色激光发光芯片对应的蓝色激光器驱动电路02c)的结构、连接关系和工作原理均可以参考该红色激光器驱动电路02a。
可选的,激光器驱动电路可以采用升压驱动的方式或者降压驱动的方式驱动对应的激光发光芯片发光。该升压驱动可以是指将电源提供的较低的电源电压升高至激光发光芯片的工作电压,以使得该激光发光芯片可以在恒定电流下正常工作。该降压驱动可以是指将电源提供的较高的电源电压降低至激光发光芯片的工作电压,以使得该激光发光芯片可以在恒定电流下正常工作。本申请实施例提供的激光器驱动电路可以采用降压驱动的方法驱动对应的激光发光芯片发光。其中,该工作电压的典型电压值与该电源电压的比值范围可以为85%~95%。
表1示出了红色激光发光芯片、绿色激光发光芯片和蓝色激光发光芯片的恒定电流与工作电压的典型电压值的对应关系。
表1
激光发光芯片 红色激光发光芯片 绿色激光发光芯片 蓝色激光发光芯片
恒定工作电流/A 3 1.6 2.25
典型电压/V 24.6 28.5 27
如表1所示,红色激光发光芯片的恒定电流为3A,其典型电压为24.6V。绿色激光发光芯片要求的恒定工作电流为1.6A,其典型电压为28.5V。蓝色激光发光芯片要求的恒定工作电流为2.25A,其典型电压为27V。
结合表1可知,红色激光发光芯片对应的激光器驱动电路所连接的电源提供的电源电压可以为25.9V~28.9V,例如可以为25.9V、27V、28V和28.9V。绿色激光发光芯片对应的激光器驱动电路,其初始电压值可以为30V~33.5V,例如可以为30V、32V和33.5V。蓝色激光发光芯片对应的激光器驱动电路,其初始电压值可以为28.5V~31.7V,例如可以为28.5V、30V和31.7V。
可选的,激光光源的驱动装置还包括激光板,该激光板用于串联多个激光发光芯片。图13是本申请实施例提供的一种激光板的结构示意图,如图13所示,该激光板可以为XP插座。该XP插座可以包括端口1至端口8共8个端口。其中,端口1可以与激光器驱动电路02的负极输出端口连接,端口7可以与激光器驱动电路02的正极输出端口连接。端口2用于与激光发光芯片的负极引脚连接,端口8用于与激光发光芯片的正极引脚连接。
示例的,假设三色激光发光芯片包括串联的两个红色激光发光芯片、一个蓝色激光发光芯片和一个绿色激光发光芯片。该激光板的端口1可以与图9所示的红色激光发光芯片对应的激光器驱动电路02a的负极输出端口LD3‐连接,端口7可以与图9所示的红色激光发光芯片对应的激光器驱动电路02a的正极输出端口LD3+连接,端口2可以与红色激光发光芯片的负极引脚连接,端口8可以与红色激光发光芯片的正极引脚连接。
可选的,在本申请实施例中,每个激光光源的驱动周期可以包括:时序输出阶段和叠加输出阶段。在该时序输出阶段,显示控制电路生成的三个使能信号处于有效电位的时段互不重叠;在该叠加输出阶段,显示控制电路生成的三个使能信号中M个使能信号处于有效电位的时段重叠,M为大于1且小于三的正整数。
假设三色激光发光芯片包括红色激光发光芯片、绿色激光发光芯片和蓝色激光发光芯片。每个激光光源的驱动周期可以包括:时序输出阶段、第一叠加输出阶段和第二叠加输出阶段。在时序输出阶段,显示控制电路生成的与红色激光发光芯片对应的红色使能信号R_EN、与绿色激光发光芯片对应的绿色使能 信号G_EN和与蓝色激光发光芯片对应的蓝色使能信号B_EN依次为有效电位。在第一叠加输出阶段,显示控制电路生成的红色使能信号R_EN和绿色使能信号G_EN均处于有效电位。在第二叠加输出阶段,绿色使能信号G_EN和蓝色使能信号B_EN均处于有效电位。
示例的,如图14所示,驱动周期T为1/240Hz,在驱动周期T的时序输出阶段T1中,红色使能信号R_EN处于有效电位的时长R2占驱动周期T的14.65%,绿色使能信号G_EN处于有效电位的时长B2占驱动周期T的46.97%,蓝色使能信号B_EN处于有效电位的时长G2占驱动周期T的11.38%。第一叠加输出阶段Y的时长占驱动周期T的16%。第二叠加输出阶段C的时长占驱动周期T的11%。
上述各个使能信号在每个驱动周期内处于有效电位的时长的比例可以是根据激光光源的激光投影设备的画质要求的最优色坐标确定的。该最优色坐标可以是预先基于市场调研,依据用户体验确定的固定的色坐标。然后,根据该最优色坐标,确定三色激光发光芯片在每个驱动周期内的点亮时长的占比。之后,根据该占比确定每个激光器对应的使能信号的占空比。
假设根据最优色坐标确定的在每个驱动周期内,红色激光发光芯片的点亮时长、绿色激光发光芯片的点亮时长和蓝色激光发光芯片的点亮时长的比值为2:3:1。若驱动周期仅包括时序输出阶段,则R1:G1:B1=2:3:1。其中,R1、G1和B1分别指的是在每个驱动周期内,红色使能信号为有效电位的时长、绿色使能信号为有效电位的时长和蓝色使能信号为有效电位的时长。
若R1:G1:B1=2:3:1时满足色坐标要求,但不满足激光投影设备的亮度要求,则可以在保证最优色坐标不变的前提下,通过在每个驱动周期增加第一叠加输出阶段Y和第二叠加输出阶段C来提升激光光源的亮度。为了确保最优色坐标不变,需保证(R2+Y+C):(G2+Y+C):(B2+Y+C)=2:3:1。其中,R2、G2和B2依次指的是在时序输出阶段,红色使能信号为有效电位的时长、绿色使能信号为有效电位的时长和蓝色使能信号为有效电位的时长。Y指的是第一叠加输出阶段的时长;C指的是第二叠加输出阶段的时长。
这样,通过在驱动周期内增加一个红色激光发光芯片和绿色激光发光芯片同时点亮的第一叠加输出阶段和一个绿色激光发光芯片和蓝色激光发光芯片同时点亮的第二叠加输出阶段。从而使得在不改变每个激光发光芯片在驱动周期内的点亮时长的占比(也即是不改变原白平衡中各基色占比)的前提下,增加 了激光光源的亮度。
且在该第一叠加输出阶段,红色激光发光芯片和绿色激光发光芯片同时点亮,激光光源发出黄色光。在该第二叠加输出阶段,绿色激光发光芯片和蓝色激光发光芯片同时点亮,激光光源发出青色光。因此,若激光设备显示的图像中具有黄色,则由于激光光源可以在第一叠加输出阶段发出黄色光,因此可以有效改善图像的显示效果。同理,若激光设备显示的图像中具有青色,则由于激光光源可以在第二叠加输出阶段发出青色光,因此也可以有效改善图像的显示效果。若激光设备显示的图像中具有白色,则红色激光、绿色激光和蓝色激光叠加可以生成白色激光,同时蓝色激光发光芯片和第一叠加输出阶段的输出的激光也可以生成白光,进一步红色激光和第二叠加输出阶段的输出的激光也可以生成白光,因此也增加了激光光源各个颜色的显示亮度,使激光设备显示的图像中的各颜色更鲜艳,具有更宽的色域。
需要说明的是,上述激光光源10可以为多片状激光器(MCL,Multichiped Laser)。相关技术中,通常采用模组激光器(又称bank激光器),由于该MCL相对于bank激光器的体积较小,因此,减少了激光光源的体积。
每个激光发光芯片可以包括多个串联的晶体管外壳(TO,Transistor Outline)。示例的,图15是本申请实施例提供的一种激光光源的结构示意图。如图15所示,每个激光发光芯片可以包括5个串联的TO。即该激光光源10可以采用4×5的布局,则该激光光源一共包括20个TO。或者每个激光发光芯片可以包括6个串联的TO。即该激光光源10可以采用4×6的布局,则该激光光源一共包括24个TO。或者每个激光发光芯片可以包括7个串联的TO。即该激光光源10可以采用4×7的布局,则该激光光源一共包括28个TO。
在本申请实施例中,相同颜色的多个激光发光芯片(例如两个红色激光发光芯片100a)可以均设置在激光板上,并依次串联,该激光板可以与激光器驱动电路02连接。例如,可以通过有线串联和板串联两种方式串联该多路激光单元。线串联指的是通过线材将多路激光单元首尾依次相接。板串联指的是在激光板的绘制版图过程中,通过版图布线将多个激光发光芯片首尾依次相接。
由于该相同颜色的多个激光发光芯片通过激光板串联连接,因此可以将该串联后的多个激光发光芯片等效为一个激光发光芯片。
示例的,在本申请实施例中,三色激光发光芯片可以包括串联的两个红色 激光发光芯片、一个绿色激光发光芯片和一个蓝色激光发光芯片。两个红色激光发光芯片串联,串联的该两个红色激光发光芯片设置在激光板上,该激光板与对应的激光器驱动电路连接。绿色激光发光芯片和蓝色激光发光芯片则分别直接与驱动装置中对应的激光器驱动电路连接。
示例地,图16是本申请实施例提供的一种激光光源的等效电路图。如图15和图16所示,假设图示激光光源10包括封装有两个红色激光发光芯片100a、一个绿色激光发光芯片100b和一个蓝色激光发光芯片100c的激光器组件。其中,一个红色激光发光芯片100a包括引脚0和引脚1,另一个红色激光发光芯片100a包括引脚2和引脚3,绿色激光发光芯片100b包括引脚4和引脚5,以及蓝色激光发光芯片100c包括引脚6和引脚7。
则引脚0可以与引脚3连接,引脚2可以与激光板的端口8连接,引脚1可以与激光板的端口2连接,从而实现两个红色激光发光芯片100a的串联。引脚4可以与绿色激光发光芯片对应的激光器驱动电路02的正极输出端口LD1+连接,引脚5可以与绿色激光发光芯片对应的激光器驱动电路02的负极输出端口LD1‐连接。引脚6可以与蓝色激光发光芯片对应的激光器驱动电路02的正极输出端口LD2+连接,引脚7可以与蓝色激光发光芯片对应的激光器驱动电路02的负极输出端口LD2‐连接。
进一步的,请参考图17,其示出了本申请提供的一种激光投影设备的结构示意图。如图17所示,该激光投影设备除光源系统1000之外,还包括沿该光源系统1000中的激光光源10的光束传输方向依次排列的照明系统2000和镜头系统3000。其中,照明系统2000可以包括光机,该光机用于在受到激光光源出射的激光的照射时,将激光调制生成影像光束。镜头系统3000用于将影像光束投射至投影屏幕上。其中,光源系统1000、照明系统2000和镜头系统3000可以统称为光学引擎模块。可选的,该激光投影设备还可以包括散热系统、壳体和音响等。
综上所述,本申请实施例提供的激光投影设备中,显示控制电路可以生成与每个颜色的激光发光芯片对应的PWM信号和使能信号,并可以将生成的信号传输至对应的激光器驱动电路,该激光器驱动电路进而可以根据该PWM信号和使能信号将驱动电压或驱动电流加载至对应颜色的激光发光芯片的引脚上,从而驱动每个颜色的激光发光芯片发光,由此实现了对每个颜色激光发光芯片的 独立控制。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种激光投影设备,其特征在于,所述激光投影设备包括:激光光源,以及与所述激光光源连接的激光光源的驱动装置,所述激光光源包括封装有三色激光发光芯片的激光器组件;所述激光光源的驱动装置包括:
    显示控制电路以及与所述三色激光发光芯片对应的三个激光器驱动电路,所述三个激光器驱动电路分别与所述三色激光发光芯片对应的引脚连接;
    所述显示控制电路与三个所述激光器驱动电路连接,用于基于待显示图像的三个基色分量生成与所述三色激光发光芯片对应的三个脉冲宽度调制PWM信号,将每个所述PWM信号传输至对应的所述激光器驱动电路;以及,将所述三色激光发光芯片对应的三个使能信号分别传输至对应的激光器驱动电路;
    每个所述激光器驱动电路用于在接收到的使能信号为有效电位时,根据接收到的所述PWM信号的电压,将驱动电压或驱动电流加载至对应颜色的激光发光芯片的引脚上。
  2. 根据权利要求1所述的激光投影设备,其特征在于,所述三色激光发光芯片包括:红色激光发光芯片、绿色激光发光芯片和蓝色激光发光芯片;驱动周期包括:时序输出阶段、第一叠加输出阶段和第二叠加输出阶段;
    在所述时序输出阶段,与所述红色激光发光芯片对应的红色使能信号、与所述绿色激光发光芯片对应的绿色使能信号和与所述蓝色激光发光芯片对应的蓝色使能信号依次为有效电位;
    在所述第一叠加输出阶段,所述红色使能信号和所述绿色使能信号均为有效电位;
    在所述第二叠加输出阶段,所述绿色使能信号和所述蓝色使能信号均为有效电位。
  3. 根据权利要求2所述的激光投影设备,其特征在于,
    在所述时序输出阶段,所述红色使能信号处于有效电位的时长占所述驱动周期的14.65%,所述绿色使能信号处于有效电位的时长占所述驱动周期的46.97%,所述蓝色使能信号处于有效电位的时长占所述驱动周期的11.38%;
    所述第一叠加输出阶段的时长占所述驱动周期的16%;
    所述第二叠加输出阶段的时长占所述驱动周期的11%。
  4. 根据权利要求1至3任一所述的激光投影设备,其特征在于,所述激光光源的驱动装置还包括:数模转换器;
    所述数模转换器分别与所述显示控制电路和三个所述激光器驱动电路连接;
    所述显示控制电路用于将三个所述PWM信号传输至所述数模转换器,所述数模转换器用于将接收到的每个所述PWM信号转换为模拟信号,并将每个所述模拟信号传输至对应的所述激光器驱动电路。
  5. 根据权利要求4所述的激光投影设备,其特征在于,所述激光光源的驱动装置还包括:与所述三色激光发光芯片对应的三个选择电路;
    每个所述选择电路分别与所述显示控制电路、所述数模转换器以及对应的一个所述激光器驱动电路连接;
    所述显示控制电路,还用于将每个所述使能信号传输至对应的所述选择电路;
    所述数模转换器,还用于将每个所述模拟信号传输至对应的所述选择电路;
    每个所述选择电路,用于在接收到的所述使能信号为有效电位时,将接收到的所述模拟信号传输至对应的所述激光器驱动电路。
  6. 根据权利要求5所述的激光投影设备,其特征在于,每个所述选择电路包括:适配子电路和选择子电路;
    所述适配子电路分别与所述显示控制电路和所述选择子电路连接,用于将接收到的所述使能信号的电压转换至所述选择子电路的额定电压,并将电压转换后的所述使能信号传输至所述选择子电路;
    所述选择子电路还与所述数模转换器连接,用于在接收到的所述使能信号为有效电位时,将接收到的所述模拟信号传输至对应的所述激光器驱动电路。
  7. 根据权利要求5所述的激光投影设备,其特征在于,所述激光光源的驱动装置还包括:缓冲电路,所述缓冲电路分别与所述显示控制电路、所述数模转换器和所述选择电路连接;
    所述显示控制电路,用于将每个所述PWM信号和每个所述使能信号传输至所述缓冲电路;
    所述缓冲电路,用于对接收到的每个所述PWM信号和每个所述使能信号分别进行缓冲处理,将缓冲处理后的每个所述PWM信号输出至所述数模转换器,并将缓冲处理后的每个所述使能信号输出至对应的所述选择电路。
  8. 根据权利要求1至3任一所述的激光投影设备,其特征在于,每个所述激光器驱动电路包括:驱动芯片和外接子电路;
    所述外接子电路分别与所述驱动芯片和对应颜色的激光发光芯片的引脚连接,用于检测对应的所述对应颜色的激光发光芯片的引脚的驱动电流,并将所述驱动电流传输至所述驱动芯片;
    所述驱动芯片,用于在接收到的所述使能信号为有效电位时,根据所述驱动电流调节向所述外接子电路输出的驱动信号的占空比;
    所述外接子电路,还用于根据所述驱动信号的占空比,调节所述驱动电压。
  9. 根据权利要求1至3任一所述的激光投影设备,其特征在于,所述三色激光发光芯片包括串联的两个红色激光发光芯片、一个蓝色激光发光芯片和一个绿色激光发光芯片。
  10. 根据权利要求1至3任一所述的激光投影设备,其特征在于,所述激光投影设备还包括:光源系统,以及沿所述光源系统中激光光源的光束传输方向依次排列的照明系统和镜头系统,所述照明系统用于在受到所述激光光源出射的激光的照射时,将所述激光调制生成影像光束,所述镜头系统用于将所述影像光束投射至投影屏幕上。
PCT/CN2020/090952 2019-06-20 2020-05-19 激光投影设备 WO2020253448A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/491,458 US11831126B2 (en) 2019-06-20 2021-09-30 Laser projection device
US18/518,185 US20240097400A1 (en) 2019-06-20 2023-11-22 Laser projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910537287.4 2019-06-20
CN201910537287.4A CN112118430B (zh) 2019-06-20 2019-06-20 激光投影设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/491,458 Continuation-In-Part US11831126B2 (en) 2019-06-20 2021-09-30 Laser projection device

Publications (1)

Publication Number Publication Date
WO2020253448A1 true WO2020253448A1 (zh) 2020-12-24

Family

ID=73795961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090952 WO2020253448A1 (zh) 2019-06-20 2020-05-19 激光投影设备

Country Status (3)

Country Link
US (1) US11831126B2 (zh)
CN (2) CN112118430B (zh)
WO (1) WO2020253448A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116794919B (zh) * 2023-08-28 2023-12-12 宜宾市极米光电有限公司 一种光源系统及投影设备
CN117134752B (zh) * 2023-10-26 2024-04-02 深圳市柠檬光子科技有限公司 可调频调占空比开关电路及方法、加工系统
CN117676964B (zh) * 2024-01-31 2024-04-19 深圳市橙子数字科技有限公司 一种用于投影仪的led控制系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945291A (zh) * 2008-09-26 2011-01-12 卡西欧计算机株式会社 投影装置及投影方法
CN103676145A (zh) * 2012-09-19 2014-03-26 船井电机株式会社 图像显示装置和光学组件
CN104795727A (zh) * 2014-01-16 2015-07-22 中能激光显示技术(上海)有限公司 一种大功率半导体激光器的驱动系统及其驱动方法
US20150350616A1 (en) * 2010-11-30 2015-12-03 Funai Electric Co., Ltd. Display and portable projector
CN106249530A (zh) * 2016-06-30 2016-12-21 海信集团有限公司 投影光源驱动控制电路
US20170318271A1 (en) * 2016-04-29 2017-11-02 Stmicroelectronics Ltd Device and method for automatic color calibration in a laser scanning apparatus
CN109300429A (zh) * 2018-12-07 2019-02-01 四川长虹电器股份有限公司 用于激光显示的激光器控制系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05289597A (ja) * 1992-04-06 1993-11-05 Nippon Steel Corp 立体画像表示システム
US7245280B2 (en) * 2003-01-27 2007-07-17 Lg Electronics Inc. Laser display system
US20090160833A1 (en) 2007-12-21 2009-06-25 Microvision, Inc. Laser Projection White Balance Tracking
CN101441351B (zh) * 2008-12-26 2011-04-13 友达光电股份有限公司 液晶显示器
CN101620837A (zh) * 2009-06-30 2010-01-06 青岛海信电器股份有限公司 图象显示方法及液晶显示装置
JP2011248272A (ja) * 2010-05-31 2011-12-08 Sanyo Electric Co Ltd 光源装置及び投写型映像表示装置
US9715123B2 (en) * 2010-12-07 2017-07-25 Laser Light Engines, Inc. Green and red despeckling
CN102520568A (zh) * 2011-11-30 2012-06-27 四川长虹电器股份有限公司 激光投影显示系统
US20130194315A1 (en) * 2012-01-27 2013-08-01 Texas Instruments Incorporated Gamut control using rgb driving with additional balancing phase for field sequential color displays and other displays
CN202443239U (zh) * 2012-02-15 2012-09-19 凝辉(天津)科技有限责任公司 光驱动分离式微型激光投影装置
DE102012206525B4 (de) * 2012-04-20 2023-03-09 Osram Gmbh Verfahren zum Bestrahlen einer bildgebenden Optik und Projektor
US20140160439A1 (en) * 2012-12-10 2014-06-12 Funai Electric Co., Ltd. Image display device
CN103974046A (zh) * 2014-04-14 2014-08-06 湖州清维电子科技有限公司 一种激光激发连续白光投影系统及投影方法
CN104503195B (zh) * 2014-12-03 2017-01-11 武阳 用于整行扫描式激光投影显示的装置及其同步控制的方法
CN105093794B (zh) * 2015-06-03 2017-02-01 海信集团有限公司 一种双色激光光源
CN106371272B (zh) * 2015-07-20 2019-04-23 深圳光峰科技股份有限公司 合光的控制系统及投影机
US9560328B1 (en) 2015-10-06 2017-01-31 Microvision, Inc. Scanned beam projector pulsed laser control
CN105824178B (zh) * 2015-11-04 2017-12-15 海信集团有限公司 光源的双色轮同步控制方法
CN108931880B (zh) * 2017-05-26 2023-03-14 深圳光峰科技股份有限公司 光源系统及显示设备
CN109539188A (zh) * 2017-07-31 2019-03-29 深圳光峰科技股份有限公司 一种光源
CN107643645A (zh) * 2017-10-30 2018-01-30 四川长虹电器股份有限公司 一种rgb三色激光光源投影系统
CN109283783A (zh) * 2018-11-30 2019-01-29 青岛海信激光显示股份有限公司 一种激光投影方法及装置
CN109358468A (zh) * 2018-11-30 2019-02-19 青岛海信激光显示股份有限公司 一种激光光源驱动控制方法及激光投影显示方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101945291A (zh) * 2008-09-26 2011-01-12 卡西欧计算机株式会社 投影装置及投影方法
US20150350616A1 (en) * 2010-11-30 2015-12-03 Funai Electric Co., Ltd. Display and portable projector
CN103676145A (zh) * 2012-09-19 2014-03-26 船井电机株式会社 图像显示装置和光学组件
CN104795727A (zh) * 2014-01-16 2015-07-22 中能激光显示技术(上海)有限公司 一种大功率半导体激光器的驱动系统及其驱动方法
US20170318271A1 (en) * 2016-04-29 2017-11-02 Stmicroelectronics Ltd Device and method for automatic color calibration in a laser scanning apparatus
CN106249530A (zh) * 2016-06-30 2016-12-21 海信集团有限公司 投影光源驱动控制电路
CN109300429A (zh) * 2018-12-07 2019-02-01 四川长虹电器股份有限公司 用于激光显示的激光器控制系统

Also Published As

Publication number Publication date
CN112118430A (zh) 2020-12-22
US20220021181A1 (en) 2022-01-20
CN114815484A (zh) 2022-07-29
CN112118430B (zh) 2022-03-25
US11831126B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2020253448A1 (zh) 激光投影设备
US20060202915A1 (en) Light emitting apparatus generating white light by mixing of light of a plurality of oscillation wavelengths
US7915838B2 (en) Delta-sigma signal density modulation for optical transducer control
WO2000051103A1 (en) Method and apparatus for independent control of brightness and color balance in display and illumination systems
CN110088824A (zh) 光源装置、发光装置和显示装置
WO2020253412A1 (zh) 激光投影设备
WO2021008226A1 (zh) 激光投影设备
WO2020253275A1 (zh) 激光投影设备
US11067878B2 (en) Laser projection device
WO2020252888A1 (zh) 激光投影设备
KR20030073747A (ko) 광색가변형 다용도 조명장치
WO2019037246A1 (zh) 一种智能套装灯
JP7143358B2 (ja) 照明装置
CN110401996B (zh) 投影装置及其光电耦合电路
CN203415209U (zh) 显示设备
US20240097400A1 (en) Laser projection device
CN214070200U (zh) 红绿蓝白黄led五种光源制造闪光灯具电路
CN213973788U (zh) 智能大灯驱动板及其控制系统
EP1860921A1 (en) Device for PWM regulating the electric power supplied to one or more leds
CN114995037B (zh) 投影设备及其光源的驱动方法
CN219627947U (zh) 一种彩灯控制电路及彩灯设备
CN215453342U (zh) 照明电路、照明装置以及led照明灯具
CN220693370U (zh) 双级调光电路及灯具设备
CN216134619U (zh) 一种两线制调光调色电路及灯具
CN219087348U (zh) 光源驱动装置及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20827023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20827023

Country of ref document: EP

Kind code of ref document: A1