WO2020253275A1 - 激光投影设备 - Google Patents

激光投影设备 Download PDF

Info

Publication number
WO2020253275A1
WO2020253275A1 PCT/CN2020/078872 CN2020078872W WO2020253275A1 WO 2020253275 A1 WO2020253275 A1 WO 2020253275A1 CN 2020078872 W CN2020078872 W CN 2020078872W WO 2020253275 A1 WO2020253275 A1 WO 2020253275A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
component
driving
components
enable signal
Prior art date
Application number
PCT/CN2020/078872
Other languages
English (en)
French (fr)
Inventor
吴凯
李龙民
陈许
Original Assignee
青岛海信激光显示股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信激光显示股份有限公司 filed Critical 青岛海信激光显示股份有限公司
Priority to US16/821,907 priority Critical patent/US11067878B2/en
Publication of WO2020253275A1 publication Critical patent/WO2020253275A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2053Intensity control of illuminating light
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/02Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen
    • G09G3/025Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes by tracing or scanning a light beam on a screen with scanning or deflecting the beams in two directions or dimensions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor

Definitions

  • the present disclosure belongs to the field of laser projection display, and particularly relates to a laser projection device.
  • Laser projection equipment such as ultra-short-focus laser TVs are widely used in the display field due to their advantages of high color purity, large color gamut and high brightness.
  • the light source system of laser TV usually includes a laser light source, a fluorescent wheel, and a color filter wheel.
  • the laser light source is usually a blue laser component used to emit blue laser light.
  • the emitted blue laser light is irradiated to three parts of the fluorescent wheel sequentially. Three different areas are generated, and the three colors of light are sequentially filtered through the color filter wheel to obtain three-color light with higher purity.
  • the light source system irradiates the blue laser to the fluorescent wheel to generate three-color light, which requires high control of the fluorescent wheel, and the color effect of the three-color light generated by the fluorescent wheel is poor. Therefore, a full three-color light source system emerges as the times require.
  • the laser light source of the full three-color light source system includes three-color laser components to directly generate three-color light.
  • the present disclosure provides a laser projection device, including:
  • Laser light source including three groups of laser components with different colors of emitted laser light
  • the laser light source driving device is connected to the laser light source and includes: a display control circuit for outputting three pulse width modulated PWM signals corresponding to the three sets of laser components based on the three primary color components of the image to be displayed, and outputting the Three enable signals corresponding to the three groups of laser components; a power drive component, connected to the display control circuit, for receiving the PWM signal output by the display control circuit, wherein the power drive component includes a one-to-one correspondence with the three groups of laser components The three groups of connected power drive components; and the laser drive components, including three groups of laser drive components respectively connected to the three groups of the power drive components in one-to-one correspondence,
  • the display control circuit is used to transmit the enable signal corresponding to the laser component to the corresponding power driving component when transmitting the PWM signal corresponding to each group of the laser component;
  • Each group of the power driving components is used to load the corresponding laser driving component with a driving voltage according to the voltage of the received PWM signal when the received enable signal is at an effective potential;
  • Each group of the laser driving components is used to drive the corresponding laser component to emit light according to the driving voltage.
  • Figure 1 is a schematic diagram of a partial structure of a light source system
  • FIG. 2 is a schematic structural diagram of a laser projection device provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a laser projection device provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a digital-to-analog converter provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of a selection component corresponding to a red laser component provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a selection component corresponding to a green laser component provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a selection component corresponding to a blue laser component provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a partial structure of a laser light source driving device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a power drive component corresponding to a red laser component provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a power drive component corresponding to a green laser component provided by an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of a power driving component corresponding to a blue laser component provided by an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of the internal structure of a driving chip provided by an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a laser driving assembly provided by an embodiment of the present disclosure.
  • FIG. 14 is a timing diagram of an enable signal provided by an embodiment of the present disclosure.
  • 15 is a schematic structural diagram of a laser assembly provided by an embodiment of the present disclosure.
  • FIG. 16 is an equivalent circuit diagram of a laser assembly provided by an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of a laser projection device provided by an embodiment of the present disclosure.
  • FIG. 1 shows a schematic diagram of a partial structure of a light source system.
  • the full three-color light source system includes a laser light source 10, two dichroic mirrors 20, a reflecting mirror 30, a condenser lens 40, a diffusion wheel 50 and a light rod 60.
  • the two dichroic mirrors 20 include a first dichroic mirror 201 and a second dichroic mirror 202.
  • the laser light source 10 includes a red laser component 101 for emitting red laser, a green laser component 102 for emitting green laser, and a blue laser component 103 for emitting blue laser.
  • the red laser light emitted by the red laser component 101 is transmitted to the condenser lens 40 through the first dichroic mirror 201.
  • the green laser light emitted by the green laser assembly 102 is first reflected by the reflecting mirror 30 to the second dichroic mirror 202, and then reflected by the second dichroic mirror 202 to the first dichroic mirror 201, and then passed through the first and second dichroic mirrors.
  • the dichroic mirror 201 reflects to the condenser lens 40.
  • the blue laser light emitted by the blue laser component 103 is transmitted to the first dichroic mirror 201 through the second dichroic mirror 202, and then is reflected to the condenser lens 40 through the first dichroic mirror 201.
  • the laser light irradiated on the condenser lens 40 is condensed by the condenser lens 40 and then irradiated on the diffusion wheel 50.
  • the laser light irradiated on the diffuser wheel 50 is irradiated into the light rod 60 after being homogenized by the diffuser wheel 50. Under the uniform light effect of the light rod 60, the three-color light source is emitted.
  • the embodiment of the present disclosure provides a laser projection device.
  • the light source system of the laser projection equipment includes a laser light source 10 and a laser light source driving device 00 connected to the laser light source 10.
  • the laser light source 10 includes three sets of laser components with different colors.
  • the driving device 00 of the laser light source 10 may include: a display control circuit 01, three sets of power driving components 02 corresponding to the three sets of laser components, and three sets of laser driving components 03 corresponding to the three sets of laser components, each group of laser driving components 03 Connect with the corresponding set of laser components.
  • the display control circuit 01 is connected to three groups of power drive components 02 respectively.
  • the display control circuit 01 is used to output three pulse width modulation (PWM, Pulse Width Modulation) signals corresponding to the three sets of laser components based on the three primary color components of the image to be displayed, and transmit each PWM signal to the corresponding power drive component 02 And output three enable signals corresponding to the three groups of laser components, and when transmitting the PWM signal corresponding to each group of laser components, the enable signal corresponding to the laser components is transmitted to the corresponding power drive component 02.
  • the PWM signal can be used to control the brightness of the laser component, and the enable signal corresponding to each group of laser components is output based on the lighting duration of the laser component in the driving period, and is used to control the lighting duration of the laser component.
  • the three groups of power drive components 02 are respectively connected with the three groups of laser drive components 03 one by one.
  • Each group of power drive components 02 is used to load the laser drive component 03 connected to it according to the voltage of the received PWM signal when receiving an enable signal of an effective potential (for example, high potential, also known as high level) Drive voltage.
  • an effective potential for example, high potential, also known as high level
  • Each group of laser driving components 03 is used to drive the connected laser components to emit light according to the driving voltage.
  • the laser light source 10 includes a red laser component 100a, a green laser component 100b, and a blue laser component 100c.
  • the display control circuit 01 can output the PWM signal R_PWM corresponding to the red laser component based on the red primary color component of the image to be displayed, output the PWM signal G_PWM corresponding to the green laser component based on the green primary color component of the image to be displayed, and based on the blue color component of the image to be displayed
  • the color primary color component outputs the PWM signal B_PWM corresponding to the blue laser component.
  • the display control circuit 01 can output the enable signal R_EN corresponding to the red laser component based on the lighting time of the red laser component in the driving cycle; based on the lighting time of the green laser component in the driving cycle, output the same as the green laser
  • the enable signal G_EN corresponding to the component; based on the lighting duration of the blue laser component in the driving period, the enable signal B_EN corresponding to the blue laser component is output.
  • the red laser component 100a, the green laser component 100b, and the blue laser component 100c are respectively connected to the corresponding laser driving component 03 in the driving device.
  • the display control circuit outputs the PWM signal and the enable signal corresponding to each group of laser components, and transmits the output signal to the corresponding power drive component, and the power drive The component then loads the corresponding laser driving component with a driving voltage according to the PWM signal and the enable signal, so that the laser driving component can drive the laser component to emit light, thereby realizing independent control of each group of laser components.
  • the display control circuit 01 may be a digital light processing (DLP, Digital Light Processing) chip
  • the DLP chip may be a DLPC6421 chip
  • the DLP chip may also be a DDP4422 chip.
  • Fig. 3 is a schematic structural diagram of a laser projection device provided by an embodiment of the present disclosure.
  • the driving device 00 of the laser light source may further include: a digital to analog converter (DAC, Digital to Analog Converter) 04.
  • the digital-to-analog converter 04 is respectively connected with the display control circuit 01 and the three groups of power drive components 02.
  • the display control circuit 01 is used to transmit three PWM signals to the digital-to-analog converter 04.
  • the digital-to-analog converter 04 is used to convert each received PWM signal into an analog signal, and transmit each analog signal to the corresponding power drive component 02.
  • Fig. 4 is a schematic structural diagram of a digital-to-analog converter provided by an embodiment of the present disclosure.
  • the digital-to-analog converter 04 has three input pins INA pin, INB pin and INC pin, and three output pins VOUTA pin, VOUTB pin and VOUTC pin .
  • the digital-to-analog converter 04 may also include /PD pin, IDVCC pin, VCC pin, REF pin, GND1 pin, GND2 pin, REFSEL pin, and IDLSEL pin.
  • the INA pin, the INB pin and the INC pin can all be connected to the display control circuit 01, and are respectively used to access the PWM signals R_PWM, G_PWM, and B_PWM transmitted by the display control circuit 01.
  • the VOUTA pin, VOUTB pin, and VOUTC pin can be connected to three groups of power drive components 02 respectively, which are used to output the analog signal R1_PWM converted from the PWM signal R_PWM to the power drive component corresponding to the red laser component 100a.
  • the analog signal G1_PWM converted from the signal G_PWM is output to the power driving component corresponding to the green laser component 100b, and the analog signal B1_PWM converted from the PWM signal B_PWM is output to the power driving component corresponding to the blue laser component 100c.
  • the analog signal B1_PWM, the analog signal G1_PWM, and the analog signal R1_PWM are all analog DC voltage signals.
  • the /PD pin, IDVCC pin, VCC pin, and REF pin are all grounded through parallel capacitors C1 and C2, and they are all connected to the power supply terminal VCC1.
  • the GND1 pin, GND2 pin and IDLSEL pin are all grounded, the REFSEL pin is connected to the power supply terminal VCC2 and one end of the capacitor C3, and the other end of the capacitor C3 is grounded.
  • the voltage provided by the power supply terminal VCC1 and the power supply terminal VCC2 may both be 5V (volts).
  • the parameters of the capacitor C1, the capacitor C2, and the capacitor C3 are all 100nF (nanofarad)/16V (that is, the capacitance of the capacitor C1, the capacitor C2, and the capacitor C3 are all 100nF, and the rated voltage is 16V).
  • the driving device 00 of the laser light source further includes: three sets of selection components 05 corresponding to the three sets of laser components.
  • Each group of selection components 05 is respectively connected to the display control circuit 01, the digital-to-analog converter 04, and a corresponding group of power drive components 02.
  • the display control circuit 01 is also used to transmit each enable signal to the corresponding selection component 05.
  • the digital-to-analog converter 04 is also used to transmit each analog signal to the corresponding selection component 05.
  • Each group of selection components 05 is used to transmit the received analog signal to the corresponding power drive component 02 when the received enable signal is at a valid potential.
  • the driving device 00 of the laser light source may include three sets of selection components 05 corresponding to the three sets of laser components.
  • the display control circuit 01 can transmit the enable signal R_EN corresponding to the red laser component, the enable signal G_EN corresponding to the green laser component, and the enable signal B_EN corresponding to the blue laser component to the corresponding selection component 05 respectively.
  • the digital-to-analog converter 04 can transmit the analog signal R1_PWM corresponding to the R_PWM signal, the analog signal G1_PWM corresponding to the G_PWM signal, and the analog signal B1_PWM corresponding to the B_PWM signal to the corresponding selection component 05 respectively.
  • the selection component 05 corresponding to the red laser component can transmit the analog signal R1_PWM to the corresponding power driving component 02 when the received enable signal R_EN is at a valid potential.
  • the selection component 05 corresponding to the green laser component can transmit the analog signal G1_PWM to the corresponding power driving component 02 when the received enable signal G_EN is at a valid potential.
  • the selection component 05 corresponding to the blue laser component can transmit the analog signal B1_PWM to the corresponding power driving component 02 when the received enable signal B_EN is at a valid potential.
  • the selection component 05a corresponding to the red laser component may include: an adaptor sub-circuit 051 and a selection sub-circuit 052.
  • the adaptor circuit 051 is respectively connected to the display control circuit 01 and the selector circuit 052, and is used to convert the voltage of the received enable signal R_EN to the rated voltage of the selector circuit 052, and to convert the voltage-converted enable signal R_EN Transfer to the selection sub-circuit 052.
  • the selection sub-circuit 052 is also connected to the digital-to-analog converter 04, and is used to transmit the received analog signal R1_PWM to the corresponding power drive component 02 when the received enable signal R_EN is at a valid potential.
  • the adaptor circuit 051 may include an operational amplifier A1, a resistor R1, a capacitor C4, and a capacitor C5.
  • the operational amplifier A1 has at least a first port, a second port, a third port, a fourth port, and a fifth port. Both the first port and the third port are grounded.
  • the second port is connected to the display control circuit 01 for receiving the enable signal R_EN.
  • the second port is also connected to one end of the parallel resistor R1 and capacitor C4, and the other end of the parallel resistor R1 and capacitor C4 is grounded.
  • the capacitor C4 can be used to filter out the spike part of the enable signal R_EN, or to filter out the The larger ripple of the enable signal R_EN.
  • the fourth port is connected to the selection sub-circuit 052.
  • the fifth port is respectively connected to the power terminal VCC3 and one end of the capacitor C5, and the other end of the capacitor C5 is grounded.
  • the selection sub-circuit 052 may include a one-of-two selector 0521.
  • the two-to-one selector 0521 may include two input pins SEL pin and A pin, and two output pins B0 pin and B1 pin.
  • the one-of-two selector 0521 also includes a VCC pin and a GND pin.
  • the SEL pins are respectively connected to the fourth port of the operational amplifier A1 in the adaptor circuit 051 and one end of the resistor R2, and the other end of the resistor R2 is connected to the power terminal VCC4.
  • the VCC pin is respectively connected to the power terminal VCC5 and one end of the capacitor C6, and the other end of the capacitor C6 is grounded.
  • the A pin is connected to the VOUTA pin of the digital-to-analog converter 04, and one end of the parallel resistor R3 and capacitor C7 to receive the analog signal R1_PWM transmitted by the digital-to-analog converter 04, and the parallel connection of the resistor R3 and the capacitor C7 The other end is grounded.
  • the capacitor C7 can be used to filter out the spikes of the analog signal R1_PWM, or , To filter out the larger part of the ripple of the analog signal R1_PWM.
  • the B1 pin is connected to the power drive component 02 corresponding to the red laser component, and is used to provide the selected PWM analog signal R2_PWM signal for the power drive component. Both the GND pin and the B0 pin are grounded.
  • the voltage provided by the power terminal VCC3, the power terminal VCC4, and the power terminal VCC5 may all be 5V.
  • the resistance values of the resistors R1, R2, and R3 can all be 10k ⁇ (k ⁇ ).
  • the parameters of the capacitor C4 and the capacitor C7 can be 100n/16V/NC (that is, the capacitance of the capacitor C4 and the capacitor C7 are both 100nF, and the rated voltage is 16V, and the capacitor C4 and the capacitor C7 are spare capacitors. Connection), the parameters of the capacitor C5 and the capacitor C6 can be 100n/16V.
  • the B1 pin When the enable signal R_EN input by the SEL pin is at an effective potential, the B1 pin can output the analog signal R1_PWM input by the A pin to realize the synchronization of the enable signal and the analog signal.
  • the adaptor circuit 051 since the adaptor circuit 051 can realize the level conversion of the enable signal, the voltage of the enable signal transmitted by the display control circuit 01 can be adapted to the voltage of the SEL port of the selector circuit 052, ensuring that the selector The normal operation of circuit 052.
  • each adaptor circuit 051 can convert the 3.3V enable signal into a 5V enable signal through the operational amplifier A1, and transmit the converted enable signal to the SEL pin of the selection subcircuit 052.
  • FIG. 6 is a schematic structural diagram of a selection component 05b corresponding to a green laser component provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a selection component 05c corresponding to a blue laser component provided by an embodiment of the present disclosure.
  • the structure and connection relationship of the two sets of selection components can refer to the selection component 05a corresponding to the red laser component shown in FIG.
  • the driving device 00 of the laser light source further includes: a buffer circuit 06, which is respectively connected to the display control circuit 01, the digital-to-analog converter 04 and the selection component 05.
  • the display control circuit 01 is used to transmit each PWM signal and each enable signal to the buffer circuit 06.
  • the buffer circuit 06 is used to buffer each received PWM signal and each enable signal separately, output each buffered PWM signal to the digital-to-analog converter 04, and buffer each of the The enable signal is output to the corresponding selection component 05.
  • FIG. 8 is a partial structural diagram of a laser light source driving device provided by an embodiment of the present disclosure.
  • the buffer circuit 06 may include a buffer chip U1.
  • the display control circuit 01 may include a GPIO-04 pin for outputting R_PWM, a GPIO-05 pin for outputting G_PWM, a GPIO-06 pin for outputting B_PWM, and an enable signal corresponding to the red laser component.
  • the Buffer chip U1 can include a total of seven input pins of A1, A2A3, A5, A6, A7, and A10 pins, and a total of seven output pins of Y1, Y2, Y3, Y5, Y6, Y7, and Y10 pins.
  • the U1 also includes Pin, GND pin, VCC pin and Pin.
  • the A1 pin is respectively connected to the GPIO-04 pin and one end of the resistor R4 for receiving the PWM signal R_PWM provided by the display control circuit 01.
  • the A2 pin is respectively connected to the GPIO-05 pin and one end of the resistor R5 for receiving the PWM signal G_PWM provided by the display control circuit 01.
  • the A3 pin is respectively connected to the GPIO-06 pin and one end of the resistor R6 for receiving the PWM signal B_PWM provided by the display control circuit 01.
  • the A5 pin is respectively connected to the GPIO-24 pin and one end of the resistor R9 for receiving the enable signal R_EN provided by the display control circuit 01.
  • the A6 pin is respectively connected to the GPIO-25 pin and one end of the resistor R8 for receiving the enable signal G_EN provided by the display control circuit 01.
  • the A7 pin is respectively connected to the GPIO-26 pin and one end of the resistor R7 for receiving the enable signal B_EN provided by the display control circuit 01.
  • the other end of resistor R4, the other end of resistor R5, the other end of resistor R6, the other end of resistor R7, the other end of resistor R8, the other end of resistor R9, Pin and The pins are all grounded.
  • the VCC pin is respectively connected to one end of the inductor L1 and one end of the capacitor C8, the other end of the inductor L1 is connected to the power terminal VCC6, and the other end of the capacitor C8 is grounded.
  • the Y1 pin is connected to the INA pin of the digital-to-analog converter 04 and is used to provide the buffered PWM signal R_PWM for the digital-to-analog converter 04.
  • the Y2 pin is connected to the INB pin of the digital-to-analog converter 04 to provide the buffered PWM signal G_PWM for the digital-to-analog converter 04.
  • the Y3 pin is connected to the INC pin of the digital-to-analog converter 04 to provide the buffered PWM signal B_PWM for the digital-to-analog converter 04.
  • the Y5 pin is connected to the second port of the operational amplifier A1 in the selection component 05 corresponding to the red laser component, and is used to provide the enable signal R_EN for the selection component 05.
  • the Y6 pin is connected to the second port of the operational amplifier A1 in the selection component 05 corresponding to the green laser component, and is used to provide the enable signal G_EN for the selection component 05.
  • the Y7 pin is connected to the second port of the operational amplifier A1 in the selection component 05 corresponding to the blue laser component, and is used to provide the enable signal B_EN for the selection component 05.
  • the A10 pin is respectively connected to the master control port LMPCTRL and the external master control port EN.
  • the master control port LMPCTRL can be connected to the display control circuit 01, and the external master control port EN can be connected to an external microcontroller.
  • the Y10 pin is connected to the external power supply circuit connected to the power pin of the driver chip U2.
  • the total control port LMPCTRL and the external total control port EN are both used to control the potential of the LED_EN signal output by the Y10 pin of the Buffer chip U1. Wherein, when the LED_EN signal is at an effective potential, the external power supply circuit can supply power to the drive chip U2, and when the LED_EN signal is at an invalid potential, the external power supply circuit stops supplying power to the drive chip U2.
  • the voltage provided by the power terminal VCC6 may be 3V.
  • the resistance value of the resistor R4 to the resistor R9 may be 10k ⁇ .
  • the parameter of the capacitor C8 can be 100n/16v.
  • the model of the inductor L1 can be BLM15AG121SN1D.
  • the PWM signal and the enable signal transmitted by the display control circuit 01 are transmitted to the subsequent circuit through the buffer circuit, the driving capability of the PWM signal and the enable signal transmitted to the subsequent circuit is enhanced, and the stable and efficient operation of the subsequent circuit is ensured.
  • FIG. 9 is a schematic structural diagram of a power drive component corresponding to a red laser component provided by an embodiment of the present disclosure. Taking the structure shown in FIG. 9 as an example, the structure of the power drive assembly will be described.
  • the power driving component 02a corresponding to the red laser component may include a driving chip U2 and an external sub-circuit connected to the driving chip U2. The external sub-circuit is also connected to the corresponding red laser component.
  • the external sub-circuit is used to detect the driving current of the corresponding red laser component and transmit the driving current to the driving chip.
  • the driving chip U2 is used to adjust the duty cycle of the driving signal output to the external sub-circuit according to the driving current when the enable signal is received as an effective potential.
  • the external sub-circuit is also used to adjust the driving voltage according to the duty cycle of the driving signal.
  • the driver chip U2 includes at least an rt pin, a drv pin, an isen pin, an adim pin, and a pwm pin.
  • the external sub-circuit may include a positive output port LD3+ and a negative output port LD3-.
  • the adim pin of the driver chip U2 can be connected to the selection component 05 corresponding to the red laser component through a voltage divider resistor, for example, can be connected to the B1 pin of the one-of-two selector 0521 in the selection component 05 to receive the selection The PWM signal R2_PWM provided by component 05.
  • the adim pin of the driving chip U2 can be connected to one end of the resistor R10 and one end of the resistor R11, the other end of the resistor R10 is grounded, and the capacitor C9 is connected in parallel with the resistor R10, and the other end of the resistor R11
  • One end is connected to one end of the resistor R12, and the other end of the resistor R12 is connected to the selection component 05 corresponding to the red laser component for receiving the PWM signal R2_PWM provided by the selection component 05.
  • the other end of the resistor R12 is also connected to one end of the resistor R13, and the other end of the resistor R13 is grounded.
  • the resistor R10, the resistor R11, and the resistor R12 are voltage dividing resistors, which can divide the PWM signal R2_PWM provided by the selection component 05, so that the voltage of the divided analog signal can match the rated voltage of the adim pin of the driving chip U2.
  • the isen pin of the driver chip U2 can be connected with a sampling resistor.
  • the isen pin of the driver chip U2 can be connected to one end of the sampling resistor Risen through a resistor R14, one end of the sampling resistor Risen is also connected to the negative output port LD3-, and the isen pin of the driver chip U2 can pass through the capacitor C10 Connect to the other end of the sampling resistor Risen, and the other end of the sampling resistor Risen is grounded.
  • the sampling resistor Risen may include a resistor R15, a resistor R16, a resistor R17, and a resistor R18 connected in parallel.
  • the driving chip U2 can detect the driving current of the red laser component through the sampling resistor Risen.
  • the drv pin of the driving chip U2 can be connected to the switching field effect transistor Q1.
  • the drv pin of the driving chip U2 may be connected to the gate of the switching field effect transistor Q1.
  • the source of the switching FET Q1 is respectively connected to one end of the sampling resistor Risen and one end of the transformer L2, and the other end of the transformer L2 is connected to the negative output port LD3-.
  • the drain of the switching field effect transistor Q1 is connected to the power supply terminal VDD2.
  • the signal output by the drv pin of the driving chip U2 can control the switching state of the switching field effect transistor Q1, so that the switching field effect transistor Q1 is connected to the power supply terminal VDD2 and one end of the transformer L2 when the switching field effect tube Q1 is in the on state, thereby changing through the transformer L2
  • the output voltage of the negative output port LD3- The switching field effect transistor may be a metal oxide semiconductor (MOS, Metal Oxide Semiconductor) field effect transistor.
  • the drv pin of the driver chip U2 can be connected to one end of the diode D1 and one end of the resistor R19, the other end of the diode D1 is connected to one end of the resistor R20, and the other end of the resistor R19 and the other end of the resistor R20 are both connected to the switch
  • the gate of the field effect transistor Q1 is connected, and the other end of the resistor R19 and the other end of the resistor R20 are also connected to one end of the sampling resistor Risen through the resistor R21.
  • the drain of the switching field effect transistor Q1 can be connected to the power terminal VDD2 through two parallel diodes D2, and the power terminal VDD2 is also connected to one end of the capacitor C11, and the other end of the capacitor C11 is grounded.
  • the source of the switching FET Q1 can be connected to the transformer L2 through a capacitor C12.
  • the pwm pin of the driver chip U2 can be connected to one end of the resistor R22 and one end of the resistor R23 respectively, and the other end of the resistor R22 is connected to the display control circuit 01 for receiving the enable of the red laser component provided by the display control circuit 01 Signal R_EN.
  • the other end of the resistor R23 is grounded, and the capacitor C13 is connected in parallel with the resistor R23.
  • the rt pin of the driving chip U2 can be connected to one end of the resistor R24, and the other end of the resistor R24 is grounded.
  • the switching frequency of the switching FET Q1 can be determined by the resistance value of the resistor R24. Among them, the switching frequency of the switching FET Q1
  • the driving chip U2 may also include a VCC pin, an st pin, a vref pin, and a GND pin.
  • the VCC pin of the driver chip U2 can be connected to one end of the capacitor C14 and one end of the resistor R25, the other end of the capacitor C14 is grounded, and the other end of the resistor R25 is connected to the power supply terminal VDD1.
  • the st pin of the driver chip U2 can be connected to one end of the resistor R26.
  • the other end of the resistor R26 is connected to one end of the resistor R27 and the base of the transistor B1.
  • the other end of the resistor R27 is connected to the emitter and the alarm terminal of the transistor B1.
  • FLG is connected, and the collector of transistor B1 is grounded.
  • the alarm terminal FLG is used to output an alarm signal to the external power supply circuit connected to the power pin of the driving chip U2 when the power driving component 02 generates an abnormal current, so that the external power supply circuit stops supplying power to the driving chip U2.
  • the vref pin of the driver chip U2 can be connected to one end of the capacitor C15, and the other end of the capacitor C15 is grounded.
  • the GND pin of the driving chip U2 is grounded, and the positive output port LD3+ and the negative output port LD3- are respectively connected to both ends of the capacitor C16.
  • the voltage provided by the power supply terminal VDD2 may be 63V.
  • the resistance values of the resistance R15, the resistance R16 and the resistance R18 are all 0.3 ⁇ (Ohm).
  • the resistance of resistor R17 is 5.1 ⁇ .
  • the resistance value of the resistor R20 is 22 ⁇ .
  • the resistance value of the resistor 25 is 27 ⁇ .
  • the resistance value of the resistance R14, the resistance R22 and the resistance R26 is 1k ⁇ .
  • the resistance values of the resistor R11 and the resistor R12 are both 3.3k ⁇ .
  • the resistance values of the resistance R10, the resistance R21 and the resistance R27 are all 10k ⁇ .
  • the resistance value of the resistor R23 is 20k ⁇ .
  • the resistance value of the resistor R24 is 51k ⁇ .
  • the resistance value of the resistor R19 is 68k ⁇ .
  • the resistance value of the resistor R13 is 100k ⁇ .
  • the parameters of capacitor C9, capacitor C10, capacitor C11, capacitor C12, capacitor C13, capacitor C14, capacitor C15, and capacitor C16 can be 22nF/50V, 100pF (picofarad)/50V, 100nF/250V, 100pF/1000V, 100pF/ 50V, 1uF (micro method)/50V, 1uF/50V and 1uF/100V.
  • FIG. 12 is a schematic diagram of the internal structure of a driving chip provided by an embodiment of the present disclosure.
  • the driver chip U2 may include: divider x1, switching frequency square wave generator hfosc, voltage limiter max, comparator lm1, comparator lm2, comparator lm3, buffer m1, resistor r21 and capacitor c21.
  • the adim pin of the driver chip U2 can be connected to one end of the divider x1.
  • the divider x1 is used to divide the PWM signal transmitted by the adim pin by the reduction factor k, which can be equal to 10.
  • the other end of the divider x1 is connected to one end of the voltage limiter max, and the voltage limiter max is connected to determine the output signal ADJ according to the voltage of the signal output by the divider x1.
  • the output signal ADJ output by the voltage limiter max is the signal output by the divider x1; when the divider x1 outputs When the voltage of the signal is greater than the upper limit voltage, the voltage of the output signal ADJ output by the voltage limiter max is the upper limit voltage.
  • Each of the comparators lm1 and lm3 has two input terminals, a positive input terminal and a negative input terminal, and one output terminal.
  • the comparator lm2 has a total of 3 input terminals, a positive input terminal, a negative input terminal, and an enable input terminal, and one output terminal.
  • the positive input end of the comparator lm1 is connected to the other end of the voltage limiter max.
  • the negative input end of the comparator lm1 is respectively connected to one end of the resistor r21 and one end of the capacitor c21, and the other end of the resistor r21 is connected to the isen pin.
  • the output end of the comparator lm1 can be connected to the other end of the capacitor c21.
  • the comparator lm1 is used to compare the voltage of the positive input terminal and the negative input terminal. When the voltage at the positive input terminal of the comparator lm1 is greater than the voltage at the negative input terminal (that is, the product of the drive current of the isen pin and the resistance r21), the output logic value of the comparator lm1 may be 1. When the voltage at the positive input terminal of the comparator lm1 is less than the voltage at the negative input terminal, the output logic value of the comparator lm1 may be zero.
  • the positive input terminal of the comparator lm2 is connected to the output terminal of the comparator lm1.
  • the negative input terminal of the comparator lm2 is connected to one end of the switching frequency square wave generator hfosc, and the other end of the switching frequency square wave generator hfosc is connected to the rt pin.
  • the enable input terminal of the comparator lm2 is connected to the output terminal of the comparator lm3, and the switching frequency square wave generator hfosc is used to output a square wave of the switching frequency according to the switching frequency determined by the resistance of the resistor R24.
  • the output terminal of the comparator lm2 is connected to one end of the buffer m1, and the other end of the buffer m1 is connected to the pin drv.
  • the buffer m1 is used to enhance the driving capability of the signal output from the output terminal of the comparator lm2.
  • the comparator lm2 is used to compare the voltage of the positive input terminal and the negative input terminal when the enable input terminal is valid. When the voltage at the positive input terminal of the comparator lm2 is greater than the voltage at the negative input terminal, the output logic value of the comparator lm2 is 1. When the voltage at the positive input terminal of the comparator lm2 is less than the voltage at the negative input terminal, the output logic value of the comparator lm2 0.
  • the positive input terminal of the comparator lm3 is connected to the pwm pin, and the negative input terminal of the comparator lm3 is connected to the DC power supply terminal, and the voltage of the DC power supply terminal may be 1V.
  • the comparator lm3 is used to compare the voltage between the positive input terminal and the negative input terminal. When the voltage at the positive input terminal of the comparator lm3 is greater than the voltage at the negative input terminal, the output logic value of the comparator lm3 is 1; when the voltage at the positive input terminal of the comparator lm3 is less than the voltage at the negative input terminal, the output logic value of the comparator lm3 0.
  • the enable signal R_EN corresponding to the red laser component input from the pwm pin of the driving chip U2 is the enable signal of the driving chip U2.
  • the driving chip U2 works normally.
  • the driver chip U2 can adjust the duty cycle of the driving signal output by the drv pin according to the voltage of the R_PWM signal input from the adim pin and the driving current of the red laser component input from the isen pin, thereby adjusting the negative output port LD3 through an external sub-circuit -The output voltage of the red laser component is adjusted to realize the adjustment of the driving voltage applied to the red laser component, so that the red laser component works at a constant current.
  • the enable signal R_EN is at an invalid potential, the driving chip U2 stops working, and the red laser component does not emit light.
  • the voltage of the adim pin of the driving chip U2 in the power driving component 02 can satisfy:
  • U R2_PWM is the voltage of the PWM signal R2_PWM received by the power drive component 02, in millivolts.
  • the driving current provided by the power driving component 02 to the corresponding laser component through the laser driving component may be:
  • k is the reduction factor of the divider x1 in the driver chip U2.
  • each electronic component connected to the drive chip U2 may be a component in an external sub-circuit.
  • the structures of the three groups of power drive components 02 are all the same.
  • the structure of the red power drive component 02a corresponding to the red laser component shown in FIG. 9 is taken as an example for description.
  • the power drive components corresponding to the laser components of other colors corresponds to
  • the structure, connection relationship and working principle of the green power driving component 02b and the blue power driving component 02c corresponding to the blue laser component shown in FIG. 11 can all refer to the red power driving component 02a.
  • the power driving component may use a boost driving method or a step-down driving method to drive the corresponding laser component to emit light.
  • the boost driving may refer to raising a lower power supply voltage provided by the power supply to the working voltage of the laser assembly, so that the laser assembly can work normally under a constant current.
  • the step-down driving may refer to reducing the higher power supply voltage provided by the power supply to the working voltage of the laser assembly, so that the laser assembly can work normally under a constant current.
  • the power driving component provided by the embodiment of the present disclosure may use a step-down driving method to drive the corresponding laser component to emit light. Wherein, the difference between the power supply voltage and the typical voltage value of the working voltage may be less than 20V.
  • Table 1 shows the correspondence between the constant current of the red laser component, the green laser component and the blue laser component and the typical voltage value of the working voltage.
  • the constant current of the red laser component is 4.7A, and its typical voltage is 60V.
  • the constant working current required by the green laser component is 1.6A, and its typical voltage is 114V (in special cases, the typical voltage can reach a maximum of 126V).
  • the constant working current required by the blue laser component is 3A, and its typical voltage is 99V.
  • the power supply voltage provided by the power supply connected to the power drive component corresponding to the red laser component can be 61V ⁇ 70V, for example, it can be 61V, 63V, or 70V.
  • the power driving component corresponding to the green laser component can have an initial voltage value of 115V-140V, for example, 115V, 125V, or 140V.
  • the power drive component corresponding to the blue laser component may have an initial voltage value of 100V ⁇ 109V, for example, it may be 100V, 105V or 109V.
  • FIG. 13 is a schematic structural diagram of a laser driving assembly provided by an embodiment of the present disclosure.
  • the laser driving assembly 03 may include a total of 8 pins from pin 1 to pin 8.
  • pin 1 (or 2) can be connected to the negative output port of the power drive component 02
  • pin 7 (or 8) can be connected to the positive output port of the power drive component.
  • Pin 2 (or 1) is used to connect to the negative pole of the laser assembly
  • pin 8 (or 7) is used to connect to the positive pole of the laser assembly.
  • the laser driving component 03 can be understood as a middleware that realizes the connection between the power driving component and the laser component.
  • pin 1 of the laser drive component corresponding to the red laser component can be connected to the negative output port LD3- of the power drive component 02a shown in FIG. 9, and pin 7 can be connected to the positive electrode of the power drive component 02a shown in FIG.
  • the output port LD3+ is connected
  • pin 2 can be connected to the negative pole of the red laser component
  • pin 8 can be connected to the positive pole of the red laser component.
  • Pin 1 of the laser drive component corresponding to the green laser component can be connected to the negative output port LD1- of the power drive component 02b shown in Figure 10, and pin 7 can be connected to the positive output port LD1+ of the power drive component 02b shown in Figure 10
  • pin 2 can be connected to the negative pole of the green laser component
  • pin 8 can be connected to the positive pole of the green laser component.
  • the voltage provided by the negative output port LD1- for pin 1 may be 14V
  • the voltage provided by the positive output port LD1+ for pin 7 may be 140V.
  • Pin 1 of the laser drive component corresponding to the blue laser component can be connected to the negative output port LD2- of the power drive component 02c shown in Figure 11, and pin 7 can be connected to the positive output port of the power drive component 02c shown in Figure 11 LD2+ connection, pin 2 can be connected to the negative pole of the blue laser component, and pin 8 can be connected to the positive pole of the blue laser component.
  • the driving period of each laser light source may include: a sequential output stage and a superimposed output stage.
  • the timing output stage the periods during which the three sets of enable signals output by the display control circuit are at effective potentials do not overlap with each other; in the superimposed output stage, the three sets of enable signals output by the display control circuit are all at effective potentials.
  • the laser light source includes a red laser component, a green laser component, and a blue laser component.
  • the red enable signal R_EN corresponding to the red laser component, the green enable signal G_EN corresponding to the green laser component, and the blue enable signal B_EN corresponding to the blue laser component output by the display control circuit are valid in turn Potential.
  • the red enable signal R_EN, the green enable signal G_EN, and the blue enable signal B_EN output by the display control circuit are all at an effective potential.
  • the duration M1 during which the red enable signal R_EN is at the effective potential accounts for 28% of the driving period T, and the duration M2 during which the green enable signal G_EN is at the effective potential It accounts for 43% of the driving period T, and the duration M3 during which the blue enable signal B_EN is at an effective potential accounts for 14% of the driving period T.
  • the duration of the superimposed output phase W accounts for 15% of the driving period T.
  • the ratio of the length of time each enable signal is at the effective potential in each driving period may be determined according to the optimal color coordinate required by the image quality of the laser projection device of the laser light source.
  • the optimal color coordinate may be a fixed color coordinate determined in advance based on market research and user experience. Then, according to the optimal color coordinate, the proportion of the lighting duration of the three groups of laser components in each driving cycle is determined. Then, the duty cycle of the enable signal corresponding to each group of laser components is determined according to the duty cycle.
  • Output stage W to enhance the brightness of the laser light source.
  • M1, M2 and M3 in turn refer to the duration of the red enable signal at the effective potential, the duration of the green enable signal at the effective potential, and the duration of the blue enable signal at the effective potential during the timing output stage; W refers to It is the duration of the superimposed output stage. It can indicate the degree of brightness improvement of the laser light source when only the timing output phase is included relative to the driving cycle.
  • the laser light source emits white light in this superimposed output stage, so that the proportion of the lighting time of each group of laser components in the driving cycle is not changed. (That is, without changing the proportion of each primary color in the original white balance), the brightness of the laser light source is increased.
  • each group of laser components 100 described above may be a multichip laser (MCL, Multichiped Laser) component.
  • MCL multichip laser
  • a modular laser assembly also called a bank laser assembly
  • the MCL has a smaller volume relative to the bank laser assembly, the volume of the laser light source is reduced.
  • Each group of laser assembly 100 generally includes a plurality of laser units.
  • FIG. 15 is a schematic structural diagram of a laser assembly provided by an embodiment of the present disclosure.
  • each group of laser assembly 100 generally includes 4 laser units 110, and each laser unit 110 includes a plurality of transistor outlines (TO) connected in series.
  • each laser unit 110 may include 5 series connected transistors.
  • TO that is, each group of laser assembly 100 can adopt a 4 ⁇ 5 layout, and the laser assembly includes a total of 20 TOs.
  • each laser unit 110 may include 6 TOs connected in series. That is, each group of laser assembly 100 can adopt a 4 ⁇ 6 layout, and the laser assembly includes a total of 24 TOs.
  • each laser unit 110 may include 7 TOs connected in series. That is, each group of laser assembly 100 can adopt a 4 ⁇ 7 layout, and the laser assembly includes 28 TOs in total.
  • each group of laser components may also include 3 laser units, and each laser unit includes 5 series-connected TOs, that is, each group of laser components may adopt a 3 ⁇ 5 layout, then The laser assembly includes a total of 15 TOs.
  • each group of laser components may also include 2 laser units, and each laser unit includes 7 series-connected TOs, that is, each group of laser components may adopt a 2 ⁇ 7 layout, and the laser components include a total of 14 TOs.
  • the laser assembly 100 includes 4 laser units, and each laser unit includes 6 TOs connected in series as an example for description, and the layout of the laser assembly is not limited.
  • the multiple laser units 110 may be serially connected in sequence, and the multiple laser units 110 after the serial connection may be connected to the laser driving assembly 03.
  • the multiple laser units can be connected in series in two ways: wired series and plate series.
  • Wire series refers to connecting multiple laser units end to end sequentially through wires.
  • the board series connection refers to the connection of multiple laser units end to end through the layout wiring in the process of drawing the layout of the laser drive assembly.
  • FIG. 16 is an equivalent circuit diagram of a laser assembly provided by an embodiment of the present disclosure.
  • the green laser assembly includes 4 laser units 110, each laser unit 110 includes 2 ports, then the 4 laser units include port 0 to port 7 total 8 ports.
  • Port 0, port 2, port 4, and port 6 are positive, and port 1, port 3, port 5, and port 7 are negative.
  • port 5 can be connected to port 6
  • port 7 can be connected to port 2
  • port 3 can be connected to port
  • port 4 can be connected to pin 8 of the laser drive component 03 corresponding to the green laser component
  • port 1 can be connected in sequence
  • the pin 2 of the laser driving component 03 corresponding to the green laser component is connected.
  • the 140V voltage transmitted by the power drive component 02 can be transmitted to the third laser unit through the laser drive component 03, and the voltage of the third laser unit is reduced to 108.5V, and then transmitted to the fourth laser unit, and The fourth laser unit is stepped down to 77V, then transmitted to the second laser unit, and then stepped down to 45.5V in the second laser unit, and finally transmitted to the first laser unit, and then transmitted to the first laser unit
  • the voltage is reduced to 14V, so that the laser assembly 100 emits light.
  • the laser projection device in addition to the light source system 1000, the laser projection device also includes an illumination system 2000 and a lens system 3000 that are sequentially arranged along the beam transmission direction of the laser light source 10 in the light source system 1000.
  • the lighting system 2000 may include an optical machine, which is used to modulate the laser light to output an image beam when irradiated by the laser light emitted by the laser light source.
  • the lens system 3000 is used to project the image beam onto the projection screen.
  • the light source system 1000, the illumination system 2000, and the lens system 3000 can be collectively referred to as an optical engine module.
  • the laser projection device may further include a heat dissipation system, a housing, an audio system, and the like.
  • the display control circuit can output the PWM signal and the enable signal corresponding to each group of laser components, and can transmit the output signal to the corresponding power drive component.
  • the power driving component can then load a driving voltage for the corresponding laser driving component according to the PWM signal and the enable signal, so that the laser driving component can drive the laser component to emit light, thereby achieving independent control of each group of laser components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Semiconductor Lasers (AREA)
  • Projection Apparatus (AREA)

Abstract

一种激光投影设备包括:激光光源,包括出射激光颜色互不相同的三组激光器组件;激光光源驱动装置,包括:显示控制电路;电源驱动组件,与该显示控制电路连接,其中该电源驱动组件包括与该三组激光器组件连接的三组电源驱动组件;以及激光器驱动组件,包括分别与三组该电源驱动组件连接的三组激光器驱动组件,其中该显示控制电路用于在传输每组该激光器组件对应的PWM信号时,将该激光器组件对应的使能信号传输至对应的该电源驱动组件;每组该电源驱动组件用于在接收到的使能信号为有效电位时,根据接收到的该PWM信号的电压,向其所对应的该激光器驱动组件加载驱动电压;每组该激光器驱动组件用于根据该驱动电压,驱动其所对应的该激光器组件发光。

Description

激光投影设备
本公开要求于2019年6月20日提交中国专利局、申请号为201910537271.3、发明名称为“激光投影设备”的中国专利申请,以及于2019年7月16日提交中国专利局、申请号为201910642306.X、发明名称为“激光投影设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开属于激光投影显示领域,特别涉及一种激光投影设备。
背景技术
超短焦激光电视等激光投影设备因具有色彩纯度高、色域大和亮度高等优点,被广泛应用于显示领域。
目前激光电视的光源系统通常包括激光光源、荧光轮和滤色轮,其中激光光源通常为用于出射蓝色激光的蓝色激光器组件,所出射的蓝色激光时序性地照射至荧光轮的三个不同的区域上,从而产生三种颜色的光,该三种颜色的光依次通过滤色轮进行过滤处理以得到纯度更高的三色光。但是,该光源系统通过将蓝色激光照射至荧光轮以产生三色光的方式,对荧光轮的控制要求高,且荧光轮产生的三色光的颜色效果较差。因此,一种全三色光源系统应运而生,该全三色光源系统的激光光源包括三种颜色的激光器组件,以便直接产生三色光。
发明内容
第一方面,本公开提供了一种激光投影设备,包括:
激光光源,包括出射激光颜色互不相同的三组激光器组件;
激光光源驱动装置,连接至该激光光源,并且包括:显示控制电路,用于基于待显示图像的三种基色分量输出与该三组激光器组件对应的三个脉冲宽度调制PWM信号,以及输出与该三组激光器组件对应的三个使能信号;电源驱动组件,与该显示控制电路连接,用于接收该显示控制电路输出的PWM信号,其中该电源驱动组件包括与该三组激光器组件一一对应连接的三组电源驱动组 件;以及激光器驱动组件,包括分别与三组该电源驱动组件一一对应连接的三组激光器驱动组件,
其中该显示控制电路用于在传输每组该激光器组件对应的PWM信号时,将该激光器组件对应的使能信号传输至对应的该电源驱动组件;
每组该电源驱动组件用于在接收到的使能信号为有效电位时,根据接收到的该PWM信号的电压,向其所对应的该激光器驱动组件加载驱动电压;
每组该激光器驱动组件用于根据该驱动电压,驱动其所对应的该激光器组件发光。
附图说明
为了更清楚地说明本公开的实施例,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种光源系统的局部结构示意图;
图2是本公开实施例提供的一种激光投影设备的结构示意图;
图3是本公开实施例提供的一种激光投影设备的结构示意图;
图4是本公开实施例提供的一种数模转换器的结构示意图;
图5是本公开实施例提供的一种红色激光器组件对应的选择组件的结构示意图;
图6是本公开实施例提供的一种绿色激光器组件对应的选择组件的结构示意图;
图7是本公开实施例提供的一种蓝色激光器组件对应的选择组件的结构示意图;
图8是本公开实施例提供的一种激光光源的驱动装置的局部结构示意图;
图9是本公开实施例提供的一种红色激光器组件对应的电源驱动组件的结构示意图;
图10是本公开实施例提供的一种绿色激光器组件对应的电源驱动组件的结构示意图;
图11是本公开实施例提供的一种蓝色激光器组件对应的电源驱动组件的结构示意图;
图12是本公开实施例提供的一种驱动芯片的内部结构示意图;
图13是本公开实施例提供的一种激光器驱动组件的结构示意图;
图14是本公开实施例提供的使能信号的时序示意图;
图15是本公开实施例提供的一种激光器组件的结构示意图;
图16是本公开实施例提供的一种激光器组件的等效电路图;
图17是本公开实施例提供的一种激光投影设备的结构示意图。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
图1示出了一种光源系统的局部结构示意图。如图1所示,全三色光源系统包括激光光源10、两个二向色镜20、反射镜30、聚光透镜40、扩散轮50和光棒60。为描述方便,两个二向色镜20包括第一二向色镜201和第二二向色镜202。激光光源10包括一个用于发出红色激光的红色激光器组件101、一个用于发出绿色激光的绿色激光器组件102和一个用于发出蓝色激光的蓝色激光器组件103。红色激光器组件101发出的红色激光经过第一二向色镜201透射至聚光透镜40上。绿色激光器组件102发出的绿色激光先经过反射镜30反射至第二二向色镜202上,然后再经第二二向色镜202反射至第一二向色镜201上,之后经第一二向色镜201反射至聚光透镜40上。蓝色激光器组件103发出的蓝色激光经过第二二向色镜202透射至第一二向色镜201上,然后经第一二向色镜201反射至聚光透镜40上。照射至聚光透镜40上的激光经过该聚光透镜40汇聚后,照射至扩散轮50上。照射至扩散轮50上的激光经过扩散轮50的匀光后,照射至光棒60内,在该光棒60的匀光作用下,实现三色光源的出射。
本公开实施例提供了一种激光投影设备。如图2所示,该激光投影设备的光源系统包括:激光光源10,以及与该激光光源10连接的激光光源的驱动装置00,该激光光源10包括颜色互不相同的三组激光器组件。示例的,本公开实施例以该三组激光器组件分别为红色激光器组件100a、绿色激光器组件100b和蓝色激光器组件100c为例进行说明。激光光源10的驱动装置00可以包括:显示 控制电路01,与三组激光器组件对应的三组电源驱动组件02,以及与三组激光器组件对应的三组激光器驱动组件03,每组激光器驱动组件03与对应的一组激光器组件连接。
图2可以看出,显示控制电路01分别与三组电源驱动组件02连接。显示控制电路01用于基于待显示图像的三种基色分量输出与三组激光器组件对应的三个脉冲宽度调制(PWM,Pulse Width Modulation)信号,将每个PWM信号传输至对应的电源驱动组件02;以及输出与三组激光器组件对应的三个使能信号,并在传输每组激光器组件对应的PWM信号时,将激光器组件对应的使能信号传输至对应的电源驱动组件02。其中,PWM信号可以用于控制激光器组件的亮度,每组激光器组件对应的使能信号是基于该激光器组件在驱动周期内的点亮时长输出的,用于控制该激光器组件的点亮时长。
三组电源驱动组件02分别与三组激光器驱动组件03一一连接。每组电源驱动组件02用于在接收到有效电位(例如,高电位,又称高电平)的使能信号时,根据接收到的PWM信号的电压,向其所连接的激光器驱动组件03加载驱动电压。
每组激光器驱动组件03用于根据驱动电压驱动其所连接的激光器组件发光。
示例的,如图2所示,激光光源10包括红色激光器组件100a、绿色激光器组件100b和蓝色激光器组件100c。该显示控制电路01可以基于待显示图像的红色基色分量输出与红色激光器组件对应的PWM信号R_PWM,基于待显示图像的绿色基色分量输出与绿色激光器组件对应的PWM信号G_PWM,基于待显示图像的蓝色基色分量输出与蓝色激光器组件对应的PWM信号B_PWM。并且,该显示控制电路01可以基于红色激光器组件在驱动周期内的点亮时长,输出与红色激光器组件对应的使能信号R_EN;基于绿色激光器组件在驱动周期内的点亮时长,输出与绿色激光器组件对应的使能信号G_EN;基于蓝色激光器组件在驱动周期内的点亮时长,输出与蓝色激光器组件对应的使能信号B_EN。红色激光器组件100a、绿色激光器组件100b和蓝色激光器组件100c分别与驱动装置中对应的激光器驱动组件03连接。
综上所述,本公开实施例提供的激光投影设备中,显示控制电路输出与每组激光器组件对应的PWM信号和使能信号,并将输出的信号传输至对应的电源驱动组件,该电源驱动组件进而根据该PWM信号和使能信号为对应的激光器驱动组件加载驱动电压,使得激光器驱动组件可以驱动激光器组件发光,由此实 现了对每组激光器组件的独立控制。
在一实施方式中,该显示控制电路01可以为数字光处理(DLP,Digital Light Processing)芯片,该DLP芯片可以是DLPC6421芯片,或者该DLP芯片也可以是DDP4422芯片。
图3是本公开实施例提供的一种激光投影设备的结构示意图。如图3所示,激光光源的驱动装置00还可以包括:数模转换器(DAC,Digital to analog converter)04。数模转换器04分别与显示控制电路01和三组电源驱动组件02连接。
其中,显示控制电路01用于将三个PWM信号传输至数模转换器04。数模转换器04用于将接收到的每个PWM信号转换为模拟信号,并将每个模拟信号传输至对应的电源驱动组件02。
图4是本公开实施例提供的一种数模转换器的结构示意图。如图3和图4所示,该数模转换器04具有三个输入引脚INA引脚、INB引脚和INC引脚,以及三个输出引脚VOUTA引脚、VOUTB引脚和VOUTC引脚。该数模转换器04还可以包括/PD引脚、IDVCC引脚、VCC引脚、REF引脚、GND1引脚、GND2引脚、REFSEL引脚和IDLSEL引脚。
其中,INA引脚、INB引脚和INC引脚可以均与显示控制电路01连接,分别用于接入显示控制电路01传输的PWM信号R_PWM,、G_PWM以及、B_PWM。
VOUTA引脚、VOUTB引脚和VOUTC引脚可以分别与三组电源驱动组件02连接,分别用于将由PWM信号R_PWM转换得到模拟信号R1_PWM输出至与红色激光器组件100a对应的电源驱动组件,将由、PWM信号G_PWM转换得到模拟信号G1_PWM输出至与绿色激光器组件100b对应的电源驱动组件,以及将由、PWM信号B_PWM转换得到模拟信号B1_PWM输出至与蓝色激光器组件100c对应的电源驱动组件。该模拟信号B1_PWM、模拟信号G1_PWM以及模拟信号R1_PWM均为模拟直流电压信号。
/PD引脚、IDVCC引脚、VCC引脚和REF引脚均通过并联的电容C1和C2接地,且均与电源端VCC1连接。GND1引脚、GND2引脚和IDLSEL引脚均接地,REFSEL引脚分别与电源端VCC2和电容C3的一端连接,电容C3的另一端接地。其中,电源端VCC1和电源端VCC2提供的电压均可以为5V(伏特)。电容C1、电容C2和电容C3的参数均为100nF(纳法)/16V(也即是,电容C1、电容C2和电容C3的电容容量均为100nF,额定电压均为16V)。
在一实施方式中,如图3所示,激光光源的驱动装置00还包括:与三组激光器组件对应的三组选择组件05。每组选择组件05分别与显示控制电路01、数模转换器04以及对应的一组电源驱动组件02连接。
其中,显示控制电路01,还用于将每个使能信号传输至对应的选择组件05。数模转换器04,还用于将每个模拟信号传输至对应的选择组件05。每组选择组件05,用于在接收到的使能信号为有效电位时,将接收到的模拟信号传输至对应的电源驱动组件02。
示例的,如图3所示,该激光光源的驱动装置00可以包括与该三组激光器组件对应的三组选择组件05。
显示控制电路01可以将红色激光器组件对应的使能信号R_EN、绿色激光器组件对应的使能信号G_EN,以及蓝色激光器组件对应的使能信号B_EN分别传输至对应的选择组件05。数模转换器04可以将R_PWM信号对应的模拟信号R1_PWM、G_PWM信号对应的模拟信号G1_PWM,以及B_PWM信号对应的模拟信号B1_PWM分别传输至对应的选择组件05。
红色激光器组件对应的选择组件05可以在接收到的使能信号R_EN为有效电位时,将模拟信号R1_PWM传输至对应的电源驱动组件02。绿色激光器组件对应的选择组件05可以在接收到的使能信号G_EN为有效电位时,将模拟信号G1_PWM传输至对应的电源驱动组件02。蓝色激光器组件对应的选择组件05可以在接收到的使能信号B_EN为有效电位时,将模拟信号B1_PWM传输至对应的电源驱动组件02。
图5是本公开实施例提供的一种红色激光器组件对应的选择组件的结构示意图,本公开实施例以该红色激光器组件对应的选择组件为例,对选择组件的结构进行说明。参考图5,该红色激光器组件对应的选择组件05a可以包括:适配子电路051和选择子电路052。
适配子电路051分别与显示控制电路01和选择子电路052连接,用于将接收到的使能信号R_EN的电压转换至选择子电路052的额定电压,并将电压转换后的使能信号R_EN传输至选择子电路052。
选择子电路052还与数模转换器04连接,用于在接收到的使能信号R_EN为有效电位时,将接收到的模拟信号R1_PWM传输至对应的电源驱动组件02。
在一实施方式中,参考图5,该适配子电路051可以包括运算放大器A1、电阻R1、电容C4和电容C5。运算放大器A1至少具有第一端口、第二端口、第三端口、第四端口以及第五端口。第一端口和第三端口均接地。第二端口与 显示控制电路01连接,用于接收使能信号R_EN。该第二端口还与并联的电阻R1和电容C4的一端连接,并联后的电阻R1和电容C4的另一端接地。其中,当接收的使能信号R_EN中包含有尖刺,或者该使能信号R_EN的纹波较大时,电容C4可以用于滤除该使能信号R_EN的尖刺部分,或者,滤除该使能信号R_EN的纹波较大的部分。第四端口与选择子电路052连接。第五端口分别与电源端VCC3和电容C5的一端连接,电容C5的另一端接地。
参考图5,该选择子电路052可以包括二选一选择器0521。二选一选择器0521可以包括两个输入引脚SEL引脚和A引脚,两个输出引脚B0引脚和B1引脚。该二选一选择器0521还包括VCC引脚和GND引脚。SEL引脚分别与适配子电路051中运算放大器A1的第四端口和电阻R2的一端连接,电阻R2的另一端与电源端VCC4连接。VCC引脚分别与电源端VCC5和电容C6的一端连接,电容C6的另一端接地。A引脚分别与数模转换器04的VOUTA引脚,以及并联的电阻R3和电容C7的一端连接,用于接收数模转换器04传输的模拟信号R1_PWM,并联后的电阻R3和电容C7的另一端接地。其中,当接收的数模转换器04传输的模拟信号R1_PWM中包含有尖刺,或者该模拟信号R1_PWM的纹波较大时,电容C7可以用于滤除该模拟信号R1_PWM的尖刺部分,或者,滤除该模拟信号R1_PWM的纹波较大的部分。B1引脚与红色激光器组件对应的电源驱动组件02连接,用于为该电源驱动组件提供经过选择后的PWM模拟信号R2_PWM信号。GND引脚和B0引脚均接地。
其中,电源端VCC3、电源端VCC4和电源端VCC5提供的电压均可以为5V。电阻R1、R2和R3的阻值均可以为10kΩ(千欧)。电容C4和电容C7的参数可以为100n/16V/NC(也即是电容C4和电容C7的电容容量均为100nF,额定电压均为16V,且该电容C4和电容C7为备用电容,可以暂不连接),电容C5和电容C6的参数可以为100n/16V。
当SEL引脚输入的使能信号R_EN为有效电位时,B1引脚可以输出由A引脚输入的模拟信号R1_PWM,实现使能信号和模拟信号的同步。同时,由于适配子电路051可以实现对使能信号的电平转换,使得由显示控制电路01传输的使能信号的电压大小可以适配选择子电路052的SEL端口的电压大小,保证选择子电路052的正常工作。
示例的,假设显示控制电路01输出的每个使能信号的电压为3.3V,选择子电路052中,SEL引脚的额定电压为5V。每个适配子电路051可以通过该运算放大器A1将3.3V的使能信号转换成5V的使能信号,将转换后的使能信号传输 至选择子电路052的SEL引脚。
图6是本公开实施例提供的一种绿色激光器组件对应的选择组件05b的结构示意图,图7是本公开实施例提供的一种蓝色激光器组件对应的选择组件05c的结构示意图。该两组选择组件的结构和连接关系均可以参考图5所示的红色激光器组件对应的选择组件05a,本公开实施例对此不再赘述。
在一实施方式中,如图3所示,激光光源的驱动装置00还包括:缓冲电路06,缓冲电路06分别与显示控制电路01、数模转换器04和选择组件05连接。
该显示控制电路01,用于将每个PWM信号和每个使能信号传输至缓冲电路06。缓冲电路06,用于对接收到的每个PWM信号和每个使能信号分别进行缓冲处理,将缓冲处理后的每个PWM信号输出至数模转换器04,并将缓冲处理后的每个使能信号输出至对应的选择组件05。
示例的,图8是本公开实施例提供的一种激光光源的驱动装置的局部结构示意图。如图3和图8所示,该缓冲电路06可以包括缓冲(Buffer)芯片U1。显示控制电路01可以包括用于输出R_PWM的GPIO-04引脚、用于输出G_PWM的GPIO-05引脚、用于输出B_PWM的GPIO-06引脚、用于输出红色激光器组件对应的使能信号R_EN的GPIO-24引脚、用于输出绿色激光器组件对应的使能信号G_EN的GPIO-25引脚和用于输出蓝色激光器组件对应的使能信号B_EN的GPIO-26引脚。
Buffer芯片U1可以包括A1、A2A3、A5、A6、A7和A10引脚共七个输入引脚,以及Y1、Y2、Y3、Y5、Y6、Y7和Y10引脚共七个输出引脚。该U1还包括
Figure PCTCN2020078872-appb-000001
引脚、GND引脚、VCC引脚和
Figure PCTCN2020078872-appb-000002
引脚。
其中,A1引脚分别与GPIO-04引脚和电阻R4的一端连接,用于接收该显示控制电路01提供的PWM信号R_PWM。A2引脚分别与GPIO-05引脚和电阻R5的一端连接,用于接收该显示控制电路01提供的PWM信号G_PWM。A3引脚分别与GPIO-06引脚和电阻R6的一端连接,用于接收该显示控制电路01提供的PWM信号B_PWM。
A5引脚分别与GPIO-24引脚和电阻R9的一端连接,用于接收该显示控制电路01提供的使能信号R_EN。A6引脚分别与GPIO-25引脚和电阻R8的一端连接,用于接收该显示控制电路01提供的使能信号G_EN。A7引脚分别与GPIO-26引脚和电阻R7的一端连接,用于接收该显示控制电路01提供的使能信号B_EN。
电阻R4的另一端、电阻R5的另一端、电阻R6的另一端、电阻R7的另一 端、电阻R8的另一端、电阻R9的另一端、
Figure PCTCN2020078872-appb-000003
引脚以及
Figure PCTCN2020078872-appb-000004
引脚均接地。VCC引脚分别与电感L1的一端和电容C8的一端连接,且电感L1另一端与电源端VCC6连接,电容C8的另一端接地。
Y1引脚与数模转换器04的INA引脚连接,用于为该数模转换器04提供经过缓冲处理后的PWM信号R_PWM。Y2引脚与数模转换器04的INB引脚连接,用于为该数模转换器04提供经过缓冲处理后的PWM信号G_PWM。Y3引脚与数模转换器04的INC引脚连接,用于为该数模转换器04提供经过缓冲处理后的PWM信号B_PWM。
Y5引脚与红色激光器组件对应的选择组件05中运算放大器A1的第二端口连接,用于为该选择组件05提供使能信号R_EN。Y6引脚与绿色激光器组件对应的选择组件05中运算放大器A1的第二端口连接,用于为该选择组件05提供使能信号G_EN。Y7引脚与蓝色激光器组件对应的选择组件05中运算放大器A1的第二端口连接,用于为该选择组件05提供使能信号B_EN。
A10引脚分别与总控制端口LMPCTRL和外接总控制端口EN连接,该总控制端口LMPCTRL可以与显示控制电路01连接,外接总控制端口EN可以与外接单片机连接。Y10引脚与该驱动芯片U2的电源引脚所连接的外接供电电路连接。总控制端口LMPCTRL和外接总控制端口EN均用于控制Buffer芯片U1的Y10引脚输出的LED_EN信号的电位。其中,在该LED_EN信号为有效电位时,外接供电电路可以向驱动芯片U2供电,在该LED_EN信号为无效电位时,外接供电电路停止向驱动芯片U2供电。
其中,电源端VCC6提供的电压可以为3V。电阻R4至电阻R9的阻值可以为10kΩ。电容C8的参数可以为100n/16v。电感L1的型号可以为BLM15AG121SN1D。
由于显示控制电路01传输的PWM信号和使能信号通过缓冲电路传输至后续电路,因此,增强了传输至后续电路的PWM信号和使能信号的驱动能力,保障了后续电路的稳定高效运行。
图9是本公开实施例提供的一种红色激光器组件对应的电源驱动组件的结构示意图。以图9所示的结构为例,对该电源驱动组件的结构进行说明。如图9所示,红色激光器组件对应的电源驱动组件02a可以包括:驱动芯片U2以及与该驱动芯片U2连接的外接子电路。该外接子电路还与对应的红色激光器组件连接。
外接子电路用于检测对应的红色激光器组件的驱动电流,并将驱动电流传 输至驱动芯片。驱动芯片U2,用于在接收到使能信号为有效电位时,根据驱动电流调节向外接子电路输出的驱动信号的占空比。外接子电路,还用于根据驱动信号的占空比,调节驱动电压。
参考图9,该驱动芯片U2至少包括rt引脚、drv引脚、isen引脚、adim引脚和pwm引脚。外接子电路可以包括正极输出端口LD3+和负极输出端口LD3-。
其中,驱动芯片U2的adim引脚可以通过分压电阻与红色激光器组件对应的选择组件05连接,例如可以与该选择组件05中二选一选择器0521的B1引脚连接,用于接收该选择组件05提供的PWM信号R2_PWM。
示例地,如图9所示,驱动芯片U2的adim引脚可以分别与电阻R10的一端和电阻R11的一端连接,该电阻R10的另一端接地,且电容C9与电阻R10并联,电阻R11的另一端与电阻R12的一端连接,该电阻R12的另一端与红色激光器组件对应的选择组件05连接,用于接收该选择组件05提供的PWM信号R2_PWM。该电阻R12的另一端还与电阻R13的一端连接,电阻R13的另一端接地。该电阻R10、电阻R11和电阻R12为分压电阻,能够对选择组件05提供的PWM信号R2_PWM进行分压,使得分压后的模拟信号的电压可以匹配驱动芯片U2的adim引脚的额定电压。
驱动芯片U2的isen引脚可以与采样电阻连接。示例地,驱动芯片U2的isen引脚可以通过电阻R14与采样电阻Risen的一端连接,该采样电阻Risen的一端还与负极输出端口LD3-连接,且该驱动芯片U2的isen引脚可以通过电容C10与采样电阻Risen的另一端连接,该采样电阻Risen的另一端接地。其中,采样电阻Risen可以包括并联的电阻R15、电阻R16、电阻R17和电阻R18。该驱动芯片U2可以通过采样电阻Risen实现对红色激光器组件的驱动电流的检测。
驱动芯片U2的drv引脚可以与开关场效应管Q1连接。示例地,驱动芯片U2的drv引脚可以与开关场效应管Q1的栅极连接。开关场效应管Q1的源极分别与采样电阻Risen的一端和变压器L2的一端连接,该变压器L2的另一端与负极输出端口LD3-连接。开关场效应管Q1的漏极与电源端VDD2连接。驱动芯片U2的drv引脚输出的信号可以控制开关场效应管Q1的开关状态,从而使得该开关场效应管Q1在导通状态下,连通电源端VDD2与变压器L2的一端,从而通过变压器L2改变负极输出端口LD3-的输出电压。其中,开关场效应管可以是金属-氧化物半导体(MOS,Metal Oxide Semiconductor)场效应晶体管。
示例的,驱动芯片U2的drv引脚可以分别与二极管D1的一端和电阻R19的一端连接,二极管D1的另一端和电阻R20的一端连接,电阻R19的另一端 和电阻R20的另一端均与开关场效应管Q1的栅极连接,且电阻R19的另一端和电阻R20的另一端还均通过电阻R21与采样电阻Risen的一端连接。开关场效应管Q1的漏极可以通过两个并联的二极管D2与电源端VDD2连接,且电源端VDD2还与电容C11的一端连接,该电容C11的另一端接地。开关场效应管Q1的源极可以通过电容C12与变压器L2连接。
驱动芯片U2的pwm引脚可以分别与电阻R22的一端和电阻R23的一端连接,电阻R22的另一端与显示控制电路01连接,用于接收该显示控制电路01提供的红色激光器组件对应的使能信号R_EN。电阻R23的另一端接地,电容C13与电阻R23并联。
驱动芯片U2的rt引脚可以与电阻R24的一端连接,该电阻R24的另一端接地。开关场效应管Q1的开关频率可以由该电阻R24的阻值决定。其中,该开关场效应管Q1的开关频率
Figure PCTCN2020078872-appb-000005
进一步的,驱动芯片U2还可以包括VCC引脚、st引脚、vref引脚和GND引脚。
驱动芯片U2的VCC引脚可以分别与电容C14的一端和电阻R25的一端连接,电容C14的另一端接地,电阻R25的另一端与电源端VDD1连接。
驱动芯片U2的st引脚可以与电阻R26的一端连接,该电阻R26的另一端分别与电阻R27的一端和三极管B1的基极连接,电阻R27的另一端分别与三极管B1的发射极和告警端FLG连接,三极管B1的集电极接地。该告警端FLG用于在电源驱动组件02产生电流异常时,向驱动芯片U2的电源引脚所连接的外接供电电路输出告警信号,以使得该外接供电电路停止向驱动芯片U2供电。驱动芯片U2的vref引脚可以与电容C15的一端连接,电容C15的另一端接地。驱动芯片U2的GND引脚接地,且正极输出端口LD3+与负极输出端口LD3-分别与电容C16的两端连接。
其中,电源端VDD2提供的电压可以为63V。电阻R15、电阻R16和电阻R18的阻值均为0.3Ω(欧)。电阻R17的阻值为5.1Ω。电阻R20的阻值为22Ω。电阻25的阻值为27Ω。电阻R14、电阻R22和电阻R26的阻值为1kΩ。电阻R11和电阻R12的阻值均为3.3kΩ。电阻R10、电阻R21和电阻R27的阻值均为10kΩ。电阻R23的阻值为20kΩ。电阻R24的阻值为51kΩ。电阻R19的阻值为68kΩ。电阻R13的阻值为100kΩ。电容C9、电容C10、电容C11、电容 C12、电容C13、电容C14、电容C15和电容C16的参数依次可以为22nF/50V、100pF(皮法)/50V、100nF/250V、100pF/1000V、100pF/50V、1uF(微法)/50V、1uF/50V和1uF/100V。
图12是本公开实施例提供的一种驱动芯片的内部结构示意图。如图12所示,该驱动芯片U2可以包括:除法器x1、开关频率方波发生器hfosc、限压器max、比较器lm1、比较器lm2、比较器lm3、缓冲器m1、电阻r21和电容c21。
驱动芯片U2的adim引脚可以与除法器x1的一端连接。该除法器x1用于将adim引脚传输的PWM信号和缩减系数k相除,该缩减系数k可以等于10。该除法器x1的另一端与限压器max的一端连接,限压器max连接用于根据除法器x1输出的信号的电压确定输出信号ADJ。当除法器x1输出的信号的电压小于或等于限压器max的上限电压,例如300mV(毫伏)时,限压器max输出的输出信号ADJ为除法器x1输出的信号;当除法器x1输出的信号的电压大于该上限电压时,限压器max输出的输出信号ADJ的电压为上限电压。
比较器lm1和比较器lm3中的每个比较器均具有正极输入端和负极输入端共2个输入端,以及1个输出端。比较器lm2具有正极输入端、负极输入端和使能输入端共3个输入端,以及1个输出端。
比较器lm1的正极输入端与限压器max的另一端连接。比较器lm1的负极输入端分别与电阻r21的一端和电容c21的一端连接,电阻r21的另一端与isen引脚连接。比较器lm1的输出端可以电容c21的另一端连接。比较器lm1用于比较其正极输入端和负极输入端的电压大小。当比较器lm1的正极输入端的电压大于负极输入端的电压(即isen引脚的驱动电流与电阻r21的乘积)时,比较器lm1的输出逻辑值可以为1。当比较器lm1的正极输入端的电压小于负极输入端的电压时,比较器lm1的输出逻辑值可以为0。
比较器lm2的正极输入端与比较器lm1的输出端连接。比较器lm2的负极输入端与开关频率方波发生器hfosc的一端连接,开关频率方波发生器hfosc的另一端与rt引脚连接。比较器lm2的使能输入端与比较器lm3的输出端连接,该开关频率方波发生器hfosc用于根据电阻R24的电阻确定的开关频率,输出该开关频率的方波。比较器lm2的输出端与缓冲器m1的一端连接,缓冲器m1另一端与引脚drv连接,该缓冲器m1用于增强比较器lm2输出端输出的信号的驱动能力。该比较器lm2用于在其使能输入端有效时,比较其正极输入端与负极输入端的电压大小。当比较器lm2的正极输入端的电压大于负极输入端的电压时,比较器lm2的输出逻辑值为1;当比较器lm2的正极输入端的电压小于负极 输入端的电压时,比较器lm2的输出逻辑值为0。
比较器lm3的正极输入端与pwm引脚连接,比较器lm3的负极输入端与直流电源端连接,该直流电源端的电压可以为1V。该比较器lm3用于比较其正极输入端与负极输入端的电压大小。当比较器lm3的正极输入端的电压大于负极输入端的电压时,比较器lm3的输出逻辑值为1;当比较器lm3的正极输入端的电压小于负极输入端的电压时,比较器lm3的输出逻辑值为0。
根据上述对驱动芯片U2的描述可知,驱动芯片U2的pwm引脚输入的红色激光器组件对应的使能信号R_EN即为该驱动芯片U2的使能信号。当该使能信号R_EN为有效电位时,驱动芯片U2正常工作。驱动芯片U2可以根据adim引脚输入的R_PWM信号的电压和isen引脚输入的红色激光器组件的驱动电流,调整drv引脚输出的驱动信号的占空比,从而通过外接子电路调整负极输出端口LD3-的输出电压,进而实现对加载至红色激光器组件的驱动电压的调整,使得该红色激光器组件在恒定电流下工作。当该使能信号R_EN为无效电位时,驱动芯片U2停止工作,红色激光器组件不发光。
参考图9和图12可以看出,在本公开实施例中,该电源驱动组件02中驱动芯片U2的adim引脚的电压可以满足:
Figure PCTCN2020078872-appb-000006
其中,U R2_PWM为电源驱动组件02接收到的PWM信号R2_PWM的电压,单位为毫伏。
相应的,该电源驱动组件02通过激光器驱动组件向对应的激光器组件提供的驱动电流可以为:
Figure PCTCN2020078872-appb-000007
其中,k为驱动芯片U2中除法器x1的缩减系数。Risen为上述采样电阻,单位为欧姆。即R isen=R15//R16//R17//R18。
需要说明的是,上述电源驱动组件02中,该驱动芯片U2所连接的各个电子元器件均可以为外接子电路中的元器件。
需要说明的是,三组电源驱动组件02的结构均相同。本公开实施例中,以图9所示的红色激光器组件对应的红色电源驱动组件02a的结构为例进行说明,其他颜色的激光器组件对应的电源驱动组件(如图10所示的绿色激光器组件对应的绿色电源驱动组件02b以及如图11所示的蓝色激光器组件对应的蓝色电源驱动组件02c)的结构、连接关系和工作原理均可以参考该红色电源驱动组件 02a。
在一实施方式中,电源驱动组件可以采用升压驱动的方式或者降压驱动的方式驱动对应的激光器组件发光。该升压驱动可以是指将电源提供的较低的电源电压升高至激光器组件的工作电压,以使得该激光器组件可以在恒定电流下正常工作。该降压驱动可以是指将电源提供的较高的电源电压降低至激光器组件的工作电压,以使得该激光器组件可以在恒定电流下正常工作。本公开实施例提供的电源驱动组件可以采用降压驱动的方法驱动对应的激光器组件发光。其中,该电源电压与该工作电压的典型电压值的差值可以小于20V。
表1示出了红色激光器组件、绿色激光器组件和蓝色激光器组件的恒定电流与工作电压的典型电压值的对应关系。
表1
激光器组件 红色激光器组件 绿色激光器组件 蓝色激光器组件
恒定工作电流/A 4.7 1.6 3
典型电压/V 60 114 99
如表1所示,红色激光器组件的恒定电流为4.7A,其典型电压为60V。绿色激光器组件要求的恒定工作电流为1.6A,其典型电压为114V(在特殊情况下,该典型电压最大可以达到126V)。蓝色激光器组件要求的恒定工作电流为3A,其典型电压为99V。
结合表1可知,红色激光器组件对应的电源驱动组件所连接的电源提供的电源电压可以为61V~70V,例如可以为61V、63V或70V。绿色激光器组件对应的电源驱动组件,其初始电压值可以为115V~140V,例如可以为115V、125V或140V。蓝色激光器组件对应的电源驱动组件,其初始电压值可以为100V~109V,例如可以为100V、105V或109V。
在一实施方式中,图13是本公开实施例提供的一种激光器驱动组件的结构示意图,如图13所示,该激光器驱动组件03可以包括引脚1至引脚8共8个引脚。其中,引脚1(或2)可以与电源驱动组件02的负极输出端口连接,引脚7(或8)可以与电源驱动组件的正极输出端口连接。引脚2(或1)用于与激光器组件的负极连接,引脚8(或7)用于与激光器组件的正极连接。激光器驱动组件03可以理解为实现电源驱动组件与激光器组件连接的中间件。
示例的,红色激光器组件对应的激光器驱动组件的引脚1可以与图9所示的电源驱动组件02a的负极输出端口LD3-连接,引脚7可以与图9所示的电源驱动组件02a的正极输出端口LD3+连接,引脚2可以与红色激光器组件的负极 连接,引脚8可以与红色激光器组件的正极连接。
绿色激光器组件对应的激光器驱动组件的引脚1可以与图10所示的电源驱动组件02b的负极输出端口LD1-连接,引脚7可以与图10所示的电源驱动组件02b的正极输出端口LD1+连接,引脚2可以与绿色激光器组件的负极连接,引脚8可以与绿色激光器组件的正极连接。其中,该负极输出端口LD1-为引脚1提供的电压可以为14V,该正极输出端口LD1+为引脚7的提供的电压可以为140V。
蓝色激光器组件对应的激光器驱动组件的引脚1可以与图11所示的电源驱动组件02c的负极输出端口LD2-连接,引脚7可以与图11所示的电源驱动组件02c的正极输出端口LD2+连接,引脚2可以与蓝色激光器组件的负极连接,引脚8可以与蓝色激光器组件的正极连接。
在一实施方式中,在本公开实施例中,每个激光光源的驱动周期可以包括:时序输出阶段和叠加输出阶段。在该时序输出阶段,显示控制电路输出的三组使能信号处于有效电位的时段互不重叠;在该叠加输出阶段,显示控制电路输出的三组使能信号均处于有效电位。
假设激光光源包括红色激光器组件、绿色激光器组件和蓝色激光器组件。在时序输出阶段,显示控制电路输出的与红色激光器组件对应的红色使能信号R_EN、与绿色激光器组件对应的绿色使能信号G_EN和与蓝色激光器组件对应的蓝色使能信号B_EN依次为有效电位。在叠加输出阶段,显示控制电路输出的红色使能信号R_EN、绿色使能信号G_EN和蓝色使能信号B_EN均处于有效电位。
示例的,如图14所示,在驱动周期T的时序输出阶段T1中,红色使能信号R_EN处于有效电位的时长M1占驱动周期T的28%,绿色使能信号G_EN处于有效电位的时长M2占驱动周期T的43%,蓝色使能信号B_EN处于有效电位的时长M3占驱动周期T的14%。叠加输出阶段W的时长占驱动周期T的15%。
上述各个使能信号在每个驱动周期内处于有效电位的时长的比例可以是根据激光光源的激光投影设备的画质要求的最优色坐标确定的。该最优色坐标可以是预先基于市场调研,依据用户体验确定的固定的色坐标。然后,根据该最优色坐标,确定三组激光器组件在每个驱动周期内的点亮时长的占比。之后,根据该占比确定每组激光器组件对应的使能信号的占空比。
假设根据最优色坐标确定的在每个驱动周期内,红色激光器组件的点亮时 长、绿色激光器组件的点亮时长和蓝色激光器组件的点亮时长的比值为2:3:1。若驱动周期仅包括时序输出阶段,则M1:M2:M3=2:3:1。其中,M1、M2和M3分别指的是在每个驱动周期内,红色使能信号为有效电位的时长、绿色使能信号为有效电位的时长和蓝色使能信号为有效电位的时长。
若M1:M2:M3=2:3:1时满足色坐标要求,但不满足激光投影设备的亮度要求,则可以在保证最优色坐标不变的前提下,通过在每个驱动周期增加叠加输出阶段W来提升激光光源的亮度。为了确保最优色坐标不变,需保证(M1+W):(M2+W):(M3+W)=2:3:1。其中,M1、M2和M3依次指的是在时序输出阶段,红色使能信号为有效电位的时长、绿色使能信号为有效电位的时长和蓝色使能信号为有效电位的时长;W指的是在叠加输出阶段的时长。
Figure PCTCN2020078872-appb-000008
可以表示相对于驱动周期仅包括时序输出阶段下,激光光源的亮度提升程度。
这样,通过在驱动周期内增加三组激光器组件同时点亮的叠加输出阶段,该叠加输出阶段,激光光源发出白光,从而使得在不改变每组激光器组件在驱动周期内的点亮时长的占比(也即是不改变原白平衡中各基色占比)的前提下,增加了激光光源的亮度。
需要说明的是,上述每组激光器组件100可以均为多片状激光器(MCL,Multichiped Laser)组件。相关技术中,通常采用模组激光器组件(又称bank激光器组件),由于该MCL相对于bank激光器组件的体积较小,因此,减少了激光光源的体积。
每组激光器组件100通常包括多个激光单元。示例的,图15是本公开实施例提供的一种激光器组件的结构示意图。如图15所示,每组激光器组件100通常包括4个激光单元110,每个激光单元110包括多个串联的晶体管外壳(TO,Transistor Outline),例如,每个激光单元110可以包括5个串联的TO。即该每组激光器组件100可以采用4×5的布局,则该激光器组件一共包括20个TO。或者每个激光单元110可以包括6个串联的TO。即该每组激光器组件100可以采用4×6的布局,则该激光器组件一共包括24个TO。或者每个激光单元110可以包括7个串联的TO。即该每组激光器组件100可以采用4×7的布局,则该激光器组件一共包括28个TO。
需要说明的是,本公开实施例中,每组激光器组件还可以包括3个激光单 元,每个激光单元包括5个串联的TO,即该每组激光器组件可以采用3×5的布局,则该激光器组件一共包括15个TO。或者,每组激光器组件还可以包括2个激光单元,每个激光单元包括7个串联的TO,即该每组激光器组件可以采用2×7的布局,则该激光器组件一共包括14个TO。图15中以激光器组件100包括4个激光单元,每个激光单元包括6个串联的TO为例进行说明,并不对激光器组件的布局进行限定。
在本公开实施例中,该多个激光单元110可以依次串联,串联后的多个激光单元110可以与激光器驱动组件03连接。例如,可以通过有线串联和板串联两种方式串联该多个激光单元。线串联指的是通过线材将多个激光单元首尾依次相接。板串联指的是在激光器驱动组件的绘制版图过程中,通过版图布线将多个激光单元首尾依次相接。
示例地,图16是本公开实施例提供的一种激光器组件的等效电路图。如图15和图16所示,假设图示激光器组件为绿色激光器组件,该绿色激光器组件包括4个激光单元110,每个激光单元110包括2个端口,则4个激光单元包括端口0至端口7共8个端口。端口0、端口2、端口4和端口6为正极,端口1、端口3、端口5和端口7为负极。其中,端口5可以与端口6连接,端口7可以与端口2连接,端口3可以与端口0连接,则端口4可以与绿色激光器组件对应的激光器驱动组件03的引脚8连接,端口1可以依次与绿色激光器组件对应的激光器驱动组件03的引脚2连接。电源驱动组件02传输的140V的电压,可以通过激光器驱动组件03传输至第3个激光单元,并在该第3个激光单元降压至108.5V,然后传输至第4个激光单元,并在该第4个激光单元降压至77V,之后传输至第2个激光单元,并在该第2个激光单元降压至45.5V,最后传输至第1个激光单元,并在该第1个激光单元降压至14V,从而使得激光器组件100发光。
进一步的,请参考图17,其示出了本公开提供的一种激光投影设备的结构示意图。如图17所示,该激光投影设备除光源系统1000之外,还包括沿该光源系统1000中的激光光源10的光束传输方向依次排列的照明系统2000和镜头系统3000。其中,照明系统2000可以包括光机,该光机用于在受到激光光源出射的激光的照射时,将激光调制输出影像光束。镜头系统3000用于将影像光束投射至投影屏幕上。其中,光源系统1000、照明系统2000和镜头系统3000可以统称为光学引擎模块。在一实施方式中,该激光投影设备还可以包括散热系统、壳体和音响等。
综上所述,本公开实施例提供的激光投影设备中,显示控制电路可以输出与每组激光器组件对应的PWM信号和使能信号,并可以将输出的信号传输至对应的电源驱动组件,该电源驱动组件进而可以根据该PWM信号和使能信号为对应的激光器驱动组件加载驱动电压,使得激光器驱动组件可以驱动激光器组件发光,由此实现了对每组激光器组件的独立控制。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (11)

  1. 一种激光投影设备,包括:
    激光光源,包括出射激光颜色互不相同的三组激光器组件;
    激光光源驱动装置,连接至所述激光光源,并且包括:
    显示控制电路,用于基于待显示图像的三种基色分量输出与所述三组激光器组件对应的三个脉冲宽度调制PWM信号,以及输出与所述三组激光器组件对应的三个使能信号;
    电源驱动组件,与所述显示控制电路连接,用于接收所述显示控制电路输出的PWM信号,其中所述电源驱动组件包括与所述三组激光器组件一一对应连接的三组电源驱动组件;以及
    激光器驱动组件,包括分别与三组所述电源驱动组件一一对应连接的三组激光器驱动组件,
    其中所述显示控制电路用于在传输每组所述激光器组件对应的PWM信号时,将所述激光器组件对应的使能信号传输至对应的所述电源驱动组件;
    每组所述电源驱动组件用于在接收到的使能信号为有效电位时,根据接收到的所述PWM信号的电压,向其所对应的所述激光器驱动组件加载驱动电压;
    每组所述激光器驱动组件用于根据所述驱动电压,驱动其所对应的所述激光器组件发光。
  2. 根据权利要求1所述的激光投影设备,其特征在于,所述激光光源包括红色激光器组件、绿色激光器组件和蓝色激光器组件;驱动周期包括:时序输出阶段和叠加输出阶段;
    在所述时序输出阶段,与所述红色激光器组件对应的红色使能信号、与所述绿色激光器组件对应的绿色使能信号和与所述蓝色激光器组件对应的蓝色使能信号依次为有效电位;
    在所述叠加输出阶段,所述红色使能信号、所述绿色使能信号和所述蓝色使能信号均处于有效电位。
  3. 根据权利要求2所述的激光投影设备,其特征在于,
    在所述时序输出阶段,所述红色使能信号处于有效电位的时长占所述驱动周期的28%,所述绿色使能信号处于有效电位的时长占所述驱动周期的43%,所述蓝色使能信号处于有效电位的时长占所述驱动周期的14%;
    所述叠加输出阶段的时长占所述驱动周期的15%。
  4. 根据权利要求1所述的激光投影设备,其特征在于,所述激光光源的驱动装置还包括:数模转换器;
    所述数模转换器分别与所述显示控制电路和三组所述电源驱动组件连接;
    所述显示控制电路用于将三个所述PWM信号传输至所述数模转换器;
    所述数模转换器用于将接收到的每个所述PWM信号转换为模拟信号,并将每个所述模拟信号传输至对应的所述电源驱动组件。
  5. 根据权利要求4所述的激光投影设备,其特征在于,所述激光光源的驱动装置还包括:与所述三组激光器组件对应的三组选择组件;
    每组所述选择组件分别与所述显示控制电路、所述数模转换器以及对应的一组所述电源驱动组件连接;
    所述显示控制电路,还用于将每个所述使能信号传输至对应的所述选择组件;
    所述数模转换器,还用于将每个所述模拟信号传输至对应的所述选择组件;
    每个所述选择组件,用于在接收到的所述使能信号为有效电位时,将接收到的所述模拟信号传输至对应的所述电源驱动组件。
  6. 根据权利要求5所述的激光投影设备,其特征在于,每个所述选择组件包括:适配子电路和选择子电路;
    所述适配子电路分别与所述显示控制电路和所述选择子电路连接,用于将接收到的所述使能信号的电压转换至所述选择子电路的额定电压,并将电压转换后的所述使能信号传输至所述选择子电路;
    所述选择子电路还与所述数模转换器连接,用于在接收到的所述使能信号为有效电位时,将接收到的所述模拟信号传输至对应的所述电源驱动组件。
  7. 根据权利要求5所述的激光投影设备,其特征在于,所述激光光源的驱动装置还包括:缓冲电路,所述缓冲电路分别与所述显示控制电路、所述数模转换器和所述选择组件连接;
    所述显示控制电路,用于将每个所述PWM信号和每个所述使能信号传输至所述缓冲电路;
    所述缓冲电路,用于对接收到的每个所述PWM信号和每个所述使能信号分别进行缓冲处理,将缓冲处理后的每个所述PWM信号输出至所述数模转换器,并将缓冲处理后的每个所述使能信号输出至对应的所述选择组件。
  8. 根据权利要求1所述的激光投影设备,其特征在于,每组所述电源驱动组件包括:驱动芯片和外接子电路;
    所述外接子电路分别与所述驱动芯片和对应的所述激光器组件连接,用于检测对应的所述激光器组件的驱动电流,并将所述驱动电流传输至所述驱动芯片;
    所述驱动芯片,用于在接收到所述使能信号为有效电位时,根据所述驱动电流调节向所述外接子电路输出的驱动信号的占空比。
  9. 根据权利要求8所述的激光投影设备,其特征在于,所述外接子电路,还用于根据所述驱动信号的占空比,调节所述驱动电压。
  10. 根据权利要求1所述的激光投影设备,其特征在于,每组所述激光器组件包括多个串联的激光单元,每个所述激光单元包括多个串联的晶体管外壳。
  11. 根据权利要求1所述的激光投影设备,其特征在于,所述激光投影设备还包括:包括所述激光光源的光源系统,以及沿所述光源系统中所述激光光源的光束传输方向依次排列的照明系统和镜头系统,所述照明系统用于在受到所述激光光源出射的激光的照射时,将所述激光调制输出影像光束,所述镜头系统用于将所述影像光束投射至投影屏幕上。
PCT/CN2020/078872 2019-06-20 2020-03-11 激光投影设备 WO2020253275A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/821,907 US11067878B2 (en) 2019-06-20 2020-03-17 Laser projection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910537271 2019-06-20
CN201910537271.3 2019-06-20
CN201910642306.X 2019-07-16
CN201910642306.XA CN112114485B (zh) 2019-06-20 2019-07-16 激光投影设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/821,907 Continuation US11067878B2 (en) 2019-06-20 2020-03-17 Laser projection device

Publications (1)

Publication Number Publication Date
WO2020253275A1 true WO2020253275A1 (zh) 2020-12-24

Family

ID=73795305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078872 WO2020253275A1 (zh) 2019-06-20 2020-03-11 激光投影设备

Country Status (2)

Country Link
CN (2) CN112114485B (zh)
WO (1) WO2020253275A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106154720A (zh) * 2016-06-30 2016-11-23 海信集团有限公司 一种投影光源白平衡调整电路
CN106933010A (zh) * 2015-12-31 2017-07-07 无锡视美乐激光显示科技有限公司 投影设备及其投影控制方法
CN107664904A (zh) * 2016-07-29 2018-02-06 深圳市光峰光电技术有限公司 投影装置、光源系统及其数字控制电流的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7489437B1 (en) * 2007-12-05 2009-02-10 Corning Incorporated Fiber laser red-green-blue (RGB) light source
WO2018224692A1 (en) * 2017-06-09 2018-12-13 Barco N.V. Laser power management in a laser projector
CN109300429A (zh) * 2018-12-07 2019-02-01 四川长虹电器股份有限公司 用于激光显示的激光器控制系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106933010A (zh) * 2015-12-31 2017-07-07 无锡视美乐激光显示科技有限公司 投影设备及其投影控制方法
CN106154720A (zh) * 2016-06-30 2016-11-23 海信集团有限公司 一种投影光源白平衡调整电路
CN107664904A (zh) * 2016-07-29 2018-02-06 深圳市光峰光电技术有限公司 投影装置、光源系统及其数字控制电流的方法

Also Published As

Publication number Publication date
CN112114485A (zh) 2020-12-22
CN112114485B (zh) 2023-05-09
CN116974133A (zh) 2023-10-31

Similar Documents

Publication Publication Date Title
WO2020253448A1 (zh) 激光投影设备
US6618031B1 (en) Method and apparatus for independent control of brightness and color balance in display and illumination systems
US7714517B2 (en) LED driver with current sink control and applications of the same
US9030118B2 (en) Single inductor control of multi-color LED systems
CN110088824A (zh) 光源装置、发光装置和显示装置
US20060274024A1 (en) Liquid crystal display and light emitting diode drive circuit thereof
JP2010287372A (ja) 点灯装置、照明器具および照明制御システム
WO2020253412A1 (zh) 激光投影设备
WO2020253275A1 (zh) 激光投影设备
US11067878B2 (en) Laser projection device
KR101932366B1 (ko) 액정 디스플레이 장비를 위한 led 백라이트 소스 및 액정 디스플레이 장비
WO2021008226A1 (zh) 激光投影设备
WO2020252888A1 (zh) 激光投影设备
CN103442478A (zh) 驱动电路及应用该驱动电路的投影机
JP2006032158A (ja) 放電灯点灯装置
CN203415209U (zh) 显示设备
WO2021012848A1 (zh) 一种 led 显示屏节能供电电路及显示屏
CN214070200U (zh) 红绿蓝白黄led五种光源制造闪光灯具电路
CN217506867U (zh) 一种利用单路led调光ic实现的车载多路背光源驱动电路
CN215453342U (zh) 照明电路、照明装置以及led照明灯具
CN213973788U (zh) 智能大灯驱动板及其控制系统
EP3840537A1 (en) Linear luminance adjusting circuit
WO2021249510A1 (zh) 一种电源及光源系统
US20240147588A1 (en) Constant Voltage PWM to Constant Current PWM LED Lighting System with Thermal and Current Feedback
JP2023086064A (ja) 高効率照明装置駆動回路及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826993

Country of ref document: EP

Kind code of ref document: A1