WO2020253199A1 - 悬挂式磁悬浮轨道空间结构件数据采集系统及判定方法 - Google Patents

悬挂式磁悬浮轨道空间结构件数据采集系统及判定方法 Download PDF

Info

Publication number
WO2020253199A1
WO2020253199A1 PCT/CN2019/128831 CN2019128831W WO2020253199A1 WO 2020253199 A1 WO2020253199 A1 WO 2020253199A1 CN 2019128831 W CN2019128831 W CN 2019128831W WO 2020253199 A1 WO2020253199 A1 WO 2020253199A1
Authority
WO
WIPO (PCT)
Prior art keywords
data acquisition
magnetic levitation
module
data
inverted
Prior art date
Application number
PCT/CN2019/128831
Other languages
English (en)
French (fr)
Inventor
杨杰
周发助
樊宽刚
邓永芳
唐宏
Original Assignee
赣州德业电子科技有限公司
江西理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赣州德业电子科技有限公司, 江西理工大学 filed Critical 赣州德业电子科技有限公司
Publication of WO2020253199A1 publication Critical patent/WO2020253199A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61KAUXILIARY EQUIPMENT SPECIALLY ADAPTED FOR RAILWAYS, NOT OTHERWISE PROVIDED FOR
    • B61K9/00Railway vehicle profile gauges; Detecting or indicating overheating of components; Apparatus on locomotives or cars to indicate bad track sections; General design of track recording vehicles
    • B61K9/08Measuring installations for surveying permanent way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B25/00Tracks for special kinds of railways
    • E01B25/30Tracks for magnetic suspension or levitation vehicles

Definitions

  • the invention relates to the field of data acquisition of a magnetic levitation track, in particular to a data acquisition system and a determination method of a suspended magnetic levitation track space structure.
  • the track of the suspended magnetic levitation train is above the car 12, and the permanent magnetic levitation track 14 is embedded on the inverted U-shaped track beam 11.
  • This kind of suspended magnetic levitation train relies on the repulsive force between the permanent magnet module installed on the bogie of the suspended car 12 and the permanent magnet rail installed in the inverted U-shaped rail beam 11 to make the train ride on the inverted U-shaped rail beam 11.
  • the new type of transportation on the Internet has the advantages of low energy consumption, green pollution-free, safe and comfortable, and strong terrain adaptability. It can also be well adapted to difficult environments that traditional rail transportation cannot apply, and has received widespread attention.
  • the suspended maglev train system is mainly composed of an inverted U-shaped track beam 11, a column 13, and a car 12.
  • the inverted U-shaped track beam 11 is horizontally hung in the air by the uprights 13, so it is called "the sky beam.”
  • the permanent magnetic levitation track 14 is embedded in the inner wall of the inverted U-shaped track beam 11, and the space attitude of the inverted U-shaped track beam 11 directly affects traffic. In the normal operation of the system, the attitude change may cause the train to vibrate, move laterally, nod, or even cause the train to derail.
  • the car 12 of the suspended maglev train requires high precision of the permanent magnetic levitation track 14 during normal operation, and the opening width of the inverted U-shaped track beam 11 and the magnetic track spacing of the permanent magnetic levitation track 14 are required to be relatively stable.
  • the inverted U-shaped track beam 11 of this kind of suspended maglev train is fixed and laid by the column 13 to see if it is within the tolerance range; on the other hand, the control system cannot be provided with adjusting screws to connect the ground concrete to support it in the air.
  • the spatial attitude of the track beam 11 is mainly adjusted by the fixing screws connecting the column and the ground concrete.
  • the spatial attitude and the magnetic track spacing of the inverted U-shaped track beam 11 are difficult to reach the ideal state.
  • certain errors are allowed, and within the allowable range of errors, the control system can be used to adjust and make up for the deficiencies in production and construction.
  • the break of the inverted U-shaped rail beam 11 and the magnetic track are long strips, and different point data is different.
  • the current measurement process is easily affected by human factors, resulting in inaccurate measurement accuracy.
  • specific The point is used as the measurement reference point, which brings inconvenience to the measurement, and the current measurement tools can only measure at a single point. It is difficult to collect relatively comprehensive raw data information, which makes it difficult to accurately determine whether the production and laying of the track beam is within the tolerance range It also cannot provide comprehensive raw data to the control system.
  • the present invention provides a suspended magnetic levitation track space structure data acquisition system to solve the problem of inaccurate measurement accuracy due to the measurement process being easily affected by human factors in the prior art, and because only single-point measurement can be performed. It is difficult to collect relatively comprehensive raw data information, which makes it difficult to accurately determine whether the production and laying of track beams are within the error tolerance, and it is impossible to provide comprehensive raw data to the control system.
  • a suspended magnetic levitation track spatial structure data acquisition system which includes a carrier that is arranged at the bottom end of an inverted U-shaped track beam and can move along the direction of the permanent magnetic levitation track in the inverted U-shaped track beam.
  • the carrier is equipped with an infrared ranging data acquisition module for measuring the distance between the permanent magnetic levitation rails on both sides of the inverted U-shaped track beam, and the height data acquisition module used to measure the vertical height of the inverted U-shaped track beam at different positions.
  • a displacement data acquisition module and a data processing module that generate displacement when the carrier moves;
  • the data collected by the infrared ranging data collection module, the height data collection module, and the displacement data collection module are transmitted to the data processing module.
  • the carrier includes a horizontal fixed shaft arranged in parallel at the bottom end of the inverted U-shaped rail beam, a telescopic sliding rod is vertically arranged on the horizontal fixed shaft, and an infrared ranging data is set on both sides of the top of the telescopic sliding rod.
  • An acquisition module, the positions of the two infrared ranging data acquisition modules are directly opposite to the permanent magnetic levitation track.
  • the height data collection module and the displacement data collection module are arranged on the horizontal fixed axis.
  • the data processing module includes a central processing unit for receiving collected data, a wireless sending module connected to the central processing unit, and a wireless receiving module, a PC, and a data display module arranged in a remote terminal;
  • the central processing unit and the wireless sending module are arranged on the horizontal fixed axis, and the wireless sending module transmits the data processed by the central data processor to the wireless receiving module of the remote terminal, and then receives the data through the PC. After processing, it is displayed through the data display module.
  • a self-adjusting component used to adjust and maintain the vertical between the laser pulse emitted by the infrared ranging data acquisition module and the permanent magnetic levitation track is provided on the top of the telescopic sliding rod.
  • the self-adjusting component includes a linkage shaft inserted in the top end of the telescopic sliding rod, an omni-directional pan/tilt connected to the linkage shaft and located at the top end of the telescopic sliding rod, and two infrared ranging data collection modules Installed on the omni-directional pan/tilt; on the omni-directional pan/tilt, a straightness measuring system for measuring whether the laser pulse of the infrared ranging data acquisition module is perpendicular to the permanent magnetic levitation track is arranged.
  • the straightness measurement system includes an infrared emitter arranged at a relatively fixed position with the infrared distance measurement data collection module, and a CCD detection element for detecting infrared rays.
  • the infrared ranging data acquisition module is connected to the data processing module through a conditioning circuit and an A/D conversion module in turn.
  • Another aspect of the present invention provides a method for determining the compliance of the above-mentioned suspended magnetic levitation track space structure, which includes the following steps:
  • Step 100 The height data collection module collects vertical height values at different positions of the inverted U-shaped track beam
  • Step 200 The displacement data collection module collects the horizontal displacement value caused by the movement of the carrier
  • Step 300 The infrared ranging data acquisition module collects the horizontal distance value between the permanent magnetic levitation tracks on both sides of the inverted U-shaped track beam;
  • Step 400 The data processing module calculates the gradient value of the permanent magnetic suspension track according to the vertical height value and the horizontal displacement value;
  • Step 500 The data processing module determines whether the horizontal distance value and the slope value are within a preset threshold value range, and if any one of the horizontal distance value and the slope value does not meet the threshold value range, then it is determined that the standard is not met.
  • the vertical height value in step 100 and the horizontal displacement value in step 200 are measured at the same point on the permanent magnetic levitation track.
  • the invention mainly realizes that by pushing the carrier along the permanent magnetic levitation track, the spatial data information of different positions of the permanent magnetic levitation can be collected, including the data change information such as the width, horizontal displacement, and vertical height between two permanent magnetic levitation tracks.
  • the data change information such as the width, horizontal displacement, and vertical height between two permanent magnetic levitation tracks.
  • the device can arbitrarily select the initial measurement position as the reference point, and push the measurement device along the track direction to collect the spatial attitude data of the sky beam.
  • the measurement operation is simple. Convenient and fast, with high accuracy.
  • the system can perform online calculation and analysis of the collected data locally, display the detection results on the display module, and make special marks for abnormal conditions, allowing engineers to accurately and conveniently find abnormal points. position.
  • Figure 1 is a schematic diagram of the installation of a carrier on an inverted U-shaped rail beam in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the structure of a carrier in an embodiment of the present invention.
  • Fig. 3 is a working principle diagram of an infrared ranging sensor in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of data output display in an embodiment of the present invention.
  • Figure 6 is a schematic diagram of the installation of a suspended maglev train in the background of the present invention.
  • FIG. 7 is a schematic diagram of the structure of an inverted U-shaped track beam of a suspended maglev train in the background of the present invention.
  • the present invention provides a suspended maglev track spatial structure data acquisition system, which is mainly used to determine the spatial attitude of the inverted U-shaped track beam 11 during construction. Data collection and processing are performed to determine whether the standard is up to the distance before the permanent magnetic levitation rails 14 on both sides.
  • the data acquisition system of the present invention includes a carrier 10 arranged at the bottom end of the inverted U-shaped rail beam 11 and movable along the direction of the permanent magnetic levitation track 14 in the inverted U-shaped rail beam 11.
  • the carrier 10 is provided with an inverted U-shaped Infrared ranging data acquisition module for the distance between the permanent magnetic levitation rails 14 on both sides of the track beam 11, used to measure the height of the vertical height of the inverted U-shaped track beam 11 at different positions, used for the displacement data generated by the movement of the carrier 101
  • An acquisition module and a data processing module; the data collected by the infrared distance measurement data acquisition module, the height data acquisition module and the displacement data acquisition module are transmitted to the data processing module.
  • the infrared ranging data acquisition module is preferably an infrared ranging sensor 3.
  • the present invention provides a method for determining the compliance of the above-mentioned suspended magnetic levitation track space structure, which includes the following steps:
  • Step 100 The height data collection module collects vertical height values at different positions of the inverted U-shaped track beam
  • Step 200 The displacement data collection module collects the horizontal displacement value caused by the movement of the carrier
  • Step 300 The infrared ranging data acquisition module collects the horizontal distance value between the permanent magnetic levitation tracks on both sides of the inverted U-shaped track beam;
  • Step 400 The data processing module calculates the gradient value of the permanent magnetic levitation track according to the vertical height value and the horizontal displacement value;
  • Step 500 The data processing module determines whether the horizontal distance value and the slope value are within a preset threshold value range, and if any one of the horizontal distance value and the slope value does not meet the threshold value range, then it is determined that the standard is not met.
  • the vertical height value in step 100 and the horizontal displacement value in step 200 are measured at the same point on the permanent magnetic levitation track.
  • the determination method can be understood as: separately collecting the vertical height value of the inverted U-shaped track beam 11 at different positions, the horizontal displacement value of the displacement caused by the movement of the carrier 10, and collecting the inverted U The horizontal distance value between the permanent magnetic levitation track 14 on both sides of the type track beam 11, and then calculate the gradient value of the permanent magnetic levitation track 14 according to the vertical height value and the horizontal displacement value, and finally judge whether the horizontal distance value and the gradient value are preset Within the threshold range of, if any one of the horizontal distance value and the slope value does not meet the threshold range, it is determined that the standard is not met.
  • the specific method is as follows:
  • the time point of setting the reference point is t1
  • the time point of re-measurement is t2
  • the vertical height values are h t1 and h t2
  • the horizontal displacement values are X t1 and X t2
  • the setting The threshold range of the slope value of the system inverted U-shaped track beam 11 is: [f mix , f max ], f max is the maximum slope, and f mix is the minimum slope.
  • the slope of the inverted U-shaped track beam 11 meets the standard, otherwise it does not meet the standard.
  • the measurement of the horizontal distance value d is realized based on the specific structure of the carrier 101:
  • the carrier 10 includes a horizontal fixed shaft 1 arranged in parallel at the bottom end of the inverted U-shaped rail beam 11.
  • a telescopic sliding rod 2 is vertically arranged on the horizontal fixed shaft 1, and an infrared distance measurement is arranged on both sides of the top of the telescopic sliding rod 2
  • the data acquisition module is the infrared ranging sensor 3.
  • the infrared ranging sensor 3 is uniformly used below.
  • the positions of the two infrared ranging data acquisition modules are directly opposite to the permanent magnetic levitation track 14, the height data acquisition module and the displacement data
  • the acquisition module is arranged on the horizontal fixed shaft 1.
  • D1 and D2 respectively represent the distance between the left and right infrared distance measuring sensors 3 measured by the permanent magnetic levitation track 14.
  • Each infrared distance measuring sensor 3 has a pair of infrared signal transmitting and receiving diodes.
  • the transmitting tube emits infrared signals of a specific frequency
  • the receiving tube receives infrared signals of this frequency.
  • the infrared signal reflects Come back and be received by the receiving tube.
  • the measured distance d tv/2, t is the time it takes for the infrared signal to be emitted until it is reflected, and v is the propagation speed of the infrared signal in the air.
  • t11 is the time from when the left infrared ranging sensor 3 emits signals to when it encounters an obstacle (here is the permanent magnetic levitation track 14);
  • t12 is the infrared signal emitted by the left infrared ranging sensor 31 reflected from the obstacle encountered Time to return to the receiving tube;
  • t21 is the time from when the right infrared ranging sensor 3 emits a signal to when it encounters an obstacle
  • t22 is the time from when the infrared signal emitted by the right infrared ranging sensor 3 is reflected back to the receiving tube from encountering an obstacle.
  • d d1+dr+d2, where dr is a fixed value, specifically the distance between two infrared ranging sensors 3.
  • dr is a fixed value, specifically the distance between two infrared ranging sensors 3.
  • the vertical height sensor and the infrared ranging sensor 3 fixed on the carrier 10 automatically and continuously collect data, the frequency of the collection can be set as required, and the collected data is processed by the data processing module 400.
  • the data processing module includes a central processing unit for receiving collected data, a wireless sending module connected to the central processing unit, and a wireless receiving module, a PC, and a data display module arranged in a remote terminal;
  • the wireless sending module is arranged on the horizontal fixed axis 1, and the wireless sending module transmits the data processed by the central data processor to the wireless receiving module of the remote terminal, and then receives the data through the PC for processing and then passes the
  • the data display module is displayed in the form of tables and graphs. One way of display is shown in Figure 5, and finally it can be judged whether the slope and gauge are up to standard.
  • the top of the telescopic sliding rod 2 is provided with a distance between the laser pulse emitted by the infrared ranging data acquisition module and the permanent magnetic levitation track 14.
  • the self-adjusting component includes a linkage shaft inserted in the top end of the telescopic sliding rod 2 and an omni-directional pan/tilt connected to the linkage shaft and located at the top end of the telescopic sliding rod 2.
  • the data acquisition module is installed on the omni-directional pan/tilt; the omni-directional pan/tilt is provided with a straightness measuring system for measuring whether the laser pulse of the infrared ranging data acquisition module is perpendicular to the permanent magnetic levitation track 14;
  • the straightness measurement system includes an infrared transmitter arranged at a relatively fixed position with the infrared ranging data acquisition module (infrared ranging sensor 3), and a CCD detection element for detecting infrared rays.
  • the distance of the laser pulse on the permanent magnetic levitation track 14 is basically the same. If the infrared ranging sensor 3 If the tilt occurs, the distance between the laser pulse of the infrared ranging sensor 3 and the surface of the permanent magnetic levitation rail 14 is not directly measured perpendicularly, which leads to inaccurate measurement of the final distance between the two permanent magnetic levitation rails 14.
  • the distance between the infrared distance measuring sensor 3 and the infrared transmitter on the permanent magnetic levitation track 14 is obtained by the CCD detection element, and transmitted to the central processing unit for analysis and processing.
  • the central processing unit determines whether the distance between the laser point and the The setting value is the same. When a certain deviation value occurs, the central processing unit controls the omni-directional pan/tilt to adjust the angle of the infrared ranging sensor 3 so that it can continuously maintain vertical measurement.
  • the present invention mainly realizes that by pushing the carrier 10 along the permanent magnetic levitation track 14, spatial data information of different positions of the permanent magnetic levitation can be collected, including the width, horizontal displacement, and vertical height between the two permanent magnetic levitation tracks 14. Processing, the abnormal data information can be classified and identified, and sent to the display module for display and output through the wireless sending module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Transportation (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

一种悬挂式磁悬浮轨道空间结构件数据采集系统,包括设置在倒U型轨道梁(11)底端且可沿倒U型轨道梁(11)内的永磁悬浮轨道(14)方向移动的载体(10),在载体(10)上设置有用于测量倒U型轨道梁(11)内两侧永磁悬浮轨道(14)之间距离的红外测距数据采集模块,用于测量倒U型轨道梁(11)不同位置垂直高度的高度数据采集模块,用于测量载体(10)移动产生的位移的位移数据采集模块以及数据处理模块,红外测距数据采集模块、高度数据采集模块和位移数据采集模块所采集的数据传输至数据处理模块。沿轨道方向推动该系统可以采集到不同位置的空间位移数据信息,相比单点采集具有方便、快捷、精确、数据易于分析等优势,对天梁的生产、安装、维护等能提供全面的数据支撑。还提供了一种悬挂式磁悬浮轨道空间结构件的判定方法。

Description

悬挂式磁悬浮轨道空间结构件数据采集系统及判定方法 技术领域
本发明涉及磁悬浮轨道的数据采集领域,具体地涉及悬挂式磁悬浮轨道空间结构件数据采集系统及判定方法。
背景技术
在现有技术中,请参阅图6和图7,悬挂式磁悬浮列车的轨道在轿厢12上方,永磁悬浮轨道14内嵌在倒U型轨道梁11上。
此种悬挂式磁悬浮列车是依靠安装在悬挂轿厢12转向架上的永磁模块与安装在倒U型轨道梁11里面的永磁磁轨之间产生排斥力使列车在倒U型轨道梁11上运行的新型交通工具,具有能耗低、绿色无污染、安全舒适、地形适应能力强等优点,对传统轨道交通无法适用的困难环境也能较好适用,受到广泛关注。
悬挂式磁悬浮列车系统主要由倒U型轨道梁11、立柱13、轿厢12组成。倒U型轨道梁11通过立柱13横挂在空中故称为“天梁”,永磁悬浮轨道14内嵌在倒U型轨道梁11的内壁,倒U型轨道梁11的空间姿态直接影响的交通系统的正常运行,姿态变化有可能引起列车振动、横移、点头运动,甚至有可能引发列车脱轨事件。
悬挂式磁浮列车的轿厢12在正常运行的过程中对永磁悬浮轨道14的精度要求较高,需要倒U型轨道梁11的开口宽度、永磁悬浮轨道14的磁轨间距相对稳定。
弯道上的永磁悬浮轨道14的生产和磁悬浮轨道14的铺设过程中更是需要始终保持磁轨间距,但由于钢体结构的热胀冷缩,钢体在焊接过程中容易发生变形,所以在技术要求上是非常难以实现的,这给倒U型轨道梁11的生产和磁轨铺设技术带来严重的挑战。
此种悬挂式磁悬浮列车的倒U型轨道梁11是由立柱13通过固定铺设是否在误差允许范围内;另一方面,不能给控制系统提供调节螺丝与地面浇筑混凝土连接支撑在空中,倒U型轨道梁11的空间姿态主要是由立柱与地面混凝土链接的固定螺丝来调节,但由于地形因素和施工技术的限制,倒U型轨道梁11的空间姿态和磁轨间距很难达到理想状态,在倒U型轨道梁11生产和铺设过程中,允许一定的误差,在误差允许范围内可以用通过控制系统调控与弥补生产和施工中的不足。
倒U型轨道梁11破口和磁轨都是长条形的,不同的点数据不一样,目前的测量过程容易受到人为因素影响,导致测量精度失准,同时在实际操作中,需要以特定点作为测量基准点,给测量带来不便,并且目前的测量工具只能单点测量,很难采集到比较全面的原始数据信息,导致很难精确判断轨道梁的生产和铺设是否在误差允许范围内;也无法给控制系统提供全面的原始数据。
发明内容
为此,本发明提供一种悬挂式磁悬浮轨道空间结构件数据采集系统,以解决现有技术中由于测量过程易受到人为因素影响而导致测量 精度失准,以及由于只能进行单点测量,很难采集到比较全面的原始数据信息,导致很难精确判断轨道梁的生产和铺设是否在误差允许范围内,也不能给控制系统提供全面的原始数据的问题。
为了实现上述目的,本发明提供如下技术方案:
本发明一方面提供一种悬挂式磁悬浮轨道空间结构件数据采集系统,其包括设置在倒U型轨道梁底端且可沿倒U型轨道梁内的永磁悬浮轨道方向移动的载体,在所述载体上设置有用于测量倒U型轨道梁内两侧永磁悬浮轨道之间距离的红外测距数据采集模块,用于测量倒U型轨道梁不同位置垂直高度的高度数据采集模块,用于测量所述载体移动产生位移的位移数据采集模块、以及数据处理模块;
所述红外测距数据采集模块、所述高度数据采集模块和所述位移数据采集模块所采集的数据传输至所述数据处理模块。
优选地,所述载体包括平行设置在倒U型轨道梁底端的水平固定轴,在所述水平固定轴上垂直设置有伸缩滑竿,在所述伸缩滑竿的顶端两侧各设置一个红外测距数据采集模块,两个所述红外测距数据采集模块的位置与所述永磁悬浮轨道正相对。
优选地,所述高度数据采集模块和位移数据采集模块设置在所述水平固定轴上。
优选地,所述数据处理模块包括用于接收采集数据的中央处理器,与所述中央处理器连接的无线发送模块,以及设置在远程终端的无线接收模块、PC机和数据显示模块;所述中央处理器与所述无线发送模块设置在所述水平固定轴上,所述无线发送模块将经过所述中央数 据处理器处理的数据传输至远程终端的无线接收模块,再通过PC机接收数据进行处理后通过所述数据显示模块进行显示。
优选地,在所述伸缩滑竿顶端设置有用于调节并保持所述红外测距数据采集模块发出的激光脉冲与所述永磁悬浮轨道之间垂直的自调节部件。
优选地,所述自调节部件包括插设在所述伸缩滑竿顶端内的联动轴,以及与联动轴连接且位于所述伸缩滑竿顶端的全方位云台,两个所述红外测距数据采集模块安装在所述全方位云台上;在所述全方位云台上设置有用于测量红外测距数据采集模块的激光脉冲与所述永磁悬浮轨道之间是否垂直的测直系统。
优选地,所述测直系统包括与所述红外测距数据采集模块成相对固定位置设置的红外发射器,以及用于探测红外线的CCD探测元件。
优选地,所述红外测距数据采集模块依次通过调理电路、和A/D转换模块连接在数据处理模块上。
本发明另一方面提供上述悬挂式磁悬浮轨道空间结构件的达标判定方法,包括如下步骤:
步骤100、高度数据采集模块采集倒U型轨道梁不同位置的垂直高度值;
步骤200、位移数据采集模块采集载体运动发生的水平位移值;
步骤300、红外测距数据采集模块采集倒U型轨道梁内两侧的永磁悬浮轨道之间的水平距离值;
步骤400、数据处理模块依据垂直高度值和水平位移值计算永磁 悬浮轨道的坡度值;
步骤500、数据处理模块判断水平距离值和坡度值是否在预先设定的阈值范围之内,如果所述水平距离值和坡度值任一项不满足阈值范围,则判定不达标。
优选地,所述步骤100中垂直高度值和步骤200中水平位移值的测量取永磁悬浮轨道上相同的点。
本发明的实施方式具有如下优点:
本发明主要实现了沿永磁悬浮轨道推动载体,就可以采集到永磁悬浮不同位置的空间数据信息,包括两永磁悬浮轨道之间的宽度、水平位移、垂直高度等数据变化信息,经过分析处理,可以对异常数据信息进行分类标识,并通过无线发送模块发送到显示模块显示输出;解决工程实践中难以全面采集倒U型轨道梁的空间姿态和永磁悬浮轨道的间距数据问题,数据采集过程中可以减少人为因素导致测量精度失准,同时在实际操作中,该装置可以任意选择初始测量的位置作为基准点,沿着轨道方向推动测量装置就可以采集到天梁的空间姿态数据,测量中操作简单,方便快捷,准确度高,此外,系统能把采集到的数据在本地进行在线计算与分析,在显示模块显示检测结果,并对异常状态作特殊标注,让工程师能够准确、便捷地找到异常点的位置。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案, 下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
图1为本发明实施方式中载体在倒U型轨道梁上的安装示意图;
图2为本发明实施方式中载体的结构示意图;
图3为本发明实施方式中红外测距传感器的工作原理图;
图4为本发明实施方式中坡度测量的示意图;
图5为本发明实施方式中数据输出显示示意图;
图6为本发明背景技术中悬挂式磁悬浮列车的安装示意图;
图7为本发明背景技术中悬挂式磁悬浮列车的倒U型轨道梁结构示意图。
图中:10-载体;1-水平固定轴;2-伸缩滑竿;3-红外测距传感器;11-倒U型轨道梁;12-轿厢;13-立柱;14-永磁悬浮轨道14。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参阅图6和图7所示,具体为悬挂式磁悬浮列车的现状的设置原理,其中倒U型轨道梁11通过地面上固定的立柱的支撑横挂在空中,在图7中,倒U型轨道梁11的表示仅为一个示意,倒U型轨道梁11具体结构如图6所示。
参阅图6所示,在倒U型轨道梁11内壁两端为永磁悬浮轨道14,悬挂式磁悬浮列车的轿厢与转向架的刚性连接,通过转向架上的永磁块和永磁悬浮轨道14上固定的永磁块产生的斥力悬浮在空中。
参阅图1和图2所示,基于悬挂式磁悬浮列车的现有构造,本发明提供了悬挂式磁悬浮轨道空间结构件数据采集系统,主要用于在施工时对倒U型轨道梁11的空间姿态和两侧永磁悬浮轨道14之前的间距进行数据采集和处理判断是否达标。
本发明数据采集系统包括设置在倒U型轨道梁11底端且可沿倒U型轨道梁11内的永磁悬浮轨道14方向移动的载体10,在所述载体10上设置有用于测量倒U型轨道梁11内两侧永磁悬浮轨道14之间距离的红外测距数据采集模块,用于测量倒U型轨道梁11不同位置垂直高度的高度数据采集模块,用于载体101运动产生位移的位移数据采集模块、以及数据处理模块;所述红外测距数据采集模块、所述高度数 据采集模块和所述位移数据采集模块所采集的数据传输至所述数据处理模块。
其中,红外测距数据采集模块优选为红外测距传感器3。
另一方面本发明提供了一种上述悬挂式磁悬浮轨道空间结构件的达标判定方法,包括如下步骤:
步骤100、高度数据采集模块采集倒U型轨道梁不同位置的垂直高度值;
步骤200、位移数据采集模块采集载体运动发生的水平位移值;
步骤300、红外测距数据采集模块采集倒U型轨道梁内两侧的永磁悬浮轨道之间的水平距离值;
步骤400、数据处理模块依据垂直高度值和水平位移值计算永磁悬浮轨道的坡度值;
步骤500、数据处理模块判断水平距离值和坡度值是否在预先设定的阈值范围之内,如果所述水平距离值和坡度值任一项不满足阈值范围,则判定不达标。
本发明优选实施方式中,所述步骤100中垂直高度值和步骤200中水平位移值的测量取永磁悬浮轨道上相同的点。
通过该系统,实现对磁悬浮轨道空间结构件的达标判定,其判定方法可理解为:分别采集倒U型轨道梁11不同位置的垂直高度值、载体10运动产生位移的水平位移值以及采集倒U型轨道梁11内两侧的永磁悬浮轨道14之间的水平距离值,然后依据垂直高度值和水平位移值计算永磁悬浮轨道14的坡度值,最后判断水平距离值和坡度值是否 在预先设定的阈值范围之内,如果所述水平距离值和坡度值任一项不满足阈值范围,则判定不达标。具体方法如下:
在永磁悬浮轨道14上选取测量的初始位置作为基准点,并测量垂直高度值h、水平位移值X、和倒U型轨道梁11内两侧的永磁悬浮轨道14之间的水平距离值d,分别通过高度数据采集模块、位移数据采集模块和红外测距数据采集模块测得。
移动载体10,选取不同的时间点再次测量,时间点可以选取若干,选取方式可以等间距也可以不等间距。以下以两个时间点为例进行具体说明:
如图4所示,设定基准点的时间点为t1,再次测量时间点为t2,此时垂直高度值分别为h t1和h t2,水平位移值分别为X t1和X t2,且设定系统倒U型轨道梁11的坡度值的阈值范围为:[f mix,f max],f max为最大坡度,f mix为最小坡度。
t1到t2的坡度值f计算为:f=(h t1-h t2)/x 1-x 2
当f处于阈值范围内,则倒U型轨道梁11的坡度达标,否则不达标。
对于水平距离值d的测量基于载体101的具体构造实现:
载体10包括平行设置在倒U型轨道梁11底端的水平固定轴1,在所述水平固定轴1上垂直设置有伸缩滑竿2,在所述伸缩滑竿2的顶端两侧各设置一个红外测距数据采集模块,即为红外测距传感器3,以下统一使用红外测距传感器3,两个所述红外测距数据采集模块的位置与所述永磁悬浮轨道14正相对,高度数据采集模块和位移数据采集模块设置在所述水平固定轴1上。
请参阅图3所示,D1和D2分别表示左右两侧的红外测距传感器3的测量出的各自距离永磁悬浮轨道14的间距。
每个红外测距传感器3具有一对红外信号发射与接收二极管,发射管发射特定频率的红外信号,接收管接收这种频率的红外信号,当红外的检测方向遇到障碍物时,红外信号反射回来被接收管接收。
测量的距离d=tv/2,t为红外信号发射出去到反射回来所用的时间,v为红外信号在空气中传播的速度。
故d1=(t11+t12)v/2,d2=(t21+t22)v/2;
其中,t11为左侧红外测距传感器3发射信号开始到遇到障碍物(这里即为永磁悬浮轨道14)的时间;t12是左侧红外测距传感器31发射出的红外信号从遇到障碍反射回到接收管的时间;
t21为右侧红外测距传感器3发射信号开始到遇到障碍物的时间,t22是右侧红外测距传感器3发射出的红外信号从遇到障碍反射回到接收管的时间。
则d=d1+dr+d2,其中dr为固定值,具体为两个红外测距传感器3之间的距离。设定一个允许的最小永磁悬浮轨道14间距D mix和一个允许的最大永磁悬浮轨道14间距D max,当永磁悬浮轨道14实际测量某点的间距d小于D mix或者大于D max时表示轨道间距不符合要求。
根据以上对于三种数据值的测量方法和计算方法,选择初始位置作为基准位置,数据信息设为(h=0x=0d=dr),沿着轨道方向推动载体101,这样能够直接测得垂直高度差值、水平位移差值和水平距离差值。
固定在载体10上的垂直高度传感器和红外测距传感器3自动连续采集数据,采集的频率可以按需要设置,采集到的数据经过数据处理模块400来处理。
数据处理模块包括用于接收采集数据的中央处理器,与所述中央处理器连接的无线发送模块,以及设置在远程终端的无线接收模块、PC机和数据显示模块;所述中央处理器与所述无线发送模块设置在所述水平固定轴1上,所述无线发送模块将经过所述中央数据处理器处理的数据传输至远程终端的无线接收模块,再通过PC机接收数据进行处理后通过所述数据显示模块以表格和图形的形式显示出来,显示的一种方式参阅图5所示,最终能够判断得出坡度、轨距是否达标。
由于在载体101移动的过程中,有可能会导致水平固定轴11发生左右或上下的偏移,从而使得测量部件与永磁悬浮轨道14之间并非与之前相同的垂直测量,就容易导致误差的存在,考虑这个隐私,本实施方式提供了一种解决方案,具体在所述伸缩滑竿2顶端设置有用于调节并保持所述红外测距数据采集模块发出的激光脉冲与所述永磁悬浮轨道14之间垂直的自调节部件,自调节部件包括插设在所述伸缩滑竿2顶端内的联动轴,以及与联动轴连接且位于所述伸缩滑竿2顶端的全方位云台,两个所述红外测距数据采集模块安装在所述全方位云台上;在所述全方位云台上设置有用于测量红外测距数据采集模块的激光脉冲与所述永磁悬浮轨道14之间是否垂直的测直系统,所述测直系统包括与所述红外测距数据采集模块(红外测距传感器3)成相对固定位置设置的红外发射器,以及用于探测红外线的CCD探测元件。
其主要是利用相对固定设置的红外测距传感器3与红外发射器之间的角度值固定,所以其激光脉冲在永磁悬浮轨道14上上激光点距离是基本不变的,如果红外测距传感器3发生倾斜,则红外测距传感器3的激光脉冲与永磁悬浮轨道14表面不是直接垂直测量的距离,这就导致最终两永磁悬浮轨道14的间距测量不准确。
当出现这种情况时,通过CCD探测元件获取红外测距传感器3与红外发射器在永磁悬浮轨道14上的激光点距离,传输至中央处理器分析处理,中央处理器通过判断激光点距离是否与设定值相同,当出现一定的偏差值,中央处理器控制全方位云台调节红外测距传感器3的角度,使其持续保持垂直测量。
在本实施方式中,所有电子元件或模块之间的布线没有具体的要求,可以设置在外部,也可以通过伸缩滑竿2内部进行。
本发明主要实现了沿永磁悬浮轨道14推动载体10,就可以采集到永磁悬浮不同位置的空间数据信息,包括两永磁悬浮轨道14之间的宽度、水平位移、垂直高度等数据变化信息,经过分析处理,可以对异常数据信息进行分类标识,并通过无线发送模块发送到显示模块显示输出。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

  1. 悬挂式磁悬浮轨道空间结构件数据采集系统,其特征在于,
    包括设置在倒U型轨道梁底端且可沿倒U型轨道梁内的永磁悬浮轨道方向移动的载体(10),在所述载体(10)上设置有用于测量倒U型轨道梁内两侧永磁悬浮轨道之间距离的红外测距数据采集模块,用于测量倒U型轨道梁不同位置垂直高度的高度数据采集模块,用于测量所述载体(1)移动产生位移的位移数据采集模块、以及数据处理模块;
    所述红外测距数据采集模块、所述高度数据采集模块和所述位移数据采集模块所采集的数据传输至所述数据处理模块。
  2. 根据权利要求1所述的悬挂式磁悬浮轨道空间结构件数据采集系统,其特征在于,所述载体(10)包括平行设置在倒U型轨道梁底端的水平固定轴(1),在所述水平固定轴(1)上垂直设置有伸缩滑竿(2),在所述伸缩滑竿(2)的顶端两侧各设置一个红外测距数据采集模块,两个所述红外测距数据采集模块的位置与所述永磁悬浮轨道正相对。
  3. 根据权利要求1所述的悬挂式磁悬浮轨道空间结构件数据采集系统,其特征在于,所述高度数据采集模块和位移数据采集模块设置在所述水平固定轴(1)上。
  4. 根据权利要求1所述的悬挂式磁悬浮轨道空间结构件数据采集系统,其特征在于,所述数据处理模块包括用于接收采集数据的中央处理器,与所述中央处理器连接的无线发送模块,以及设置在远程 终端的无线接收模块、PC机和数据显示模块;所述中央处理器与所述无线发送模块设置在所述水平固定轴(1)上,所述无线发送模块将经过所述中央数据处理器处理的数据传输至远程终端的无线接收模块,再通过PC机接收数据进行处理后通过所述数据显示模块进行显示。
  5. 根据权利要求2所述的悬挂式磁悬浮轨道空间结构件数据采集系统,其特征在于,在所述伸缩滑竿(2)顶端设置有用于调节并保持所述红外测距数据采集模块发出的激光脉冲与所述永磁悬浮轨道之间垂直的自调节部件。
  6. 根据权利要求5所述的悬挂式磁悬浮轨道空间结构件数据采集系统,其特征在于,所述自调节部件包括插设在所述伸缩滑竿(2)顶端内的联动轴,以及与联动轴连接且位于所述伸缩滑竿(2)顶端的全方位云台,两个所述红外测距数据采集模块安装在所述全方位云台上;在所述全方位云台上设置有用于测量红外测距数据采集模块的激光脉冲与所述永磁悬浮轨道之间是否垂直的测直系统。
  7. 根据权利要求5所述的悬挂式磁悬浮轨道空间结构件数据采集系统,其特征在于,所述测直系统包括与所述红外测距数据采集模块成相对固定位置设置的红外发射器,以及用于探测红外线的CCD探测元件。
  8. 根据权利要求4所述的悬挂式磁悬浮轨道空间结构件数据采集系统,其特征在于,所述红外测距数据采集模块依次通过调理电路、和A/D转换模块连接在数据处理模块上。
  9. 悬挂式磁悬浮轨道空间结构件的判定方法,其特征在于,包括如下步骤:
    步骤100、高度数据采集模块采集倒U型轨道梁不同位置的垂直高度值;
    步骤200、位移数据采集模块采集载体运动发生的水平位移值;
    步骤300、红外测距数据采集模块采集倒U型轨道梁内两侧的永磁悬浮轨道之间的水平距离值;
    步骤400、数据处理模块依据垂直高度值和水平位移值计算永磁悬浮轨道的坡度值;
    步骤500、数据处理模块判断水平距离值和坡度值是否在预先设定的阈值范围之内,如果所述水平距离值和坡度值任一项不满足阈值范围,则判定不达标。
  10. 根据权利要求9所述的悬挂式磁悬浮轨道空间结构件的判定方法,其特征在于,所述步骤100中垂直高度值和步骤200中水平位移值的测量取永磁悬浮轨道上相同的点。
PCT/CN2019/128831 2019-06-21 2019-12-26 悬挂式磁悬浮轨道空间结构件数据采集系统及判定方法 WO2020253199A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910544194.4A CN112109765B (zh) 2019-06-21 2019-06-21 悬挂式磁悬浮轨道空间结构件数据采集系统
CN201910544194.4 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020253199A1 true WO2020253199A1 (zh) 2020-12-24

Family

ID=73796545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128831 WO2020253199A1 (zh) 2019-06-21 2019-12-26 悬挂式磁悬浮轨道空间结构件数据采集系统及判定方法

Country Status (2)

Country Link
CN (1) CN112109765B (zh)
WO (1) WO2020253199A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264908A (zh) * 2021-12-23 2022-04-01 同济大学 一种自动触发的磁浮轨道在线监测系统及方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113605157B (zh) * 2021-08-12 2023-03-31 江西理工大学 内嵌式永磁悬浮交通悬浮架及轨道机械结构
CN114413798B (zh) * 2022-01-26 2023-01-24 西南交通大学 一种超导电动磁悬浮轨道不平顺检测装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255963A (ja) * 2006-03-22 2007-10-04 Chubu Hsst Development Corp 変位計異常検出装置
CN106274980A (zh) * 2016-09-28 2017-01-04 成都奥克特科技有限公司 基于激光监测的轨道状态在线监测方法
CN106320112A (zh) * 2016-08-31 2017-01-11 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮辅助作业机器人
CN108974045A (zh) * 2018-08-24 2018-12-11 福建铁工机智能机器人有限公司 一种基于机器视觉的自动行走轨道检测仪
CN108973767A (zh) * 2018-08-06 2018-12-11 江西理工大学 悬挂式磁悬浮列车的悬浮控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2261302C2 (ru) * 2003-04-17 2005-09-27 Сибирский государственный университет путей сообщения Способ определения пространственных параметров рельсового пути и устройство для его осуществления
CN1603189A (zh) * 2004-11-11 2005-04-06 上海交通大学 磁悬浮轨道状态自动检测装置和方法
CN1603188A (zh) * 2004-11-11 2005-04-06 上海交通大学 磁悬浮轨道自动检测传感器布置方法
CN206125056U (zh) * 2016-08-31 2017-04-26 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮f轨探伤机器人
CN108426557A (zh) * 2017-02-12 2018-08-21 钱浙滨 一种轨道平顺检测方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255963A (ja) * 2006-03-22 2007-10-04 Chubu Hsst Development Corp 変位計異常検出装置
CN106320112A (zh) * 2016-08-31 2017-01-11 中铁第四勘察设计院集团有限公司 一种中低速磁悬浮辅助作业机器人
CN106274980A (zh) * 2016-09-28 2017-01-04 成都奥克特科技有限公司 基于激光监测的轨道状态在线监测方法
CN108973767A (zh) * 2018-08-06 2018-12-11 江西理工大学 悬挂式磁悬浮列车的悬浮控制方法
CN108974045A (zh) * 2018-08-24 2018-12-11 福建铁工机智能机器人有限公司 一种基于机器视觉的自动行走轨道检测仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114264908A (zh) * 2021-12-23 2022-04-01 同济大学 一种自动触发的磁浮轨道在线监测系统及方法
CN114264908B (zh) * 2021-12-23 2024-05-14 同济大学 一种自动触发的磁浮轨道在线监测系统及方法

Also Published As

Publication number Publication date
CN112109765A (zh) 2020-12-22
CN112109765B (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
WO2020253199A1 (zh) 悬挂式磁悬浮轨道空间结构件数据采集系统及判定方法
EP1774275B1 (en) Apparatus for detecting hunting and angle of attack of a rail vehicle wheelset
CN205619890U (zh) 基于激光测距技术的车辆长宽高测量装置
CN108974045A (zh) 一种基于机器视觉的自动行走轨道检测仪
CN110615017A (zh) 一种轨道交通自动化检测系统及方法
CN108146467B (zh) 一种磁浮列车精确定位辅助装置及方法
CN106091951B (zh) 一种城轨列车轮缘参数在线检测系统及方法
CN201232146Y (zh) 隧道、轨道测量系统
CN203569401U (zh) 轨道板板面平整度检查装置
WO2019076364A1 (zh) 一种激光轨道平顺度检测装置及方法
CN103643620B (zh) 一种用于路面弯沉测量的激光束平行度调节系统及其方法
CN208665210U (zh) 一种基于机器视觉的自动行走轨道检测仪
CN104535136A (zh) 物位检测方法和系统
CN114440791A (zh) 一种地铁限界检测系统以及方法
CN202641743U (zh) 铁路车站到发线建筑限界检测装置
CN103507832B (zh) 一种轨道几何尺寸检测装置
CN208792112U (zh) 一种路基变形位移放大装置
CN113836637A (zh) 一种测定磁浮列车重量的方法、装置以及可读存储介质
CN212245794U (zh) 一种基于超声波和激光组合的施工电梯楼层定位装置
CN218561965U (zh) 一种捣固车双弦光电测量装置
CN218561966U (zh) 一种捣固车单弦光电测量装置
CN110081856A (zh) 大跨度模板起拱的测量方法
CN218035016U (zh) 一种路基边坡坡率检测装置
CN110525463A (zh) 地下矿山有轨运输轨道检查车及检查方法
CN217846639U (zh) 一种基于多维数据融合的车载式接触网限界测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933701

Country of ref document: EP

Kind code of ref document: A1