WO2019076364A1 - 一种激光轨道平顺度检测装置及方法 - Google Patents

一种激光轨道平顺度检测装置及方法 Download PDF

Info

Publication number
WO2019076364A1
WO2019076364A1 PCT/CN2018/110993 CN2018110993W WO2019076364A1 WO 2019076364 A1 WO2019076364 A1 WO 2019076364A1 CN 2018110993 W CN2018110993 W CN 2018110993W WO 2019076364 A1 WO2019076364 A1 WO 2019076364A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
vertical
horizontal
laser
positioning target
Prior art date
Application number
PCT/CN2018/110993
Other languages
English (en)
French (fr)
Inventor
王启华
王东波
王海波
Original Assignee
王启华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王启华 filed Critical 王启华
Publication of WO2019076364A1 publication Critical patent/WO2019076364A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the invention relates to the technical field of laser collimation measurement, and in particular to a laser track smoothness detecting device and method.
  • the rail direction and height of the railway track are two basic geometrical parameters in the track smoothness check.
  • the track direction refers to the lateral direction of the track centerline along the ground surface, whether it is straight on a straight line, and whether it is rounded on the curve. If the track's track is not smooth, it will cause the train to shake and snake and move, and thus increase the lateral impact of the vehicle on the track, while further aggravating the track irregularity.
  • the height is the longitudinal height difference of the top surface of the track. When there are irregularities in the front and rear of the track, the train will bump and impact when passing through these tracks. The above process can further aggravate the unevenness of the high and low directions. The above-mentioned irregularity will inevitably increase the destructive power of the train to the track, thereby accelerating the wear of the wheel rail and shortening the life of the sleeper. Therefore, it directly affects the safety, stability and comfort of the train at high speed.
  • the track inspection vehicle generally adopts the inertial reference method measurement system, which is used to build an inertial reference reference by using an acceleration sensor or a gyro in a moving vehicle body. By performing complex analysis and calculation on the measured values of the two inertial devices, the pair is realized.
  • Comprehensive measurement of orbital geometric parameters They are high in speed and comprehensive in detection, but their structure is very complicated, the manufacturing cost is extremely high, and they are bulky, so they are not suitable for conventional track construction and maintenance operations.
  • the geometric state parameters (including gauge, level, triangle pit; track direction, height, etc.) are detected simultaneously. It is mainly used for routine construction and maintenance operations, with high detection accuracy and detection efficiency, and provides favorable conditions for guiding reasonable construction and maintenance operations.
  • the detection of the orbital direction and the height is obtained by stepwise recursive calculation of the lm string. Due to the possible unevenness of the inner surface of the track and the plane of the top surface of the rail, there may be an uncertain deviation between the measured value and the actual state.
  • the detection accuracy is affected to some extent.
  • the manual chord method has been used to detect the track smoothness for many years. Due to the sinking and bending of the long steel wire string and the poor precision of the traditional tools, it is affected by the natural environment and human subjective factors, resulting in poor detection accuracy. The problem of low work efficiency is outstanding, and it is impossible to adapt to the quality and efficiency requirements of railway system track maintenance after speed increase.
  • large-scale road maintenance machinery such as rail tamping vehicles
  • a laser automatic pick-up system based on laser collimation measurement technology, which is a laser fixed on the trolley in front of the line.
  • the laser beam emitted by the transmitter and the laser receiver placed at the front end of the tamping vehicle establish a laser reference line, which is accurately detected by the laser measuring system, confirms the amount of the starting line of the tested line, and directly controls the tamping vehicle for maintenance work through the control circuit.
  • the laser track smoothness detector used in general maintenance maintenance operations generally places the laser emitter and the positioning target at a certain distance on the detected track and fixes them as required.
  • the telescope on the laser transmitter of the beginning is used to initially aim the target of the terminal, and then the direction of the beam of the laser emitter is fine-tuned so that the center of the laser spot is located at the center of the target surface of the target, thereby establishing a space above the track parallel to the center line of the track.
  • a laser baseline At present, artificial visual methods are mainly used to confirm the position of the spot on the target and the measurement target. When the measuring target moves along the center line of the track, the displacement of the center of the laser spot on the measuring target surface is detected by the displacement sensor, that is, the track direction and the height unevenness of each measuring point on the track can be obtained.
  • the laser beam is used instead of the physical string, along with various improved spots (round or concentric rings), improved visual targets (easy to identify) The grid shape), as well as the computer processing of the detected data, make the laser detector significantly improve the detection accuracy and work efficiency compared with the traditional manual string drawing method.
  • the structure is simple, and this intuitive and direct measurement can also reduce the cumulative error caused by various indirect measurement and complex conversion to some extent. Therefore, in recent years, it has begun to promote the application in the railway system.
  • the red beam (spot or concentric ring) emitted by the laser emitter after telescope aiming and manual coarse adjustment and fine adjustment, needs to confirm the grid target that has been incident on the positioning target. Center; in the inspection operation, it is also necessary to frequently confirm whether the center of the spot is centered on the grid target center on the target, and then read the deviation value displayed by the displacement sensor.
  • long-distance laser track smoothness detectors generally use a visual method to distinguish the center of the reference spot from the center of the grid target. Confrontation.
  • the grid target line is clearly identified, a certain illumination intensity is required, and the clear discrimination of the edge of the red spot requires a certain dark environment condition.
  • the natural illuminance changes greatly in the field work environment. When the spot is too bright and the environment is too dark, the eyes are prone to fatigue or damage. When the environment is too bright and the spot is too weak, the recognition accuracy will be greatly reduced. This situation makes the actual detection accuracy greatly affected, and at the same time significantly limits the extension of the current detection working distance.
  • the laser reference line as the measurement reference will be subject to changes in the laser parameters during the whole process of detection, especially the influence of the turbulence in the transmission, the jitter drift of the spot and the slow bending of the direction, as the detection distance is lengthened. The resulting deviation will increase dramatically.
  • the deviation of the beam affected by atmospheric turbulence is about 8-16".
  • the former passes the laser.
  • the common measures such as temperature field stabilization and beam expansion and collimation of the outgoing beam can be better solved, but the latter is a problem that has always existed in the field engineering environment and is difficult to solve for a long time. It directly threatens the accuracy of the entire engineering measurement result. Accuracy and reliability.
  • the results of the test calibration (such as indication error and repeatability error) in the laboratory or selected reference line conditions, the proposed high resolution and high precision of the instrument itself, the index for the engineering inspection site Will be greatly discounted.
  • the products currently promoted are often supplemented with additional conditions: when the grid lines are difficult to see, provide auxiliary lighting; if the atmospheric interference is too large, or there are abnormal weather such as rain, fog, strong wind, etc. Or use it in stable weather; check the transmitter angle or the offset of the reference spot after the test operation is completed. If the offset is out of tolerance, it should be re-detected.
  • the auxiliary light source will weaken the edge definition of the laser spot; as for the condition of determining whether the weather is stable and the spot jump is too large, and whether the reference spot shift is too large in use to check and retest, Whether the post-nuclear retest results are more reliable than the previous ones, all of which rely on subjective human processing is difficult to implement. Moreover, these treatment methods will also seriously affect the efficiency of the inspection work at the engineering site.
  • the present invention provides a laser track smoothness detecting device and method, and the present invention at least solves some or all of the problems mentioned above.
  • the present invention provides the following technical solutions:
  • the present invention provides a laser track smoothness detecting device, comprising: a laser emitting device, a photoelectric positioning target, and an optoelectronic measuring target; the laser emitting device is fixedly installed at a beginning end of the track detecting section, and emits a starting end Detecting a collimated laser beam of a reference point; the photo-positioning target is fixedly mounted at a terminal end of the track detecting section, and a center of the photoreceiving head of the photo-positioning target coincides with a terminal detecting reference point; when the laser emitted by the laser emitting device When the beam center is centered with the center of the photoreceiving head of the positioning target, a laser reference beam is established; the photoelectric measuring target moves in the track detecting section for detecting the smoothness at different positions of the track detecting section, Optical receiver center of the center of said laser beam reference optoelectronic measuring horizontal displacement of the measurement target on the sensor when the target value of the horizontal base optoe
  • the photo-positioning target is further provided with a deviation detecting unit for detecting a horizontal random deviation value ⁇ X i of the laser reference beam in the horizontal direction and a vertical random deviation in the vertical direction. a value ⁇ Y i , the ⁇ X i and ⁇ Y i corresponding to the time of the horizontal base measurement value X i and the vertical base measurement value Y i ;
  • the correction coefficient K i corresponding to the position P i to be measured is determined. S i /L;
  • the real-time computation module is further provided with a target on the optical measurement, the means for calculating the real value X i, Y i measurements based vertical and the horizontal base optical positioning target optoelectronic measurement according to the acquired measurement target itself
  • the photoelectric positioning target includes: a positioning target mounting base, a positioning target chassis disposed above the positioning target mounting base, a positioning target level disposed on the positioning target chassis, and a positioning target chassis disposed on the positioning target chassis Deviation detection unit
  • the deviation detecting unit specifically includes: a positioning target horizontal sliding plate fixed on the positioning target chassis in a horizontal direction, a positioning target horizontal slider sliding on the positioning target horizontal sliding plate, and a positioning target disposed in a vertical direction a positioning target vertical sliding plate on the horizontal slider, a positioning target vertical sliding block sliding on the positioning target vertical sliding plate, a horizontal micro motor-driven mechanism connected to the positioning target horizontal sliding block, and a vertical sliding block connection with the positioning target a vertical micro motor-driven mechanism, a positioning target horizontal displacement sensor for detecting a moving distance of the horizontal slider of the positioning target, a positioning target vertical displacement sensor for detecting a moving distance of the vertical slider of the positioning target, and a photoelectric receiving head connected to the positioning target a positioning target photoelectric conversion amplifying circuit, a positioning target photoelectric driving circuit connected to the positioning target photoelectric conversion amplifying circuit, a positioning target horizontal displacement signal processor and a vertical displacement signal respectively connected with the positioning target horizontal displacement sensor and the positioning target vertical displacement sensor a processor, and a horizontal displacement signal processor and a
  • positioning target photoelectric driving circuit is respectively connected to the horizontal micro motor-driven mechanism and the vertical micro-motor-driven mechanism;
  • the positioning target photoelectric receiving head is fixed on the positioning target vertical slider
  • the positioning target photoelectric receiving head comprises a positioning target photoelectric receiving head window, a positioning target receiving head lens and a positioning target photoelectric position identifying component, Positioning the target photoelectric position identifying element for generating an electrical differential signal in the horizontal and vertical directions of the positioning target photoreceiver, and transmitting the electrical differential signal to the photoelectric conversion with the filtering function of the pulse electrical signal
  • An amplifying circuit that controls the positioning target photoelectric driving circuit according to the electrical differential signal to cause the positioning target photoelectric driving circuit to drive the horizontal micro motor-driven mechanism and the vertical micro-motor-driven mechanism
  • the horizontal micro-motor-driven mechanism pushes the positioning target horizontal slider to move a corresponding horizontal distance along the positioning target horizontal sliding plate and causes the vertical micro-motor-driven mechanism to push the positioning target vertical slider to move along the positioning target vertical sliding plate Corresponding vertical distance, so that the center of the photoreceptive head of the positioning target tracks the offset laser base Quasi-beam center;
  • the positioning target horizontal displacement sensor and the positioning target vertical displacement sensor respectively obtain a movement deviation value of the positioning target photoelectric receiving head in a horizontal direction and a movement deviation value in a vertical direction, respectively, and respectively pass the positioning target level
  • the horizontal random deviation value ⁇ X of the output laser reference beam in the horizontal direction and the vertical random deviation of the laser reference beam in the vertical direction after the displacement signal processor and the vertical displacement signal processor and the positioning target horizontal displacement digital display and the vertical displacement digital display are processed
  • the deviation value is ⁇ Y.
  • the photoelectric measuring target includes: a measuring target mounting base, a measuring target chassis disposed above the measuring target mounting base, a measuring target level disposed on the measuring target chassis, and fixed in the horizontal direction at the measuring a measurement target horizontal slider on the target chassis, a measurement target horizontal slider sliding on the measurement target horizontal slider, a measurement target vertical slide disposed on the measurement target horizontal slider in a vertical direction, and a vertical perpendicular to the measurement target a measuring target vertical slider sliding on the sliding plate, a measuring target horizontal displacement sensor for detecting a moving distance of the measuring target horizontal slider, and a measuring target vertical displacement sensor for detecting a moving distance of the measuring target vertical slider, and the measuring target photoelectric a measuring target signal differential amplifying circuit connected to the receiving head, a horizontal centering indicator connected to the measuring target signal differential amplifying circuit, and a vertical centering indicator, a measuring target horizontal displacement sensor and a measuring target vertical displacement sensor respectively Measuring target horizontal displacement signal processor and vertical displacement signal processor, and with said measuring target water Digital display measuring target horizontal displacement
  • the measuring target photoreceiving head is fixed on the measuring target vertical slider
  • the measuring target photoreceiving head comprises: a measuring target photoreceiver window, a transflective lens, a measuring target receiving head lens and a measuring target An optoelectronic position identifying element;
  • the transflective lens splits the laser reference beam into two parts, wherein a part of the beam passes through the transflective lens, is injected into the center of the positioning target photoreceiver head in the original direction, and the other part of the beam passes through
  • the reflection of the transflective lens is directed to the center of the measuring target photoreceiving head in a 90° direction;
  • the measuring target photoelectric position identifying element is used to generate an electrical differential signal in the horizontal and vertical directions of the measuring target photoreceiver And transmitting the electrical differential signal to the measurement target signal differential amplification circuit with a function of filtering the jitter pulse electrical signal, and centering the measurement target connected by the differential amplification circuit of the measurement target signal
  • the measurement target horizontal displacement sensor When the measurement target horizontal slider is pushed to move horizontally along the measurement target horizontal slider, the measurement target horizontal displacement sensor follows the movement and when the horizontal alignment indicator is zeroed, the measurement target horizontal displacement digital display shows the measurement target horizontal slider
  • the base measurement value X when the measurement target vertical slider is moved vertically along the measurement target vertical slide, the measurement target vertical displacement sensor follows the movement and is vertically displaced by the measurement target when the vertical alignment indicator is zero.
  • the basic measured value Y of the vertical slide of the measuring target is measured.
  • the positioning target photoelectric position identifying component or the measuring target photoelectric position identifying component is a four-quadrant silicon photocell, and the four-quadrant silicon photocell is used for centering the laser reference beam and positioning the target photoreceiver head or measuring the target photoelectric Whether the center of the receiving head is deviated for identification.
  • the positioning target photoelectric position identifying element or the measuring target photoelectric position identifying element is a position sensor PSD or an image sensor CCD, and the position sensor PSD or the image sensor CCD directly detects the deviation value.
  • the laser emitter includes a transmitter mounting base, an emitter chassis disposed on the emitter mounting base, a transmitter chassis level disposed on the emitter chassis, and is disposed on the transmitter chassis a laser emitter bracket and a laser emitter fixed to the laser emitter bracket;
  • the laser emitter comprises: a laser tube, a laser emitting circuit board for driving the laser tube to emit a laser beam, a laser emitter inner cylinder, and a laser emitter outer tube enclosing the laser emitter inner cylinder, the laser emitter
  • the outer cylinder is placed in the inner hole of the double row radial ball bearing, and the double row radial ball bearing is fixed on the laser emitter bracket;
  • the laser tube is placed in the inner tube of the laser emitter, the front end of the inner tube of the laser emitter is provided with an inner lens, and the front end of the outer tube of the laser emitter is provided with an outer lens, by adjusting the inner tube of the laser emitter and The relative position of the outer tube of the laser emitter to change the spacing between the inner lens and the outer lens to achieve beam expansion and collimation of the laser beam;
  • the laser emitter further includes a laser direction adjustment bracket disposed on the emitter chassis, and the laser direction adjustment bracket is provided with a horizontal direction corresponding to a tail end of the laser emitter outer cylinder Adjust the screw and the vertical adjustment screw to achieve horizontal adjustment and vertical adjustment of the emitted laser beam.
  • the laser emitter is a visible light semiconductor laser emitter or an invisible semiconductor laser emitter.
  • the present invention provides a laser track smoothness detecting method based on the laser track smoothness detecting device according to any of the above, comprising the steps of:
  • a laser emitter is fixedly mounted at the beginning of the track detecting section, the photoelectric positioning target is fixedly mounted at the terminal, the laser emitter and the photoelectric positioning target are adjusted, and the center of the laser beam is aligned with the center of the positioning target photoelectric receiving head to establish a detection.
  • Laser reference beam
  • the random deviation value of the reference beam is continuously tracked and monitored, and the basic measurement value is directly equivalently corrected, thereby obtaining a relatively accurate engineering detection value, thereby solving the existing laser track smoothness detector, Due to the influence of the beam stability of the laser itself, especially the jitter drift and slow bending caused by atmospheric turbulence in the laser transmission in the field environment, that is, the random reference beam direction deviation caused by the combined action of the two, resulting in daily engineering measurements The accuracy of the test results is degraded and the reliability is poor, and even the problem that cannot be used due to the weather influences the real-time monitoring and the equivalent correction, and reliable engineering detection values are obtained. It can be seen that the laser track smoothness detecting device provided by the invention is particularly suitable for laser collimation engineering measurement in the field environment and long distance conditions.
  • the photoelectric recognition is adopted throughout the whole process, the artificial subjective error is eliminated, the recognition precision and the detection efficiency are greatly improved, and the safety of the operator's human eye is protected, and the existing laser track smoothness detector is solved,
  • the manual visual method is used to identify whether the reference spot is aligned with the center of the grid target, resulting in poor precision, low efficiency, fatigue and damage caused by the human eye.
  • the invention can greatly improve the engineering detection accuracy and reliability of the existing laser track smoothness detector, broaden the applicable weather environment and help to further improve the detection distance, and avoid invalid repeated detection. Thereby, the detection work efficiency can be greatly improved and the railway sunroof occupation time can be shortened.
  • the invention provides a laser track smoothness detecting device with high actual measurement precision and high reliability, light and reasonable structure and simple operation for the railway department line construction and daily maintenance operations. It has great practical significance for the speed, safety, efficiency and comfort of railway transportation in China.
  • the invention is also suitable for long-distance laser alignment engineering measurement in large field railway machinery, civil engineering, bridges, water conservancy, electric power and other field environments.
  • FIG. 1 is a front elevational view of a photoelectric positioning target according to an embodiment of the present invention
  • FIG. 2 is a side view of a photoelectric positioning target according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing the working principle of a photoelectric positioning target according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a positioning target photoelectric receiving head according to an embodiment of the present invention.
  • Figure 5 is a front elevational view of an optoelectronic measuring target according to an embodiment of the present invention.
  • FIG. 6 is a side view of an optoelectronic measurement target according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the working principle of an optoelectronic measuring target according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a measuring target photoreceiving head according to an embodiment of the present invention.
  • FIG. 9 is a front elevational view of a laser emitter according to an embodiment of the invention.
  • Figure 10 is a side view of a laser emitter according to an embodiment of the present invention.
  • FIG. 11 is a flowchart of a method for detecting a smoothness of a laser track according to another embodiment of the present invention.
  • 1 denotes a laser emitter outer cylinder
  • 2 denotes a laser emitter inner cylinder
  • 3 denotes a laser tube
  • 4 denotes an outer lens
  • 5 denotes an inner lens
  • 6 denotes a double row radial ball bearing
  • 7 denotes a laser emitter bracket
  • 8 denotes a laser Direction adjustment bracket
  • 9 means horizontal adjustment screw
  • 10 means vertical adjustment screw
  • 11 means launcher chassis level
  • 12 means launcher chassis adjustment screw
  • 13 means launcher chassis
  • 14 means launcher mounting base;
  • 21 denotes the positioning target vertical slide
  • 22 denotes the positioning target vertical slider
  • 23 denotes the vertical micro motor-drive mechanism
  • 24 denotes the positioning target vertical displacement sensor
  • 25 denotes the positioning target horizontal slide
  • 26 denotes the positioning target horizontal slider
  • 27 denotes the horizontal micro electric Mechanism
  • 28 represents the positioning target horizontal displacement sensor
  • 29 represents the positioning target photoelectric receiving head
  • 30 represents the positioning target level
  • 31 represents the positioning target chassis adjustment screw
  • 32 represents the positioning target chassis
  • 33 represents the positioning target mounting base
  • 34 represents the positioning target photoelectric a receiving head window
  • 35 denotes a positioning target receiving head lens
  • 36 denotes a positioning target photoelectric position identifying element
  • 41 denotes a measurement target vertical slide
  • 42 denotes a measurement target vertical slider
  • 43 denotes a measurement target vertical displacement sensor
  • 44 denotes a measurement target horizontal slide
  • 45 denotes a measurement target horizontal slider
  • 46 denotes a measurement target horizontal displacement sensor
  • 47 denotes a measurement target Photoelectric receiving head
  • 48 denotes measuring target level
  • 49 denotes measuring target chassis adjusting screw
  • 50 denotes measuring target chassis
  • 51 denotes measuring target mounting base
  • 52 denotes measuring target photoelectric receiving head window
  • 53 denotes transflective lens
  • 54 denotes Measuring a target receiving head lens
  • 55 denotes a measuring target photoelectric position identifying element
  • 61 denotes a laser emitting circuit board
  • 62 denotes a positioning target photoelectric conversion amplifying circuit
  • 63 denotes a positioning target photoelectric driving circuit
  • 64 denotes a positioning target horizontal displacement signal processor and a vertical displacement signal processor
  • 65 denotes a positioning target horizontal displacement digital display and vertical Displacement digital display
  • 66 represents laser ranging module
  • 67 represents measurement target signal differential amplification circuit
  • 68 represents horizontal alignment indicator and vertical alignment indicator
  • 69 represents measurement target horizontal displacement signal processor and vertical displacement signal processor
  • 70 denotes a measurement target horizontal displacement digital display and a vertical displacement digital display.
  • An embodiment of the present invention provides a laser track smoothness detecting device, which comprises: a laser emitter, a photoelectric positioning target, and an optoelectronic measurement target; the laser emitter is fixedly mounted at the beginning of the track detecting section, and is emitted through a collimated laser beam for detecting a reference point at a beginning; the photo-positioning target is fixedly mounted at a terminal end of the track detecting section, and a center of the photoreceiving head of the photo-positioning target coincides with a terminal detecting reference point; when the laser emitting device emits When the center of the laser beam is centered with the center of the photoreceiving head of the positioning target, a laser reference beam is established; the photoelectric measuring target moves in the track detecting section for detecting the smoothness at different positions of the track detecting section, when When the center of the photoelectric receiving head of the photoelectric measuring target is centered with the center of the laser reference beam, the measured value of the horizontal displacement sensor on the photoelectric measuring target is the horizontal
  • the photo-positioning target is further provided with a deviation detecting unit for detecting a horizontal random deviation value ⁇ X i of the laser reference beam in the horizontal direction and a vertical random deviation in the vertical direction. a value ⁇ Y i , the ⁇ X i and ⁇ Y i corresponding to the time of the horizontal base measurement value X i and the vertical base measurement value Y i ;
  • the photoelectric measurement target is further provided with a real-time calculation module, and the real-time calculation module is configured to use the horizontal basic measurement value X i and the vertical basic measurement value Y i obtained according to the photoelectric measurement target itself.
  • the photoelectric positioning target comprises: a positioning target mounting base 33, and the positioning of the photoelectric positioning target can be stably fixed on the track by positioning the target mounting base 33.
  • the photo-positioning target further includes a positioning target chassis 32 disposed above the positioning target mounting base 33 and a positioning target level 30 disposed on the positioning target chassis 32, wherein the positioning target level 30 includes The positioning target level and the longitudinal positioning target level can be achieved by adjusting the positioning target chassis adjusting screw 31 and observing the measuring target level 30, wherein the positioning target chassis 32 is in a horizontal orientation, and the photoelectric positioning target further comprises a positioning target chassis.
  • the deviation detecting unit specifically includes: a positioning target horizontal sliding plate 25 fixed on the positioning target chassis 32 in a horizontal direction, a positioning target horizontal sliding block 26 sliding on the positioning target horizontal sliding plate, and being disposed in a vertical direction Positioning the target vertical slide 21 on the target horizontal slider, the positioning target vertical slider 22 sliding on the positioning target vertical slide, the horizontal micro motor-drive mechanism 27 connected to the positioning target horizontal slider, and the a vertical micro motor-drive mechanism 23 for positioning the target vertical slider connection, a positioning target horizontal displacement sensor 28 for detecting the moving distance of the target target horizontal slider (preferably using a miniature linear displacement sensor), and for detecting the moving distance of the vertical slider of the positioning target a positioning target vertical displacement sensor 24, a positioning target photoelectric conversion amplifying circuit 62 connected to the positioning target photo receiving head 29 (composed of two integrated operational amplifiers and an integrated operational comparator), and the positioning target photoelectric conversion amplifying circuit 62 Connected positioning target optoelectronic drive circuit 63 (consisting of two integrated power amplifiers), positioning target horizontal displacement sensor 28 and
  • the positioning target photoelectric driving circuit 63 is respectively connected to the horizontal micro motor-driven mechanism 27 and the vertical micro-motor-driven mechanism 23;
  • the positioning target photoelectric receiving head 29 is fixed on the positioning target vertical slider 22, see FIG. 4, the positioning target photoelectric receiving head 29 includes a positioning target photoelectric receiving head window 34, a positioning target receiving head lens 35, and Positioning a target photoelectric position identifying component 36 for generating an electrical differential signal in the horizontal and vertical directions of the positioning target photoreceiver 29 and transmitting the electrical differential signal to the a positioning target photoelectric conversion amplifying circuit 62 with a function of filtering a pulse electric signal, the positioning target photoelectric conversion amplifying circuit 62 controlling the positioning target photoelectric driving circuit 63 according to the electrical differential signal to make the positioning target
  • the photoelectric driving circuit 63 drives the horizontal micro motor-driven mechanism 27 and the vertical micro motor-driven mechanism 23 such that the horizontal micro-motor-driven mechanism 27 pushes the positioning target horizontal slider 26 to move along the positioning target horizontal sliding plate 25 by a corresponding level.
  • the positioning target horizontal displacement sensor 28 and the positioning target vertical displacement sensor 24 respectively obtain the movement deviation value of the positioning target photoelectric receiving head 29 in the horizontal direction and the movement deviation value in the vertical direction, respectively Positioning the target horizontal displacement signal processor and the vertical displacement signal processor 64, the positioning target horizontal displacement digital display, and the vertical displacement digital display 65, the horizontal random deviation value ⁇ X of the output laser reference beam in the horizontal direction and the laser reference beam are vertical The vertical random deviation value ⁇ Y in the direction.
  • the positioning target photoelectric position identifying component 36 is implemented by using a four-quadrant silicon photocell; the horizontal micro motor-driven mechanism 27 or the vertical micro-motor-driven mechanism 23 is implemented by using a miniature electric push rod or a micro stepping motor; The positioning target horizontal displacement sensor 28 or the positioning target vertical displacement sensor 24 is implemented by a resistive linear displacement sensor.
  • the positioning target photoelectric position identifying component 36 when the positioning target photoelectric position identifying component 36 is implemented by using a four-quadrant silicon photocell, correspondingly, the horizontal electrical differential signal and the vertical electrical differential signal are generated by the four-quadrant silicon photocell.
  • the four-quadrant silicon photocell is specifically composed of a circular silicon photocell separated by four quadrants in a Cartesian coordinate system. According to the common way of use, the whole is rotated by 45° with respect to the horizontal direction. The horizontal deviation is detected by the 1 and 3 quadrants, and the vertical deviation is detected by the 2 and 4 quadrants.
  • the voltage difference V X 0 of the output of the two quadrant electrodes
  • the horizontal or vertical micro motor-driven mechanism that is, the micro-electric push rod is controlled to drive, can push the positioning target horizontal or vertical slider to move the target photoelectric receiving head horizontally or vertically along the positioning target horizontal or vertical sliding plate, so that the four-quadrant silicon photocell The center always tracks the center of the alignment laser beam.
  • the positioning target horizontal slider 25 is fixed in the horizontal direction on the positioning target chassis 32.
  • the horizontal micro motor-drive mechanism 27 is controlled, the positioning target horizontal slider 26 can be horizontally moved along the positioning target horizontal slider 25, and the positioning target horizontal displacement sensor 28 follows the movement and displays the movement deviation value ⁇ X of the positioning target horizontal slider 26.
  • the positioning target vertical slide 21 is vertically fixed to the positioning target horizontal slider 26.
  • the positioning target vertical slider 22 can be vertically moved along the positioning target vertical slide 21, and the positioning target vertical displacement sensor 24 follows the movement and displays the movement deviation value ⁇ Y of the positioning target vertical slider 22.
  • the photoelectric measuring target includes: a measuring target mounting base 51, and the photoelectric measuring target can be stably locked to the track by measuring the target mounting base 51.
  • the photoelectric measuring target further includes: a measuring target chassis 50 disposed above the measuring target mounting base 51 and a measuring target level 48 disposed on the measuring target chassis 50, and adjusting the measuring target chassis adjusting screw 49 by adjusting Observing the measurement target level 48, it is possible to measure the target chassis 50 in a horizontal orientation.
  • the photoelectric measuring target further includes: a measuring target horizontal slider 44 fixed on the measuring target chassis in a horizontal direction, a measuring target horizontal slider 45 sliding on the measuring target horizontal sliding plate, and being disposed in the vertical direction Measuring the target vertical slide 41 on the target horizontal slider, the measurement target vertical slider 42 sliding on the measurement target vertical slide, the measurement target horizontal displacement sensor 46 for detecting the moving distance of the measurement target horizontal slider (preferably miniature a linear displacement sensor) and a measurement target vertical displacement sensor 43 for detecting a moving distance of the vertical slider of the measurement target, a measurement target signal differential amplification circuit 67 connected to the measurement target photoreceiving head 47, and a signal difference from the measurement target a horizontal centering indicator connected to the dynamic amplifying circuit and a vertical centering indicator 68, a measuring target horizontal displacement signal processor and a vertical displacement signal processor 69 respectively connected to the measuring target horizontal displacement sensor and the measuring target vertical displacement sensor, and The horizontal displacement digital display of the measurement target horizontal displacement signal processor and the vertical displacement signal processor 69 are respectively connected And a vertical
  • the measurement target photoreceiving head 47 is fixed on the measurement target vertical slider 42.
  • the measurement target photoreceiving head 47 includes: a measurement target photoreceiver head window 52, and a transflective lens 53.
  • the semi-reflective lens 53 splits the laser reference beam into two parts, a part of which passes through the transflective lens and is incident in the original direction Positioning the center of the target photoreceiver head, another part of the light beam is reflected by the transflective lens, and is deflected in a 90° direction to the center of the measuring target photoreceiving head;
  • the measuring target photoelectric position identifying element 55 is used to generate the measuring target And an electrical differential signal of the photoelectric receiving head in the horizontal and vertical directions, and transmitting the electrical differential signal to the measuring target signal differential amplifying circuit 67 with a function of filtering the pulse electrical signal, and passing the measurement A horizontal centering indicator connected to the target signal
  • the measurement target horizontal displacement sensor When the measurement target horizontal slider is pushed to move horizontally along the measurement target horizontal slider, the measurement target horizontal displacement sensor follows the movement and the horizontal displacement digital display displays the basis of the measurement target horizontal slider when the horizontal alignment indicator is zeroed.
  • Measured value X when the measurement target vertical slider is moved vertically along the measurement target vertical slide, the measurement target vertical displacement sensor follows the movement and the vertical displacement digital display shows the measurement target vertical when the vertical alignment indicator is zeroed
  • the base measurement value Y of the slider The base measurement value Y of the slider.
  • the measuring target photoelectric position identifying component 55 is implemented by using a four-quadrant silicon photocell; the measuring target horizontal displacement sensor 46 or the measuring target vertical displacement sensor 43 is implemented by using a resistive linear displacement sensor.
  • the transflective lens 53 can be realized by a right angle prism whose bevel is coated with a transflective film.
  • the measuring target horizontal slider 44 is fixed in the horizontal direction on the measuring target chassis.
  • the measurement target horizontal displacement sensor 46 follows the movement and displays the basis of the measurement target horizontal slider 45 when the horizontal alignment indicator is zeroed.
  • Measured value X The measurement target vertical slide 41 is vertically fixed to the measurement target horizontal slider 45.
  • the measurement target vertical displacement sensor 43 follows the movement and displays the basis of the measurement target vertical slider 42 when the vertical alignment indicator is zeroed.
  • Measured value Y Measured value
  • the invention adopts photoelectric recognition throughout the implementation, eliminates the artificial subjective error, greatly improves the recognition accuracy and the detection efficiency, and protects the operator's human eye.
  • Safety solve the existing laser track smoothness detector, because the manual visual method is used to identify the alignment of the reference spot and the grid target center, resulting in poor precision, low efficiency, easy fatigue and damage to the human eye. problem.
  • the laser emitter includes a transmitter mounting base 14 (the laser emitter is stably clamped to a designated position of the rail by a laser emitter mounting base 14)
  • the transmitter chassis 13 disposed on the transmitter mounting base, and the transmitter chassis level 11 disposed on the transmitter chassis 13 (by adjusting the transmitter chassis adjustment screw 12, the transmitter chassis 13 can be in a horizontal orientation a laser emitter holder 7 disposed on the emitter chassis and a laser emitter fixed to the laser emitter holder;
  • the laser emitter comprises: a laser tube 3, a laser emitting circuit board 61 for driving a laser tube to emit a laser beam, a laser emitter inner cylinder 2, and a laser emitter outer cylinder 1 enclosing the laser emitter inner cylinder
  • the laser emitter outer cylinder 1 is placed in the inner hole of the double row radial ball bearing 6, and the double row radial ball bearing 6 is fixed on the laser emitter bracket 7;
  • the laser tube 3 is placed in the inner tube 2 of the laser emitter, the front end of the inner tube 2 of the laser emitter is provided with an inner lens 5, and the front end of the outer tube 1 of the laser emitter is provided with an outer lens 4, Adjusting the relative positions of the laser emitter inner cylinder 2 and the laser emitter outer cylinder 1 to change the spacing between the inner lens 5 and the outer lens 4 to achieve beam expansion and collimation of the laser beam;
  • the laser emitter further includes a laser direction adjustment bracket 8 disposed on the emitter chassis 13, and the laser direction adjustment bracket 8 is provided with a tail end of the laser emitter outer cylinder 1 Corresponding horizontal adjustment screws 9 and vertical adjustment screws 10 are provided to achieve horizontal adjustment and vertical adjustment of the emitted laser beam.
  • the laser emitter can be a visible light semiconductor laser emitter or an invisible semiconductor laser emitter.
  • the laser emitter uses a visible red semiconductor laser.
  • the working principle of the laser track smoothness detecting device is: the random deviation values ⁇ X and ⁇ Y of the center of the laser reference beam detected on the photoelectric positioning target at a certain time, according to the actual distance ratio S/L After the conversion, the basic measured values X and Y read simultaneously on the photoelectric measuring target are directly corrected. In principle, the actual engineering measured value is obtained, and the actual measured value of the actual measured value is directly obtained from the photoelectric measuring target. In terms of accuracy, reliability.
  • a method for performing track smoothness detection using the above-described laser track smoothness detecting device is provided below, and specifically includes the following steps:
  • Step 1 Prepare for work.
  • a laser emitter is fixedly mounted at the beginning of the track detecting section, and the terminal is fixedly mounted with the photoelectric positioning target. Adjust the laser emitter chassis and the photoelectric positioning target chassis to be horizontal. Adjust the horizontal and vertical adjustment screws of the laser emitter so that the center of the laser beam is centered with the center of the positioning target photoreceiver, and the laser reference line for detection is established. Subsequently, the monitoring switch on the photoelectric positioning target is turned on, and the laser reference line deviation value monitoring program is entered.
  • Step 2 Track and monitor the random deviation value of the center of the laser reference beam on the photoelectric positioning target. After the center of the reference beam is initially aligned with the center of the positioning target photoreceiver, the horizontal direction electrical differential signal and the vertical direction electrical differential signal output of the positioning target photoelectric receiving head are both zero. After starting the offset monitoring of the laser reference line, the beam jitter drift and slow bending caused by laser or atmospheric turbulence will cause the laser reference line, ie the reference beam, to be randomly shifted. At this time, the horizontal and vertical directions of the target photodetector are positioned. The differential signal changes randomly and is no longer zero.
  • the micro motor-driven mechanism on the positioning target can be controlled to drive the positioning target photoelectric receiving head to move in the horizontal and vertical directions, so that the center of the positioning target photoelectric receiving head immediately tracks the shifted beam center, thereby making the positioning target
  • the center of the photoreceiver is completely centered with the center of the reference beam.
  • the horizontal and vertical displacement sensors on the positioning target monitor the horizontal and vertical movement deviation values of the positioning target photoelectric receiving head, and then the horizontal and vertical displacement signal processing circuits with the function of filtering the dithering electrical signals. And horizontal and vertical displacement digital display output horizontal random deviation value ⁇ X i , and vertical random deviation value ⁇ Y i .
  • Step 3 Track direction and high and low value detection.
  • the photoelectric measuring target is installed at the point to be measured, and the photoelectric measuring target chassis is adjusted to be in a horizontal state.
  • the photodetection target is used to detect movement within the detection zone. Pushing the horizontal slider of the photoelectric measuring target so that the horizontal value of the photoelectric measuring target to the centering indicator is zero, the reading value of the horizontal displacement digital display can be read, that is, the horizontal basic measurement value X i ; pushing the vertical slider of the photoelectric measuring target, When the vertical centering indicator of the photo-electric measurement target is indicated as zero, the indication of the vertical displacement digital display, that is, the vertical base measurement value Y i can be read.
  • Step 4 Immediate correction of the orbital and high and low measured values.
  • the actual engineering test value of a test point shall be:
  • X i ', Y i ' is the actual engineering detection horizontal direction value at the track to be measured position P i and the engineering detection vertical direction value
  • X i is the photoelectric measurement target horizontal displacement sensor measurement value at P i
  • ⁇ X i is the horizontal random deviation value of the terminal photoelectric positioning target read at the same time
  • Y i is the photoelectric measurement target vertical displacement sensor measurement value at P i
  • ⁇ Y i is the terminal photoelectric positioning target read at the same time
  • the vertical random deviation value at which the ⁇ symbol represents the direction of the deviation.
  • S i is the actual distance from the laser emitter to the position to be measured P i (in the straight line segment is the same as the track length; in the curve segment should be the linear distance from the laser emitter to the measuring point, in order to facilitate the detection distance, it can also be in the laser
  • the laser ranging module (see the laser ranging module 66 in FIG. 3) directly detects the distance between the laser positioning target and the measuring point, that is, LS i ), and L is the straight line from the beginning laser emitter to the terminal photoelectric positioning target. The distance is full length.
  • the stochastic deviation value of the reference beam center detected on the photoelectric positioning target at a certain time is converted according to the actual distance ratio, and the basic measurement value read by the photoelectric imaging target at the same time is directly added and subtracted, and in principle, the actual engineering is obtained. Measurements.
  • the positioning target photoelectric position identifying component 36 can also be implemented by using a position sensor PSD or an image sensor CCD, and the position sensor PSD or the image sensor CCD directly receives the spot and directly monitors the spot center.
  • the instantaneous deviation values ⁇ X and ⁇ Y are used as the instantaneous deviation values ⁇ X and ⁇ Y.
  • the actual distance S of the laser emitter to the photoelectric measuring target is monitored by the laser ranging module, and the instantaneous correction values ⁇ X*S/L and ⁇ Y*S/L are directly calculated, and the data is transmitted by wireless.
  • the instantaneous basic measurement value is directly calculated and corrected directly in the photoelectric measuring target to obtain an engineering measurement value.
  • all monitoring and correction processes are automatically completed, directly showing the actual results of the engineering measurements.
  • the transflective function of the transflective lens is eliminated, and only the receiving beam detecting function is eliminated, so that the positioning target deviation value can be intermittently monitored when the photoelectric measuring target leaves the orbit at any time. .
  • the monitoring and measurement are alternated, and the correction effect of the deviation value has a short time difference.
  • the laser track smoothness detecting device is composed of a laser emitting device, a photoelectric positioning target and an optoelectronic measuring target.
  • the laser emitter and the photoelectric positioning target are mounted and fixed at a certain distance on a certain detected track.
  • the center line of the laser beam emitted by the laser emitter passes the start detection point.
  • the center of the photoelectric receiving target photoelectric receiving head coincides with the terminal reference point.
  • the laser emitter is adjusted so that the center of the laser beam is centered with the center of the photoreceiving target photoreceiver, that is, a laser reference line that passes through the reference points at both ends and is parallel to the center line of the track is established.
  • the basic detection result of the photoelectric measuring target and the random deviation amount value provided by the photoelectric positioning target are corrected, and the actual distance dimension of the laser beam center line and each point to be measured of the track can be obtained. Then, in comparison with the standard value, in principle, the deviation of the orbit and the unevenness of the height can be obtained.
  • the angle beam or two parallel flat lenses can be used to divide the reference beam into two parallel distances.
  • the beam, one of which is still used for the basic measurement of the upper body position, and the other beam is passed from the bottom of the vehicle body to the target photoelectric positioning target fixed to the distal ground to monitor the random deviation of the reference beam. The closer the distance between the two parallel lights is, the better the correction effect is.
  • the laser track smoothness detecting device provided by the embodiment of the invention continuously tracks and monitors the random deviation value of the reference beam, and directly corrects the basic measurement value, thereby obtaining a more accurate and reliable engineering detection value, thereby solving the problem.
  • the existing laser track smoothness detector is affected by the beam stability of the laser itself, especially the jitter drift and slow bending caused by atmospheric turbulence in the laser transmission in the field environment, that is, the random reference beam direction caused by the combined action of the two. Offset, resulting in the accuracy of the test results in the daily engineering measurements and poor reliability, and even the problem of the weather can not be used, real-time monitoring and equivalent correction, and obtain reliable engineering detection values. It can be seen that the laser track smoothness detecting device provided by the invention is particularly suitable for laser collimation engineering measurement in the field environment and long distance conditions.
  • the laser track smoothness detecting device provided by the embodiment of the invention adopts photoelectric recognition in the whole process, eliminates artificial subjective errors, greatly improves the recognition precision and the detection efficiency, and at the same time protects the safety of the operator's human eyes and solves the existing
  • the laser track smoothness detector adopts the manual visual method to identify whether the reference spot is aligned with the grid target center, resulting in poor precision, low efficiency, easy fatigue and damage caused by the human eye.
  • the laser track smoothness detecting device provided by the embodiment of the invention can greatly improve the engineering detection accuracy and reliability of the existing laser track smoothness detector, broaden the applicable weather environment and facilitate further improvement of the detection distance. Invalid duplicate detection is avoided. Thereby, the detection work efficiency can be greatly improved and the railway sunroof occupation time can be shortened.
  • the invention provides a laser track smoothness detecting device with high actual measurement precision and high reliability, light and reasonable structure and simple operation for the railway department line construction and daily maintenance operations. It has great practical significance for the speed, safety, efficiency and comfort of railway transportation in China.
  • the invention is also suitable for long-distance laser collimation engineering measurement in other field environments such as civil engineering, bridges, water conservancy and electric power.
  • Another embodiment of the present invention provides a laser track smoothness detecting method based on the laser track smoothness detecting device according to the above embodiment. Referring to FIG. 11, the method includes the following steps:
  • Step 101 Fixing and installing a laser emitter at the beginning of the track detecting section, fixing the photoelectric positioning target at the terminal, adjusting the laser emitter and the photoelectric positioning target, and centering the center of the laser beam with the center of the positioning target photoelectric receiving head to establish detection Laser reference beam.
  • Step 102 Install a photoelectric measuring target at a position P i to be tested of the track detecting section, obtain a horizontal basic measured value X i of the position to be measured P i measured by the horizontal displacement sensor on the photoelectric measuring target, and measure the vertical displacement sensor Obtaining a vertical basis measurement value Y i of the position to be measured P i while detecting a horizontal random deviation value ⁇ X i of the laser reference beam in the horizontal direction and a vertical direction in the vertical direction by using the deviation detecting unit on the photoelectric positioning target
  • the random deviation value ⁇ Y i , the ⁇ X i and ⁇ Y i correspond to the time of the horizontal base measurement value X i and the vertical base measurement value Y i .
  • Step 104 Multiply the horizontal random deviation value ⁇ X i by the correction coefficient K i to obtain a horizontal random deviation correction value ⁇ X i ⁇ K i ; multiply the vertical random deviation value ⁇ Y i by the correction coefficient K i to obtain a vertical The random deviation correction value ⁇ Y i ⁇ K i .
  • Step 105 superimposing the horizontal base measurement value X i on the horizontal random deviation correction value ⁇ X i ⁇ K i at the same time to obtain the engineering detection value X i ' in the horizontal direction; superimposing the vertical basic measurement value Y i The vertical random deviation correction value ⁇ Y i ⁇ K i at the time is obtained as the engineering detection value Y i ' in the vertical direction.
  • the laser track smoothness detecting method of the embodiment of the present invention is implemented by using the laser track smoothness detecting device provided by the above embodiment, so the principle and effect are similar, and details are not described herein again.
  • the terms “mounted,” “connected,” and “connected” are used in a broad sense, and may be, for example, a fixed connection, a detachable connection, or an integral connection; it may be a mechanical connection, It can also be an electrical connection; it can be directly connected, or it can be connected indirectly through an intermediate medium, which can be the internal connection of two components.
  • the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.

Abstract

一种激光轨道平顺度检测装置,利用光电测量靶检测得到待测位置Pi的水平基础测量值Xi以及垂直基础测量值Yi;利用光电定位靶上的偏差检测单元检测激光基准光束的水平随机偏差值△Xi以及垂直随机偏差值△Yi,对水平随机偏差值△Xi和垂直随机偏差值△Yi分别进行修正;将水平基础测量值Xi叠加水平随机偏差修正值△Xi·Ki得到水平方向上的工程检测值Xi';将垂直基础测量值Yi叠加垂直随机偏差修正值△Yi·Ki得到垂直方向上的工程检测值Yi'。该装置解决了现有激光平顺度检测装置工程检测结果精度低和可靠性差的问题,同样适用于野外环境和长距离条件下的其它激光准直工程测量。还提供一种激光轨道平顺度检测方法。

Description

一种激光轨道平顺度检测装置及方法
交叉引用
本申请引用于2017年10月20日提交的专利名称为“一种激光轨道平顺度检测装置及方法”的第2017109869497号中国专利申请,其通过引用被全部并入本申请。
技术领域
本发明涉及激光准直测量技术领域,具体涉及一种激光轨道平顺度检测装置及方法。
背景技术
铁路轨道的轨向和高低是轨道平顺性检查中的两个基本几何尺寸参数。轨向是指轨道中心线沿地表面的横向走向,在直线上是否平直,在曲线上是否圆顺。如果轨道的轨向不平顺就会引起列车的左右摇晃和蛇行运动,并因此而加大车辆对轨道的横向冲击力,同时进一步加剧轨向的不平顺性。高低是指轨道顶面的纵向高低差,当轨道前后高低存在不平顺时,列车通过这些轨道时会出现颠簸和冲击,上述过程可以进一步加剧高低向的不平顺。上述不平顺度,必将加大列车对轨道的破坏力,由此还会加速轮轨的磨损和缩短轨枕的寿命。因此直接影响着列车高速运行时的安全性、平稳性和舒适度。
国外一般采用大型轨检车对铁路轨道几何尺寸进行经常性的综合检测。而在国内大型轨检车主要用于对轨道进行每季度性的复测和检查。轨检车一般采用的是惯性基准法测量系统,它是在运动的车体内,利用加速度传感器或陀螺建立一个惯性参考基准,通过对这两种惯性器件的测量值进行复杂的解析计算,实现对轨道几何参数的综合测量。它们运行速度高,检测指标全面,但是其结构十分复杂,制造成本极高,而且体积庞大,因而不太适合常规的轨道施工作业和维护作业。国内外开发的多种轨道检测小车,它们一般采用弦测法,采用位移传感器和倾角传感器,结合信号处理技术和单片机技术,以手推小车为载体,可对双侧轨道或单侧轨道的多 项几何状态参数(包括轨距、水平、三角坑;轨向、高低等)同时进行检测。它主要用于常规的施工作业和维护作业,具有较高的检测精度和检测效率,为指导合理施工和维修作业提供了有利条件。但是,其中对于轨向、高低的检测是利用lm弦逐步递推计算而得,由于轨道内侧表面和轨顶面的平面可能存在的不平整性,测量值和实际状态会存在不确定的偏差,检测精度受到一定的影响。在大量的日常轨道维护中,多年来沿用着人工拉弦方法检测轨道平顺度,由于受长钢丝弦线下沉弯曲、传统工具精度差,受自然环境和人为主观因素影响,而导致检测精度差和工作效率低的问题突出,根本无法适应提速后的铁路系统轨道维修的质量和效率需要。
随着激光技术的采用,近年来在大型养路机械上,例如轨道捣固车上均配套有基于激光准直测量技术的激光自动起拨道系统,该系统是通过在线路前方小车上固定的激光发射器发射的激光束与捣固车前端安置的激光接收器建立起激光基准线,由激光测量系统精确检测,确认被测线路的起拨道量,通过控制电路直接控制捣固车进行维修作业。而在一般养路维修作业中使用的激光轨道平顺度检测仪,一般是在被检测轨道上,将激光发射仪和定位靶相隔一定距离放置并按要求固定。使用始端的激光发射仪上的望远镜初步瞄准终端的定位靶,再经过微调激光发射仪的光束方向而使激光光斑中心位于定位靶靶面中心,由此在轨道上方空间建立起与轨道中心线平行的一条激光基准线。目前主要采用人工目测方法对定位靶和测量靶面上的光斑位置进行确认。当测量靶沿轨道中心线移动的时候,通过位移传感器检测出在测量靶靶面上的激光光斑中心位移量,即可以得出轨道上各测量点的轨向和高低不平顺度。由于激光束的能量中心线是一条极为理想的直线,以激光束代替实体弦线,同时配以各种改进了的光斑(圆斑或同心圆环)、改进了的目视靶标(易于辨识的栅格形状),以及对检测数据的计算机处理,使得这类激光检测仪与传统的人工拉弦方法相比明显提高了检测精度和工作效率。同时与类似的产品轨道检测小车相比,其结构简单,这种直观直接的测量还可以在一定程度上减少各种间接测量和复杂换算引起的累积误差。因而,近年来已经开始在铁路系统推广应用。
但是,这些激光轨道平顺度检测仪存在下列主要问题:
1、在建立激光基准弦线时,由激光发射仪发出的红色光束(光斑或 同心光环),经过望远镜瞄准和人工粗调、精调后,需要确认其已经入射到定位靶上的网格靶中心;在检测作业中,还需要频繁地确认光斑中心是否对中测量靶上的网格靶中心,然后读取位移传感器显示的偏差值。然而由于目前的光电位置传感器(例如PSD、CCD等器件)在使用上遇到的局限性,较长距离的激光轨道平顺度检测仪一般都采用目视方法辨别基准光斑中心与网格靶中心的对中情况。由此,若清晰识别网格靶线需要一定的照明光强,而红光光斑边缘的清晰辨别则需要一定的暗环境条件。野外工作环境下自然光照度变化很大,光斑太亮和环境太暗时眼睛容易疲劳或受到伤害,环境太亮和光斑太弱时识别精度会大幅度下降。这种情况使得实际上的检测精度受到很大影响,同时明显限制了目前检测工作距离的延长。
2、目前作为测量基准的激光基准线,在检测的全过程中其稳定性都会受到激光器参数变化,尤其是传输中大气湍流引起光斑的抖动漂移和方向缓慢弯曲影响,随着检测距离的加长其引起的偏差会急剧加大。有资料显示,在正常天气情况下,当激光水平射出时,由大气湍流影响光束的偏差在8-16”左右,当风速较大和地面温度场变化较明显时其影响会更大。前者通过激光器的温度场稳定和出射光束的扩束准直等常见措施即可以较好解决,但是后者属于野外工程环境下始终存在而又长期难以解决的问题,它直接威胁到整个工程测量结果的精度和准确性、可靠性。
因此,在试验室或选定的基准线路条件下的检测标定的结果(例如示值误差和重复性误差),所提出的仪器自身的高分辨率和高精度,对于工程检测现场来说其指标将会大打折扣。为此,目前推广采用的产品往往增加有辅助条件:在网格线难于看清时,提供辅助照明灯;大气干扰时如光斑跳动过大或有雨、雾、大风等异常天气,提出缩短距离或者改在稳定天气时使用;在检测作业完成后再核查发射机角度或基准光斑的偏移量,如偏移超差时应重新检测。显然,辅助灯源将减弱激光光斑的边缘清晰度;至于观察判定天气是否稳定和光斑跳动是否过大,以及使用中判定是否基准光斑偏移过大而需要进行校核和复测的条件,校核后的复测结果是否比之前的结果可靠,所有这些依靠主观人为处理是很难实施的。而且,这些处理方法也会严重影响着工程现场的检测工作效率。
发明内容
针对现有技术中的缺陷,本发明提供了一种激光轨道平顺度检测装置及方法,本发明至少可以解决上述提到的部分或全部问题。
为实现上述目的,本发明提供了以下技术方案:
第一方面,本发明提供了一种激光轨道平顺度检测装置,包括:激光发射仪、光电定位靶和光电测量靶;所述激光发射仪固定安装在轨道检测区段的始端,发射出通过始端检测基准点的准直激光束;所述光电定位靶固定安装在轨道检测区段的终端,所述光电定位靶的光电接收头中心与终端检测基准点重合;当所述激光发射仪发出的激光束中心与所述定位靶的光电接收头中心对中时,建立起激光基准光束;所述光电测量靶在轨道检测区段内移动用于检测轨道检测区段不同位置处的平顺度,当所述光电测量靶的光电接收头中心与激光基准光束中心对中时,所述光电测量靶上的水平位移传感器的测量值为待测位置P i的水平基础测量值X i,所述光电测量靶上的垂直位移传感器的测量值为待测位置P i的垂直基础测量值Y i
相应地,所述光电定位靶上还设置有偏差检测单元,所述偏差检测单元用于检测所述激光基准光束在水平方向上的水平随机偏差值△X i以及在垂直方向上的垂直随机偏差值△Y i,所述△X i和△Y i与水平基础测量值X i和垂直基础测量值Y i的取值时刻相对应;
其中,根据待测位置P i与所述激光发射仪的直线距离S i以及所述激光发射仪与所述光电定位靶的直线距离L,确定与待测位置P i对应的修正系数K i=S i/L;
将所述水平随机偏差值△X i乘以修正系数K i得到水平随机偏差修正值△X i·K i;将所述垂直随机偏差值△Y i乘以修正系数K i得到垂直随机偏差修正值△Y i·K i
将所述水平基础测量值X i叠加同一时刻的水平随机偏差修正值△X i·K i得到水平方向上的工程检测值X i’;将所述垂直基础测量值Y i叠加同一时刻的垂直随机偏差修正值△Y i·K i得到垂直方向上的工程检测值Y i’。
进一步地,所述光电测量靶上还设置有实时计算模块,所述实时计算模块用于根据光电测量靶本身获取的水平基础测量值X i、垂直基础测量值 Y i以及所述光电定位靶上的偏差检测单元实时发送的水平随机偏差值△X i、垂直随机偏差值△Y i,并结合对应的修正系数K i=S i/L实时计算与待测位置P i对应的水平方向上的工程检测值X i和垂直方向上的工程检测值Y i’。
进一步地,人工读取所述光电测量靶获取的水平基础测量值X i、垂直基础测量值Y i以及人工读取所述光电定位靶上的偏差检测单元检测的水平随机偏差值△X i和垂直随机偏差值△Y i,并结合对应的修正系数K i=S i/L计算与待测位置P i对应的水平方向上的工程检测值X i和垂直方向上的工程检测值Y i’。
进一步地,所述光电定位靶包括:定位靶安装底座、设置在所述定位靶安装底座上方的定位靶底盘、设置在所述定位靶底盘上的定位靶水平仪,以及设置在所述定位靶底盘上的偏差检测单元;
所述偏差检测单元具体包括:沿水平方向固定在所述定位靶底盘上的定位靶水平滑板、在所述定位靶水平滑板上滑动的定位靶水平滑块、沿垂直方向设置在所述定位靶水平滑块上的定位靶垂直滑板、在所述定位靶垂直滑板上滑动的定位靶垂直滑块、与所述定位靶水平滑块连接的水平微型电动机构、与所述定位靶垂直滑块连接的垂直微型电动机构、用于检测定位靶水平滑块移动距离的定位靶水平位移传感器、用于检测定位靶垂直滑块移动距离的定位靶垂直位移传感器、与所述定位靶光电接收头连接的定位靶光电转换放大电路、与所述定位靶光电转换放大电路连接的定位靶光电驱动电路、与定位靶水平位移传感器和定位靶垂直位移传感器分别连接的定位靶水平位移信号处理器和垂直位移信号处理器,以及与所述定位靶水平位移信号处理器和垂直位移信号处理器分别连接的定位靶水平位移数字显示器和垂直位移数字显示器;
其中,所述定位靶光电驱动电路分别与所述水平微型电动机构以及所述垂直微型电动机构连接;
其中,所述定位靶光电接收头固定在所述定位靶垂直滑块上,所述定位靶光电接收头包括定位靶光电接收头窗口、定位靶接收头透镜和定位靶光电位置识别元件,所述定位靶光电位置识别元件用于产生所述定位靶光电接收头在水平和垂直方向的电差动信号,并将所述电差动信号发送给所述带有对脉冲电信号滤波功能的光电转换放大电路,所述光电转换放大电 路根据所述电差动信号控制所述定位靶光电驱动电路,以使所述定位靶光电驱动电路驱动所述水平微型电动机构以及所述垂直微型电动机构,使得所述水平微型电动机构推动所述定位靶水平滑块沿所述定位靶水平滑板移动相应的水平距离以及使得所述垂直微型电动机构推动所述定位靶垂直滑块沿所述定位靶垂直滑板移动相应的垂直距离,进而使得所述定位靶光电接收头中心跟踪上偏移后的激光基准光束中心;
其中,所述定位靶水平位移传感器和所述定位靶垂直位移传感器分别获取所述定位靶光电接收头在水平方向上的移动偏差值以及在垂直方向上的移动偏差值,并分别经定位靶水平位移信号处理器和垂直位移信号处理器以及定位靶水平位移数字显示器和垂直位移数字显示器处理后输出激光基准光束在水平方向上的水平随机偏差值△X以及激光基准光束在垂直方向上的垂直随机偏差值△Y。
进一步地,所述光电测量靶包括:测量靶安装底座、设置在所述测量靶安装底座上方的测量靶底盘、设置在所述测量靶底盘上的测量靶水平仪、沿水平方向固定在所述测量靶底盘上的测量靶水平滑板、在所述测量靶水平滑板上滑动的测量靶水平滑块、沿垂直方向设置在所述测量靶水平滑块上的测量靶垂直滑板、在所述测量靶垂直滑板上滑动的测量靶垂直滑块、用于检测测量靶水平滑块移动距离的测量靶水平位移传感器以及用于检测测量靶垂直滑块移动距离的测量靶垂直位移传感器、与所述测量靶光电接收头连接的测量靶信号差动放大电路、与所述测量靶信号差动放大电路连接的水平对中指示器以及垂直对中指示器、与测量靶水平位移传感器和测量靶垂直位移传感器分别连接的测量靶水平位移信号处理器和垂直位移信号处理器,以及与所述测量靶水平位移信号处理器和垂直位移信号处理器分别连接的测量靶水平位移数字显示器和垂直位移数字显示器;
其中,所述测量靶光电接收头固定在所述测量靶垂直滑块上,所述测量靶光电接收头包括:测量靶光电接收头窗口、半透半反射镜片、测量靶接收头透镜和测量靶光电位置识别元件;所述半透半反射镜片将激光基准光束分成两部分,其中一部分光束穿过所述半透半反射镜片,按原方向射入定位靶光电接收头中心,另一部分光束经过所述半透半反射镜片的反射,转折90°方向射到测量靶光电接收头中心;所述测量靶光电位置识别 元件用于产生所述测量靶光电接收头在水平和垂直方向的电差动信号,并将所述电差动信号发送给所述带有对抖动脉冲电信号滤波功能的测量靶信号差动放大电路,并通过与所述测量靶信号差动放大电路连接的测量靶水平对中指示器以及垂直对中指示器显示出来;
当推动测量靶水平滑块沿测量靶水平滑板进行水平移动时,测量靶水平位移传感器跟随移动并在水平对中指示器指零时由所述测量靶水平位移数字显示器显示出测量靶水平滑块的基础测量值X,当推动测量靶垂直滑块沿测量靶垂直滑板进行垂直移动时,测量靶垂直位移传感器跟随移动并在垂直对中指示器指零时由所述测量靶垂直位移数字显示器显示出测量靶垂直滑块的基础测量值Y。
进一步地,所述定位靶光电位置识别元件或所述测量靶光电位置识别元件为四象限硅光电池,所述四象限硅光电池用于对激光基准光束中心与定位靶光电接收头中心或测量靶光电接收头中心是否发生偏差进行识别。
进一步地,所述定位靶光电位置识别元件或所述测量靶光电位置识别元件为位置传感器PSD或图像传感器CCD,所述位置传感器PSD或图像传感器CCD直接检测出偏差值。
进一步地,所述激光发射仪包括发射仪安装底座、设置在所述发射仪安装底座上的发射仪底盘、设置在所述发射仪底盘上的发射仪底盘水平仪、设置在所述发射仪底盘上的激光发射器支架以及固定在所述激光发射器支架上的激光发射器;
其中,所述激光发射器包括:激光管,用于驱动激光管发射激光束的激光发射电路板、激光发射器内筒以及包裹所述激光发射器内筒的激光发射器外筒,激光发射器外筒置于双列向心球轴承的内孔中,所述双列向心球轴承固定在激光发射器支架上;
其中,所述激光管置于激光发射器内筒中,所述激光发射器内筒的前端设置有内透镜,所述激光发射器外筒的前端设置有外透镜,通过调整激光发射器内筒和激光发射器外筒的相对位置以改变内透镜和外透镜的间距,实现激光束的扩束准直;
所述激光发射仪还包括激光方向调整支架,所述激光方向调整支架设置在所述发射仪底盘上,所述激光方向调整支架上设有与激光发射器外筒 的尾端相对应的水平方向调整螺丝和垂直方向调整螺丝,以实现对发射激光束的水平方向调整和垂直方向调整。
进一步地,所述激光发射器为可见光半导体激光发射器或不可见光半导体激光发射器。
第二方面,本发明还提供了一种基于如上面任一项所述的激光轨道平顺度检测装置的激光轨道平顺度检测方法,包括如下步骤:
S1、在轨道检测区段的始端固定安装激光发射仪,终端固定安装光电定位靶,调整激光发射仪和光电定位靶,使激光光束中心与定位靶光电接收头中心对中,建立起检测用的激光基准光束;
S2、在轨道检测区段的待测位置P i处安装光电测量靶,获取光电测量靶上的水平位移传感器测量得到的待测位置P i的水平基础测量值X i,以及垂直位移传感器测量得到的待测位置P i的垂直基础测量值Y i,同时利用光电定位靶上的偏差检测单元检测所述激光基准光束在水平方向上的水平随机偏差值△X i以及在垂直方向上的垂直随机偏差值△Y i,所述△X i和△Y i与水平基础测量值X i和垂直基础测量值Y i的取值时刻相对应;
S3、根据待测位置P i与所述激光发射仪的直线距离S i以及所述激光发射仪与所述光电定位靶的直线距离L,确定与待测位置P i对应的修正系数K i=S i/L;
S4、将所述水平随机偏差值△X i乘以修正系数K i得到水平随机偏差修正值△X i·K i;将所述垂直随机偏差值△Y i乘以修正系数K i得到垂直随机偏差修正值△Y i·K i
S5、将所述水平基础测量值X i叠加同一时刻的水平随机偏差修正值△X i·K i得到水平方向上的工程检测值X i’;将所述垂直基础测量值Y i叠加同一时刻的垂直随机偏差修正值△Y i·K i得到垂直方向上的工程检测值Y i’。
本发明至少具有如下的有益效果:
1、在本发明中,连续跟踪监测基准光束的随机偏差值,并对基础测量值进行直接等值修正,进而可以获取较为准确的工程检测值,从而解决了现有激光轨道平顺度检测仪,因激光器本身的光束稳定性影响,尤其是野外环境下激光传输中大气湍流引起的抖动漂移和缓慢弯曲影响,即两者 综合作用引起的随机的基准光束方向偏移,而导致的日常工程测量中检测结果精度下降和可靠性差,甚至因天气影响而无法使用的问题,实现了全程实时监测和等值修正,获得了可靠的工程检测值。可见,本发明提供的激光轨道平顺度检测装置特别适用于野外环境和长距离条件下的激光准直工程测量。
2、在本发明中,全程采用光电识别,消除了人工主观误差,大幅度提高了识别精度和检测效率,同时保护了操作者人眼的安全,解决了现有激光轨道平顺度检测仪,由于采用人工目视方法来识别基准光斑与网格靶中心对中与否,而导致的精度差、效率低、人眼容易疲劳和造成伤害的问题
可见,本发明可以大幅度地提高现有激光轨道平顺度检测仪的工程检测精度和可靠性,拓宽了适用的天气环境和有利于进一步提高检测距离,避免了无效的重复检测。由此,还可以大幅度提高检测工作效率和缩短铁路天窗占用时间。本发明为铁路部门线路施工和日常维护作业,提供了一种工程现场实际测量精度高和可靠性强,结构轻便合理和操作简便的激光轨道平顺度检测装置。它对于我国铁路运输的提速、安全、效率、舒适等指标,具有重大的实际意义。本发明同时也适合于类似大型铁路机械,土建、桥梁、水利、电力等其他野外环境下长距离的激光准直工程测量。
当然,实施本发明的任一方法或产品不一定需要同时达到以上所述的所有优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例提供的光电定位靶的正视图;
图2是本发明一实施例提供的光电定位靶的侧视图;
图3是本发明一实施例提供的光电定位靶的工作原理示意图;
图4是本发明一实施例提供的定位靶光电接收头的结构示意图;
图5是本发明一实施例提供的光电测量靶的正视图;
图6是本发明一实施例提供的光电测量靶的侧视图;
图7是本发明一实施例提供的光电测量靶的工作原理示意图;
图8是本发明一实施例提供的测量靶光电接收头的结构示意图;
图9是本发明一实施例提供的激光发射仪的正视图;
图10是本发明一实施例提供的激光发射仪的侧视图;
图11是本发明另一实施例提供的激光轨道平顺度检测方法的流程图;
上面各图中,各标号的含义具体如下:
1表示激光发射器外筒,2表示激光发射器内筒,3表示激光管,4表示外透镜,5表示内透镜,6表示双列向心球轴承,7表示激光发射器支架,8表示激光方向调整支架,9表示水平方向调整螺丝,10表示垂直方向调整螺丝,11表示发射仪底盘水平仪,12表示发射仪底盘调整螺丝,13表示发射仪底盘,14表示发射仪安装底座;
21表示定位靶垂直滑板,22表示定位靶垂直滑块,23表示垂直微型电动机构,24表示定位靶垂直位移传感器,25表示定位靶水平滑板,26表示定位靶水平滑块,27表示水平微型电动机构,28表示定位靶水平位移传感器,29表示定位靶光电接收头,30表示定位靶水平仪,31表示定位靶底盘调整螺丝,32表示定位靶底盘,33表示定位靶安装底座;34表示定位靶光电接收头窗口,35表示定位靶接收头透镜,36表示定位靶光电位置识别元件;
41表示测量靶垂直滑板,42表示测量靶垂直滑块,43表示测量靶垂直位移传感器,44表示测量靶水平滑板,45表示测量靶水平滑块,46表示测量靶水平位移传感器,47表示测量靶光电接收头,48表示测量靶水平仪,49表示测量靶底盘调整螺丝,50表示测量靶底盘,51表示测量靶安装底座;52表示测量靶光电接收头窗口,53表示半透半反射镜片,54表示测量靶接收头透镜,55表示测量靶光电位置识别元件;
61表示激光发射电路板,62表示定位靶光电转换放大电路,63表示定位靶光电驱动电路,64表示定位靶水平位移信号处理器以及垂直位移信号处理器,65表示定位靶水平位移数字显示器以及垂直位移数字显示器,66表示激光测距模块,67表示测量靶信号差动放大电路,68表示水平对中指示器以及垂直对中指示器,69表示测量靶水平位移信号处理器以及垂 直位移信号处理器,70表示测量靶水平位移数字显示器以及垂直位移数字显示器。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明一实施例提供了一种激光轨道平顺度检测装置,该装置包括:激光发射仪、光电定位靶和光电测量靶;所述激光发射仪固定安装在轨道检测区段的始端,发射出通过始端检测基准点的准直激光束;所述光电定位靶固定安装在轨道检测区段的终端,所述光电定位靶的光电接收头中心与终端检测基准点重合;当所述激光发射仪发出的激光束中心与所述定位靶的光电接收头中心对中时,建立起激光基准光束;所述光电测量靶在轨道检测区段内移动用于检测轨道检测区段不同位置处的平顺度,当所述光电测量靶的光电接收头中心与激光基准光束中心对中时,所述光电测量靶上的水平位移传感器的测量值为待测位置P i的水平基础测量值X i,所述光电测量靶上的垂直位移传感器的测量值为待测位置P i的垂直基础测量值Y i
相应地,所述光电定位靶上还设置有偏差检测单元,所述偏差检测单元用于检测所述激光基准光束在水平方向上的水平随机偏差值△X i以及在垂直方向上的垂直随机偏差值△Y i,所述△X i和△Y i与水平基础测量值X i和垂直基础测量值Y i的取值时刻相对应;
其中,考虑检测用的基准光束处于贴近地表面且平行于地表面,因而基准光束周围窄区域的空气密度虽然可能因不同时刻的湍流强度不同而变化,但仍可近视为均匀层,由此根据待测位置P i与所述激光发射仪的直线距离S i以及所述激光发射仪与所述光电定位靶的直线距离L,确定与待测位置P i对应的修正系数K i=S i/L;
将所述水平随机偏差值△X i乘以修正系数K i得到水平随机偏差修正值△X i·K i;将所述垂直随机偏差值△Y i乘以修正系数K i得到垂直随机偏 差修正值△Y i·K i
将所述水平基础测量值X i叠加同一时刻的水平随机偏差修正值△X i·K i得到水平方向上的工程检测值X i’;将所述垂直基础测量值Y i叠加同一时刻的垂直随机偏差修正值△Y i·K i得到垂直方向上的工程检测值Y i’。
在一种可选实施方式中,所述光电测量靶上还设置有实时计算模块,所述实时计算模块用于根据光电测量靶本身获取的水平基础测量值X i、垂直基础测量值Y i以及所述光电定位靶上的偏差检测单元实时发送的水平随机偏差值△X i、垂直随机偏差值△Y i,并结合对应的修正系数K i=S i/L实时计算与待测位置P i对应的水平方向上的工程检测值X i和垂直方向上的工程检测值Y i’。
在一种可选实施方式中,人工读取所述光电测量靶获取的水平基础测量值X i、垂直基础测量值Y i以及人工读取所述光电定位靶上的偏差检测单元检测的水平随机偏差值△X i和垂直随机偏差值△Y i,并结合对应的修正系数K i=S i/L计算与待测位置P i对应的水平方向上的工程检测值X i和垂直方向上的工程检测值Y i’。
在一种可选实施方式中,参见图1-图3,所述光电定位靶包括:定位靶安装底座33,通过定位靶安装底座33可以将所述光电定位靶稳定地卡固在轨道的指定位置上,所述光电定位靶还包括设置在所述定位靶安装底座33上方的定位靶底盘32以及设置在所述定位靶底盘32上的定位靶水平仪30,其中,所述定位靶水平仪30包括横向定位靶水平仪和纵向定位靶水平仪,通过调整定位靶底盘调整螺丝31并观察测定位靶水平仪30,可以实现定位靶底盘32处于水平方位,所述光电定位靶还包括设置在所述定位靶底盘32上的偏差检测单元;
所述偏差检测单元具体包括:沿水平方向固定在所述定位靶底盘32上的定位靶水平滑板25、在所述定位靶水平滑板上滑动的定位靶水平滑块26、沿垂直方向设置在所述定位靶水平滑块上的定位靶垂直滑板21、在所述定位靶垂直滑板上滑动的定位靶垂直滑块22、与所述定位靶水平滑块连接的水平微型电动机构27、与所述定位靶垂直滑块连接的垂直微型电动机构23、用于检测定位靶水平滑块移动距离的定位靶水平位移传感器28(优 选采用微型直线位移传感器)、用于检测定位靶垂直滑块移动距离的定位靶垂直位移传感器24、与所述定位靶光电接收头29连接的定位靶光电转换放大电路62(由两路集成运算放大器和集成运算比较器组成)、与所述定位靶光电转换放大电路62连接的定位靶光电驱动电路63(由两路集成功率放大器组成)、与定位靶水平位移传感器28和定位靶垂直位移传感器24分别连接的定位靶水平位移信号处理器和垂直位移信号处理器64,以及与所述定位靶水平位移信号处理器和垂直位移信号处理器64分别连接的定位靶水平位移数字显示器和垂直位移数字显示器65;
其中,所述定位靶光电驱动电路63分别与所述水平微型电动机构27以及所述垂直微型电动机构23连接;
其中,所述定位靶光电接收头29固定在所述定位靶垂直滑块22上,参见图4,所述定位靶光电接收头29包括定位靶光电接收头窗口34、定位靶接收头透镜35和定位靶光电位置识别元件36,所述定位靶光电位置识别元件36用于产生所述定位靶光电接收头29在水平和垂直方向的电差动信号,并将所述电差动信号发送给所述带有对脉冲电信号滤波功能的定位靶光电转换放大电路62,所述定位靶光电转换放大电路62根据所述电差动信号控制所述定位靶光电驱动电路63,以使所述定位靶光电驱动电路63驱动所述水平微型电动机构27以及所述垂直微型电动机构23,使得所述水平微型电动机构27推动所述定位靶水平滑块26沿所述定位靶水平滑板25移动相应的水平距离以及使得所述垂直微型电动机构23推动所述定位靶垂直滑块22沿所述定位靶垂直滑板21移动相应的垂直距离,进而使得所述定位靶光电接收头29中心跟踪上偏移后的激光基准光束中心;
其中,所述定位靶水平位移传感器28和所述定位靶垂直位移传感器24分别获取所述定位靶光电接收头29在水平方向上的移动偏差值以及在垂直方向上的移动偏差值,并分别经定位靶水平位移信号处理器以及垂直位移信号处理器64、定位靶水平位移数字显示器以及垂直位移数字显示器65处理后输出激光基准光束在水平方向上的水平随机偏差值△X以及激光基准光束在垂直方向上的垂直随机偏差值△Y。
本实施例中,优选地,所述定位靶光电位置识别元件36选用四象限硅光电池实现;所述水平微型电动机构27或垂直微型电动机构23选用微 型电动推杆或微型步进电机实现;所述定位靶水平位移传感器28或定位靶垂直位移传感器24选用电阻式直线位移传感器实现。
本实施例中,当所述定位靶光电位置识别元件36选用四象限硅光电池实现时,相应地,上述水平方向电差动信号和垂直方向电差动信号由所述四象限硅光电池产生。所述四象限硅光电池,具体由按直角坐标系的四象限分隔成的圆形硅光电池组成。按常见的使用方式即整体相对于水平方向旋转45°角设置。由1、3象限检测水平方向偏差,2、4象限检测垂直方向偏差。原则上,在水平方向布设的1、3象限上的光斑能量分布相等时,两象限电极输出的电压差V X=0,在垂直方向布设的2、4象限上的光斑能量分布相等时,两象限电极输出的电压差V y=0,表示四象限硅光电池中心对正基准激光束中心。当入射到四象限硅光电池上的基准激光束中心与四象限硅光电池的中心不重合时,Vx、Vy至少有一个不为零。此时,水平或垂直微型电动机构即微型电动推杆受控制驱动,可以推动定位靶水平或垂直滑块沿定位靶水平或垂直滑板进行水平或垂直移动定位靶光电接收头,使得四象限硅光电池中心始终跟踪对正基准激光束中心。参见图3所示的光电定位靶的工作原理示意图,定位靶水平滑板25被沿水平方向固定在定位靶底盘32上。水平微型电动机构27受控时可以推动定位靶水平滑块26沿定位靶水平滑板25进行水平移动,定位靶水平位移传感器28跟随移动并显示出定位靶水平滑块26的移动偏差值△X。定位靶垂直滑板21被垂直固定在定位靶水平滑块26上。垂直微型电动机构23受控时可以推动定位靶垂直滑块22沿定位靶垂直滑板21进行垂直移动,定位靶垂直位移传感器24跟随移动并显示出定位靶垂直滑块22的移动偏差值△Y。
在一种可选实施方式中,参见图5-图7,所述光电测量靶包括:测量靶安装底座51,通过测量靶安装底座51可以将所述光电测量靶稳定地卡固在轨道的指定位置上,所述光电测量靶还包括:设置在所述测量靶安装底座51上方的测量靶底盘50以及设置在所述测量靶底盘50上的测量靶水平仪48,通过调整测量靶底盘调整螺丝49并观察测量靶水平仪48,可以实现测量靶底盘50处于水平方位。所述光电测量靶还包括:沿水平方向固定在所述测量靶底盘上的测量靶水平滑板44、在所述测量靶水平滑板上滑动的测量靶水平滑块45、沿垂直方向设置在所述测量靶水平滑块上的 测量靶垂直滑板41、在所述测量靶垂直滑板上滑动的测量靶垂直滑块42、用于检测测量靶水平滑块移动距离的测量靶水平位移传感器46(优选微型直线位移传感器)以及用于检测测量靶垂直滑块移动距离的测量靶垂直位移传感器43、与所述测量靶光电接收头47连接的测量靶信号差动放大电路67、与所述测量靶信号差动放大电路连接的水平对中指示器以及垂直对中指示器68、与测量靶水平位移传感器和测量靶垂直位移传感器分别连接的测量靶水平位移信号处理器以及垂直位移信号处理器69,以及与所述测量靶水平位移信号处理器以及垂直位移信号处理器69分别连接的水平位移数字显示器以及垂直位移数字显示器70;
其中,所述测量靶光电接收头47固定在所述测量靶垂直滑块42上,参见图8,所述测量靶光电接收头47包括:测量靶光电接收头窗口52、半透半反射镜片53、测量靶接收头透镜54和测量靶光电位置识别元件55;所述半透半反射镜片53将激光基准光束分成两部分,其中一部分光束穿过所述半透半反射镜片,按原方向射入定位靶光电接收头中心,另一部分光束经过所述半透半反射镜片的反射,转折90°方向射到测量靶光电接收头中心;所述测量靶光电位置识别元件55用于产生所述测量靶光电接收头在水平和垂直方向的电差动信号,并将所述电差动信号发送给所述带有对脉冲电信号滤波功能的测量靶信号差动放大电路67,并通过与所述测量靶信号差动放大电路67连接的水平对中指示器以及垂直对中指示器68显示出来;
当推动测量靶水平滑块沿测量靶水平滑板进行水平移动时,测量靶水平位移传感器跟随移动并在水平对中指示器指零时由所述水平位移数字显示器显示出测量靶水平滑块的基础测量值X,当推动测量靶垂直滑块沿测量靶垂直滑板进行垂直移动时,测量靶垂直位移传感器跟随移动并在垂直对中指示器指零时由所述垂直位移数字显示器显示出测量靶垂直滑块的基础测量值Y。
本实施例中,优选地,所述测量靶光电位置识别元件55选用四象限硅光电池实现;所述测量靶水平位移传感器46或测量靶垂直位移传感器43选用电阻式直线位移传感器实现。为方便安装和使用,所述半透半反射镜片53可以选用斜面镀有半透半反膜的直角棱镜实现。
参见图7所示的光电测量靶的工作原理示意图,测量靶水平滑板44被沿水平方向固定在测量靶底盘上。当用推动测量靶水平滑块45沿测量靶水平滑板44进行水平移动时,测量靶水平位移传感器46跟随移动并在水平对中指示器指零时即会显示出测量靶水平滑块45的基础测量值X。测量靶垂直滑板41被垂直固定在测量靶水平滑块45上。当用推动测量靶垂直滑块42沿测量靶垂直滑板41进行垂直移动时,测量靶垂直位移传感器43跟随移动并在垂直对中指示器指零时即会显示出测量靶垂直滑块42的基础测量值Y。
由上面关于光电定位靶和光电测量靶的结构及原理的介绍可知,本发明实施全程采用光电识别,消除了人工主观误差,大幅度提高了识别精度和检测效率,同时保护了操作者人眼的安全,解决了现有激光轨道平顺度检测仪,由于采用人工目视方法来识别基准光斑与网格靶中心对中与否,而导致的精度差、效率低、人眼容易疲劳和造成伤害的问题。
在一种可选实施方式中,参见图9-图10,所述激光发射仪包括发射仪安装底座14(通过激光发射仪安装底座14将激光发射仪稳定地卡固在钢轨的指定位置上)、设置在所述发射仪安装底座上的发射仪底盘13、设置在所述发射仪底盘13上的发射仪底盘水平仪11(通过调整发射仪底盘调整螺丝12,可以实现发射仪底盘13处于水平方位)、设置在所述发射仪底盘上的激光发射器支架7以及固定在所述激光发射器支架上的激光发射器;
其中,所述激光发射器包括:激光管3,用于驱动激光管发射激光束的激光发射电路板61、激光发射器内筒2以及包裹所述激光发射器内筒的激光发射器外筒1,激光发射器外筒1置于双列向心球轴承6的内孔中,所述双列向心球轴承6固定在激光发射器支架7上;
其中,所述激光管3置于激光发射器内筒2中,所述激光发射器内筒2的前端设置有内透镜5,所述激光发射器外筒1的前端设置有外透镜4,通过调整激光发射器内筒2和激光发射器外筒1的相对位置以改变内透镜5和外透镜4的间距,实现激光束的扩束准直;
所述激光发射仪还包括激光方向调整支架8,所述激光方向调整支架8设置在所述发射仪底盘13上,所述激光方向调整支架8上设有与激光发 射器外筒1的尾端相对应的水平方向调整螺丝9和垂直方向调整螺丝10,以实现对发射激光束的水平方向调整和垂直方向调整。
可以理解的是,所述激光发射器可以为可见光半导体激光发射器或不可见光半导体激光发射器。本实施例中,为使调试过程观测方便,所述激光发射器选用可见红光半导体激光器。
其中,本实施例提供的激光轨道平顺度检测装置的工作原理是:将某时刻在光电定位靶上监测到的激光基准光束中心的随机偏差值△X和△Y,按实际距离比例S/L换算后,对同时刻在光电测量靶上读取的基础测量值X和Y进行直接修正,原则上即得到了实际工程测量值,该实际工程测量值相对于光电测量靶直接获取的基础测量值来说,具有较高的准确度和可靠性。
下面给出采用上述激光轨道平顺度检测装置进行轨道平顺度检测的方法,具体包括如下步骤:
步骤1、准备工作。在轨道检测区段的始端固定安装激光发射仪,终端固定安装光电定位靶。调整激光发射仪底盘和光电定位靶底盘处于水平状态。调整激光发射仪的水平和垂直方向调整螺丝,使激光束中心与定位靶光电接收头中心对中,建立起检测用激光基准线。随后,打开光电定位靶上的监测开关,进入激光基准线偏差值监测程序。
步骤2、跟踪监测光电定位靶上的激光基准光束中心的随机偏差值。初始将基准光束中心与定位靶光电接收头中心调试对中后,定位靶光电接收头的水平方向电差动信号和垂直方向电差动信号输出均为零。开始对激光基准线的偏移监测后,因激光器或大气湍流引起的光束抖动漂移和缓慢弯曲,将导致激光基准线即基准光束随机偏移,此时定位靶光电接收头的水平和垂直方向电差动信号会随机变化而不再为零。经过信号放大处理,可以控制定位靶上的微型电动机构,以驱动定位靶光电接收头作水平和垂直方向的移动,使定位靶光电接收头中心即时跟踪偏移后的光束中心,从而使定位靶光电接收头中心时刻与基准光束中心保持完全对中。
同时,经定位靶上的水平和垂直移位传感器监测出定位靶光电接收头的水平和垂直方向的移动量偏差值,再经带有对抖动电信号滤波功能的水平和垂直位移信号处理电路,以及和水平和垂直位移数字显示器输出的水 平随机偏差值△X i,以及垂直随机偏差值△Y i
步骤3、轨向和高低值检测。在待测点处安装光电测量靶,调整光电测量靶底盘处于水平状态。使用光电测量靶在检测区段内移动检测。推动光电测量靶水平滑块,使光电测量靶水平向对中指示器指示为零时,可读取水平向位移数字显示器的示值即水平基础测量值X i;推动光电测量靶垂直滑块,使光电测量靶的垂直向对中指示器指示为零时,可读取垂直向位移数字显示器的示值即垂直基础测量值Y i
步骤4、轨向和高低测量值的即时修正。某测点的实际工程检测值应为:
X i’=X i±△X i·S i/L;
Y i’=Y i±△Y i·S i/L;
其中:X i’、Y i’为轨道待测位置P i处的实际工程检测水平方向值和工程检测垂直方向值;X i为在P i处的光电测量靶水平位移传感器测量值,△X i为在同一时刻读取的终端光电定位靶处的水平随机偏差值;Y i为在P i处的光电测量靶垂直位移传感器测量值,△Y i为在同一时刻读取的终端光电定位靶处的垂直随机偏差值,其中,±符号代表偏差的方向。S i为激光发射仪到轨道待测位置P i的实际距离(在直线段同于轨道里程长度;在曲线段应为激光发射仪到测量点的直线距离,为了检测距离方便,也可以在激光定位靶处用激光测距模块(参见图3中的激光测距模块66)直接检测出激光定位靶到测量点间的距离即L-S i),L为始端激光发射仪到终端光电定位靶的直线距离全长。
将某时刻在光电定位靶上监测到的基准光束中心随机偏差值,按实际距离比例换算后,对同时刻的光电测量靶读取的基础测量值直接加减修正,原则上即得到了实际工程测量值。
此外,需要指出的是,在检测距离较近的情况下,由于激光束扩束准直后的光束直径较小,比较容易适应现有常见二维PSD位置传感器或CCD图像传感器的受光面大小,因此在检测距离较近的情况下,所述定位靶光电位置识别元件36还可以采用位置传感器PSD或图像传感器CCD实现,由所述位置传感器PSD或图像传感器CCD直接接收光斑并直接监测出光斑中心的即时偏差值△X和△Y。同时通过激光测距模块监测出激光发射 仪到光电测量靶的实际距离S,直接计算出即时修正值△X*S/L和△Y*S/L,再通过无线方式将该数据发射出去。由光电测量靶无线接收该数据后,在光电测量靶内直接对即时基础测量值进行简单计算和修正进而得到工程测量值。此时全部监测和修正过程会自动完成,直接显示工程测量值实际结果。此外,如果将光电测量靶结构简化,取消半透半反射镜片的半透半反功能则只有接收光束检测功能,这样可以在光电测量靶随时离开轨道时,对定位靶偏差值进行间断式地监测。由此监测和测量交替进行,偏差值的修正效果会存在较短时差。
可见,本发明实施例提供的激光轨道平顺度检测装置由激光发射仪、光电定位靶和光电测量靶三部分组成。在某一段被检测轨道上,将激光发射仪和光电定位靶相距一定距离安装固定。激光发射仪发射出的激光束中心线通过始端检测基准点。光电定位靶光电接收头中心与终端基准点重合。调整激光发射仪使激光束中心与光电定位靶光电接收头中心对中,即建立了通过两端基准点并且与轨道中心线平行的激光基准线。当光电测量靶在轨道上移动的时候,利用光电测量靶的基础检测结果以及光电定位靶提供的随机偏差量值换算修正后,即可获取激光束中心线和轨道各待测点的实际距离尺寸,然后同标准值对比,原则上即可得出轨向和高低的不平顺度偏差值。
对于类似轨道捣固车,由于车体上部遮挡而无法同时监测基准光束偏差值和检测基础测量值的情况,可以采用斜方棱镜或两个平行平镜片使基准光束分成相隔一定距离的两条平行光束,其中一束仍用于上部车体位置基础测量,另一束由车体底部穿过射向远端地面固定的目标光电定位靶,实现对基准光束随机偏差值的监测。两束平行光间距越近修正效果越好。
可见,本发明实施例提供的激光轨道平顺度检测装置至少具有如下的有益效果:
1、本发明实施例提供的激光轨道平顺度检测装置,连续跟踪监测基准光束的随机偏差值,并对基础测量值进行直接等值修正,进而可以获取较为准确和可靠的工程检测值,从而解决了现有激光轨道平顺度检测仪,因激光器本身的光束稳定性影响,尤其是野外环境下激光传输中大气湍流引起的抖动漂移和缓慢弯曲影响,即两者综合作用引起的随机的基准光束 方向偏移,而导致的日常工程测量中检测结果精度下降和可靠性差,甚至因天气影响而无法使用的问题,实现了全程实时监测和等值修正,获得了可靠的工程检测值。可见,本发明提供的激光轨道平顺度检测装置特别适用于野外环境和长距离条件下的激光准直工程测量。
2、本发明实施例提供的激光轨道平顺度检测装置,全程采用光电识别,消除了人工主观误差,大幅度提高了识别精度和检测效率,同时保护了操作者人眼的安全,解决了现有激光轨道平顺度检测仪,由于采用人工目视方法来识别基准光斑与网格靶中心对中与否,而导致的精度差、效率低、人眼容易疲劳和造成伤害的问题
可见,本发明实施例提供的激光轨道平顺度检测装置,可以大幅度地提高现有激光轨道平顺度检测仪的工程检测精度和可靠性,拓宽了适用的天气环境和有利于进一步提高检测距离,避免了无效的重复检测。由此,还可以大幅度提高检测工作效率和缩短铁路天窗占用时间。本发明为铁路部门线路施工和日常维护作业,提供了一种工程现场实际测量精度高和可靠性强,结构轻便合理和操作简便的激光轨道平顺度检测装置。它对于我国铁路运输的提速、安全、效率、舒适等指标,具有重大的实际意义。本发明同时也适合于土建、桥梁、水利、电力等其他野外环境下长距离的激光准直工程测量。
本发明另一实施例提供了一种基于上面实施例所述的激光轨道平顺度检测装置的激光轨道平顺度检测方法,参见图11,该方法包括如下步骤:
步骤101:在轨道检测区段的始端固定安装激光发射仪,终端固定安装光电定位靶,调整激光发射仪和光电定位靶,使激光光束中心与定位靶光电接收头中心对中,建立起检测用的激光基准光束。
步骤102:在轨道检测区段的待测位置P i处安装光电测量靶,获取光电测量靶上的水平位移传感器测量得到的待测位置P i的水平基础测量值X i,以及垂直位移传感器测量得到的待测位置P i的垂直基础测量值Y i,同时利用光电定位靶上的偏差检测单元检测所述激光基准光束在水平方向上的水平随机偏差值△X i以及在垂直方向上的垂直随机偏差值△Y i,所述△X i和△Y i与水平基础测量值X i和垂直基础测量值Y i的取值时刻相对应。
步骤103:根据待测位置P i与所述激光发射仪的直线距离S i以及所述 激光发射仪与所述光电定位靶的直线距离L,确定与待测位置P i对应的修正系数K i=S i/L。
步骤104:将所述水平随机偏差值△X i乘以修正系数K i得到水平随机偏差修正值△X i·K i;将所述垂直随机偏差值△Y i乘以修正系数K i得到垂直随机偏差修正值△Y i·K i
步骤105:将所述水平基础测量值X i叠加同一时刻的水平随机偏差修正值△X i·K i得到水平方向上的工程检测值X i’;将所述垂直基础测量值Y i叠加同一时刻的垂直随机偏差修正值△Y i·K i得到垂直方向上的工程检测值Y i’。
由于本发明实施例激光轨道平顺度检测方法采用上述实施例提供的激光轨道平顺度检测装置实现,故其原理和效果类似,此处不再赘述。
在本发明的描述中,需要说明的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用于说明本发明的技术方案,而非对其限制;尽管参照 前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种激光轨道平顺度检测装置,其特征在于,包括:激光发射仪、光电定位靶和光电测量靶;所述激光发射仪固定安装在轨道检测区段的始端,发射出通过始端检测基准点的准直激光束;所述光电定位靶固定安装在轨道检测区段的终端,所述光电定位靶的光电接收头中心与终端检测基准点重合;当所述激光发射仪发出的激光束中心与所述定位靶的光电接收头中心对中时,建立起激光基准光束;所述光电测量靶在轨道检测区段内移动用于检测轨道检测区段不同位置处的平顺度,当所述光电测量靶的光电接收头中心与激光基准光束中心对中时,所述光电测量靶上的水平位移传感器的测量值为待测位置P i的水平基础测量值X i,所述光电测量靶上的垂直位移传感器的测量值为待测位置P i的垂直基础测量值Y i
    相应地,所述光电定位靶上还设置有偏差检测单元,所述偏差检测单元用于检测所述激光基准光束在水平方向上的水平随机偏差值△X i以及在垂直方向上的垂直随机偏差值△Y i,所述△X i和△Y i与水平基础测量值X i和垂直基础测量值Y i的取值时刻相对应;
    其中,根据待测位置P i与所述激光发射仪的直线距离S i以及所述激光发射仪与所述光电定位靶的直线距离L,确定与待测位置P i对应的修正系数K i=S i/L;
    将所述水平随机偏差值△X i乘以修正系数K i得到水平随机偏差修正值△X i·K i;将所述垂直随机偏差值△Y i乘以修正系数K i得到垂直随机偏差修正值△Y i·K i
    将所述水平基础测量值X i叠加同一时刻的水平随机偏差修正值△X i·K i得到水平方向上的工程检测值X i’;将所述垂直基础测量值Y i叠加同一时刻的垂直随机偏差修正值△Y i·K i得到垂直方向上的工程检测值Y i’。
  2. 根据权利要求1所述的装置,其特征在于,所述光电测量靶上还设置有实时计算模块,所述实时计算模块用于根据光电测量靶本身获取的水平基础测量值X i、垂直基础测量值Y i以及所述光电定位靶上的偏差检测单元实时发送的水平随机偏差值△X i、垂直随机偏差值△Y i,并结合对应的修正系数K i=S i/L实时计算与待测位置P i对应的水平方向上的工程检测 值X i和垂直方向上的工程检测值Y i’。
  3. 根据权利要求1所述的装置,其特征在于,人工读取所述光电测量靶获取的水平基础测量值X i、垂直基础测量值Y i以及人工读取所述光电定位靶上的偏差检测单元检测的水平随机偏差值△X i和垂直随机偏差值△Y i,并结合对应的修正系数K i=S i/L计算与待测位置P i对应的水平方向上的工程检测值X i和垂直方向上的工程检测值Y i’。
  4. 根据权利要求1所述的装置,其特征在于,所述光电定位靶包括:定位靶安装底座、设置在所述定位靶安装底座上方的定位靶底盘、设置在所述定位靶底盘上的定位靶水平仪,以及设置在所述定位靶底盘上的偏差检测单元;
    所述偏差检测单元具体包括:沿水平方向固定在所述定位靶底盘上的定位靶水平滑板、在所述定位靶水平滑板上滑动的定位靶水平滑块、沿垂直方向设置在所述定位靶水平滑块上的定位靶垂直滑板、在所述定位靶垂直滑板上滑动的定位靶垂直滑块、与所述定位靶水平滑块连接的水平微型电动机构、与所述定位靶垂直滑块连接的垂直微型电动机构、用于检测定位靶水平滑块移动距离的定位靶水平位移传感器、用于检测定位靶垂直滑块移动距离的定位靶垂直位移传感器、与所述定位靶光电接收头连接的定位靶光电转换放大电路、与所述定位靶光电转换放大电路连接的定位靶光电驱动电路、与定位靶水平位移传感器和定位靶垂直位移传感器分别连接的定位靶水平位移信号处理器和垂直位移信号处理器,以及与所述定位靶水平位移信号处理器和垂直位移信号处理器分别连接的定位靶水平位移数字显示器和垂直位移数字显示器;
    其中,所述定位靶光电驱动电路分别与所述水平微型电动机构以及所述垂直微型电动机构连接;
    其中,所述定位靶光电接收头固定在所述定位靶垂直滑块上,所述定位靶光电接收头包括定位靶光电接收头窗口、定位靶接收头透镜和定位靶光电位置识别元件,所述定位靶光电位置识别元件用于产生所述定位靶光电接收头在水平和垂直方向的电差动信号,并将所述电差动信号发送给所述带有对脉冲电信号滤波功能的光电转换放大电路,所述光电转换放大电路根据所述电差动信号控制所述定位靶光电驱动电路,以使所述定位靶光 电驱动电路驱动所述水平微型电动机构以及所述垂直微型电动机构,使得所述水平微型电动机构推动所述定位靶水平滑块沿所述定位靶水平滑板移动相应的水平距离以及使得所述垂直微型电动机构推动所述定位靶垂直滑块沿所述定位靶垂直滑板移动相应的垂直距离,进而使得所述定位靶光电接收头中心跟踪上偏移后的激光基准光束中心;
    其中,所述定位靶水平位移传感器和所述定位靶垂直位移传感器分别获取所述定位靶光电接收头在水平方向上的移动偏差值以及在垂直方向上的移动偏差值,并分别经定位靶水平位移信号处理器和垂直位移信号处理器以及定位靶水平位移数字显示器和垂直位移数字显示器处理后输出激光基准光束在水平方向上的水平随机偏差值△X以及激光基准光束在垂直方向上的垂直随机偏差值△Y。
  5. 根据权利要求1所述的装置,其特征在于,所述光电测量靶包括:测量靶安装底座、设置在所述测量靶安装底座上方的测量靶底盘、设置在所述测量靶底盘上的测量靶水平仪、沿水平方向固定在所述测量靶底盘上的测量靶水平滑板、在所述测量靶水平滑板上滑动的测量靶水平滑块、沿垂直方向设置在所述测量靶水平滑块上的测量靶垂直滑板、在所述测量靶垂直滑板上滑动的测量靶垂直滑块、用于检测测量靶水平滑块移动距离的测量靶水平位移传感器以及用于检测测量靶垂直滑块移动距离的测量靶垂直位移传感器、与所述测量靶光电接收头连接的测量靶信号差动放大电路、与所述测量靶信号差动放大电路连接的水平对中指示器以及垂直对中指示器、与测量靶水平位移传感器和测量靶垂直位移传感器分别连接的测量靶水平位移信号处理器和垂直位移信号处理器,以及与所述测量靶水平位移信号处理器和垂直位移信号处理器分别连接的测量靶水平位移数字显示器和垂直位移数字显示器;
    其中,所述测量靶光电接收头固定在所述测量靶垂直滑块上,所述测量靶光电接收头包括:测量靶光电接收头窗口、半透半反射镜片、测量靶接收头透镜和测量靶光电位置识别元件;所述半透半反射镜片将激光基准光束分成两部分,其中一部分光束穿过所述半透半反射镜片,按原方向射入定位靶光电接收头中心,另一部分光束经过所述半透半反射镜片的反射,转折90°方向射到测量靶光电接收头中心;所述测量靶光电位置识别 元件用于产生所述测量靶光电接收头在水平和垂直方向的电差动信号,并将所述电差动信号发送给带有对脉冲电信号滤波功能的测量靶信号差动放大电路,并通过与所述测量靶信号差动放大电路连接的水平对中指示器以及垂直对中指示器显示出来;
    当推动测量靶水平滑块沿测量靶水平滑板进行水平移动时,测量靶水平位移传感器跟随移动并在水平对中指示器指零时由所述测量靶水平位移数字显示器显示出测量靶水平滑块的基础测量值X,当推动测量靶垂直滑块沿测量靶垂直滑板进行垂直移动时,测量靶垂直位移传感器跟随移动并在垂直对中指示器指零时由所述测量靶垂直位移数字显示器显示出测量靶垂直滑块的基础测量值Y。
  6. 根据权利要求4或5所述的装置,其特征在于,所述定位靶光电位置识别元件或所述测量靶光电位置识别元件为四象限硅光电池,所述四象限硅光电池用于对激光基准光束中心与定位靶光电接收头中心或测量靶光电接收头中心是否发生偏差进行识别。
  7. 根据权利要求4或5所述的装置,其特征在于,所述定位靶光电位置识别元件或所述测量靶光电位置识别元件为位置传感器PSD或图像传感器CCD,所述位置传感器PSD或图像传感器CCD直接检测出偏差值。
  8. 根据权利要求1所述的装置,其特征在于,所述激光发射仪包括发射仪安装底座、设置在所述发射仪安装底座上的发射仪底盘、设置在所述发射仪底盘上的发射仪底盘水平仪、设置在所述发射仪底盘上的激光发射器支架以及固定在所述激光发射器支架上的激光发射器;
    其中,所述激光发射器包括:激光管,用于驱动激光管发射激光束的激光发射电路板、激光发射器内筒以及包裹所述激光发射器内筒的激光发射器外筒,激光发射器外筒置于双列向心球轴承的内孔中,所述双列向心球轴承固定在激光发射器支架上;
    其中,所述激光管置于激光发射器内筒中,所述激光发射器内筒的前端设置有内透镜,所述激光发射器外筒的前端设置有外透镜,通过调整激光发射器内筒和激光发射器外筒的相对位置以改变内透镜和外透镜的间距,实现激光束的扩束准直;
    所述激光发射仪还包括激光方向调整支架,所述激光方向调整支架设 置在所述发射仪底盘上,所述激光方向调整支架上设有与激光发射器外筒的尾端相对应的水平方向调整螺丝和垂直方向调整螺丝,以实现对发射激光束的水平方向调整和垂直方向调整。
  9. 根据权利要求8所述的装置,其特征在于,所述激光发射器为可见光半导体激光发射器或不可见光半导体激光发射器。
  10. 一种基于如权利要求1~9任一项所述的激光轨道平顺度检测装置的激光轨道平顺度检测方法,其特征在于,包括如下步骤:
    S1、在轨道检测区段的始端固定安装激光发射仪,终端固定安装光电定位靶,调整激光发射仪和光电定位靶,使激光光束中心与定位靶光电接收头中心对中,建立起检测用的激光基准光束;
    S2、在轨道检测区段的待测位置P i处安装光电测量靶,获取光电测量靶上的水平位移传感器测量得到的待测位置P i的水平基础测量值X i,以及垂直位移传感器测量得到的待测位置P i的垂直基础测量值Y i,同时利用光电定位靶上的偏差检测单元检测所述激光基准光束在水平方向上的水平随机偏差值△X i以及在垂直方向上的垂直随机偏差值△Y i,所述△X i和△Y i与水平基础测量值X i和垂直基础测量值Y i的取值时刻相对应;
    S3、根据待测位置P i与所述激光发射仪的直线距离S i以及所述激光发射仪与所述光电定位靶的直线距离L,确定与待测位置P i对应的修正系数K i=S i/L;
    S4、将所述水平随机偏差值△X i乘以修正系数K i得到水平随机偏差修正值△X i·K i;将所述垂直随机偏差值△Y i乘以修正系数K i得到垂直随机偏差修正值△Y i·K i
    S5、将所述水平基础测量值X i叠加同一时刻的水平随机偏差修正值△X i·K i得到水平方向上的工程检测值X i’;将所述垂直基础测量值Y i叠加同一时刻的垂直随机偏差修正值△Y i·K i得到垂直方向上的工程检测值Y i’。
PCT/CN2018/110993 2017-10-20 2018-10-19 一种激光轨道平顺度检测装置及方法 WO2019076364A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710986949.7A CN107764213B (zh) 2017-10-20 2017-10-20 一种激光轨道平顺度检测装置及方法
CN201710986949.7 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019076364A1 true WO2019076364A1 (zh) 2019-04-25

Family

ID=61269797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110993 WO2019076364A1 (zh) 2017-10-20 2018-10-19 一种激光轨道平顺度检测装置及方法

Country Status (2)

Country Link
CN (1) CN107764213B (zh)
WO (1) WO2019076364A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764213B (zh) * 2017-10-20 2024-04-02 王启华 一种激光轨道平顺度检测装置及方法
CN109061608B (zh) * 2018-05-23 2021-09-28 顺丰科技有限公司 一种激光测距校准方法
CN108895989A (zh) * 2018-07-10 2018-11-27 王启华 一种轨道平顺度连续检测装置及方法
CN109057825B (zh) * 2018-08-06 2020-05-29 长沙泽和智能科技有限公司 一种衬砌台车模板自动调节对中的装置及应用于所述装置的控制方法
CN112501966B (zh) * 2020-11-20 2022-07-05 滨州职业学院 一种基于bim模型的检测反馈装置
CN112666164B (zh) * 2020-11-23 2023-06-16 上海新时达机器人有限公司 针对多品类混线生产控制柜的机器人视觉检测方法
CN114808575B (zh) * 2022-03-23 2023-09-08 北京轩圆机电有限公司 基于扫描激光的轨道平顺度检测系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2043342U (zh) * 1988-03-23 1989-08-23 沈阳铁路局锦州科学技术研究所 带光电自动显示的激光测量仪
US6043889A (en) * 1998-07-15 2000-03-28 Garner; Dennis B. Misalignment detection apparatus and method
CN101178303A (zh) * 2007-11-26 2008-05-14 刘洪云 利用激光检测铁路路轨的方法及装置
CN101881608A (zh) * 2010-06-24 2010-11-10 刘洪云 激光300米长弦铁路轨道测量自校准装置
CN105258639A (zh) * 2015-11-11 2016-01-20 成都狼图腾科技有限公司 一种采用激光长玄直接测量轨道偏置坐标的方法
CN107764213A (zh) * 2017-10-20 2018-03-06 王启华 一种激光轨道平顺度检测装置及方法
CN207540512U (zh) * 2017-10-20 2018-06-26 王启华 一种激光轨道平顺度检测装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213198A (ja) * 1991-09-13 1993-08-24 Nishi Nippon Riyokaku Tetsudo Kk 軌道狂い測定方法及び装置
CN100526797C (zh) * 2007-09-04 2009-08-12 北京北奥东华激光技术有限公司 一种铁路车辆宽度超限激光检测方法及装置
KR20150060251A (ko) * 2013-11-26 2015-06-03 한국철도공사 전차선로 레이저 측정장치
CN104554341B (zh) * 2014-12-06 2017-11-03 呼和浩特铁路局科研所 检测轨道平顺度的系统和方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2043342U (zh) * 1988-03-23 1989-08-23 沈阳铁路局锦州科学技术研究所 带光电自动显示的激光测量仪
US6043889A (en) * 1998-07-15 2000-03-28 Garner; Dennis B. Misalignment detection apparatus and method
CN101178303A (zh) * 2007-11-26 2008-05-14 刘洪云 利用激光检测铁路路轨的方法及装置
CN101881608A (zh) * 2010-06-24 2010-11-10 刘洪云 激光300米长弦铁路轨道测量自校准装置
CN105258639A (zh) * 2015-11-11 2016-01-20 成都狼图腾科技有限公司 一种采用激光长玄直接测量轨道偏置坐标的方法
CN107764213A (zh) * 2017-10-20 2018-03-06 王启华 一种激光轨道平顺度检测装置及方法
CN207540512U (zh) * 2017-10-20 2018-06-26 王启华 一种激光轨道平顺度检测装置

Also Published As

Publication number Publication date
CN107764213A (zh) 2018-03-06
CN107764213B (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2019076364A1 (zh) 一种激光轨道平顺度检测装置及方法
CN104373129B (zh) 一种盾构隧道拱顶沉降监测装置
CN107290739B (zh) 探测器组件、探测器及激光测距系统
CN101825447B (zh) 机动车停放偏角测试的方法和装置
CN107218920B (zh) 距离测定方法及距离测定系统
CN101351684A (zh) 测量仪和测量方法
CN103411530A (zh) 大型自由锻件尺寸在线测量装置及方法
CN101113898B (zh) 铁路钢轨正矢测量仪
CN109668515B (zh) 列车轮对尺寸动态检测系统及检测方法
CN114808575B (zh) 基于扫描激光的轨道平顺度检测系统及方法
CN112278011A (zh) 用于起重机轨道综合检测的机器人装置及综合检测方法
CN102062586A (zh) 一种内孔激光测量装置
CN205002742U (zh) 起重机纠偏激光检测仪
CN207540512U (zh) 一种激光轨道平顺度检测装置
CN106184284B (zh) 基于线激光多截面扫描的列车轮对直径自动化测量方法和系统
CN103507832A (zh) 一种轨道几何尺寸检测装置
CN114459388B (zh) 一种单激光双psd深孔直线度检测装置及方法
CN116519022A (zh) 基于psd信号检测的光电吊舱稳定精度测试系统及方法
RU2256575C1 (ru) Способ измерения геометрии рельсового пути и устройство для его осуществления
CN108534699B (zh) 一种激光光幕靶距精确测量装置及测量方法
CN113959372A (zh) 一种高灵敏自准直二维光电测角装置
CN204312075U (zh) 一种盾构隧道拱顶沉降监测装置
CN209783519U (zh) 一种混合式接触网接触轨几何参数检测装置
CN211085051U (zh) 一种基于倾斜角度补偿的电梯轨道检测装置
CN218561965U (zh) 一种捣固车双弦光电测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868104

Country of ref document: EP

Kind code of ref document: A1