WO2020252842A1 - Procédé de conception basé sur une charge réelle pour un point de contact de surface de dent d'un engrenage - Google Patents

Procédé de conception basé sur une charge réelle pour un point de contact de surface de dent d'un engrenage Download PDF

Info

Publication number
WO2020252842A1
WO2020252842A1 PCT/CN2019/096812 CN2019096812W WO2020252842A1 WO 2020252842 A1 WO2020252842 A1 WO 2020252842A1 CN 2019096812 W CN2019096812 W CN 2019096812W WO 2020252842 A1 WO2020252842 A1 WO 2020252842A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
tooth surface
gear
spot
contact spot
Prior art date
Application number
PCT/CN2019/096812
Other languages
English (en)
Chinese (zh)
Inventor
焦继松
赵红军
韩大阔
王小箭
黄伟明
Original Assignee
江苏太平洋精锻科技股份有限公司
江苏太平洋齿轮传动有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏太平洋精锻科技股份有限公司, 江苏太平洋齿轮传动有限公司 filed Critical 江苏太平洋精锻科技股份有限公司
Publication of WO2020252842A1 publication Critical patent/WO2020252842A1/fr

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the field of gear design, in particular to a design method of tooth surface contact spot gear based on actual load.
  • the contact spots of bevel gears are one of the important indicators of its transmission performance. Abnormal conditions such as vibration, noise and early fatigue failure can often be reflected from the difference in the shape and position of the contact spots. Therefore, in the gear design stage, the tooth surface is modified. It is one of the indispensable steps of gear design to make the contact spots of the gear pair meet the requirements.
  • the industry has always designed contact spots on the premise that the gear is assumed to be a rigid body without elastic deformation.
  • the actual inspection of the contact spots is also to apply a thin layer of red lead powder on the detection gear before the inspection, rotate the gear pair under a slight brake, and then observe the distribution result of the tooth surface contact of the measured gear after meshing, if not satisfied Requests are redesigned and manufactured.
  • the actual situation is that the gear pair undergoes elastic deformation due to the load, and the position and shape of the designed contact spots will change. In severe cases, premature failure will occur. This is also sometimes especially under high torque conditions.
  • the actual life of the gear pair is often lower than one of the factors of the theoretical life.
  • the present invention provides a design method for tooth surface contact spot gears based on actual load that can eliminate the influence of elastic deformation on contact spots, achieve the goal of optimizing contact spots in the design stage, and improve the life of gear pairs.
  • a design method of tooth surface contact spot gear based on actual load including the following steps:
  • Step 1 Determine the 3D model of the straight bevel gear pair after modification according to the empirical formula of tooth profile and tooth direction modification, and complete the assembly of the gear pair;
  • Step 2 Complete the finite element contact analysis of the gear pair, respectively determine the contact spots under near zero load and rated load, and use the contact spots under near zero load as theoretical design spots;
  • Step 3 Compare the theoretical design spot obtained in Step 2 with the contact spot under rated load to obtain the deviation between the two;
  • Step 4 According to the deviation, use the anti-deformation method to correct the theoretical tooth surface, and then complete the corrected three-dimensional model of the gear. According to the corrected three-dimensional model, perform the finite element contact analysis under the rated load to obtain the new corrected contact spot;
  • Step 5 Compare the contact spot obtained in step 4 with the theoretical basis spot obtained in step 2. If the deviation of the contact spot obtained in step 4 is within the tolerance, obtain the corrected gear contact spot, otherwise determine the deviation and proceed to the next step ;
  • Step 6 According to the new model deviation, repeat Step 5 until the proper contact spot is reached.
  • Step 2 Near-zero load is generally taken as 0.1-0.5% of the rated load.
  • the maximum value of the elastic deformation threshold used to judge whether the contact is 2.5 ⁇ 10 -5 mm.
  • the principle of inverse deformation method modeling is to first advance the coordinate values of all nodes of the theoretical tooth surface in the finite element analysis software, and derive them as the theoretical coordinate text of each node; then obtain the tooth surface under rated load through contact analysis
  • the maximum value of the elastic deformation of each node is derived as the text of the elastic deformation of each node; according to the theoretical coordinate text of each node and the text of the elastic deformation of each node, the compensated tooth surface point coordinate data is calculated, and then the tooth surface point coordinate data Import the 3D modeling software to form the compensated tooth surface, and use this tooth surface to intercept the gear blank to obtain the compensated gear model.
  • the beneficial effect of the present invention is that the design method of the tooth surface contact spot gear based on the actual load can eliminate the influence of elastic deformation on the contact spot, achieve the purpose of optimizing the contact spot in the design stage, and improve the life of the gear pair.
  • a design method of tooth surface contact spot gear based on actual load including the following steps:
  • Step 1 Determine the 3D model of the straight bevel gear pair after modification according to the empirical formula of tooth profile and tooth direction modification, and complete the assembly of the gear pair;
  • Step 2 Complete the finite element contact analysis of the gear pair, respectively determine the contact spots under near zero load and rated load, and use the contact spots under near zero load as theoretical design spots;
  • the near-zero load is generally 0.1-0.5% of the rated load.
  • the maximum value of the elastic deformation threshold used to judge whether the contact is 2.5 ⁇ 10 -5 mm.
  • the calculation principle of contact spots is: separately calculate the contact stress under different meshing states of gear pairs, that is, different meshing corners, and the elastic deformation of the tooth surface mesh nodes will change with the position of the node and the meshing state of the gear pair. Extract the elastic variables of all mesh nodes of the tooth surface at all meshing corners, compare and analyze, and get the maximum elastic deformation of all mesh nodes. If the maximum elastic deformation of a node is less than 0.005mm, it is considered that the point is not in contact , If the maximum elastic deformation of a node is greater than or equal to 0.005mm, it is considered that the point is in contact. All nodes with the maximum elastic deformation greater than or equal to 0.005mm form the gear pair contact spots, and the largest elastic deformation is the contact center ;
  • Step 3 Compare the theoretical design spot obtained in Step 2 with the contact spot under rated load to obtain the deviation between the two;
  • Step 4 According to the deviation, use the anti-deformation method to correct the theoretical tooth surface, and then complete the corrected three-dimensional model of the gear. According to the corrected three-dimensional model, perform the finite element contact analysis under the rated load to obtain the new corrected contact spot;
  • the modeling principle of the anti-deformation method is to first advance the coordinate values of all the nodes of the theoretical tooth surface in the finite element analysis software, and derive them as the theoretical coordinate text of each node; then use contact analysis to find the maximum elastic deformation of each node of the tooth surface under rated load
  • the value is exported as the text of the elastic deformation of each node;
  • the coordinate data of the tooth surface point after compensation is obtained according to the theoretical coordinate text of each node and the text of the elastic deformation of each node, and then the tooth surface point coordinate data is imported into the three-dimensional modeling software to form after compensation To obtain the compensated gear model by intercepting the gear blank with this tooth surface;
  • Step 5 Compare the contact spot obtained in step 4 with the theoretical basis spot obtained in step 2. If the deviation of the contact spot obtained in step 4 is within the tolerance, obtain the corrected gear contact spot, otherwise determine the deviation and proceed to the next step ;
  • Step 6 According to the new model deviation, repeat Step 5 until the proper contact spot is reached.
  • the three-dimensional modeling software is UG and the finite element analysis software is ANSYS.
  • a method of simulating theoretical contact spots and contact spots under actual loads is proposed, and the process is iterated , The process of optimizing the contact spots is proposed; the method of reverse compensation modeling through elastic deformation is proposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Gears, Cams (AREA)

Abstract

La présente invention concerne un procédé de conception basé sur une charge réelle pour un point de contact de surface de dent d'un engrenage, comprenant les étapes suivantes consistant : étape 1 : à déterminer un modèle 3D d'une paire d'engrenages coniques à dents droites ; étape 2 : à déterminer un point de contact sous une charge presque nulle et un point de contact sous une charge nominale, et à utiliser le point de contact en tant que point de conception théorique ; étape 3 : à comparer le point de conception théorique obtenu à l'étape 2 au point de contact sous la charge nominale afin d'obtenir l'écart entre eux ; étape 4 : à obtenir un nouveau point de contact modifié ; étape 5 : à comparer le point de contact obtenu à l'étape 4 au point de conception théorique obtenu à l'étape 2 de façon à obtenir un point de contact d'engrenage modifié ; étape 6 : selon le nouvel écart de modèle, à répéter l'étape 5 jusqu'à l'obtention d'un point de contact approprié ; le procédé de conception basé sur une charge réelle correspondant au point de contact de surface de dent d'un engrenage peut éliminer l'influence de la déformation élastique sur le point de contact afin d'optimiser le point de contact dans l'étape de conception, ce qui permet d'améliorer la durée de vie d'une paire d'engrenages.
PCT/CN2019/096812 2019-06-19 2019-07-19 Procédé de conception basé sur une charge réelle pour un point de contact de surface de dent d'un engrenage WO2020252842A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910532141.0A CN110188508B (zh) 2019-06-19 2019-06-19 基于实际载荷的齿面接触斑点齿轮的设计方法
CN201910532141.0 2019-06-19

Publications (1)

Publication Number Publication Date
WO2020252842A1 true WO2020252842A1 (fr) 2020-12-24

Family

ID=67722470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096812 WO2020252842A1 (fr) 2019-06-19 2019-07-19 Procédé de conception basé sur une charge réelle pour un point de contact de surface de dent d'un engrenage

Country Status (2)

Country Link
CN (1) CN110188508B (fr)
WO (1) WO2020252842A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115388839A (zh) * 2022-07-20 2022-11-25 中国第一汽车股份有限公司 一种摆线齿锥齿轮齿面热变形修正方法、系统、设备以及存储介质
CN116663156A (zh) * 2023-07-10 2023-08-29 陕西法士特齿轮有限责任公司 一种变速器圆柱齿轮齿面微观修形方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736525A (zh) * 2020-06-30 2020-10-02 中国航发动力股份有限公司 一种排除弧齿锥齿轮异常磨损的方法
CN112548032B (zh) * 2020-12-02 2022-11-15 北京航星机器制造有限公司 一种基于三维扫描的铸件铸造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297054A (en) * 1992-04-03 1994-03-22 General Motors Corporation Expert system for automically generating gear designs
CN107066684A (zh) * 2017-02-15 2017-08-18 淮阴工学院 一种齿轮副啮合斑点的有限元分析方法
CN108488353A (zh) * 2018-03-06 2018-09-04 上汽通用汽车有限公司 用于直齿锥齿轮的修形方法
CN108515243A (zh) * 2018-05-24 2018-09-11 重庆齿轮箱有限责任公司 一种制作锥齿轮的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2236341C1 (ru) * 2002-11-28 2004-09-20 Открытое акционерное общество "Редуктор-ПМ" Способ изготовления шестерен и контроля сборки из них многопоточных вертолетных редукторов
CN106844818B (zh) * 2016-11-09 2018-03-30 北京工业大学 基于粗糙表面的直齿轮三维接触刚度计算方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5297054A (en) * 1992-04-03 1994-03-22 General Motors Corporation Expert system for automically generating gear designs
CN107066684A (zh) * 2017-02-15 2017-08-18 淮阴工学院 一种齿轮副啮合斑点的有限元分析方法
CN108488353A (zh) * 2018-03-06 2018-09-04 上汽通用汽车有限公司 用于直齿锥齿轮的修形方法
CN108515243A (zh) * 2018-05-24 2018-09-11 重庆齿轮箱有限责任公司 一种制作锥齿轮的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115388839A (zh) * 2022-07-20 2022-11-25 中国第一汽车股份有限公司 一种摆线齿锥齿轮齿面热变形修正方法、系统、设备以及存储介质
CN116663156A (zh) * 2023-07-10 2023-08-29 陕西法士特齿轮有限责任公司 一种变速器圆柱齿轮齿面微观修形方法及系统
CN116663156B (zh) * 2023-07-10 2023-11-07 陕西法士特齿轮有限责任公司 一种变速器圆柱齿轮齿面微观修形方法及系统

Also Published As

Publication number Publication date
CN110188508B (zh) 2023-06-20
CN110188508A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020252842A1 (fr) Procédé de conception basé sur une charge réelle pour un point de contact de surface de dent d'un engrenage
Lisle et al. External spur gear root bending stress: A comparison of ISO 6336: 2006, AGMA 2101-D04, ANSYS finite element analysis and strain gauge techniques
Sánchez et al. Approximate equations for the meshing stiffness and the load sharing ratio of spur gears including hertzian effects
CN106844818B (zh) 基于粗糙表面的直齿轮三维接触刚度计算方法
Tiwari et al. Stress analysis of mating involute spur gear teeth
CN102426615B (zh) 一种用于精密机械系统误差传递建模的配合误差计算方法
Huangfu et al. Investigation on meshing and dynamic characteristics of spur gears with tip relief under wear fault
CN107025367B (zh) 基于轮齿热弹性变形和齿轮歪斜变形的圆柱直齿轮齿廓修形方法
CN107256300B (zh) 基于齿面应力边棱作用和齿轮歪斜变形的圆柱直齿轮齿向修形方法
CN106481780B (zh) 一种面齿轮修缘高度及修缘量的确定方法
Dong et al. Optimum design of the tooth root profile for improving bending capacity
Spitas et al. Parametric investigation of the combined effect of whole depth and cutter tip radius on the bending strength of 20 involute gear teeth
CN108331899A (zh) 一种rv减速器摆线齿轮齿廓修形设计方法及系统
Dong et al. Rapid hob tip corner optimization of spur gears for increasing bending strength
CN108120596A (zh) 一种螺旋锥齿轮齿根干涉检验方法
CN117195608A (zh) 任意应力分布下裂纹最深点处应力强度因子的计算方法
WO2020252843A1 (fr) Procédé de modification point à point de surface de dent d'engrenage conique approprié pour un processus de forgeage
CN117236069A (zh) 任意应力分布下裂纹自由表面处应力强度因子的计算方法
CN105224766B (zh) 一种基于最小次序统计量的齿轮概率寿命预测方法
CN109580103B (zh) 基于非线性接触分析的发动机管路接口密封性分析方法
CN113010978A (zh) 一种基于动态仿真的航空直齿轮修形方法
CN111460700B (zh) 一种基于传递耗散修正的结构振动时效频率获取方法
CN108274081A (zh) 一种螺旋锥齿轮的变形补偿加工方法
Naik et al. Static analysis bending stress on gear tooth profile by variation of gear parameters with the help of FEA
CN208634285U (zh) 一种直齿锥齿轮副

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934031

Country of ref document: EP

Kind code of ref document: A1