WO2020252714A1 - 一种印制板用新型抗氧化剂及其应用 - Google Patents

一种印制板用新型抗氧化剂及其应用 Download PDF

Info

Publication number
WO2020252714A1
WO2020252714A1 PCT/CN2019/091969 CN2019091969W WO2020252714A1 WO 2020252714 A1 WO2020252714 A1 WO 2020252714A1 CN 2019091969 W CN2019091969 W CN 2019091969W WO 2020252714 A1 WO2020252714 A1 WO 2020252714A1
Authority
WO
WIPO (PCT)
Prior art keywords
antioxidant
copper
printed circuit
triazine
dibutylamino
Prior art date
Application number
PCT/CN2019/091969
Other languages
English (en)
French (fr)
Inventor
郭海亮
张胜涛
陈世金
罗佳玉
王旭
陈际达
韩志伟
徐缓
Original Assignee
博敏电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博敏电子股份有限公司 filed Critical 博敏电子股份有限公司
Publication of WO2020252714A1 publication Critical patent/WO2020252714A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/02Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in air or gases by adding vapour phase inhibitors

Definitions

  • the present invention relates to an antioxidant, in particular, the present invention relates to a new type of antioxidant for printed boards.
  • the invention also relates to the application of the antioxidant.
  • PCBs Printed circuit boards
  • PTFE polytetrafluoroethylene
  • 5G fifth generation mobile communication network
  • nano-copper has always been the first choice for high-conductivity circuits in PCBs.
  • the corrosion problem of copper cannot be ignored, especially in the presence of chloride ions, copper is very easy to corrode.
  • One of the objectives of the present invention is to provide a new type of antioxidant for printed boards, which can self-assemble into a film on the copper surface of the printed board, isolate the copper from the corrosive medium, and enhance the hydrophobicity of the copper surface. Protect the copper surface.
  • a new type of antioxidant for printed boards the components of which include a silane compound and 6-(dibutylamino)-1,3,5-triazine-2,4-di Mercaptan.
  • the triazine ring contained in the structure of 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol.
  • N and S atoms on the ring which can be A dense self-loading film is formed on the metal surface.
  • Silane compounds have good hydrophobic properties and can enhance the hydrophobicity of self-assembled membranes.
  • quantum chemical calculation methods are used to reveal the relationship between self-assembled film molecules and the corrosion inhibition mechanism of film molecules. Important parameters such as the highest occupied molecular orbital energy (ELUMO), lowest occupied molecular orbital energy (EHOMO), energy difference ( ⁇ E), and dipole moment ( ⁇ ) calculated by quantum chemistry are shown in Table 1.
  • FIG. 1 shows the molecular structure of 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol (a), the highest occupied molecular orbital diagram (b), and the lowest occupied molecular orbital diagram (c).
  • the mass ratio between the silane compound and 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol is 5-10:0.6-10.
  • the silane compound includes but is not limited to methyltriethoxysilane.
  • the antioxidant provided by the present invention also includes a solvent and a co-solvent.
  • each liter of antioxidant contains the following components:
  • the cosolvent includes but is not limited to absolute ethanol.
  • the second objective of the present invention is to provide the application of the above-mentioned antioxidant. Specifically, it relates to the application of the antioxidant to the surface modification of printed circuit boards.
  • the printed circuit board is cleaned, it is immersed in an antioxidant solution to form a self-assembled film that completely covers the surface of the printed circuit board, and the printed circuit board is taken out and dried.
  • the soaking time can be adjusted according to actual conditions, and it is sufficient to soak until the self-assembly film covers the printed circuit board and has a certain thickness.
  • the soaking time can be controlled between 6-12h.
  • the silane compound contained in the present invention has strong hydrophobicity, which can increase and make the self-assembled film have strong hydrophobicity, further improve the corrosion inhibition efficiency, and achieve a better corrosion prevention effect.
  • Figure 1 is a diagram of the molecular structure of 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol.
  • Figure 2 is the Nyquist diagram of bare copper.
  • Figure 3 is the Nyquist plot of copper electrodes modified at different times.
  • Figure 4 uses the equivalent circuit diagram to fit the experimental data of the copper electrode in the seawater environment.
  • a is the impedance spectrum (Bare) in the case of fitting Warburg impedance; b is the fitting of others (MSDS-SAMS).
  • R ct represents the charge transfer resistance and W represents the Warburg impedance.
  • R s and R f respectively represent the resistance of the solution and the resistance of the self-assembled adsorption film on the copper surface, and CPE f and CPE dl represent the membrane capacitance and double-layer capacitance, respectively
  • Figure 5 is an SEM image of the copper surface.
  • a is fresh bare copper
  • b is bare copper immersed in 298k3.5% NaCl solution for 7 days
  • c is immersed in 298k3.5% NaCl solution after forming an MSDS self-assembled film on the copper surface.
  • Figure 6 shows the hydrophobic properties of self-assembled membranes.
  • a is comparative example one, there is no methyltriethoxysilane in the antioxidant, and the contact angle of the self-assembled film with water is 89.9 degrees;
  • b is the first example, the antioxidant contains methyltriethoxysilane, The hydrophobicity of the self-assembled membrane is improved, and the contact angle of the self-assembled membrane with water is 97.8 degrees.
  • the copper block is encapsulated in epoxy resin as the working electrode, and the exposed area is 1*1cm 2 .
  • the auxiliary electrode is a large platinum sheet of 2*2cm 2
  • the reference electrode is a saturated calomel electrode
  • a 3.5% NaCl solution was used to simulate the marine environment.
  • the working electrode is immersed in the blank solution (Bare) and 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol (MSDS) solutions of different concentrations for different times (0.5h, 2h). , 6h, 12h) to modify the copper surface, all experiments were immersed in seawater environment (3.5% NaCl solution) for 7 days.
  • blank solution Bare
  • MSDS 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol
  • the result is shown in Figure 2.
  • the bare copper Nyquist diagram shows a concave semicircle in the high frequency region, and there is a significant linear warburg impedance in the low frequency (LF) region.
  • LF low frequency
  • the diameter of the capacitor ring of 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol (MSDS) modified copper is significantly larger, indicating The 6-(dibutylamino)-1,3,5-triazine-2,4-dithiol (MSDS) self-assembled film has a good inhibitory effect on copper corrosion in NaCl solution.
  • the warburg impedance completely disappeared.
  • Amino)-1,3,5-triazine-2,4-dithiol (MSDS) self-assembled film is sufficiently dense, the diffusion process is strongly inhibited, and the corrosion of copper is inhibited.
  • R ct are the charge transfer resistance of the bare copper sample and the modified copper sample.
  • step (1) The printed circuit board processed in step (1) is repeatedly rinsed with deionized water for 3-5 times, and then dried with a nitrogen stream to ensure that the copper surface is clean and free of impurities.
  • Each liter of antioxidant contains the following components:
  • Deionized water is appropriate.
  • Each liter of antioxidant contains the following components:
  • Deionized water is appropriate.
  • Soaking time is 9h.
  • Each liter of antioxidant contains the following components:
  • Deionized water is appropriate.
  • Soaking time is 8h.
  • Each liter of antioxidant contains the following components:
  • Deionized water is appropriate.
  • Soaking time is 10h.
  • Each liter of antioxidant contains the following components:
  • Deionized water is appropriate.
  • Soaking time is 12h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

本发明公开了一种印制板用新型抗氧化剂,其组分包含硅烷类化合物和6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇。该抗氧化剂可在印制板铜表面上吸附形成自组装膜,将铜与腐蚀介质隔绝开,并增强铜表面疏水性,有效地保护铜表面。本发明还公开了所述抗氧化剂的应用,具体涉及该抗氧化剂对印制电路板的表面改性的应用。

Description

一种印制板用新型抗氧化剂及其应用 技术领域
本发明涉及抗氧化剂,具体地,本发明涉及一种印制板用新型抗氧化剂。本发明还涉及该抗氧化剂的应用。
背景技术
印刷电路板(PCB)对聚四氟乙烯(PTFE)等基材在室温下需要形成高导电线,特别是在第五代移动通信网络(5G)时代,对信号完整性的要求越来越高,这对于保护线材至关重要。在过去,由于纳米铜的价格优势和良好的导电性,它一直是PCB中高导电性电路的首选。然而,铜的腐蚀问题不容忽视,尤其是在氯离子存在的情况下,铜极易腐蚀。当生产好的PCB通过海洋航运送到客户手中的途中虽然经过密封,但是搬运的途中包装损坏与空气中的氯离子接触造成铜面腐蚀,影响贴件,造成返修,退单。另一方面,当印制电路板经过下游企业的加工运用到电子产品上后,裸露的铜在海洋环境中也会被腐蚀,造成短路,信号传输不良。显然,电化学腐蚀在其中占了很大的比重,要防止腐蚀的发生,就要阻隔海洋环境中空气中的氧气、水及氯离子与金属表面的接触。在铜表面制备自组装膜已经有过很多研究,但是几乎没有应用到电子电路在海洋环境中的防腐方面。
发明内容
本发明的目的之一在于提供一种印制板用新型抗氧化剂,该抗氧化剂可在印制板铜表面上自组装成膜,将铜与腐蚀介质隔绝开,并增强铜表面疏水性,有效地保护铜表面。
本发明上述目的通过以下技术方案实现:一种印制板用新型抗氧化剂,其组分包含硅烷类化合物和6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇。
6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇的结构中含有的三嗪环,环上的N、S原子上有孤对电子的存在,能够在金属表面形成致密的自助装膜。硅烷类化合物具有良好的疏水性能,可增强自组装膜的疏水性。这里利用量子化学计算方法,深入揭示了自组装膜分子与膜分子缓蚀机理之间的关系。量子化学计算得到的最高占据分子轨道能量(ELUMO)、最低占据分子轨道能量(EHOMO)、能量差(ΔE)、偶极距(μ)等重要参数在表1中展示。事实上,ΔE(ΔE=ELUMO-EHOMO=-0.19914eV)的值越小将在金属表面上形成更强的吸附。更大的μ使较强的有机质在金属表面的吸附。图1分别为6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇的分子结构图(a)、最高占据分子轨道图(b)及最低占据分子轨道图(c)。从最高占据分子轨道图看出,N、S 原子周围分布大量的电子云,最低占据分子轨道图在N个原子周围分布着大量电子,有利于其构成的自组装膜吸附在金属表面。
表1 6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇的量子化学相关参数
Figure PCTCN2019091969-appb-000001
本发明中,硅烷类化合物和6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇之间的质量比为5-10:0.6-10。
作为本发明的一个实施方式,所述硅烷类化合物包括但不限于甲基三乙氧基硅烷。
本发明提供的抗氧化剂还包括溶剂及助溶剂。
作为本发明中的一个实施例,每升抗氧化剂中包含以下组分:
硅烷类化合物5-10g
助溶剂40-80ml
6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇0.6-10g
去离子水余量。
所述助溶剂包括但不限于无水乙醇。
本发明的目的之二提供上述抗氧化剂的应用。具体涉及该抗氧化剂对印制电路板的表面改性的应用。
具体地,将印制电路板清洗干净后置于抗氧化剂溶液中浸泡至印制电路板表面形成将其完全覆盖的自组装膜,取出干燥即可。本发明中,浸泡时间可根据实际情况调整,浸泡至自组装膜覆盖印制电路板并具有一定厚度即可。作为本发明的一个实施例,所述浸泡时间可控制在6-12h之间。
本发明的有益效果
(1)6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇含N、S杂原子的三嗪类化合物因其含N、S杂原子和三嗪环,与金属表面具有较强的相互作用,能够吸附在金属表面并形成吸附覆盖度大且吸附稳定的致密自组装膜,有效地将金属腐蚀介质隔绝开,抑制了金属的腐蚀,提高了缓蚀效率,延长金属件在腐蚀环境中的使用寿命。而且,由于6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇 结构特性,吸附速度快,对金属改性处理时间短,提供了工作效率。
(2)本发明中含有的硅烷类化合物具有很强的疏水性,可增大并使自组装膜具有较强的疏水性,进一步提高缓蚀效率,达到更好的防腐蚀效果。
(3)本发明不涉及复杂的化学反应,配方简单,改性后的铜表面洁净无异物。
附图说明
图1系6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇的分子结构图。
a.6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇的分子结构优化图,b.最高占据分子轨道图,c.最低占据分子轨道图。
图2系裸铜的奈奎斯特图。
图3系进行不同时间修饰的铜电极的奈奎斯特图。
图4系用等效电路图拟合铜电极在海水环境中的实验数据。
a为拟合Warburg阻抗情况下的阻抗谱(Bare);b为拟合其他(MSDS-SAMS)。其中R ct表示电荷转移电阻,W表示Warburg阻抗。R s和R f分别表示溶液的电阻和自组装吸附膜在铜表面的电阻,CPE f和CPE dl分别表示膜电容和双层电容
图5系铜表面SEM图。
a系新鲜裸铜;b系裸铜浸在298k3.5%NaCl溶液中7天;c系在铜表面形成MSDS自组装膜后浸在298k3.5%NaCl溶液中7天。
图6显示了自组装膜的疏水性能。
a系对比例一,抗氧剂中无甲基三乙氧基硅烷,自组装膜与水的接触角为89.9度;b系实施例一,抗氧剂中含有甲基三乙氧基硅烷,提高了自组装膜的疏水性,自组装膜与水的接触角为97.8度。
具体实施方式
下面结合具体实施例对权利要求书做进一步说明,但不构成对本发明的任何限制,任何人在本发明权利要求范围内所做的有限次的修改,仍在本发明权利要求范围内。
试验例一
1.试验方法
将铜块封装在环氧树脂当中作为工作电极,裸露面积为1*1cm 2
辅助电极为2*2cm 2的大铂片
参比电极为饱和甘汞电极
用3.5%的NaCl溶液模拟海洋环境。
工作电极分别在空白溶液(Bare)和不同浓度的6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇(MSDS)溶液中浸泡不同时间(0.5h、2h、6h、12h)来对铜表面改性,所有的实验均在海水环境(3.5%NaCl溶液)中浸泡7天。
2.抑制腐蚀情况
结果如图2所示,裸铜奈奎斯特图显示高频区下凹半圆,在低频(LF)区域有一个显著的线性warburg阻抗,对于低频线性区域的形成,一般有两种主要的解释,一种氧分子在铜表面的扩散,另一种是可溶性腐蚀产物CuCl 2 -等其它腐蚀性离子在铜/溶液界面的迁移。图3所示,与裸铜相比,6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇(MSDS)改性铜的电容环直径明显增大,说明6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇(MSDS)自组装膜对铜在NaCl溶液的腐蚀有较好的抑制作用。另一方面,也发现随着6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇(MSDS)的加入,warburg阻抗完全消失,说明在6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇(MSDS)自组装膜足够致密的条件下,扩散过程受到了强烈的抑制,铜的腐蚀受到了抑制。
3.等效电路图拟合电极在海水环境中的结果
通过等效电路计算阻抗相关参数(见表2)。这个抑制效率公式如下
Figure PCTCN2019091969-appb-000002
R ct
Figure PCTCN2019091969-appb-000003
分别为裸铜试样和改性铜试样的电荷转移电阻。
如表2所示,随着组装时间的增加,更多的6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇(MSDS)分子吸附在铜表面,导致保护膜的覆盖面积增大,引起介质双层厚度增大,局部介电常数减小。此外,随着6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇(MSDS)浓度和自组装时间的增加,缓蚀效率显著提高。当6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇(MSDS)浓度为2mM,自组装时间为6小时和12小时时,抑制效率分别达到97.02%和97.91%,两者非常接近,有效地抑制了铜的腐蚀。
表2:裸铜和MSDS改性铜在3.5wt%NaCl溶液中的阻抗参数
Figure PCTCN2019091969-appb-000004
4.为了更加清晰地阐明6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇自组装膜对铜表面的保护,用扫描电镜来观察不同情况下的铜表面。
将裸铜和在6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇浸泡12h后的铜块,分别浸泡在3.5%的NaCl溶液七天,取出吹干,用扫描电镜观察铜表面。图4中清晰地看出,新打磨的铜表面平整光滑,只有少许刮痕,在3.5%NaCl溶液中浸泡七天后,表面十分粗糙,经6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇改性后的铜浸泡在3.5%NaCl溶液中浸泡七天后,表面只有积弱的腐蚀。这说明6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇形成的自组装膜有效地抑制着铜的腐蚀。
实施例一
(1)用软毛刷轻轻刷拭印制电路板表面的裸铜,然后用浸有无水乙醇的无尘布轻轻地擦拭表面,最后用氮气流干燥,去除铜表面的灰尘和颗粒等其他污染物。
(2)将经步骤(1)处理的印制电路板用去离子水反复冲洗3-5次,然后氮气流干燥,以保证铜表面洁净无杂物。
(3)配制抗氧化剂,将经步骤(2)处理的印制电路板放在抗氧化剂中浸泡12h后,捞起沥干。在氮气流中干燥5分钟。氮气流干燥中:N 2的流量为1000ml/min,处理功率为1500W,处理温度50度。
每升抗氧化剂中含有以下组分:
5g甲基三乙氧基硅烷
40ml无水乙醇
0.6g 6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇
去离子水适量。
实施例二
与实施例一不同的是:
每升抗氧化剂中含有以下组分:
10g甲基三乙氧基硅烷
80ml无水乙醇
10g 6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇
去离子水适量。
浸泡时间9h。
实施例三
与实施例一不同的是:
每升抗氧化剂中含有以下组分:
8g甲基三乙氧基硅烷
70ml无水乙醇
9g 6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇
去离子水适量。
浸泡时间8h。
实施例四
与实施例一不同的是:
每升抗氧化剂中含有以下组分:
6g甲基三乙氧基硅烷
50ml无水乙醇
8g 6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇
去离子水适量。
浸泡时间10h。
对比例一
与实施例一不同的是:
每升抗氧化剂中含有以下组分:
50ml无水乙醇
0.6g 6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇
去离子水适量。
浸泡时间12h。

Claims (9)

  1. 一种印制板用新型抗氧化剂,其特征是,其组分包含硅烷类化合物和6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇。
  2. 根据权利要求1所述的印制板用新型抗氧化剂,其特征是,所述硅烷类化合物和6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇之间的质量比为5-10:0.6-10。
  3. 根据权利要求1所述的印制板用新型抗氧化剂,其特征是,所述硅烷类化合物包括但不限于甲基三乙氧基硅烷。
  4. 根据权利要求1或2或3所述的印制板用新型抗氧化剂,其特征是,还包括去离子水和助溶剂。
  5. 根据权利要求4所述的印制板用新型抗氧化剂,其特征是,每升抗氧化剂中包含以下组分:
    硅烷类化合物5-10g
    助溶剂40-80ml
    6-(二丁氨基)-1,3,5-三嗪-2,4-二硫醇0.6-10g
    去离子水余量。
  6. 根据权利要求5所述的印制板用新型抗氧化剂,其特征是,所述助溶剂包括但不限于无水乙醇。
  7. 权利要求1-6任一项权利要求所述的印制板用新型抗氧化剂在印制电路板的表面改性的应用。
  8. 根据权利要求7所述的应用,其特征是,将印制电路板清洗干净后置于抗氧化剂中浸泡至印制电路板表面形成将其完全覆盖的自组装膜,取出干燥即可。
  9. 根据权利要求8所述的应用,其特征是,所述浸泡时间控制在6-12h之间。
PCT/CN2019/091969 2019-06-18 2019-06-20 一种印制板用新型抗氧化剂及其应用 WO2020252714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910528113.1A CN110129802A (zh) 2019-06-18 2019-06-18 一种印制板用新型抗氧化剂及其应用
CN201910528113.1 2019-06-18

Publications (1)

Publication Number Publication Date
WO2020252714A1 true WO2020252714A1 (zh) 2020-12-24

Family

ID=67577855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091969 WO2020252714A1 (zh) 2019-06-18 2019-06-20 一种印制板用新型抗氧化剂及其应用

Country Status (2)

Country Link
CN (1) CN110129802A (zh)
WO (1) WO2020252714A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116075068A (zh) * 2022-12-27 2023-05-05 南通赛可特电子有限公司 一种基于印刷电路板铜箔防止铜面氧化的清洗抗氧化工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254033A (zh) * 1998-11-18 2000-05-24 日本涂料株式会社 用于金属材料的抗蚀涂料组合物
CN1589337A (zh) * 2001-11-21 2005-03-02 日本油漆株式会社 镁和/或镁合金的表面处理方法及镁和/或镁合金制品
CN101914797A (zh) * 2010-08-11 2010-12-15 西北农林科技大学 一种在金属表面制备复合纳米薄膜的方法
JP2011157600A (ja) * 2010-02-02 2011-08-18 Nippon Paint Co Ltd 防錆コーティング剤、金属基材の防錆処理方法、及び金属材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005069705A1 (ja) * 2004-01-15 2005-07-28 Matsushita Electric Industrial Co., Ltd. 金属パターン及びその製造方法
US7524535B2 (en) * 2004-02-25 2009-04-28 Posco Method of protecting metals from corrosion using thiol compounds
KR20080108767A (ko) * 2007-06-11 2008-12-16 삼성에스디아이 주식회사 전극 단자부 코팅재 및 이를 구비한 플라즈마 디스플레이패널
EP3033929A1 (en) * 2013-08-16 2016-06-22 Enthone, Inc. Adhesion promotion in printed circuit boards

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1254033A (zh) * 1998-11-18 2000-05-24 日本涂料株式会社 用于金属材料的抗蚀涂料组合物
CN1589337A (zh) * 2001-11-21 2005-03-02 日本油漆株式会社 镁和/或镁合金的表面处理方法及镁和/或镁合金制品
JP2011157600A (ja) * 2010-02-02 2011-08-18 Nippon Paint Co Ltd 防錆コーティング剤、金属基材の防錆処理方法、及び金属材料
CN101914797A (zh) * 2010-08-11 2010-12-15 西北农林科技大学 一种在金属表面制备复合纳米薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, YANNI, CAOZHUO,WANGJING,WANGFANG: "Preparation and anti-corrosion property of triazine dithiol-silane composite self-assembled films on copper alloy surface", JOURNAL OF MATERIALS SCIENCE AND ENGINEERING, vol. 30, no. 3, 30 June 2012 (2012-06-30), XP055766310, DOI: 10.14136/j.cnki.issn1673-2812.2012.03.008 *

Also Published As

Publication number Publication date
CN110129802A (zh) 2019-08-16

Similar Documents

Publication Publication Date Title
US4395294A (en) Copper corrosion inhibitor
Petrović et al. The effect of cysteine on the behaviour of copper in neutral and alkaline sulphate solutions
CN105779992A (zh) 一种水性自组装金属钝化剂
CN111117309A (zh) 一种纳米封闭剂及其制备方法
KR20140008995A (ko) 반도체 기판의 세정용 액체 조성물 및 이를 이용한 반도체 기판의 세정 방법
WO2020252714A1 (zh) 一种印制板用新型抗氧化剂及其应用
Wang et al. Study on the adsorption and inhibition mechanism of 1, 2, 4-triazole on copper surface in copper interconnection CMP
Li et al. Influence of sodium lignosulfonate on the corrosion-inhibition behavior of Q235 steel in simulated concrete pore solutions
Hassan et al. Super-hydrophobic green corrosion inhibitor on carbon steel
Ji et al. Investigation on the control effect of benzotriazole and two derivatives on cobalt pitting corrosion in chemical mechanical polishing process: A combination of experiments and theoretical simulations
Durainatarajan et al. Surface protection of copper in 3% NaCl solution by using 1-(n-butyl) imidazole self-assembled monolayer
Lei et al. Effect of benzotriazole and 5-methyl/1-h carboxyl benzotriazole on chemical mechanical polishing of cobalt in H2O2 based slurry
Xu et al. Halogen-substituted pyrazolo-pyrimidine derivatives as corrosion inhibitors for copper in sulfuric acid solution
CN101253258B (zh) 用于自工件表面去除离子污染物的水溶液及方法
Li et al. Using methionine as an environment-friendly corrosion inhibitor for copper–nickel alloy in a chloride solution
Davoodi et al. Enhancement of the anti-corrosion efficient of hybrid nanostructure coating using copper phthalocyanine self-assembled monolayers
CN1645259A (zh) 抗蚀剂残渣去除液组合物及半导体电路元件的制造方法
CN107287599B (zh) 一种金属铜缓蚀剂
Guo et al. Inhibition performance of 2-(Dibutylamino)-4, 6-Dimercapto-1, 3, 5-Triazine self-assembled film for copper corrosion in 3.5 wt% NaCl solutions
CN114509927A (zh) 一种光刻胶剥离液及其制备方法、应用方法
Liu et al. Corrosion Inhibition Effect of 2-Chloro-1-(4-fluorobenzyl) benzimidazole on Copper in 0.5 M H2SO4 solution
JP3759789B2 (ja) 半導体装置の洗浄に使用される洗浄液及びこれを用いた洗浄方法
JP2014051575A (ja) 洗浄組成物
CN111876760A (zh) 一种印刷电路板用化学镀银液及电路板的制备方法
Zhao et al. 6-dibutylamino-1, 3, 5-triazine-2, 4-dithiolmonosodium as an inhibitor of brass corrosion in 0.5 M sodium chloride solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933396

Country of ref document: EP

Kind code of ref document: A1