WO2020251002A1 - Austenitic stainless steel and manufacturing method thereof - Google Patents

Austenitic stainless steel and manufacturing method thereof Download PDF

Info

Publication number
WO2020251002A1
WO2020251002A1 PCT/JP2020/023152 JP2020023152W WO2020251002A1 WO 2020251002 A1 WO2020251002 A1 WO 2020251002A1 JP 2020023152 W JP2020023152 W JP 2020023152W WO 2020251002 A1 WO2020251002 A1 WO 2020251002A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
austenitic stainless
mass
rolling
Prior art date
Application number
PCT/JP2020/023152
Other languages
French (fr)
Japanese (ja)
Inventor
芳樹 守本
直樹 平川
太一朗 溝口
西村 泰司
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to KR1020217022001A priority Critical patent/KR20210101302A/en
Priority to CN202080013229.2A priority patent/CN113396239B/en
Priority to JP2021526147A priority patent/JP7150990B2/en
Publication of WO2020251002A1 publication Critical patent/WO2020251002A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to austenitic stainless steel and a method for producing the same.
  • the metal exterior members used for them are harshly cold in order to handle processing into complex shapes. After forging, the method of molding by cutting has come to be widely used. Further, depending on the design of the portable electronic device, mirror polishing may be performed after the cutting process.
  • the exterior member of the portable electronic device is required not only to be non-magnetic in order to avoid adverse effects on the geomagnetic sensor and the like built in the own device, but also to have high strength. Further, since the above-mentioned electronic device is portable and is often used in an outdoor environment, the exterior member is also required to have higher corrosion resistance than the member for the electronic device which is supposed to be used indoors.
  • Patent Document 1 describes a non-magnetic austenitic stainless steel sheet (hereinafter, simply referred to as "stainless steel sheet”) which has been cold forged and cut to form a non-magnetic member. ) Is disclosed.
  • Patent Document 1 The method for manufacturing a stainless steel sheet described in Patent Document 1 is a good method for manufacturing non-magnetic and high-strength parts, but the manufacturing process is complicated and costly, and depending on the product shape, the manufactured stainless steel sheet may be used. There is a problem that it cannot be used.
  • FIG. 8 shows the hardness distribution in the plate thickness direction of a stainless steel plate adjusted to a plate thickness of 8 mm and an average cross-sectional hardness of 300 HV.
  • the strain of the surface layer is large and the strain at the center of the plate thickness is small. Therefore, the surface layer shows a hardness of 332 HV, while the center of the plate thickness shows only 275 HV. That is, the stainless steel sheet of Patent Document 1 has a problem that the hardness in the plate thickness direction becomes non-uniform when the plate thickness is increased to a certain level or more.
  • One aspect of the present invention has been made in view of the above problems, and an object of the present invention is to reduce variations in cross-sectional hardness distribution in the thickness direction even though the thickness is a certain degree or more.
  • the purpose is to realize austenitic stainless steel and its manufacturing method.
  • the austenitic stainless steel according to one aspect of the present invention has a combined content of C and N of 0.08% or more in mass% and a cross-sectional hardness in the thickness direction.
  • the average of the hardness distribution is 250 HV or more, the fluctuation range is 30 HV or less, and the thickness is 3 mm or more.
  • the average cross-sectional hardness distribution in the thickness direction is 250 HV or more and the fluctuation range is 30 HV or less even though the thickness is 3 mm or more. Therefore, it is possible to provide an austenitic stainless steel in which the variation in the cross-sectional hardness distribution in the thickness direction is reduced even though the thickness is more than a certain level.
  • the austenitic stainless steel according to one aspect of the present invention has a chemical composition of C: 0.003 to 0.12%, Si: 2.00% or less, Mn in mass%. : 2.00% or less, P: 0.04% or less, S: 0.030% or less, Ni: 6.0 to 15.0%, Cr: 16.0 to 22.0%, N: 0.005 Consists of ⁇ 0.20%, balance Fe and unavoidable impurities.
  • the austenitic stainless steel according to one aspect of the present invention preferably has a relative magnetic permeability ⁇ of 1.1 or less. According to the above configuration, it is possible to provide a non-magnetic austenitic stainless steel in which the variation in the cross-sectional hardness distribution in the thickness direction is reduced even though the thickness is a certain degree or more.
  • the method for producing austenite-based stainless steel according to one aspect of the present invention is, in terms of mass%, C: 0.003 to 0.12%, Si: 2.00% or less, Mn: 2.00% or less, Contains P: 0.04% or less, S: 0.030% or less, Ni: 6.0 to 15.0%, Cr: 16.0 to 22.0%, N: 0.005 to 0.20% However, the combined content of C and N is 0.08% or more in mass%, and the slab produced by continuous casting having a chemical composition composed of the balance Fe and unavoidable impurities is brought to 1000 to 1300 ° C.
  • the finishing hot-rolling step which includes a cooling step of cooling the steel strip
  • the reduction rate of the finishing hot-rolling is 60% or more
  • the roll diameter of the finishing hot-rolling is 300 mm or more
  • the finishing hot-rolling is performed.
  • the temperature of the steel strip is 600 to 1100 ° C.
  • the final pass temperature of the finishing heat spreading is 600 to 950 ° C.
  • the final pass temperature of the finishing hot spreading of the steel strip is 750 ° C. or higher in the cooling step. Is a method of cooling to 750 ° C.
  • a method for producing austenitic stainless steel capable of producing austenitic stainless steel in which variations in cross-sectional hardness distribution in the thickness direction are reduced even though the thickness is a certain degree or more is realized. be able to.
  • the slab is further increased in mass%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.50%, Al: 0.0080% or less, O: 0.0040 to 0.
  • the slab further contains Co: 0.01 to 0.50%, Zr: 0.01 to 0.10%, Nb: 0.01 to 0.10%, Mg: 0.0005 to 0.0030%, Ca: 0.0003 to 0.0030%, Y: 0.01 to 0.20%, REM (rare earth metal): 0.01 to 0.10%, Sn: 0.001 to 0. Contains one or more selected from 500% and Sb: 0.001 to 0.500%, Pb: 0.01 to 0.10%, W: 0.01 to 0.50% [ 4] or [6], the method for producing austenitic stainless steel.
  • an austenitic stainless steel in which the variation in the cross-sectional hardness distribution in the thickness direction is reduced even though the thickness is a certain degree or more.
  • Austenitic stainless steel with reduced variation in cross-sectional hardness distribution in the thickness direction was realized despite having a certain thickness (3 mm or more), and (ii) austenitic stainless steel. If the final pass temperature of the finish hot-rolling is 750 ° C or higher, cool it to 750 ° C or lower at a cooling rate of 5 ° C / s or higher by heating the stainless steel to a high temperature and using a large-diameter roll to reduce it significantly.
  • the point of the present invention is to find that the variation in the cross-sectional hardness distribution in the thickness direction can be reduced in the austenitic stainless steel having a thickness of 3 mm or more.
  • the "austenitic stainless steel" described in the present specification includes both an austenitic stainless steel strip and an austenitic stainless steel sheet. In other words, the present invention is applicable to both austenitic stainless steel strips and austenitic stainless steel sheets.
  • the present invention provides, for example, an austenitic stainless steel capable of manufacturing a structural member of an electronic device such as a smartphone by cutting, etching, electric discharge machining, etc. without performing complicated forging, and a method for manufacturing the austenitic stainless steel.
  • the purpose is to realize.
  • the austenitic stainless steel according to the embodiment of the present invention is applied as a structural member of a smartphone, if there is a soft portion (for example, a central portion in the thickness direction), it is likely to be scratched. Therefore, the value as a product is low. Further, even in a soft part, it is conceivable to make it sufficiently hard, but conversely, if a part that is harder than necessary is generated, the machinability is lowered.
  • the austenitic stainless steel according to the embodiment of the present invention can be produced by subjecting each step of steelmaking, rough heat spreading, finishing hot spreading and cooling. More specifically, the slab produced by continuous casting is heated to 1000 to 1300 ° C. and then subjected to rough heat spreading to obtain a rough bar (steel strip) having a thickness of 25 mm (coarse heat spreading step). Then, the rough bar is hot-rolled for finishing at 600 ° C. or higher and 1100 ° C. or lower (finishing hot-rolling step).
  • the reduction rate of the finishing hot-rolling is 60% or more
  • the roll diameter of the finishing hot-rolling is 300 mm or more
  • the final pass temperature of the finishing hot-rolling is 600 to 950 ° C.
  • the manufactured steel strip is cooled to 750 ° C. or lower when the final pass temperature of the finishing hot-rolling is 750 ° C. or higher at a cooling rate of 5 ° C./s or higher (cooling step).
  • the obtained stainless steel may be pickled, if necessary, for the purpose of removing the oxide scale generated in the hot rolling process.
  • the pickling treatment is carried out in an annealing pickling line in which the annealing step and the pickling step are connected.
  • heat may be applied to the stainless steel in a temperature range (specifically, 900 ° C. or lower) at which the hardness of the stainless steel does not decrease.
  • the average cross-sectional hardness distribution in the thickness direction can be 250 HV or more and the fluctuation range can be 30 HV or less even though the thickness is 3 mm or more. Therefore, it is possible to provide an austenitic stainless steel in which the variation in the cross-sectional hardness distribution in the thickness direction is reduced.
  • the cross-sectional hardness distribution in the thickness direction is a measurement of Vickers hardness at a plurality of points with a load of 1 kg so that the variation in cross-sectional hardness in the thickness direction can be seen for a cross section perpendicular to the rolling width direction.
  • the stainless steel of Example A3 in which the thickness is 8 mm and the average cross-sectional hardness in the thickness direction is adjusted to 300 HV has a cross-sectional hardness distribution of 294 to 308 HV in the thickness direction as shown in FIG. It can be seen that the variation in the cross-sectional hardness distribution in the thickness direction is reduced as compared with the conventional technique.
  • FIG. 2 is a graph showing the distribution of cross-sectional hardness of the austenitic stainless steel according to the embodiment of the present invention with respect to the thickness direction.
  • FIG. 3 is a graph showing the relationship between the amount of C + N and the average cross-sectional hardness of austenitic stainless steel.
  • the amount of C + N is the total content of C and N. Further, the amount of C + N includes the case where C is 0% or N is 0%.
  • FIG. 3 shows the average of Examples A1 to A4 and Comparative Examples B1 and B2, which were rolled at a final pass temperature of 870 ° C. for hot rolling, cooled to 750 ° C. or lower at a cooling rate of 40 ° C./s, and wound up.
  • the graph which plotted about the cross-sectional hardness is shown (see FIG. 4 for the chemical composition of each steel type of Examples A1 to A4 and Comparative Examples B1 and B2).
  • A1 to A4 having a C + N amount of 0.08% or more had an average cross-sectional hardness of 250 HV or more, but B1 and B2 steels having a C + N amount of less than 0.08 had an average cross-sectional hardness of less than 250 HV. ..
  • the relative magnetic permeability ⁇ is generally preferably 1.1 or less, more preferably 1.05 or less.
  • the temperature is 600 ° C. or higher. Since it is rolled, process-induced martensite is not generated, but if ⁇ ferrite remains, the relative permeability increases.
  • the austenitic stainless steel whose chemical composition has been adjusted as described above does not generate a work-induced martensite phase in the normal steel sheet manufacturing process and the subsequent cold forging process, magnetization due to the work-induced martensite phase occurs. Is avoided. However, a ⁇ ferrite phase may be formed at a high temperature during melting, and if this remains, non-magnetism with a magnetic permeability of 1.010 or less cannot be obtained. Further, if the ⁇ ferrite phase is mixed as a different phase in the product, the appearance of the mirror-polished product may be spoiled. Therefore, it is necessary that the ⁇ ferrite phase disappears at the stage of the steel sheet, which is the material used for cold forging. Since the ⁇ ferrite phase is ferromagnetic, its presence or absence is evaluated by magnetic permeability.
  • the average cross-sectional hardness distribution of austenitic stainless steel in the thickness direction was aimed at 250 HV or more (SUS304CSP-1 / 2H standard). Further, the thickness of the austenitic stainless steel was aimed at 3 mm or more because, for example, the thickness range of the special metal Excel SUS301CSP is about 2.5 mm or less.
  • the reduction rate of the finishing heat spread is preferably 60% or more.
  • Condition No. in FIG. As shown in D001 to D006, when the reduction rate (total rolling rate) of the finish hot rolling is less than 60%, the rolling strain is not sufficiently applied and the target average cross-sectional hardness cannot be obtained.
  • the roll diameter of the hot-rolled finish is preferably 300 mm or more. Condition No. in FIG. As shown in F01 to F19, when the roll diameter is small, the rolling strain cannot be applied to the center in the thickness direction, and the fluctuation range of the cross-sectional hardness becomes large at any rolling temperature.
  • the roll diameter is the diameter of the cross section perpendicular to the rotation axis of the rolling roll.
  • the temperature of the finishing heat spread is preferably 600 to 1100 ° C.
  • the final pass temperature (final pass rolling temperature) of the hot rolling finish is preferably 600 to 950 ° C.
  • the rolling strain becomes a recrystallization driving force, recrystallization occurs immediately after rolling, the desired cross-sectional hardness distribution cannot be obtained, and the temperature is too high for the final pass. It becomes difficult to adjust the rolling temperature to 950 ° C. or lower. Further, when the final pass rolling temperature exceeds 950 ° C., the rolling strain becomes a recrystallization driving force, recrystallization occurs immediately after rolling, and a desired cross-sectional hardness distribution cannot be obtained.
  • a cooling step of cooling the steel strip subjected to the finishing hot-rolling to 750 ° C. or lower at a cooling rate of 5 ° C./s or more when the final pass temperature of the finishing hot-rolling is 750 ° C. or higher is performed. It is preferable to have.
  • the rolling strain accumulated in the material due to the hot rolling of the finish decreases immediately after the hot rolling of the finish when the stainless steel is kept at a high temperature. In order to reduce the reduction in rolling strain, it is preferable to quickly cool to a temperature range in which the reduction in rolling strain does not occur.
  • FIG. 5 shows the physical properties of the austenitic stainless steel according to the embodiment of the present invention.
  • FIGS. 6 and 7 show the physical properties of the austenitic stainless steel of the comparative example.
  • the rolling temperature in FIGS. 5, 6 and 7 is the temperature of the steel sheet during rolling.
  • No. 1 satisfying the above-mentioned manufacturing method conditions.
  • the austenitic stainless steels produced by the production methods C01 to C25 had an average cross-sectional hardness distribution of 250 HV or more in the thickness direction and a fluctuation range of the cross-sectional hardness distribution of 30 HV or less.
  • At least one of the above-mentioned manufacturing method conditions does not satisfy the above-mentioned manufacturing method conditions. Does not satisfy) No.
  • the austenitic stainless steels produced by the production methods D01 to H06 had an average cross-sectional hardness distribution in the thickness direction of less than 250 HV and / or a fluctuation range of more than 30 HV.
  • the chemical composition of the austenitic stainless steel according to the embodiment of the present invention is C: 0.003 to 0.12%, Si: 2.00% or less, Mn: 2.00% or less, P: in mass%. 0.04% or less, S: 0.030% or less, Ni: 6.0 to 15.0%, Cr: 16.0 to 22.0%, N: 0.005 to 0.20%, balance Fe and Consists of unavoidable impurities.
  • % in the steel composition means mass% unless otherwise specified.
  • Mo 0.01 to 3.00%
  • Cu 0.01 to 3.50%
  • Al in mass%. 0.0080% or less
  • O 0.0040 to 0.0100%
  • V 0.01 to 0.5%
  • B 0.001 to 0.01%
  • Ti 0.01 to 0.50% It may contain one kind or two or more kinds of.
  • Co 0.01 to 0.50%
  • Zr 0.01 to 0.10%
  • Nb 0.01 to 0.10%
  • Mg 0.0005 to 0.0030%
  • Ca 0.0003 to 0.0030%
  • Y 0.01 to 0.20%
  • REM rare earth metal
  • C is an intrusive element and contributes to high strength by work hardening and strain aging. In addition, it is an element that stabilizes the austenite phase and is effective in maintaining non-magnetism. In the present invention, a C content of 0.003% or more is secured. However, excessive C content becomes a factor that hardens the steel and lowers the cold forging property. The C content is limited to 0.012% or less.
  • Si is an element used as a deoxidizer for steel in the steelmaking process. Si has the effect of improving age hardening in the strain removing heat treatment. On the other hand, Si has a large solid solution strengthening action and also has an action of lowering stacking defect energy and increasing work hardening. Therefore, excessive Si content becomes a factor of lowering cold forging property. Therefore, the Si content is limited to 2.0% or less.
  • Mn is an element that constitutes an oxide-based inclusion as MnO.
  • Mn has a small solid solution strengthening action and is an austenite-forming element and has an action of suppressing process-induced martensitic transformation, so that it is an effective element for ensuring cold forging property and maintaining non-magnetism.
  • the excessive Mn content causes a decrease in corrosion resistance.
  • the Mn content is limited to 2.00% or less.
  • P is an element that lowers the corrosion resistance, and excessive P reduction causes an increase in the steelmaking load, so it must be 0.040% or less.
  • Cr is an element that improves corrosion resistance.
  • the present invention targets steel having a Cr content of 16.0% or more.
  • a large amount of Cr content causes a decrease in cold forging property.
  • the upper limit of Cr content is limited to 22.0%.
  • N is an intrusive element like C and contributes to high strength by work hardening and strain aging. In addition, it is an element that stabilizes the austenite phase and is effective in maintaining non-magnetism. In the present invention, an N content of 0.005% or more is secured. However, excessive N content becomes a factor that hardens the steel and lowers the cold forging property. The N content is limited to 0.20% or less.
  • Mo is an element effective for improving the corrosion resistance of stainless steel.
  • the Cr content is ensured and then added as needed.
  • adding a large amount of Mo increases the cost. Therefore, when Mo is contained, the Mo content is 0.01%. It is ⁇ 3.00% or less.
  • Cu is known to be effective in improving cold forging properties by suppressing work hardening of the austenite phase. Further, it is known that it is an element that causes age hardening in the heating temperature range of the strain removing heat treatment performed after cold forging. As a result of various studies, when Cu is contained, the Cu content is 0.01% to 3.5%.
  • Al has a higher oxygen affinity than Si and Mn, and when the Al content is 0.0030% or more, coarse oxide-based inclusions which are the starting points of internal cracks in cold forging are likely to be formed. In addition, excessively low Al content increases the cost. Therefore, as a result of various studies, when Al is contained, the Al content is 0.0001% or more to 0.0080%.
  • the O content When the O content is low, Mn, Si and the like are less likely to be oxidized, and the ratio of Al 2 O 3 in the inclusions is high. Further, if the O content is excessively high, coarse inclusions having a particle size of more than 5 ⁇ m are likely to be formed. Therefore, as a result of various studies, when O is contained, the O content is 40 ppm (0.0040%). It is ⁇ 100 ppm (0.0100%), preferably 80 ppm or less.
  • V has the effect of enhancing the age hardening ability in the heating of the strain removing heat treatment performed after cold forging. Although it has an aging hardening effect, a large amount of V content leads to an increase in cost.
  • V content is 0.01% to 0.05%.
  • B is a factor that causes a decrease in workability due to the formation of boride. Therefore, when B is contained, the B content is 0.001 to 0.0100%, preferably 0.0050% or less.
  • Ti is a carbonitride-forming element, which fixes C and N and suppresses a decrease in corrosion resistance due to sensitization. The above effect is exhibited when Ti is contained in an amount of 0.01% or more. Therefore, the Ti content is set to 0.01% or more. On the other hand, when the Ti content exceeds 0.50%, Ti is non-uniformly localized and precipitated in the steel as a carbide in a non-uniform size, which hinders the growth of sized recrystallized grains and is extremely difficult. Since it is expensive, the upper limit of the Ti content is set to 0.50%.
  • Co has the effect of improving the crevice corrosion resistance. On the other hand, if Co is excessively contained, the steel is hardened and the bendability is adversely affected. Therefore, when Co is contained, the Co content is 0.01 to 0.50%, preferably 0.10% or less.
  • Zr is an element having a high affinity for C and N, and is precipitated as a carbide or a nitride during hot rolling, and has an effect of reducing solid solution C and solid solution N in the matrix phase and improving workability. ..
  • the Zr content is 0.01 to 0.10%, preferably 0.05% or less.
  • Nb is an element having a high affinity for C and N, and is precipitated as a carbide or a nitride during hot rolling, and has an effect of reducing solid solution C and solid solution N in the matrix phase and improving workability. ..
  • the Nb content is 0.01 to 0.10%, preferably 0.05% or less.
  • Mg forms Mg oxide together with Al in molten steel and acts as an antacid.
  • Mg is contained in an excessive amount, the toughness of the steel is lowered and the manufacturability is lowered. Therefore, when Mg is contained, the Mg content is 0.0005 to 0.0030%, preferably 0.0020% or less.
  • Ca is an element that improves hot workability.
  • the toughness of the steel is lowered and the manufacturability is lowered, and further, the corrosion resistance is lowered due to the precipitation of CaS. Therefore, when Ca is contained, the Ca content is 0.0003 to 0.0030%, preferably 0.0020% or less.
  • Y is an element that reduces the decrease in viscosity of molten steel and improves cleanliness. On the other hand, if Y is contained in excess, the effect is saturated and the workability is further lowered. Therefore, when Y is contained, the Y content is 0.01 to 0.20%, preferably 0.10% or less.
  • REM rare earth metal: an element having an atomic number of 57 to 71 such as La, Ce, Nd
  • the REM content is 0.01 to 0.10%, preferably 0.05% or less.
  • Sn is effective in improving workability by promoting the formation of a deformation zone during rolling. On the other hand, if Sn is contained in excess, the effect is saturated and the workability is further lowered. Therefore, when Sn is contained, the Sn content is 0.001 to 0.500%, preferably 0.200% or less.
  • Sb is effective in improving workability by promoting the formation of a deformation band during rolling. On the other hand, if Sb is contained in excess, the effect is saturated and the workability is further lowered. Therefore, when Sb is contained, the Sb content is 0.001 to 0.500%, preferably 0.200% or less.
  • Pb is set to 0.10% or less because there is a concern that the melting point of the grain boundaries will be lowered and the binding force of the grain boundaries will be lowered, leading to deterioration of hot workability such as liquefaction cracking due to melting of the grain boundaries.
  • W has the effect of improving high temperature strength without impairing ductility at room temperature.
  • the excessive addition produces coarse eutectic carbides and causes a decrease in ductility, so the content should be 0.50 or less.
  • the present invention is used for, for example, structural members of electronic devices such as smartphones, steel belts, press plates, and austenitic stainless steel strips suitable for applications requiring relatively thick high-strength stainless steel. Can be done.

Abstract

This method involves a coarse hot rolling step for performing coarse hot rolling after heating a slab manufactured by continuous casting to 1000-1300°C, a finish hot rolling step for performing finish hot rolling on the manufactured steel strip after the coarse hot rolling step, and a cooling step for cooling the steel strip after the finish hot rolling step, wherein in the finish hot rolling step, the draft of the finish hot rolling is greater than or equal to 60%, the roll diameter of the finish hot rolling is greater than or equal to 300 mm, the temperature of the finish hot rolling is 600-1100°C, and the final pass temperature of the finish hot rolling is 600-950°C, and in the cooling step, if the final pass temperature of the finish hot rolling is greater than or equal to 750°C, then the steel strip is cooled at a cooling speed of at least 5°C/s until 750°C.

Description

オーステナイト系ステンレス鋼およびその製造方法Austenitic stainless steel and its manufacturing method
 本発明は、オーステナイト系ステンレス鋼およびその製造方法に関する。 The present invention relates to austenitic stainless steel and a method for producing the same.
 スマートフォンに代表される携帯型電子機器は小型軽量化や意匠性向上のニーズが高いことから、それらに用いる金属製の外装部材の製造では、複雑形状への加工に対応するため、過酷な冷間鍛造を施した後、切削加工により成形する手法が多用されるようになってきた。さらに、携帯型電子機器のデザインによっては、切削加工後に鏡面研磨を施す場合もある。ここで、携帯型電子機器の外装部材は、自機器に内蔵される地磁気センサー等への悪影響を回避するために非磁性であることが要求されるだけでなく、高強度も要求される。また、上記の電子機器は携帯型であるため屋外環境で使用されることも多いことから、外装部材は、屋内での使用を前提とする電子機器用部材と比べて高い耐食性も要求される。 Since portable electronic devices such as smartphones are in high demand for smaller size and lighter weight and improved design, the metal exterior members used for them are harshly cold in order to handle processing into complex shapes. After forging, the method of molding by cutting has come to be widely used. Further, depending on the design of the portable electronic device, mirror polishing may be performed after the cutting process. Here, the exterior member of the portable electronic device is required not only to be non-magnetic in order to avoid adverse effects on the geomagnetic sensor and the like built in the own device, but also to have high strength. Further, since the above-mentioned electronic device is portable and is often used in an outdoor environment, the exterior member is also required to have higher corrosion resistance than the member for the electronic device which is supposed to be used indoors.
 上記の外装部材の製造に用いられる金属材料として、例えば特許文献1には、冷間鍛造および切削加工を施して非磁性部材とされた非磁性オーステナイト系ステンレス鋼板(以下、単に「ステンレス鋼板」という)が開示されている。 As a metal material used for manufacturing the above-mentioned exterior member, for example, Patent Document 1 describes a non-magnetic austenitic stainless steel sheet (hereinafter, simply referred to as "stainless steel sheet") which has been cold forged and cut to form a non-magnetic member. ) Is disclosed.
日本国公開特許公報「特開2018-109215号」Japanese Patent Publication "Japanese Patent Laid-Open No. 2018-109215"
 特許文献1に記載のステンレス鋼板の製造方法は、非磁性、かつ高強度部品を製造する上で良い方法であるが、製造工程が複雑でコストがかかること、製品形状によっては製造したステンレス鋼板を利用できないという問題点がある。 The method for manufacturing a stainless steel sheet described in Patent Document 1 is a good method for manufacturing non-magnetic and high-strength parts, but the manufacturing process is complicated and costly, and depending on the product shape, the manufactured stainless steel sheet may be used. There is a problem that it cannot be used.
 次に、図8に、焼鈍材に冷間圧延を施した場合、または板厚が厚い材料に冷間圧延(調質圧延)を施した場合に、表層に歪が集中し板厚方向の硬さの分布が不均一となる例を示す。具体的には、図8には、板厚8mm、平均断面硬さ300HVに調整したステンレス鋼板の板厚方向の硬さ分布を示している。一般的な冷間圧延では表層のひずみが大きく、板厚中央のひずみが小さいため、表層では332HVの硬さを示す一方、板厚中央では275HVしか示さなかった。すなわち、特許文献1のステンレス鋼板では、板厚を一定以上に厚くすると、板厚方向の硬さが不均一になってしまうという問題点がある。 Next, in FIG. 8, when the annealed material is cold-rolled or the thick material is cold-rolled (tempered rolling), strain is concentrated on the surface layer and the hardness in the plate thickness direction is hard. An example in which the distribution of shavings is uneven is shown. Specifically, FIG. 8 shows the hardness distribution in the plate thickness direction of a stainless steel plate adjusted to a plate thickness of 8 mm and an average cross-sectional hardness of 300 HV. In general cold rolling, the strain of the surface layer is large and the strain at the center of the plate thickness is small. Therefore, the surface layer shows a hardness of 332 HV, while the center of the plate thickness shows only 275 HV. That is, the stainless steel sheet of Patent Document 1 has a problem that the hardness in the plate thickness direction becomes non-uniform when the plate thickness is increased to a certain level or more.
 本発明の一態様は、前記の問題点に鑑みて為されたものであり、その目的は、厚さが一定程度以上あるにも関わらず、厚さ方向の断面硬さ分布のばらつきが低減されたオーステナイト系ステンレス鋼、およびその製造方法を実現することにある。 One aspect of the present invention has been made in view of the above problems, and an object of the present invention is to reduce variations in cross-sectional hardness distribution in the thickness direction even though the thickness is a certain degree or more. The purpose is to realize austenitic stainless steel and its manufacturing method.
 前記の課題を解決するために、本発明の一態様に係るオーステナイト系ステンレス鋼は、CとNとを合わせた含有量が、質量%で0.08%以上であり、厚さ方向の断面硬さ分布の平均が250HV以上であり、かつ変動幅が30HV以下であり、厚さが3mm以上である構成である。 In order to solve the above-mentioned problems, the austenitic stainless steel according to one aspect of the present invention has a combined content of C and N of 0.08% or more in mass% and a cross-sectional hardness in the thickness direction. The average of the hardness distribution is 250 HV or more, the fluctuation range is 30 HV or less, and the thickness is 3 mm or more.
 前記構成によれば、厚さが3mm以上であるにも関わらず、厚さ方向の断面硬さ分布の平均が250HV以上であり、かつ変動幅が30HV以下である。このため、厚さが一定程度以上あるにも関わらず、厚さ方向の断面硬さ分布のばらつきが低減されたオーステナイト系ステンレス鋼を提供することができる。 According to the above configuration, the average cross-sectional hardness distribution in the thickness direction is 250 HV or more and the fluctuation range is 30 HV or less even though the thickness is 3 mm or more. Therefore, it is possible to provide an austenitic stainless steel in which the variation in the cross-sectional hardness distribution in the thickness direction is reduced even though the thickness is more than a certain level.
 [1]本発明の一態様に係るオーステナイト系ステンレス鋼は、前記オーステナイト系ステンレス鋼の化学組成は、質量%で、C:0.003~0.12%、Si:2.00%以下、Mn:2.00%以下、P:0.04%以下、S:0.030%以下、Ni:6.0~15.0%、Cr:16.0~22.0%、N:0.005~0.20%、残部Feおよび不可避的不純物からなる。 [1] The austenitic stainless steel according to one aspect of the present invention has a chemical composition of C: 0.003 to 0.12%, Si: 2.00% or less, Mn in mass%. : 2.00% or less, P: 0.04% or less, S: 0.030% or less, Ni: 6.0 to 15.0%, Cr: 16.0 to 22.0%, N: 0.005 Consists of ~ 0.20%, balance Fe and unavoidable impurities.
 [2]前記化学組成に加えて、さらに質量%で、Mo:0.01~3.00%、Cu:0.01~3.50%、Al:0.0080%以下、O:0.0040~0.0100%、V:0.01~0.5%、B:0.001~0.01%、Ti:0.01~0.50%の1種またが2種以上を含有する[1]に記載のオーステナイト系ステンレス鋼。 [2] In addition to the above chemical composition, in terms of mass%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.50%, Al: 0.0080% or less, O: 0.0040. It contains one kind or two or more kinds of ~ 0.0100%, V: 0.01 ~ 0.5%, B: 0.001 ~ 0.01%, Ti: 0.01 ~ 0.50% [ 1] The austenitic stainless steel according to.
 [3]前記化学組成に加えて、さらに質量%で、Co:0.01~0.50%、Zr:0.01~0.10%、Nb:0.01~0.10%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%、Y:0.01~0.20%、REM(希土類金属):0.01~0.10%、Sn:0.001~0.500%およびSb:0.001~0.500%、Pb:0.01~0.10%、W:0.01~0.50%のうちから選んだ1種または2種以上を含有する[1]または[2]に記載のオーステナイト系ステンレス鋼。 [3] In addition to the above chemical composition, in terms of mass%, Co: 0.01 to 0.50%, Zr: 0.01 to 0.10%, Nb: 0.01 to 0.10%, Mg: 0.0005 to 0.0030%, Ca: 0.0003 to 0.0030%, Y: 0.01 to 0.20%, REM (rare earth metal): 0.01 to 0.10%, Sn: 0. One or more selected from 001 to 0.500%, Sb: 0.001 to 0.500%, Pb: 0.01 to 0.10%, W: 0.01 to 0.50% The austenitic stainless steel according to [1] or [2].
 本発明の一態様に係るオーステナイト系ステンレス鋼は、比透磁率μが1.1以下であることが好ましい。前記構成によれば、厚さが一定程度以上あるにも関わらず、厚さ方向の断面硬さ分布のばらつきが低減された非磁性のオーステナイト系ステンレス鋼を提供することができる。 The austenitic stainless steel according to one aspect of the present invention preferably has a relative magnetic permeability μ of 1.1 or less. According to the above configuration, it is possible to provide a non-magnetic austenitic stainless steel in which the variation in the cross-sectional hardness distribution in the thickness direction is reduced even though the thickness is a certain degree or more.
 〔4〕本発明の一態様に係るオーステナイト系ステンレス鋼の製造方法は、質量%で、C:0.003~0.12%、Si:2.00%以下、Mn:2.00%以下、P:0.04%以下、S:0.030%以下、Ni:6.0~15.0%、Cr:16.0~22.0%、N:0.005~0.20%を含有し、かつCとNとを合わせた含有量が質量%で0.08%以上であり、残部Feおよび不可避的不純物で構成された化学組成からなる連続鋳造によって製造したスラブを1000~1300℃に加熱した後、粗熱延を施す粗熱延工程と、前記粗熱延工程の後、製造された鋼帯に対して仕上熱延を施す仕上熱延工程と、前記仕上熱延工程の後、前記鋼帯を冷却する冷却工程とを含み、前記仕上熱延工程では、前記仕上熱延の圧下率が60%以上であり、前記仕上熱延のロール径が300mm以上であり、前記仕上熱延の温度が600~1100℃であり、前記仕上熱延の最終パス温度が600~950℃であり、前記冷却工程では、前記鋼帯を前記仕上熱延の前記最終パス温度が750℃以上の場合は750℃以下まで、冷却速度5℃/s以上で冷却する方法である。前記構成によれば、厚さが一定程度以上あるにも関わらず、厚さ方向の断面硬さ分布のばらつきが低減されたオーステナイト系ステンレス鋼を製造できる、オーステナイト系ステンレス鋼の製造方法を実現することができる。 [4] The method for producing austenite-based stainless steel according to one aspect of the present invention is, in terms of mass%, C: 0.003 to 0.12%, Si: 2.00% or less, Mn: 2.00% or less, Contains P: 0.04% or less, S: 0.030% or less, Ni: 6.0 to 15.0%, Cr: 16.0 to 22.0%, N: 0.005 to 0.20% However, the combined content of C and N is 0.08% or more in mass%, and the slab produced by continuous casting having a chemical composition composed of the balance Fe and unavoidable impurities is brought to 1000 to 1300 ° C. After the rough heat spreading step of applying the rough heat spreading after heating, the finishing hot spreading step of applying the finishing hot spreading to the manufactured steel strip after the rough heat spreading step, and the finishing hot spreading step. In the finishing hot-rolling step, which includes a cooling step of cooling the steel strip, the reduction rate of the finishing hot-rolling is 60% or more, the roll diameter of the finishing hot-rolling is 300 mm or more, and the finishing hot-rolling is performed. When the temperature of the steel strip is 600 to 1100 ° C., the final pass temperature of the finishing heat spreading is 600 to 950 ° C., and the final pass temperature of the finishing hot spreading of the steel strip is 750 ° C. or higher in the cooling step. Is a method of cooling to 750 ° C. or lower at a cooling rate of 5 ° C./s or higher. According to the above configuration, a method for producing austenitic stainless steel capable of producing austenitic stainless steel in which variations in cross-sectional hardness distribution in the thickness direction are reduced even though the thickness is a certain degree or more is realized. be able to.
 〔5〕前記スラブが、さらに質量%で、Mo:0.01~3.00%、Cu:0.01~3.50%、Al:0.0080%以下、O:0.0040~0.0100%、V:0.01~0.5%、B:0.001~0.01%、Ti:0.01~0.50%の1種または2種以上を含有する〔4〕に記載のオーステナイト系ステンレス鋼の製造方法。 [5] The slab is further increased in mass%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.50%, Al: 0.0080% or less, O: 0.0040 to 0. The description in [4], which contains one or more of 0100%, V: 0.01 to 0.5%, B: 0.001 to 0.01%, and Ti: 0.01 to 0.50%. How to make austenitic stainless steel.
 〔6〕前記スラブが、さらに質量で、Co:0.01~0.50%、Zr:0.01~0.10%、Nb:0.01~0.10%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%、Y:0.01~0.20%、REM(希土類金属):0.01~0.10%、Sn:0.001~0.500%およびSb:0.001~0.500%、Pb:0.01~0.10%、W:0.01~0.50%のうちから選んだ1種または2種以上を含有する〔4〕または〔6〕に記載のオーステナイト系ステンレス鋼の製造方法。 [6] The slab further contains Co: 0.01 to 0.50%, Zr: 0.01 to 0.10%, Nb: 0.01 to 0.10%, Mg: 0.0005 to 0.0030%, Ca: 0.0003 to 0.0030%, Y: 0.01 to 0.20%, REM (rare earth metal): 0.01 to 0.10%, Sn: 0.001 to 0. Contains one or more selected from 500% and Sb: 0.001 to 0.500%, Pb: 0.01 to 0.10%, W: 0.01 to 0.50% [ 4] or [6], the method for producing austenitic stainless steel.
 本発明の一態様によれば、厚さが一定程度以上あるにも関わらず、厚さ方向の断面硬さ分布のばらつきが低減されたオーステナイト系ステンレス鋼を提供することができるという効果を奏する。 According to one aspect of the present invention, it is possible to provide an austenitic stainless steel in which the variation in the cross-sectional hardness distribution in the thickness direction is reduced even though the thickness is a certain degree or more.
本発明の実施の一形態に係るオーステナイト系ステンレス鋼の製造方法の各工程の流れを示す工程図である。It is a process drawing which shows the flow of each process of the manufacturing method of austenitic stainless steel which concerns on one Embodiment of this invention. 本発明の実施の一形態に係るオーステナイト系ステンレス鋼の厚さ方向の断面硬さ分布を示すグラフである。It is a graph which shows the cross-sectional hardness distribution in the thickness direction of the austenitic stainless steel which concerns on one Embodiment of this invention. C+Nの量と、ステンレス鋼の厚さ方向の断面硬さ分布の平均との関係を示すグラフである。It is a graph which shows the relationship between the amount of C + N and the average of the cross-sectional hardness distribution in the thickness direction of stainless steel. オーステナイト系ステンレス鋼の化学成分について本発明の実施例と比較例と比較結果を示す図である。It is a figure which shows the Example, the comparative example and the comparative result of this invention about the chemical composition of austenitic stainless steel. 本発明の実施例のオーステナイト系ステンレス鋼の物性等を示す図である。It is a figure which shows the physical property, etc. of the austenitic stainless steel of the Example of this invention. 比較例のオーステナイト系ステンレス鋼の物性等を示す図である。It is a figure which shows the physical property of the austenitic stainless steel of the comparative example. 比較例のオーステナイト系ステンレス鋼の物性等を示す図である。It is a figure which shows the physical property of the austenitic stainless steel of the comparative example. 従来のオーステナイト系ステンレス鋼の厚さ方向の断面硬さ分布を示すグラフである。It is a graph which shows the cross-sectional hardness distribution in the thickness direction of the conventional austenitic stainless steel.
 以下、本発明の一実施形態について詳細に説明する。なお、以下の記載は発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。 Hereinafter, one embodiment of the present invention will be described in detail. The following description is intended to better understand the gist of the invention, and does not limit the present invention unless otherwise specified.
 〔本発明のポイントおよび目的〕
 (i)一定程度以上(3mm以上)の厚さがあるにも関わらず、厚さ方向の断面硬さ分布のばらつきが低減されたオーステナイト系ステンレス鋼を実現した点、および、(ii)オーステナイト系ステンレス鋼を高温にし、大径ロールを用いて、大きく圧下し、圧下後に仕上げ熱延の最終パス温度が750℃以上の場合は750℃以下まで冷却速度5℃/s以上で冷却すれば、厚さが3mm以上のオーステナイト系ステンレス鋼において、厚さ方向の断面硬さ分布のばらつきを低減できることを見出した点が本発明のポイントである。なお、本明細書に記載の「オーステナイト系ステンレス鋼」は、オーステナイト系ステンレス鋼帯およびオーステナイト系ステンレス鋼板の両方を含む。言い換えれば、本発明は、オーステナイト系ステンレス鋼帯およびオーステナイト系ステンレス鋼板の両方に適用可能である。
[Points and Purposes of the Present Invention]
(I) Austenitic stainless steel with reduced variation in cross-sectional hardness distribution in the thickness direction was realized despite having a certain thickness (3 mm or more), and (ii) austenitic stainless steel. If the final pass temperature of the finish hot-rolling is 750 ° C or higher, cool it to 750 ° C or lower at a cooling rate of 5 ° C / s or higher by heating the stainless steel to a high temperature and using a large-diameter roll to reduce it significantly. The point of the present invention is to find that the variation in the cross-sectional hardness distribution in the thickness direction can be reduced in the austenitic stainless steel having a thickness of 3 mm or more. The "austenitic stainless steel" described in the present specification includes both an austenitic stainless steel strip and an austenitic stainless steel sheet. In other words, the present invention is applicable to both austenitic stainless steel strips and austenitic stainless steel sheets.
 また、本発明は、例えば、スマートフォンなどの電子機器の構造部材を、複雑な鍛造加工を施すことなく、切削、エッチング、放電加工等で製造することが可能となるオーステナイト系ステンレス鋼およびその製造方法を実現することを目的とする。 Further, the present invention provides, for example, an austenitic stainless steel capable of manufacturing a structural member of an electronic device such as a smartphone by cutting, etching, electric discharge machining, etc. without performing complicated forging, and a method for manufacturing the austenitic stainless steel. The purpose is to realize.
 (厚さ方向の断面硬さ分布のばらつきが低減されていることによるメリット)
 スマートフォンの構造部材として本発明の実施形態に係るオーステナイト系ステンレス鋼を適用する場合、軟質な箇所(例えば厚さ方向の中央部)があると疵付きやすい。したがって製品としての価値が低くなる。また、軟質な箇所でも、十分に硬くすることで対応することも考えられるが、逆に必要以上に硬い部分が生じると切削性が低下する。
(Advantages due to reduced variation in cross-sectional hardness distribution in the thickness direction)
When the austenitic stainless steel according to the embodiment of the present invention is applied as a structural member of a smartphone, if there is a soft portion (for example, a central portion in the thickness direction), it is likely to be scratched. Therefore, the value as a product is low. Further, even in a soft part, it is conceivable to make it sufficiently hard, but conversely, if a part that is harder than necessary is generated, the machinability is lowered.
 〔プロセス〕
 本発明の一実施形態に係るオーステナイト系ステンレス鋼は、図1に示すように、製鋼、粗熱延、仕上熱延および冷却の各工程を施すことで製造することができる。より具体的には、連続鋳造によって製造したスラブを1000~1300℃に加熱した後、粗熱延を施し、厚さ25mmの粗バー(鋼帯)とする(粗熱延工程)。その後、600℃以上かつ1100℃以下で上記粗バーに対して仕上熱延を施す(仕上熱延工程)。仕上熱延工程では、仕上熱延の圧下率を60%以上、仕上熱延のロール径を300mm以上、仕上熱延の最終パス温度を600~950℃とする。仕上熱延工程の後、製造された鋼帯を、仕上げ熱延の最終パス温度が750℃以上の場合は750℃以下まで、冷却速度5℃/s以上で冷却する(冷却工程)。これらの条件を満たすことで所望の厚さ方向の断面硬さ分布およびその変動範囲のステンレス鋼を得ることができる。
〔process〕
As shown in FIG. 1, the austenitic stainless steel according to the embodiment of the present invention can be produced by subjecting each step of steelmaking, rough heat spreading, finishing hot spreading and cooling. More specifically, the slab produced by continuous casting is heated to 1000 to 1300 ° C. and then subjected to rough heat spreading to obtain a rough bar (steel strip) having a thickness of 25 mm (coarse heat spreading step). Then, the rough bar is hot-rolled for finishing at 600 ° C. or higher and 1100 ° C. or lower (finishing hot-rolling step). In the finishing hot-rolling step, the reduction rate of the finishing hot-rolling is 60% or more, the roll diameter of the finishing hot-rolling is 300 mm or more, and the final pass temperature of the finishing hot-rolling is 600 to 950 ° C. After the finishing hot-rolling step, the manufactured steel strip is cooled to 750 ° C. or lower when the final pass temperature of the finishing hot-rolling is 750 ° C. or higher at a cooling rate of 5 ° C./s or higher (cooling step). By satisfying these conditions, a stainless steel having a desired cross-sectional hardness distribution in the thickness direction and a fluctuation range thereof can be obtained.
 また、得られたステンレス鋼について、必要に応じて、熱延工程で生成した酸化スケールの除去を目的とし、酸洗処理を施してもよい。一般的に、酸洗処理は焼鈍工程と酸洗工程とが繋がった焼鈍酸洗ラインで実施される。酸洗処理を行う際は、ステンレス鋼の硬さの低下が発生しない温度範囲(具体的には、900℃以下)において、ステンレス鋼に熱を加えてもよい。 Further, the obtained stainless steel may be pickled, if necessary, for the purpose of removing the oxide scale generated in the hot rolling process. Generally, the pickling treatment is carried out in an annealing pickling line in which the annealing step and the pickling step are connected. When the pickling treatment is performed, heat may be applied to the stainless steel in a temperature range (specifically, 900 ° C. or lower) at which the hardness of the stainless steel does not decrease.
 以上の各工程によれば、厚さが3mm以上にも関わらず、厚さ方向の断面硬さ分布の平均が250HV以上であり、かつ変動幅が30HV以下とすることができる。このため、厚さ方向の断面硬さ分布のばらつきが低減されたオーステナイト系ステンレス鋼を提供することができる。 According to each of the above steps, the average cross-sectional hardness distribution in the thickness direction can be 250 HV or more and the fluctuation range can be 30 HV or less even though the thickness is 3 mm or more. Therefore, it is possible to provide an austenitic stainless steel in which the variation in the cross-sectional hardness distribution in the thickness direction is reduced.
 (厚さ方向の断面硬さ分布)
 厚さ方向の断面硬さ分布とは、圧延幅方向に垂直な断面について、厚さ方向の断面硬さ変動が分かるように荷重1kgでビッカース硬さを複数点測定したものである。例えば、厚さ8mm、厚さ方向の平均断面硬さを300HVに調整した実施例A3(図4参照)のステンレス鋼は、図2に示すように厚さ方向の断面硬さ分布は294~308HVの範囲であり、従来技術に比べて厚さ方向の断面硬さ分布のばらつきが低減されていることが分かる。図2は、本発明の実施の一形態に係るオーステナイト系ステンレス鋼の厚さ方向に対する断面硬さの分布を示すグラフである。
(Distribution of cross-sectional hardness in the thickness direction)
The cross-sectional hardness distribution in the thickness direction is a measurement of Vickers hardness at a plurality of points with a load of 1 kg so that the variation in cross-sectional hardness in the thickness direction can be seen for a cross section perpendicular to the rolling width direction. For example, the stainless steel of Example A3 (see FIG. 4) in which the thickness is 8 mm and the average cross-sectional hardness in the thickness direction is adjusted to 300 HV has a cross-sectional hardness distribution of 294 to 308 HV in the thickness direction as shown in FIG. It can be seen that the variation in the cross-sectional hardness distribution in the thickness direction is reduced as compared with the conventional technique. FIG. 2 is a graph showing the distribution of cross-sectional hardness of the austenitic stainless steel according to the embodiment of the present invention with respect to the thickness direction.
 (C+N)
 C、Nはオーステナイト相の固溶強化および加工硬化に有効に作用するため、一定量必要である。種々検討の結果、安定して250HV以上の硬さを得るためにはC+N量を0.08%以上に調整する必要があることを見出した(図3参照)。なお、図3は、C+Nの量と、オーステナイト系ステンレス鋼の平均断面硬さとの関係を示すグラフである。また、C+N量は、CとNとを合わせた含有量のことである。また、C+N量には、Cが0%またはNが0%の場合が含まれている。
(C + N)
A certain amount of C and N is required because they effectively act on the solid solution strengthening and work hardening of the austenite phase. As a result of various studies, it was found that it is necessary to adjust the amount of C + N to 0.08% or more in order to stably obtain a hardness of 250 HV or more (see FIG. 3). FIG. 3 is a graph showing the relationship between the amount of C + N and the average cross-sectional hardness of austenitic stainless steel. The amount of C + N is the total content of C and N. Further, the amount of C + N includes the case where C is 0% or N is 0%.
 図3に、仕上熱延の最終パス温度870℃で圧延を施し、750℃以下まで冷却速度40℃/sで冷却して巻き取りを行った実施例A1~A4、比較例B1、B2の平均断面硬さについてプロットしたグラフを示す(実施例A1~A4および比較例B1、B2の各鋼種の化学組成については図4参照)。C+N量が0.08%以上であるA1~A4は平均断面硬さが250HV以上であったが、C+N量が0.08未満であるB1、B2鋼の平均断面硬さは250HV未満であった。 FIG. 3 shows the average of Examples A1 to A4 and Comparative Examples B1 and B2, which were rolled at a final pass temperature of 870 ° C. for hot rolling, cooled to 750 ° C. or lower at a cooling rate of 40 ° C./s, and wound up. The graph which plotted about the cross-sectional hardness is shown (see FIG. 4 for the chemical composition of each steel type of Examples A1 to A4 and Comparative Examples B1 and B2). A1 to A4 having a C + N amount of 0.08% or more had an average cross-sectional hardness of 250 HV or more, but B1 and B2 steels having a C + N amount of less than 0.08 had an average cross-sectional hardness of less than 250 HV. ..
 (比透磁率)
 オーステナイト系ステンレス鋼を特徴付ける上で、一般的に比透磁率μは1.1以下が好ましく、より好ましくは、1.05以下である、本発明の実施形態に係る製造方法では、600℃以上で圧延するため、加工誘起マルテンサイトは生成しないが、δフェライトが残存すると比透磁率が高くなる。
(Permeability)
In characterizing austenitic stainless steel, the relative magnetic permeability μ is generally preferably 1.1 or less, more preferably 1.05 or less. In the production method according to the embodiment of the present invention, the temperature is 600 ° C. or higher. Since it is rolled, process-induced martensite is not generated, but if δ ferrite remains, the relative permeability increases.
 上記のように化学組成が調整されたオーステナイト系ステンレス鋼は、通常の鋼板製造工程や、その後の冷間鍛造工程で加工誘起マルテンサイト相が生成しないので、加工誘起マルテンサイト相に起因する磁性化は回避される。ただし、溶製時に高温でδフェライト相が生成することがあり、これが残存すると透磁率1.010以下の非磁性が得られない。また、製品中にδフェライト相が異相として混在していると、鏡面研磨品の外観を損なう場合もある。したがって、冷間鍛造に供する素材である鋼板の段階で、δフェライト相が消失している必要がある。δフェライト相は強磁性であるため、その存在有無は透磁率によって評価する。 Since the austenitic stainless steel whose chemical composition has been adjusted as described above does not generate a work-induced martensite phase in the normal steel sheet manufacturing process and the subsequent cold forging process, magnetization due to the work-induced martensite phase occurs. Is avoided. However, a δ ferrite phase may be formed at a high temperature during melting, and if this remains, non-magnetism with a magnetic permeability of 1.010 or less cannot be obtained. Further, if the δ ferrite phase is mixed as a different phase in the product, the appearance of the mirror-polished product may be spoiled. Therefore, it is necessary that the δ ferrite phase disappears at the stage of the steel sheet, which is the material used for cold forging. Since the δ ferrite phase is ferromagnetic, its presence or absence is evaluated by magnetic permeability.
 (目標特性)
 オーステナイト系ステンレス鋼の厚さ方向の断面硬さ分布の平均は、250HV以上(SUS304CSP-1/2H規格)を目指した。また、オーステナイト系ステンレス鋼の厚さは、例えば、特殊金属エクセルのSUS301CSPの厚さの範囲が2.5mm以下程度であるため、3mm以上を目指した。
(Target characteristics)
The average cross-sectional hardness distribution of austenitic stainless steel in the thickness direction was aimed at 250 HV or more (SUS304CSP-1 / 2H standard). Further, the thickness of the austenitic stainless steel was aimed at 3 mm or more because, for example, the thickness range of the special metal Excel SUS301CSP is about 2.5 mm or less.
 (圧下率)
 仕上熱延の圧下率は60%以上とすることが好ましい。図6中の条件No.D001~D006に示すように仕上熱延の圧下率(総圧延率)が60%を下回った場合、圧延ひずみが十分に付与されず目標の平均断面硬さが得られない。なお、圧延ロールの入り口の厚さをh1、出口の厚さをh2とするとき、圧下率=(h1-h2)/h1の関係式が成立する。
(Reduction rate)
The reduction rate of the finishing heat spread is preferably 60% or more. Condition No. in FIG. As shown in D001 to D006, when the reduction rate (total rolling rate) of the finish hot rolling is less than 60%, the rolling strain is not sufficiently applied and the target average cross-sectional hardness cannot be obtained. When the thickness of the inlet of the rolling roll is h1 and the thickness of the outlet is h2, the relational expression of rolling ratio = (h1-h2) / h1 is established.
 (ロール径)
 仕上熱延のロール径は300mm以上とすることが好ましい。図6中の条件No.F01~F19に示すようにロール径が小さい場合は厚さ方向の中心まで圧延ひずみを付与することができず、いずれの圧延温度においても断面硬さの変動範囲が大きくなる。なお、ロール径は、圧延ロールの回転軸に垂直な断面の直径のことである。
(Roll diameter)
The roll diameter of the hot-rolled finish is preferably 300 mm or more. Condition No. in FIG. As shown in F01 to F19, when the roll diameter is small, the rolling strain cannot be applied to the center in the thickness direction, and the fluctuation range of the cross-sectional hardness becomes large at any rolling temperature. The roll diameter is the diameter of the cross section perpendicular to the rotation axis of the rolling roll.
 (仕上熱延の温度および仕上熱延の最終パス温度)
 仕上熱延の温度は600~1100℃とすることが好ましい。また、仕上熱延の最終パス温度(最終パス圧延温度)は600~950℃とすることが好ましい。仕上熱延の温度および最終パス圧延温度が600℃を下回った場合、ロール径が大きくても板表層に付与されるひずみ量が厚さ方向の中心と比較して大きくなり、断面硬さの変動幅が大きくなる。一方、仕上熱延の温度が1100℃を上回った場合、圧延ひずみが再結晶駆動力となり、圧延直後に再結晶が生じ所望の断面硬さ分布が得られないとともに、温度が高すぎて最終パス圧延温度を950℃以下に調整することが困難となる。また、最終パス圧延温度が950℃を超えた場合、圧延ひずみが再結晶駆動力となり、圧延直後に再結晶が生じ所望の断面硬さ分布が得られない。
(Temperature of hot-rolled finish and final pass temperature of hot-rolled finish)
The temperature of the finishing heat spread is preferably 600 to 1100 ° C. Further, the final pass temperature (final pass rolling temperature) of the hot rolling finish is preferably 600 to 950 ° C. When the finishing hot rolling temperature and the final pass rolling temperature are lower than 600 ° C, the amount of strain applied to the plate surface layer becomes larger than the center in the thickness direction even if the roll diameter is large, and the cross-sectional hardness fluctuates. The width increases. On the other hand, when the temperature of the finishing hot rolling exceeds 1100 ° C., the rolling strain becomes a recrystallization driving force, recrystallization occurs immediately after rolling, the desired cross-sectional hardness distribution cannot be obtained, and the temperature is too high for the final pass. It becomes difficult to adjust the rolling temperature to 950 ° C. or lower. Further, when the final pass rolling temperature exceeds 950 ° C., the rolling strain becomes a recrystallization driving force, recrystallization occurs immediately after rolling, and a desired cross-sectional hardness distribution cannot be obtained.
 (冷却工程)
 前記の仕上熱延工程の後、仕上熱延を施された鋼帯を仕上げ熱延の最終パス温度が750℃以上の場合は750℃以下まで冷却速度5℃/s以上で冷却する冷却工程を有することが好ましい。仕上熱延で材料中に蓄積される圧延ひずみは、ステンレス鋼が高温のまま保持されると仕上熱延直後から減少する。圧延ひずみの減少を低減するためには、圧延ひずみの減少が起こらない温度域まで速やかに冷却することが好ましい。
(Cooling process)
After the finishing hot-rolling step, a cooling step of cooling the steel strip subjected to the finishing hot-rolling to 750 ° C. or lower at a cooling rate of 5 ° C./s or more when the final pass temperature of the finishing hot-rolling is 750 ° C. or higher is performed. It is preferable to have. The rolling strain accumulated in the material due to the hot rolling of the finish decreases immediately after the hot rolling of the finish when the stainless steel is kept at a high temperature. In order to reduce the reduction in rolling strain, it is preferable to quickly cool to a temperature range in which the reduction in rolling strain does not occur.
 図5に本発明の実施例のオーステナイト系ステンレス鋼の物性等を示す。また、図6および図7に比較例のオーステナイト系ステンレス鋼の物性等を示す。なお、図5、図6および図7における圧延温度は、圧延を行うときの鋼板の温度のことである。図5に示すように、上記の製造方法の条件を満たすNo.C01~C25の製造方法で製造されたオーステナイト系ステンレス鋼は、厚さ方向の断面硬さ分布の平均が250HV以上であり、かつ断面硬さ分布の変動幅が30HV以下であった。一方で、図6および図7に示すように、上記の製造方法の条件を満たさない(具体的には、板厚、ロール径、C+N量および冷却速度のうち少なくとも1つが上記の製造方法の条件を満たさない)No.D01~H06の製造方法で製造されたオーステナイト系ステンレス鋼は、厚さ方向の断面硬さ分布の平均が250HV未満、および/または、変動幅が30HVよりも大きかった。 FIG. 5 shows the physical properties of the austenitic stainless steel according to the embodiment of the present invention. Further, FIGS. 6 and 7 show the physical properties of the austenitic stainless steel of the comparative example. The rolling temperature in FIGS. 5, 6 and 7 is the temperature of the steel sheet during rolling. As shown in FIG. 5, No. 1 satisfying the above-mentioned manufacturing method conditions. The austenitic stainless steels produced by the production methods C01 to C25 had an average cross-sectional hardness distribution of 250 HV or more in the thickness direction and a fluctuation range of the cross-sectional hardness distribution of 30 HV or less. On the other hand, as shown in FIGS. 6 and 7, at least one of the above-mentioned manufacturing method conditions (specifically, plate thickness, roll diameter, C + N amount, and cooling rate) does not satisfy the above-mentioned manufacturing method conditions. Does not satisfy) No. The austenitic stainless steels produced by the production methods D01 to H06 had an average cross-sectional hardness distribution in the thickness direction of less than 250 HV and / or a fluctuation range of more than 30 HV.
 (鋼の化学組成)
 本発明の一実施形態に係るオーステナイト系ステンレス鋼の化学組成は、質量%で、C:0.003~0.12%、Si:2.00%以下、Mn:2.00%以下、P:0.04%以下、S:0.030%以下、Ni:6.0~15.0%、Cr:16.0~22.0%、N:0.005~0.20%、残部Feおよび不可避的不純物からなる。以下、鋼組成における「%」は特に断らない限り質量%を意味する。
(Chemical composition of steel)
The chemical composition of the austenitic stainless steel according to the embodiment of the present invention is C: 0.003 to 0.12%, Si: 2.00% or less, Mn: 2.00% or less, P: in mass%. 0.04% or less, S: 0.030% or less, Ni: 6.0 to 15.0%, Cr: 16.0 to 22.0%, N: 0.005 to 0.20%, balance Fe and Consists of unavoidable impurities. Hereinafter, "%" in the steel composition means mass% unless otherwise specified.
 本発明の一実施形態に係るオーステナイト系ステンレス鋼では、さらに、前記化学組成に加えて、質量%で、Mo:0.01~3.00%、Cu:0.01~3.50%、Al:0.0080%以下、O:0.0040~0.0100%、V:0.01~0.5%、B:0.001~0.01%、Ti:0.01~0.50%の1種または2種以上を含有してもよい。 In the austenitic stainless steel according to the embodiment of the present invention, in addition to the chemical composition, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.50%, Al in mass%. : 0.0080% or less, O: 0.0040 to 0.0100%, V: 0.01 to 0.5%, B: 0.001 to 0.01%, Ti: 0.01 to 0.50% It may contain one kind or two or more kinds of.
 本発明の一実施形態に係るオーステナイト系ステンレス鋼では、さらに、任意成分として質量で、Co:0.01~0.50%、Zr:0.01~0.10%、Nb:0.01~0.10%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%、Y:0.01~0.20%、REM(希土類金属):0.01~0.10%、Sn:0.001~0.500%およびSb:0.001~0.500%、Pb:0.01~0.10%、W:0.01~0.50%のうちから選んだ1種または2種以上を含有してもよい。 In the austenitic stainless steel according to the embodiment of the present invention, as an optional component, Co: 0.01 to 0.50%, Zr: 0.01 to 0.10%, Nb: 0.01 to 0.10%, Mg: 0.0005 to 0.0030%, Ca: 0.0003 to 0.0030%, Y: 0.01 to 0.20%, REM (rare earth metal): 0.01 to 0. Select from 10%, Sn: 0.001 to 0.500%, Sb: 0.001 to 0.500%, Pb: 0.01 to 0.10%, W: 0.01 to 0.50%. However, it may contain one kind or two or more kinds.
 Cは、侵入型元素であり加工硬化および歪時効により高強度化に寄与する。また、オーステナイト相を安定化させる元素であり非磁性の維持に有効である。本発明では0.003%以上のC含有量を確保する。ただし、過度のC含有は鋼を硬質化させ冷間鍛造性を低下させる要因となる。C含有量は0.012%以下に制限される。 C is an intrusive element and contributes to high strength by work hardening and strain aging. In addition, it is an element that stabilizes the austenite phase and is effective in maintaining non-magnetism. In the present invention, a C content of 0.003% or more is secured. However, excessive C content becomes a factor that hardens the steel and lowers the cold forging property. The C content is limited to 0.012% or less.
 Siは、製鋼過程において鋼の脱酸剤として用いられる元素である。Siは歪取り熱処理において時効硬化性を向上させる作用を有する。一方、Siは固溶強化作用が大きく、かつ積層欠陥エネルギーを低下させて加工硬化を大きくする作用を有するので、過度のSi含有は冷間鍛造性を低下させる要因となる。そのためSi含有量は2.0%以下に制限される。 Si is an element used as a deoxidizer for steel in the steelmaking process. Si has the effect of improving age hardening in the strain removing heat treatment. On the other hand, Si has a large solid solution strengthening action and also has an action of lowering stacking defect energy and increasing work hardening. Therefore, excessive Si content becomes a factor of lowering cold forging property. Therefore, the Si content is limited to 2.0% or less.
 Mnは、MnOとして酸化物系介在物を構成する元素である。また、Mnは固溶強化作用が小さく、かつオーステナイト生成元素であり加工誘起マルテンサイト変態を抑制させる作用を有するので、冷間鍛造性の確保と非磁性の維持には有効な元素である。ただし、過剰のMn含有量は耐食性低下の要因となる。Mn含有量は2.00%以下に制限される。 Mn is an element that constitutes an oxide-based inclusion as MnO. In addition, Mn has a small solid solution strengthening action and is an austenite-forming element and has an action of suppressing process-induced martensitic transformation, so that it is an effective element for ensuring cold forging property and maintaining non-magnetism. However, the excessive Mn content causes a decrease in corrosion resistance. The Mn content is limited to 2.00% or less.
 Pは、耐食性を低下させる元素であり、また、過度のP低減は製鋼負荷を増大させる要因となるため、0.040%以下とする必要がある。 P is an element that lowers the corrosion resistance, and excessive P reduction causes an increase in the steelmaking load, so it must be 0.040% or less.
 Sは、MnSを形成して耐食性を劣化させる要因となり、また過度の脱Sは製鋼負荷を増大させる要因となるので、0.030%以下に制限される。 S is a factor that forms MnS and deteriorates corrosion resistance, and excessive de-S is a factor that increases the steelmaking load, so it is limited to 0.030% or less.
 Crは、耐食性を向上させる元素である。携帯型電子機器の外装部材に適した耐食性を確保するために、本発明ではCr含有量が16.0%以上の鋼を対象とする。ただし、多量のCr含有は冷間鍛造性を低下させる要因となる。Cr含有量の上限は22.0%に制限される。 Cr is an element that improves corrosion resistance. In order to ensure corrosion resistance suitable for exterior members of portable electronic devices, the present invention targets steel having a Cr content of 16.0% or more. However, a large amount of Cr content causes a decrease in cold forging property. The upper limit of Cr content is limited to 22.0%.
 Nは、Cと同様に侵入型元素であり加工硬化および歪時効により高強度化に寄与する。また、オーステナイト相を安定化させる元素であり非磁性の維持に有効である。本発明では0.005%以上のN含有量を確保する。ただし、過度のN含有は鋼を硬質化させ冷間鍛造性を低下させる要因となる。N含有量は0.20%以下に制限される。 N is an intrusive element like C and contributes to high strength by work hardening and strain aging. In addition, it is an element that stabilizes the austenite phase and is effective in maintaining non-magnetism. In the present invention, an N content of 0.005% or more is secured. However, excessive N content becomes a factor that hardens the steel and lowers the cold forging property. The N content is limited to 0.20% or less.
 Moは、ステンレス鋼の耐食性向上に有効な元素である。本発明では、前記のCr含有量を確保した上で、必要に応じて添加されるが、多量のMo添加はコスト増になるため、Moを含有する場合は、Mo含有量は0.01%~3.00%以下である。 Mo is an element effective for improving the corrosion resistance of stainless steel. In the present invention, the Cr content is ensured and then added as needed. However, adding a large amount of Mo increases the cost. Therefore, when Mo is contained, the Mo content is 0.01%. It is ~ 3.00% or less.
 Cuは、オーステナイト相の加工硬化を抑制し、冷間鍛造性の向上に有効であることが知られている。また、冷間鍛造後に行われる歪取り熱処理の加熱温度域で時効硬化をもたらす元素であることが知られている。種々検討の結果、Cuを含有する場合は、Cu含有量は0.01%~3.5%である。 Cu is known to be effective in improving cold forging properties by suppressing work hardening of the austenite phase. Further, it is known that it is an element that causes age hardening in the heating temperature range of the strain removing heat treatment performed after cold forging. As a result of various studies, when Cu is contained, the Cu content is 0.01% to 3.5%.
 Alは、酸素親和力がSi、Mnに比べて高く、0.0030%以上のAl含有量となると冷間鍛造での内部割れの起点となる粗大な酸化物系介在物が形成されやすくなる。また、過度に低Al化することはコスト増となるので、種々の検討の結果、Alを含有する場合は、Al含有量は、0.0001%以上~0.0080%である。 Al has a higher oxygen affinity than Si and Mn, and when the Al content is 0.0030% or more, coarse oxide-based inclusions which are the starting points of internal cracks in cold forging are likely to be formed. In addition, excessively low Al content increases the cost. Therefore, as a result of various studies, when Al is contained, the Al content is 0.0001% or more to 0.0080%.
 O含有量が低くなると、Mn、Si等が酸化しにくくなり、介在物におけるAlの比率が高くなる。また、O含有量が過度に高いと粒子径5μmを超える粗大な介在物が形成されやすくなることから、種々検討の結果、Oを含有する場合は、O含有量は40ppm(0.0040%)~100ppm(0.0100%)、好ましくは80ppm以下である。 When the O content is low, Mn, Si and the like are less likely to be oxidized, and the ratio of Al 2 O 3 in the inclusions is high. Further, if the O content is excessively high, coarse inclusions having a particle size of more than 5 μm are likely to be formed. Therefore, as a result of various studies, when O is contained, the O content is 40 ppm (0.0040%). It is ~ 100 ppm (0.0100%), preferably 80 ppm or less.
 Vは、冷間鍛造後に行う歪取り熱処理の加熱において時効硬化能を高める作用があることが確認された。時効硬化作用があるものの、多量のV含有はコスト増につながる。Vを含有する場合は、V含有量は、0.01%~0.05%である。 It was confirmed that V has the effect of enhancing the age hardening ability in the heating of the strain removing heat treatment performed after cold forging. Although it has an aging hardening effect, a large amount of V content leads to an increase in cost. When V is contained, the V content is 0.01% to 0.05%.
 多量のB含有は硼化物の生成による加工性低下を招く要因となる。そこで、Bを含有する場合は、B含有量は0.001~0.0100%、好ましくは0.0050%以下である。 A large amount of B is a factor that causes a decrease in workability due to the formation of boride. Therefore, when B is contained, the B content is 0.001 to 0.0100%, preferably 0.0050% or less.
 Tiは、炭窒化物形成元素であり、C、Nを固定し、鋭敏化に起因する耐食性の低下を抑制する。上記効果はTiを0.01%以上含有すると発揮される。よって、Ti含有量は0.01%以上とする。一方、Ti含有量が0.50%を超えると、Tiは、炭化物として不均一なサイズで鋼中に不均一に局在して析出し、整粒な再結晶粒成長を阻害するとともに、大変高価であることからTi含有量の上限を0.50%とする。 Ti is a carbonitride-forming element, which fixes C and N and suppresses a decrease in corrosion resistance due to sensitization. The above effect is exhibited when Ti is contained in an amount of 0.01% or more. Therefore, the Ti content is set to 0.01% or more. On the other hand, when the Ti content exceeds 0.50%, Ti is non-uniformly localized and precipitated in the steel as a carbide in a non-uniform size, which hinders the growth of sized recrystallized grains and is extremely difficult. Since it is expensive, the upper limit of the Ti content is set to 0.50%.
 Coは耐隙間腐食性を向上させる効果がある。一方、過剰にCoを含有すると、鋼を硬質化して曲げ性に悪影響を及ぼす。そのため、Coを含有する場合は、Co含有量を0.01~0.50%、好ましくは0.10%以下である。 Co has the effect of improving the crevice corrosion resistance. On the other hand, if Co is excessively contained, the steel is hardened and the bendability is adversely affected. Therefore, when Co is contained, the Co content is 0.01 to 0.50%, preferably 0.10% or less.
 Zrは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、加工性を向上させる効果がある。一方、過剰にZrを含有すると、鋼を硬質化し、曲げ性に悪影響を及ぼす。そのため、Zrを含有する場合は、Zr含有量は0.01~0.10%、好ましくは0.05%以下である。 Zr is an element having a high affinity for C and N, and is precipitated as a carbide or a nitride during hot rolling, and has an effect of reducing solid solution C and solid solution N in the matrix phase and improving workability. .. On the other hand, if Zr is excessively contained, the steel is hardened and the bendability is adversely affected. Therefore, when Zr is contained, the Zr content is 0.01 to 0.10%, preferably 0.05% or less.
 Nbは、CおよびNとの親和力の高い元素であり、熱間圧延時に炭化物あるいは窒化物として析出し、母相中の固溶Cおよび固溶Nを低減させ、加工性を向上させる効果がある。一方、過剰にNbを含有すると、鋼を硬質化し、曲げ性に悪影響を及ぼす。そのため、Nbを含有する場合は、Nb含有量は0.01~0.10%、好ましくは0.05%以下である。 Nb is an element having a high affinity for C and N, and is precipitated as a carbide or a nitride during hot rolling, and has an effect of reducing solid solution C and solid solution N in the matrix phase and improving workability. .. On the other hand, if Nb is excessively contained, the steel is hardened and the bendability is adversely affected. Therefore, when Nb is contained, the Nb content is 0.01 to 0.10%, preferably 0.05% or less.
 Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する。一方、過剰にMgを含有すると鋼の靱性が低下して製造性が低下する。そのため、Mgを含有する場合は、Mg含有量は0.0005~0.0030%、好ましくは0.0020%以下である。 Mg forms Mg oxide together with Al in molten steel and acts as an antacid. On the other hand, if Mg is contained in an excessive amount, the toughness of the steel is lowered and the manufacturability is lowered. Therefore, when Mg is contained, the Mg content is 0.0005 to 0.0030%, preferably 0.0020% or less.
 Caは、熱間加工性を向上させる元素である。一方、過剰にCaを含有すると鋼の靱性が低下して製造性が低下するとともに、さらに、CaSの析出により耐食性が低下する。そのため、Caを含有する場合は、Ca含有量は0.0003~0.0030%、好ましくは0.0020%以下である。 Ca is an element that improves hot workability. On the other hand, if Ca is excessively contained, the toughness of the steel is lowered and the manufacturability is lowered, and further, the corrosion resistance is lowered due to the precipitation of CaS. Therefore, when Ca is contained, the Ca content is 0.0003 to 0.0030%, preferably 0.0020% or less.
 Yは、溶鋼の粘度減少を減少させ、清浄度を向上させる元素である。一方、過剰にYを含有するとその効果は飽和し、さらに、加工性が低下する。そのため、Yを含有する場合は、Y含有量は0.01~0.20%、好ましくは0.10%以下である。 Y is an element that reduces the decrease in viscosity of molten steel and improves cleanliness. On the other hand, if Y is contained in excess, the effect is saturated and the workability is further lowered. Therefore, when Y is contained, the Y content is 0.01 to 0.20%, preferably 0.10% or less.
 REM(希土類金属:La、Ce、Ndなどの原子番号57~71の元素)は、耐高温酸化性を向上させる元素である。一方、過剰にREMを含有するとその効果は飽和し、さらに、熱間圧延の際に表面欠陥が生じ、製造性が低下する。そのため、REMを含有する場合は、REM含有量は0.01~0.10%、好ましくは0.05%以下である。 REM (rare earth metal: an element having an atomic number of 57 to 71 such as La, Ce, Nd) is an element that improves high temperature oxidation resistance. On the other hand, if an excessive amount of REM is contained, the effect is saturated, and surface defects occur during hot rolling, resulting in a decrease in manufacturability. Therefore, when REM is contained, the REM content is 0.01 to 0.10%, preferably 0.05% or less.
 Snは、圧延時における変形帯生成の促進による加工性の向上に効果的である。一方、過剰にSnを含有するとその効果は飽和し、さらに加工性が低下する。そのため、Snを含有する場合は、Sn含有量は0.001~0.500%、好ましくは0.200%以下である。 Sn is effective in improving workability by promoting the formation of a deformation zone during rolling. On the other hand, if Sn is contained in excess, the effect is saturated and the workability is further lowered. Therefore, when Sn is contained, the Sn content is 0.001 to 0.500%, preferably 0.200% or less.
 Sbは、圧延時における変形帯生成の促進による加工性の向上に効果的である。一方、過剰にSbを含有するとその効果は飽和し、さらに加工性が低下する。そのため、Sbを含有する場合は、Sb含有量は0.001~0.500%、好ましくは0.200%以下である。 Sb is effective in improving workability by promoting the formation of a deformation band during rolling. On the other hand, if Sb is contained in excess, the effect is saturated and the workability is further lowered. Therefore, when Sb is contained, the Sb content is 0.001 to 0.500%, preferably 0.200% or less.
 Pbは、粒界の融点を下げるとともに粒界の結合力を低下させ、粒界溶融に基づく液化割れなど、熱間加工性の劣化をまねく懸念があるため、0.10%以下とする。 Pb is set to 0.10% or less because there is a concern that the melting point of the grain boundaries will be lowered and the binding force of the grain boundaries will be lowered, leading to deterioration of hot workability such as liquefaction cracking due to melting of the grain boundaries.
 Wは、室温における延性を損なわずに、高温強度を向上させる作用を有する。しかし、その過剰な添加は粗大な共晶炭化物が生成し、延性の低下を引き起こすので、0.50以下とする。 W has the effect of improving high temperature strength without impairing ductility at room temperature. However, the excessive addition produces coarse eutectic carbides and causes a decrease in ductility, so the content should be 0.50 or less.
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
[Additional notes]
The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
 本発明は、例えば、スマートフォンなどの電子機器の構造部材、スチールベルト、プレスプレート等、比較的厚さが厚い高強度ステンレス鋼が必要な用途に好適な、オーステナイト系ステンレス鋼帯などに利用することができる。 The present invention is used for, for example, structural members of electronic devices such as smartphones, steel belts, press plates, and austenitic stainless steel strips suitable for applications requiring relatively thick high-strength stainless steel. Can be done.

Claims (8)

  1.  CとNとを合わせた含有量が、質量%で0.08%以上であり、
     厚さ方向の断面硬さ分布の平均が250HV以上であり、かつ変動幅が30HV以下であり、
     厚さが3mm以上であることを特徴とするオーステナイト系ステンレス鋼。
    The total content of C and N is 0.08% or more in terms of mass%.
    The average cross-sectional hardness distribution in the thickness direction is 250 HV or more, and the fluctuation range is 30 HV or less.
    Austenitic stainless steel characterized by a thickness of 3 mm or more.
  2.  前記オーステナイト系ステンレス鋼の化学組成は、質量%で、C:0.003~0.12%、Si:2.00%以下、Mn:2.00%以下、P:0.04%以下、S:0.030%以下、Ni:6.0~15.0%、Cr:16.0~22.0%、N:0.005~0.20%、残部Feおよび不可避的不純物からなることを特徴とする請求項1に記載のオーステナイト系ステンレス鋼。 The chemical composition of the austenitic stainless steel is C: 0.003 to 0.12%, Si: 2.00% or less, Mn: 2.00% or less, P: 0.04% or less, S in mass%. : 0.030% or less, Ni: 6.0 to 15.0%, Cr: 16.0 to 22.0%, N: 0.005 to 0.20%, balance Fe and unavoidable impurities. The austenitic stainless steel according to claim 1, which is characterized.
  3.  前記化学組成に加えて、さらに質量%で、Mo:0.01~3.00%、Cu:0.01~3.50%、Al:0.0080%以下、O:0.0040~0.0100%、V:0.01~0.5%、B:0.001~0.01%、Ti:0.01~0.50%の1種または2種以上を含有する請求項2に記載のオーステナイト系ステンレス鋼。 In addition to the above chemical composition, in terms of mass%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.50%, Al: 0.0080% or less, O: 0.0040 to 0. The second aspect of claim 2, which contains one or more of 0100%, V: 0.01 to 0.5%, B: 0.001 to 0.01%, and Ti: 0.01 to 0.50%. Austenitic stainless steel.
  4.  前記化学組成に加えて、さらに質量%で、Co:0.01~0.50%、Zr:0.01~0.10%、Nb:0.01~0.10%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%、Y:0.01~0.20%、REM(希土類金属):0.01~0.10%、Sn:0.001~0.500%およびSb:0.001~0.500%、Pb:0.01~0.10%、W:0.01~0.50%のうちから選んだ1種または2種以上を含有する、請求項2または3に記載のオーステナイト系ステンレス鋼。 In addition to the above chemical composition, in terms of mass%, Co: 0.01 to 0.50%, Zr: 0.01 to 0.10%, Nb: 0.01 to 0.10%, Mg: 0.0005. ~ 0.0030%, Ca: 0.0003 ~ 0.0030%, Y: 0.01 ~ 0.20%, REM (rare earth metal): 0.01 ~ 0.10%, Sn: 0.001 ~ 0 Contains one or more selected from .500% and Sb: 0.001 to 0.500%, Pb: 0.01 to 0.10%, W: 0.01 to 0.50%. , Austenitic stainless steel according to claim 2 or 3.
  5.  比透磁率μが1.1以下であることを特徴とする請求項1から4までの何れか1項に記載のオーステナイト系ステンレス鋼。 The austenitic stainless steel according to any one of claims 1 to 4, wherein the relative magnetic permeability μ is 1.1 or less.
  6.  質量%で、C:0.003~0.12%、Si:2.00%以下、Mn:2.00%以下、P:0.04%以下、S:0.030%以下、Ni:6.0~15.0%、Cr:16.0~22.0%、N:0.005~0.20%を含有し、かつCとNとを合わせた含有量が質量%で0.08%以上であり、残部Feおよび不可避的不純物で構成された化学組成からなる連続鋳造によって製造したスラブを1000~1300℃に加熱した後、粗熱延を施す粗熱延工程と、
     前記粗熱延工程の後、製造された鋼帯に対して仕上熱延を施す仕上熱延工程と、
     前記仕上熱延工程の後、前記鋼帯を冷却する冷却工程とを含み、
     前記仕上熱延工程では、
      前記仕上熱延の圧下率が60%以上であり、
      前記仕上熱延のロール径が300mm以上であり、
      前記仕上熱延の温度が600~1100℃であり、
      前記仕上熱延の最終パス温度が600~950℃であり、
     前記冷却工程では、前記鋼帯を前記仕上熱延の前記最終パス温度が750℃以上の場合は750℃以下まで、冷却速度5℃/s以上で冷却することを特徴とするオーステナイト系ステンレス鋼の製造方法。
    By mass%, C: 0.003 to 0.12%, Si: 2.00% or less, Mn: 2.00% or less, P: 0.04% or less, S: 0.030% or less, Ni: 6 It contains 0.0 to 15.0%, Cr: 16.0 to 22.0%, N: 0.005 to 0.20%, and the combined content of C and N is 0.08 in mass%. A crude heat spreading step in which a slab produced by continuous casting having a chemical composition of% or more and composed of the balance Fe and unavoidable impurities is heated to 1000 to 1300 ° C. and then roughly heated.
    After the rough heat spreading process, a finishing heat spreading process of applying a finishing heat spreading to the manufactured steel strip,
    After the finishing heat spreading step, a cooling step of cooling the steel strip is included.
    In the finishing heat spreading process,
    The reduction rate of the finishing heat spread is 60% or more,
    The roll diameter of the finished hot-rolled product is 300 mm or more.
    The temperature of the finishing heat spread is 600 to 1100 ° C.
    The final pass temperature of the finishing heat spread is 600 to 950 ° C.
    In the cooling step, the austenitic stainless steel is characterized in that the steel strip is cooled to 750 ° C. or lower when the final pass temperature of the finishing hot-rolling is 750 ° C. or higher, and at a cooling rate of 5 ° C./s or higher. Production method.
  7.  前記スラブが、さらに質量%で、Mo:0.01~3.00%、Cu:0.01~3.50%、Al:0.0080%以下、O:0.0040~0.0100%、V:0.01~0.5%、B:0.001~0.01%、Ti:0.01~0.50%の1種または2種以上を含有する、請求項6に記載のオーステナイト系ステンレス鋼の製造方法。 The slab further contains, in terms of mass%, Mo: 0.01 to 3.00%, Cu: 0.01 to 3.50%, Al: 0.0080% or less, O: 0.0040 to 0.0100%, The austenitic stainless steel according to claim 6, which contains one or more of V: 0.01 to 0.5%, B: 0.001 to 0.01%, and Ti: 0.01 to 0.50%. Manufacturing method of austenitic stainless steel.
  8.  前記スラブが、さらに質量%で、Co:0.01~0.50%、Zr:0.01~0.10%、Nb:0.01~0.10%、Mg:0.0005~0.0030%、Ca:0.0003~0.0030%、Y:0.01~0.20%、REM(希土類金属):0.01~0.10%、Sn:0.001~0.500%およびSb:0.001~0.500%、Pb:0.01~0.10%、W:0.01~0.50%のうちから選んだ1種または2種以上を含有する、請求項6または7に記載のオーステナイト系ステンレス鋼の製造方法。 In terms of mass%, the slab further contains Co: 0.01 to 0.50%, Zr: 0.01 to 0.10%, Nb: 0.01 to 0.10%, Mg: 0.0005 to 0. 0030%, Ca: 0.0003 to 0.0030%, Y: 0.01 to 0.20%, REM (rare earth metal): 0.01 to 0.10%, Sn: 0.001 to 0.500% And Sb: 0.001 to 0.500%, Pb: 0.01 to 0.10%, W: 0.01 to 0.50%, and one or more selected from the above. The method for producing austenitic stainless steel according to 6 or 7.
PCT/JP2020/023152 2019-06-14 2020-06-12 Austenitic stainless steel and manufacturing method thereof WO2020251002A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217022001A KR20210101302A (en) 2019-06-14 2020-06-12 Austenitic stainless steel and manufacturing method thereof
CN202080013229.2A CN113396239B (en) 2019-06-14 2020-06-12 Austenitic stainless steel and method for producing same
JP2021526147A JP7150990B2 (en) 2019-06-14 2020-06-12 Austenitic stainless steel strip or austenitic stainless steel sheet and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-111373 2019-06-14
JP2019111373 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020251002A1 true WO2020251002A1 (en) 2020-12-17

Family

ID=73781056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023152 WO2020251002A1 (en) 2019-06-14 2020-06-12 Austenitic stainless steel and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP7150990B2 (en)
KR (1) KR20210101302A (en)
CN (1) CN113396239B (en)
TW (1) TWI742721B (en)
WO (1) WO2020251002A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113492153A (en) * 2021-07-16 2021-10-12 山西太钢不锈钢股份有限公司 Rolling method of austenitic stainless steel and austenitic stainless steel for electronic components

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116323994A (en) * 2021-02-24 2023-06-23 日铁不锈钢株式会社 Austenitic stainless steel material, method for producing same, and leaf spring
CN114908294A (en) * 2022-05-19 2022-08-16 山西太钢不锈钢股份有限公司 High-temperature-resistant austenitic stainless steel cold-rolled sheet for automobile exhaust system and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262282A (en) * 2000-03-16 2001-09-26 Kawasaki Steel Corp Quenching-free stainless steel sheet for motorcycle disc brake, and its manufacturing method
JP2007118025A (en) * 2005-10-26 2007-05-17 Sumitomo Metal Ind Ltd B-containing stainless steel and its production method
JP2009030159A (en) * 2007-07-04 2009-02-12 Nippon Steel Corp High strength-high young's modulus steel sheet, hot dip galvanized steel sheet, hot dip galvannealed steel sheet and steel pipe having satisfactory press formability, and method for producing them
JP2015137419A (en) * 2014-01-24 2015-07-30 新日鐵住金株式会社 Austenite stainless steel weld joint
JP2016508184A (en) * 2012-12-27 2016-03-17 ポスコ High manganese wear resistant steel with excellent weldability and method for producing the same
WO2017061487A1 (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Austenitic stainless steel sheet

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768584B2 (en) * 1986-06-09 1995-07-26 日新製鋼株式会社 Manufacturing method of stainless steel for springs having excellent spring characteristics
CN101892437B (en) * 2009-05-22 2012-09-19 宝山钢铁股份有限公司 Mirror polishability superior low-magnetic austenitic stainless steel and manufacturing method thereof
CN102383060A (en) * 2011-11-02 2012-03-21 永鑫精密材料(无锡)有限公司 Method for manufacturing austenite stainless steel thin strip for electronic product shell
CN102747301B (en) * 2012-06-29 2014-03-26 宝山钢铁股份有限公司 High-strength stainless steel cold-rolled sheet strip and manufacturing method thereof
CN108754333B (en) * 2013-02-28 2021-02-09 日铁不锈钢株式会社 Austenitic stainless steel sheet and method for producing high-elastic-limit nonmagnetic steel material using same
US9192981B2 (en) * 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
JP5692305B2 (en) * 2013-08-22 2015-04-01 Jfeスチール株式会社 Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
US20170204491A1 (en) * 2014-08-07 2017-07-20 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
JP6772076B2 (en) 2017-01-05 2020-10-21 日鉄ステンレス株式会社 Manufacturing method of non-magnetic austenitic stainless steel sheet and non-magnetic member
CN109628850B (en) * 2018-12-31 2020-08-14 钢铁研究总院 Multipurpose fully-austenitic low-density steel and preparation method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001262282A (en) * 2000-03-16 2001-09-26 Kawasaki Steel Corp Quenching-free stainless steel sheet for motorcycle disc brake, and its manufacturing method
JP2007118025A (en) * 2005-10-26 2007-05-17 Sumitomo Metal Ind Ltd B-containing stainless steel and its production method
JP2009030159A (en) * 2007-07-04 2009-02-12 Nippon Steel Corp High strength-high young's modulus steel sheet, hot dip galvanized steel sheet, hot dip galvannealed steel sheet and steel pipe having satisfactory press formability, and method for producing them
JP2016508184A (en) * 2012-12-27 2016-03-17 ポスコ High manganese wear resistant steel with excellent weldability and method for producing the same
JP2015137419A (en) * 2014-01-24 2015-07-30 新日鐵住金株式会社 Austenite stainless steel weld joint
WO2017061487A1 (en) * 2015-10-06 2017-04-13 新日鐵住金株式会社 Austenitic stainless steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113492153A (en) * 2021-07-16 2021-10-12 山西太钢不锈钢股份有限公司 Rolling method of austenitic stainless steel and austenitic stainless steel for electronic components

Also Published As

Publication number Publication date
KR20210101302A (en) 2021-08-18
JP7150990B2 (en) 2022-10-11
JPWO2020251002A1 (en) 2021-11-11
TW202106409A (en) 2021-02-16
CN113396239A (en) 2021-09-14
TWI742721B (en) 2021-10-11
CN113396239B (en) 2022-11-08

Similar Documents

Publication Publication Date Title
CN101892437B (en) Mirror polishability superior low-magnetic austenitic stainless steel and manufacturing method thereof
WO2020251002A1 (en) Austenitic stainless steel and manufacturing method thereof
JP4464864B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
EP2444510A1 (en) High-strength hot-dip galvannealed steel shhet with excellent workability and fatigue characteristics and process for production thereof
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
WO2017013850A1 (en) Ferrite-based hot-rolled stainless steel sheet, hot-rolled annealed sheet, and method for manufacturing said sheets
JP4464863B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP3550132B2 (en) Precipitation hardening type soft magnetic ferritic stainless steel
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JPH11343535A (en) Coating/baking hardening type high tensile strength steel plate and its production
JP3578435B2 (en) Hot-rolled steel sheet for structural use excellent in press formability and surface properties and method for producing the same
CN107109601B (en) Composite structure steel sheet having excellent formability and method for producing same
EP3887556B1 (en) Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof
JP3411767B2 (en) High-strength, high-ductility ferrite single-phase Cr-containing steel sheet and method for producing the same
CN113692456A (en) Ultrahigh-strength steel sheet having excellent shear workability and method for producing same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
KR102020511B1 (en) Ferritic stainless steel with excellent impact toughness and manufacturing method thereof
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP6678240B2 (en) Cold rolled steel sheet for continuous self-brazing and method for producing the same
JP2022155180A (en) Austenitic stainless steel and method for producing the same
RU2709071C1 (en) Method for production of thick-rolled steel with increased deformation capacity (versions)
JP2002105601A (en) High strength dual phase stainless steel and its production method
JP7438967B2 (en) High strength austenitic high manganese steel and manufacturing method thereof
KR102123665B1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526147

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217022001

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823497

Country of ref document: EP

Kind code of ref document: A1