JP2007118025A - B-containing stainless steel and its production method - Google Patents

B-containing stainless steel and its production method Download PDF

Info

Publication number
JP2007118025A
JP2007118025A JP2005311296A JP2005311296A JP2007118025A JP 2007118025 A JP2007118025 A JP 2007118025A JP 2005311296 A JP2005311296 A JP 2005311296A JP 2005311296 A JP2005311296 A JP 2005311296A JP 2007118025 A JP2007118025 A JP 2007118025A
Authority
JP
Japan
Prior art keywords
stainless steel
weld
creq
mass
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005311296A
Other languages
Japanese (ja)
Other versions
JP4613791B2 (en
Inventor
Kazuhiro Ogawa
和博 小川
Takahiro Kousu
孝裕 小薄
Takeo Yazawa
武男 矢澤
Sosuke Kanbe
宗理 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005311296A priority Critical patent/JP4613791B2/en
Publication of JP2007118025A publication Critical patent/JP2007118025A/en
Application granted granted Critical
Publication of JP4613791B2 publication Critical patent/JP4613791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method where, even under welding conditions of high efficiency, a B-containing stainless steel slab is hot-worked without generating welding cracks upon the operation and edge cracks after the rolling, and to provide a steel after the working. <P>SOLUTION: Regarding the B-containing stainless steel slab, a protect material composed of a stainless steel comprising, by mass, ≤0.3% B is joined and integrated into at least confronted two faces other than the working face of a stainless steel slab comprising 0.3 to 2.5% B by a stainless steel weld metal, the chemical composition of the stainless steel weld metal satisfies the relation expressed by fundamental inequalities of (1) to (3), and also, the shape coefficient Q (Wcm/Wn) in the cross-section of a weld bead shown by a ratio between the bead width Wcm at the central part of the cross-section in the weld bead and the bead width Wn at the inlet part is 0.8 to 1.4; wherein, 15≤Creq≤30 (1), 4≤Creq-Nieq≤17 (2), and Px≥0 (3). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、核燃料輸送用容器、使用済み核燃料貯蔵ラックなどの原子力関連機器の中性子遮蔽材として、さらにオーステナイト系ステンレス鋼にBを0.3%以上含有させることにより優れた機能を発揮する用途、例えば燃料電池用セパレータ材として用いられるB含有ステンレス鋼片およびB含有ステンレス鋼材の製造方法に関する。   The present invention, as a neutron shielding material for nuclear-related equipment such as a nuclear fuel transport container, a spent nuclear fuel storage rack, and the like, an application that exhibits an excellent function by containing 0.3% or more B in austenitic stainless steel, For example, the present invention relates to a B-containing stainless steel piece used as a fuel cell separator material and a method for producing a B-containing stainless steel material.

ボロン(B)の優れた熱中性子吸収作用を利用して、Bを添加したオーステナイト系ステンレス鋼が、熱中性子の制御材および遮断材として、核燃料輸送容器、使用済核燃料保管ラック等に用いられている。一般に、原子力発電所で使用された使用済核燃料は、再処理工場にて処理されるまで、発電所内のプール内に保管される。限られた敷地内で、できるだけ多くの使用済核燃料を保管したいとのニーズから、B含有オーステナイト系ステンレス鋼に添加されるB含有量を増加させ、鋼材の板厚は薄くする傾向にある。   Utilizing the excellent thermal neutron absorption effect of boron (B), austenitic stainless steel added with B is used in nuclear fuel transport containers, spent nuclear fuel storage racks, etc. as thermal neutron control and blocking materials Yes. In general, spent nuclear fuel used at a nuclear power plant is stored in a pool within the power plant until it is processed at a reprocessing plant. Due to the need to store as much spent nuclear fuel as possible within a limited site, the B content added to the B-containing austenitic stainless steel tends to increase, and the thickness of the steel material tends to be reduced.

オーステナイト系ステンレス鋼は、その表面に不働態体皮膜が形成されているため耐食性に優れており、Bを含有させることで電気抵抗特性が改善されることにより、耐食性が要求される通電電気部品として使用することが可能になる。優れた耐食性とともに電気抵抗特性が要求される通電電気部品の用途例として、水素および酸素を利用して直流電力を発電する燃料電池用のセパレータがある。   Austenitic stainless steel is excellent in corrosion resistance because a passive body film is formed on its surface, and by adding B, the electrical resistance characteristics are improved, and as a current-carrying electrical component that requires corrosion resistance. It becomes possible to use. As an example of application of a current-carrying electrical component that requires electrical resistance characteristics as well as excellent corrosion resistance, there is a fuel cell separator that generates DC power using hydrogen and oxygen.

B含有ステンレス鋼の熱間加工は、加熱炉によるスラブの加熱と、鍛造や圧延などの加工とを繰り返して被加工材の温度低下を防止することにより、熱間加工性を確保しながら行われている。B含有量が増加すると熱間加工性が劣るため、被加工材の温度低下を防止しながら加工することが必要となり、その結果、加熱と加工の繰り返し回数を増加せざるを得ない。したがって、B含有量の増加や鋼の薄肉加工は、製造コストの上昇を招くことになる。   Hot working of B-containing stainless steel is performed while ensuring hot workability by preventing the temperature of the work piece from decreasing by repeatedly heating the slab with a heating furnace and processing such as forging and rolling. ing. When the B content increases, the hot workability is inferior, and therefore, it is necessary to perform processing while preventing the temperature of the workpiece from being lowered, and as a result, the number of repetitions of heating and processing must be increased. Therefore, an increase in the B content and a thin processing of steel cause an increase in manufacturing cost.

上述の問題に対処するために、従来から、種々検討がなされてきた。例えば、特許文献1には、0.3〜2.0wt%のBを含有するオーステナイト系ステンレス鋼材の側部に、ステンレス鋼材よりも変形抵抗が小さい鋼材を溶接により被覆した素材を、(53B+700)℃(ここで、B:B含有量(wt%))以上の温度で仕上げ圧延することにより、耳割れの発生を防止する鋼材の熱間圧延方法が開示されている。   Conventionally, various studies have been made in order to deal with the above-described problems. For example, Patent Document 1 discloses a material in which a side portion of an austenitic stainless steel material containing 0.3 to 2.0 wt% of B is coated with a steel material having a deformation resistance smaller than that of a stainless steel material by welding (53B + 700). A hot-rolling method of a steel material that prevents the occurrence of edge cracking by finish rolling at a temperature equal to or higher than ° C. (here, B: B content (wt%)) is disclosed.

特許文献1で開示する方法では、精度の高い開先形状を有するフレーム材を用意し、しかも熱間加工時にそれが剥離しないように溶接する必要がある。したがって、通常、80mm以上の厚さを有するインゴット(鋳造鋼塊)や分塊鍛造スラブの熱間加工にこの方法を適用するためには多大な溶接工数を必要とする。   In the method disclosed in Patent Document 1, it is necessary to prepare a frame material having a groove shape with high accuracy, and to perform welding so that it does not peel off during hot working. Therefore, in order to apply this method to hot working of an ingot (cast steel ingot) or a forged slab having a thickness of 80 mm or more, a large number of welding steps are usually required.

また、特許文献1の方法では、幅1000mmを超える広幅材の圧延においては、上記温度以上の仕上げ温度を確保することが困難となる場合が多く、現実には耳割れの発生を防止することが困難である。   In the method of Patent Document 1, it is often difficult to secure a finishing temperature equal to or higher than the above temperature when rolling a wide material having a width exceeding 1000 mm. Have difficulty.

特許文献2には、Bを0.3〜2.5質量%含有するオーステナイト系ステンレス鋼片を熱間圧延するに際し、その側面に、Ni:4%以下、B:0.1〜0.4%を含有するステンレス鋼からなる厚さ3mm以上の肉盛り溶接被覆層を設けて、熱間加工する方法が開示されている。   In Patent Document 2, when hot-rolling an austenitic stainless steel piece containing 0.3 to 2.5% by mass of B, Ni: 4% or less, B: 0.1 to 0.4 on the side surface thereof. A method of hot working by providing a build-up weld coating layer having a thickness of 3 mm or more made of stainless steel containing 1% is disclosed.

特許文献2の肉盛り溶接方法においては、割れを防止するに十分な溶接厚みを確保するためには溶接パス数が多くなり、溶接工数が増加する。また、溶接割れが発生すると、それが起点となって耳割れの発生につながる場合があり、耳割れの発生を完全に防止することが難しい。   In the build-up welding method of Patent Document 2, the number of welding passes increases and the number of welding steps increases in order to ensure a sufficient welding thickness to prevent cracking. In addition, when a weld crack occurs, it may become a starting point and lead to the occurrence of an ear crack, and it is difficult to completely prevent the occurrence of the ear crack.

本発明者らは、これらの課題を解決する手段として、B含有量の高いステンレス鋼片を少ない溶接工数で、所定の板厚まで耳割れを発生させることなく圧延できる技術を開発し、特許文献3に、プロテクト材を電子ビーム溶接により側面に溶接したB含有ステンレス鋼片、B含有ステンレス鋼材、および熱間圧延中の被圧延材の耳割れの発生を防止することができるB含有ステンレス鋼材の製造方法を提案した。   As a means for solving these problems, the present inventors have developed a technique capable of rolling a stainless steel piece having a high B content to a predetermined plate thickness without generating an ear crack with a small number of welding steps. 3. B-containing stainless steel pieces welded to the side surfaces by electron beam welding of the protective material, B-containing stainless steel materials, and B-containing stainless steel materials that can prevent the occurrence of ear cracks in the material to be rolled during hot rolling A manufacturing method was proposed.

このプロテクト材の溶接方法では、通常の溶接条件(例えば、溶接電流が300mA以上、溶接速度が200mm/分以下)であれば、溶接部に凝固割れを発生することなく、所定の効果を発揮することができる。しかし、提案のプロテクト材の溶接方法によっても、高能率の溶接条件、すなわち、溶接電流が大きく、かつ溶接速度も大きい条件下になると、溶接部に凝固割れの発生が懸念される。   In this protection material welding method, under normal welding conditions (for example, a welding current of 300 mA or more and a welding speed of 200 mm / min or less), a predetermined effect is exhibited without causing solidification cracks in the welded portion. be able to. However, even with the proposed welding method of the protection material, there is a concern that solidification cracks may occur in the welded part under high-efficiency welding conditions, that is, under conditions where the welding current is large and the welding speed is large.

特開平4−253506号公報JP-A-4-253506 特開2001−239364号公報JP 2001-239364 A 特開2004−156132号公報JP 2004-156132 A

本発明の課題は、高能率の溶接条件で少ない溶接工数であっても、施工時の溶接割れを生ずることなく、さらに、B含有量の高いステンレス鋼片を所定の板厚まで耳割れを発生させることなく圧延できる熱間圧延方法および冷間圧延方法、並びにB含有量の高い鋼材を提供することにある。より具体的には、プロテクト材を、例えば、溶接電流が500mA以上、かつ溶接速度が200mm/分以上というような高能率の電子ビーム溶接により側面に溶接したB含有ステンレス鋼片に溶接割れを生ずることなく、さらに、B含有ステンレス鋼材、および熱間圧延中の被圧延材であっても耳割れの発生を防止することができるB含有ステンレス鋼材の製造方法を提供することにある。   The problem of the present invention is that even if the number of welding man-hours is high under high-efficiency welding conditions, no cracking occurs at the time of construction. An object of the present invention is to provide a hot rolling method, a cold rolling method, and a steel material having a high B content. More specifically, for example, a crack is generated in the B-containing stainless steel piece welded to the side surface by high-efficiency electron beam welding, for example, a welding current of 500 mA or more and a welding speed of 200 mm / min or more. Furthermore, it is providing the manufacturing method of the B containing stainless steel material which can prevent generation | occurrence | production of an ear crack even if it is a B containing stainless steel material and the to-be-rolled material in hot rolling.

本発明者らは、上記課題を解決するため、高能率な溶接を行っても安定した熱間圧延方法および冷間圧延方法を行うことができ、高品質のB含有量が高い鋼材が得られるように、溶接施工時の割れ(溶接凝固割れ)が回避できる技術について種々の検討を行った。   In order to solve the above-mentioned problems, the present inventors can perform a stable hot rolling method and cold rolling method even when highly efficient welding is performed, and a high-quality steel material having a high B content can be obtained. As described above, various studies have been conducted on techniques capable of avoiding cracks during welding (weld solidification cracks).

溶接凝固割れは、Bによる低融点相の形成と、電子ビーム溶接などにともなう溶接部における特有の熱応力との重畳効果によるものである。先に提案した特許文献3で開示するように、(Creq−Nieq)の値を4 以上とすることにより、凝固後期までフェライト相を残存させ、低融点相を分散させることができることから、電子ビーム溶接などの高い熱応力の条件においても凝固割れの回避が可能となる。   The weld solidification cracking is due to a superposition effect of the formation of a low melting point phase by B and the specific thermal stress in the welded part due to electron beam welding or the like. As disclosed in Patent Document 3 previously proposed, by setting the value of (Creq-Nieq) to 4 or more, the ferrite phase can remain until the late solidification stage and the low melting point phase can be dispersed. Solidification cracking can be avoided even under high thermal stress conditions such as welding.

ところが、溶接条件が過酷となり、溶接速度や入熱量がさらに増加すると、溶接凝固割れを完全に回避することが困難となり、B含有ステンレス鋼片に高能率の電子ビーム溶接を適用することに一定の制限が生ずることになる。   However, if the welding conditions become severe and the welding speed and heat input further increase, it becomes difficult to completely avoid weld solidification cracking, and it is certain to apply high-efficiency electron beam welding to B-containing stainless steel pieces. There will be restrictions.

これらの解決策として、溶接凝固割れの冶金的な要因であるBによる低融点相を、凝固過程の早い段階で消失させることが有効であることを見出した。具体的には、溶接金属の化学組成を調整するとともに、適切な溶接条件によるビード断面形状の制御を組み合わせることにより、フェライト相を生成させずにホウ化物生成と残存融液の組成を制御でき、Bによる低融点相を早期に消失させ得ることを知見した。   As these solutions, it has been found that it is effective to eliminate the low melting point phase due to B, which is a metallurgical factor of weld solidification cracking, at an early stage of the solidification process. Specifically, by adjusting the chemical composition of the weld metal and combining the control of the bead cross-sectional shape under appropriate welding conditions, it is possible to control the formation of boride and the residual melt composition without generating a ferrite phase, It was found that the low melting point phase due to B can be eliminated early.

本発明は、上記知見に基づいて完成されたものであり、その要旨は、下記(1)、(2)のB含有ステンレス鋼片、(3)、(4)のB含有ステンレス鋼材の製造方法、および(5)の中性子遮蔽容器、並びに燃料電池用セパレータにある。
(1)Bを0.3〜2.5質量%含有するステンレス鋼片の加工面を除く少なくとも対向する2面に、Bを0.3質量%以下含有するステンレス鋼からなるプロテクト材がステンレス鋼溶接金属により接合され一体化されており、前記ステンレス鋼溶接金属の化学組成が下記の(1)〜(6)式で表される関係を満足し、かつ前記ステンレス鋼片と前記プロテクト材の間の溶接ビード断面における深さ方向の中央部でのビード幅Wcmおよび深さ方向の入口部でのビード幅Wnとした場合に、これらの比で示される溶接ビード断面における形状係数Q(Wcm/Wn)が0.8〜1.4であることを特徴とするB含有ステンレス鋼片。
The present invention has been completed based on the above findings, and the gist of the present invention is the following (1), (2) B-containing stainless steel pieces, (3), (4) B-containing stainless steel material manufacturing method And (5) the neutron shielding container and the fuel cell separator.
(1) A protective material made of stainless steel containing 0.3% by mass or less of B on at least two opposing surfaces excluding the processed surface of a stainless steel piece containing 0.3 to 2.5% by mass of B is stainless steel. It is joined and integrated by weld metal, the chemical composition of the stainless steel weld metal satisfies the relationship expressed by the following formulas (1) to (6), and between the stainless steel piece and the protect material: When the bead width Wcm at the center in the depth direction in the weld bead cross section and the bead width Wn at the entrance in the depth direction are the shape factors Q (Wcm / Wn) in the weld bead cross section indicated by these ratios ) Is 0.8 to 1.4, a B-containing stainless steel piece.

15≦Creq≦30 ・・・ (1)
4≦Creq−Nieq≦17 ・・・ (2)
Px≧0 ・・・ (3)
ただし、
Creq=Cr+1.5×Si+Mo−5×B ・・・ (4)
Nieq=Ni+30×(C+N)+0.5×Mn ・・・ (5)
Px=Cr+0.47×Ni+0.22×Mo+25×B−33 ・・・ (6)
ここで、式中の元素記号は、溶接金属中に含まれる各元素の含有量(質量%)を表す
(2)前記(1)に記載のB含有ステンレス鋼片は、ステンレス鋼片とプロテクト材の間に、Bを0.4〜2.5質量%含有するインサート材を介入させるのが望ましい。さらに、プロテクト材の厚さを10mm以上にするのが望ましい。
(3)Bを0.3〜2.5質量%含有するステンレス鋼片の加工面を除く少なくとも対向する2面に、Bを0.3質量%以下含有するステンレス鋼からなるプロテクト材を接合して一体化したB含有ステンレス鋼材の製造方法であって、電子ビーム溶接を用いて前記プロテクト材を接合するに際し、上記の(1)〜(6)式で表される関係を満足する化学組成を有するステンレス鋼溶接金属を溶融し、前記ステンレス鋼片と前記プロテクト材の間の溶接ビード断面における深さ方向の中央部でのビード幅Wcmおよび深さ方向の入口部でのビード幅Wnとした場合に、これらの比で示される溶接ビード断面における形状係数Q(Wcm/Wn)を0.8〜1.4として接合し、加熱後、加工することを特徴とするB含有ステンレス鋼材の製造方法。
(4)前記(3)に記載のB含有ステンレス鋼材の製造方法において、ステンレス鋼片とプロテクト材の間に、Bを0.4〜2.5質量%含有するインサート材を介入させて接合することが望ましい。また、プロテクト材の厚さを10mm以上とすることが望ましい。
(5)前記(3)および(4)に記載の方法により製造されたB含有ステンレス鋼材を中性子遮蔽容器、または燃料電池用セパレータとして使用するのが望ましい。
15 ≦ Creq ≦ 30 (1)
4 ≦ Creq−Nieq ≦ 17 (2)
Px ≧ 0 (3)
However,
Creq = Cr + 1.5 × Si + Mo−5 × B (4)
Nieq = Ni + 30 × (C + N) + 0.5 × Mn (5)
Px = Cr + 0.47 × Ni + 0.22 × Mo + 25 × B−33 (6)
Here, the element symbol in the formula represents the content (mass%) of each element contained in the weld metal. (2) The B-containing stainless steel piece described in (1) is a stainless steel piece and a protective material. In the meantime, it is desirable to interpose an insert material containing 0.4 to 2.5% by mass of B. Furthermore, it is desirable that the thickness of the protection material is 10 mm or more.
(3) A protective material made of stainless steel containing 0.3% by mass or less of B is bonded to at least two opposing surfaces excluding the processed surface of the stainless steel piece containing 0.3 to 2.5% by mass of B. And a chemical composition satisfying the relationship expressed by the above formulas (1) to (6) when joining the protect material using electron beam welding. When the welded stainless steel weld metal is melted and the bead width Wcm at the center in the depth direction and the bead width Wn at the entrance in the depth direction in the weld bead cross section between the stainless steel piece and the protect material In addition, the shape factor Q (Wcm / Wn) in the cross section of the weld bead indicated by these ratios is joined as 0.8 to 1.4, and after heating, it is processed. Law.
(4) In the method for producing a B-containing stainless steel material according to (3), an insert material containing 0.4 to 2.5% by mass of B is interposed and joined between the stainless steel piece and the protect material. It is desirable. Further, it is desirable that the thickness of the protect material is 10 mm or more.
(5) It is desirable to use the B-containing stainless steel material produced by the method described in (3) and (4) above as a neutron shielding container or a fuel cell separator.

図1は、本発明のB含有ステンレス鋼片を模式的に示す図である。図2は、ステンレス鋼片とプロテクト材の間に形成される溶接ビード断面を模式的に示す図である。   FIG. 1 is a diagram schematically showing a B-containing stainless steel piece of the present invention. FIG. 2 is a diagram schematically showing a cross section of a weld bead formed between a stainless steel piece and a protect material.

本発明において、「ステンレス鋼片」とは、連続鋳造スラブ、分塊鍛造スラブ、分塊圧延スラブおよび鋳造されたインゴット(鋼塊)をいい、図1に示す母材1がこれに相当する。これらの鋼片は、一般に直方体であり、その長手方向(白抜き矢印6で示す)に延伸させるべく熱間圧延や鍛造などの熱間加工が施される。   In the present invention, the “stainless steel piece” refers to a continuously cast slab, a forged slab, a ingot rolled slab, and a cast ingot (steel ingot), and the base material 1 shown in FIG. 1 corresponds to this. These steel pieces are generally rectangular parallelepipeds, and are subjected to hot working such as hot rolling or forging so as to be stretched in the longitudinal direction (indicated by white arrows 6).

「加工面を除く少なくとも対向する2面」とは、圧延や鍛造などの加工を受ける加工面3以外の面のうち、少なくとも対向する2面をいう。例えば、圧延の場合は、圧延ロールと接触しない長手方向の2側面、またはこれらを含めて頭部や尾部の端面が含まれていてもよい。鍛造の場合は、ラムと接触しない対向する2側面、またはこれらを含めて3〜4側面が含まれていてもよい。なお、鋼片のコーナー部を面取り加工する場合には、面取り加工された面を含めてもよい。   “At least two opposing surfaces excluding processed surfaces” refers to at least two opposing surfaces among the surfaces other than the processed surface 3 subjected to processing such as rolling and forging. For example, in the case of rolling, two side surfaces in the longitudinal direction that do not come into contact with the rolling rolls, or end surfaces of the head and tail including these may be included. In the case of forging, two opposing side surfaces that do not contact the ram, or three to four side surfaces including these may be included. In addition, when chamfering the corner part of a steel piece, you may include the chamfered surface.

「プロテクト材の厚さ」とは、図1に示すとおり、プロテクト材を母材に接合する前の、加工面と平行な面内における、鋼片の側面からのプロテクト材の厚さ5をいう。接合後の鋼片においては、プロテクト材単身の厚さおよびプロテクト材中の溶接金属厚さの合計厚さをいう。   The “thickness of the protect material” means the thickness 5 of the protect material from the side surface of the steel slab in the plane parallel to the processed surface before joining the protect material to the base material as shown in FIG. . In the steel piece after joining, it means the total thickness of the thickness of the protective material alone and the thickness of the weld metal in the protective material.

「溶接金属」とは、接合部の一部であって、接合前の母材およびプロテクト材が接合により溶融凝固した溶接金属部7をいう。図2に示すように、溶接金属部7の断面形状は、深さ方向の入口部でのビード幅Wnと深さ方向の中央部でのビード幅Wcmとで模式的に示すことができる。したがって、本発明で規定する「溶接ビード断面における形状係数Q」は、中央部でのビード幅Wcmおよび入口部でのビード幅Wnの比(Q=Wcm/Wn)で示される。   The “welded metal” refers to a weld metal portion 7 which is a part of the joint portion and in which the base material and the protect material before joining are melted and solidified by joining. As shown in FIG. 2, the cross-sectional shape of the weld metal portion 7 can be schematically shown by a bead width Wn at the inlet portion in the depth direction and a bead width Wcm at the center portion in the depth direction. Therefore, the “shape factor Q in the weld bead cross section” defined in the present invention is indicated by the ratio of the bead width Wcm at the center and the bead width Wn at the inlet (Q = Wcm / Wn).

「インサート材」とは、ステンレス鋼片(母材)とプロテクト材の間に挿入され、または挟み込まされる材料であって、具体的には板、箔、粉末等の材料が例示される。   The “insert material” is a material that is inserted or sandwiched between a stainless steel piece (base material) and a protect material, and specifically includes materials such as plates, foils, and powders.

本発明法によれば、コスト低減を目的とする高能率の溶接条件(例えば、溶接電流が500mA以上で、かつ溶接速度が200mm/分以上)の電子ビーム溶接により、B含有量の高いステンレス鋼片の側面にプロテクト材を接合し圧延する場合でも、施工時の溶接割れおよび圧延後の耳割れの発生を防止し、高い生産性と優れた品質を備えるB含有ステンレス鋼材を提供できる。さらに、溶接接合時にインサート材を使用すれば、溶接金属の割れ感受性を一層低減することができる。   According to the method of the present invention, high-efficiency welding conditions (for example, a welding current of 500 mA or more and a welding speed of 200 mm / min or more) are used for electron beam welding with a high B content to reduce costs. Even when the protective material is joined to the side surface of the piece and rolled, it is possible to prevent the occurrence of weld cracking during construction and ear cracking after rolling, and to provide a B-containing stainless steel material having high productivity and excellent quality. Furthermore, if insert material is used at the time of welding joining, the cracking sensitivity of a weld metal can be reduced further.

本発明者らは、低コストで、かつ高品質なB含有量の高いステンレス鋼を製造するため、高能率の溶接条件の電子ビーム溶接法を用いて、鋼片の側面に一定厚みを有するプロテクト材を接合し、これを圧延などの加工により鋼材とする方法を検討した。表1に、試験に用いた母材鋼片およびプロテクト材の化学組成をまとめて示す。   In order to produce a high-quality stainless steel with a high B content at low cost, the present inventors use a high-efficiency welding condition electron beam welding method to protect the steel piece with a certain thickness on the side surface. The method of joining the materials and making them steel by processing such as rolling was investigated. Table 1 summarizes the chemical composition of the base steel piece and the protective material used in the test.

Figure 2007118025
Figure 2007118025

1.母材ステンレス鋼片の鋼成分組成
B:0.3〜2.5%
被熱間加工材であるB含有ステンレス鋼片中のB含有量が0.3%未満では、熱中性子吸収能が十分ではなく、また燃料電池用セパレータ材の電気抵抗特性の改善も十分でないので、B含有量は0.3%以上とする。B含有量の増加とともに熱中性子吸収能や電気抵抗特性が改善するが、B含有量が2.5%を超えると、常温における延性および靭性の劣化が顕著となるので、含有量は2.5%以下とする。
1. Steel component composition of base material stainless steel piece B: 0.3 to 2.5%
If the B content in the B-containing stainless steel piece, which is a material to be hot-worked, is less than 0.3%, the thermal neutron absorption capacity is not sufficient, and the electrical resistance characteristics of the fuel cell separator material are not sufficiently improved. The B content is 0.3% or more. The thermal neutron absorption ability and electrical resistance characteristics improve with an increase in the B content. However, when the B content exceeds 2.5%, ductility and toughness at room temperature deteriorate significantly, so the content is 2.5. % Or less.

また、母材は、オーステナイト系ステンレス鋼であってもフェライト系ステンレス鋼であってもよいが、燃料電池用セパレータ材として機能を発揮させる場合には、オーステナイト系ステンレス鋼に限定される。   Further, the base material may be austenitic stainless steel or ferritic stainless steel, but is limited to austenitic stainless steel when functioning as a fuel cell separator material.

本発明が対象とするB含有ステンレス鋼は、上記のB含有量を規定するが、その他の鋼成分組成の望ましい範囲は以下のとおりである。   The B-containing stainless steel targeted by the present invention defines the above-described B content, but desirable ranges of other steel component compositions are as follows.

C:0.08%以下
Cは強度を確保する作用を有する元素である。しかし、0.08%を超えて含有されると耐食性劣化や熱間加工性劣化の原因となる。したがって、含有量を0.08%以下とすることが望ましい。0.01%以上であれば、さらに望ましい。
C: 0.08% or less C is an element having an effect of ensuring strength. However, if it exceeds 0.08%, it causes corrosion resistance deterioration and hot workability deterioration. Therefore, the content is preferably 0.08% or less. If it is 0.01% or more, it is more desirable.

Si:1%以下
Siは脱酸剤として添加されるが、耐酸化性を向上させる作用も有する元素である。しかし、1%を超えて含有されると溶接割れ感受性が高くなる。よって、含有量を1%以下とすることが望ましい。
Si: 1% or less Si is added as a deoxidizing agent, but is also an element having an action of improving oxidation resistance. However, if the content exceeds 1%, the weld cracking sensitivity becomes high. Therefore, the content is desirably 1% or less.

P:0.04%以下
Pは鋼中の不純物元素であり、その含有量が0.04%を超えて含有されると溶接割れ感受性が高くなるので、0.04%以下とすることが望ましい。
P: 0.04% or less P is an impurity element in steel, and if its content exceeds 0.04%, the weld cracking sensitivity becomes high, so 0.04% or less is desirable. .

S:0.01%以下
Sは鋼中の不純物元素であり、その含有量が0.01%を超えて含有されると溶接割れ感受性が高くなるので、0.01%以下とすることが望ましい。
S: 0.01% or less S is an impurity element in steel, and if its content exceeds 0.01%, the weld cracking sensitivity becomes high, so 0.01% or less is desirable. .

Cr:5%以上
Crは耐食性を向上させる作用を有する元素であり、その含有量が5%以上で、望ましい効果が得られる。したがって、含有量を5%以上とすることが望ましい。一方、含有量が30%を超えると熱間加工が困難となることがあるので、その含有量は30%以下とすることがより望ましい。
Cr: 5% or more Cr is an element having a function of improving the corrosion resistance, and its content is 5% or more, and a desirable effect is obtained. Therefore, the content is desirably 5% or more. On the other hand, if the content exceeds 30%, hot working may be difficult, so the content is more preferably 30% or less.

N:0.05%以下
NはBと結合して、靱性を悪化させる。十分な靱性を確保するためには0.05%以下とすることが望ましい。
N: 0.05% or less N combines with B to deteriorate toughness. In order to ensure sufficient toughness, the content is desirably 0.05% or less.

Mo:5%以下、Cu:0.5%以下およびAl:0.3%以下
これらの元素は、上記の含有量の範囲内で必要に応じて含有させれば、より一層、耐食性を向上させる効果を発揮する。したがって、これらの効果を要求される場合には、上記の含有量の範囲内で、単独または組み合わせて含有させることが望ましい。
2.溶接金属の成分組成
プロテクト材と母材との接合部を構成する溶接金属の成分組成について説明する。プロテクト材を、電子ビーム溶接などにより高能率に母材に接合する際には、溶接施工時に生じる割れの回避、およびプロテクト材自身の熱間圧延時の割れを防止することが必須となる。溶接施工時に生じる割れには、凝固割れと延性不足割れがある。これら全ての割れを防止するには、プロテクト材と母材との接合部を構成する溶接金属の化学組成が下記の(1)〜(6)式により表される関係を満足する必要がある。下記式中の元素記号は、溶接金属中に含まれる各元素の含有量を示している。
Mo: 5% or less, Cu: 0.5% or less, and Al: 0.3% or less If these elements are contained as necessary within the above range of content, the corrosion resistance is further improved. It is effective. Therefore, when these effects are required, it is desirable to contain them alone or in combination within the above content range.
2. Component composition of weld metal The component composition of the weld metal that forms the joint between the protect material and the base material will be described. When the protective material is joined to the base material with high efficiency by electron beam welding or the like, it is essential to avoid cracking that occurs during welding and to prevent cracking during hot rolling of the protective material itself. Cracks generated during welding work include solidification cracks and ductility deficient cracks. In order to prevent all of these cracks, it is necessary that the chemical composition of the weld metal that constitutes the joint between the protect material and the base material satisfy the relationship represented by the following equations (1) to (6). The element symbol in the following formula indicates the content of each element contained in the weld metal.

15≦Creq≦30 ・・・ (1)
4≦Creq−Nieq≦17 ・・・ (2)
Px≧0 ・・・ (3)
ただし、
Creq=Cr+1.5×Si+Mo−5×B ・・・ (4)
Nieq=Ni+30×(C+N)+0.5×Mn ・・・ (5)
Px=Cr+0.47×Ni+0.22×Mo+25×B−33 ・・・ (6)
Creq、NieqおよびPxを上記(4)〜(6)式で定義した場合に、上記(1)〜(3)式をそれぞれ満足しなければならない理由を、以下に詳述する。
15 ≦ Creq ≦ 30 (1)
4 ≦ Creq−Nieq ≦ 17 (2)
Px ≧ 0 (3)
However,
Creq = Cr + 1.5 × Si + Mo−5 × B (4)
Nieq = Ni + 30 × (C + N) + 0.5 × Mn (5)
Px = Cr + 0.47 × Ni + 0.22 × Mo + 25 × B−33 (6)
The reason why each of the above equations (1) to (3) must be satisfied when Creq, Nieq and Px are defined by the above equations (4) to (6) will be described in detail below.

15≦Creq≦30:
Creqの値が15未満では、B含有ステンレス鋼との希釈により、Bを含有する溶接金属が生成して延性が不足し、電子ビーム溶接による溶接などのように熱応力が大きくなる場合には、延性不足割れを生じる。延性不足は、ホウ化物の形成にともない、オーステナイト相が不安定となって、一部が延性の乏しいマルテンサイト化することにより生じる。
15 ≦ Creq ≦ 30:
When the value of Creq is less than 15, due to dilution with B-containing stainless steel, a weld metal containing B is generated and the ductility is insufficient, and when thermal stress becomes large, such as welding by electron beam welding, Insufficient ductility cracking occurs. The lack of ductility is caused by the austenite phase becoming unstable with the formation of borides and partly martensite having poor ductility.

しかし、Creqの値を15以上とすることにより、ホウ化物が生成してもオーステナイト相が安定となり、マルテンサイトの生成を抑制して延性不足を回避できる。   However, by setting the value of Creq to 15 or more, the austenite phase becomes stable even when borides are generated, and the formation of martensite can be suppressed and ductility deficiency can be avoided.

一方、Creqの値が30を超えると、溶接金属の熱間加工性が劣化して熱間圧延時に割れが発生する。したがって、Creqの値は、上記の(1)式で表される関係を満足する必要がある。   On the other hand, if the value of Creq exceeds 30, the hot workability of the weld metal deteriorates and cracks occur during hot rolling. Therefore, the value of Creq needs to satisfy the relationship represented by the above equation (1).

4≦Creq−Nieq≦17:
溶接施工時に生じる溶接凝固割れの回避および熱間圧延時の耳割れの防止のためには、Creqの値が上記の(1)の関係を満足するのみでは不充分であり、(Creq−Nieq)の値も適正範囲に調整する必要がある。(Creq−Nieq)の値が4未満では、溶接凝固割れが発生する一方、(Creq−Nieq)の値が17を超えると、熱間圧延後の耳割れが発生する。
4 ≦ Creq−Nieq ≦ 17:
In order to avoid weld solidification cracks that occur during welding and to prevent ear cracks during hot rolling, it is not sufficient for the value of Creq to satisfy the relationship (1) above, (Creq-Nieq) The value of must also be adjusted to an appropriate range. If the value of (Creq-Nieq) is less than 4, weld solidification cracks occur, whereas if the value of (Creq-Nieq) exceeds 17, ear cracks after hot rolling occur.

溶接凝固割れは、Bによる低融点相の形成と、電子ビーム溶接などに特有の熱応力との重畳効果によるものである。(Creq−Nieq)の値を4以上とすることにより、凝固後期までのフェライト相を残存させて、低融点相を分散させることができるので、電子ビーム溶接などの高い熱応力下においても凝固割れの回避が可能となる。したがって、(Creq−Nieq)の値は、上記の(2)式の関係を満足する必要がある。   The weld solidification cracking is due to the superposition effect of the formation of a low melting point phase by B and the thermal stress peculiar to electron beam welding or the like. By setting the value of (Creq-Nieq) to 4 or more, it is possible to leave the ferrite phase up to the late stage of solidification and disperse the low melting point phase, so that solidification cracking can occur even under high thermal stress such as electron beam welding. Can be avoided. Therefore, the value of (Creq−Nieq) needs to satisfy the relationship of the above expression (2).

Px≧0:
加えて、高能率で工業的価値の高い大入熱溶接の場合であっても、溶接凝固割れを防止するためには、冶金因子側の要因であるBによる低融点相を凝固の早い段階で消失させることが重要である。(3)式の関係を満足する場合には、残存融液におけるBの活量が高くなり、融液中からホウ化物が急激に晶出する。その結果、残留融液中のB濃度が急激に低下し、残留融液の融点は上昇する。残留融液の融点の急激な上昇は、凝固の急速な完了を意味し、これにより、例え大入熱溶接であっても溶接凝固割れが生じなくなる。
Px ≧ 0:
In addition, even in the case of high heat input welding with high efficiency and high industrial value, in order to prevent weld solidification cracking, the low melting point phase due to B, which is a factor on the metallurgical factor side, is introduced at an early stage of solidification. It is important to disappear. When the relationship of the formula (3) is satisfied, the activity of B in the remaining melt increases, and the boride crystallizes out of the melt rapidly. As a result, the B concentration in the residual melt rapidly decreases, and the melting point of the residual melt increases. An abrupt increase in the melting point of the residual melt means that solidification is rapidly completed, so that no weld solidification cracking occurs even in high heat input welding.

逆に(3)式の関係を満足しない場合には、残留融液中のBの活量が高くならないため、ホウ化物は生成し難くなり、凝固の後期過程まで低融点の融液が残存することになる。このため、熱応力の大きい大入熱溶接では、凝固による収縮ひずみに抗しきれず、凝固割れが生じる。   On the contrary, when the relationship of the formula (3) is not satisfied, the activity of B in the residual melt does not increase, so that borides are hardly generated, and a low melting point melt remains until the latter stage of solidification. It will be. For this reason, in high heat input welding with a large thermal stress, it cannot resist the shrinkage strain due to solidification, and solidification cracks occur.

上述の理由により、溶接金属の成分組成を、(1)〜(6)式により表される適正範囲に調整することが、プロテクト材を高能率溶接する際に、溶接施工時に生じる溶接凝固割れを回避し、かつ溶接金属の熱間圧延後の耳割れを防止するための必須要件となる。   For the above-mentioned reasons, adjusting the component composition of the weld metal to the appropriate range represented by the formulas (1) to (6) can prevent the weld solidification cracks that occur during welding when the protective material is welded with high efficiency. This is an indispensable requirement to avoid and prevent cracking of the weld metal after hot rolling.

本発明の溶接金属の成分組成が具備すべき必須要件は、上述の通りであるが、その他の成分組成の望ましい範囲は以下のとおりである。   The essential requirements to be included in the component composition of the weld metal of the present invention are as described above. The desirable ranges of the other component compositions are as follows.

C:0.08%以下
Cは鋼片加熱時の変形を抑制するために有効な強度を確保する効果を有する元素である。しかし、0.08%を超えて含有されると熱間加工性が劣化する原因となる。したがって、含有量を0.08%以下とすることが望ましい。0.01%以上であれば、より望ましい。
C: 0.08% or less C is an element having an effect of ensuring effective strength for suppressing deformation during heating of a steel slab. However, if the content exceeds 0.08%, the hot workability deteriorates. Therefore, the content is preferably 0.08% or less. If it is 0.01% or more, it is more desirable.

Si:1%以下
Siは脱酸剤として添加されるが、耐酸化性を向上させる効果も有する元素である。しかし、1%を超えて含有されると溶接割れ感受性が高くなる。よって、含有量を1%以下とすることが望ましい。
Si: 1% or less Si is added as a deoxidizer, but is also an element having an effect of improving oxidation resistance. However, if the content exceeds 1%, the weld cracking sensitivity becomes high. Therefore, the content is desirably 1% or less.

P:0.04%以下
Pは鋼中の不純物元素であり、その含有量が0.04%を超えて含有されると溶接割れ感受性が高くなるので、0.04%以下とすることが望ましい。
P: 0.04% or less P is an impurity element in steel, and if its content exceeds 0.04%, the weld cracking sensitivity becomes high, so 0.04% or less is desirable. .

S:0.01%以下
Sは鋼中の不純物元素であり、その含有量が0.01%を超えて含有されると溶接割れ感受性が高くなるので、0.01%以下とすることが望ましい。
S: 0.01% or less S is an impurity element in steel, and if its content exceeds 0.01%, the weld cracking sensitivity becomes high, so 0.01% or less is desirable. .

Cr:5%以上
Crは耐食性を向上させる作用を有する元素であり、その含有量が5%以上で、望ましい効果が得られる。したがって、含有量を5%以上とすることが望ましい。一方、含有量が30%を超えると熱間加工が困難となることがあるので、その含有量は30%以下とすることがより望ましい。
3.プロテクト材用ステンレス鋼の成分組成
B:0.3%以下
プロテクト材用鋼のB含有量が0.3%を超えて含有されると、圧延時の張力が大きい端部では、プロテクト材自身に割れが発生し、プロテクト材の効果をなさなくなる。したがって、含有量は0.3%以下とする。
Cr: 5% or more Cr is an element having a function of improving the corrosion resistance, and its content is 5% or more, and a desirable effect is obtained. Therefore, the content is desirably 5% or more. On the other hand, if the content exceeds 30%, hot working may be difficult, so the content is more preferably 30% or less.
3. Component composition of stainless steel for protective material B: 0.3% or less If the B content of steel for protective material exceeds 0.3%, the protective material itself will be applied to the ends where the tension during rolling is high. Cracks occur and the protective material is no longer effective. Therefore, the content is made 0.3% or less.

Cr、Niなどの他の元素の含有量は、母材と溶融し混合して生成する溶接金属が、前記(1)〜(6)式を満足する必要があることから、実質的には溶接金属の成分組成により制約を受ける。   The content of other elements such as Cr and Ni is substantially welded because the weld metal produced by melting and mixing with the base material needs to satisfy the expressions (1) to (6). Restricted by metal component composition.

インサート材を用いない場合には、電子ビーム溶接により接合される場合に生成する溶接金属の成分組成は、母材とプロテクト材のそれぞれの成分組成の相加平均値に近い値となる。したがって、使用される母材の成分組成が決定すると、プロテクト材におけるB以外のNi、Crなどの成分組成の範囲は、前記(1)〜(6)式を用いて求めることができる。   When the insert material is not used, the component composition of the weld metal generated when joining by electron beam welding is a value close to the arithmetic mean value of the respective component compositions of the base material and the protect material. Accordingly, when the component composition of the base material to be used is determined, the range of the component composition of Ni, Cr, etc. other than B in the protect material can be obtained using the above equations (1) to (6).

インサート材を用いる場合には、上記の母材とプロテクト材の相加平均値とインサート材の加重平均が概ね溶接金属の成分組成となる。このとき、加重平均でのインサート材の重みは、溶接金属におけるインサート材の体積率を用いる。   In the case of using an insert material, the arithmetic average value of the base material and the protect material and the weighted average of the insert material are substantially the component composition of the weld metal. At this time, the weight ratio of the insert material in the weld metal is used as the weight of the insert material in the weighted average.

本発明が対象とするプロテクト材は、上記のB含有量を規定するが、その他の成分組成について、上述の条件から求められる成分組成の範囲に加えて、プロテクト材の望ましい成分組成の範囲は、以下のとおりである。   The protective material targeted by the present invention defines the above-mentioned B content, but for the other component compositions, in addition to the component composition range obtained from the above conditions, the desirable component composition range of the protective material is: It is as follows.

C:0.08%以下
Cは鋼片加熱時の変形を抑制するために有効な強度を確保する効果を有する元素である。しかし、0.08%を超えて含有されると熱間加工性劣化の原因となる。したがって、含有量を0.08%以下とすることが望ましい。0.01%以上であれば、より望ましい。
C: 0.08% or less C is an element having an effect of ensuring effective strength for suppressing deformation during heating of a steel slab. However, if it exceeds 0.08%, it causes hot workability deterioration. Therefore, the content is preferably 0.08% or less. If it is 0.01% or more, it is more desirable.

Si:1%以下
Siは脱酸剤として添加されるが、耐酸化性を向上させる効果も有する元素である。しかし、1%を超えて含有されると溶接割れ感受性が高くなる。よって、含有量を1%以下とすることが望ましい。
Si: 1% or less Si is added as a deoxidizer, but is also an element having an effect of improving oxidation resistance. However, if the content exceeds 1%, the weld cracking sensitivity becomes high. Therefore, the content is desirably 1% or less.

P:0.04%以下
Pは鋼中の不純物元素であり、その含有量が0.04%を超えて含有されると溶接割れ感受性が高くなるので、0.04%以下とすることが望ましい。
P: 0.04% or less P is an impurity element in steel, and if its content exceeds 0.04%, the weld cracking sensitivity becomes high, so 0.04% or less is desirable. .

S:0.01%以下
Sは鋼中の不純物元素であり、その含有量が0.01%を超えて含有されると溶接割れ感受性が高くなるので、0.01%以下とすることが望ましい。
S: 0.01% or less S is an impurity element in steel, and if its content exceeds 0.01%, the weld cracking sensitivity becomes high, so 0.01% or less is desirable. .

Cr:5%以上
Crは耐食性を向上させる作用を有する元素であり、その含有量が5%以上で、望ましい効果が得られる。したがって、含有量を5%以上とすることが望ましい。一方、含有量が30%を超えると熱間加工が困難となることがあるので、その含有量は30%以下とすることがより望ましい。
4.溶接ビード断面における形状係数Q
本発明において、ビード断面形状の制御が必要になることについて説明する。上述したように、溶接凝固割れの防止するためには、Bによる低融点相を凝固過程の早い段階で消失させることが重要になる。しかし、実際の溶接においては、上記(3)式のよる「Px≧0」の制御のみでは不十分であり、低融点相を早い段階で消失させるには幾何学的な固液相の配置も重要な役割を果たしている。
Cr: 5% or more Cr is an element having a function of improving the corrosion resistance, and its content is 5% or more, and a desirable effect is obtained. Therefore, the content is desirably 5% or more. On the other hand, if the content exceeds 30%, hot working may be difficult, so the content is more preferably 30% or less.
4). Shape factor Q in weld bead cross section
The fact that it is necessary to control the bead cross-sectional shape in the present invention will be described. As described above, in order to prevent weld solidification cracking, it is important to eliminate the low melting point phase due to B at an early stage of the solidification process. However, in actual welding, it is not sufficient to control only “Px ≧ 0” according to the above equation (3), and a geometrical solid-liquid phase arrangement is also necessary to eliminate the low melting point phase at an early stage. Plays an important role.

具体的には、低融点相の消失をより早期にするためには、前記図2に示すように、ステンレス鋼片とプロテクト材の間の溶接ビード断面における深さ方向の中央部でのビード幅Wcmおよび深さ方向の入口部でのビード幅Wnとした場合に、これらの比で示される溶接ビード断面における形状係数Q(Wcm/Wn)を0.8〜1.4とする必要がある。   Specifically, in order to make the disappearance of the low melting point earlier, as shown in FIG. 2, the bead width at the center in the depth direction in the cross section of the weld bead between the stainless steel piece and the protect material. In the case of Wcm and the bead width Wn at the entrance in the depth direction, the shape factor Q (Wcm / Wn) in the weld bead cross section indicated by these ratios needs to be 0.8 to 1.4.

上記の形状係数Qが1.4以上、すなわちビード深さ方向の中央部でのビード幅Wcmが相対的に大きい場合には、外側から凝固が進行する過程で、ビード中心部に融液が残存して、中央部で溶接凝固割れが生じ易くなる。一方、形状係数Qが0.8以下の場合には、ビード深さ方向の入り口部で、上述した中央部と同様に融液の残存現象が生じ、入り口部で割れを生じ易くなる。実操業においては、溶接ビード断面の形状制御は溶接条件の設定により可能になる。
5.インサート材の必要性およびその成分組成
前述の通り、ステンレス鋼片が例えば0.3〜0.8%の低B含有材であり、プロテクト材がB含有しない組み合わせで溶接を行うと、溶接金属の割れ感受性が高まり、溶接割れが発生するおそれがある。
When the shape factor Q is 1.4 or more, that is, when the bead width Wcm is relatively large at the center in the bead depth direction, the melt remains in the center of the bead in the process of solidification from the outside. And it becomes easy to produce a weld solidification crack in the center part. On the other hand, when the shape factor Q is 0.8 or less, a residual phenomenon of the melt occurs at the entrance portion in the bead depth direction similarly to the above-described central portion, and cracks easily occur at the entrance portion. In actual operation, the shape control of the weld bead cross section becomes possible by setting the welding conditions.
5). Necessity of insert material and its component composition As described above, when welding is performed in a combination in which a stainless steel piece is a low B-containing material of, for example, 0.3 to 0.8% and a protective material does not contain B, Crack susceptibility is increased and weld cracking may occur.

これは、ステンレス鋼片のB含有量が低く、プロテクト材で希釈された溶接金属では、液相からのホウ化物の生成が生じにくくなり、Bによる低融点相の消失が遅れ易くなることによる。その結果、溶接金属の凝固割れ感受性が高くなり、より高能率の条件で溶接を行う場合に溶接割れを生じることがある。   This is because, in a weld metal diluted with a protect material, the content of B in the stainless steel piece is low, boride formation from the liquid phase is less likely to occur, and disappearance of the low melting point phase due to B tends to be delayed. As a result, the susceptibility of the weld metal to solidification cracking is increased, and weld cracking may occur when welding is performed under higher efficiency conditions.

これに対し、プロテクト材のB含有量を高めれば、溶接金属のB量は多くなるが、これにともなって熱間加工性が劣化することになり、プロテクト材が具備する本来の機能が発揮できなくなる。このため、Bを含有するインサート材をステンレス鋼片とプロテクト材との接合の際に、両者の間に挿入、または挟み込むようにして使用するのが望ましい。このときのB含有量や他の成分組成は、下記によるのが望ましい。   On the other hand, if the B content of the protect material is increased, the B amount of the weld metal will increase, but with this, the hot workability will deteriorate, and the original function of the protect material can be exhibited. Disappear. For this reason, it is desirable that the insert material containing B be used by being inserted or sandwiched between the stainless steel piece and the protective material. The B content and other component compositions at this time are preferably as follows.

B:0.4〜2.5%
インサート材のB含有量が0.4%未満では、溶接時の希釈も考慮して、熱中性子吸収能が十分ではなく、また燃料電池用セパレータ材の電気抵抗特性の改善も十分でないので、B含有量は0.4%以上とする。一方、B含有量が2.5%を超えると、常温における延性および靭性の劣化が顕著となるので、含有量は2.5%以下とする。
B: 0.4 to 2.5%
If the B content of the insert material is less than 0.4%, the thermal neutron absorption capacity is not sufficient in consideration of dilution during welding, and the electric resistance characteristics of the fuel cell separator material are not sufficiently improved. The content is 0.4% or more. On the other hand, if the B content exceeds 2.5%, ductility and toughness at room temperature deteriorate significantly, so the content is set to 2.5% or less.

本発明でインサート材を使用する場合に、インサート材のB含有量は上記の通りとするが、その他の成分組成の望ましい範囲は以下のとおりである。   When the insert material is used in the present invention, the B content of the insert material is as described above, but other desirable ranges of the component composition are as follows.

C:0.08%以下
Cは強度を確保する作用を有する元素である。しかし、0.08%を超えて含有されると耐食性劣化や熱間加工性劣化の原因となる。したがって、含有量を0.08%以下とすることが望ましい。0.01%以上であれば、さらに望ましい。
C: 0.08% or less C is an element having an effect of ensuring strength. However, if it exceeds 0.08%, it causes corrosion resistance deterioration and hot workability deterioration. Therefore, the content is preferably 0.08% or less. If it is 0.01% or more, it is more desirable.

Si:1%以下
Siは脱酸剤として添加されるが、耐酸化性を向上させる作用も有する元素である。しかし、1%を超えて含有されると溶接割れ感受性が高くなる。よって、含有量を1%以下とするのが望ましい。
Si: 1% or less Si is added as a deoxidizing agent, but is also an element having an action of improving oxidation resistance. However, if the content exceeds 1%, the weld cracking sensitivity becomes high. Therefore, the content is desirably 1% or less.

P:0.04%以下
Pは鋼中の不純物元素であり、その含有量が0.04%を超えて含有されると溶接割れ感受性が高くなるので、0.04%以下とするのが望ましい。
P: 0.04% or less P is an impurity element in steel, and if its content exceeds 0.04%, the weld cracking sensitivity becomes high, so 0.04% or less is desirable. .

S:0.01%以下
Sは鋼中の不純物元素であり、その含有量が0.01%を超えて含有されると溶接割れ感受性が高くなるので、0.01%以下とするのが望ましい。
S: 0.01% or less S is an impurity element in steel, and if its content exceeds 0.01%, the weld cracking sensitivity becomes high. .

Cr:5%以上
Crは耐食性を向上させる作用を有する元素であり、その含有量が5%以上で、望ましい効果が得られる。したがって、含有量を5%以上とすることが望ましい。一方、含有量が30%を超えると熱間加工が困難となることがあるので、その含有量は30%以下とすることがより望ましい。
6.プロテクト材の厚さ
鋼材の耳割れを防止するためには、プロテクト材の厚さは10mm以上が望ましい。厚さの増加にともなって耳割れを防止する効果は増大するが、厚さを過度に増加させると、プロテクト材料の歩留りが悪化するので好ましくない。上記の理由によりプロテクト材の厚さは50mm以下とすることが望ましい。
7.電子ビーム溶接の望ましい条件
従来、B含有量の高いステンレス鋼片を少ない溶接工数で、施工時に溶接割れを生ずることなく、同時に所定の板厚まで耳割れを発生させることなく圧延するため、プロテクト材を電子ビーム溶接する条件として、溶接電流が300mA以上、溶接速度が200mm/分以下が提案されていた(例えば、特許文献3)。
Cr: 5% or more Cr is an element having a function of improving the corrosion resistance, and its content is 5% or more, and a desirable effect is obtained. Therefore, the content is desirably 5% or more. On the other hand, if the content exceeds 30%, hot working may be difficult, so the content is more preferably 30% or less.
6). Thickness of protect material In order to prevent cracking of the steel material, the thickness of the protect material is preferably 10 mm or more. As the thickness increases, the effect of preventing the ear cracks increases. However, excessively increasing the thickness is not preferable because the yield of the protective material deteriorates. For the above reasons, it is desirable that the thickness of the protect material be 50 mm or less.
7). Desirable Conditions for Electron Beam Welding Conventionally, stainless steel pieces with a high B content are rolled with a small number of welding steps, without causing weld cracks during construction, and at the same time, without causing edge cracks. As a condition for electron beam welding, a welding current of 300 mA or more and a welding speed of 200 mm / min or less have been proposed (for example, Patent Document 3).

ところが、溶接金属の化学組成を調整するとともに、適切な溶接条件によるビード断面形状の制御を組み合わせることにより、Bによる低融点相を、凝固過程の早い段階で消失させることが可能になり、さらに過酷な溶接条件であっても、B含有量の高いステンレス鋼片を、少ない溶接工数で溶接割れを生じることなく、また所定の板厚まで耳割れを発生させることなく圧延できることが明らかになる。   However, by adjusting the chemical composition of the weld metal and combining the control of the bead cross-sectional shape with appropriate welding conditions, it becomes possible to eliminate the low melting point phase due to B at an early stage of the solidification process. Even under the various welding conditions, it becomes clear that a stainless steel piece having a high B content can be rolled with a small number of welding steps without causing a weld crack and without causing an ear crack to a predetermined plate thickness.

これにともない、低コストで、かつ高品質なB含有量の高いステンレス鋼を製造することが要請されるようになる。このような要請に対応するため、具体的には、溶接電流が500mA以上、かつ溶接速度が200mm/分以上というような高能率の電子ビーム溶接を適用するのが望ましい。
8.熱間加工および冷間加工
熱間加工は、分塊鍛造、厚板圧延、および熱延鋼帯圧延などをいう。鋼片の加熱温度は、溶融脆性を生じない範囲において高温とするのが望ましい。B含有ステンレス鋼の場合は、1100〜1200℃の範囲とするのが望ましい。
Accordingly, it is required to produce a stainless steel having a high cost and a high B content at a low cost. In order to meet such demands, specifically, it is desirable to apply highly efficient electron beam welding in which the welding current is 500 mA or more and the welding speed is 200 mm / min or more.
8). Hot working and cold working Hot working refers to partial forging, thick plate rolling, hot rolling steel strip rolling and the like. It is desirable that the heating temperature of the steel slab is high as long as it does not cause melt brittleness. In the case of B-containing stainless steel, the temperature is preferably in the range of 1100 to 1200 ° C.

熱間鍛造、または熱間圧延における仕上げ温度は、高い方が耳割れ防止の観点からは望ましい。しかし、プロテクト材の熱間変形能が許す限り、600〜700℃の低温仕上げとすることも可能である。   A higher finishing temperature in hot forging or hot rolling is desirable from the viewpoint of preventing ear cracks. However, as long as the hot deformability of the protective material permits, it can be a low temperature finish of 600 to 700 ° C.

また、燃料電池用セパレータ材としてB含有ステンレス鋼を用いる場合には、熱間加工の後、冷間加工として冷延鋼帯圧延を施して冷延鋼板に仕上げ加工を行い、得られた薄板をプレス成形して所定の断面形状にする。上述のようにして得られた高い信頼性と生産性に裏付けされたB含有ステンレス鋼材は、中性子遮蔽容器用、さらには燃料電池用セパレータ材等の機能を発揮する用途の鋼材として好適である。   Also, when using B-containing stainless steel as a fuel cell separator material, after hot working, cold-rolled steel strip rolling is applied as a cold working to finish the cold-rolled steel sheet. Press-molded into a predetermined cross-sectional shape. The B-containing stainless steel material supported by the high reliability and productivity obtained as described above is suitable as a steel material for applications that exhibit functions such as a neutron shielding container and a fuel cell separator material.

化学組成が本発明で規定する範囲を満たす母材およびプロテクト材を用いて、溶接施工時の溶接割れおよび圧延後の耳割れ発生状況を評価する実験室的試験を実施した。
(試験材の製作および圧延条件)
被圧延材として、表1中の鋼番号M1〜M5のB含有オーステナイト系ステンレス鋼からなる幅200mm、厚さ50mm、長さ100mmのスラブを用い、このスラブの幅方向端部に、同表中の鋼番号P1〜P7のステンレス鋼からなるプロテクト材を、電子ビーム溶接により接合することにより試験材を製作した。
Using a base material and a protective material whose chemical composition satisfies the range defined in the present invention, a laboratory test was performed to evaluate the occurrence of weld cracks during welding and ear cracks after rolling.
(Production of test materials and rolling conditions)
As a material to be rolled, a slab having a width of 200 mm, a thickness of 50 mm, and a length of 100 mm made of B-containing austenitic stainless steels having steel numbers M1 to M5 in Table 1 is used. The test materials were manufactured by joining the protective materials made of stainless steels Nos. P1 to P7 with electron beam welding.

電子ビーム溶接の条件は溶接電流:560mA、溶接速度:210mm/分、ビーム振幅:±2mmとし、溶接作業は施工能率の大きい条件にて行った。このとき、表2に示す焦点位置および対物距離(条件A〜D)を変化させて、異なる形状係数Qの溶接ビード断面の溶接金属部を得た。   The conditions for electron beam welding were welding current: 560 mA, welding speed: 210 mm / min, beam amplitude: ± 2 mm, and welding work was performed under conditions with high construction efficiency. At this time, the focus position and the objective distance (conditions A to D) shown in Table 2 were changed to obtain weld metal parts having weld bead cross-sections having different shape factors Q.

Figure 2007118025
Figure 2007118025

上記の条件にて電子ビーム溶接を行うと、B含有オーステナイト系ステンレス鋼の母材とステンレス鋼プロテクト材は、それぞれ5mm程度にわたって溶融し、合計10mm程度の厚さを有する溶接金属部が形成された。この溶接金属部の化学組成を、表3に示す。なお、試験材T4についてのみ成分調整のためインサート材として金属板(厚さ3mm、成分組成:質量%でCrを35%、Niを4%含み残部がFeおよび不可避不純物)を挿入した。   When electron beam welding was performed under the above conditions, the B-containing austenitic stainless steel base material and the stainless steel protect material were each melted over about 5 mm, and a weld metal part having a total thickness of about 10 mm was formed. . Table 3 shows the chemical composition of the weld metal part. For the test material T4 only, a metal plate (thickness: 3 mm, component composition: 35% by mass, Cr: 35%, Ni: 4%, the balance being Fe and inevitable impurities) was inserted for component adjustment.

Figure 2007118025
Figure 2007118025

電子ビーム溶接後にプロテクト材を研磨し、加工面に平行な面内における母材スラブ側面端面からのプロテクト材単体の厚さ(溶接金属を除くプロテクト材の厚さ)を10mmに調整した。   The protective material was polished after electron beam welding, and the thickness of the protective material alone (the thickness of the protective material excluding the weld metal) from the side surface end surface of the base material slab in the plane parallel to the processed surface was adjusted to 10 mm.

得られたスラブを加熱炉中で1180℃にて1時間以上加熱し、仕上げ温度を600〜700℃として圧延した。仕上げ板厚が1mmで、総圧下比(初期板厚/仕上げ板厚)が50.0となるように、ワークロール直径が350mmの2段圧延機を用いて多数回パスの熱間圧延を行った。   The obtained slab was heated at 1180 ° C. for 1 hour or longer in a heating furnace and rolled at a finishing temperature of 600 to 700 ° C. Hot rolling of multiple passes is performed using a two-stage rolling mill with a work roll diameter of 350 mm so that the finished sheet thickness is 1 mm and the total reduction ratio (initial sheet thickness / finished sheet thickness) is 50.0. It was.

本実施例で総圧下比を50.0としたのは、実操業で想定される総圧下比の値と同程度、もしくはそれ以上の値とした。すなわち、総圧下比が小さい場合には、耳割れが発生し難くなり、実操業をシミュレートした正確な耳割れ評価のできる実験室的試験とはならないからである。
(評価結果)
上記の実験室的試験の結果に基づいて、溶接ビード断面の形状係数Qの測定、溶接割れの有無および圧延後の耳割れの評価を行った。
In this example, the total reduction ratio was set to 50.0, which was the same as or higher than the value of the total reduction ratio assumed in actual operation. That is, when the total rolling reduction ratio is small, it is difficult for the ear cracks to occur, and this is not a laboratory test that can accurately evaluate the ear cracks simulating actual operation.
(Evaluation results)
Based on the results of the above laboratory tests, the shape factor Q of the weld bead section, the presence or absence of weld cracks, and the evaluation of the ear cracks after rolling were evaluated.

溶接ビード断面の形状係数Qの測定は、溶接ビード幅が安定した、いわゆる定常ビード部から溶接線に直交する断面での切断面を、粗さ#600まで研磨し、次いでエッチングを行い、溶け込み形状を現出させて、溶接ビード断面における深さ方向の入口部でのビード幅Wnおよび中央部でのビード幅Wcm(図2参照)を実測した。実測値に基づき、溶接ビード断面の形状係数Q(Wcm/Wn)を求めた。   The shape factor Q of the weld bead cross section is measured by polishing the cut surface at a cross section perpendicular to the weld line from a so-called steady bead portion with a stable weld bead width to a roughness of # 600, and then etching to form a penetration shape. And the bead width Wn at the inlet portion in the depth direction and the bead width Wcm at the center portion (see FIG. 2) were measured. Based on the measured values, the shape factor Q (Wcm / Wn) of the weld bead cross section was obtained.

次に、施工時の溶接割れ有無の確認は超音波検査によって行い、割れ無し(○印)と割れ有り(×印)で示した。圧延後の耳割れ発生状況の評価は、圧延後、試験材の幅端部全長に対して割れ発生状況を目視観察を行い、割れの長さが0.1mm未満の場合を割れ無し(○印)、割れの長さが0.1mm以上の場合を割れ有り(×印)とした。   Next, the presence or absence of weld cracks at the time of construction was confirmed by ultrasonic inspection, and indicated by no cracks (◯ mark) and cracks (x mark). The evaluation of the occurrence of ear cracks after rolling was performed by visually observing the crack occurrence situation with respect to the entire width end portion of the test material after rolling. ), The case where the length of the crack was 0.1 mm or more was regarded as having a crack (x mark).

さらに、前記表3に示す溶接金属部の化学組成から、試験材毎に前記(1)〜(3)式に表されるCreqの値、(Creq−Nieq)の値、およびPx値を求めた。これらの結果を溶接ビード断面の形状係数Qの測定、溶接割れの有無および圧延後の耳割れの評価結果とともに、表4に示した。   Furthermore, from the chemical composition of the weld metal part shown in Table 3, the value of Creq, the value of (Creq-Nieq), and the Px value represented by the formulas (1) to (3) were determined for each test material. . These results are shown in Table 4 together with the measurement of the shape factor Q of the weld bead section, the presence or absence of weld cracks, and the evaluation results of the ear cracks after rolling.

Figure 2007118025
Figure 2007118025

表4から明らかなように、本発明で規定する(1)、(2)および(3)式で表される関係を満たし、溶接ビード断面の形状係数Qも満足する本発明例(試験材T1〜T4)では、溶接電流:560mA、溶接速度:210mm/分というような施工能率の大きい条件を適用しても、施工時の溶接割れがなく、かつ圧延後の耳割れの発生もなく、良好な品質のB含有ステンレス鋼材が得られた。   As is clear from Table 4, the present invention example (test material T1) satisfying the relationship represented by the formulas (1), (2) and (3) defined in the present invention and satisfying the shape factor Q of the weld bead section. ~ T4), welding current: 560 mA, welding speed: 210 mm / min, even when a large construction efficiency is applied, there is no weld cracking at the time of construction and no occurrence of ear cracks after rolling. A high quality B-containing stainless steel material was obtained.

これに対し、本発明で規定する(1)式を満たさない試験材T5およびT6、同(2)式を満たさない試験材T7およびT8は、溶接割れまたは耳割れを生じ、良好な結果が得られなかった。   In contrast, the test materials T5 and T6 that do not satisfy the formula (1) defined in the present invention, and the test materials T7 and T8 that do not satisfy the formula (2) cause weld cracks or ear cracks, and good results are obtained. I couldn't.

一方、本発明で規定する(1)、(2)および(3)式を満たしても、溶接ビード断面の形状係数Qを満足しない試験材T9〜T11では、いずれも溶接割れを発生した。また、本発明で規定する(3)式を満たさない試験材T12〜T15でも、全て溶接割れを発生した。   On the other hand, all of the test materials T9 to T11 that did not satisfy the shape factor Q of the weld bead cross section even when the expressions (1), (2), and (3) defined in the present invention were satisfied, caused weld cracks. Moreover, all of the test materials T12 to T15 that did not satisfy the formula (3) defined in the present invention also caused weld cracks.

インサート材に関し、試験材T4とT15は母材、プロテクト材および溶接条件は全て同じであったが、インサート材として金属箔を挿入した試験材T4は溶接割れがなく、かつ圧延割れも生じなかったのに対し、インサート材を挿入しなかった試験材T15では本発明で規定する(3)式を満たすことができず、溶接割れが発生した。   Regarding the insert material, the test materials T4 and T15 had the same base material, protect material, and welding conditions, but the test material T4 inserted with metal foil as the insert material had no weld cracks and no rolling cracks. On the other hand, in the test material T15 in which no insert material was inserted, the expression (3) defined in the present invention could not be satisfied, and a weld crack occurred.

本発明法によれば、コスト低減を目的とする高能率の溶接条件(例えば、溶接電流が500mA以上で、かつ溶接速度が200mm/分以上)の電子ビーム溶接により、B含有量の高いステンレス鋼片の側面にプロテクト材を接合し圧延する場合でも、施工時の溶接割れおよび圧延後の耳割れの発生を防止し、高い生産性と優れた品質のもとにB含有ステンレス鋼材を提供できる。さらに、溶接接合時にインサート材を使用すれば、溶接金属の割れ感受性を一層低減することができる。   According to the method of the present invention, high-efficiency welding conditions (for example, a welding current of 500 mA or more and a welding speed of 200 mm / min or more) are used for electron beam welding with a high B content to reduce costs. Even when the protective material is joined to the side of the piece and rolled, it is possible to prevent the occurrence of weld cracking during construction and ear cracking after rolling, and to provide a B-containing stainless steel material with high productivity and excellent quality. Furthermore, if insert material is used at the time of welding joining, the cracking sensitivity of a weld metal can be reduced further.

これにより、本発明のB含有ステンレス鋼材は、例えば、中性子遮蔽容器用、さらには燃料電池用セパレータ材等の機能を発揮するB含有ステンレス鋼材として広く適用することができる。   Thereby, the B-containing stainless steel material of the present invention can be widely applied as, for example, a B-containing stainless steel material that exhibits functions such as a neutron shielding container and further a fuel cell separator material.

本発明のB含有ステンレス鋼片を模式的に示す図である。It is a figure which shows typically the B containing stainless steel piece of this invention. ステンレス鋼片とプロテクト材の間に形成される溶接ビード断面を模式的に示す図である。It is a figure which shows typically the weld bead cross section formed between a stainless steel piece and a protection material.

符号の説明Explanation of symbols

1.母材、 2.プロテクト材
3.加工面、 4.板厚
5.プロテクト材の厚さ、 6.圧延方向
7.溶接金属部
Wn:溶接ビード断面における深さ方向の入口部でのビード幅
Wcm:溶接ビード断面における深さ方向の中央部でのビード幅
1. 1. Base material Protective material 3. Processing surface, 4. Thickness 5. 5. thickness of protective material Rolling direction Weld metal part Wn: Bead width at the inlet in the depth direction in the weld bead section Wcm: Bead width at the center in the depth direction in the weld bead section

Claims (8)

Bを0.3〜2.5質量%含有するステンレス鋼片の加工面を除く少なくとも対向する2面に、Bを0.3質量%以下含有するステンレス鋼からなるプロテクト材がステンレス鋼溶接金属により接合され一体化されており、
前記ステンレス鋼溶接金属の化学組成が下記の(1)〜(6)式で表される関係を満足し、かつ前記ステンレス鋼片と前記プロテクト材の間の溶接ビード断面における深さ方向の中央部でのビード幅Wcmおよび深さ方向の入口部でのビード幅Wnとした場合に、これらの比で示される溶接ビード断面における形状係数Q(Wcm/Wn)が0.8〜1.4であることを特徴とするB含有ステンレス鋼片。
15≦Creq≦30 ・・・ (1)
4≦Creq−Nieq≦17 ・・・ (2)
Px≧0 ・・・ (3)
ただし、
Creq=Cr+1.5×Si+Mo−5×B ・・・ (4)
Nieq=Ni+30×(C+N)+0.5×Mn ・・・ (5)
Px=Cr+0.47×Ni+0.22×Mo+25×B−33 ・・・ (6)
ここで、式中の元素記号は、溶接金属中に含まれる各元素の含有量(質量%)を表す
A protective material made of stainless steel containing B in an amount of 0.3% by mass or less is formed of stainless steel weld metal on at least two opposing surfaces excluding the processed surface of a stainless steel piece containing B in an amount of 0.3 to 2.5% by mass Joined and integrated,
The chemical composition of the stainless steel weld metal satisfies the relationship represented by the following formulas (1) to (6), and the central portion in the depth direction in the weld bead cross section between the stainless steel piece and the protect material When the bead width is Wcm and the bead width is Wn at the entrance in the depth direction, the shape factor Q (Wcm / Wn) in the weld bead cross section indicated by these ratios is 0.8 to 1.4. A B-containing stainless steel piece characterized by the above.
15 ≦ Creq ≦ 30 (1)
4 ≦ Creq−Nieq ≦ 17 (2)
Px ≧ 0 (3)
However,
Creq = Cr + 1.5 × Si + Mo−5 × B (4)
Nieq = Ni + 30 × (C + N) + 0.5 × Mn (5)
Px = Cr + 0.47 × Ni + 0.22 × Mo + 25 × B−33 (6)
Here, the element symbol in a formula represents content (mass%) of each element contained in a weld metal.
前記ステンレス鋼片と前記プロテクト材の間に、Bを0.4〜2.5質量%含有するインサート材を介入させたことを特徴とする請求項1に記載のB含有ステンレス鋼片。   The B-containing stainless steel piece according to claim 1, wherein an insert material containing 0.4 to 2.5 mass% of B is interposed between the stainless steel piece and the protect material. 前記プロテクト材の厚さが10mm以上であることを特徴とする請求項1または2に記載のB含有ステンレス鋼片。   The B-containing stainless steel piece according to claim 1 or 2, wherein the thickness of the protect material is 10 mm or more. Bを0.3〜2.5質量%含有するステンレス鋼片の加工面を除く少なくとも対向する2面に、Bを0.3質量%以下含有するステンレス鋼からなるプロテクト材を接合して一体化したB含有ステンレス鋼材の製造方法であって、
電子ビーム溶接を用いて前記プロテクト材を接合するに際し、下記の(1)〜(6)式で表される関係を満足する化学組成を有するステンレス鋼溶接金属を溶融し、前記ステンレス鋼片と前記プロテクト材の間の溶接ビード断面における深さ方向の中央部でのビード幅Wcmおよび深さ方向の入口部でのビード幅Wnとした場合に、これらの比で示される溶接ビード断面における形状係数Q(Wcm/Wn)を0.8〜1.4として接合し、加熱後、加工することを特徴とするB含有ステンレス鋼材の製造方法。
15≦Creq≦30 ・・・ (1)
4≦Creq−Nieq≦17 ・・・ (2)
Px≧0 ・・・ (3)
ただし、
Creq=Cr+1.5×Si+Mo−5×B ・・・ (4)
Nieq=Ni+30×(C+N)+0.5×Mn ・・・ (5)
Px=Cr+0.47×Ni+0.22×Mo+25×B−33 ・・・ (6)
ここで、式中の元素記号は、溶接金属中に含まれる各元素の含有量(質量%)を表す
A protective material made of stainless steel containing 0.3% by mass or less of B is joined to and integrated with at least two opposing surfaces excluding the processed surface of the stainless steel piece containing 0.3 to 2.5% by mass of B. A method for producing a B-containing stainless steel material,
When joining the protective material using electron beam welding, a stainless steel weld metal having a chemical composition satisfying the relationship represented by the following formulas (1) to (6) is melted, and the stainless steel piece and the When the bead width Wcm at the center in the depth direction and the bead width Wn at the entrance in the depth direction in the weld bead cross section between the protective materials, the shape factor Q in the weld bead cross section indicated by these ratios is used. A method for producing a B-containing stainless steel material characterized in that (Wcm / Wn) is joined as 0.8 to 1.4, and is processed after heating.
15 ≦ Creq ≦ 30 (1)
4 ≦ Creq−Nieq ≦ 17 (2)
Px ≧ 0 (3)
However,
Creq = Cr + 1.5 × Si + Mo−5 × B (4)
Nieq = Ni + 30 × (C + N) + 0.5 × Mn (5)
Px = Cr + 0.47 × Ni + 0.22 × Mo + 25 × B−33 (6)
Here, the element symbol in a formula represents content (mass%) of each element contained in a weld metal.
前記ステンレス鋼片と前記プロテクト材の間に、Bを0.4〜2.5質量%含有するインサート材を介入させて接合することを特徴とする請求項4に記載のB含有ステンレス鋼材の製造方法。   5. The production of a B-containing stainless steel material according to claim 4, wherein an insert material containing 0.4 to 2.5 mass% of B is interposed between the stainless steel piece and the protect material. Method. 前記プロテクト材の厚さを10mm以上とすることを特徴とする請求項4または5に記載のB含有ステンレス鋼材の製造方法。   The method for producing a B-containing stainless steel material according to claim 4 or 5, wherein the thickness of the protection material is 10 mm or more. 請求項4〜6のいずれかに記載の方法により製造されたB含有ステンレス鋼材を使用したことを特徴とする中性子遮蔽容器。   A neutron shielding container using the B-containing stainless steel material produced by the method according to claim 4. 請求項4〜6のいずれかに記載の方法により製造されたB含有ステンレス鋼材を使用したことを特徴とする燃料電池用セパレータ。
A separator for a fuel cell using the B-containing stainless steel material produced by the method according to any one of claims 4 to 6.
JP2005311296A 2005-10-26 2005-10-26 Stainless steel material containing B and method for producing the same Active JP4613791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005311296A JP4613791B2 (en) 2005-10-26 2005-10-26 Stainless steel material containing B and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005311296A JP4613791B2 (en) 2005-10-26 2005-10-26 Stainless steel material containing B and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007118025A true JP2007118025A (en) 2007-05-17
JP4613791B2 JP4613791B2 (en) 2011-01-19

Family

ID=38142429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005311296A Active JP4613791B2 (en) 2005-10-26 2005-10-26 Stainless steel material containing B and method for producing the same

Country Status (1)

Country Link
JP (1) JP4613791B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011013366A1 (en) * 2009-07-28 2011-02-03 株式会社 東芝 Neutron shield material, method for producing same, and cask for spent fuel
WO2011068216A1 (en) * 2009-12-04 2011-06-09 新日本製鐵株式会社 Butt-welded joint formed using high-energy-density beam
US8945713B2 (en) 2009-05-20 2015-02-03 Hoya Corporation Glass material for press molding, method for manufacturing optical glass element employing same, and optical glass element
WO2020251002A1 (en) * 2019-06-14 2020-12-17 日鉄ステンレス株式会社 Austenitic stainless steel and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3258522A4 (en) 2015-02-13 2018-01-24 Nippon Steel & Sumitomo Metal Corporation Ferritic stainless steel material, separator, solid polymer fuel cell, and method for producing separator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376703A (en) * 1986-09-18 1988-04-07 Nippon Steel Corp Production of high-b stainless steel for shielding thermal neutron
JP2004156132A (en) * 2002-09-11 2004-06-03 Sumitomo Metal Ind Ltd B-containing steel and its manufacturing method
JP2004306128A (en) * 2003-04-10 2004-11-04 Sumitomo Metal Ind Ltd Method for manufacturing b-containing stainless steel product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376703A (en) * 1986-09-18 1988-04-07 Nippon Steel Corp Production of high-b stainless steel for shielding thermal neutron
JP2004156132A (en) * 2002-09-11 2004-06-03 Sumitomo Metal Ind Ltd B-containing steel and its manufacturing method
JP2004306128A (en) * 2003-04-10 2004-11-04 Sumitomo Metal Ind Ltd Method for manufacturing b-containing stainless steel product

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8945713B2 (en) 2009-05-20 2015-02-03 Hoya Corporation Glass material for press molding, method for manufacturing optical glass element employing same, and optical glass element
US8481986B2 (en) 2009-07-28 2013-07-09 Kabushiki Kaisha Toshiba Neutron shielding material, method of manufacturing the same, and cask for spent fuel
US8624211B2 (en) 2009-07-28 2014-01-07 Kabushiki Kaisha Toshiba Neutron shielding material, method of manufacturing the same, and cask for spent fuel
WO2011013366A1 (en) * 2009-07-28 2011-02-03 株式会社 東芝 Neutron shield material, method for producing same, and cask for spent fuel
JP4970620B2 (en) * 2009-12-04 2012-07-11 新日本製鐵株式会社 Butt weld joint using high energy density beam
CN102639277A (en) * 2009-12-04 2012-08-15 新日本制铁株式会社 Butt-welded joint formed using high-energy-density beam
JP2012102405A (en) * 2009-12-04 2012-05-31 Nippon Steel Corp Butt-welded joint formed using beam with high-energy-density
WO2011068216A1 (en) * 2009-12-04 2011-06-09 新日本製鐵株式会社 Butt-welded joint formed using high-energy-density beam
CN102639277B (en) * 2009-12-04 2015-08-19 新日铁住金株式会社 Employ the butt welded joint of high-energy-density bundle
US9352424B2 (en) 2009-12-04 2016-05-31 Nippon Steel & Sumitomo Metal Corporation Butt welding joint using high-energy density beam
WO2020251002A1 (en) * 2019-06-14 2020-12-17 日鉄ステンレス株式会社 Austenitic stainless steel and manufacturing method thereof
CN113396239A (en) * 2019-06-14 2021-09-14 日铁不锈钢株式会社 Austenitic stainless steel and method for producing same
TWI742721B (en) * 2019-06-14 2021-10-11 日商日鐵不鏽鋼股份有限公司 Austenitic stainless steel and manufacturing method thereof

Also Published As

Publication number Publication date
JP4613791B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5050863B2 (en) Ferritic stainless steel sheet for water heaters
JP5793283B2 (en) Ferritic stainless steel with few black spots
US7170073B2 (en) Stainless steel product containing B and method for production thereof
JP5489759B2 (en) Ferritic stainless steel with few black spots
WO2017169377A1 (en) Ferritic stainless steel sheet
JP6123964B1 (en) Ferritic stainless steel
JP4613791B2 (en) Stainless steel material containing B and method for producing the same
JP5861599B2 (en) Austenitic stainless steel for nuclear reactors
EP2925485B1 (en) Welding material for weld cladding
JP6448844B1 (en) Welding method
JP2013155422A (en) Welded joint
JP5725778B2 (en) Stainless steel square tube for nuclear fuel storage rack, its manufacturing method and rack
JP4305031B2 (en) Method for producing stainless steel material containing B
JP5630517B2 (en) Ferritic stainless steel
JP7423395B2 (en) Manufacturing method of austenitic stainless steel welded joints
JP2000312905A (en) Hot working method for austenitic stainless steel containing b
JP2001239364A (en) Hot working method for, austenitic stainless steel containing b
JPH062931B2 (en) Stainless steel non-magnetic steel for electronic device parts
JP4214334B2 (en) Hot rolling method for stainless steel
JPS63212090A (en) Welding method for high-alloy austenitic steel
JP2021095614A (en) Thick steel plate
Jabur A COMPARATIVE STUDY ON THE LASER, PLASMA AND TIG WELDING OF DUPLEX STAINLESS STEEL
JP2010007096A (en) Method for manufacturing thick steel plate superior in laser cutting properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4613791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350