WO2020250839A1 - 圧力検出装置及びそれを用いた血液浄化装置 - Google Patents

圧力検出装置及びそれを用いた血液浄化装置 Download PDF

Info

Publication number
WO2020250839A1
WO2020250839A1 PCT/JP2020/022406 JP2020022406W WO2020250839A1 WO 2020250839 A1 WO2020250839 A1 WO 2020250839A1 JP 2020022406 W JP2020022406 W JP 2020022406W WO 2020250839 A1 WO2020250839 A1 WO 2020250839A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
pressure
pusher
space
flow path
Prior art date
Application number
PCT/JP2020/022406
Other languages
English (en)
French (fr)
Inventor
文彦 石▲崎▼
佑哉 毛受
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to CN202080042954.2A priority Critical patent/CN113950340A/zh
Priority to US17/617,620 priority patent/US20220236127A1/en
Priority to EP20823487.2A priority patent/EP3967997A4/en
Publication of WO2020250839A1 publication Critical patent/WO2020250839A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • G01L7/088Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type correcting or regulating means for flexible diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • A61M1/3641Pressure isolators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • A61M1/1605Physical characteristics of the dialysate fluid
    • A61M1/1607Physical characteristics of the dialysate fluid before use, i.e. upstream of dialyser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • A61M1/1605Physical characteristics of the dialysate fluid
    • A61M1/1609Physical characteristics of the dialysate fluid after use, i.e. downstream of dialyser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/26Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving
    • A61M1/267Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes and internal elements which are moving used for pumping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0627Protection against aggressive medium in general
    • G01L19/0645Protection against aggressive medium in general using isolation membranes, specially adapted for protection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/002Calibrating, i.e. establishing true relation between transducer output value and value to be measured, zeroing, linearising or span error determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/08Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type
    • G01L7/082Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the flexible-diaphragm type construction or mounting of diaphragms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/07General characteristics of the apparatus having air pumping means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/10General characteristics of the apparatus with powered movement mechanisms
    • A61M2205/106General characteristics of the apparatus with powered movement mechanisms reciprocating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3337Controlling, regulating pressure or flow by means of a valve by-passing a pump
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/70General characteristics of the apparatus with testing or calibration facilities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0672Leakage or rupture protection or detection

Definitions

  • the present invention relates to a pressure detector and a blood purification device using the same.
  • a pressure detecting device is used to measure the hydraulic pressure of blood, dialysate, or the like. It is not preferable that the blood, dialysate, etc. whose pressure is detected by the blood purification device come into contact with air. Therefore, a case (pressure detection container) provided with a diaphragm so as to partition the first space through which the liquid to be detected for pressure such as blood or dialysate flows and the second space through which the liquid does not flow is used.
  • a pressure detection device configured to measure the pressure of the gas (air) filled in the second space with a pressure sensor is used (see, for example, Patent Document 1).
  • the detection value of the pressure sensor and the pressure detection range change depending on the initial position of the diaphragm. Therefore, it is desired to accurately adjust the initial position of the diaphragm to an arbitrary position in order to accurately detect the pressure and set the pressure detection range to a desired range.
  • an object of the present invention is to provide a pressure detection device capable of accurately adjusting the initial position of the diaphragm to an arbitrary position and a blood purification device using the pressure detection device.
  • a case provided in a liquid flow path through which a liquid to be measured for pressure is circulated, and a space inside the case are defined as a first space through which the liquid circulates.
  • a diaphragm that is provided so as to partition the second space through which the liquid does not flow and can be displaced according to the pressure of the liquid in the first space, and the pressure of the gas filled in the second space are measured.
  • a diaphragm initial position adjusting mechanism capable of adjusting the initial position of the diaphragm to a desired position by adjusting the filling amount of the gas filled in the second space is provided, and the diaphragm initial position is provided.
  • the position adjusting mechanism includes a cylinder communicated with the second space, a pusher provided so as to be able to advance and retreat in the cylinder, and a pusher drive unit for driving the pusher to advance and retreat.
  • a pressure detection device having a reciprocating pump for adjusting the filling amount of the gas filled in the second space by moving the pusher forward and backward in the cylinder.
  • the present invention provides a liquid supply flow path for supplying a supply liquid to a blood circuit for circulating patient blood extracorporeally, the blood circuit, or a blood purifier provided in the blood circuit.
  • a blood purifier provided in the blood circuit.
  • at least one of the pressure detecting devices provided in the drainage flow path for discharging the drainage from the blood purifier provides the blood purifying device, which is the pressure detecting device.
  • a pressure detection device capable of accurately adjusting the initial position of the diaphragm to an arbitrary position and a blood purification device using the pressure detection device.
  • FIG. 1 is a schematic configuration diagram of a blood purification device according to the present embodiment.
  • the blood purification device 10 includes a liquid supply flow path 13 that supplies a supply liquid to a blood circuit 11 that circulates a patient's blood extracorporeally or a blood purifier 12 provided in the blood circuit 11, and blood purification. It is provided with a drainage flow path 14 for discharging the drainage from the vessel 12.
  • the liquid supply flow path 13 is the dialysate flow path 13a for supplying the dialysate to the blood purifier 12 is shown.
  • the present invention is not limited to this, and the liquid supply flow path 13 may be a replacement liquid flow path that directly supplies the replacement liquid to the blood circuit 11, or has both a dialysate flow path 13a and a replacement liquid flow path. You may be.
  • the blood circuit 11 is composed of, for example, a flexible tube or the like.
  • the blood circuit 11 is sequentially provided with a blood pump 111, a blood purifier 12, a second blood pump 113, and an air trap chamber 112 from the upstream side to the downstream side in the blood flow.
  • the blood pump 111 is a liquid feeding pump that feeds blood.
  • the air trap chamber 112 is for removing air bubbles from the blood.
  • a first pressure detecting device 181 for measuring the pressure of blood upstream of the blood pump 111 On the upstream side (upstream side in the blood flow) of the blood pump 111, a first pressure detecting device 181 for measuring the pressure of blood upstream of the blood pump 111 is provided.
  • a second pressure detection device 182 for measuring the pressure of blood on the upstream side of the blood purifier is provided between the blood pump 111 and the blood purifier 12.
  • a third pressure detection device 183 that measures the pressure of blood on the downstream side of the blood purifier is provided between the blood purifier 12 and the second blood pump 113.
  • the air trap chamber 112 is provided with a fourth pressure detecting device 184 that measures the pressure inside the air trap chamber 112.
  • the third and fourth pressure detection devices 183 and 184 are indispensable, but when the second blood pump 113 is omitted, the third pressure detection device 183 can be omitted. is there.
  • the dialysate flow path 13a is supplied with dialysate water from an RO apparatus (not shown) that produces clean dialysate water using a reverse osmosis membrane (RO (Reverse Osmosis) membrane). Further, two types of dialysate stock solutions, A stock solution and B stock solution, are supplied to the dialysate flow path 13a. Both stock solutions are stored in the stock solution storage tank 151, and the stock solution A and the stock solution B are supplied from the stock solution storage tank 151 to the dialysate flow path 13a via the stock solution flow path 152, respectively. Both stock solution flow paths 152 are provided with a stock solution injection pump 153, which is a liquid feed pump that feeds the stock solution A or the stock solution B, respectively.
  • a dialysate is prepared by mixing the stock solution A and the stock solution B with the dialysate water in the dialysate flow path 13a. The prepared dialysate is introduced into the blood purifier 12 via the dual pump 16.
  • a fifth pressure detection device 185 for measuring the supply pressure of dialysate water is provided in the dialysate flow path 13a on the upstream side of the connection point of the stock solution flow path 152.
  • the dialysate flow path 13a between the duplex pump 16 and the blood purifier 12 is provided with a sixth pressure detecting device 186 that measures the pressure of the dialysate introduced into the blood purifier 12.
  • a seventh pressure detecting device 187 for measuring the pressure of the drainage discharged from the blood purifier 12 is provided in the drainage flow path 14 between the blood purifier 12 and the dual pump 16.
  • the drainage from the blood purifier 12 is drained through the drainage flow path 14.
  • the dual pump 16 is provided over the dialysate flow path 13a and the drainage flow path 14, and the amount of dialysate introduced into the blood purifier 12 and the amount of drainage discharged from the blood purifier 12 are measured. Pump operation so that they are equal.
  • the drainage flow path 14 is provided with a water removal flow path 14a so as to bypass the double pump 16, and the water removal flow path 14a is provided with the water removal pump 17.
  • the water removal pump 17 is driven, the amount of drainage discharged from the blood purifier 12 becomes larger than the amount of dialysate introduced into the blood purifier 12, and water is removed from the blood.
  • the amount of water removed from the blood can be adjusted by adjusting the amount of liquid sent from the water removal pump 17.
  • the blood purification device 10 In the blood purification device 10 according to the present embodiment, at least one of the blood circuit 11, the liquid supply flow path 13 (here, the dialysate flow path 13a), or the pressure detection devices 181 to 187 provided in the drainage flow path 14 is used. , The pressure detection device 1 according to the present embodiment. In the blood purification device 10, the pressure detection device 1 according to the present embodiment may be used for at least one of the first to seventh pressure detection devices 181 to 187, or as a pressure detection device provided at another position. The pressure detection device 1 according to the present embodiment may be used.
  • FIG. 1 The configuration of FIG. 1 is merely an example, and the specific configuration of the blood purification device 10 can be changed as appropriate.
  • FIG. 2A is a schematic configuration diagram of the pressure detection device 1 according to the present embodiment
  • FIG. 2B is a sectional view of a case
  • FIG. 2C is a schematic configuration diagram of a reciprocating pump.
  • the pressure detection device 1 includes a case 2 provided in a liquid flow path 4 (here, a blood circuit 11) through which a liquid (here, blood) to be measured for pressure is circulated.
  • a diaphragm 3 that divides the space inside the case 2 into a first space 2a through which a liquid (blood) flows and a second space 2b filled with a gas (here, air), and a gas filled in the second space 2b.
  • a pressure sensor 6 that measures the pressure of the diaphragm, a diaphragm initial position adjusting mechanism 5 that can adjust the initial position of the diaphragm 3 to a desired position by adjusting the filling amount of the gas filled in the second space 2b, and a diaphragm. It includes a control unit 7 that controls the initial position adjusting mechanism 5.
  • the liquid to be measured for pressure is referred to as blood
  • the gas filled in the second space 2b is referred to as air, but the liquid to be measured and the gas filled in the second space 2b are limited to this. Not done.
  • the term "air” means the air filled in the second space 2b or the like.
  • the liquid flow path 4 has an inflow flow path 4a for flowing blood into the first space 2a and an outflow flow path 4b for flowing blood out of the first space 2a.
  • the inflow flow path 4a becomes a blood circuit 11 extending from the blood pump 111
  • the outflow flow path 4b becomes a blood circuit 11 extending to the blood purifier 12. It becomes.
  • the case 2 is made of a hard resin molded product or the like, and is provided in the liquid flow path 4.
  • the first connecting portion 21 communicating with the first space 2a and connecting the inflow flow path 4a and the second connecting portion 22 communicating with the first space 2a and connecting the outflow flow path 4b are integrated.
  • the case 2 integrally has a protruding portion 23 that is communicated with the second space 2b and projects outward.
  • the pressure detecting device 1 includes a socket portion 24 which is formed separately from the case 2 and into which the protruding portion 23 is inserted and connected.
  • a measurement flow path 61 which will be described later, is connected to the socket portion 24, and by inserting and connecting the protrusion 23 into the socket portion 24, the measurement flow path 61 and the second space 2b are connected. Is communicated with.
  • the case 2 is configured to be removable from the socket portion 24 by detaching the protruding portion 23 from the socket portion 24, whereby the case 2 can be made disposable. Therefore, every time a new case 2 is attached, the initial position of the diaphragm 3, which will be described later, is adjusted.
  • the case 2 does not have to be disposable as a whole.
  • the case 2 may be divided on the second space 2b side of the diaphragm 3, and only the case 2 including the first space 2a may be disposable. .. It is not essential that the case 2 and the socket portion 24 are formed separately, and the case 2 and the socket portion 24 may be integrally formed.
  • the diaphragm 3 is a flexible film, and is provided in the case 2 so as to partition the internal space of the case 2 into two spaces, a first space 2a and a second space 2b.
  • the material of the case 2 and the diaphragm 3 is not particularly limited.
  • the diaphragm 3 is configured to be displaceable according to the pressure of blood in the first space 2a, and plays a role of transmitting the pressure of blood in the first space 2a to the air in the second space 2b.
  • the pressure sensor 6 is connected to the second space 2b of the case 2 via the measurement flow path 61, and measures the pressure of the air filled in the second space 2b and the measurement flow path 61. Is.
  • the detection signal of the pressure sensor 6 is output to the control unit 7.
  • the diaphragm initial position adjusting mechanism 5 includes a reciprocating pump 51, a pump flow path 53 connecting the reciprocating pump 51 and the second space 2b, and a pump flow path provided in the pump flow path 53 to open and close the pump flow path 53. It has a pump flow path on-off valve 52 as an on-off mechanism.
  • the pump flow path 53 is connected to the second space 2b via the measurement flow path 61, but the pump flow path 53 is directly connected to the second space 2b of the case 2. You may.
  • the pump flow path on-off valve 52 it is desirable to use a solenoid valve so that the on-off control can be automatically controlled, but for example, a clamp mechanism or the like may be used.
  • a solenoid valve is used as the pump flow path on-off valve 52.
  • the reciprocating pump 51 is also called a reciprocating pump, a plunger pump, or a piston pump, and has a cylinder 511 and a cylinder 511 that are communicated with the second space 2b via the pump flow path 53 and the measurement flow path 61. It has a pusher (plunger or piston) 512 provided so as to be able to move forward and backward, and a pusher drive unit 513 that drives the pusher 512 to move forward and backward.
  • the inside of the cylinder 511 and the pump flow path 53 are filled with air in the same manner as the second space 2b and the measurement flow path 61, and the pusher drive unit 513 moves the pusher 512 forward and backward in the cylinder 511. Then, the position of the diaphragm 3 can be adjusted by adjusting the filling amount of the air filled in the second space b.
  • the pusher drive unit 513 for example, a stepping motor can be used.
  • the control unit 7 adjusts the initial position of the diaphragm 3 by controlling the reciprocating pump 51 and the pump flow path on-off valve 52.
  • the control unit 7 is realized by appropriately combining arithmetic elements such as a CPU, storage devices such as a memory, software, and an interface.
  • the control unit 7 positions the pusher 512 in a predetermined position so that the diaphragm 3 is in the desired position. Controls the movement to (called the adjustment position).
  • step S11 the control unit 7 first opens the pump flow path on-off valve 52 in step S11, and moves the pusher 512 from the initial position in step S12 (for example,).
  • step S12 the initial position
  • step S13 it is determined whether or not a predetermined time has elapsed.
  • step S13 it may be determined whether the movement amount of the pusher 512 has reached the predetermined movement amount. If NO is determined in step S13, the process returns to step S12.
  • step S13 If YES is determined in step S13, the pusher 512 is stopped in step S14, and then the pump flow path on-off valve 52 is closed in step S15 to end the process.
  • the time used for the determination in step S13 (the above-mentioned predetermined time) is set to the time required to move the pusher 512 from the initial position to the adjustment position. It is desirable that the control unit 7 executes the control flow of FIG. 3 to adjust the initial position of the diaphragm 3 before the blood purification treatment, for example, during priming.
  • the pressure of air can be changed linearly in order to move the pusher 512 to adjust the amount of air filled in the second space 2b.
  • a peristaltic pump is used as a means for pressurizing and depressurizing air, it becomes difficult to precisely adjust the initial position of the diaphragm 3 because the pressure of the air changes stepwise. That is, by using the reciprocating pump 51 as in the present embodiment, the initial position of the diaphragm 3 can be adjusted more precisely.
  • the peristaltic pump has a flexible tube that is squeezed, the discharge amount varies due to variations in tube manufacturing and aging of the tube, but the reciprocating pump 51 does not use a tube. Such a defect can be suppressed.
  • the pump flow path 53 can be closed by the pump flow path on-off valve 52, so that the air that transmits the pressure from the second space 2b to the pressure sensor 6 can be closed. It becomes possible to reduce the filling amount of.
  • the size of the pressure detection device 1 is determined according to the filling amount of air that transmits the pressure from the second space 2b to the pressure sensor 6. Therefore, by providing the pump flow path on-off valve 52, a further device can be provided. Miniaturization becomes possible.
  • the pump flow path on-off valve 52 is not essential and can be omitted.
  • the filling amount of air filled in the second space 2b, the measuring flow path 61, the cylinder 511, and the pump flow path 53 is known, but the filling amount of air is unknown. Needs a means of estimating the amount of air filled.
  • the amount of air filled can be estimated from the change in air pressure when the pusher 512 is moved.
  • the control unit 7 estimates the air filling amount based on the distance moved by the pusher 512 and the change in the air pressure at that time, and the diaphragm 3 is based on the estimated air filling amount. Calculates the adjustment position, which is the position of the pusher 512, which is the desired position, and moves the pusher 512 to the adjustment position.
  • FIG. 4A is a control flow in the case of estimating the air filling amount with reference to the moving distance of the pusher 512.
  • the control unit 7 first opens the pump flow path on-off valve 52 in step S21, and in step S22, retracts the pusher 512 from the initial position (for example, pushes the pusher 512 completely. (Retreat from the position to the decompression side), and in step S23, it is determined whether the pusher 512 has reached the predetermined decompression position (whether the pusher 512 has been moved by a predetermined distance). If NO is determined in step S23, the process returns to step S22.
  • step S23 After stopping the pusher 512 in step S24, based on the moving distance of the pusher 512 and the change in air pressure detected by the pressure sensor 6 in step S25. , The air filling amount is estimated, and the adjustment position of the pusher 512 at which the diaphragm 3 is at a desired position is calculated. Then, in step S26, the pusher 512 is advanced, and in step S27, it is determined whether or not the pusher 512 has reached the adjustment position. If NO is determined in step S27, the process returns to step S26. If YES is determined in step S27, the pusher 512 is stopped in step S28, and then the pump flow path on-off valve 52 is closed in step S29 to end the process.
  • FIG. 4B is a control flow based on a change in air pressure.
  • step S23 in the control flow of FIG. 4A is replaced with step S23a for determining whether the air pressure is a predetermined pressure. That is, in FIG. 4A, the change in air pressure when the pusher 512 is moved by a predetermined distance is detected, and in FIG. 4B, the movement distance of the pusher 512 in which the change in air pressure becomes a predetermined value is detected. There is. Using either of these methods, it is possible to estimate the amount of air filled and calculate the adjustment position of the pusher 512.
  • a pusher position detecting unit for detecting the position of the pusher 512 is required.
  • the pusher position detection unit for example, an encoder that detects the rotation speed of a motor or the like used for the pusher drive unit 513, a linear potentiometer that directly detects the position of the pusher 512, or the like can be used.
  • a stepping motor pulse motor
  • a contact type sensor such as a limit switch, a strain gauge, or a piezoelectric element sensor can be used, or an indirect type sensor such as a photoelectric sensor or a pressure sensor can be used.
  • a diaphragm position detecting unit that can detect that the diaphragm is in a predetermined position (for example, a position where the volume of the first space 2a is the maximum or the minimum) may be provided.
  • the diaphragm position detection unit may be configured to detect the position of the diaphragm 3 using, for example, sensors such as a photoelectric sensor. It is also possible to estimate the position of the diaphragm 3 by using the detection results of the encoder and the linear potentiometer described above, the driving amount of the stepping motor, or the output of the pressure sensor 6.
  • the control unit 7 moves the pusher 512 from the initial position, and based on the amount of movement of the pusher 512 until the diaphragm position detection unit detects that the diaphragm 3 is in a predetermined position. , It is good to estimate the air filling amount. More specifically, from the retreat distance of the pusher 512 required for the diaphragm 3 to reach a predetermined position (for example, the position where the volume of the first space 2a is maximized) from the position where the diaphragm 3 is in the no-load state. The amount of air filled can be estimated.
  • the control flow in this case is shown in FIG. In the control flow of FIG. 5, step S23 in the control flow of FIG.
  • step S23b for determining whether the diaphragm 3 is in a predetermined position
  • step S25 in the control flow of FIG. 4A is the movement of the pusher 512.
  • step S25b in which the air filling amount is estimated based on the distance and the adjustment position is calculated.
  • the initial position of the diaphragm 3 can be adjusted to a desired position by adjusting the filling amount of the air filled in the second space 2b.
  • the initial position adjusting mechanism 5 is provided, and the diaphragm initial position adjusting mechanism 5 has a reciprocating pump 51 that adjusts the filling amount of the gas filled in the second space 2b by moving the pusher 512 forward and backward in the cylinder 511. ing.
  • the initial position of the diaphragm 3 By adjusting the initial position of the diaphragm 3 with the reciprocating pump 51, the initial position of the diaphragm 3 can be accurately adjusted to an arbitrary position as compared with the case of using a peristaltic pump or the like, and the initial position of the diaphragm 3 can be adjusted. It is possible to suppress the variation in position. By suppressing the variation in the initial position of the diaphragm 3, the accuracy of repeating the adjustment of the initial position of the diaphragm 3 performed every time the case 2 is replaced can be improved, the pressure detection accuracy can be improved, and the pressure detection range can be made accurate. It will be possible to adjust well.
  • the variation in the initial position of the diaphragm 3 is large, it is necessary to increase the filling amount of the air filled in the second space 2b and the measurement flow path 61 in order to absorb the variation. According to the above embodiment, since the variation in the initial position of the diaphragm 3 can be suppressed, the amount of air filled can be reduced, which contributes to the miniaturization of the pressure detection device 1.
  • the pressure detection device 1a shown in FIG. 6A is the pressure detection device 1 of FIG. 2A and includes a pressure release mechanism 8 capable of releasing the air filled in the second space 2b or the like to the atmosphere.
  • the pressure release mechanism 8 has a pressure release flow path 81 having one end connected to a pump flow path 53 between the reciprocating pump 51 and the pump flow path on-off valve 52 and the other end being open to the atmosphere, and a pressure release flow path 81. It has a pressure release valve 82 that can open and close the pressure release flow path 81.
  • the opening and closing of the pressure release valve 82 is controlled by the control unit 7.
  • the solenoid valve is used as the pressure release valve 82, but a clamp mechanism may be used, for example.
  • the control unit 7 retracts the pusher 512 from the initial position, moves it to a predetermined depressurization position (pressure application position), opens the pressure release valve 82, releases the air to the atmosphere, and then releases the pressure release valve 82. Is closed, and then the pusher 512 is moved to an adjustment position which is the position of the pusher 512 where the diaphragm 3 is at a desired position.
  • the pusher 512 may be advanced from the initial position, moved to a predetermined pressurizing position, and then opened to the atmosphere.
  • the position of the diaphragm 3 in the case 2 can take various positions in the unadjusted state. Therefore, by controlling the diaphragm 3 to open to the atmosphere after moving the diaphragm 3 in one direction by the reciprocating pump 51, the diaphragm 3 can be aligned at a fixed position (position in a no-load state), and the second The air filled in the space 2b or the like can be set to atmospheric pressure, and the filling amount of air can be set to a known amount. After that, by moving the pusher 512 to a predetermined adjustment position, the diaphragm 3 can be accurately adjusted to a desired position.
  • FIG. 6B is a control flow of the control unit 7 in the pressure detection device 1a.
  • step S25 in the control flow of FIG. 4A is replaced with step S30 for opening the pressure release valve 82 and step S31 for closing the pressure release valve 82 after step S30.
  • an air filter 62 is provided in the measurement flow path 61 in order to prevent foreign matter from entering the pipe.
  • the air filter 62 is a so-called hydrophobic filter, and is configured to pass a gas but not a liquid (the resistance when passing the liquid is very high).
  • the pressure detection device 1b shown in FIG. 7A is the pressure detection device 1a of FIG. 6A and further includes a diaphragm position fixing mechanism 9 capable of fixing the position of the diaphragm 3 by closing the liquid flow path 4.
  • the diaphragm position fixing mechanism 9 is configured so that both the inflow flow path 4a and the outflow flow path 4b can be closed at the same time.
  • the diaphragm position fixing mechanism 9 is provided with a first diaphragm position fixing valve 9a provided in the inflow flow path 4a and capable of opening and closing the inflow flow path 4a, and an outflow flow path 4b provided in the outflow flow path 4b. It has a second diaphragm position fixing valve 9b that can be opened and closed.
  • the liquid flow path 4 between the two diaphragm position fixing valves 9a and 9b including the first space 2a is closed, and the position of the diaphragm 3 is fixed.
  • solenoid valves are used as the valves 9a and 9b for fixing the positions of both diaphragms, but for example, a clamp mechanism may be used.
  • the control unit 7 controls the opening and closing of the valves 9a and 9b for fixing the positions of both diaphragms.
  • the pump flow path on-off valve 52 also serves as the diaphragm position fixing mechanism 9.
  • the control unit 7 opens the pressure release valve 82 after fixing the position of the diaphragm 3 by the diaphragm position fixing mechanism 9. Specifically, as shown in FIG. 7B, a step S32 for closing both diaphragm position fixing valves 9a and 9b and fixing the diaphragm 3 is inserted between steps S24 and S30 in the control flow of FIG. 6B. At the same time, step S33 for opening both diaphragm position fixing valves 9a and 9b to release the fixing of the diaphragm 3 is inserted between steps S31 and S26. Note that step S33 (opening of both diaphragm position fixing valves 9a and 9b) may be performed after the pusher 512 is returned to the adjustment position, that is, after step S28.
  • the diaphragm 3 does not return to the position in the no-load state, and is held at the position where the volume of the first space 2a becomes the largest, for example. Therefore, as compared with FIGS. 6A and 6B in which the diaphragm 3 is returned to the position in the no-load state, the position of the diaphragm 3 when opened to the atmosphere can be kept at a more constant position, and the position adjustment accuracy of the diaphragm 3 can be maintained. Is improved.
  • a case (2) provided in a liquid flow path through which a liquid to be measured for pressure is to be measured, a space in the case (2), a first space (2a) in which the liquid flows, and a gas.
  • a diaphragm (3) that is provided so as to be partitioned from a second space (2b) filled with gas and can be displaced according to the pressure of the liquid in the first space (2a), and the second space (2b). The initial position of the diaphragm (3) is adjusted by adjusting the pressure sensor (6) for measuring the pressure of the gas filled in () and the filling amount of the gas filled in the second space (2b).
  • a diaphragm initial position adjusting mechanism (5) that can be adjusted to a desired position is provided, and the diaphragm initial position adjusting mechanism (5) includes a cylinder (511) and the cylinder (511) that are communicated with the second space (2b). It has a pusher (512) provided so as to be able to move forward and backward in 511), and a pusher drive unit (513) for driving the pusher (512) forward and backward, and the pusher drive unit (513) causes the pusher.
  • a pressure detection device (1) having a reciprocating pump (51) that adjusts the filling amount of the gas filled in the second space (2b) by moving the (512) forward and backward in the cylinder (511).
  • the diaphragm initial position adjusting mechanism (5) is provided in the pump flow path (52) connecting the reciprocating pump (51) and the second space (2b) and in the pump flow path (52).
  • the pressure detection device (1) according to [1], further comprising a pump flow path opening / closing mechanism (53) for opening / closing the pump flow path (52).
  • a control unit (7) for adjusting the initial position of the diaphragm (3) by controlling the reciprocating pump (51) is provided, and the control unit (7) holds the pusher (512).
  • the filling amount of the gas is estimated based on the distance moved and the change in the pressure of the gas at that time, and the diaphragm (3) becomes a desired position based on the estimated filling amount of the gas.
  • the pressure detection device (1) according to [1] or [2], wherein the adjustment position, which is the position of the pusher (512), is calculated and the pusher (512) is moved to the adjustment position.
  • a control unit (7) that adjusts the initial position of the diaphragm (3) by controlling the reciprocating pump (51), and a diaphragm that can detect that the diaphragm (3) is in a predetermined position.
  • the control unit (7) includes a position detection unit, the pusher (512) is moved from the initial position, and the diaphragm position detection unit detects that the diaphragm (3) is in the predetermined position. Based on the amount of movement of the pusher (512) up to, the filling amount of the gas is estimated, and based on the estimated filling amount of the gas, the diaphragm (3) is at a desired position.
  • the pressure detection device (1) according to [1] or [2], wherein the adjustment position, which is the position of 512), is calculated and the pusher (512) is moved to the adjustment position.
  • the diaphragm by controlling the pressure release mechanism (8) having a pressure release valve (82) capable of releasing the gas to the atmosphere, the reciprocating pump (51), and the pressure release mechanism (8).
  • a control unit (7) for adjusting the initial position of (3) is provided, and the control unit (7) advances or retracts the pusher (512) and moves it to a predetermined pressure application position to release the pressure.
  • the pressure release valve (82) is closed, and then the diaphragm (3) is set to the adjustment position which is the position of the pusher (512) at the desired position.
  • the pressure detection device (1a) according to [1] or [2], which moves the pusher (512).
  • a diaphragm position fixing mechanism (9) capable of fixing the position of the diaphragm (3) by closing the liquid flow path (4) is provided, and the control unit (7) is provided with the diaphragm position fixing mechanism (7).
  • a socket portion (24) to which the pressure sensor (6) is connected is provided, and the case (2) and the diaphragm (3) are detachably provided with respect to the socket portion (24).
  • the pressure detection device (1) according to any one of [1] to [6].
  • a liquid supply flow that supplies a supply liquid to a blood circuit (11) that circulates the patient's blood extracorporeally and a blood purifier (12) provided in the blood circuit (11) or the blood circuit (11).
  • At least one of the pressure detection devices (181 to 187) provided in the drainage flow path (14) is the pressure detection device (1,1a, 1b) according to any one of [1] to [7]. , Blood purification device (10).

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Emergency Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • External Artificial Organs (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

圧力検出装置1は、圧力の測定対象となる液体を流通する液流路4に設けられたケース2と、ケース2内の空間を、液体が流通する第1空間2aと、気体が充填された第2空間2bとに区画するように設けられ、第1空間2a内の液体の圧力に応じて変位可能なダイアフラム3と、第2空間2bに充填された気体の圧力を測定する圧力センサ6と、第2空間2bに充填された気体の充填量を調節することで、ダイアフラム3の初期位置を所望の位置に調整可能なダイアフラム初期位置調整機構5と、を備え、ダイアフラム初期位置調整機構5は、押し子駆動部513により押し子512をシリンダ511内で進退させることで第2空間2bに充填された気体の充填量を調節する往復動ポンプ51を有する。

Description

圧力検出装置及びそれを用いた血液浄化装置
本発明は、圧力検出装置及びそれを用いた血液浄化装置に関する。
血液浄化装置では、血液や透析液等の液圧を測定するために圧力検出装置が用いられている。血液浄化装置で圧力の検出対象となる血液や透析液等は、空気に触れることが好ましくない。そこで、血液や透析液等の圧力の検出対象となる液体が流通する第1空間と、液体が流通しない第2空間とに区画するようにダイアフラムが設けられたケース(圧力検出容器)を用い、第2空間に充填された気体(空気)の圧力を圧力センサで測定するよう構成された圧力検出装置が用いられている(例えば、特許文献1参照)。
特表2017-504389号公報
上述の圧力検出装置では、ダイアフラムの初期位置によって、圧力センサの検出値や圧力の検出範囲が変化する。そのため、精度よく圧力検出を行い、また圧力の検出範囲を所望の範囲とするために、ダイアフラムの初期位置を、任意の位置に、精度よく調整することが望まれる。
そこで、本発明は、ダイアフラムの初期位置を、任意の位置に、精度よく調整可能な圧力検出装置及びそれを用いた血液浄化装置を提供することを目的とする。
本発明は、上記課題を解決することを目的として、圧力の測定対象となる液体を流通する液流路に設けられたケースと、前記ケース内の空間を、前記液体が流通する第1空間と、前記液体が流通しない第2空間とに区画するように設けられ、前記第1空間内の前記液体の圧力に応じて変位可能なダイアフラムと、前記第2空間に充填された気体の圧力を測定する圧力センサと、前記第2空間に充填された前記気体の充填量を調節することで、前記ダイアフラムの初期位置を所望の位置に調整可能なダイアフラム初期位置調整機構と、を備え、前記ダイアフラム初期位置調整機構は、前記第2空間と連通されたシリンダ、前記シリンダ内で進退可能に設けられた押し子、及び前記押し子を進退駆動させる押し子駆動部を有し、前記押し子駆動部により前記押し子を前記シリンダ内で進退させることで前記第2空間に充填された前記気体の充填量を調節する往復動ポンプを有する、圧力検出装置を提供する。
また、本発明は、上記課題を解決することを目的として、患者の血液を体外循環させる血液回路、前記血液回路または前記血液回路に設けられた血液浄化器に供給液を供給する液供給流路、あるいは前記血液浄化器からの排液を排出する排液流路に設けられる圧力検出装置の少なくとも1つが、前記圧力検出装置である、血液浄化装置を提供する。
本発明によれば、ダイアフラムの初期位置を、任意の位置に、精度よく調整可能な圧力検出装置及びそれを用いた血液浄化装置を提供できる。
本発明の一実施の形態に係る血液浄化装置の概略構成図である。 本発明の一実施の形態に係る圧力検出装置を示す概略構成図である。 ケースの断面図である。 往復動ポンプの概略構成図である。 制御部における制御フローを示すフロー図である。 制御部における制御フローの一変形例を示すフロー図である。 制御部における制御フローの一変形例を示すフロー図である。 制御部における制御フローの一変形例を示すフロー図である。 本発明の他の実施の形態に係る圧力検出装置を示す概略構成図である。 図6Aの圧力検出装置の制御部における制御フローを示すフロー図である。 本発明の他の実施の形態に係る圧力検出装置を示す概略構成図である。 図7Aの圧力検出装置の制御部における制御フローを示すフロー図である。
[実施の形態]
以下、本発明の実施の形態を添付図面にしたがって説明する。
(血液浄化装置)
まず、本実施の形態に係る圧力検出装置を適用する血液浄化装置について説明する。図1は、本実施の形態に係る血液浄化装置の概略構成図である。
図1に示すように、血液浄化装置10は、患者の血液を体外循環させる血液回路11または血液回路11に設けられた血液浄化器12に供給液を供給する液供給流路13と、血液浄化器12からの排液を排出する排液流路14と、を備えている。図1の例では、液供給流路13が、血液浄化器12に透析液を供給する透析液流路13aである場合を示している。ただし、これに限らず、液供給流路13は、補充液を血液回路11に直接供給する補充液流路であってもよいし、透析液流路13aと補充液流路の両方を有していてもよい。
血液回路11は、例えば可撓性を有するチューブ等から構成される。血液回路11には、血液の流れにおける上流側から下流側にかけて、血液ポンプ111、血液浄化器12、第2血液ポンプ113、エアトラップチャンバ112が順次設けられている。血液ポンプ111は、血液を送液する送液ポンプである。エアトラップチャンバ112は、血液から気泡を除去するためのものである。
血液ポンプ111の上流側(血液の流れにおける上流側)には、血液ポンプ111の上流での血液の圧力を測定する第1圧力検出装置181が設けられている。血液ポンプ111と血液浄化器12との間には、血液浄化器の上流側での血液の圧力を測定する第2圧力検出装置182が設けられている。血液浄化器12と第2血液ポンプ113との間には、血液浄化器の下流側での血液の圧力を測定する第3圧力検出装置183が設けられている。エアトラップチャンバ112には、エアトラップチャンバ112内の圧力を測定する第4圧力検出装置184が設けられている。なお、第2血液ポンプ113を備えた場合には第3及び第4圧力検出装置183,184は必須となるが、第2血液ポンプ113を省略した場合、第3圧力検出装置183は省略可能である。
透析液流路13aには、逆浸透膜(RO(Reverse Osmosis)膜)を用いて清浄な透析用水を製造するRO装置(不図示)から、透析用水が供給される。また、透析液流路13aには、A原液及びB原液の2種類の透析液原液が供給される。両原液は、それぞれ原液貯留タンク151に貯留されており、原液流路152を介して原液貯留タンク151から透析液流路13aにそれぞれA原液とB原液とが供給される。両原液流路152には、A原液またはB原液を送液する送液ポンプである原液注入ポンプ153がそれぞれ設けられている。透析液流路13aにて透析用水にA原液及びB原液が混合されることで、透析液が調製される。調製された透析液は、複式ポンプ16を介して血液浄化器12に導入される。
原液流路152の接続箇所よりも上流側の透析液流路13aには、透析用水の給水圧を測定する第5圧力検出装置185が設けられている。複式ポンプ16と血液浄化器12間の透析液流路13aには、血液浄化器12に導入される透析液の圧力を測定する第6圧力検出装置186が設けられている。また、血液浄化器12と複式ポンプ16間の排液流路14には、血液浄化器12から排出された排液の圧力を測定する第7圧力検出装置187が設けられている。
血液浄化器12からの排液は、排液流路14を通り排出される。複式ポンプ16は、透析液流路13aと排液流路14とにわたって設けられており、血液浄化器12に導入される透析液の量と、血液浄化器12から排出される排液の量が等しくなるように、ポンプ動作を行う。また、排液流路14には、複式ポンプ16をバイパスするように除水流路14aが設けられており、この除水流路14aに、除水ポンプ17が設けられている。除水ポンプ17を駆動すると、血液浄化器12に導入される透析液の量よりも、血液浄化器12から排出される排液の量が多くなり、血液からの除水が行われる。除水ポンプ17の送液量を調整することにより、血液からの除水量を調整することができる。
本実施の形態に係る血液浄化装置10では、血液回路11、液供給流路13(ここでは透析液流路13a)、または排液流路14に設けられる圧力検出装置181~187の少なくとも1つが、本実施の形態に係る圧力検出装置1である。血液浄化装置10では、第1~第7圧力検出装置181~187の少なくとも1つに、本実施の形態に係る圧力検出装置1を用いてもよいし、他の位置に設けた圧力検出装置として本実施の形態に係る圧力検出装置1を用いてもよい。
なお、図1の構成はあくまで一例であり、血液浄化装置10の具体的な構成は適宜変更可能である。
(圧力検出装置1)
図2Aは、本実施の形態に係る圧力検出装置1の概略構成図であり、図2Bはケースの断面図であり、図2Cは往復動ポンプの概略構成図である。
図2A~図2Cに示すように、圧力検出装置1は、圧力の測定対象となる液体(ここでは血液)を流通する液流路4(ここでは血液回路11)に設けられたケース2と、ケース2内の空間を、液体(血液)が流通する第1空間2aと気体(ここでは空気)が充填された第2空間2bとに区画するダイアフラム3と、第2空間2bに充填された気体の圧力を測定する圧力センサ6と、第2空間2bに充填された気体の充填量を調節することで、ダイアフラム3の初期位置を所望の位置に調整可能なダイアフラム初期位置調整機構5と、ダイアフラム初期位置調整機構5を制御する制御部7と、を備えている。以下では、圧力の測定対象となる液体を血液、第2空間2bに充填される気体を空気と記載するが、測定対象となる液体や第2空間2bに充填される気体については、これに限定されない。また、以下の説明において単に空気という場合、第2空間2b等に充填されている空気を意味することとする。
液流路4は、第1空間2aに血液を流入させる流入流路4aと、第1空間2aから血液を流出させる流出流路4bと、を有する。例えば、圧力検出装置1を図1の第2圧力検出装置182として用いる場合、流入流路4aは血液ポンプ111から延びる血液回路11となり、流出流路4bは血液浄化器12へと延びる血液回路11となる。
ケース2は、硬質の樹脂成形品等からなり、液流路4に設けられる。ケース2は、第1空間2aと連通され流入流路4aが接続される第1接続部21と、第1空間2aと連通され流出流路4bが接続される第2接続部22と、を一体に有している。また、ケース2は、第2空間2bと連通され外方へと突出する突出部23を一体に有している。また、圧力検出装置1は、ケース2と別体に形成され、突出部23が挿入され接続されるソケット部24を備えている。図示していないが、ソケット部24には、後述する測定用流路61が接続されており、突出部23をソケット部24に挿入し接続することで、測定用流路61と第2空間2bとが連通される。ケース2は、ソケット部24から突出部23を離脱させることにより、ソケット部24から取り外し可能に構成されており、これにより、ケース2を使い捨てにできるようになっている。そのため、新たなケース2を取り付ける度に、後述するダイアフラム3の初期位置の調整が行われる。なお、ケース2は全体を使い捨てにする必要はなく、例えばダイアフラム3よりも第2空間2b側で分割可能とし、第1空間2aを含む部分のケース2のみを使い捨てにするよう構成してもよい。なお、ケース2とソケット部24とが別体に形成されることは必須ではなく、ケース2とソケット部24とが一体に形成されていてもよい。
ダイアフラム3は、可撓性を有する膜であり、ケース2の内部空間を、第1空間2aと第2空間2bの2つの空間に区画するようにケース2内に設けられている。なお、ケース2やダイアフラム3の材質については、特に限定されない。ダイアフラム3は、第1空間2a内の血液の圧力に応じて変位可能に構成されており、第1空間2a内の血液の圧力を、第2空間2b内の空気へと伝達する役割を果たす。
圧力センサ6は、測定用流路61を介してケース2の第2空間2bと接続されており、第2空間2b内、及び測定用流路61内に充填された空気の圧力を測定するものである。圧力センサ6の検出信号は、制御部7へと出力される。
ダイアフラム初期位置調整機構5は、往復動ポンプ51と、往復動ポンプ51と第2空間2bとを接続するポンプ流路53と、ポンプ流路53に設けられポンプ流路53を開閉するポンプ流路開閉機構としてのポンプ流路開閉弁52と、を有している。本実施の形態では、ポンプ流路53は、測定用流路61を介して第2空間2bへと接続されているが、ポンプ流路53が直接ケース2の第2空間2bへと接続されていてもよい。ポンプ流路開閉弁52としては、開閉制御を自動制御できるように電磁弁を用いることが望ましいが、例えばクランプ機構等を用いてもよい。本実施の形態では、ポンプ流路開閉弁52として電磁弁を用いた。
往復動ポンプ51は、レシプロポンプ、プランジャポンプ、あるいはピストンポンプとも呼称されるものであり、ポンプ流路53及び測定用流路61を介して第2空間2bと連通されたシリンダ511と、シリンダ511内で進退可能に設けられた押し子(プランジャ又はピストン)512と、押し子512を進退駆動させる押し子駆動部513と、を有している。シリンダ511内、及びポンプ流路53内には、第2空間2bや測定用流路61と同様に空気が充填されており、押し子駆動部513により押し子512をシリンダ511内で進退させることで、第2空間bに充填された空気の充填量を調節して、ダイアフラム3の位置を調整することができる。押し子駆動部513としては、例えば、ステッピングモータを用いることができる。
制御部7は、往復動ポンプ51及びポンプ流路開閉弁52の制御を行うことで、ダイアフラム3の初期位置を調整するものである。制御部7は、CPU等の演算素子、メモリ等の記憶装置、ソフトウェア、インターフェイス等を適宜組み合わせて実現される。
本実施の形態では、第2空間2b、測定用流路61、シリンダ511、ポンプ流路53に充填されている空気の充填量が既知であるとする。この場合、押し子512をどの位置とすればダイアフラム3が所望の位置となるかが既知となるので、制御部7は、ダイアフラム3が所望の位置となるように、押し子512を所定の位置(調整位置という)へと移動させる制御を行う。
具体的には、図3に示すように、制御部7は、まず、ステップS11にて、ポンプ流路開閉弁52を開放し、ステップS12にて、押し子512を初期位置から移動(例えば、押し子512を押し切った位置から減圧側に後退、あるいは押し子512を引き切った位置から加圧側に進出)させ、ステップS13にて、所定時間経過したかを判定する。なお、ステップS13では、押し子512の移動量が所定移動量になったかを判定してもよい。ステップS13にてNOと判定された場合、ステップS12に戻る。ステップS13にてYESと判定された場合、ステップS14にて押し子512を停止した後、ステップS15にてポンプ流路開閉弁52を閉塞し、処理を終了する。ステップS13で判定に用いる時間(上述の所定時間)は、初期位置から調整位置まで押し子512を移動させるのに必要な時間に設定される。制御部7は、血液浄化治療の前、例えばプライミングの際に、図3の制御フローを実行し、ダイアフラム3の初期位置の調整を行うことが望ましい。
本実施の形態では、押し子512を移動させて第2空間2bの空気の充填量を調節するために、空気の圧力をリニアに変化させることができる。例えば、空気を加圧、減圧する手段として蠕動ポンプを用いた場合には、空気の圧力が段階的に変化するために、ダイアフラム3の初期位置を精密に調整することが困難となる。つまり、本実施の形態のように往復動ポンプ51を用いることで、ダイアフラム3の初期位置をより精密に調整することが可能になる。また、蠕動ポンプでは可撓性を有するチューブをしごく構成となっているため、チューブの製造ばらつきや、チューブの経年劣化により吐出量がばらついてしまうが、往復動ポンプ51ではチューブを使用しないためにこのような不具合を抑制できる。また、蠕動ポンプでは、チューブを定期交換する必要があるが、往復動ポンプ51ではこのような定期交換部品が不要であるため、耐久性が高く、また部品点数を削減してコスト低減にも寄与する。
さらに、往復動ポンプ51によってダイアフラム3の初期位置を調整した後に、ポンプ流路開閉弁52によりポンプ流路53を閉塞可能とすることで、第2空間2bから圧力センサ6に圧力を伝達する空気の充填量を低減可能になる。圧力検出装置1では、第2空間2bから圧力センサ6に圧力を伝達する空気の充填量に応じて圧力検出装置1のサイズが決まるため、ポンプ流路開閉弁52を備えることで、さらなる装置の小型化が可能になる。なお、ポンプ流路開閉弁52は必須ではなく、省略可能である。
なお、ダイアフラム3が破損した場合、往復動ポンプ51による加圧を行った際に、空気が血液回路11内に漏れるため、加圧できなくなる。よって、往復動ポンプ51による加圧を行った際の圧力センサ6の出力値を基に、圧力検出装置1の故障を検出することも可能である。
(変形例)
本実施の形態では、第2空間2b、測定用流路61、シリンダ511、ポンプ流路53に充填されている空気の充填量が既知であるとしたが、空気の充填量が未知である場合には、空気の充填量を推定する手段が必要になる。例えば、押し子512を移動させた際の空気の圧力の変化から、空気の充填量を推定することができる。この場合、制御部7は、押し子512を移動させた距離とその際の空気の圧力の変化とに基づき、空気の充填量を推定すると共に、推定した空気の充填量を基に、ダイアフラム3が所望の位置となる押し子512の位置である調整位置を演算し、押し子512を調整位置に移動させる。空気の充填量の推定の際には、例えば、ボイルシャルルの法則を用いて推定を行うとよい。
図4Aは、押し子512の移動距離を基準として空気の充填量を推定する場合の制御フローである。図4Aに示すように、制御部7は、まず、ステップS21にて、ポンプ流路開閉弁52を開放し、ステップS22にて、押し子512を初期位置から後退(例えば、押し子512を押し切った位置から減圧側に後退)させ、ステップS23にて、押し子512が所定の減圧位置に到達したか(押し子512を所定距離移動させたか)を判定する。ステップS23にてNOと判定された場合、ステップS22に戻る。ステップS23にてYESと判定された場合、ステップS24にて押し子512を停止した後、ステップS25にて、押し子512の移動距離と、圧力センサ6で検出した空気の圧力変化とを基に、空気の充填量を推定し、ダイアフラム3が所望の位置となる押し子512の調整位置を演算する。その後、ステップS26にて、押し子512を進出させ、ステップS27にて、押し子512が調整位置に到達したかを判定する。ステップS27にてNOと判定された場合、ステップS26に戻る。ステップS27にてYESと判定された場合、ステップS28にて押し子512を停止した後、ステップS29にてポンプ流路開閉弁52を閉塞し、処理を終了する。
図4Bは、空気の圧力変化を基準とした場合の制御フローである。図4Bの制御フローは、図4Aの制御フローにおけるステップS23を、空気の圧力が所定圧力であるかを判定するステップS23aに置き換えたものである。つまり、図4Aでは、押し子512を所定距離移動させた際の空気の圧力変化を検出しており、図4Bでは、空気の圧力変化が所定値となる押し子512の移動距離を検出している。これらどちらの方法を用いても空気の充填量を推定し、押し子512の調整位置を演算することが可能である。
なお、図4A,図4Bの例では、押し子512の位置を検出する押し子位置検出部が必要になる。押し子位置検出部としては、例えば、押し子駆動部513に用いるモータ等の回転数を検出するエンコーダや、押し子512の位置を直接的に検出するリニアポテンショメータ等を用いることができる。また、押し子駆動部513としてステッピングモータ(パルスモータ)を用いることで、ステッピングモータの駆動量(出力パルス数)から押し子512の位置を検出することも可能である。押し子512を一定速度で動作させ、動作時間から押し子512の検出することも可能である。さらに、押し子位置検出部としては、リミットスイッチ、ひずみゲージ、圧電素子センサ等の接触式センサを用いることもできるし、光電センサ、圧力センサ等の間接式センサを用いることもできる。
さらに、ダイアフラムが所定位置(例えば、第1空間2aの容積が最大あるいは最小となる位置)にあることを検出可能なダイアフラム位置検出部を備えてもよい。ダイアフラム位置検出部は、例えば、光電センサ等のセンサ類を用いてダイアフラム3の位置を検出するように構成されてもよい。また、上述のエンコーダ、リニアポテンショメータの検出結果や、ステッピングモータの駆動量、あるいは圧力センサ6の出力を用いて、ダイアフラム3の位置を推定することも可能である。
ダイアフラム位置検出部を備えた場合、制御部7は、押し子512を初期位置から移動させ、ダイアフラム3が所定位置にあることをダイアフラム位置検出部が検出するまでの押し子512の移動量に基づき、空気の充填量を推定するとよい。より具体的には、ダイアフラム3が無負荷状態の位置から、ダイアフラム3が所定位置(例えば、第1空間2aの容積が最大となる位置)となるまでに必要な押し子512の後退距離から、空気の充填量を推定することができる。この場合の制御フローを図5に示す。図5の制御フローは、図4Aの制御フローにおけるステップS23を、ダイアフラム3が所定位置にあるかを判定するステップS23bに置き換え、かつ、図4Aの制御フローにおけるステップS25を、押し子512の移動距離を基に空気の充填量を推定し調整位置を演算するステップS25bに置き換えたものである。
(実施の形態の作用及び効果)
以上説明したように、本実施の形態に係る圧力検出装置1では、第2空間2bに充填された空気の充填量を調節することで、ダイアフラム3の初期位置を所望の位置に調整可能なダイアフラム初期位置調整機構5を備え、ダイアフラム初期位置調整機構5は、押し子512をシリンダ511内で進退させることで第2空間2bに充填された気体の充填量を調節する往復動ポンプ51を有している。
往復動ポンプ51によりダイアフラム3の初期位置を調整することにより、蠕動ポンプ等を用いた場合と比較して、ダイアフラム3の初期位置を、任意の位置に、精度よく調整可能となり、ダイアフラム3の初期位置のばらつきを抑制することが可能になる。ダイアフラム3の初期位置のばらつきを抑えることで、ケース2を取り換える度に行われるダイアフラム3の初期位置の調整の繰り返し精度を向上させることができ、圧力検出精度を向上できると共に、圧力検出範囲を精度よく調整することが可能になる。また、ダイアフラム3の初期位置のばらつきが大きい場合には、当該ばらつきを吸収するために第2空間2bや測定用流路61に充填される空気の充填量を大きくする必要があるが、本実施の形態によれば、ダイアフラム3の初期位置のばらつきを抑えることができるために、空気の充填量を小さくでき、圧力検出装置1の小型化に寄与する。
(他の実施の形態)
図6Aに示す圧力検出装置1aは、図2Aの圧力検出装置1において、第2空間2b等に充填された空気を大気開放可能な圧力開放機構8を備えたものである。圧力開放機構8は、一端が往復動ポンプ51とポンプ流路開閉弁52との間のポンプ流路53に連結され、他端が大気開放された圧力開放流路81と、圧力開放流路81に設けられ圧力開放流路81を開閉可能な圧力開放弁82と、を有している。圧力開放弁82の開閉は、制御部7により制御される。本実施の形態では、圧力開放弁82として電磁弁を用いたが、例えばクランプ機構を用いてもよい。
圧力検出装置1aでは、制御部7は、押し子512を初期位置から後退させ所定の減圧位置(圧力付加位置)まで移動させ、圧力開放弁82を開放し空気を大気開放した後に圧力開放弁82を閉塞し、その後ダイアフラム3が所望の位置となる押し子512の位置である調整位置に、押し子512を移動させる。なお、押し子512を初期位置から進出させて所定の加圧位置まで移動させた後に、大気開放してもよい。
新たなケース2をソケット部24に取り付けた際、ケース2内でのダイアフラム3の位置は、未調整の状態では様々な位置をとり得る。そこで、往復動ポンプ51によりダイアフラム3を一方向へと動かした後に、大気開放する制御を行うことで、ダイアフラム3を一定の位置(無負荷状態の位置)に揃えることができ、かつ、第2空間2b等に充填されている空気を大気圧として、空気の充填量を既知の量とすることができる。その後、押し子512を所定の調整位置に移動させることで、ダイアフラム3を所望の位置に精度よく調整することができる。
図6Bは、圧力検出装置1aにおける制御部7の制御フローである。図6Bの制御フローは、図4Aの制御フローにおけるステップS25を、圧力開放弁82を開放するステップS30、及び、ステップS30の後に圧力開放弁82を閉塞するステップS31に置き換えたものである。
また、この圧力検出装置1aでは、測定用流路61に、配管内への異物混入防止のため、エアフィルタ62が設けられている。エアフィルタ62は、所謂疎水性のフィルタであり、気体を通すが液体を通さない(液体を通す際の抵抗が非常に高い)ように構成されている。
図7Aに示す圧力検出装置1bは、図6Aの圧力検出装置1aにおいて、さらに、液流路4を閉塞することでダイアフラム3の位置を固定可能なダイアフラム位置固定機構9を備えたものである。ダイアフラム位置固定機構9は、流入流路4aと流出流路4bの両方を同時に閉塞できるように構成されている。本実施の形態では、ダイアフラム位置固定機構9は、流入流路4aに設けられ流入流路4aを開閉可能な第1ダイアフラム位置固定用弁9aと、流出流路4bに設けられ流出流路4bを開閉可能な第2ダイアフラム位置固定用弁9bと、を有している。両ダイアフラム位置固定用弁9a,9bを閉塞することで、第1空間2aを含む両ダイアフラム位置固定用弁9a,9b間の液流路4が閉じられた状態となり、ダイアフラム3の位置が固定される。本実施の形態では、両ダイアフラム位置固定用弁9a,9bとして電磁弁を用いたが、例えばクランプ機構を用いてもよい。両ダイアフラム位置固定用弁9a,9bの開閉制御は、制御部7により行われる。なお、本実施の形態においては、ポンプ流路開閉弁52もダイアフラム位置固定機構9としての役割を果たすことになる。
圧力検出装置1bでは、制御部7は、ダイアフラム位置固定機構9によりダイアフラム3の位置を固定した後に、圧力開放弁82を開放する。具体的には、図7Bに示すように、図6Bの制御フローにおけるステップS24とステップS30との間に、両ダイアフラム位置固定用弁9a,9bを閉塞してダイアフラム3を固定するステップS32を挿入すると共に、ステップS31とステップS26との間に、両ダイアフラム位置固定用弁9a,9bを開放してダイアフラム3の固定を解除するステップS33を挿入する。なお、ステップS33(両ダイアフラム位置固定用弁9a,9bの開放)は、押し子512を調整位置に戻した後、すなわちステップS28以降に行ってもよい。
これにより、ステップS30で圧力開放弁82を開放した際に、ダイアフラム3が無負荷状態の位置に戻らず、例えば第1空間2aの容積が最も大きくなる位置で保持されることになる。よって、ダイアフラム3を無負荷状態の位置に戻す図6A,図6Bと比較して、大気開放した際のダイアフラム3の位置をより一定の位置に保つことが可能になり、ダイアフラム3の位置調整精度がより向上する。
(実施の形態のまとめ)
次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
[1]圧力の測定対象となる液体を流通する液流路に設けられたケース(2)と、前記ケース(2)内の空間を、前記液体が流通する第1空間(2a)と、気体が充填された第2空間(2b)とに区画するように設けられ、前記第1空間(2a)内の前記液体の圧力に応じて変位可能なダイアフラム(3)と、前記第2空間(2b)に充填された前記気体の圧力を測定する圧力センサ(6)と、前記第2空間(2b)に充填された前記気体の充填量を調節することで、前記ダイアフラム(3)の初期位置を所望の位置に調整可能なダイアフラム初期位置調整機構(5)と、を備え、前記ダイアフラム初期位置調整機構(5)は、前記第2空間(2b)と連通されたシリンダ(511)、前記シリンダ(511)内で進退可能に設けられた押し子(512)、及び前記押し子(512)を進退駆動させる押し子駆動部(513)を有し、前記押し子駆動部(513)により前記押し子(512)を前記シリンダ(511)内で進退させることで前記第2空間(2b)に充填された前記気体の充填量を調節する往復動ポンプ(51)を有する、圧力検出装置(1)。
[2]前記ダイアフラム初期位置調整機構(5)は、前記往復動ポンプ(51)と前記第2空間(2b)とを接続するポンプ流路(52)と、前記ポンプ流路(52)に設けられ前記ポンプ流路(52)を開閉するポンプ流路開閉機構(53)と、を有している、[1]に記載の圧力検出装置(1)。
[3]前記往復動ポンプ(51)の制御を行うことで前記ダイアフラム(3)の初期位置を調整する制御部(7)を備え、前記制御部(7)は、前記押し子(512)を移動させた距離とその際の前記気体の圧力の変化とに基づき、前記気体の充填量を推定すると共に、推定した前記気体の充填量を基に、前記ダイアフラム(3)が所望の位置となる前記押し子(512)の位置である調整位置を演算し、前記押し子(512)を前記調整位置に移動させる、[1]または[2]に記載の圧力検出装置(1)。
[4]前記往復動ポンプ(51)の制御を行うことで前記ダイアフラム(3)の初期位置を調整する制御部(7)と、前記ダイアフラム(3)が所定位置にあることを検出可能なダイアフラム位置検出部と、を備え、前記制御部(7)は、前記押し子(512)を初期位置から移動させ、前記ダイアフラム(3)が前記所定位置にあることを前記ダイアフラム位置検出部が検出するまでの前記押し子(512)の移動量に基づき、前記気体の充填量を推定すると共に、推定した前記気体の充填量を基に、前記ダイアフラム(3)が所望の位置となる前記押し子(512)の位置である調整位置を演算し、前記押し子(512)を前記調整位置に移動させる、[1]または[2]に記載の圧力検出装置(1)。
[5]前記気体を大気開放可能な圧力開放弁(82)を有する圧力開放機構(8)と、前記往復動ポンプ(51)、及び前記圧力開放機構(8)の制御を行うことで前記ダイアフラム(3)の初期位置を調整する制御部(7)と、を備え、前記制御部(7)は、前記押し子(512)を進出又は後退させ所定の圧力付加位置まで移動させ、前記圧力開放弁(82)を開放し前記気体を大気開放した後に前記圧力開放弁(82)を閉塞し、その後前記ダイアフラム(3)が所望の位置となる前記押し子(512)の位置である調整位置に、前記押し子(512)を移動させる、[1]または[2]に記載の圧力検出装置(1a)。
[6]前記液流路(4)を閉塞することで前記ダイアフラム(3)の位置を固定可能なダイアフラム位置固定機構(9)を備え、前記制御部(7)は、前記ダイアフラム位置固定機構(9)により前記ダイアフラム(3)の位置を固定した後に、前記圧力開放弁(82)を開放する、[5]に記載の圧力検出装置(1b)。
[7]前記圧力センサ(6)が接続されるソケット部(24)を備え、前記ケース(2)及び前記ダイアフラム(3)は、前記ソケット部(24)に対して取り外し可能に設けられている、[1]乃至[6]の何れか1項に記載の圧力検出装置(1)。
[8]患者の血液を体外循環させる血液回路(11)と、前記血液回路(11)、あるいは前記血液回路(11)に設けられた血液浄化器(12)に供給液を供給する液供給流路(13)と、前記血液浄化器(12)からの排液を排出する排液流路(14)と、を備え、前記血液回路(11)、前記液供給流路(13)、または前記排液流路(14)に設けられる圧力検出装置(181~187)の少なくとも1つが、[1]乃至[7]の何れか1項に記載の圧力検出装置(1,1a,1b)である、血液浄化装置(10)。
以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。また、本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。
1…圧力検出装置
2…ケース
2a…第1空間
2b…第2空間
3…ダイアフラム
4…液流路
5…ダイアフラム初期位置調整機構
51…往復動ポンプ
511…シリンダ
512…押し子
513…押し子駆動部
52…ポンプ流路開閉弁
53…ポンプ流路
6…圧力センサ
7…制御部
8…圧力開放機構
82…圧力開放弁
9…ダイアフラム位置固定機構
10…血液浄化装置
11…血液回路
12…血液浄化器
13…液供給流路
14…排液流路

Claims (8)

  1. 圧力の測定対象となる液体を流通する液流路に設けられたケースと、
    前記ケース内の空間を、前記液体が流通する第1空間と、気体が充填された第2空間とに区画するように設けられ、前記第1空間内の前記液体の圧力に応じて変位可能なダイアフラムと、
    前記第2空間に充填された前記気体の圧力を測定する圧力センサと、
    前記第2空間に充填された前記気体の充填量を調節することで、前記ダイアフラムの初期位置を所望の位置に調整可能なダイアフラム初期位置調整機構と、を備え、
    前記ダイアフラム初期位置調整機構は、前記第2空間と連通されたシリンダ、前記シリンダ内で進退可能に設けられた押し子、及び前記押し子を進退駆動させる押し子駆動部を有し、前記押し子駆動部により前記押し子を前記シリンダ内で進退させることで前記第2空間に充填された前記気体の充填量を調節する往復動ポンプを有する、
    圧力検出装置。
  2. 前記ダイアフラム初期位置調整機構は、前記往復動ポンプと前記第2空間とを接続するポンプ流路と、前記ポンプ流路に設けられ前記ポンプ流路を開閉するポンプ流路開閉機構と、を有している、
    請求項1に記載の圧力検出装置。
  3. 前記往復動ポンプの制御を行うことで前記ダイアフラムの初期位置を調整する制御部を備え、
    前記制御部は、前記押し子を移動させた距離とその際の前記気体の圧力の変化とに基づき、前記気体の充填量を推定すると共に、推定した前記気体の充填量を基に、前記ダイアフラムが所望の位置となる前記押し子の位置である調整位置を演算し、前記押し子を前記調整位置に移動させる、
    請求項1または2に記載の圧力検出装置。
  4. 前記往復動ポンプの制御を行うことで前記ダイアフラムの初期位置を調整する制御部と、
    前記ダイアフラムが所定位置にあることを検出可能なダイアフラム位置検出部と、を備え、
    前記制御部は、前記押し子を初期位置から移動させ、前記ダイアフラムが前記所定位置にあることを前記ダイアフラム位置検出部が検出するまでの前記押し子の移動量に基づき、前記気体の充填量を推定すると共に、推定した前記気体の充填量を基に、前記ダイアフラムが所望の位置となる前記押し子の位置である調整位置を演算し、前記押し子を前記調整位置に移動させる、
    請求項1または2に記載の圧力検出装置。
  5. 前記気体を大気開放可能な圧力開放弁を有する圧力開放機構と、
    前記往復動ポンプ、及び前記圧力開放機構の制御を行うことで前記ダイアフラムの初期位置を調整する制御部と、を備え、
    前記制御部は、前記押し子を進出又は後退させ所定の圧力付加位置まで移動させ、前記圧力開放弁を開放し前記気体を大気開放した後に前記圧力開放弁を閉塞し、その後前記ダイアフラムが所望の位置となる前記押し子の位置である調整位置に、前記押し子を移動させる、
    請求項1または2に記載の圧力検出装置。
  6. 前記液流路を閉塞することで前記ダイアフラムの位置を固定可能なダイアフラム位置固定機構を備え、
    前記制御部は、前記ダイアフラム位置固定機構により前記ダイアフラムの位置を固定した後に、前記圧力開放弁を開放する、
    請求項5に記載の圧力検出装置。
  7. 前記圧力センサが接続されるソケット部を備え、
    前記ケース及び前記ダイアフラムは、前記ソケット部に対して取り外し可能に設けられている、
    請求項1乃至6の何れか1項に記載の圧力検出装置。
  8. 患者の血液を体外循環させる血液回路、前記血液回路または前記血液回路に設けられた血液浄化器に供給液を供給する液供給流路、あるいは前記血液浄化器からの排液を排出する排液流路に設けられる圧力検出装置の少なくとも1つが、請求項1乃至7の何れか1項に記載の圧力検出装置である、
    血液浄化装置。
PCT/JP2020/022406 2019-06-12 2020-06-05 圧力検出装置及びそれを用いた血液浄化装置 WO2020250839A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080042954.2A CN113950340A (zh) 2019-06-12 2020-06-05 压力检测装置及使用该装置的血液净化装置
US17/617,620 US20220236127A1 (en) 2019-06-12 2020-06-05 Pressure sensing device and blood purification apparatus using same
EP20823487.2A EP3967997A4 (en) 2019-06-12 2020-06-05 PRESSURE SENSING DEVICE AND BLOOD PURIFICATION APPARATUS USING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019109371A JP2020201175A (ja) 2019-06-12 2019-06-12 圧力検出装置及びそれを用いた血液浄化装置
JP2019-109371 2019-06-12

Publications (1)

Publication Number Publication Date
WO2020250839A1 true WO2020250839A1 (ja) 2020-12-17

Family

ID=73743329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022406 WO2020250839A1 (ja) 2019-06-12 2020-06-05 圧力検出装置及びそれを用いた血液浄化装置

Country Status (5)

Country Link
US (1) US20220236127A1 (ja)
EP (1) EP3967997A4 (ja)
JP (1) JP2020201175A (ja)
CN (1) CN113950340A (ja)
WO (1) WO2020250839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138109A1 (ja) * 2020-12-21 2022-06-30 日機装株式会社 圧力測定装置および医療装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6483874B1 (ja) * 2018-01-18 2019-03-13 日機装株式会社 圧力検出器の調整装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033430A (ja) * 2001-07-24 2003-02-04 Aisin Seiki Co Ltd 血液ポンプ駆動装置
US20070179422A1 (en) * 2005-11-09 2007-08-02 Schnell William J Diaphragm pressure pod for medical fluids
JP2017529126A (ja) * 2014-09-26 2017-10-05 フレセニウス メディカル ケア ホールディングス インコーポレーテッド 体外血液透析機用圧力出力装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474540A (en) * 1982-09-10 1984-10-02 Pennwalt Corporation Tubular diaphragm pump
DE3408331C2 (de) * 1984-03-07 1986-06-12 Fresenius AG, 6380 Bad Homburg Pumpanordnung für medizinische Zwecke
JPH0536433Y2 (ja) * 1986-03-31 1993-09-14
FR2724321A1 (fr) * 1994-09-14 1996-03-15 Hospal Ind Dispositif de mesure de la pression d'un liquide et procede de reglage d'un tel dispositif
US6526357B1 (en) * 1999-08-09 2003-02-25 Gambro, Inc. Associated parameter measuring and/or monitoring such as in the evaluation of pressure differences
JP4435965B2 (ja) * 2000-11-10 2010-03-24 泉工医科工業株式会社 血液ポンプ駆動装置
JP4286165B2 (ja) * 2004-03-10 2009-06-24 旭化成クラレメディカル株式会社 血液浄化装置のプライミング方法および血液浄化装置
US20140199193A1 (en) * 2007-02-27 2014-07-17 Deka Products Limited Partnership Blood treatment systems and methods
DE102011105824B3 (de) * 2011-05-27 2012-05-31 Fresenius Medical Care Deutschland Gmbh Verfahren zur Bestimmung von Gas in einer durch eine Pumpvorrichtung gepumpten Flüssigkeit
EP2744537B1 (en) * 2011-08-16 2018-01-24 Medtronic, Inc. Modular hemodialysis system
EP2931334B1 (en) * 2012-12-14 2017-08-09 Gambro Lundia AB Diaphragm repositioning for pressure pod using position sensing
US9844620B2 (en) * 2012-12-20 2017-12-19 Gambro Lundia Ab Blood set component connection detection
US9623164B2 (en) * 2013-02-01 2017-04-18 Medtronic, Inc. Systems and methods for multifunctional volumetric fluid control
US9561323B2 (en) * 2013-03-14 2017-02-07 Fresenius Medical Care Holdings, Inc. Medical fluid cassette leak detection methods and devices
US8960010B1 (en) * 2013-12-23 2015-02-24 Fresenius Medical Care Holdings, Inc. Automatic detection and adjustment of a pressure pod diaphragm
DE102016008755B4 (de) * 2016-07-18 2024-06-06 Fresenius Medical Care Deutschland Gmbh Dialysegerät mit einer Steuereinheit zur Durchführung einer Konditionierung der Dialysemembran
JP6483874B1 (ja) * 2018-01-18 2019-03-13 日機装株式会社 圧力検出器の調整装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003033430A (ja) * 2001-07-24 2003-02-04 Aisin Seiki Co Ltd 血液ポンプ駆動装置
US20070179422A1 (en) * 2005-11-09 2007-08-02 Schnell William J Diaphragm pressure pod for medical fluids
JP2017529126A (ja) * 2014-09-26 2017-10-05 フレセニウス メディカル ケア ホールディングス インコーポレーテッド 体外血液透析機用圧力出力装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138109A1 (ja) * 2020-12-21 2022-06-30 日機装株式会社 圧力測定装置および医療装置
JP2022098218A (ja) * 2020-12-21 2022-07-01 日機装株式会社 圧力測定装置および医療装置
JP7189925B2 (ja) 2020-12-21 2022-12-14 日機装株式会社 圧力測定装置および医療装置

Also Published As

Publication number Publication date
US20220236127A1 (en) 2022-07-28
CN113950340A (zh) 2022-01-18
EP3967997A4 (en) 2023-01-11
JP2020201175A (ja) 2020-12-17
EP3967997A1 (en) 2022-03-16

Similar Documents

Publication Publication Date Title
WO2020250839A1 (ja) 圧力検出装置及びそれを用いた血液浄化装置
JP2019080929A (ja) 空気検出および排除を備えた空気圧結合された流体制御システムおよびプロセス
KR102157282B1 (ko) 투석 기계
JP6195825B2 (ja) ポンプ装置により輸送される液体中のガスを測定するための方法及び装置
JP4309970B2 (ja) ポンピングおよび計量装置
US20160193399A1 (en) Dialysis Machine Calibration
US20120279910A1 (en) Dialysis Machine
WO2020250835A1 (ja) ダイアフラムポンプ及びそれを用いた血液浄化装置
TWI617362B (zh) 抽汲系統、用以在一抽汲系統中偵測空氣之方法及電腦程式產品
JP6026133B2 (ja) 海水淡水化システムおよびエネルギー回収装置
JP2019124636A (ja) 圧力検出器の調整装置
CN107198903B (zh) 获知净水装置的主过滤模块状态的方法以及净水装置
CN115200655A (zh) 计量装置和计量液体介质的方法
CN107219158B (zh) 获知净水装置的主过滤模块状态的方法和净水装置
WO2023202928A1 (en) Pump for a bioprocessing system
US10962455B2 (en) Method for testing the rigidity of a disposable
JP2011180093A (ja) 燃料残量検出装置
JPS586504B2 (ja) 限外濾過量測定装置
JP2015009105A (ja) 血液透析装置及び血液透析装置の作動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020823487

Country of ref document: EP

Effective date: 20211210