WO2020250735A1 - High-strength hot-rolled steel sheet and method for manufacturing same - Google Patents

High-strength hot-rolled steel sheet and method for manufacturing same Download PDF

Info

Publication number
WO2020250735A1
WO2020250735A1 PCT/JP2020/021621 JP2020021621W WO2020250735A1 WO 2020250735 A1 WO2020250735 A1 WO 2020250735A1 JP 2020021621 W JP2020021621 W JP 2020021621W WO 2020250735 A1 WO2020250735 A1 WO 2020250735A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
phase
steel sheet
rolled
rolled steel
Prior art date
Application number
PCT/JP2020/021621
Other languages
French (fr)
Japanese (ja)
Inventor
山崎 和彦
ティーフィン ドアン
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202080043029.1A priority Critical patent/CN114008231B/en
Priority to JP2020546177A priority patent/JP6819840B1/en
Priority to KR1020217040428A priority patent/KR102635009B1/en
Publication of WO2020250735A1 publication Critical patent/WO2020250735A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a high-strength hot-rolled steel sheet and a method for manufacturing the same.
  • Patent Documents 1 to 4 do not disclose high-strength hot-rolled steel sheets having a tensile strength of 1180 MPa or more and also having excellent ductility, fatigue characteristics, and punching roughness resistance. Therefore, an object of the present invention is to provide a high-strength hot-rolled steel sheet having a tensile strength of 1180 MPa or more and excellent in ductility, fatigue characteristics and punching roughness resistance, and a method for producing the same.
  • the present invention provides the following [1] to [7].
  • the tensile strength is 1180 MPa or more
  • the arithmetic average roughness Ra of the surface is 2.00 ⁇ m or less
  • in mass% C: 0.09% or more and 0.20% or less
  • Mn 1.0% or more and 3.0% or less
  • P 0.100% or less
  • S 0.0100% or less
  • Al 0.01% or more and 2.00% or less
  • N 0.010% or less
  • Ti 0.001% or more and less than 0.030%
  • B 0.0005% or more and 0.0200% or less
  • Cr 0.10% or more 1 Select from the group consisting of .50% or less, Mo: 0.05% or more and 0.45% or less, Nb: 0.005% or more and 0.060% or less, and V: 0.05% or more and 0.50% or less.
  • It has a component composition containing at least one of these, the balance of which is Fe and unavoidable impurities, and a microstructure containing an upper bainite phase and a second phase, and the area ratio of the upper bainite phase is 50% or more. Less than 90%, the average particle size of the upper bainite phase is 12.0 ⁇ m or less, and the second phase is the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite. At least one selected from the group consisting of phases, the area ratio of the second phase is 10% or more and less than 50%, and the circumference equivalent to the circle is 0.5 ⁇ m or more.
  • the above-mentioned component composition is at least one selected from the group consisting of Cu: 0.01% or more and 0.50% or less, and Ni: 0.01% or more and 0.50% or less in mass%.
  • the composition of the above components is, in mass%, Ca: 0.0002% or more and 0.0100% or less, Mg: 0.0002% or more and 0.0100% or less, and REM: 0.0002% or more and 0.
  • the rough-rolled plate subjected to the high-pressure water descaling is subjected to finish-rolling at a finish-rolling end temperature of (RC-100) ° C. or higher (RC + 100) ° C. to obtain a finished-rolled plate.
  • the finished rolled sheet is cooled at an average cooling rate of 20 ° C./s or higher to a cooling stop temperature of (Bs-150) ° C. or higher and Bs ° C. or lower, where Bs is defined by the following formula (2).
  • Bs is defined by the following formula (2).
  • the finish rolling end temperature is RC ° C. or higher
  • the time from the end of the finish rolling to the start of the cooling is 2.0 s or less, and the cooled finish rolling plate is stopped.
  • each element symbol in the above formula represents the content of each element in the above component composition in mass%. In the case of an element that does not include the above component composition, the element symbol in the above formula is set to 0 for calculation. [7] The method for producing a high-strength hot-rolled steel sheet according to the above [6], wherein after the winding, the cooled finished rolled plate is plated.
  • the present invention it is possible to provide a high-strength hot-rolled steel sheet having a tensile strength of 1180 MPa or more and excellent in ductility, fatigue characteristics and punching roughness resistance, and a method for producing the same.
  • the high-strength hot-rolled steel sheet of the present invention for structural members, skeleton members, suspension members such as suspensions, truck frame members, etc. of automobiles, the weight of the automobile body is reduced while ensuring the safety of automobiles. it can. Therefore, it can contribute to the reduction of the environmental load.
  • the high-strength hot-rolled steel sheet of the present invention has a tensile strength of 1180 MPa or more, a surface arithmetic average roughness Ra of 2.00 ⁇ m or less, and a mass% of C: 0.09% or more and 0.20.
  • % Or less Si: 0.2% or more and 2.0% or less, Mn: 1.0% or more and 3.0% or less, P: 0.100% or less, S: 0.0100% or less, Al: 0.01 % Or more and 2.00% or less, N: 0.010% or less, Ti: 0.001% or more and less than 0.030%, and B: 0.0005% or more and 0.0200% or less, and further, Cr : 0.10% or more and 1.50% or less, Mo: 0.05% or more and 0.45% or less, Nb: 0.005% or more and 0.060% or less, and V: 0.05% or more and 0.50 It contains at least one selected from the group consisting of% or less, has a component composition in which the balance is composed of Fe and unavoidable impurities, and has a microstructure containing an upper bainite phase and a second phase, and has the above-mentioned upper bainite phase.
  • the area ratio is 50% or more and less than 90%, the average particle size of the upper bainite phase is 12.0 ⁇ m or less, and the second phase is the lower bainite phase and / or the tempered martensite phase and fresh martensite. It is at least one selected from the group consisting of a site phase and a bainite phase, and the area ratio of the second phase is 10% or more and less than 50%, and the circle-equivalent diameter is 0.5 ⁇ m or more.
  • a high-strength hot-rolled steel plate having a two-phase peripheral length of 300,000 ⁇ m / mm 2 or more.
  • the high-strength hot-rolled steel sheet of the present invention is excellent in ductility, fatigue characteristics, and punching roughness resistance.
  • High strength means that the tensile strength (TS) is 1180 MPa or more.
  • Excellent ductility means that the value (TS ⁇ U-El) obtained by multiplying the tensile strength (TS) and the uniform elongation (U-El) is 6,000 MPa ⁇ %, as will be described later. It means that it is the above.
  • Excellent fatigue characteristics means that the value obtained by dividing the fatigue strength in 500,000 cycles obtained by the plane bending fatigue test by the tensile strength (TS) is 0.50 or more, as will be described later. means.
  • Excellent punching roughness resistance means that the maximum height roughness Rz of the punched hole end face after punching with a clearance of 12 ⁇ 1% using a punch of 10 mm ⁇ is defined as described later. It means that the average is 35 ⁇ m or less and the standard deviation of Rz is 10 ⁇ m or less.
  • the main phase is a highly ductile upper bainite
  • the second phase is a group consisting of a hard lower bainite phase and / or a tempered martensite phase, a fresh martensite phase, and a retained austenite phase. At least one selected.
  • the prime minister means that the area ratio is 50% or more.
  • the fatigue life of a steel sheet is determined by the time required for the occurrence of fatigue cracks and the time required for growth. By delaying these times, the fatigue characteristics are excellent.
  • the time required for the occurrence of fatigue cracks is delayed by controlling the arithmetic mean roughness Ra of the surface of the steel sheet. Further, by controlling the circumference of the second phase having a circle-equivalent diameter of 0.5 ⁇ m or more, the time required for the growth of fatigue cracks is delayed. As a result, excellent fatigue characteristics can be obtained.
  • the high-strength hot-rolled steel sheet of the present invention is a so-called hot-rolled steel sheet, and has a component composition and a microstructure described later.
  • high-strength hot-rolled steel sheet or “hot-rolled steel sheet” is also simply referred to as “steel sheet”.
  • the thickness of the steel plate is not particularly limited, and is, for example, 6.0 mm or less.
  • the lower limit is also not particularly limited, and is, for example, 1.0 mm or more.
  • C promotes the formation of bainite by improving the strength of the steel and the hardenability, and also improves the fraction of the second phase.
  • C is distributed to the untransformed austenite to stabilize the untransformed austenite.
  • the untransformed austenite is the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase). It becomes. Therefore, the C content is 0.09% or more, preferably 0.10% or more, and more preferably 0.11% or more.
  • the C content is 0.20% or less, preferably 0.18% or less, and more preferably 0.16% or less.
  • Si contributes to solid solution strengthening and improves the strength of steel.
  • Si has the effect of suppressing the formation of Fe-based carbides and suppresses the precipitation of cementite during the transformation of upper bainite.
  • C is distributed to the untransformed austenite, and in the cooling after winding, the untransformed austenite is separated from the second phase (lower bainite phase and / or tempered martensite phase, fresh martensite phase, and retained austenite phase. At least one species selected from the group).
  • the Si content is 0.2% or more, preferably 0.4% or more, and more preferably 0.5% or more.
  • Si forms a subscale on the surface of the steel sheet during hot rolling. If the Si content is too high, the subscale becomes too thick, the arithmetic mean roughness Ra of the steel sheet surface after descaling becomes excessive, and the fatigue characteristics become insufficient. Therefore, the Si content is 2.0% or less, preferably 1.8% or less, and more preferably 1.6% or less.
  • Mn dissolves in solid solution and contributes to the increase in strength of steel, and promotes the formation of bainite phase and martensite phase by improving hardenability.
  • the Mn content is 1.0% or more, preferably 1.3% or more, and more preferably 1.5% or more.
  • the Mn content is 3.0% or less, preferably 2.6% or less, and more preferably 2.4% or less.
  • P 0.100% or less (including 0%)
  • P dissolves in solid solution and contributes to an increase in the strength of steel.
  • P causes cracks during hot rolling by segregating at the austenite grain boundaries during hot rolling. Further, even if the occurrence of cracks can be avoided, segregation at the grain boundaries lowers the low temperature toughness and lowers the workability. Therefore, the P content is preferably as low as possible, and the content of P up to 0.100% is acceptable. Therefore, the P content is 0.100% or less, preferably 0.050% or less, and more preferably 0.020% or less.
  • S 0.0100% or less (including 0%)
  • S combines with Ti and Mn to form coarse sulfide, which reduces punching roughness resistance. Therefore, the S content is preferably as low as possible, and the content of S up to 0.0100% is acceptable. Therefore, the S content is 0.0100% or less, preferably 0.0050% or less, and more preferably 0.0030% or less.
  • Al acts as a deoxidizer and is effective in improving the cleanliness of steel. If the amount of Al is too small, the effect is not always sufficient. Further, Al has an effect of suppressing the formation of Fe-based carbides like Si, and suppresses the precipitation of cementite during the transformation of upper bainite. As a result, C is distributed to the untransformed austenite, and the untransformed austenite is separated from the second phase (lower bainite phase and / or tempered martensite phase, fresh martensite phase, and retained austenite phase in cooling after winding. At least one species selected from the group).
  • the Al content is 0.01% or more, preferably 0.015% or more, and more preferably 0.020% or more.
  • excessive addition of Al causes an increase in oxide-based inclusions, lowers punching roughness resistance, and causes defects. Therefore, the Al content is 2.00% or less, preferably 1.80% or less, and more preferably 1.60% or less.
  • N 0.010% or less (including 0%)
  • N is precipitated as a nitride by combining with an element forming a nitride, and contributes to the refinement of crystal grains.
  • N tends to combine with Ti at a high temperature to form a coarse nitride, and if it is contained in an excessive amount, the punching roughness resistance is lowered. Therefore, the N content is 0.010% or less, preferably 0.008% or less, and more preferably 0.006% or less.
  • Ti improves the strength of the steel sheet by precipitation strengthening or solid solution strengthening.
  • Ti forms a nitride in the austenite phase high temperature region (high temperature region in the austenite phase and higher temperature region than the austenite phase (casting stage)).
  • the precipitation of BN is suppressed and B becomes a solid solution state.
  • the hardenability required for the formation of the upper bainite phase is obtained, which contributes to the improvement of strength.
  • Ti enables rolling in the austenite unrecrystallized region by raising the recrystallization temperature of the austenite phase during hot rolling.
  • the Ti content is 0.001% or more, preferably 0.003% or more, and more preferably 0.005% or more.
  • the Ti content is less than 0.030%, preferably 0.028% or less, and more preferably 0.025% or less.
  • B 0.0005% or more and 0.0200% or less
  • B segregates at the old austenite grain boundaries and suppresses the formation of ferrite, thereby promoting the formation of the upper bainite phase and contributing to the improvement of the strength of the steel sheet.
  • the B content is 0.0005% or more, preferably 0.0006% or more, and more preferably 0.0007% or more.
  • the B content is 0.0200% or less, preferably 0.0100% or less, and more preferably 0.0050% or less.
  • composition of the steel sheet further contains at least one selected from the group consisting of Cr, Mo, Nb and V in the content shown below.
  • Cr improves the strength of the steel sheet by solid solution strengthening.
  • Cr is an element that forms a carbide, and during the transformation of the upper bainite after winding, it segregates at the interface between the upper bainite phase and the untransformed austenite, thereby reducing the transformation driving force of the bainite and causing the untransformed austenite. Stop the upper bainite transformation while leaving.
  • the untransformed austenite is subsequently cooled to the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase). Become.
  • the Cr content when Cr is contained, the Cr content is 0.10% or more, preferably 0.15% or more, and more preferably 0.20% or more.
  • Cr like Si, forms a subscale on the surface of the steel sheet during hot rolling. Therefore, if the Cr content is too large, the subscale becomes too thick, the arithmetic mean roughness Ra after descaling becomes excessive, and the fatigue characteristics become insufficient. Therefore, when Cr is contained, the Cr content is 1.50% or less, preferably 1.40% or less, more preferably 1.30% or less, further preferably 1.20% or less, and 1.00%. % Or less is particularly preferable.
  • Mo promotes the formation of the bainite phase through the improvement of hardenability and contributes to the improvement of the strength of the steel sheet.
  • Mo is an element that forms a carbide like Cr, and at the time of upper bainite transformation after winding, segregation occurs at the interface between the upper bainite phase and untransformed austenite, thereby reducing the transformation driving force of bainite. And stop the upper bainite transformation while leaving the untransformed austenite.
  • the untransformed austenite is subsequently cooled to the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase). Become.
  • the Mo content when Mo is contained, the Mo content is 0.05% or more, preferably 0.10% or more, and more preferably 0.15% or more. On the other hand, if the Mo content is too high, the second phase increases and the ductility becomes insufficient. Therefore, when Mo is contained, the Mo content is 0.45% or less, preferably 0.40% or less, and more preferably 0.30% or less.
  • Nb improves the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Further, Nb enables rolling in the austenite unrecrystallized region by raising the recrystallization temperature of the austenite phase during hot rolling, similarly to Ti. This contributes to the miniaturization of the particle size of the upper bainite phase and the increase of the peripheral length of the second phase, and improves the punching roughness resistance and fatigue characteristics. Further, Nb is an element that forms a carbide like Cr, and at the time of upper bainite transformation after winding, segregation occurs at the interface between the upper bainite phase and untransformed austenite, thereby reducing the transformation driving force of bainite.
  • the untransformed austenite is subsequently cooled to the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase).
  • the Nb content is 0.005% or more, preferably 0.010% or more, and more preferably 0.015% or more.
  • the Nb content is 0.060% or less, preferably 0.050% or less, and more preferably 0.040% or less.
  • V improves the strength of the steel sheet by precipitation strengthening or solid solution strengthening.
  • V enables rolling in the austenite unrecrystallized region by raising the recrystallization temperature of the austenite phase during hot rolling, similarly to Ti. This contributes to the miniaturization of the particle size of the upper bainite phase and the increase of the peripheral length of the second phase, and improves the punching roughness resistance and fatigue characteristics.
  • V is an element that forms a carbide like Cr, and at the time of upper bainite transformation after winding, it segregates at the interface between the upper bainite phase and untransformed austenite, thereby reducing the transformation driving force of bainite.
  • the untransformed austenite is subsequently cooled to the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase).
  • the V content is 0.05% or more, preferably 0.10% or more, and more preferably 0.15% or more.
  • the V content is 0.50% or less, preferably 0.40% or less, and more preferably 0.30% or less.
  • the component composition of the steel sheet contains the above-mentioned elements, desired properties can be obtained.
  • the composition of the steel sheet is, for example, other elements described below, if necessary, for the purpose of increasing the strength of the steel sheet and further improving the properties such as ductility, fatigue characteristics, and punching roughness resistance. Can be further contained.
  • the component composition of the steel sheet can further contain at least one selected from the group consisting of Cu and Ni in the contents shown below.
  • Cu 0.01% or more and 0.50% or less
  • Cu dissolves in solid solution and contributes to increasing the strength of steel.
  • Cu promotes the formation of the bainite phase through the improvement of hardenability and contributes to the improvement of strength.
  • the Cu content is preferably 0.01% or more, more preferably 0.05% or more.
  • the Cu content is preferably 0.50% or less, more preferably 0.30% or less.
  • Ni 0.01% or more and 0.50% or less
  • Ni dissolves in solid solution and contributes to increasing the strength of steel.
  • Ni promotes the formation of the bainite phase through the improvement of hardenability and contributes to the improvement of strength.
  • the Ni content is preferably 0.01% or more, more preferably 0.05% or more.
  • the Ni content is preferably 0.50% or less, more preferably 0.30% or less.
  • the component composition of the steel sheet can further contain Sb in the content shown below.
  • Sb suppresses nitriding of the surface of the steel material at the stage of heating the steel material such as a slab, and suppresses the precipitation of BN on the surface layer portion of the steel material. Further, the presence of the solid solution B provides the hardenability required for the formation of bainite in the surface layer portion of the steel sheet, and improves the strength of the steel sheet.
  • the Sb content is preferably 0.0002% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
  • the Sb content is preferably 0.0300% or less, more preferably 0.0250% or less, and even more preferably 0.0200% or less.
  • the component composition of the steel sheet can further contain at least one selected from the group consisting of Ca, Mg and REM in the contents shown below.
  • REM Radar Metal
  • Sc scandium
  • Y yttrium
  • 15 elements lanthanoids
  • Ca controls the shape of oxide and sulfide-based inclusions and improves punching roughness resistance.
  • the Ca content is preferably 0.0002% or more, more preferably 0.0004% or more.
  • the Ca content is preferably 0.0100% or less, more preferably 0.0050% or less.
  • Mg controls the shape of oxide and sulfide-based inclusions and improves punching roughness resistance.
  • the Mg content is preferably 0.0002% or more, more preferably 0.0004% or more.
  • the Mg content is preferably 0.0100% or less, more preferably 0.0050% or less.
  • REM 0.0002% or more and 0.0100% or less
  • the REM content is preferably 0.0002% or more, more preferably 0.0004% or more.
  • the REM content is preferably 0.0100% or less, more preferably 0.0050% or less.
  • the balance other than the above-mentioned components (elements) is composed of Fe and unavoidable impurities.
  • unavoidable impurities include Zr, Co, Sn, Zn, Pb and the like, and the total content of these impurities is acceptable as long as 0.5% or less.
  • the area ratio of the upper bainite phase is 50% or more and less than 90%, and the average particle size of the upper bainite phase is 12.0 ⁇ m or less >>
  • the upper bainite phase is the main phase. This makes it excellent in ductility.
  • the area ratio of the upper bainite phase is 50% or more and the average particle size of the upper bainite phase is 12.0 ⁇ m or less, excellent ductility and excellent punching roughness resistance can be combined.
  • the area ratio of the upper bainite phase is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more.
  • the average particle size of the upper bainite phase is preferably 11.0 ⁇ m or less, more preferably 10.0 ⁇ m or less, and even more preferably 9.0 ⁇ m or less.
  • the lower limit is not particularly limited, and for example, 1.0 ⁇ m or more is preferable, and 2.0 ⁇ m or more is more preferable.
  • the area ratio of the upper bainite phase is too large, the tensile strength is less than 1180 MPa. Therefore, the area ratio of the upper bainite phase is less than 90%.
  • Phase 2 The area ratio of at least one (Phase 2) selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase is 10% or more and 50%.
  • the circumference of the second phase which is less than and has a circle-equivalent diameter of 0.5 ⁇ m or more, is 300,000 ⁇ m / mm 2 or more >>
  • the second phase is at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase.
  • the area ratio of the second phase is 10% or more, preferably 11% or more, more preferably 13% or more, still more preferably 15% or more.
  • the area ratio of the second phase is less than 50%, preferably 40% or less, more preferably 35% or less, still more preferably 30% or less.
  • the circumference of the second phase having a circle-equivalent diameter of 0.5 ⁇ m or more is 300,000 ⁇ m / mm 2 or more.
  • Circumferential length of the second phase since the longer the fatigue characteristics are improved, preferably 350,000 ⁇ m / mm 2 or more, 400,000 ⁇ m / mm 2 or more preferably a circle equivalent diameter is 0.5 ⁇ m or more, 450 More preferably, 000 ⁇ m / mm 2 or more.
  • the upper limit of the peripheral length is not particularly limited, but for example, 900,000 ⁇ m / mm 2 or less is preferable, and 800,000 ⁇ m / mm 2 or less is more preferable.
  • the rest other than the main phase and the second phase described above is at least one selected from the group consisting of, for example, a pearlite phase and a polygonal ferrite phase. It may not have these remnants. From the viewpoint of obtaining the effects of the present invention, the area ratio of the remaining portion is preferably 0% or more and less than 3% in total.
  • the upper bainite phase is an aggregate of lath-like ferrites with an orientation difference of less than 15 °, and has a structure having Fe-based carbides and / or retained austenite phases between lath-like ferrites (however, Fe-based carbides and Fe-based ferrites between lath-like ferrites. / Or even if it does not have a retained austenite phase).
  • lath-like ferrite has a lath-like shape and has a relatively high dislocation density inside.
  • the lath-shaped ferrite and the lamellar (layered) ferrite or polygonal ferrite in the pearlite phase can be distinguished from each other by using SEM (scanning electron microscope) or TEM (transmission electron microscope).
  • Lamellar ferrite has a lower dislocation density than lath-like ferrite. Therefore, the pearlite phase and the upper bainite phase can be easily distinguished from each other by using SEM, TEM, or the like.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the lower bainite phase and / or the tempered martensite phase are aggregates of lath-like ferrite with an orientation difference of less than 15 °, and have a structure having Fe-based carbides in the lath-like ferrite (however, Fe also between the lath-like ferrites). (Including the case of having a carbide).
  • Lower bainite and tempered martensite can be distinguished from each other by observing the orientation and crystal structure of Fe-based carbides in lath-like ferrite using a TEM (transmission electron microscope). However, in the present invention, since they have substantially the same characteristics, they are not distinguished from each other.
  • the lower bainite phase and / or the tempered martensite phase have Fe-based carbides in the lath ferrite, they can be distinguished from the upper bainite phase by using SEM or TEM.
  • Lamellar ferrite has a lower dislocation density than lath-like ferrite. Therefore, the pearlite phase and the lower bainite phase and / or the tempered martensite phase can be easily distinguished from each other by using SEM, TEM, or the like.
  • the fresh martensite phase and the retained austenite phase are free of Fe-based carbides as compared to the lower bainite phase and / or the tempered martensite phase.
  • the fresh martensite phase and the retained austenite phase have a brighter SEM image contrast than the upper bainite phase, the lower bainite phase and / or the tempered martensite phase, and the polygonal ferrite. Therefore, the fresh martensite phase and the retained austenite phase can be distinguished from these tissues using SEM.
  • the fresh martensite phase and the retained austenite phase have similar shapes and contrasts in SEM, but can be distinguished from each other by using the Electron Backscatter Diffraction Patterns (EBSD) method.
  • EBSD Electron Backscatter Diffraction Patterns
  • the area ratio can be measured by the method described in Examples described later.
  • the average particle size of the upper bainite phase can be measured by the method described in Examples described later.
  • the circumference of the second phase having a circle-equivalent diameter of 0.5 ⁇ m or more can be measured by the method described in Examples described later.
  • the high-strength hot-rolled steel sheet of the present invention has a tensile strength (TS) of 1180 MPa or more.
  • the upper limit is not particularly limited, but the tensile strength is preferably 1470 MPa or less.
  • Tensile strength (TS) can be measured by the method described in Examples described later.
  • the arithmetic mean roughness Ra of the surface of the high-strength hot-rolled steel sheet of the present invention is 2.00 ⁇ m or less in order to obtain excellent fatigue characteristics, and 1.90 ⁇ m or less because the fatigue characteristics are more excellent.
  • it is 1.80 ⁇ m or less, more preferably 1.60 ⁇ m or less.
  • the lower limit is not particularly limited, but for example, 0.30 ⁇ m or more is preferable, and 0.45 ⁇ m or more is more preferable.
  • the arithmetic mean roughness Ra is the arithmetic average roughness Ra of the surface of the plating layer when the plating layer described later is formed, and when the plating layer described later is not formed, the arithmetic of the surface of the steel sheet itself. The average roughness Ra.
  • the arithmetic mean roughness Ra can be measured by the method described in Examples described later.
  • the high-strength hot-rolled steel sheet of the present invention may have a plating layer on its surface for the purpose of improving corrosion resistance and the like.
  • the plating layer include a hot-dip plating layer and an electroplating layer.
  • the hot-dip galvanizing layer include a zinc plating layer, and specific examples thereof include a hot dip galvanizing layer and an alloyed hot dip galvanizing layer.
  • the electroplating layer include an electrogalvanizing layer.
  • the thickness of the plating layer (plating adhesion amount) is not particularly limited, and conventionally known values can be adopted.
  • the method for producing a high-strength hot-rolled steel sheet of the present invention (hereinafter, also simply referred to as “the production method of the present invention”) is the method for producing the high-strength hot-rolled steel sheet of the present invention described above, and has the above-mentioned component composition.
  • the steel material to have is heated to 1150 ° C. or higher, and the heated steel material is roughly rolled to obtain a rough-rolled plate, and the rough-rolled plate is subjected to high-pressure water descaling at a collision pressure of 2.5 MPa or more.
  • the rough-rolled plate subjected to the above-mentioned high-pressure water descaling was finished-rolled at a finish-rolling end temperature of (RC-100) ° C. or higher (RC + 100) ° C. to obtain a finished-rolled plate.
  • the finished rolled sheet is cooled at an average cooling rate of 20 ° C./s or more to a cooling stop temperature of (Bs-150) ° C. or more and Bs ° C. or less, where Bs is the following formula (2). )
  • the finish rolling end temperature is RC ° C. or higher, the time from the end of the finish rolling to the start of the cooling is 2.0 s or less, and the cooled finish rolling plate is used.
  • a method for producing a high-strength hot-rolled steel sheet, which is wound at the cooling stop temperature and the wound finished rolled plate is cooled to (Bs-300) ° C. at an average cooling rate of 0.10 ° C./min or more. is there.
  • (1) RC 850 + 100 ⁇ C + 100 ⁇ N + 10 ⁇ Mn + 700 ⁇ Ti + 5000 ⁇ B + 10 ⁇ Cr + 50 ⁇ Mo + 2000 ⁇ Nb + 150 ⁇ V
  • Bs 830-270 ⁇ C-90 ⁇ Mn-70 ⁇ Cr-37 ⁇ Ni-83 ⁇ Mo
  • each element symbol in the above formula represents the content of each element in the above component composition in mass%. In the case of an element that does not include the above component composition, the element symbol in the above formula is set to 0 for calculation.
  • the temperature represents the temperature on the surface of a steel material, a rough-rolled plate, a finished rolled plate, etc., which will be described later.
  • the average cooling rate of forced cooling described later is based on the average cooling rate on the surface of the finished rolled plate.
  • a steel material such as a slab having the above-mentioned composition is not particularly limited, and any of the commonly used methods can be adopted.
  • a method of melting molten steel having the above-mentioned component composition by a known method in a converter or the like and producing a slab by a casting method such as a continuous casting method can be mentioned.
  • a known casting method such as an ingot-block rolling method may be used.
  • Scrap may be used as a raw material.
  • segregation reduction treatment such as electromagnetic stirring (EMS) and light reduction casting (IBSR) can be applied.
  • electromagnetic stirring By electromagnetic stirring, equiaxed crystals can be formed in the center of the plate thickness to reduce segregation.
  • Light reduction casting can prevent the flow of molten steel in the unsolidified portion of the continuous casting slab and reduce segregation in the central portion of the plate thickness.
  • ⁇ Heating temperature of steel material 1150 ° C or higher>
  • steel materials such as slabs after being cooled to a low temperature
  • most of the elements forming carbonitrides such as Ti are unevenly precipitated as coarse carbonitrides.
  • the presence of this coarse and non-uniform precipitate causes deterioration of various properties (for example, strength, punching roughness resistance, etc.). Therefore, the steel material before hot rolling is heated to dissolve the coarse precipitates.
  • the heating temperature of the steel material is 1150 ° C. or higher, preferably 1180 ° C. or higher, and more preferably 1200 ° C. or higher, in order to sufficiently solidify the coarse precipitate before hot rolling.
  • the heating temperature of the steel material is preferably 1350 ° C. or lower, more preferably 1300 ° C. or lower, and even more preferably 1280 ° C. or lower.
  • the steel material is heated to a heating temperature of 1150 ° C. or higher and held for a predetermined time. At this time, if the holding time is too long, the amount of scale generated may increase. In this case, scale biting or the like is likely to occur in the subsequent hot rolling, the surface roughness of the obtained steel sheet is deteriorated, and the fatigue characteristics tend to be deteriorated. Therefore, the holding time of the steel material in the temperature range of 1150 ° C. or higher is preferably 10,000 seconds or less, more preferably 8,000 seconds or less, because the fatigue characteristics are more excellent. The lower limit is not particularly limited, but 1800 seconds or more is preferable from the viewpoint of uniformity of heating of the steel material.
  • the steel material before hot rolling may be directly subjected to hot rolling (direct rolling) after casting at a high temperature (that is, while maintaining a temperature within the above heating temperature range).
  • the heated (or hot steel material after casting) is subjected to hot rolling consisting of rough rolling and finish rolling.
  • the rough rolling is not particularly limited as long as the desired seat bar size can be secured.
  • a rough-rolled plate is obtained by rough-rolling a steel material. Before finish rolling is performed on the obtained rough-rolled plate, descaling (high-pressure water descaling) of injecting high-pressure water is performed on the entry side of the finish rolling mill.
  • ⁇ Descaling collision pressure 2.5 MPa or more>
  • the collision pressure of high-pressure water descaling is 2.5 MPa or more, preferably 3.0 MPa or more, and more preferably 3.5 MPa or more.
  • the collision pressure is the force per unit area where high-pressure water collides with the surface of a rough-rolled plate.
  • the upper limit of the descaling collision pressure is not particularly specified, it is preferably 15.0 MPa or less, more preferably 14.5 MPa or less, and even more preferably 12.0 MPa or less.
  • High-pressure water descaling may be performed during rolling between the finishing rolling stands. Further, if necessary, the rough-rolled plate may be cooled between the finish rolling stands.
  • ⁇ Finish rolling end temperature (RC-100) ° C or higher (RC + 100) ° C or lower>
  • a rough-rolled plate subjected to high-pressure water descaling is subjected to finish-rolling at a predetermined finish-rolling end temperature to obtain a finished-rolled plate. If the finish rolling end temperature is too low, rolling may be carried out at a ferrite + austenite dual phase temperature. Therefore, the desired area ratios for the main phase and the second phase cannot be sufficiently obtained, and the tensile strength of 1180 MPa or more cannot be secured. Therefore, the finish rolling end temperature is (RC-100) ° C. or higher, preferably (RC-80) ° C. or higher, and more preferably (RC-50) ° C. or higher.
  • the finish rolling end temperature is (RC + 100) ° C. or lower, preferably (RC + 80) ° C. or lower, and more preferably (RC + 50) ° C. or lower.
  • RC is defined by the following equation (1).
  • (1) RC 850 + 100 ⁇ C + 100 ⁇ N + 10 ⁇ Mn + 700 ⁇ Ti + 5000 ⁇ B + 10 ⁇ Cr + 50 ⁇ Mo + 2000 ⁇ Nb + 150 ⁇ V
  • each element symbol in the formula (1) is the content [mass%] of each element in the above-mentioned component composition.
  • the element symbol in the formula (1) is set to 0 for calculation.
  • the finished rolled plate obtained by finish rolling is cooled at the average cooling rate described later (hereinafter, also referred to as "forced cooling") from the above-mentioned finish rolling end temperature to the cooling stop temperature described later.
  • ⁇ Cooling start time 2.0 s or less after the finish rolling>
  • the time from the end of finish rolling to the start of forced cooling (cooling start time) is controlled.
  • the cooling start time is 2.0 s or less, preferably 1.5 s or less, and more preferably 1.0 s or less.
  • the cooling start time is not particularly limited, but 2.0 s or less is set from the viewpoint of ensuring the tensile strength by not recovering the strain introduced into the austenite grains. It is preferable, 1.5 s or less is more preferable, and 1.0 s or less is further preferable.
  • ⁇ Average cooling rate from finish rolling end temperature to cooling stop temperature 20 ° C / s or more>
  • average cooling rate of forced cooling is 20 ° C./s or higher, preferably 25 ° C./s or higher, and more preferably 30 ° C./s or higher.
  • the upper limit of the average cooling rate of forced cooling is not particularly limited, but if it is too fast, it may be difficult to control the cooling stop temperature and it may be difficult to obtain a desired microstructure. Therefore, it is 500 ° C./s or less. Is preferable, 300 ° C./s or less is more preferable, 150 ° C./s or less is further preferable, and 80 ° C./s or less is particularly preferable.
  • the cooling stop temperature is (Bs-150) ° C. or higher, preferably (Bs-140) ° C. or higher, and more preferably (Bs-130) ° C. or higher.
  • the cooling stop temperature is Bs ° C. or lower, preferably (Bs-20) ° C. or lower, and more preferably (Bs-50) ° C. or lower.
  • each element symbol in the formula (2) is the content [mass%] of each element in the above-mentioned component composition.
  • the element symbol in the formula (2) is set to 0 for calculation.
  • the finished rolled plate that has been forcibly cooled to the cooling stop temperature is wound at the cooling stop temperature to form a coil, for example. Therefore, the cooling stop temperature is also the take-up temperature.
  • the average cooling rate to (Bs-300) ° C. after winding is 0.10 ° C./min or more, and 0.12 ° C./min or more.
  • 0.15 ° C./min or higher is more preferable, and 0.20 ° C./min or higher is even more preferable.
  • the average cooling rate to (Bs-300) ° C. after winding is preferably 1800 ° C./min or less, more preferably less than 1800 ° C./min, further preferably 600 ° C./min or less, and 60 ° C./min or less. The following are particularly preferred.
  • the cooling method after winding may be any cooling method as long as a desired average cooling rate can be obtained.
  • Examples of the cooling method include natural air cooling, forced air cooling, gas cooling, mist cooling, water cooling, oil cooling and the like.
  • the cooling stop temperature may be less than (Bs-300) ° C. Usually, it is cooled to room temperature of about 10 to 30 ° C. After that, temper rolling (skin pass rolling) may be performed according to a conventional method. In addition, the scale may be removed by pickling.
  • the finished rolled sheet that has been cooled after winding (and optionally temper-rolled and / or pickled) becomes the high-strength hot-rolled steel sheet of the present invention.
  • Finished rolled plates that have been cooled after winding may be plated using a regular plating line. As a result, a plating layer is formed on the surface of the finished rolled plate.
  • the plating treatment is not particularly limited, and examples thereof include conventionally known hot-dip galvanizing treatments, alloying hot-dip galvanizing treatments, and electroplating treatments.
  • the hot-dip galvanizing treatment include a hot-dip galvanizing treatment for forming a hot-dip galvanizing layer.
  • examples of the alloying hot-dip galvanizing treatment include an alloying hot-dip galvanizing treatment (a treatment for forming an alloyed hot-dip galvanizing layer by performing an alloying treatment after the hot-dip galvanizing treatment).
  • a molten steel having the composition shown in Table 1 below (the balance consisting of Fe and unavoidable impurities) was melted in a converter to produce a slab by a continuous casting method.
  • the produced slab was heated at the slab heating temperature [° C.] shown in Table 2 below and the slab heating time [s] at 1150 ° C. or higher.
  • a rough-rolled plate was obtained by rough-rolling the heated slab.
  • the surface of the obtained rough-rolled plate was subjected to high-pressure water descaling at the collision pressure [MPa] shown in Table 2 below.
  • a rough-rolled plate subjected to high-pressure water descaling was subjected to finish-rolling at the finish-rolling end temperature [° C.] shown in Table 2 below to obtain a finished-rolled plate.
  • the obtained finish rolling plate was forcibly cooled.
  • Table 2 below shows the conditions for forced cooling: cooling start time (time from the end of finish rolling to the start of forced cooling) [s], average cooling rate (from finish rolling end temperature to cooling stop temperature). (Average cooling rate up to) [° C./s] and cooling stop temperature [° C.] are described.
  • the forcibly cooled finished rolled plate was wound at the cooling stop temperature [° C.] shown in Table 2 below.
  • the wound finished rolled plate was cooled to (Bs-300) ° C.
  • the Electron Backscatter Diffraction Patterns was used. More specifically, for each grain whose SEM could not distinguish between the fresh martensite phase and the retained austenite phase, the EBSD method identified less than 50% of the grain as an austenite phase. A martensite phase was used, and a phase in which 50% or more of the crystal grains were identified as an austenite phase was used as a retained austenite phase. The area ratio [%] was determined for the fresh martensite phase and the retained austenite phase distinguished in this way.
  • the average particle size of the upper bainite phase was measured as follows. First, a test piece was taken from a hot-rolled steel sheet and polished. More specifically, the test piece was polished with a colloidal silica solution so that the surface parallel to the rolling direction (the surface at the plate thickness 1/4 position) was the observation surface. Then, by the EBSD method (electron beam accelerating voltage: 20 keV, measurement interval: 0.1 ⁇ m step), a region of 100 ⁇ m ⁇ 100 ⁇ m on the observation surface of the test piece was measured at 10 points.
  • EBSD method electron beam accelerating voltage: 20 keV, measurement interval: 0.1 ⁇ m step
  • the area average of the upper bainite phase (Area fraction).
  • the particle size [ ⁇ m] of the area) was calculated. OIM Analysis software manufactured by TSL was used for the calculation.
  • the area average particle size was determined by setting the Grain Tolerance Angle to 15 °.
  • the obtained area average particle size of the upper bainite phase was defined as the average particle size [ ⁇ m] of the upper bainite phase.
  • test piece (size: t (plate thickness) ⁇ 30 mm (width) ⁇ 30 mm (length)) was collected from the obtained hot-rolled steel sheet.
  • a punched hole was formed in the center of the sampled test piece using a 10 mm ⁇ cylindrical punch with a clearance of 12 ⁇ 1%.
  • the clearance is a ratio [%] to the plate thickness of the test piece.
  • the test piece was divided into four equal parts along the diagonal line so that the end face in the rolling direction and the end face in the direction perpendicular to the rolling of the punched hole could be evaluated, respectively, and a four-part test piece was prepared.
  • the maximum height roughness Rz [ ⁇ m] was measured for the end face of the punched hole of the quadrant test piece in accordance with JIS B 0601: 2013. More specifically, it was measured as follows. First, positions A and B were set on the end faces of the punched holes of the quadrant test piece along the plate thickness direction.
  • the position A is a position 100 ⁇ m in the plate thickness direction from the outermost surface on the burr generation side.
  • the position B is a position 100 ⁇ m in the fracture surface direction from the sheared surface / fracture surface boundary of the punched hole end surface.
  • the space between the position A and the position B was divided into 10 positions at equal intervals, and a roughness curve having a length of 1 mm was measured in the arc direction (circumferential direction) at a total of 10 positions.
  • the maximum height roughness Rz was calculated from each of the 10 roughness curves obtained.
  • the average value of the calculated Rz was taken as the Rz of the quadrant test piece. Such measurement of Rz was carried out for all four equal parts of the test piece, and the average value of the obtained Rz was taken as Rz [ ⁇ m] of the punched hole end face of the hot-rolled steel sheet.
  • the standard deviation of Rz of a total of 40 points obtained from all the four equal parts of the test piece was calculated, and this was defined as the standard deviation [ ⁇ m] of Rz of the end face of the punched hole of the hot-rolled steel sheet. Since the end face of the punched hole is a curved surface, a quadratic curve correction based on JIS B 0601: 2013 was performed when calculating Rz. No correction was made with the cutoffs ⁇ s and ⁇ c. In the present invention, when the Rz of the end face of the punched hole is 35 ⁇ m or less and the standard deviation of the Rz of the end face of the punched hole is 10 ⁇ m or less, it is evaluated that the punching roughness resistance is excellent.
  • the hot-rolled steel sheet of 20 had a tensile strength (TS) of 1180 MPa or more, was high in strength, and was excellent in ductility, fatigue characteristics, and punching roughness resistance.
  • TS tensile strength
  • No. 4 the cooling stop temperature of forced cooling is low
  • the area ratio of the upper bainite phase was large
  • the tensile strength was less than 1180 MPa
  • the peripheral length of the second phase was short
  • the fatigue characteristics were insufficient.
  • No. No. 7 the average cooling rate to (Bs-300) ° C. after winding was slow
  • No. 8 high finish rolling end temperature
  • the average particle size of the upper bainite phase was large, and the punching roughness resistance was insufficient.
  • No. 21 (using steel N having a large amount of Ti) had insufficient punching roughness resistance.
  • No. 22 (using steel O containing no Cr, Mo, Nb and V), the area ratio of the second phase was small and the tensile strength was less than 1180 MPa.
  • No. No. 23 (using steel P having a large amount of Cr) had a large arithmetic mean roughness Ra and insufficient fatigue characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided is a high-strength hot-rolled steel sheet having excellent fatigue characteristics and roughening resistance in punching. The steel sheet has a tensile strength of 1180 MPa or greater and an Ra of 2.00 µm or less. The component composition of the steel sheet contains 0.09-0.20% C, 0.2-2.0% Si, 1.0-3.0% Mn, no more than 0.100% P, no more than 0.0100% S, 0.01-2.00% Al, no more than 0.010% N, 0.001% to less than 0.030% Ti, and 0.0005-0.0200% B, and furthermore contains 0.10-1.50% Cr, etc. An upper bainite phase as the main phase has an area ratio of 50% to less than 90% and an average grain diameter of 12.0 µm or less. A second phase is a residual austenite phase or the like having an area ratio of 10% to less than 50%, and the circumference of second phases having a circle equivalent diameter of 0.5 µm or greater is 300,000 µm/mm2 or greater.

Description

高強度熱延鋼板およびその製造方法High-strength hot-rolled steel sheet and its manufacturing method
 本発明は、高強度熱延鋼板およびその製造方法に関する。 The present invention relates to a high-strength hot-rolled steel sheet and a method for manufacturing the same.
 近年、地球環境を保全する観点から、自動車の排ガス規制が強化されており、自動車の燃費向上が重要な課題となっている。自動車に使用する材料は、一層の高強度化および薄肉化が要求されている。
 このため、自動車の部材の素材として、高強度熱延鋼板が積極的に使用されている。高強度熱延鋼板の使用は、自動車の構造部材や骨格部材だけでなく、足回り部材やトラックフレーム部材等に対しても行なわれている。
 特に、引張強さ(TS)が1180MPa以上である高強度熱延鋼板は、自動車の燃費を飛躍的に向上し得る素材として、期待されている。
In recent years, from the viewpoint of preserving the global environment, exhaust gas regulations for automobiles have been tightened, and improving the fuel efficiency of automobiles has become an important issue. Materials used in automobiles are required to have higher strength and thinner thickness.
For this reason, high-strength hot-rolled steel sheets are actively used as materials for automobile members. The use of high-strength hot-rolled steel sheets is used not only for structural members and skeleton members of automobiles, but also for undercarriage members, track frame members, and the like.
In particular, a high-strength hot-rolled steel sheet having a tensile strength (TS) of 1180 MPa or more is expected as a material that can dramatically improve the fuel efficiency of automobiles.
 ところで、鋼板の高強度化に伴い、一般的に、延性、疲労特性、耐打抜き荒れ性などの材料特性が劣化する場合がある。特に、自動車の足回り部材として用いられる鋼板は、これらの材料特性が総合して優れることが要求される。すなわち、これらの材料特性と高強度とを高い次元でバランス良く確保することが要求される。
 これらの材料特性を劣化させることなく鋼板を高強度化するため、従来、種々の検討がなされている(特許文献1~4を参照)。
By the way, as the strength of a steel sheet is increased, material properties such as ductility, fatigue properties, and punching roughness resistance may generally deteriorate. In particular, steel sheets used as undercarriage members for automobiles are required to have excellent overall material properties. That is, it is required to secure these material properties and high strength in a high level and in a well-balanced manner.
In order to increase the strength of the steel sheet without deteriorating these material properties, various studies have been made conventionally (see Patent Documents 1 to 4).
特開2014-227583号公報Japanese Unexamined Patent Publication No. 2014-227583 特開2016-211073号公報Japanese Unexamined Patent Publication No. 2016-211073 特開2009-84637号公報JP-A-2009-84637 国際公開第2014/188966号International Publication No. 2014/188966
 しかしながら、特許文献1~4には、1180MPa以上の引張強さを有し、かつ、延性、疲労特性および耐打抜き荒れ性にも優れる高強度熱延鋼板は開示されていない。
 そこで、本発明は、1180MPa以上の引張強さを有し、かつ、延性、疲労特性および耐打抜き荒れ性に優れる高強度熱延鋼板およびその製造方法を提供することを目的とする。
However, Patent Documents 1 to 4 do not disclose high-strength hot-rolled steel sheets having a tensile strength of 1180 MPa or more and also having excellent ductility, fatigue characteristics, and punching roughness resistance.
Therefore, an object of the present invention is to provide a high-strength hot-rolled steel sheet having a tensile strength of 1180 MPa or more and excellent in ductility, fatigue characteristics and punching roughness resistance, and a method for producing the same.
 本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出し、本発明を完成させた。 As a result of diligent studies, the present inventors have found that the above object can be achieved by adopting the following configuration, and have completed the present invention.
 すなわち、本発明は、以下の[1]~[7]を提供する。
 [1]引張強さが、1180MPa以上であり、表面の算術平均粗さRaが、2.00μm以下であり、質量%で、C:0.09%以上0.20%以下、Si:0.2%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.100%以下、S:0.0100%以下、Al:0.01%以上2.00%以下、N:0.010%以下、Ti:0.001%以上0.030%未満、および、B:0.0005%以上0.0200%以下を含有し、さらに、Cr:0.10%以上1.50%以下、Mo:0.05%以上0.45%以下、Nb:0.005%以上0.060%以下、および、V:0.05%以上0.50%以下からなる群から選ばれる少なくとも1種を含有し、残部がFeおよび不可避的不純物からなる成分組成と、上部ベイナイト相および第2相を含むミクロ組織と、を有し、上記上部ベイナイト相の面積率が、50%以上90%未満であり、上記上部ベイナイト相の平均粒径が、12.0μm以下であり、上記第2相は、下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種であり、上記第2相の面積率が、10%以上50%未満であり、円相当直径が0.5μm以上である上記第2相の周長が、300,000μm/mm以上である、高強度熱延鋼板。
 [2]上記成分組成は、さらに、質量%で、Cu:0.01%以上0.50%以下、および、Ni:0.01%以上0.50%以下からなる群から選ばれる少なくとも1種を含有する、上記[1]に記載の高強度熱延鋼板。
 [3]上記成分組成は、さらに、質量%で、Sb:0.0002%以上0.0300%以下を含有する、上記[1]または[2]に記載の高強度熱延鋼板。
 [4]上記成分組成は、さらに、質量%で、Ca:0.0002%以上0.0100%以下、Mg:0.0002%以上0.0100%以下、および、REM:0.0002%以上0.0100%以下からなる群から選ばれる少なくとも1種を含有する、上記[1]~[3]のいずれかに記載の高強度熱延鋼板。
 [5]表面にめっき層を有する、上記[1]~[4]のいずれかに記載の高強度熱延鋼板。
 [6]上記[1]~[4]のいずれかに記載の高強度熱延鋼板を製造する方法であって、上記[1]~[4]のいずれかに記載の成分組成を有する鋼素材を、1150℃以上に加熱し、上記加熱した上記鋼素材を粗圧延することにより粗圧延板を得て、上記粗圧延板に、2.5MPa以上の衝突圧で、高圧水デスケーリングを施し、上記高圧水デスケーリングを施した上記粗圧延板を(RC-100)℃以上(RC+100)℃以下の仕上圧延終了温度で仕上圧延することにより仕上圧延板を得て、ただし、RCは下記式(1)で定義され、上記仕上圧延板を20℃/s以上の平均冷却速度で(Bs-150)℃以上Bs℃以下の冷却停止温度まで冷却し、ただし、Bsは下記式(2)で定義され、かつ、上記仕上圧延終了温度がRC℃以上である場合は上記仕上圧延の終了から上記冷却の開始までの時間が2.0s以下であり、上記冷却した上記仕上圧延板を、上記冷却停止温度にて巻き取りし、上記巻き取りした上記仕上圧延板を0.10℃/min以上の平均冷却速度で(Bs-300)℃まで冷却する、高強度熱延鋼板の製造方法。
(1)RC=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V
(2)Bs=830-270×C-90×Mn-70×Cr-37×Ni-83×Mo
 ただし、上記式中の各元素記号は、上記成分組成における各元素の質量%での含有量を表す。上記成分組成が含まない元素の場合、上記式中の元素記号を0として計算する。
 [7]上記巻き取り後に上記冷却した上記仕上圧延板にめっき処理を施す、上記[6]に記載の高強度熱延鋼板の製造方法。
That is, the present invention provides the following [1] to [7].
[1] The tensile strength is 1180 MPa or more, the arithmetic average roughness Ra of the surface is 2.00 μm or less, and in mass%, C: 0.09% or more and 0.20% or less, Si: 0. 2% or more and 2.0% or less, Mn: 1.0% or more and 3.0% or less, P: 0.100% or less, S: 0.0100% or less, Al: 0.01% or more and 2.00% or less , N: 0.010% or less, Ti: 0.001% or more and less than 0.030%, and B: 0.0005% or more and 0.0200% or less, and Cr: 0.10% or more 1 Select from the group consisting of .50% or less, Mo: 0.05% or more and 0.45% or less, Nb: 0.005% or more and 0.060% or less, and V: 0.05% or more and 0.50% or less. It has a component composition containing at least one of these, the balance of which is Fe and unavoidable impurities, and a microstructure containing an upper bainite phase and a second phase, and the area ratio of the upper bainite phase is 50% or more. Less than 90%, the average particle size of the upper bainite phase is 12.0 μm or less, and the second phase is the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite. At least one selected from the group consisting of phases, the area ratio of the second phase is 10% or more and less than 50%, and the circumference equivalent to the circle is 0.5 μm or more. A high-strength hot-rolled steel plate having a capacity of 300,000 μm / mm 2 or more.
[2] The above-mentioned component composition is at least one selected from the group consisting of Cu: 0.01% or more and 0.50% or less, and Ni: 0.01% or more and 0.50% or less in mass%. The high-strength hot-rolled steel sheet according to the above [1].
[3] The high-strength hot-rolled steel sheet according to the above [1] or [2], wherein the component composition further contains Sb: 0.0002% or more and 0.0300% or less in mass%.
[4] The composition of the above components is, in mass%, Ca: 0.0002% or more and 0.0100% or less, Mg: 0.0002% or more and 0.0100% or less, and REM: 0.0002% or more and 0. The high-strength hot-rolled steel sheet according to any one of the above [1] to [3], which contains at least one selected from the group consisting of 0100% or less.
[5] The high-strength hot-rolled steel sheet according to any one of [1] to [4] above, which has a plating layer on its surface.
[6] A steel material having the component composition according to any one of the above [1] to [4], which is a method for producing a high-strength hot-rolled steel sheet according to any one of the above [1] to [4]. Was heated to 1150 ° C. or higher, and the heated steel material was roughly rolled to obtain a rough-rolled plate, and the rough-rolled plate was subjected to high-pressure water descaling at a collision pressure of 2.5 MPa or more. The rough-rolled plate subjected to the high-pressure water descaling is subjected to finish-rolling at a finish-rolling end temperature of (RC-100) ° C. or higher (RC + 100) ° C. to obtain a finished-rolled plate. Defined in 1), the finished rolled sheet is cooled at an average cooling rate of 20 ° C./s or higher to a cooling stop temperature of (Bs-150) ° C. or higher and Bs ° C. or lower, where Bs is defined by the following formula (2). When the finish rolling end temperature is RC ° C. or higher, the time from the end of the finish rolling to the start of the cooling is 2.0 s or less, and the cooled finish rolling plate is stopped. A method for producing a high-strength hot-rolled steel sheet, which is wound at a temperature and the wound finished rolled plate is cooled to (Bs-300) ° C. at an average cooling rate of 0.10 ° C./min or more.
(1) RC = 850 + 100 × C + 100 × N + 10 × Mn + 700 × Ti + 5000 × B + 10 × Cr + 50 × Mo + 2000 × Nb + 150 × V
(2) Bs = 830-270 × C-90 × Mn-70 × Cr-37 × Ni-83 × Mo
However, each element symbol in the above formula represents the content of each element in the above component composition in mass%. In the case of an element that does not include the above component composition, the element symbol in the above formula is set to 0 for calculation.
[7] The method for producing a high-strength hot-rolled steel sheet according to the above [6], wherein after the winding, the cooled finished rolled plate is plated.
 本発明によれば、1180MPa以上の引張強さを有し、かつ、延性、疲労特性および耐打抜き荒れ性に優れる高強度熱延鋼板およびその製造方法を提供できる。
 本発明の高強度熱延鋼板を、自動車の構造部材、骨格部材、サスペンションなどの足回り部材、トラックフレーム部材などに使用することにより、自動車の安全性を確保しつつ、自動車車体の重量を軽減できる。このため、環境負荷の低減に寄与できる。
According to the present invention, it is possible to provide a high-strength hot-rolled steel sheet having a tensile strength of 1180 MPa or more and excellent in ductility, fatigue characteristics and punching roughness resistance, and a method for producing the same.
By using the high-strength hot-rolled steel sheet of the present invention for structural members, skeleton members, suspension members such as suspensions, truck frame members, etc. of automobiles, the weight of the automobile body is reduced while ensuring the safety of automobiles. it can. Therefore, it can contribute to the reduction of the environmental load.
平面曲げ疲労試験に用いる試験片を示す模式図である。It is a schematic diagram which shows the test piece used for the plane bending fatigue test.
[高強度熱延鋼板]
 本発明の高強度熱延鋼板は、引張強さが、1180MPa以上であり、表面の算術平均粗さRaが、2.00μm以下であり、質量%で、C:0.09%以上0.20%以下、Si:0.2%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.100%以下、S:0.0100%以下、Al:0.01%以上2.00%以下、N:0.010%以下、Ti:0.001%以上0.030%未満、および、B:0.0005%以上0.0200%以下を含有し、さらに、Cr:0.10%以上1.50%以下、Mo:0.05%以上0.45%以下、Nb:0.005%以上0.060%以下、および、V:0.05%以上0.50%以下からなる群から選ばれる少なくとも1種を含有し、残部がFeおよび不可避的不純物からなる成分組成と、上部ベイナイト相および第2相を含むミクロ組織と、を有し、上記上部ベイナイト相の面積率が、50%以上90%未満であり、上記上部ベイナイト相の平均粒径が、12.0μm以下であり、上記第2相は、下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種であり、上記第2相の面積率が、10%以上50%未満であり、円相当直径が0.5μm以上である上記第2相の周長が、300,000μm/mm以上である、高強度熱延鋼板である。
[High-strength hot-rolled steel sheet]
The high-strength hot-rolled steel sheet of the present invention has a tensile strength of 1180 MPa or more, a surface arithmetic average roughness Ra of 2.00 μm or less, and a mass% of C: 0.09% or more and 0.20. % Or less, Si: 0.2% or more and 2.0% or less, Mn: 1.0% or more and 3.0% or less, P: 0.100% or less, S: 0.0100% or less, Al: 0.01 % Or more and 2.00% or less, N: 0.010% or less, Ti: 0.001% or more and less than 0.030%, and B: 0.0005% or more and 0.0200% or less, and further, Cr : 0.10% or more and 1.50% or less, Mo: 0.05% or more and 0.45% or less, Nb: 0.005% or more and 0.060% or less, and V: 0.05% or more and 0.50 It contains at least one selected from the group consisting of% or less, has a component composition in which the balance is composed of Fe and unavoidable impurities, and has a microstructure containing an upper bainite phase and a second phase, and has the above-mentioned upper bainite phase. The area ratio is 50% or more and less than 90%, the average particle size of the upper bainite phase is 12.0 μm or less, and the second phase is the lower bainite phase and / or the tempered martensite phase and fresh martensite. It is at least one selected from the group consisting of a site phase and a bainite phase, and the area ratio of the second phase is 10% or more and less than 50%, and the circle-equivalent diameter is 0.5 μm or more. A high-strength hot-rolled steel plate having a two-phase peripheral length of 300,000 μm / mm 2 or more.
 本発明の高強度熱延鋼板は、延性、疲労特性および耐打抜き荒れ性に優れる。 The high-strength hot-rolled steel sheet of the present invention is excellent in ductility, fatigue characteristics, and punching roughness resistance.
 高強度とは、引張強さ(TS)が1180MPa以上であることを意味する。
 延性に優れる(優れた延性)とは、後述するように、引張強さ(TS)と均一伸び(U-El)とを乗じて得られる値(TS×U-El)が6,000MPa・%以上であることを意味する。
 疲労特性に優れる(優れた疲労特性)とは、後述するように、平面曲げ疲労試験により求まる50万サイクルにおける疲労強度を引張強さ(TS)で除した値が0.50以上であることを意味する。
 耐打抜き荒れ性に優れる(優れた耐打抜き荒れ性)とは、後述するように、10mmφのポンチを用いて、クリアランス12±1%で打抜き加工した後における、打抜き穴端面の最大高さ粗さRzが平均で35μm以下であり、かつ、Rzの標準偏差が10μm以下であることを意味する。
High strength means that the tensile strength (TS) is 1180 MPa or more.
Excellent ductility (excellent ductility) means that the value (TS × U-El) obtained by multiplying the tensile strength (TS) and the uniform elongation (U-El) is 6,000 MPa ·%, as will be described later. It means that it is the above.
Excellent fatigue characteristics (excellent fatigue characteristics) means that the value obtained by dividing the fatigue strength in 500,000 cycles obtained by the plane bending fatigue test by the tensile strength (TS) is 0.50 or more, as will be described later. means.
Excellent punching roughness resistance (excellent punching roughness resistance) means that the maximum height roughness Rz of the punched hole end face after punching with a clearance of 12 ± 1% using a punch of 10 mmφ is defined as described later. It means that the average is 35 μm or less and the standard deviation of Rz is 10 μm or less.
 一般的に、1180MPa以上の引張強さを得るためには、鋼板のミクロ組織において、硬度の高い下部ベイナイト相および/または焼き戻しマルテンサイト相を主相とする。しかし、これらは、延性が低い。
 そこで、本発明においては、主相を延性の高い上部ベイナイトとし、第2相を硬度の高い下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種とする。これにより、高強度(1180MPa以上の引張強さ)を維持しつつ、延性にも優れる。
 主相とは、面積率で50%以上であることを意味する。
Generally, in order to obtain a tensile strength of 1180 MPa or more, a lower bainite phase and / or a tempered martensite phase having high hardness is used as the main phase in the microstructure of the steel sheet. However, they have low ductility.
Therefore, in the present invention, the main phase is a highly ductile upper bainite, and the second phase is a group consisting of a hard lower bainite phase and / or a tempered martensite phase, a fresh martensite phase, and a retained austenite phase. At least one selected. As a result, while maintaining high strength (tensile strength of 1180 MPa or more), it is also excellent in ductility.
The prime minister means that the area ratio is 50% or more.
 また、一般的に、鋼板の疲労寿命は、疲労亀裂の発生に要する時間および成長に要する時間によって決まる。これらの時間を遅延させることにより、疲労特性に優れる。
 本発明においては、鋼板表面の算術平均粗さRaを制御することにより、疲労亀裂の発生に要する時間を遅延させる。また、円相当直径が0.5μm以上である第2相の周長を制御することにより、疲労亀裂の成長に要する時間を遅延させる。これにより、優れた疲労特性が得られる。
Further, in general, the fatigue life of a steel sheet is determined by the time required for the occurrence of fatigue cracks and the time required for growth. By delaying these times, the fatigue characteristics are excellent.
In the present invention, the time required for the occurrence of fatigue cracks is delayed by controlling the arithmetic mean roughness Ra of the surface of the steel sheet. Further, by controlling the circumference of the second phase having a circle-equivalent diameter of 0.5 μm or more, the time required for the growth of fatigue cracks is delayed. As a result, excellent fatigue characteristics can be obtained.
 また、打抜き加工の多い自動車の足回り部材やトラックフレーム部品においては、外観品質上、打抜いた後の端面の粗さが大きくならない(耐打抜き荒れ性に優れる)ことが求められる。そこで、主相の平均粒径と、成分組成とを制御する。これにより、優れた耐打抜き荒れ性が得られる。 In addition, in the case of automobile suspension members and truck frame parts that are often punched, it is required that the roughness of the end face after punching does not increase (excellent in punching roughness resistance) in terms of appearance quality. Therefore, the average particle size of the main phase and the component composition are controlled. As a result, excellent punching roughness resistance can be obtained.
 本発明の高強度熱延鋼板は、いわゆる熱延鋼板であり、後述する成分組成およびミクロ組織を有する。以下、「高強度熱延鋼板」または「熱延鋼板」を単に「鋼板」ともいう。
 鋼板の板厚は、特に限定されず、例えば、6.0mm以下である。下限も特に限定されず、例えば、1.0mm以上である。
The high-strength hot-rolled steel sheet of the present invention is a so-called hot-rolled steel sheet, and has a component composition and a microstructure described later. Hereinafter, "high-strength hot-rolled steel sheet" or "hot-rolled steel sheet" is also simply referred to as "steel sheet".
The thickness of the steel plate is not particularly limited, and is, for example, 6.0 mm or less. The lower limit is also not particularly limited, and is, for example, 1.0 mm or more.
 〈成分組成〉
 まず、鋼板の成分組成の限定理由を説明する。以下、成分組成における「%」は、特に断らない限り、「質量%」を意味する。
<Ingredient composition>
First, the reason for limiting the composition of the steel sheet will be described. Hereinafter, "%" in the component composition means "mass%" unless otherwise specified.
 《C:0.09%以上0.20%以下》
 Cは、鋼の強度を向上させ、焼入れ性を向上させることによってベイナイトの生成を促進し、また、第2相の分率を向上させる。上部ベイナイト変態時に、未変態オーステナイトにCが分配されることで、未変態オーステナイトが安定化する。これにより、巻き取り後の冷却において、未変態オーステナイトが第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)となる。このため、C含有量は、0.09%以上であり、0.10%以上が好ましく、0.11%以上がより好ましい。
 一方、C含有量が多すぎると、第2相が増加し、延性が不十分となる。このため、C含有量は、0.20%以下であり、0.18%以下が好ましく、0.16%以下がより好ましい。
<< C: 0.09% or more and 0.20% or less >>
C promotes the formation of bainite by improving the strength of the steel and the hardenability, and also improves the fraction of the second phase. At the time of upper bainite transformation, C is distributed to the untransformed austenite to stabilize the untransformed austenite. As a result, in the cooling after winding, the untransformed austenite is the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase). It becomes. Therefore, the C content is 0.09% or more, preferably 0.10% or more, and more preferably 0.11% or more.
On the other hand, if the C content is too high, the second phase increases and the ductility becomes insufficient. Therefore, the C content is 0.20% or less, preferably 0.18% or less, and more preferably 0.16% or less.
 《Si:0.2%以上2.0%以下》
 Siは、固溶強化に寄与し、鋼の強度向上に寄与する。また、Siは、Fe系炭化物の形成を抑制する効果があり、上部ベイナイト変態時のセメンタイトの析出を抑制する。これにより、未変態オーステナイトにCが分配され、巻き取り後の冷却において、未変態オーステナイトが第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)となる。これらの効果を得るため、Si含有量は、0.2%以上であり、0.4%以上が好ましく、0.5%以上がより好ましい。
 一方、Siは、熱間圧延中に鋼板表面にサブスケールを形成する。Si含有量が多すぎると、サブスケールが厚くなりすぎてしまい、デスケーリング後における鋼板表面の算術平均粗さRaが過大となり、疲労特性が不十分となる。このため、Si含有量は、2.0%以下であり、1.8%以下が好ましく、1.6%以下がより好ましい。
<< Si: 0.2% or more and 2.0% or less >>
Si contributes to solid solution strengthening and improves the strength of steel. In addition, Si has the effect of suppressing the formation of Fe-based carbides and suppresses the precipitation of cementite during the transformation of upper bainite. As a result, C is distributed to the untransformed austenite, and in the cooling after winding, the untransformed austenite is separated from the second phase (lower bainite phase and / or tempered martensite phase, fresh martensite phase, and retained austenite phase. At least one species selected from the group). In order to obtain these effects, the Si content is 0.2% or more, preferably 0.4% or more, and more preferably 0.5% or more.
On the other hand, Si forms a subscale on the surface of the steel sheet during hot rolling. If the Si content is too high, the subscale becomes too thick, the arithmetic mean roughness Ra of the steel sheet surface after descaling becomes excessive, and the fatigue characteristics become insufficient. Therefore, the Si content is 2.0% or less, preferably 1.8% or less, and more preferably 1.6% or less.
 《Mn:1.0%以上3.0%以下》
 Mnは、固溶して鋼の強度増加に寄与するとともに、焼入れ性向上によってベイナイト相およびマルテンサイト相の生成を促進する。このような効果を得るため、Mn含有量は、1.0%以上であり、1.3%以上が好ましく、1.5%以上がより好ましい。
 一方、Mn含有量が多すぎると、第2相が増加し、延性が不十分となる。このため、Mn含有量は、3.0%以下であり、2.6%以下が好ましく、2.4%以下がより好ましい。
<< Mn: 1.0% or more and 3.0% or less >>
Mn dissolves in solid solution and contributes to the increase in strength of steel, and promotes the formation of bainite phase and martensite phase by improving hardenability. In order to obtain such an effect, the Mn content is 1.0% or more, preferably 1.3% or more, and more preferably 1.5% or more.
On the other hand, if the Mn content is too high, the second phase increases and the ductility becomes insufficient. Therefore, the Mn content is 3.0% or less, preferably 2.6% or less, and more preferably 2.4% or less.
 《P:0.100%以下(0%を含む)》
 Pは、固溶して鋼の強度増加に寄与する。しかし、Pは、熱間圧延時のオーステナイト粒界に偏析することにより、熱間圧延時の割れを発生させる。また、割れの発生が回避できても、粒界に偏析して低温靭性を低下させるとともに、加工性を低下させる。このため、P含有量は極力低くすることが好ましく、0.100%までのPの含有は許容できる。したがって、P含有量は、0.100%以下であり、0.050%以下が好ましく、0.020%以下がより好ましい。
<< P: 0.100% or less (including 0%) >>
P dissolves in solid solution and contributes to an increase in the strength of steel. However, P causes cracks during hot rolling by segregating at the austenite grain boundaries during hot rolling. Further, even if the occurrence of cracks can be avoided, segregation at the grain boundaries lowers the low temperature toughness and lowers the workability. Therefore, the P content is preferably as low as possible, and the content of P up to 0.100% is acceptable. Therefore, the P content is 0.100% or less, preferably 0.050% or less, and more preferably 0.020% or less.
 《S:0.0100%以下(0%を含む)》
 Sは、TiやMnと結合して粗大な硫化物を形成し、耐打抜き荒れ性を低下させる。このため、S含有量は極力低くすることが好ましく、0.0100%までのSの含有は許容できる。したがって、S含有量は、0.0100%以下であり、0.0050%以下が好ましく、0.0030%以下がより好ましい。
<< S: 0.0100% or less (including 0%) >>
S combines with Ti and Mn to form coarse sulfide, which reduces punching roughness resistance. Therefore, the S content is preferably as low as possible, and the content of S up to 0.0100% is acceptable. Therefore, the S content is 0.0100% or less, preferably 0.0050% or less, and more preferably 0.0030% or less.
 《Al:0.01%以上2.00%以下》
 Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効である。Alが少なすぎると、その効果が必ずしも十分ではない。また、Alは、Siと同様に、Fe系炭化物の形成を抑制する効果があり、上部ベイナイト変態時のセメンタイトの析出を抑制する。これにより、未変態オーステナイトにCが分配され、巻き取り後の冷却において、未変態オーステナイトが第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)となる。このため、Al含有量は、0.01%以上であり、0.015%以上が好ましく、0.020%以上がより好ましい。
 一方、Alの過剰な添加は、酸化物系介在物の増加を招き、耐打抜き荒れ性を低下させるとともに、疵発生の原因となる。このため、Al含有量は、2.00%以下であり、1.80%以下が好ましく、1.60%以下がより好ましい。
<< Al: 0.01% or more and 2.00% or less >>
Al acts as a deoxidizer and is effective in improving the cleanliness of steel. If the amount of Al is too small, the effect is not always sufficient. Further, Al has an effect of suppressing the formation of Fe-based carbides like Si, and suppresses the precipitation of cementite during the transformation of upper bainite. As a result, C is distributed to the untransformed austenite, and the untransformed austenite is separated from the second phase (lower bainite phase and / or tempered martensite phase, fresh martensite phase, and retained austenite phase in cooling after winding. At least one species selected from the group). Therefore, the Al content is 0.01% or more, preferably 0.015% or more, and more preferably 0.020% or more.
On the other hand, excessive addition of Al causes an increase in oxide-based inclusions, lowers punching roughness resistance, and causes defects. Therefore, the Al content is 2.00% or less, preferably 1.80% or less, and more preferably 1.60% or less.
 《N:0.010%以下(0%を含む)》
 Nは、窒化物を形成する元素と結合することにより窒化物として析出し、結晶粒の微細化に寄与する。しかし、Nは、高温でTiと結合して粗大な窒化物になりやすく、多すぎる含有は、耐打抜き荒れ性を低下させる。このため、N含有量は、0.010%以下であり、0.008%以下が好ましく、0.006%以下がより好ましい。
<< N: 0.010% or less (including 0%) >>
N is precipitated as a nitride by combining with an element forming a nitride, and contributes to the refinement of crystal grains. However, N tends to combine with Ti at a high temperature to form a coarse nitride, and if it is contained in an excessive amount, the punching roughness resistance is lowered. Therefore, the N content is 0.010% or less, preferably 0.008% or less, and more preferably 0.006% or less.
 《Ti:0.001%以上0.030%未満》
 Tiは、析出強化または固溶強化により鋼板の強度を向上させる。Tiは、オーステナイト相高温域(オーステナイト相での高温の域、および、オーステナイト相よりも高温の域(鋳造の段階))で窒化物を形成する。これにより、BNの析出が抑制され、Bが固溶状態になる。こうして、上部ベイナイト相の生成に必要な焼入れ性が得られ、強度向上に寄与する。また、Tiは、熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能にする。これにより、上部ベイナイト相の粒径微細化と、第2相の周長の増加とに寄与し、耐打抜き荒れ性と疲労特性とを向上させる。これらの効果を発現させるため、Ti含有量は、0.001%以上であり、0.003%以上が好ましく、0.005%以上がより好ましい。
 一方、Ti含有量が多すぎると、粗大な窒化物を形成し、耐打抜き荒れ性が不十分となる。このため、Ti含有量は、0.030%未満であり、0.028%以下が好ましく、0.025%以下がより好ましい。
<< Ti: 0.001% or more and less than 0.030% >>
Ti improves the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Ti forms a nitride in the austenite phase high temperature region (high temperature region in the austenite phase and higher temperature region than the austenite phase (casting stage)). As a result, the precipitation of BN is suppressed and B becomes a solid solution state. In this way, the hardenability required for the formation of the upper bainite phase is obtained, which contributes to the improvement of strength. Further, Ti enables rolling in the austenite unrecrystallized region by raising the recrystallization temperature of the austenite phase during hot rolling. This contributes to the miniaturization of the particle size of the upper bainite phase and the increase of the peripheral length of the second phase, and improves the punching roughness resistance and fatigue characteristics. In order to exhibit these effects, the Ti content is 0.001% or more, preferably 0.003% or more, and more preferably 0.005% or more.
On the other hand, if the Ti content is too high, coarse nitrides are formed and the punching roughness resistance becomes insufficient. Therefore, the Ti content is less than 0.030%, preferably 0.028% or less, and more preferably 0.025% or less.
 《B:0.0005%以上0.0200%以下》
 Bは、旧オーステナイト粒界に偏析し、フェライトの生成を抑制することにより、上部ベイナイト相の生成を促進し、鋼板の強度向上に寄与する。これらの効果を発現させるため、B含有量は、0.0005%以上であり、0.0006%以上が好ましく、0.0007%以上がより好ましい。
 一方、B含有量が多すぎると、上記した効果が飽和する。このため、B含有量は、0.0200%以下であり、0.0100%以下が好ましく、0.0050%以下がより好ましい。
<< B: 0.0005% or more and 0.0200% or less >>
B segregates at the old austenite grain boundaries and suppresses the formation of ferrite, thereby promoting the formation of the upper bainite phase and contributing to the improvement of the strength of the steel sheet. In order to exhibit these effects, the B content is 0.0005% or more, preferably 0.0006% or more, and more preferably 0.0007% or more.
On the other hand, if the B content is too high, the above effects will be saturated. Therefore, the B content is 0.0200% or less, preferably 0.0100% or less, and more preferably 0.0050% or less.
 鋼板の成分組成は、さらに、Cr、Mo、NbおよびVからなる群から選ばれる少なくとも1種を、以下に示す含有量で含有する。 The composition of the steel sheet further contains at least one selected from the group consisting of Cr, Mo, Nb and V in the content shown below.
 《Cr:0.10%以上1.50%以下》
 Crは、固溶強化により鋼板の強度を向上させる。また、Crは、炭化物を形成する元素であり、巻き取り後の上部ベイナイト変態時に、上部ベイナイト相と未変態オーステナイトとの界面に偏析することにより、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる。未変態オーステナイトは、その後に冷却されることで、第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)となる。これらの効果を発現させるため、Crを含有する場合、Cr含有量は、0.10%以上であり、0.15%以上が好ましく、0.20%以上がより好ましい。
 一方、Crは、Siと同様に、熱間圧延中に鋼板表面にサブスケールを形成する。このため、Cr含有量が多すぎるとサブスケールが厚くなりすぎてしまい、デスケーリング後における算術平均粗さRaが過大となり、疲労特性が不十分となる。したがって、Crを含有する場合、Cr含有量は、1.50%以下であり、1.40%以下が好ましく、1.30%以下がより好ましく、1.20%以下がさらに好ましく、1.00%以下が特に好ましい。
<< Cr: 0.10% or more and 1.50% or less >>
Cr improves the strength of the steel sheet by solid solution strengthening. Further, Cr is an element that forms a carbide, and during the transformation of the upper bainite after winding, it segregates at the interface between the upper bainite phase and the untransformed austenite, thereby reducing the transformation driving force of the bainite and causing the untransformed austenite. Stop the upper bainite transformation while leaving. The untransformed austenite is subsequently cooled to the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase). Become. In order to exhibit these effects, when Cr is contained, the Cr content is 0.10% or more, preferably 0.15% or more, and more preferably 0.20% or more.
On the other hand, Cr, like Si, forms a subscale on the surface of the steel sheet during hot rolling. Therefore, if the Cr content is too large, the subscale becomes too thick, the arithmetic mean roughness Ra after descaling becomes excessive, and the fatigue characteristics become insufficient. Therefore, when Cr is contained, the Cr content is 1.50% or less, preferably 1.40% or less, more preferably 1.30% or less, further preferably 1.20% or less, and 1.00%. % Or less is particularly preferable.
 《Mo:0.05%以上0.45%以下》
 Moは、焼入れ性の向上を通じてベイナイト相の形成を促進し、鋼板の強度向上に寄与する。また、Moは、Crと同様に、炭化物を形成する元素であり、巻き取り後の上部ベイナイト変態時に、上部ベイナイト相と未変態オーステナイトとの界面に偏析することにより、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる。未変態オーステナイトは、その後に冷却されることで、第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)となる。このような効果を得るため、Moを含有する場合、Mo含有量は、0.05%以上であり、0.10%以上が好ましく、0.15%以上がより好ましい。
 一方、Mo含有量が多すぎると、第2相が増加して、延性が不十分となる。このため、Moを含有する場合、Mo含有量は、0.45%以下であり、0.40%以下が好ましく、0.30%以下がより好ましい。
<< Mo: 0.05% or more and 0.45% or less >>
Mo promotes the formation of the bainite phase through the improvement of hardenability and contributes to the improvement of the strength of the steel sheet. Further, Mo is an element that forms a carbide like Cr, and at the time of upper bainite transformation after winding, segregation occurs at the interface between the upper bainite phase and untransformed austenite, thereby reducing the transformation driving force of bainite. And stop the upper bainite transformation while leaving the untransformed austenite. The untransformed austenite is subsequently cooled to the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase). Become. In order to obtain such an effect, when Mo is contained, the Mo content is 0.05% or more, preferably 0.10% or more, and more preferably 0.15% or more.
On the other hand, if the Mo content is too high, the second phase increases and the ductility becomes insufficient. Therefore, when Mo is contained, the Mo content is 0.45% or less, preferably 0.40% or less, and more preferably 0.30% or less.
 《Nb:0.005%以上0.060%以下》
 Nbは、析出強化または固溶強化により鋼板の強度を向上させる。また、Nbは、Tiと同様に、熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能にする。これにより、上部ベイナイト相の粒径微細化と第2相の周長の増加とに寄与し、耐打抜き荒れ性と疲労特性とを向上させる。また、Nbは、Crと同様に、炭化物を形成する元素であり、巻き取り後の上部ベイナイト変態時に、上部ベイナイト相と未変態オーステナイトとの界面に偏析することにより、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる。未変態オーステナイトは、その後に冷却されることで、第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)となる。これらの効果を発現させるため、Nbを含有する場合、Nb含有量は、0.005%以上であり、0.010%以上が好ましく、0.015%以上がより好ましい。
 一方、Nb含有量が多すぎると、第2相が増加して、延性が不十分となる。このため、Nbを含有する場合、Nb含有量は、0.060%以下であり、0.050%以下が好ましく、0.040%以下がより好ましい。
<< Nb: 0.005% or more and 0.060% or less >>
Nb improves the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Further, Nb enables rolling in the austenite unrecrystallized region by raising the recrystallization temperature of the austenite phase during hot rolling, similarly to Ti. This contributes to the miniaturization of the particle size of the upper bainite phase and the increase of the peripheral length of the second phase, and improves the punching roughness resistance and fatigue characteristics. Further, Nb is an element that forms a carbide like Cr, and at the time of upper bainite transformation after winding, segregation occurs at the interface between the upper bainite phase and untransformed austenite, thereby reducing the transformation driving force of bainite. And stop the upper bainite transformation while leaving the untransformed austenite. The untransformed austenite is subsequently cooled to the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase). Become. In order to exhibit these effects, when Nb is contained, the Nb content is 0.005% or more, preferably 0.010% or more, and more preferably 0.015% or more.
On the other hand, if the Nb content is too high, the second phase increases and the ductility becomes insufficient. Therefore, when Nb is contained, the Nb content is 0.060% or less, preferably 0.050% or less, and more preferably 0.040% or less.
 《V:0.05%以上0.50%以下》
 Vは、析出強化または固溶強化により鋼板の強度を向上させる。また、Vは、Tiと同様に、熱間圧延時のオーステナイト相の再結晶温度を上昇させることで、オーステナイト未再結晶域での圧延を可能にする。これにより、上部ベイナイト相の粒径微細化と第2相の周長の増加とに寄与し、耐打抜き荒れ性と疲労特性とを向上させる。また、Vは、Crと同様に、炭化物を形成する元素であり、巻き取り後の上部ベイナイト変態時に、上部ベイナイト相と未変態オーステナイトとの界面に偏析することにより、ベイナイトの変態駆動力を低下させ、未変態オーステナイトを残したまま上部ベイナイト変態を停止させる。未変態オーステナイトは、その後に冷却されることで、第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)となる。これらの効果を発現させるため、Vを含有する場合、V含有量は、0.05%以上であり、0.10%以上が好ましく、0.15%以上がより好ましい。
 一方、V含有量が多すぎると、第2相が増加して、延性が不十分となる。このため、Vを含有する場合、V含有量は、0.50%以下であり、0.40%以下が好ましく、0.30%以下がより好ましい。
<< V: 0.05% or more and 0.50% or less >>
V improves the strength of the steel sheet by precipitation strengthening or solid solution strengthening. Further, V enables rolling in the austenite unrecrystallized region by raising the recrystallization temperature of the austenite phase during hot rolling, similarly to Ti. This contributes to the miniaturization of the particle size of the upper bainite phase and the increase of the peripheral length of the second phase, and improves the punching roughness resistance and fatigue characteristics. Further, V is an element that forms a carbide like Cr, and at the time of upper bainite transformation after winding, it segregates at the interface between the upper bainite phase and untransformed austenite, thereby reducing the transformation driving force of bainite. And stop the upper bainite transformation while leaving the untransformed austenite. The untransformed austenite is subsequently cooled to the second phase (at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase). Become. In order to exhibit these effects, when V is contained, the V content is 0.05% or more, preferably 0.10% or more, and more preferably 0.15% or more.
On the other hand, if the V content is too high, the second phase increases and the ductility becomes insufficient. Therefore, when V is contained, the V content is 0.50% or less, preferably 0.40% or less, and more preferably 0.30% or less.
 鋼板の成分組成が上述した元素を含有することにより、所望する特性が得られる。
 鋼板の成分組成は、例えば、鋼板をより高強度化したり、延性、疲労特性、耐打抜き荒れ性などの特性をより向上させたりすることを目的として、必要に応じて、以下に説明する他の元素をさらに含有できる。
When the component composition of the steel sheet contains the above-mentioned elements, desired properties can be obtained.
The composition of the steel sheet is, for example, other elements described below, if necessary, for the purpose of increasing the strength of the steel sheet and further improving the properties such as ductility, fatigue characteristics, and punching roughness resistance. Can be further contained.
 《他の元素》
 例えば、鋼板の成分組成は、さらに、CuおよびNiからなる群から選ばれる少なくとも1種を、以下に示す含有量で含有できる。
《Other elements》
For example, the component composition of the steel sheet can further contain at least one selected from the group consisting of Cu and Ni in the contents shown below.
 (Cu:0.01%以上0.50%以下)
 Cuは、固溶して鋼の強度増加に寄与する。また、Cuは、焼入れ性の向上を通じてベイナイト相の形成を促進し、強度向上に寄与する。これらの効果を得るため、Cuを含有する場合、Cu含有量は、0.01%以上が好ましく、0.05%以上がより好ましい。
 一方、Cu含有量が多すぎると、鋼板の表面性状の低下を招き、疲労特性が不十分となる場合がある。このため、Cuを含有する場合、Cu含有量は、0.50%以下が好ましく、0.30%以下がより好ましい。
(Cu: 0.01% or more and 0.50% or less)
Cu dissolves in solid solution and contributes to increasing the strength of steel. In addition, Cu promotes the formation of the bainite phase through the improvement of hardenability and contributes to the improvement of strength. In order to obtain these effects, when Cu is contained, the Cu content is preferably 0.01% or more, more preferably 0.05% or more.
On the other hand, if the Cu content is too large, the surface texture of the steel sheet may be deteriorated and the fatigue characteristics may be insufficient. Therefore, when Cu is contained, the Cu content is preferably 0.50% or less, more preferably 0.30% or less.
 (Ni:0.01%以上0.50%以下)
 Niは、固溶して鋼の強度増加に寄与する。また、Niは、焼入れ性の向上を通じてベイナイト相の形成を促進し、強度向上に寄与する。これらの効果を得るため、Niを含有する場合、Ni含有量は、0.01%以上が好ましく、0.05%以上がより好ましい。
 一方、Ni含有量が多すぎると、第2相が増加して、延性が不十分となる場合がある。このため、Niを含有する場合、Ni含有量は、0.50%以下が好ましく、0.30%以下がより好ましい。
(Ni: 0.01% or more and 0.50% or less)
Ni dissolves in solid solution and contributes to increasing the strength of steel. In addition, Ni promotes the formation of the bainite phase through the improvement of hardenability and contributes to the improvement of strength. In order to obtain these effects, when Ni is contained, the Ni content is preferably 0.01% or more, more preferably 0.05% or more.
On the other hand, if the Ni content is too high, the second phase may increase and the ductility may be insufficient. Therefore, when Ni is contained, the Ni content is preferably 0.50% or less, more preferably 0.30% or less.
 例えば、鋼板の成分組成は、さらに、Sbを、以下に示す含有量で含有できる。 For example, the component composition of the steel sheet can further contain Sb in the content shown below.
 (Sb:0.0002%以上0.0300%以下)
 Sbは、スラブ等の鋼素材を加熱する段階で、鋼素材の表面の窒化を抑制し、鋼素材の表層部のBNの析出を抑制する。また、固溶Bが存在することにより、鋼板の表層部において、ベイナイトの生成に必要な焼入れ性が得られ、鋼板の強度を向上させる。このような効果を発現するため、Sbを含有する場合、Sb含有量は、0.0002%以上が好ましく、0.0005%以上がより好ましく、0.0010%以上がさらに好ましい。
 一方、Sb含有量が多すぎると、圧延荷重の増大を招き、生産性を低下させる場合がある。このため、Sbを含有する場合、Sb含有量は、0.0300%以下が好ましく、0.0250%以下がより好ましく、0.0200%以下がさらに好ましい。
(Sb: 0.0002% or more and 0.0300% or less)
Sb suppresses nitriding of the surface of the steel material at the stage of heating the steel material such as a slab, and suppresses the precipitation of BN on the surface layer portion of the steel material. Further, the presence of the solid solution B provides the hardenability required for the formation of bainite in the surface layer portion of the steel sheet, and improves the strength of the steel sheet. In order to exhibit such an effect, when Sb is contained, the Sb content is preferably 0.0002% or more, more preferably 0.0005% or more, still more preferably 0.0010% or more.
On the other hand, if the Sb content is too large, the rolling load may increase and the productivity may decrease. Therefore, when Sb is contained, the Sb content is preferably 0.0300% or less, more preferably 0.0250% or less, and even more preferably 0.0200% or less.
 例えば、鋼板の成分組成は、さらに、Ca、MgおよびREMからなる群から選ばれる少なくとも1種を、以下に示す含有量で含有できる。
 REM(Rare earth Metal)は、Sc(スカンジウム)およびY(イットリウム)の2元素、ならびに、La(ランタン)からLu(ルテチウム)までの15元素(ランタノイド)の合計17元素の総称である。
For example, the component composition of the steel sheet can further contain at least one selected from the group consisting of Ca, Mg and REM in the contents shown below.
REM (Rare earth Metal) is a general term for a total of 17 elements, including two elements, Sc (scandium) and Y (yttrium), and 15 elements (lanthanoids) from La (lanthanum) to Lu (lutetium).
 (Ca:0.0002%以上0.0100%以下)
 Caは、酸化物や硫化物系の介在物の形状を制御し、耐打抜き荒れ性を向上させる。これらの効果を発現させるため、Caを含有する場合、Ca含有量は、0.0002%以上が好ましく、0.0004%以上がより好ましい。
 一方、Ca含有量が多すぎると、鋼板の表面欠陥を引き起こし、疲労特性を劣化させる場合がある。このため、Caを含有する場合、Ca含有量は、0.0100%以下が好ましく、0.0050%以下がより好ましい。
(Ca: 0.0002% or more and 0.0100% or less)
Ca controls the shape of oxide and sulfide-based inclusions and improves punching roughness resistance. In order to exhibit these effects, when Ca is contained, the Ca content is preferably 0.0002% or more, more preferably 0.0004% or more.
On the other hand, if the Ca content is too high, it may cause surface defects of the steel sheet and deteriorate the fatigue characteristics. Therefore, when Ca is contained, the Ca content is preferably 0.0100% or less, more preferably 0.0050% or less.
 (Mg:0.0002%以上0.0100%以下)
 Mgは、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、耐打抜き荒れ性を向上させる。これらの効果を発現させるため、Mgを含有する場合、Mg含有量は、0.0002%以上が好ましく、0.0004%以上がより好ましい。
 一方、Mg含有量が多すぎると、鋼の清浄度を劣化させ、耐打抜き荒れ性が不十分となる場合がある。このため、Mgを含有する場合、Mg含有量は、0.0100%以下が好ましく、0.0050%以下がより好ましい。
(Mg: 0.0002% or more and 0.0100% or less)
Similar to Ca, Mg controls the shape of oxide and sulfide-based inclusions and improves punching roughness resistance. In order to exhibit these effects, when Mg is contained, the Mg content is preferably 0.0002% or more, more preferably 0.0004% or more.
On the other hand, if the Mg content is too high, the cleanliness of the steel may be deteriorated and the punching roughness resistance may be insufficient. Therefore, when Mg is contained, the Mg content is preferably 0.0100% or less, more preferably 0.0050% or less.
 (REM:0.0002%以上0.0100%以下)
 REMは、Caと同様に、酸化物や硫化物系の介在物の形状を制御し、耐打抜き荒れ性を向上させる。これらの効果を発現させるため、REMを含有する場合、REM含有量は、0.0002%以上が好ましく、0.0004%以上がより好ましい。
 一方、REM含有量が多すぎると、鋼の清浄度を劣化させ、耐打抜き荒れ性が不十分となる場合がある。このため、REMを含有する場合、REM含有量は、0.0100%以下が好ましく、0.0050%以下がより好ましい。
(REM: 0.0002% or more and 0.0100% or less)
Similar to Ca, REM controls the shape of oxide and sulfide-based inclusions and improves punching roughness resistance. In order to exhibit these effects, when REM is contained, the REM content is preferably 0.0002% or more, more preferably 0.0004% or more.
On the other hand, if the REM content is too large, the cleanliness of the steel may be deteriorated and the punching roughness resistance may be insufficient. Therefore, when REM is contained, the REM content is preferably 0.0100% or less, more preferably 0.0050% or less.
 《残部》
 鋼板の成分組成において、上述した成分(元素)以外の残部は、Feおよび不可避的不純物からなる。不可避的不純物としては、例えば、Zr、Co、Sn、Zn、Pb等が挙げられ、これらの含有量は、合計で0.5%以下であれば許容できる。
《Remaining》
In the component composition of the steel sheet, the balance other than the above-mentioned components (elements) is composed of Fe and unavoidable impurities. Examples of unavoidable impurities include Zr, Co, Sn, Zn, Pb and the like, and the total content of these impurities is acceptable as long as 0.5% or less.
 〈ミクロ組織〉
 次に、鋼板のミクロ組織の限定理由を説明する。
<Micro tissue>
Next, the reason for limiting the microstructure of the steel sheet will be described.
 《主相:上部ベイナイト相の面積率が50%以上90%未満、かつ、上部ベイナイト相の平均粒径が12.0μm以下》
 上部ベイナイト相を主相とする。これにより延性に優れる。上部ベイナイト相の面積率が50%以上であり、かつ、上部ベイナイト相の平均粒径が12.0μm以下であることにより、優れた延性と優れた耐打抜き荒れ性とを兼備できる。
 上記効果がより優れるという理由から、上部ベイナイト相の面積率は、60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。
 同様の理由から、上部ベイナイト相の平均粒径は、11.0μm以下が好ましく、10.0μm以下がより好ましく、9.0μm以下がさらに好ましい。なお、下限は特に限定されず、例えば、1.0μm以上が好ましく、2.0μm以上がより好ましい。
 一方、上部ベイナイト相の面積率が大きすぎると、引張強さが1180MPaを下回る。このため、上部ベイナイト相の面積率は、90%未満である。
<< Main phase: The area ratio of the upper bainite phase is 50% or more and less than 90%, and the average particle size of the upper bainite phase is 12.0 μm or less >>
The upper bainite phase is the main phase. This makes it excellent in ductility. When the area ratio of the upper bainite phase is 50% or more and the average particle size of the upper bainite phase is 12.0 μm or less, excellent ductility and excellent punching roughness resistance can be combined.
For the reason that the above effect is more excellent, the area ratio of the upper bainite phase is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more.
For the same reason, the average particle size of the upper bainite phase is preferably 11.0 μm or less, more preferably 10.0 μm or less, and even more preferably 9.0 μm or less. The lower limit is not particularly limited, and for example, 1.0 μm or more is preferable, and 2.0 μm or more is more preferable.
On the other hand, if the area ratio of the upper bainite phase is too large, the tensile strength is less than 1180 MPa. Therefore, the area ratio of the upper bainite phase is less than 90%.
 《第2相:下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種(第2相)の面積率が10%以上50%未満、かつ、円相当直径が0.5μm以上である第2相の周長が300,000μm/mm以上》
 下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種を第2相とする。
 1180MPa以上の引張強さを得るため、第2相の面積率は、10%以上であり、11%以上が好ましく、13%以上がより好ましく、15%以上がさらに好ましい。
 一方、第2相の面積率が大きすぎると、延性が不十分となる。このため、第2相の面積率は、50%未満であり、40%以下が好ましく、35%以下がより好ましく、30%以下がさらに好ましい。
 また、円相当直径が0.5μm以上である第2相の周長は、300,000μm/mm以上である。これにより、平面曲げ疲労試験の際に、疲労亀裂の成長が第2相により妨げられて、疲労特性に優れる。円相当直径が0.5μm以上である第2相の周長は、長いほど疲労特性は向上することから、350,000μm/mm以上が好ましく、400,000μm/mm以上がより好ましく、450,000μm/mm以上がさらに好ましい。この周長の上限は特に限定されないが、例えば、900,000μm/mm以下が好ましく、800,000μm/mm以下がより好ましい。
<< Phase 2: The area ratio of at least one (Phase 2) selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase is 10% or more and 50%. The circumference of the second phase, which is less than and has a circle-equivalent diameter of 0.5 μm or more, is 300,000 μm / mm 2 or more >>
The second phase is at least one selected from the group consisting of the lower bainite phase and / or the tempered martensite phase, the fresh martensite phase, and the retained austenite phase.
In order to obtain a tensile strength of 1180 MPa or more, the area ratio of the second phase is 10% or more, preferably 11% or more, more preferably 13% or more, still more preferably 15% or more.
On the other hand, if the area ratio of the second phase is too large, the ductility becomes insufficient. Therefore, the area ratio of the second phase is less than 50%, preferably 40% or less, more preferably 35% or less, still more preferably 30% or less.
The circumference of the second phase having a circle-equivalent diameter of 0.5 μm or more is 300,000 μm / mm 2 or more. As a result, in the plane bending fatigue test, the growth of fatigue cracks is hindered by the second phase, and the fatigue characteristics are excellent. Circumferential length of the second phase, since the longer the fatigue characteristics are improved, preferably 350,000μm / mm 2 or more, 400,000μm / mm 2 or more preferably a circle equivalent diameter is 0.5μm or more, 450 More preferably, 000 μm / mm 2 or more. The upper limit of the peripheral length is not particularly limited, but for example, 900,000 μm / mm 2 or less is preferable, and 800,000 μm / mm 2 or less is more preferable.
 上述した主相および第2相以外の残部は、例えば、パーライト相およびポリゴナルフェライト相からなる群から選ばれる少なくとも1種である。これらの残部を有さない場合もある。残部の面積率は、本発明の効果を得る観点から、合計で0%以上3%未満が好ましい。 The rest other than the main phase and the second phase described above is at least one selected from the group consisting of, for example, a pearlite phase and a polygonal ferrite phase. It may not have these remnants. From the viewpoint of obtaining the effects of the present invention, the area ratio of the remaining portion is preferably 0% or more and less than 3% in total.
 上部ベイナイト相は、方位差が15°未満のラス状フェライトの集合体であり、ラス状フェライト間にFe系炭化物および/または残留オーステナイト相を有する組織(ただし、ラス状フェライト間にFe系炭化物および/または残留オーステナイト相を有しない場合も含む)を意味する。
 ラス状フェライトは、パーライト相中のラメラ状(層状)フェライトやポリゴナルフェライトと異なり、形状がラス状であり、かつ、内部に比較的高い転位密度を有する。このため、ラス状フェライトと、パーライト相中のラメラ状(層状)フェライトやポリゴナルフェライトとは、互いに、SEM(走査型電子顕微鏡)やTEM(透過型電子顕微鏡)を用いて区別できる。
 ラメラ状フェライトは、ラス状フェライトと比較して転位密度が低い。このため、パーライト相と、上部ベイナイト相とは、SEMやTEM等を用いて、容易に互いに区別できる。
 なお、ラス間に残留オーステナイト相を有する場合は、ラス状フェライト部のみを上部ベイナイト相とみなし、残留オーステナイト相とは区別する。
The upper bainite phase is an aggregate of lath-like ferrites with an orientation difference of less than 15 °, and has a structure having Fe-based carbides and / or retained austenite phases between lath-like ferrites (however, Fe-based carbides and Fe-based ferrites between lath-like ferrites. / Or even if it does not have a retained austenite phase).
Unlike lamellar (layered) ferrite and polygonal ferrite in the pearlite phase, lath-like ferrite has a lath-like shape and has a relatively high dislocation density inside. Therefore, the lath-shaped ferrite and the lamellar (layered) ferrite or polygonal ferrite in the pearlite phase can be distinguished from each other by using SEM (scanning electron microscope) or TEM (transmission electron microscope).
Lamellar ferrite has a lower dislocation density than lath-like ferrite. Therefore, the pearlite phase and the upper bainite phase can be easily distinguished from each other by using SEM, TEM, or the like.
When a retained austenite phase is provided between the laths, only the lath-shaped ferrite portion is regarded as the upper bainite phase to distinguish it from the retained austenite phase.
 下部ベイナイト相および/または焼き戻しマルテンサイト相は、方位差が15°未満のラス状フェライトの集合体であり、ラス状フェライト内にFe系炭化物を有する組織(ただし、ラス状フェライト間にもFe系炭化物を有する場合も含む)を意味する。
 下部ベイナイトと焼き戻しマルテンサイトとは、ラス状フェライト内のFe系炭化物の方位や結晶構造を、TEM(透過型電子顕微鏡)を用いて観察することにより、互いに区別できる。しかし、本発明においては、実質的に同じ特性を有していることから、両者を区別しない。
 下部ベイナイト相および/または焼き戻しマルテンサイト相は、ラス状フェライト内にFe系炭化物を有するため、SEMやTEMを用いて、上部ベイナイト相と区別できる。
 ラメラ状フェライトは、ラス状フェライトと比較して転位密度が低い。このため、パーライト相と、下部ベイナイト相および/または焼き戻しマルテンサイト相とは、SEMやTEM等を用いて、容易に互いに区別できる。
The lower bainite phase and / or the tempered martensite phase are aggregates of lath-like ferrite with an orientation difference of less than 15 °, and have a structure having Fe-based carbides in the lath-like ferrite (however, Fe also between the lath-like ferrites). (Including the case of having a carbide).
Lower bainite and tempered martensite can be distinguished from each other by observing the orientation and crystal structure of Fe-based carbides in lath-like ferrite using a TEM (transmission electron microscope). However, in the present invention, since they have substantially the same characteristics, they are not distinguished from each other.
Since the lower bainite phase and / or the tempered martensite phase have Fe-based carbides in the lath ferrite, they can be distinguished from the upper bainite phase by using SEM or TEM.
Lamellar ferrite has a lower dislocation density than lath-like ferrite. Therefore, the pearlite phase and the lower bainite phase and / or the tempered martensite phase can be easily distinguished from each other by using SEM, TEM, or the like.
 フレッシュマルテンサイト相および残留オーステナイト相は、下部ベイナイト相および/または焼き戻しマルテンサイト相と比較して、Fe系炭化物を有さない。また、フレッシュマルテンサイト相および残留オーステナイト相は、上部ベイナイト相、下部ベイナイト相および/または焼き戻しマルテンサイト相、ならびに、ポリゴナルフェライトと比べて、SEM像のコントラストが明るい。このため、フレッシュマルテンサイト相および残留オーステナイト相は、SEMを用いて、これらの組織と区別できる。
 フレッシュマルテンサイト相と残留オーステナイト相とは、SEMでは同様の形状とコントラストを有するが、電子線反射回折(Electron Backscatter Diffraction Patterns:EBSD)法を用いることで、互いに区別できる。
The fresh martensite phase and the retained austenite phase are free of Fe-based carbides as compared to the lower bainite phase and / or the tempered martensite phase. In addition, the fresh martensite phase and the retained austenite phase have a brighter SEM image contrast than the upper bainite phase, the lower bainite phase and / or the tempered martensite phase, and the polygonal ferrite. Therefore, the fresh martensite phase and the retained austenite phase can be distinguished from these tissues using SEM.
The fresh martensite phase and the retained austenite phase have similar shapes and contrasts in SEM, but can be distinguished from each other by using the Electron Backscatter Diffraction Patterns (EBSD) method.
 上部ベイナイト相、下部ベイナイト相および/または焼き戻しマルテンサイト相(第2相)、マルテンサイト相(第2相)、残留オーステナイト相(第2相)、パーライト相、ならびに、ポリゴナルフェライト相の各面積率は、後述する実施例に記載の方法により測定できる。
 上部ベイナイト相の平均粒径は、後述する実施例に記載の方法により測定できる。
 円相当直径が0.5μm以上である第2相の周長は、後述する実施例に記載の方法により測定できる。
Upper bainite phase, lower bainite phase and / or tempered martensite phase (second phase), martensite phase (second phase), retained austenite phase (second phase), pearlite phase, and polygonal ferrite phase. The area ratio can be measured by the method described in Examples described later.
The average particle size of the upper bainite phase can be measured by the method described in Examples described later.
The circumference of the second phase having a circle-equivalent diameter of 0.5 μm or more can be measured by the method described in Examples described later.
 〈引張強さ:1180MPa以上〉
 本発明の高強度熱延鋼板は、1180MPa以上の引張強さ(TS)を有する。
 上限は特に限定されないが、引張強さは、1470MPa以下が好ましい。
 引張強さ(TS)は、後述する実施例に記載の方法により測定できる。
<Tensile strength: 1180 MPa or more>
The high-strength hot-rolled steel sheet of the present invention has a tensile strength (TS) of 1180 MPa or more.
The upper limit is not particularly limited, but the tensile strength is preferably 1470 MPa or less.
Tensile strength (TS) can be measured by the method described in Examples described later.
 〈算術平均粗さRa:2.00μm以下〉
 本発明の高強度熱延鋼板の表面の算術平均粗さRaが大きすぎる場合、平面曲げ疲労試験の際に、曲げ頂点部で局所的な応力集中が生じ、早期に疲労亀裂が生じ得る。
 このため、本発明の高強度熱延鋼板の表面の算術平均粗さRaは、優れた疲労特性を得るため、2.00μm以下であり、疲労特性がより優れるという理由から、1.90μm以下が好ましく、1.80μm以下がより好ましく、1.60μm以下がさらに好ましい。下限は特に限定されないが、例えば、0.30μm以上が好ましく、0.45μm以上がより好ましい。
 なお、算術平均粗さRaは、後述するめっき層が形成されている場合、めっき層の表面の算術平均粗さRaであり、後述するめっき層が形成されていない場合、鋼板そのものの表面の算術平均粗さRaである。
 算術平均粗さRaは、後述する実施例に記載の方法により測定できる。
<Arithmetic mean roughness Ra: 2.00 μm or less>
When the arithmetic mean roughness Ra of the surface of the high-strength hot-rolled steel sheet of the present invention is too large, local stress concentration occurs at the bending apex during the plane bending fatigue test, and fatigue cracks may occur at an early stage.
Therefore, the arithmetic mean roughness Ra of the surface of the high-strength hot-rolled steel sheet of the present invention is 2.00 μm or less in order to obtain excellent fatigue characteristics, and 1.90 μm or less because the fatigue characteristics are more excellent. Preferably, it is 1.80 μm or less, more preferably 1.60 μm or less. The lower limit is not particularly limited, but for example, 0.30 μm or more is preferable, and 0.45 μm or more is more preferable.
The arithmetic mean roughness Ra is the arithmetic average roughness Ra of the surface of the plating layer when the plating layer described later is formed, and when the plating layer described later is not formed, the arithmetic of the surface of the steel sheet itself. The average roughness Ra.
The arithmetic mean roughness Ra can be measured by the method described in Examples described later.
 〈めっき層〉
 本発明の高強度熱延鋼板は、その表面に、耐食性の向上等を目的として、めっき層を有していてもよい。
 めっき層としては、例えば、溶融めっき層、電気めっき層などが挙げられる。
 溶融めっき層としては、例えば、亜鉛めっき層などが挙げられ、その具体例としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層などが挙げられる。
 電気めっき層としては、例えば、電気亜鉛めっき層などが挙げられる。
 めっき層の厚さ(めっき付着量)は、特に制限されず、従来公知の値を採用できる。
<Plating layer>
The high-strength hot-rolled steel sheet of the present invention may have a plating layer on its surface for the purpose of improving corrosion resistance and the like.
Examples of the plating layer include a hot-dip plating layer and an electroplating layer.
Examples of the hot-dip galvanizing layer include a zinc plating layer, and specific examples thereof include a hot dip galvanizing layer and an alloyed hot dip galvanizing layer.
Examples of the electroplating layer include an electrogalvanizing layer.
The thickness of the plating layer (plating adhesion amount) is not particularly limited, and conventionally known values can be adopted.
[高強度熱延鋼板の製造方法]
 次に、本発明の高強度熱延鋼板の製造方法を説明する。
 本発明の高強度熱延鋼板の製造方法(以下、単に「本発明の製造方法」ともいう)は、上述した本発明の高強度熱延鋼板を製造する方法であって、上述した成分組成を有する鋼素材を、1150℃以上に加熱し、上記加熱した上記鋼素材を粗圧延することにより粗圧延板を得て、上記粗圧延板に、2.5MPa以上の衝突圧で、高圧水デスケーリングを施し、上記高圧水デスケーリングを施した上記粗圧延板を(RC-100)℃以上(RC+100)℃以下の仕上圧延終了温度で仕上圧延することにより仕上圧延板を得て、ただし、RCは下記式(1)で定義され、上記仕上圧延板を20℃/s以上の平均冷却速度で(Bs-150)℃以上Bs℃以下の冷却停止温度まで冷却し、ただし、Bsは下記式(2)で定義され、かつ、上記仕上圧延終了温度がRC℃以上である場合は上記仕上圧延の終了から上記冷却の開始までの時間が2.0s以下であり、上記冷却した上記仕上圧延板を、上記冷却停止温度にて巻き取りし、上記巻き取りした上記仕上圧延板を0.10℃/min以上の平均冷却速度で(Bs-300)℃まで冷却する、高強度熱延鋼板の製造方法である。
(1)RC=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V
(2)Bs=830-270×C-90×Mn-70×Cr-37×Ni-83×Mo
 ただし、上記式中の各元素記号は、上記成分組成における各元素の質量%での含有量を表す。上記成分組成が含まない元素の場合、上記式中の元素記号を0として計算する。
[Manufacturing method of high-strength hot-rolled steel sheet]
Next, a method for manufacturing the high-strength hot-rolled steel sheet of the present invention will be described.
The method for producing a high-strength hot-rolled steel sheet of the present invention (hereinafter, also simply referred to as “the production method of the present invention”) is the method for producing the high-strength hot-rolled steel sheet of the present invention described above, and has the above-mentioned component composition. The steel material to have is heated to 1150 ° C. or higher, and the heated steel material is roughly rolled to obtain a rough-rolled plate, and the rough-rolled plate is subjected to high-pressure water descaling at a collision pressure of 2.5 MPa or more. The rough-rolled plate subjected to the above-mentioned high-pressure water descaling was finished-rolled at a finish-rolling end temperature of (RC-100) ° C. or higher (RC + 100) ° C. to obtain a finished-rolled plate. Defined by the following formula (1), the finished rolled sheet is cooled at an average cooling rate of 20 ° C./s or more to a cooling stop temperature of (Bs-150) ° C. or more and Bs ° C. or less, where Bs is the following formula (2). ), And when the finish rolling end temperature is RC ° C. or higher, the time from the end of the finish rolling to the start of the cooling is 2.0 s or less, and the cooled finish rolling plate is used. A method for producing a high-strength hot-rolled steel sheet, which is wound at the cooling stop temperature and the wound finished rolled plate is cooled to (Bs-300) ° C. at an average cooling rate of 0.10 ° C./min or more. is there.
(1) RC = 850 + 100 × C + 100 × N + 10 × Mn + 700 × Ti + 5000 × B + 10 × Cr + 50 × Mo + 2000 × Nb + 150 × V
(2) Bs = 830-270 × C-90 × Mn-70 × Cr-37 × Ni-83 × Mo
However, each element symbol in the above formula represents the content of each element in the above component composition in mass%. In the case of an element that does not include the above component composition, the element symbol in the above formula is set to 0 for calculation.
 以下の説明において、温度は、後述する鋼素材、粗圧延板および仕上圧延板などの表面における温度を表す。例えば、後述する強制冷却の平均冷却速度は、仕上圧延板の表面における平均冷却速度に基づく。 In the following description, the temperature represents the temperature on the surface of a steel material, a rough-rolled plate, a finished rolled plate, etc., which will be described later. For example, the average cooling rate of forced cooling described later is based on the average cooling rate on the surface of the finished rolled plate.
 まず、上述した成分組成を有するスラブ等の鋼素材を準備する。スラブ等の鋼素材の製造方法としては、特に限定されず、常用の方法をいずれも採用できる。例えば、上述した成分組成を有する溶鋼を、転炉等において公知の方法を用いて溶製し、連続鋳造法などの鋳造方法によってスラブを製造する方法が挙げられる。造塊-分塊圧延方法などの公知の鋳造方法を用いてもよい。原料としてスクラップを使用してもよい。 First, prepare a steel material such as a slab having the above-mentioned composition. The method for producing a steel material such as a slab is not particularly limited, and any of the commonly used methods can be adopted. For example, a method of melting molten steel having the above-mentioned component composition by a known method in a converter or the like and producing a slab by a casting method such as a continuous casting method can be mentioned. A known casting method such as an ingot-block rolling method may be used. Scrap may be used as a raw material.
 なお、連続鋳造時における鋼の成分偏析を低減するために、電磁撹拌(EMS)、軽圧下鋳造(IBSR)等の偏析低減処理を適用できる。電磁撹拌によって、板厚中心部に等軸晶を形成させて、偏析を低減できる。軽圧下鋳造によって、連続鋳造スラブの未凝固部の溶鋼の流動を防止して、板厚中心部の偏析を低減できる。これらの偏析低減処理を少なくとも1つ適用することにより、プレス成形性、低温靭性などを良好にできる。 In order to reduce the segregation of steel components during continuous casting, segregation reduction treatment such as electromagnetic stirring (EMS) and light reduction casting (IBSR) can be applied. By electromagnetic stirring, equiaxed crystals can be formed in the center of the plate thickness to reduce segregation. Light reduction casting can prevent the flow of molten steel in the unsolidified portion of the continuous casting slab and reduce segregation in the central portion of the plate thickness. By applying at least one of these segregation reduction treatments, press moldability, low temperature toughness and the like can be improved.
 〈鋼素材の加熱温度:1150℃以上〉
 低温まで冷却された後のスラブ等の鋼素材中においては、Tiなどの炭窒化物を形成する元素の殆どが、粗大な炭窒化物として不均一に析出している。この粗大で不均一な析出物の存在は、諸特性(例えば、強度、耐打抜き荒れ性など)の劣化を招く。
 このため、熱間圧延前の鋼素材を加熱して、粗大な析出物を固溶させる。粗大な析出物を熱間圧延前に十分に固溶させるため、鋼素材の加熱温度は1150℃以上であり、1180℃以上が好ましく、1200℃以上がより好ましい。
 一方、鋼素材の加熱温度が高くなりすぎると、スラブ疵の発生やスケールオフによる歩留まり低下を招く場合がある。このため、鋼素材の加熱温度は、1350℃以下が好ましく、1300℃以下がより好ましく、1280℃以下がさらに好ましい。
<Heating temperature of steel material: 1150 ° C or higher>
In steel materials such as slabs after being cooled to a low temperature, most of the elements forming carbonitrides such as Ti are unevenly precipitated as coarse carbonitrides. The presence of this coarse and non-uniform precipitate causes deterioration of various properties (for example, strength, punching roughness resistance, etc.).
Therefore, the steel material before hot rolling is heated to dissolve the coarse precipitates. The heating temperature of the steel material is 1150 ° C. or higher, preferably 1180 ° C. or higher, and more preferably 1200 ° C. or higher, in order to sufficiently solidify the coarse precipitate before hot rolling.
On the other hand, if the heating temperature of the steel material becomes too high, slab defects may occur and the yield may decrease due to scale-off. Therefore, the heating temperature of the steel material is preferably 1350 ° C. or lower, more preferably 1300 ° C. or lower, and even more preferably 1280 ° C. or lower.
 鋼素材は、1150℃以上の加熱温度に加熱して所定時間保持する。このとき、保持時間が長すぎると、スケール発生量が増大する場合がある。この場合、続く熱間圧延においてスケール噛み込み等が発生しやすくなり、得られる鋼板の表面粗さが劣化して、疲労特性が劣化する傾向にある。
 このため、疲労特性がより優れるという理由から、1150℃以上の温度域での鋼素材の保持時間は、10000秒以下が好ましく、8000秒以下がより好ましい。下限は特に限定されないが、鋼素材の加熱の均一性の観点から、1800秒以上が好ましい。
The steel material is heated to a heating temperature of 1150 ° C. or higher and held for a predetermined time. At this time, if the holding time is too long, the amount of scale generated may increase. In this case, scale biting or the like is likely to occur in the subsequent hot rolling, the surface roughness of the obtained steel sheet is deteriorated, and the fatigue characteristics tend to be deteriorated.
Therefore, the holding time of the steel material in the temperature range of 1150 ° C. or higher is preferably 10,000 seconds or less, more preferably 8,000 seconds or less, because the fatigue characteristics are more excellent. The lower limit is not particularly limited, but 1800 seconds or more is preferable from the viewpoint of uniformity of heating of the steel material.
 なお、熱間圧延前の鋼素材を、鋳造後に、高温のまま(すなわち、上記加熱温度の範囲の温度を維持したまま)で直接熱間圧延(直送圧延)に供してもよい。 The steel material before hot rolling may be directly subjected to hot rolling (direct rolling) after casting at a high temperature (that is, while maintaining a temperature within the above heating temperature range).
 次に、加熱した(または、鋳造後に高温のままの)鋼素材に対して、粗圧延および仕上圧延からなる熱間圧延を施す。粗圧延は、所望のシートバー寸法が確保できればよく、その条件は特に限定されない。
 鋼素材を粗圧延して粗圧延板を得る。得られた粗圧延板に対して、仕上圧延を施す前に、仕上圧延機の入り側において、高圧水を噴射するデスケーリング(高圧水デスケーリング)を行なう。
Next, the heated (or hot steel material after casting) is subjected to hot rolling consisting of rough rolling and finish rolling. The rough rolling is not particularly limited as long as the desired seat bar size can be secured.
A rough-rolled plate is obtained by rough-rolling a steel material. Before finish rolling is performed on the obtained rough-rolled plate, descaling (high-pressure water descaling) of injecting high-pressure water is performed on the entry side of the finish rolling mill.
 〈デスケーリング衝突圧:2.5MPa以上〉
 仕上圧延前までに発生した1次スケールを除去するため、粗圧延板に対して、高圧水デスケーリングを施す。
 高圧水デスケーリングの衝突圧(単に「デスケーリング衝突圧」ともいう)は、2.5MPa以上であり、3.0MPa以上が好ましく、3.5MPa以上がさらに好ましい。衝突圧は、高圧水が粗圧延板の表面に衝突する単位面積あたりの力である。これにより、得られる高強度熱延鋼板の表面の算術平均粗さRaを、2.00μm以下に制御できる。
 デスケーリング衝突圧は、上限は特に規定しないが、15.0MPa以下が好ましく、14.5MPa以下がより好ましく、12.0MP以下がより好ましい。
 なお、仕上圧延のスタンド間の圧延途中で、高圧水デスケーリングを施してもよい。また、必要に応じて、仕上圧延のスタンド間で粗圧延板を冷却してもよい。
<Descaling collision pressure: 2.5 MPa or more>
In order to remove the primary scale generated before the finish rolling, the rough rolled plate is subjected to high pressure water descaling.
The collision pressure of high-pressure water descaling (also simply referred to as “descaling collision pressure”) is 2.5 MPa or more, preferably 3.0 MPa or more, and more preferably 3.5 MPa or more. The collision pressure is the force per unit area where high-pressure water collides with the surface of a rough-rolled plate. Thereby, the arithmetic mean roughness Ra of the surface of the obtained high-strength hot-rolled steel sheet can be controlled to 2.00 μm or less.
Although the upper limit of the descaling collision pressure is not particularly specified, it is preferably 15.0 MPa or less, more preferably 14.5 MPa or less, and even more preferably 12.0 MPa or less.
High-pressure water descaling may be performed during rolling between the finishing rolling stands. Further, if necessary, the rough-rolled plate may be cooled between the finish rolling stands.
 〈仕上圧延終了温度:(RC-100)℃以上(RC+100)℃以下〉
 高圧水デスケーリングを施した粗圧延板に対して、所定の仕上圧延終了温度で仕上圧延を施して、仕上圧延板を得る。
 仕上圧延終了温度が低すぎる場合、圧延がフェライト+オーステナイトの二相域温度で行なわれることがある。このため、主相および第2相について所望する面積率が十分に得られず、1180MPa以上の引張強さを確保できない。
 このため、仕上圧延終了温度は、(RC-100)℃以上であり、(RC-80)℃以上が好ましく、(RC-50)℃以上がより好ましい。
 一方、仕上圧延終了温度が高すぎる場合、オーステナイト粒の粒成長が顕著に生じて、オーステナイト粒が粗大化し、上部ベイナイト相の平均粒径が大きくなり、耐打抜き荒れ性が不十分となる。
 このため、仕上圧延終了温度は、(RC+100)℃以下であり、(RC+80)℃以下が好ましく、(RC+50)℃以下がより好ましい。
<Finish rolling end temperature: (RC-100) ° C or higher (RC + 100) ° C or lower>
A rough-rolled plate subjected to high-pressure water descaling is subjected to finish-rolling at a predetermined finish-rolling end temperature to obtain a finished-rolled plate.
If the finish rolling end temperature is too low, rolling may be carried out at a ferrite + austenite dual phase temperature. Therefore, the desired area ratios for the main phase and the second phase cannot be sufficiently obtained, and the tensile strength of 1180 MPa or more cannot be secured.
Therefore, the finish rolling end temperature is (RC-100) ° C. or higher, preferably (RC-80) ° C. or higher, and more preferably (RC-50) ° C. or higher.
On the other hand, when the finish rolling end temperature is too high, grain growth of austenite grains occurs remarkably, the austenite grains become coarse, the average grain size of the upper bainite phase becomes large, and the punching roughness resistance becomes insufficient.
Therefore, the finish rolling end temperature is (RC + 100) ° C. or lower, preferably (RC + 80) ° C. or lower, and more preferably (RC + 50) ° C. or lower.
 RCは、下記式(1)で定義される。
(1)RC=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V
 ただし、式(1)中の各元素記号は、上述した成分組成における各元素の含有量[質量%]である。上述した成分組成が含まない元素の場合、式(1)中の元素記号を0として計算する。
RC is defined by the following equation (1).
(1) RC = 850 + 100 × C + 100 × N + 10 × Mn + 700 × Ti + 5000 × B + 10 × Cr + 50 × Mo + 2000 × Nb + 150 × V
However, each element symbol in the formula (1) is the content [mass%] of each element in the above-mentioned component composition. In the case of an element that does not include the above-mentioned component composition, the element symbol in the formula (1) is set to 0 for calculation.
 次に、仕上圧延により得られた仕上圧延板を、上述した仕上圧延終了温度から、後述する冷却停止温度まで、後述する平均冷却速度にて冷却(以下、「強制冷却」ともいう)する。 Next, the finished rolled plate obtained by finish rolling is cooled at the average cooling rate described later (hereinafter, also referred to as "forced cooling") from the above-mentioned finish rolling end temperature to the cooling stop temperature described later.
 〈冷却開始時間:仕上圧延の終了後2.0s以下〉
 所定の場合、仕上圧延が終了してから強制冷却を開始するまでの時間(冷却開始時間)を制御する。具体的には、上述した仕上圧延終了温度がRC℃以上である場合、冷却開始時間が長くなりすぎると、オーステナイト粒の粒成長が生じて、上部ベイナイト相の平均粒径が大きくなり、耐打抜き荒れ性が不十分となる。
 このため、仕上圧延終了温度がRC℃以上である場合、冷却開始時間は、2.0s以下であり、1.5s以下が好ましく、1.0s以下がより好ましい。
 なお、仕上圧延終了温度がRC℃未満である場合、冷却開始時間は、特に限定されないが、オーステナイト粒に導入されたひずみを回復させないことにより引張強さを確保する観点から、2.0s以下が好ましく、1.5s以下がより好ましく、1.0s以下がさらに好ましい。
<Cooling start time: 2.0 s or less after the finish rolling>
In a predetermined case, the time from the end of finish rolling to the start of forced cooling (cooling start time) is controlled. Specifically, when the above-mentioned finish rolling end temperature is RC ° C. or higher, if the cooling start time becomes too long, grain growth of austenite grains occurs, the average particle size of the upper bainite phase becomes large, and punching resistance Roughness becomes insufficient.
Therefore, when the finish rolling end temperature is RC ° C. or higher, the cooling start time is 2.0 s or less, preferably 1.5 s or less, and more preferably 1.0 s or less.
When the finish rolling end temperature is less than RC ° C., the cooling start time is not particularly limited, but 2.0 s or less is set from the viewpoint of ensuring the tensile strength by not recovering the strain introduced into the austenite grains. It is preferable, 1.5 s or less is more preferable, and 1.0 s or less is further preferable.
 〈仕上圧延終了温度から冷却停止温度までの平均冷却速度:20℃/s以上〉
 強制冷却において、仕上圧延終了温度から冷却停止温度までの平均冷却速度(以下、「強制冷却の平均冷却速度」ともいう)が遅すぎる場合、上部ベイナイト変態の前にフェライト変態が起こり、所望の面積率の上部ベイナイト相が得られない。
 このため、強制冷却の平均冷却速度は、20℃/s以上であり、25℃/s以上が好ましく、30℃/s以上がより好ましい。
 一方、強制冷却の平均冷却速度は、上限は特に限定されないが、速すぎる場合、冷却停止温度の管理が困難となり、所望のミクロ組織を得ることが困難になり得ることから、500℃/s以下が好ましく、300℃/s以下がより好ましく、150℃/s以下がさらに好ましく、80℃/s以下が特に好ましい。
<Average cooling rate from finish rolling end temperature to cooling stop temperature: 20 ° C / s or more>
In forced cooling, if the average cooling rate from the finish rolling end temperature to the cooling stop temperature (hereinafter, also referred to as "average cooling rate of forced cooling") is too slow, ferrite transformation occurs before upper bainite transformation, and the desired area. The upper bainite phase of the rate cannot be obtained.
Therefore, the average cooling rate of forced cooling is 20 ° C./s or higher, preferably 25 ° C./s or higher, and more preferably 30 ° C./s or higher.
On the other hand, the upper limit of the average cooling rate of forced cooling is not particularly limited, but if it is too fast, it may be difficult to control the cooling stop temperature and it may be difficult to obtain a desired microstructure. Therefore, it is 500 ° C./s or less. Is preferable, 300 ° C./s or less is more preferable, 150 ° C./s or less is further preferable, and 80 ° C./s or less is particularly preferable.
 〈冷却停止温度:(Bs-150)℃以上Bs℃以下〉
 冷却停止温度が低すぎる場合、上部ベイナイト変態が促進し、第2相の周長が300,000μm/mm未満となり、疲労特性が不十分となる。
 このため、冷却停止温度は、(Bs-150)℃以上であり、(Bs-140)℃以上が好ましく、(Bs-130)℃以上がより好ましい。
 一方、冷却停止温度が高すぎる場合、上部ベイナイト相の生成が生じず、面積率で50%以上の上部ベイナイト相が得られず、第2相の面積率が大きくなり、延性が不十分となる。また、微細な第2相が得られず、第2相の周長が300,000μm/mm未満となり、疲労特性が不十分となる。
 このため、冷却停止温度は、Bs℃以下であり、(Bs-20)℃以下が好ましく、(Bs-50)℃以下がより好ましい。
<Cooling stop temperature: (Bs-150) ° C or higher and Bs ° C or lower>
If the cooling stop temperature is too low, the upper bainite transformation is promoted, the peripheral length of the second phase becomes less than 300,000 μm / mm 2 , and the fatigue characteristics become insufficient.
Therefore, the cooling stop temperature is (Bs-150) ° C. or higher, preferably (Bs-140) ° C. or higher, and more preferably (Bs-130) ° C. or higher.
On the other hand, when the cooling stop temperature is too high, the formation of the upper bainite phase does not occur, the upper bainite phase having an area ratio of 50% or more cannot be obtained, the area ratio of the second phase becomes large, and the ductility becomes insufficient. .. Further, a fine second phase cannot be obtained, the peripheral length of the second phase is less than 300,000 μm / mm 2 , and the fatigue characteristics become insufficient.
Therefore, the cooling stop temperature is Bs ° C. or lower, preferably (Bs-20) ° C. or lower, and more preferably (Bs-50) ° C. or lower.
 Bsは、下記式(2)で定義される。
(2)Bs=830-270×C-90×Mn-70×Cr-37×Ni-83×Mo
 ただし、式(2)中の各元素記号は、上述した成分組成における各元素の含有量[質量%]である。上述した成分組成が含まない元素の場合、式(2)中の元素記号を0として計算する。
Bs is defined by the following equation (2).
(2) Bs = 830-270 × C-90 × Mn-70 × Cr-37 × Ni-83 × Mo
However, each element symbol in the formula (2) is the content [mass%] of each element in the above-mentioned component composition. In the case of an element that does not include the above-mentioned component composition, the element symbol in the formula (2) is set to 0 for calculation.
 冷却停止温度まで強制冷却した仕上圧延板を、冷却停止温度にて巻き取りして、例えばコイル状にする。このため、冷却停止温度は、巻取温度でもある。 The finished rolled plate that has been forcibly cooled to the cooling stop temperature is wound at the cooling stop temperature to form a coil, for example. Therefore, the cooling stop temperature is also the take-up temperature.
 〈巻き取り後の(Bs-300)℃までの平均冷却速度:0.10℃/min以上〉
 次に、巻き取りした仕上圧延板を、(Bs-300)℃まで冷却する。
 巻き取り後の平均冷却速度は、未変態オーステナイト相の変態挙動に影響を及ぼす。巻き取り後の(Bs-300)℃までの平均冷却速度が遅すぎる場合、未変態オーステナイト相が分解して上部ベイナイト相またはパーライト相になり、所望の第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)の面積率を確保できない。
 このため、所望の第2相の面積率を得るため、巻き取り後の(Bs-300)℃までの平均冷却速度は、0.10℃/min以上であり、0.12℃/min以上が好ましく、0.15℃/min以上がより好ましく、0.20℃/min以上がさらに好ましい。
 一方、巻き取り後の(Bs-300)℃までの平均冷却速度が速すぎると、ベイナイト変態停留現象が生じず、所望の第2相(下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種)の面積率を得ることが困難になる場合がある。
 このため、巻き取り後の(Bs-300)℃までの平均冷却速度は、1800℃/min以下が好ましく、1800℃/min未満がより好ましく、600℃/min以下がさらに好ましく、60℃/min以下が特に好ましい。
<Average cooling rate up to (Bs-300) ° C after winding: 0.10 ° C / min or more>
Next, the wound finished rolled plate is cooled to (Bs-300) ° C.
The average cooling rate after winding affects the transformation behavior of the untransformed austenite phase. If the average cooling rate to (Bs-300) ° C. after winding is too slow, the untransformed austenite phase decomposes into the upper bainite phase or the pearlite phase, the desired second phase (lower bainite phase and / or tempering). The area ratio of (at least one selected from the group consisting of the tempered martensite phase, the fresh martensite phase, and the retained austenite phase) cannot be secured.
Therefore, in order to obtain the desired area ratio of the second phase, the average cooling rate to (Bs-300) ° C. after winding is 0.10 ° C./min or more, and 0.12 ° C./min or more. Preferably, 0.15 ° C./min or higher is more preferable, and 0.20 ° C./min or higher is even more preferable.
On the other hand, if the average cooling rate to (Bs-300) ° C. after winding is too fast, the bainite transformation retention phenomenon does not occur, and the desired second phase (lower bainite phase and / or tempered martensite phase, fresh martensite phase) It may be difficult to obtain the area ratio of at least one selected from the group consisting of the site phase and the retained austenite phase.
Therefore, the average cooling rate to (Bs-300) ° C. after winding is preferably 1800 ° C./min or less, more preferably less than 1800 ° C./min, further preferably 600 ° C./min or less, and 60 ° C./min or less. The following are particularly preferred.
 巻き取り後の冷却方法は、所望の平均冷却速度が得られれば、いかなる冷却方法でもよい。冷却方法の例として、自然空冷、強制空冷、ガス冷却、ミスト冷却、水冷却、油冷却等が挙げられる。 The cooling method after winding may be any cooling method as long as a desired average cooling rate can be obtained. Examples of the cooling method include natural air cooling, forced air cooling, gas cooling, mist cooling, water cooling, oil cooling and the like.
 巻き取り後の冷却において、冷却停止温度は(Bs-300)℃未満でもよい。通常、10~30℃程度の室温まで冷却する。その後、常法に従って、調質圧延(スキンパス圧延)を施してもよい。また、酸洗を施して、スケールを除去してもよい。 In cooling after winding, the cooling stop temperature may be less than (Bs-300) ° C. Usually, it is cooled to room temperature of about 10 to 30 ° C. After that, temper rolling (skin pass rolling) may be performed according to a conventional method. In addition, the scale may be removed by pickling.
 後述するめっき処理を施さない場合、巻き取り後に冷却され(さらに、任意で、調質圧延および/または酸洗が施され)た仕上圧延板が、本発明の高強度熱延鋼板となる。 When the plating treatment described later is not performed, the finished rolled sheet that has been cooled after winding (and optionally temper-rolled and / or pickled) becomes the high-strength hot-rolled steel sheet of the present invention.
 〈めっき処理〉
 巻き取り後に冷却され(さらに、任意で、調質圧延および/または酸洗が施され)た仕上圧延板に対しては、常用のめっきラインが用いて、めっき処理を施してもよい。これにより、仕上圧延板の表面に、めっき層が形成される。めっき処理を施す場合、めっき処理後の仕上圧延板が、本発明の高強度熱延鋼板となる。
 めっき処理としては、特に限定されず、例えば、従来公知の溶融めっき処理、合金化溶融めっき処理、電気めっき処理などが挙げられる。
 溶融めっき処理としては、例えば、溶融亜鉛めっき層を形成する溶融亜鉛めっき処理が挙げられる。また、合金化溶融めっき処理としては、例えば、合金化溶融めっき処理(溶融亜鉛めっき処理の後に、合金化処理を行なうことにより、合金化溶融亜鉛めっき層を形成する処理)が挙げられる。
<Plating process>
Finished rolled plates that have been cooled after winding (and optionally temper-rolled and / or pickled) may be plated using a regular plating line. As a result, a plating layer is formed on the surface of the finished rolled plate. When the plating treatment is performed, the finished rolled sheet after the plating treatment becomes the high-strength hot-rolled steel sheet of the present invention.
The plating treatment is not particularly limited, and examples thereof include conventionally known hot-dip galvanizing treatments, alloying hot-dip galvanizing treatments, and electroplating treatments.
Examples of the hot-dip galvanizing treatment include a hot-dip galvanizing treatment for forming a hot-dip galvanizing layer. Further, examples of the alloying hot-dip galvanizing treatment include an alloying hot-dip galvanizing treatment (a treatment for forming an alloyed hot-dip galvanizing layer by performing an alloying treatment after the hot-dip galvanizing treatment).
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明は以下に説明する実施例に限定されない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the examples described below.
 〈熱延鋼板の製造〉
 下記表1に示す成分組成を有する(残部はFeおよび不可避的不純物からなる)溶鋼を転炉で溶製し、連続鋳造法によりスラブを製造した。
 製造したスラブを、下記表2に示すスラブ加熱温度[℃]および1150℃以上でのスラブ加熱時間[s]で加熱した。
 加熱したスラブを粗圧延することにより、粗圧延板を得た。
 得られた粗圧延板の表面に、下記表2に示す衝突圧[MPa]で高圧水デスケーリングを施した。
 高圧水デスケーリングを施した粗圧延板に、下記表2に示す仕上圧延終了温度[℃]で仕上圧延を施すことにより、仕上圧延板を得た。
 仕上圧延の終了後、得られた仕上圧延板を強制冷却した。下記表2には、強制冷却の際の条件として、冷却開始時間(仕上圧延の終了後から、強制冷却を開始するまでの時間)[s]、平均冷却速度(仕上圧延終了温度から冷却停止温度までの平均冷却速度)[℃/s]、および、冷却停止温度[℃]を記載した。
 強制冷却した仕上圧延板を、下記表2に示す冷却停止温度[℃]にて巻き取りした。
 巻き取りした仕上圧延板を、下記表2に示す平均冷却速度[℃/min]で(Bs-300)℃まで冷却した。
 下記表2に示すRC[℃]およびBs[℃]は、上述したとおりである。
 こうして、下記表2に示す板厚[mm]を有する熱延鋼板を得た。得られた熱延鋼板に対して、調質圧延を施し、その後、酸洗(塩酸濃度:10質量%、温度85℃)を施してスケールを除去した。さらに、一部の熱延鋼板には、めっき処理を施してめっき層を形成した。より詳細には、溶融亜鉛めっき処理を施し、その後、合金化処理を施した。これにより、合金化溶融亜鉛めっき層を形成した。この場合、下記表2の「めっき処理の有無」の欄に「○」を記載した。
<Manufacturing of hot-rolled steel sheet>
A molten steel having the composition shown in Table 1 below (the balance consisting of Fe and unavoidable impurities) was melted in a converter to produce a slab by a continuous casting method.
The produced slab was heated at the slab heating temperature [° C.] shown in Table 2 below and the slab heating time [s] at 1150 ° C. or higher.
A rough-rolled plate was obtained by rough-rolling the heated slab.
The surface of the obtained rough-rolled plate was subjected to high-pressure water descaling at the collision pressure [MPa] shown in Table 2 below.
A rough-rolled plate subjected to high-pressure water descaling was subjected to finish-rolling at the finish-rolling end temperature [° C.] shown in Table 2 below to obtain a finished-rolled plate.
After the finish rolling was completed, the obtained finish rolling plate was forcibly cooled. Table 2 below shows the conditions for forced cooling: cooling start time (time from the end of finish rolling to the start of forced cooling) [s], average cooling rate (from finish rolling end temperature to cooling stop temperature). (Average cooling rate up to) [° C./s] and cooling stop temperature [° C.] are described.
The forcibly cooled finished rolled plate was wound at the cooling stop temperature [° C.] shown in Table 2 below.
The wound finished rolled plate was cooled to (Bs-300) ° C. at the average cooling rate [° C./min] shown in Table 2 below.
The RC [° C.] and Bs [° C.] shown in Table 2 below are as described above.
In this way, a hot-rolled steel sheet having a plate thickness [mm] shown in Table 2 below was obtained. The obtained hot-rolled steel sheet was subjected to temper rolling, and then pickled (hydrochloric acid concentration: 10% by mass, temperature 85 ° C.) to remove scale. Further, some hot-rolled steel sheets were subjected to a plating treatment to form a plating layer. More specifically, it was hot-dip galvanized and then alloyed. As a result, an alloyed hot-dip galvanized layer was formed. In this case, "○" is described in the "Presence / absence of plating treatment" column of Table 2 below.
 〈熱延鋼板の評価〉
 得られた熱延鋼板から試験片を採取して、以下に説明する試験および評価等を行なった。めっき層を有する熱延鋼板は、めっき処理後に、以下に説明する試験および評価等を行なった。結果を下記表3に示す。
<Evaluation of hot-rolled steel sheet>
A test piece was collected from the obtained hot-rolled steel sheet and subjected to the tests and evaluations described below. The hot-rolled steel sheet having a plating layer was subjected to the tests and evaluations described below after the plating treatment. The results are shown in Table 3 below.
 (i)ミクロ組織の観察
 得られた熱延鋼板から、試験片を採取した。採取した試験片を研磨して、めっき層を除いた板厚1/4位置の断面(圧延方向に平行な断面)を露出させた。露出させた断面を、腐食液(3質量%ナイタール溶液)を用いて腐食させてから、走査電子顕微鏡(SEM)を用いて5000倍の倍率で観察した。10視野を撮影して、画像処理により、上部ベイナイト相、下部ベイナイト相および/または焼き戻しマルテンサイト相、パーライト相、ならびに、ポリゴナルフェライト相の各相の面積率[%]を定量化して求めた。
(I) Observation of microstructure A test piece was collected from the obtained hot-rolled steel sheet. The collected test piece was polished to expose a cross section (a cross section parallel to the rolling direction) at a plate thickness of 1/4 excluding the plating layer. The exposed cross section was corroded with a corrosive solution (3 mass% nital solution) and then observed with a scanning electron microscope (SEM) at a magnification of 5000 times. 10 fields were photographed, and the area ratio [%] of each phase of the upper bainite phase, the lower bainite phase and / or the tempered martensite phase, the pearlite phase, and the polygonal ferrite phase was quantified and obtained by image processing. It was.
 フレッシュマルテンサイト相と残留オーステナイト相とは、SEMでは区別が困難であった。そこで、電子線反射回折(Electron Backscatter Diffraction Patterns:EBSD)法を用いた。より詳細には、SEMでフレッシュマルテンサイト相と残留オーステナイト相とを区別できなかった各結晶粒について、EBSD法により、結晶粒内に面積率で50%未満がオーステナイト相と同定されたものをフレッシュマルテンサイト相とし、結晶粒内に面積率で50%以上がオーステナイト相と同定されたものを残留オーステナイト相とした。
 このようにして区別されたフレッシュマルテンサイト相と残留オーステナイト相とについて、面積率[%]を求めた。
It was difficult to distinguish between the fresh martensite phase and the retained austenite phase by SEM. Therefore, the Electron Backscatter Diffraction Patterns (EBSD) method was used. More specifically, for each grain whose SEM could not distinguish between the fresh martensite phase and the retained austenite phase, the EBSD method identified less than 50% of the grain as an austenite phase. A martensite phase was used, and a phase in which 50% or more of the crystal grains were identified as an austenite phase was used as a retained austenite phase.
The area ratio [%] was determined for the fresh martensite phase and the retained austenite phase distinguished in this way.
 円相当直径が0.5μm以上である第2相の周長は、次のように求めた。
 SEMまたはEBSD法を用いて同定した第2相の個々の結晶粒について、まず、画像処理によって面積Asecondary[μm]を求め、次いで、下記式を用いて、円相当直径dsecondary[μm]を求めた。
secondary=2√(Asecondary/π)
 円相当直径が0.5μm以上である第2相の個々の結晶粒を特定し、その周長を、画像処理によって測定した。測定視野内における、円相当直径が0.5μm以上である第2相の周長の総和を、測定視野の面積で除した。こうして、円相当直径が0.5μm以上である第2相の周長[μm/mm]を求めた。
The perimeter of the second phase having a circle-equivalent diameter of 0.5 μm or more was determined as follows.
For the individual crystal grains of the second phase identified by the SEM or EBSD method, the area A secondary [μm 2 ] was first obtained by image processing, and then the circle-equivalent diameter d secondary [μm] was obtained using the following formula. Asked.
d secondary = 2√ (A secondary / π)
Individual crystal grains of the second phase having a circle-equivalent diameter of 0.5 μm or more were identified, and their peripheral lengths were measured by image processing. The total circumference of the second phase having a circle-equivalent diameter of 0.5 μm or more in the measurement field of view was divided by the area of the measurement field of view. In this way, the circumference [μm / mm 2 ] of the second phase having a circle-equivalent diameter of 0.5 μm or more was determined.
 上部ベイナイト相の平均粒径は、次のように測定した。
 まず、熱延鋼板から試験片を採取し、研磨した。より詳細には、圧延方向に平行な面(板厚1/4位置の面)が観察面となるように、コロイダルシリカ溶液を用いて、試験片を研磨した。その後、EBSD法(電子線の加速電圧:20keV、測定間隔:0.1μmステップ)によって、試験片の観察面における100μm×100μmの領域を、10箇所測定した。一般的に結晶粒界として認識されている大傾角粒界の閾値を15°と定義して、結晶方位差が15°以上の粒界を可視化することにより、上部ベイナイト相の面積平均(Area fraction average)の粒径[μm]を算出した。算出には、TSL社製のOIM Analysisソフトウェアを使用した。この際、結晶粒の定義として、Grain Tolerance Angleを15°にすることにより、面積平均粒径を求めた。求めた上部ベイナイト相の面積平均粒径を、上部ベイナイト相の平均粒径[μm]とした。
The average particle size of the upper bainite phase was measured as follows.
First, a test piece was taken from a hot-rolled steel sheet and polished. More specifically, the test piece was polished with a colloidal silica solution so that the surface parallel to the rolling direction (the surface at the plate thickness 1/4 position) was the observation surface. Then, by the EBSD method (electron beam accelerating voltage: 20 keV, measurement interval: 0.1 μm step), a region of 100 μm × 100 μm on the observation surface of the test piece was measured at 10 points. By defining the threshold value of the large tilt angle grain boundary, which is generally recognized as the grain boundary, as 15 ° and visualizing the grain boundary with a crystal orientation difference of 15 ° or more, the area average of the upper bainite phase (Area fraction). The particle size [μm] of the area) was calculated. OIM Analysis software manufactured by TSL was used for the calculation. At this time, as a definition of crystal grains, the area average particle size was determined by setting the Grain Tolerance Angle to 15 °. The obtained area average particle size of the upper bainite phase was defined as the average particle size [μm] of the upper bainite phase.
 (ii)算術平均粗さRaの測定
 得られた熱延鋼板から、試験片(大きさ:t(板厚)×50mm(幅)×50mm(長さ))を採取した。採取した試験片について、JIS B 0601:2013に準拠して、算術平均粗さRaを測定した。算術平均粗さRaは、圧延方向と直角方向とでそれぞれ3回ずつ測定し、それらの平均値を求め、これを熱延鋼板の算術平均粗さRaとした。
 めっき層を有する熱延鋼板は、めっき層の表面の算術平均粗さRaを求めた。
(Ii) Measurement of Arithmetic Mean Roughness Ra A test piece (size: t (plate thickness) × 50 mm (width) × 50 mm (length)) was collected from the obtained hot-rolled steel sheet. Arithmetic mean roughness Ra was measured for the collected test pieces in accordance with JIS B 0601: 2013. The arithmetic average roughness Ra was measured three times in each of the rolling direction and the direction perpendicular to the rolling direction, and the average value thereof was obtained and used as the arithmetic average roughness Ra of the hot-rolled steel sheet.
For the hot-rolled steel sheet having a plating layer, the arithmetic mean roughness Ra of the surface of the plating layer was determined.
 (iii)引張試験
 得られた熱延鋼板から、引張方向が圧延方向と直角方向になるようにJIS5号試験片(GL:50mm)を採取し、機械特性値を求めた。
 具体的には、採取した試験片について、JIS Z 2241:2011の規定に準拠して、引張試験を行ない、降伏強度(降伏点、YP)[MPa]、引張強さ(TS)[MPa]、全伸び(El)[%]、および、均一伸び(U-El)[%]を求めた。熱延鋼板ごとに引張試験は2回ずつ行ない、2回の平均値を、その熱延鋼板の機械特性値とした。
 本発明においては、TS×U-El[MPa・%]の値が6,000MPa・%以上である場合、延性に優れると評価した。
(Iii) Tensile test From the obtained hot-rolled steel sheet, a JIS No. 5 test piece (GL: 50 mm) was sampled so that the tensile direction was perpendicular to the rolling direction, and the mechanical property values were determined.
Specifically, the collected test pieces are subjected to a tensile test in accordance with the provisions of JIS Z 2241: 2011, and the yield strength (yield point, YP) [MPa], tensile strength (TS) [MPa], Total elongation (El) [%] and uniform elongation (U-El) [%] were determined. Tensile tests were performed twice for each hot-rolled steel sheet, and the average value of the two tests was used as the mechanical property value of the hot-rolled steel sheet.
In the present invention, when the value of TS × U—El [MPa ·%] is 6,000 MPa ·% or more, it is evaluated that the ductility is excellent.
 (iv)平面曲げ疲労試験
 得られた熱延鋼板から、図1に示す寸法形状の試験片を採取した。図1中に示す数値の単位は「mm」である。試験片の長手方向が、熱延鋼板の圧延方向と直角方向となるようにした。採取した試験片を用いて、JIS Z 2275-1978の規定に準拠して、平面曲げ疲労試験を実施した。応力負荷モードは、応力比R:-1とし、周波数:25Hzとした。負荷応力振幅を6段階に変化させて、破断までの応力サイクルを測定し、S-N曲線を求め、50万サイクルにおける疲労強度(応力振幅値)を求めた。
 本発明においては、50万サイクルにおける疲労強度を引張強さ(TS)で除した値が0.50以上である場合、疲労特性に優れると評価した。
(Iv) Plane bending fatigue test From the obtained hot-rolled steel sheet, test pieces having the dimensions and shapes shown in FIG. 1 were collected. The unit of the numerical value shown in FIG. 1 is "mm". The longitudinal direction of the test piece was set to be perpendicular to the rolling direction of the hot-rolled steel sheet. A plane bending fatigue test was carried out using the collected test pieces in accordance with the provisions of JIS Z 2275-1978. The stress load mode was set to a stress ratio R: -1 and a frequency: 25 Hz. The load stress amplitude was changed in 6 steps, the stress cycle until fracture was measured, the SN curve was obtained, and the fatigue strength (stress amplitude value) in 500,000 cycles was obtained.
In the present invention, when the value obtained by dividing the fatigue strength in 500,000 cycles by the tensile strength (TS) is 0.50 or more, it is evaluated that the fatigue characteristics are excellent.
 (v)耐打抜き荒れ性の評価
 得られた熱延鋼板から、試験片(大きさ:t(板厚)×30mm(幅)×30mm(長さ))を採取した。採取した試験片の中央に、10mmφの円筒ポンチを用いて、クリアランスを12±1%として、打抜き穴を形成した。クリアランスは、試験片の板厚に対する割合[%]である。打抜き穴の圧延方向端面および圧延直角方向端面がそれぞれ評価できるように、試験片を対角線に沿って4等分し、4等分試験片を作製した。4等分試験片の打抜き穴端面について、JIS B 0601:2013に準拠して、最大高さ粗さRz[μm]を測定した。
 より詳細には、次のように測定した。まず、4等分試験片の打抜き穴端面に、板厚方向に沿って位置Aおよび位置Bを設定した。位置Aは、バリ発生側の最表面から板厚方向に100μmの位置である。位置Bは、打抜き穴端面のせん断面/破断面境界から破断面方向に100μmの位置である。位置Aと位置Bとの間を等間隔に10位置に分け、合計10位置で、円弧方向(円周方向)に1mm長さの粗さ曲線を測定した。得られた10本の粗さ曲線から、それぞれ最大高さ粗さRzを算出した。算出したRzの平均値を、4等分試験片のRzとした。このようなRzの測定を、4等分試験片すべてについて実施し、得られたRzの平均値を、その熱延鋼板の打抜き穴端面のRz[μm]とした。
 また、4等分試験片すべてから得られた計40点のRzの標準偏差を算出し、これを、その熱延鋼板の打抜き穴端面のRzの標準偏差[μm]とした。打抜き穴端面は曲面のため、Rzを算出する際に、JIS B 0601:2013に準拠した2次曲線補正を行なった。カットオフλsおよびλcによる補正は行なわなかった。
 本発明においては、打抜き穴端面のRzが35μm以下であり、かつ、打抜き穴端面のRzの標準偏差が10μm以下である場合、耐打抜き荒れ性に優れると評価した。
(V) Evaluation of punching roughness resistance A test piece (size: t (plate thickness) × 30 mm (width) × 30 mm (length)) was collected from the obtained hot-rolled steel sheet. A punched hole was formed in the center of the sampled test piece using a 10 mmφ cylindrical punch with a clearance of 12 ± 1%. The clearance is a ratio [%] to the plate thickness of the test piece. The test piece was divided into four equal parts along the diagonal line so that the end face in the rolling direction and the end face in the direction perpendicular to the rolling of the punched hole could be evaluated, respectively, and a four-part test piece was prepared. The maximum height roughness Rz [μm] was measured for the end face of the punched hole of the quadrant test piece in accordance with JIS B 0601: 2013.
More specifically, it was measured as follows. First, positions A and B were set on the end faces of the punched holes of the quadrant test piece along the plate thickness direction. The position A is a position 100 μm in the plate thickness direction from the outermost surface on the burr generation side. The position B is a position 100 μm in the fracture surface direction from the sheared surface / fracture surface boundary of the punched hole end surface. The space between the position A and the position B was divided into 10 positions at equal intervals, and a roughness curve having a length of 1 mm was measured in the arc direction (circumferential direction) at a total of 10 positions. The maximum height roughness Rz was calculated from each of the 10 roughness curves obtained. The average value of the calculated Rz was taken as the Rz of the quadrant test piece. Such measurement of Rz was carried out for all four equal parts of the test piece, and the average value of the obtained Rz was taken as Rz [μm] of the punched hole end face of the hot-rolled steel sheet.
Further, the standard deviation of Rz of a total of 40 points obtained from all the four equal parts of the test piece was calculated, and this was defined as the standard deviation [μm] of Rz of the end face of the punched hole of the hot-rolled steel sheet. Since the end face of the punched hole is a curved surface, a quadratic curve correction based on JIS B 0601: 2013 was performed when calculating Rz. No correction was made with the cutoffs λs and λc.
In the present invention, when the Rz of the end face of the punched hole is 35 μm or less and the standard deviation of the Rz of the end face of the punched hole is 10 μm or less, it is evaluated that the punching roughness resistance is excellent.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 〈評価結果まとめ〉
 上記表1~表3中、下線部は、本発明の範囲外または好適範囲外を示す。
 No.1~No.3、No.5~No.6、No.11、および、No.13~No.20の熱延鋼板は、1180MPa以上の引張強さ(TS)を有し高強度であり、かつ、延性、疲労特性および耐打抜き荒れ性に優れていた。
<Summary of evaluation results>
In Tables 1 to 3 above, the underlined part indicates outside the range of the present invention or outside the preferable range.
No. 1 to No. 3, No. 5 to No. 6, No. 11. And No. 13-No. The hot-rolled steel sheet of 20 had a tensile strength (TS) of 1180 MPa or more, was high in strength, and was excellent in ductility, fatigue characteristics, and punching roughness resistance.
 これに対して、No.4(強制冷却の冷却停止温度が低い)は、上部ベイナイト相の面積率が大きく、引張強さが1180MPa未満であり、第2相の周長が短く、疲労特性が不十分であった。
 No.7(巻き取り後の(Bs-300)℃までの平均冷却速度が遅い)は、第2相の面積率が小さく、引張強さが1180MPa未満であった。
 No.8(仕上圧延終了温度が高い)は、上部ベイナイト相の平均粒径が大きく、耐打抜き荒れ性が不十分であった。
 No.9(仕上圧延終了温度が低い)は、上部ベイナイト相の面積率が小さく、引張強さが1180MPa未満であった。
 No.10(デスケーリング衝突圧が低い)は、算術平均粗さRaが大きく、疲労特性が不十分であった。
 No.12(強制冷却の冷却停止温度が高い)は、第2相の面積率が大きく、延性が不十分であった。また、第2相の周長が短く、疲労特性が不十分であった。
On the other hand, No. In No. 4 (the cooling stop temperature of forced cooling is low), the area ratio of the upper bainite phase was large, the tensile strength was less than 1180 MPa, the peripheral length of the second phase was short, and the fatigue characteristics were insufficient.
No. No. 7 (the average cooling rate to (Bs-300) ° C. after winding was slow) had a small area ratio of the second phase and a tensile strength of less than 1180 MPa.
No. In No. 8 (high finish rolling end temperature), the average particle size of the upper bainite phase was large, and the punching roughness resistance was insufficient.
No. No. 9 (low finish rolling end temperature) had a small area ratio of the upper bainite phase and a tensile strength of less than 1180 MPa.
No. No. 10 (low descaling collision pressure) had a large arithmetic mean roughness Ra and insufficient fatigue characteristics.
No. In No. 12 (high cooling stop temperature of forced cooling), the area ratio of the second phase was large and the ductility was insufficient. In addition, the peripheral length of the second phase was short, and the fatigue characteristics were insufficient.
 No.21(Tiが多い鋼Nを使用)は、耐打抜き荒れ性が不十分であった。
 No.22(Cr、Mo、NbおよびVを含有しない鋼Oを使用)は、第2相の面積率が小さく、引張強さが1180MPa未満であった。
 No.23(Crが多い鋼Pを使用)は、算術平均粗さRaが大きく、疲労特性が不十分であった。
No. 21 (using steel N having a large amount of Ti) had insufficient punching roughness resistance.
No. In No. 22 (using steel O containing no Cr, Mo, Nb and V), the area ratio of the second phase was small and the tensile strength was less than 1180 MPa.
No. No. 23 (using steel P having a large amount of Cr) had a large arithmetic mean roughness Ra and insufficient fatigue characteristics.

Claims (7)

  1.  引張強さが、1180MPa以上であり、
     表面の算術平均粗さRaが、2.00μm以下であり、
     質量%で、C:0.09%以上0.20%以下、Si:0.2%以上2.0%以下、Mn:1.0%以上3.0%以下、P:0.100%以下、S:0.0100%以下、Al:0.01%以上2.00%以下、N:0.010%以下、Ti:0.001%以上0.030%未満、および、B:0.0005%以上0.0200%以下を含有し、さらに、Cr:0.10%以上1.50%以下、Mo:0.05%以上0.45%以下、Nb:0.005%以上0.060%以下、および、V:0.05%以上0.50%以下からなる群から選ばれる少なくとも1種を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
     上部ベイナイト相および第2相を含むミクロ組織と、を有し、
     前記上部ベイナイト相の面積率が、50%以上90%未満であり、
     前記上部ベイナイト相の平均粒径が、12.0μm以下であり、
     前記第2相は、下部ベイナイト相および/または焼き戻しマルテンサイト相、フレッシュマルテンサイト相、ならびに、残留オーステナイト相からなる群から選ばれる少なくとも1種であり、
     前記第2相の面積率が、10%以上50%未満であり、
     円相当直径が0.5μm以上である前記第2相の周長が、300,000μm/mm以上である、高強度熱延鋼板。
    Tensile strength is 1180 MPa or more,
    The arithmetic mean roughness Ra of the surface is 2.00 μm or less,
    In terms of mass%, C: 0.09% or more and 0.20% or less, Si: 0.2% or more and 2.0% or less, Mn: 1.0% or more and 3.0% or less, P: 0.100% or less , S: 0.0100% or less, Al: 0.01% or more and 2.00% or less, N: 0.010% or less, Ti: 0.001% or more and less than 0.030%, and B: 0.0005 % Or more and 0.0200% or less, Cr: 0.10% or more and 1.50% or less, Mo: 0.05% or more and 0.45% or less, Nb: 0.005% or more and 0.060% The following, and a component composition containing at least one selected from the group consisting of V: 0.05% or more and 0.50% or less, and the balance consisting of Fe and unavoidable impurities.
    It has a microstructure, including an upper bainite phase and a second phase,
    The area ratio of the upper bainite phase is 50% or more and less than 90%.
    The average particle size of the upper bainite phase is 12.0 μm or less.
    The second phase is at least one selected from the group consisting of a lower bainite phase and / or a tempered martensite phase, a fresh martensite phase, and a retained austenite phase.
    The area ratio of the second phase is 10% or more and less than 50%.
    A high-strength hot-rolled steel sheet having a circle-equivalent diameter of 0.5 μm or more and a peripheral length of the second phase of 300,000 μm / mm 2 or more.
  2.  前記成分組成は、さらに、質量%で、Cu:0.01%以上0.50%以下、および、Ni:0.01%以上0.50%以下からなる群から選ばれる少なくとも1種を含有する、請求項1に記載の高強度熱延鋼板。 The component composition further contains at least one selected from the group consisting of Cu: 0.01% or more and 0.50% or less, and Ni: 0.01% or more and 0.50% or less in mass%. , The high-strength hot-rolled steel sheet according to claim 1.
  3.  前記成分組成は、さらに、質量%で、Sb:0.0002%以上0.0300%以下を含有する、請求項1または2に記載の高強度熱延鋼板。 The high-strength hot-rolled steel sheet according to claim 1 or 2, wherein the component composition further contains Sb: 0.0002% or more and 0.0300% or less in mass%.
  4.  前記成分組成は、さらに、質量%で、Ca:0.0002%以上0.0100%以下、Mg:0.0002%以上0.0100%以下、および、REM:0.0002%以上0.0100%以下からなる群から選ばれる少なくとも1種を含有する、請求項1~3のいずれか1項に記載の高強度熱延鋼板。 Further, the component composition is Ca: 0.0002% or more and 0.0100% or less, Mg: 0.0002% or more and 0.0100% or less, and REM: 0.0002% or more and 0.0100% in mass%. The high-strength hot-rolled steel sheet according to any one of claims 1 to 3, which contains at least one selected from the group consisting of the following.
  5.  表面にめっき層を有する、請求項1~4のいずれか1項に記載の高強度熱延鋼板。 The high-strength hot-rolled steel sheet according to any one of claims 1 to 4, which has a plating layer on the surface.
  6.  請求項1~4のいずれか1項に記載の高強度熱延鋼板を製造する方法であって、
     請求項1~4のいずれか1項に記載の成分組成を有する鋼素材を、1150℃以上に加熱し、
     前記加熱した前記鋼素材を粗圧延することにより粗圧延板を得て、
     前記粗圧延板に、2.5MPa以上の衝突圧で、高圧水デスケーリングを施し、
     前記高圧水デスケーリングを施した前記粗圧延板を(RC-100)℃以上(RC+100)℃以下の仕上圧延終了温度で仕上圧延することにより仕上圧延板を得て、ただし、RCは下記式(1)で定義され、
     前記仕上圧延板を20℃/s以上の平均冷却速度で(Bs-150)℃以上Bs℃以下の冷却停止温度まで冷却し、ただし、Bsは下記式(2)で定義され、かつ、前記仕上圧延終了温度がRC℃以上である場合は前記仕上圧延の終了から前記冷却の開始までの時間が2.0s以下であり、
     前記冷却した前記仕上圧延板を、前記冷却停止温度にて巻き取りし、
     前記巻き取りした前記仕上圧延板を0.10℃/min以上の平均冷却速度で(Bs-300)℃まで冷却する、高強度熱延鋼板の製造方法。
    (1)RC=850+100×C+100×N+10×Mn+700×Ti+5000×B+10×Cr+50×Mo+2000×Nb+150×V
    (2)Bs=830-270×C-90×Mn-70×Cr-37×Ni-83×Mo
     ただし、前記式中の各元素記号は、前記成分組成における各元素の質量%での含有量を表す。前記成分組成が含まない元素の場合、前記式中の元素記号を0として計算する。
    The method for producing a high-strength hot-rolled steel sheet according to any one of claims 1 to 4.
    A steel material having the component composition according to any one of claims 1 to 4 is heated to 1150 ° C. or higher.
    A rough-rolled plate is obtained by rough-rolling the heated steel material.
    The rough-rolled plate is subjected to high-pressure water descaling at a collision pressure of 2.5 MPa or more.
    The rough-rolled plate subjected to the high-pressure water descaling is subjected to finish-rolling at a finish-rolling end temperature of (RC-100) ° C. or higher (RC + 100) ° C. to obtain a finished-rolled plate. Defined in 1)
    The finished rolled plate is cooled at an average cooling rate of 20 ° C./s or more to a cooling stop temperature of (Bs-150) ° C. or more and Bs ° C. or less, where Bs is defined by the following formula (2) and the finish. When the rolling end temperature is RC ° C. or higher, the time from the end of the finish rolling to the start of the cooling is 2.0 s or less.
    The cooled finished rolled plate is wound up at the cooling stop temperature.
    A method for producing a high-strength hot-rolled steel sheet, which cools the wound finished rolled sheet to (Bs-300) ° C. at an average cooling rate of 0.10 ° C./min or more.
    (1) RC = 850 + 100 × C + 100 × N + 10 × Mn + 700 × Ti + 5000 × B + 10 × Cr + 50 × Mo + 2000 × Nb + 150 × V
    (2) Bs = 830-270 × C-90 × Mn-70 × Cr-37 × Ni-83 × Mo
    However, each element symbol in the above formula represents the content of each element in the component composition in mass%. In the case of an element that does not include the component composition, the element symbol in the formula is set to 0 for calculation.
  7.  前記巻き取り後に前記冷却した前記仕上圧延板にめっき処理を施す、請求項6に記載の高強度熱延鋼板の製造方法。
     
    The method for producing a high-strength hot-rolled steel sheet according to claim 6, wherein the finished rolled sheet that has been cooled after being wound is plated.
PCT/JP2020/021621 2019-06-14 2020-06-01 High-strength hot-rolled steel sheet and method for manufacturing same WO2020250735A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080043029.1A CN114008231B (en) 2019-06-14 2020-06-01 High-strength hot-rolled steel sheet and method for producing same
JP2020546177A JP6819840B1 (en) 2019-06-14 2020-06-01 High-strength hot-rolled steel sheet and its manufacturing method
KR1020217040428A KR102635009B1 (en) 2019-06-14 2020-06-01 High-strength hot rolled steel sheet and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-110837 2019-06-14
JP2019110837 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020250735A1 true WO2020250735A1 (en) 2020-12-17

Family

ID=73782002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021621 WO2020250735A1 (en) 2019-06-14 2020-06-01 High-strength hot-rolled steel sheet and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP6819840B1 (en)
KR (1) KR102635009B1 (en)
CN (1) CN114008231B (en)
WO (1) WO2020250735A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112763A1 (en) * 2021-12-15 2023-06-22 日本製鉄株式会社 Hot-rolled steel sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7192819B2 (en) * 2020-03-17 2022-12-20 Jfeスチール株式会社 High-strength steel plate and its manufacturing method
CN115418558B (en) * 2022-06-21 2023-07-11 首钢集团有限公司 Method for reducing hot rolling surface warping of acid-resistant steel containing antimony

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145894A (en) * 1992-11-05 1994-05-27 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
WO2012036312A1 (en) * 2010-09-17 2012-03-22 Jfeスチール株式会社 High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
WO2014185405A1 (en) * 2013-05-14 2014-11-20 新日鐵住金株式会社 Hot-rolled steel sheet and production method therefor
WO2018150955A1 (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
WO2020026593A1 (en) * 2018-07-31 2020-02-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290177B (en) * 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
JP4157454B2 (en) * 2003-10-06 2008-10-01 新日本製鐵株式会社 High strength electrical steel sheet and its manufacturing method
JP4476928B2 (en) * 2005-12-28 2010-06-09 株式会社神戸製鋼所 High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness
JP4955496B2 (en) 2007-09-28 2012-06-20 株式会社神戸製鋼所 High-strength hot-rolled steel sheet with excellent fatigue characteristics and stretch flangeability
CN101358319B (en) * 2008-09-02 2010-12-01 首钢总公司 Low carbonaceous steel plate for 610MPa grade high strength pressure vessels and production method thereof
JP5440431B2 (en) * 2010-07-14 2014-03-12 新日鐵住金株式会社 High-strength hot-rolled steel sheet with excellent paint corrosion resistance and punched portion fatigue characteristics and method for producing the same
ES2759051T3 (en) 2013-05-21 2020-05-07 Nippon Steel Corp Hot rolled steel sheet and manufacturing method thereof
JP6212956B2 (en) 2013-05-24 2017-10-18 新日鐵住金株式会社 High-strength hot-rolled steel sheet excellent in bending workability and wear resistance and method for producing the same
JP6400517B2 (en) * 2014-04-09 2018-10-03 Jfeスチール株式会社 High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
CN104593664B (en) * 2014-11-13 2017-01-25 东北大学 Hot-rolled nanometer bainite steel, production method of hot-rolled nanometer bainite steel and manufacturing method of automotive frame
JP6327282B2 (en) 2015-05-12 2018-05-23 Jfeスチール株式会社 High strength hot rolled steel sheet and method for producing the same
WO2017017933A1 (en) * 2015-07-27 2017-02-02 Jfeスチール株式会社 High strength hot rolled steel sheet and manufacturing method for same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145894A (en) * 1992-11-05 1994-05-27 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP2000109951A (en) * 1998-08-05 2000-04-18 Kawasaki Steel Corp High strength hot rolled steel sheet excellent in stretch-flanging property and its production
WO2012036312A1 (en) * 2010-09-17 2012-03-22 Jfeスチール株式会社 High-strength hot-rolled steel sheet having superior fatigue resistance properties and method for producing same
WO2014185405A1 (en) * 2013-05-14 2014-11-20 新日鐵住金株式会社 Hot-rolled steel sheet and production method therefor
WO2018150955A1 (en) * 2017-02-17 2018-08-23 Jfeスチール株式会社 High strength hot-rolled steel sheet and method for producing same
WO2020026593A1 (en) * 2018-07-31 2020-02-06 Jfeスチール株式会社 High-strength hot-rolled steel sheet and method for manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112763A1 (en) * 2021-12-15 2023-06-22 日本製鉄株式会社 Hot-rolled steel sheet

Also Published As

Publication number Publication date
JP6819840B1 (en) 2021-01-27
CN114008231A (en) 2022-02-01
KR102635009B1 (en) 2024-02-08
KR20220005094A (en) 2022-01-12
JPWO2020250735A1 (en) 2021-09-13
CN114008231B (en) 2022-06-07

Similar Documents

Publication Publication Date Title
US11603571B2 (en) High-strength hot-rolled steel sheet and method for producing the same
KR101608163B1 (en) High-strength hot dip galvanized steel plate having excellent moldability, weak material anisotropy and ultimate tensile strength of 980 mpa or more, high-strength alloyed hot dip galvanized steel plate and manufacturing method therefor
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
EP3395974B1 (en) High-strength steel sheet and method for manufacturing the same
KR100572762B1 (en) Thin steel sheet for automobile excellent in notch fatigue strength and method for production thereof
JP6874857B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
JP5344100B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
WO2018062380A1 (en) Steel sheet and method for producing same
WO2011004779A1 (en) High-strength steel sheet and manufacturing method therefor
WO2016021198A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP6819840B1 (en) High-strength hot-rolled steel sheet and its manufacturing method
WO2016021193A1 (en) High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet
JP6973694B1 (en) High-strength steel plate and its manufacturing method
KR102503913B1 (en) High-strength steel sheet and its manufacturing method
JPWO2020184154A1 (en) High-strength steel sheet and its manufacturing method
JP2020204051A (en) High strength hot-rolled steel sheet and its manufacturing method
KR20230041055A (en) hot rolled steel
JP6897874B2 (en) High-strength cold-rolled steel sheet and its manufacturing method
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
JPWO2018163871A1 (en) High strength hot rolled galvanized steel sheet
KR20230035624A (en) hot rolled steel
JP2021147645A (en) High-strength steel sheet and method for producing the same
JP2020111770A (en) High strength cold-rolled thin steel sheet and its production method
JP7359332B1 (en) High strength steel plate and its manufacturing method
WO2023132342A1 (en) Hot-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020546177

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217040428

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823598

Country of ref document: EP

Kind code of ref document: A1