WO2020250694A1 - Power transmission device and method for manufacturing power transmission device - Google Patents

Power transmission device and method for manufacturing power transmission device Download PDF

Info

Publication number
WO2020250694A1
WO2020250694A1 PCT/JP2020/021045 JP2020021045W WO2020250694A1 WO 2020250694 A1 WO2020250694 A1 WO 2020250694A1 JP 2020021045 W JP2020021045 W JP 2020021045W WO 2020250694 A1 WO2020250694 A1 WO 2020250694A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
gear
shaft
oil
lubricating oil
Prior art date
Application number
PCT/JP2020/021045
Other languages
French (fr)
Japanese (ja)
Inventor
裕一 岩▲崎▼
弘樹 上原
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019110390A external-priority patent/JP2022120207A/en
Priority claimed from JP2019110391A external-priority patent/JP2022120208A/en
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Publication of WO2020250694A1 publication Critical patent/WO2020250694A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the present invention relates to a power transmission device.
  • Patent Document 1 discloses a power transmission device in which a drive shaft is penetrated on the inner peripheral side of a motor.
  • Patent Document 1 discloses a power transmission device in which a drive shaft is penetrated on the inner peripheral side of a gear and a motor.
  • the power transmission device of an aspect of the present invention is With the motor With the gear connected to the downstream of the motor, It has a shaft that penetrates the inner circumference of the motor. It has an oil feeding structure that feeds lubricating oil from the motor side to the gear side between the outer circumference of the shaft and the inner circumference of the motor.
  • an oil feeding structure for feeding lubricating oil from the motor side to the gear side between the outer circumference of the shaft and the inner circumference of the motor, from the central shaft side of the gear.
  • Lubricating oil can be supplied efficiently.
  • lubricating oil can be efficiently supplied from the central shaft side of the gear.
  • the lubricating oil can be supplied more efficiently from the central shaft side of the gear.
  • FIG. 1 is a diagram illustrating a power transmission device 1 according to the present embodiment.
  • FIG. 2 is an enlarged view of the power transmission device 1 around the motor.
  • FIG. 3 is an enlarged view around the reduction mechanism 3 and the differential device 6 as gears of the power transmission device 1.
  • the power transmission device 1 is a reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) that decelerates the output rotation of the motor 2 and the motor 2 and inputs the output rotation to the differential device 6. ) And drive shafts 8A and 8B.
  • the reduction mechanism 3 first planet reduction gear 4, second planet reduction gear 5
  • the differential device 6 the drive shaft 8A, and the shaft are along the transmission path of the output rotation of the motor 2.
  • the drive shaft 8B and the like are provided.
  • the output rotation of the motor 2 is decelerated by the speed reduction mechanism 3 and input to the differential device 6, and then the left and right drive wheels of the vehicle on which the power transmission device 1 is mounted (shown) via the drive shafts 8A and 8B. Is transmitted to.
  • the drive shaft 8A is rotatably connected to the left wheel of the vehicle equipped with the power transmission device 1
  • the drive shaft 8B is rotatably connected to the right wheel.
  • first planetary reduction gear 4 is connected to the downstream of the motor 2
  • second planetary reduction gear 5 is connected to the downstream of the first planetary reduction gear 4.
  • the differential device 6 is connected downstream of the second planetary reduction gear 5, and the drive shafts 8A and 8B are connected downstream of the differential device 6.
  • the motor 2 is housed in the motor case 10.
  • the motor case 10 includes a motor housing 11 that surrounds the outer periphery of the motor 2, motor support portions 12 and 13 that support the motor 2 at both ends in the rotation axis X direction, and motor support portions 12 on the side opposite to the motor housing 11 side. It is composed of an attached cover 14.
  • the reduction mechanism 3 and the differential device 6 are housed in the gear case 15.
  • the drive shaft 8A penetrates the opening 150 of the gear case 15 and is inserted into the gear case 15 and connected to the differential device 6.
  • the drive shaft 8A is inserted into the support portion 602 of the differential case 60 constituting the differential device 6 from the rotation axis X direction, and penetrates the inner circumference of the side gear 63A.
  • the drive shaft 8A is rotatably supported by the support portion 602.
  • a lip seal RS is fixed to the inner circumference of the opening 150, and the lip portion (not shown) of the lip seal RS elastically contacts the outer circumference of the drive shaft 8A to open the outer circumference of the drive shaft 8A.
  • the gap between the inner circumference and the inner circumference of the portion 150 is sealed.
  • the drive shaft 8B is inserted into the motor case 10 and the gear case 15 and connected to the differential device 6 from the opposite side of the drive shaft 8A in the rotation axis X direction.
  • the drive shaft 8B penetrates through the opening 140 of the cover 14 constituting the motor case 10.
  • a lip seal RS is fixed to the inner circumference of the opening 140, and the lip portion (not shown) of the lip seal RS elastically contacts the outer circumference of the drive shaft 8B to open the outer circumference of the drive shaft 8B.
  • the gap between the inner circumference and the inner circumference of the portion 140 is sealed.
  • the drive shaft 8B is rotatably supported by a bearing B2 as a shaft bearing fixed to a cylindrical support portion 141 of the cover 14.
  • the drive shaft 8B is externally inserted into the motor shaft 20 as an output shaft of the motor constituting the motor 2 in the motor case 10.
  • the drive shaft 8B penetrates through the through hole 410 of the sun gear 41 constituting the first planetary reduction gear 4 and the through hole 510 of the sun gear 51 constituting the second planet reduction gear 5 in the gear case 15.
  • the drive shaft 8B is inserted into the support portion 601 of the differential case 60 from the rotation axis X direction and penetrates the inner circumference of the side gear 63B.
  • the drive shaft 8B is rotatably supported by the support portion 601 on the same rotation shaft X as the drive shaft 8A.
  • the motor 2, the reduction mechanism 3 (first planet reduction gear 4, the second planet reduction gear 5) and the differential device 6 are arranged on the rotation axis X of the drive shaft 8B and overlap each other when viewed from the rotation axis X direction. It is provided. Further, the members constituting the motor 2, the reduction mechanism 3 (first planet reduction gear 4, the second planet reduction gear 5), and the differential device 6 are arranged so as to overlap in the radial direction of the rotation axis X. There is.
  • the motor 2 has a cylindrical motor shaft 20, a cylindrical rotor core 21 extrapolated to the motor shaft 20, and a stator core 25 that surrounds the outer circumference of the rotor core 21 at predetermined intervals.
  • the motor shaft 20 is extrapolated to the drive shaft 8B.
  • a clearance Cr is provided between the motor shaft 20 and the drive shaft 8B, and the motor shaft 20 is rotatable relative to the drive shaft 8B.
  • a bearing B1 as a motor bearing is extrapolated and fixed to the motor shaft 20 in the vicinity of one end 20a in the rotation axis X direction.
  • the motor shaft 20 is rotatably supported by a cylindrical wall 132 (see FIG. 2) of the cylindrical motor support portion 13 via a bearing B1.
  • the motor shaft 20 has a bearing B1 extrapolated and fixed at the other end 20b in the rotation axis X direction, and can rotate on the cylindrical wall 122 (see FIG. 2) of the cylindrical motor support portion 12 via the bearing B1. Is supported by.
  • the outer circumference of the rotor core 21 is surrounded by the motor housing 11 at predetermined intervals.
  • the motor support portion 13 is joined to one end 11a of the motor housing 11, and the motor support portion 12 is joined to the other end 11b of the motor housing 11.
  • Seal rings S and S are provided on one end 11a and the other end 11b of the motor housing 11.
  • One end 11a of the motor housing 11 is joined to the joining portion 131 formed near the outer edge of the one end surface 13a of the motor support portion 13 without a gap by the seal ring S provided at the one end 11a.
  • the other end 11b of the motor housing 11 is joined to the joint portion 121 formed near the outer edge of the side wall portion 12a of the motor support portion 12 without a gap by the seal ring S provided on the other end 11b.
  • the inner diameter side of the joint portion 131 of the motor support portion 13 is formed so as to avoid contact with the coil end 253a and the side plate portion 452, which will be described later.
  • One end surface 13a of the motor support portion 13 is arranged on the inner diameter side of the coil end 253a so as to face one end portion 21a of the rotor core 21 with a gap in the rotation axis X direction.
  • a cylindrical wall 132 extending in the rotation axis X direction is formed on the inner diameter side of the motor support portion 13, and a bearing B1 for supporting the motor shaft 20 is fixed to the inner circumference of the cylindrical wall 132.
  • a bearing retainer 135 is fixed to one end surface 13a of the motor support portion 13.
  • the bearing retainer 135 has a ring shape when viewed from the rotation axis X direction.
  • the bearing retainer 135 is in contact with the side surface of the outer race B1b of the bearing B1 from the rotation axis X direction on the inner diameter side of the cylindrical wall 132.
  • the bearing retainer 135 prevents the bearing B1 from falling off from the motor support portion 13.
  • the other end surface 13b of the motor support portion 13 is joined to the open end 151 of the gear case 15 to close the gear case 15.
  • the side wall portion 12a on the motor 2 side of the motor support portion 12 faces the coil end 253b, which will be described later, with a gap on the inner diameter side of the joint portion 121.
  • the wiring W drawn out from the stator core 25 passes between the coil end 253b and the side wall portion 12a.
  • the wiring W is drawn out of the motor case 10 from the lead-out portion 123 formed in the joint portion 121, and is connected to an inverter (not shown).
  • the side wall portion 12b facing the side wall portion 12a of the motor support portion 12 is joined to the end surface 14a of the cover 14.
  • a cylindrical wall 122 extending in the rotation axis X direction is formed on the inner diameter side of the side wall portion 12a of the motor support portion 12, and a bearing B1 for supporting the other end 20b of the motor shaft 20 is fixed to the inner circumference of the cylindrical wall 122. There is.
  • the rotor core 21 is formed by laminating a plurality of silicon steel plates, and each of the silicon steel plates is extrapolated to the motor shaft 20 in a state where the relative rotation with the motor shaft 20 is restricted.
  • the silicon steel plate When viewed from the rotation axis X direction of the motor shaft 20, the silicon steel plate has a ring shape, and on the outer peripheral side of the silicon steel plate, magnets of N pole and S pole (not shown) alternate in the circumferential direction around the rotation axis X. It is provided in.
  • One end 21a of the rotor core 21 in the X direction of the rotation axis is positioned by a large diameter portion 203 protruding outward in the radial direction from the outer circumference of the motor shaft 20.
  • the stator core 25 is formed by laminating a plurality of electromagnetic steel plates, and each of the electromagnetic steel plates has a ring-shaped yoke portion 251 fixed to the inner circumference of the motor housing 11 and a rotor core from the inner circumference of the yoke portion 251. It has a teeth portion 252 that protrudes to the 21 side.
  • a stator core 25 having a configuration in which the winding 253 is distributed and wound across a plurality of tooth portions 252 is adopted, and the stator core 25 is a coil end 253a, 253b protruding in the rotation axis X direction.
  • the length in the rotation axis X direction is longer than that of the rotor core 21 by the amount.
  • stator core 25 having a configuration in which the winding 253 is centrally wound may be adopted for each of the plurality of tooth portions 252 protruding toward the rotor core 21 side.
  • the cylindrical wall 132 of the motor support portion 13 faces the side surface 41a of the sun gear 41 of the first planetary reduction gear 4 housed in the gear case 15 with a gap.
  • a lip seal RS is installed between the opening 132a of the cylindrical wall 132 and the motor shaft 20.
  • the lip seal RS is provided to partition the space Sa inside the motor case 10 and the space Sb on the inner diameter side of the gear case 15.
  • the space Sa is a motor chamber that houses the motor 2
  • the space Sb is a gear chamber that houses the reduction mechanism 3 and the differential device 6.
  • Lubricating oil OL (see FIG. 1) of the differential device 6 and the speed reduction mechanism 3 is sealed in the lower part of the space Sb.
  • the lip seal RS is provided to prevent the lubricating oil OL from flowing into the space Sa in the motor case 10.
  • One end 20a of the motor shaft 20 penetrates the inner circumference of the cylindrical wall 132 of the motor support portion 13 and extends into the space Sb of the gear case 15.
  • One end 20a of the motor shaft 20 is inserted through a through hole 410 of the sun gear 41 constituting the first planetary reduction gear 4.
  • the sun gear 41 is spline-fitted to the outer periphery of one end 20a of the motor shaft 20 so as not to rotate relative to each other.
  • the output rotation of the motor 2 is input to the sun gear 41 of the first planetary reduction gear 4 via the motor shaft 20, and the sun gear 41 rotates around the rotation axis X by the rotational driving force of the motor 2.
  • a ring gear 42 fixed to the gear case 15 via an intermediate member 16 is located on the outer diameter side of the sun gear 41 in the radial direction of the rotating shaft X.
  • the pinion gear 43 rotatably supported by the pinion shaft 44 meshes with the outer circumference of the sun gear 41 and the inner circumference of the ring gear 42. ..
  • the pinion gear 43 is rotatably supported on the outer circumference of the pinion shaft 44 via the needle bearing NB.
  • the pinion shaft 44 penetrates the pinion gear 43 in the direction of the axis X1 along the rotation axis X. Both ends of the pinion shaft 44 in the axis X1 direction are supported by a pair of side plate portions 451 and 452 of the carrier 45.
  • the side plate portions 451 and 452 are provided parallel to each other at intervals in the rotation axis X direction.
  • a plurality of pinion gears 43 (for example, four) are provided between the side plate portions 451 and 452 at predetermined intervals in the circumferential direction around the rotation axis X.
  • a cylindrical connecting portion 453 is provided on the side plate portion 451 located on the differential device 6 side of the pinion gear 43.
  • the connecting portion 453 is arranged concentrically with the side plate portion 451 with respect to the rotation axis X, and protrudes along the rotation axis X in a direction approaching the differential device 6 (left direction in the drawing).
  • the intermediate member 16 that supports the ring gear 42 has a cylindrical shape with both ends open in the X direction of the rotation axis, and extends so as to cover the outer peripheral surface of the ring gear.
  • a disk member 161 projecting outward in the radial direction of the rotating shaft X is joined to the outer circumference.
  • the joint portion 162 formed on the outer diameter side of the disk member 161 is joined to the inner wall of the gear case 15.
  • a step portion 163 is formed on the inner peripheral surface of the intermediate member 16.
  • the step portion 163 is in contact with the ring gear 42 from the differential device 6 side.
  • the motor 2 side of the ring gear 42 is positioned by a snap ring R engaged with the inner circumference of the intermediate member 16, whereby the movement of the first planet reduction gear 4 in the rotation axis X direction is restricted.
  • the opening end 164 of the intermediate member 16 on the motor 2 side faces the other end surface 13b of the motor support portion 13 with a gap.
  • the connecting portion 453 on the first planetary reduction gear 4 side penetrates the inner peripheral side of the bearing B3 fixed to the opening 165 of the intermediate member 16.
  • the tip 453a of the connecting portion 453 faces the side surface 51a of the sun gear 51 of the second planetary reduction gear 5 at a distance.
  • a cylindrical connecting portion 511 extending from the sun gear 51 of the second planetary reduction gear 5 is inserted into the inner diameter side of the connecting portion 453 and spline-fitted, and the connecting portion 453 on the first planetary reduction gear 4 side and the connecting portion 453.
  • the connecting portion 511 on the side of the second planetary reduction gear 5 is connected to the inner diameter side of the bearing B3 so as not to rotate relative to each other.
  • the connecting portion 511 of the sun gear 51 is integrally formed with the sun gear 51, and a through hole 510 is formed so as to straddle the inner diameter side of the sun gear 51 and the inner diameter side of the connecting portion 511.
  • the sun gear 51 is supported so as to be relatively rotatable on the outer circumference of the drive shaft 8B that penetrates the through hole 510.
  • the side surface 51b of the sun gear 51 on the differential device 6 side faces the tubular support portion 601 of the differential case 60 described later with a gap in the rotation axis X direction, and is between the side surface 51b and the support portion 601. Is intervened by the needle bearing NB.
  • the sun gear 51 meshes with the large diameter gear portion 531 of the stepped pinion gear 53.
  • the stepped pinion gear 53 has a large-diameter gear portion 531 that meshes with the sun gear 51, and a small-diameter gear portion 532 that has a smaller diameter than the large-diameter gear portion 531.
  • the stepped pinion gear 53 is a gear component in which a large-diameter gear portion 531 and a small-diameter gear portion 532 are integrally provided side by side in the direction of the axis X2 parallel to the rotation axis X.
  • the stepped pinion gear 53 has a through hole 530 penetrating the inner diameter side of the large-diameter gear portion 531 and the small-diameter gear portion 532 in the axis X2 direction.
  • the stepped pinion gear 53 is rotatably supported on the outer circumference of the pinion shaft 54 penetrating the through hole 530 via the needle bearing NB.
  • Both ends of the pinion shaft 54 in the axis X2 direction are supported by the side plate portions 651 and the side plate portions 551 constituting the carrier 55.
  • the side plate portions 651 and 551 are provided in parallel with each other at intervals in the rotation axis X direction.
  • a plurality (for example, three) of a plurality of stepped pinion gears 53 are provided between the side plate portions 651 and 551 at predetermined intervals in the circumferential direction around the rotation axis X.
  • Each of the small diameter gear portions 532 meshes with the inner circumference of the ring gear 52.
  • the ring gear 52 is spline-fitted on the inner circumference of the gear case 15, and the ring gear 52 is restricted from rotating relative to the gear case 15.
  • a tubular portion 552 extending toward the first planetary reduction gear 4 is provided on the inner diameter side of the side plate portion 551.
  • the tubular portion 552 penetrates the opening 165 of the intermediate member 16 from the differential device 6 side to the motor 2 side (right side in the drawing).
  • the tip 552a of the tubular portion 552 faces the side plate portion 451 of the carrier 45 of the first planetary reduction gear 4 at a distance in the rotation axis X direction.
  • the tubular portion 552 is located on the radial outer side of the meshing portion between the connecting portion 453 on the first planetary reduction gear 4 side and the connecting portion 511 on the second planet reduction gear 5 side.
  • a bearing B3 fixed to the opening 165 of the intermediate member 16 is in contact with the outer periphery of the tubular portion 552.
  • the tubular portion 552 of the side plate portion 551 is rotatably supported by the intermediate member 16 via the bearing B3.
  • one side plate portion 651 of the side plate portion 551 and the side plate portion 651 constituting the carrier 55 is integrally formed with the differential case 60 of the differential device 6. Therefore, the carrier 55 (side plate portions 551, 651, pinion shaft 54) of the second planetary reduction gear 5 is formed substantially integrally with the differential case 60.
  • the output rotation of the motor 2 decelerated by the first planetary reduction gear 4 is input to the sun gear 51.
  • the output rotation input to the sun gear 51 is input to the stepped pinion gear 53 via the large-diameter gear portion 531 that meshes with the sun gear 51, and the stepped pinion gear 53 rotates around the axis X2.
  • the small-diameter gear portion 532 integrally formed with the large-diameter gear portion 531 rotates around the axis X2 integrally with the large-diameter gear portion 531.
  • the small-diameter gear portion 532 meshes with the ring gear 52 fixed to the inner circumference of the gear case 15. Therefore, when the small-diameter gear portion 532 rotates around the axis X2, the stepped pinion gear 53 rotates around the axis X2 while rotating around the axis X2.
  • the differential case 60 is interlocked with the circumferential displacement of the stepped pinion gear 53 around the rotation axis X. Rotates around the axis of rotation X.
  • the sun gear 51 is the input unit for the output rotation of the motor 2
  • the carrier 55 that supports the stepped pinion gear 53 is the output unit for the input rotation.
  • the rotation input to the sun gear 51 of the second planetary reduction gear 5 is greatly decelerated by being transmitted from the large-diameter gear portion 531 of the stepped pinion gear 53 to the small-diameter gear portion 532, and then the side plate portion of the carrier 55.
  • the 651 is output to the differential case 60 integrally formed.
  • the differential case 60 is formed in a hollow shape in which the shaft 61, the bevel gears 62A and 62B, and the side gears 63A and 63B are housed therein.
  • tubular support portions 601 and 602 are provided on both sides of the rotation axis X direction (left-right direction in the drawing). The support portions 601 and 602 extend along the rotation axis X in a direction away from the shaft 61.
  • connection piece 56 for connecting the side plate portion 651 and the side plate portion 551 of the carrier 55 is provided on the outer diameter side of the support portion 601.
  • One end 56a of the connecting piece 56 on the differential case 60 side is provided so as to straddle the side plate portion 651 and the outer circumference of the differential case 60, and the other end 56b is connected to the side plate portion 551 from the rotation axis X direction.
  • connection piece 56 is provided at a position avoiding interference with the stepped pinion gear 53 described above. As described above, a plurality (for example, three) of the stepped pinion gears 53 are provided at predetermined intervals in the circumferential direction around the rotation axis X. The connecting piece 56 is provided between the stepped pinion gears 53 adjacent to each other in the circumferential direction around the rotation axis X.
  • the inner race B2a of the bearing B2 is fixed to the outer periphery of the support portion 602 of the differential case 60.
  • the outer race B2b of the bearing B2 is held by the ring-shaped support portion 152 of the gear case 15, and the support portion 602 of the differential case 60 is rotatably supported by the gear case 15 via the bearing B2.
  • the drive shaft 8A is inserted into the support portion 602, and the drive shaft 8B is inserted into the support portion 601 and each is rotatably supported.
  • side gears 63A and 63B are spline-fitted on the outer circumference of the tips of the drive shafts 8A and 8B, and the side gears 63A and 63B and the drive shafts 8A and 8B rotate integrally around the rotation shaft X. It is connected as possible.
  • the differential case 60 is provided with shaft holes 60a and 60b penetrating in a direction orthogonal to the rotation axis X at positions symmetrical with respect to the rotation axis X.
  • the shaft holes 60a and 60b are located on the axis Y orthogonal to the rotation axis X, and one end 61a side and the other end 61b side of the shaft 61 are inserted.
  • One end 61a side and the other end 61b side of the shaft 61 are fixed to the differential case 60 by a pin P, and the shaft 61 is prohibited from rotating around the axis Y.
  • the shaft 61 is located between the side gears 63A and 63B in the differential case 60, and is arranged along the axis Y.
  • bevel gears 62A and 62B are externally inserted and rotatably supported on the shaft 61.
  • Two bevel gears 62A and 62B are provided at intervals in the longitudinal direction of the shaft 61 (the axial direction of the axis Y), and the bevel gears 62A and 62B are arranged so that their teeth face each other. ing.
  • the bevel gears 62A and 62B are provided so that the axes of the bevel gears 62A and 62B are aligned with the axes of the shaft 61.
  • side gears 63A and 63B are located on both sides of the bevel gears 62A and 62B in the axial direction of the rotating shaft X.
  • Two side gears 63A and 63B are provided at intervals in the axial direction of the rotating shaft X with their teeth facing each other, and the bevel gears 62A and 62B and the side gears 63A and 63B are mutually provided. It is assembled with the teeth engaged.
  • the reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) and the differential device 6 (bevel gears 62A, 62B, side gear 63A,) are placed on the transmission path of the output rotation of the motor 2.
  • the gears that make up 63B) are arranged.
  • the lubricating oil OL which is a medium for cooling, is stored up to a predetermined height inside the gear case 15 that houses the speed reduction mechanism 3 and the differential device 6. Then, when the differential device 6 rotates around the rotation axis X, the lubricating oil OL in the case is scraped up by the differential case 60, and the scraped up lubricating oil OL is the speed reduction mechanism 3 and the differential device 6. It is supplied to the meshing part of the gear. As a result, the heat generated in the meshing portion of the gear is recovered by heat exchange with the scraped-up lubricating oil OL, and the meshing portion of the gear is cooled.
  • the lubricating oil OL in order to effectively cool the meshed portion of the gear, it is preferable to supply the lubricating oil OL from the inside of the gear, that is, from the rotation axis X side to the outside in the radial direction by using centrifugal force.
  • the differential case 60 when the differential case 60 is scraped up, it is difficult to supply the lubricating oil OL to the rotation shaft X side of the gear.
  • the power transmission device 1 has a configuration for supplying the lubricating oil OL to the inner diameter side of the gear. The configuration will be described below.
  • a spiral groove 81 for feeding the lubricating oil OL is formed on the outer peripheral surface of the drive shaft 8B.
  • the lubricating oil OL is oiled from the motor 2 side toward the differential device 6 side by the spiral groove 81.
  • the spiral groove 81 draws a spiral extending in the vertical direction around the rotation axis X.
  • the starting end 81a of the spiral groove 81 is located between the other end 20b of the motor shaft 20 and the bearing B2 supported by the support portion 141 of the cover 14 in the rotation axis X direction.
  • the end 81b of the spiral groove 81 is located between the sun gear 51 constituting the second planetary reduction gear 5 and the support portion 601 in the rotation axis X direction. That is, the spiral groove 81 is formed along the rotation axis X across the inside of the motor case 10 and into the gear case 15.
  • oil holes 204 and 512 that supply the lubricating oil OL fed by the spiral groove 81 to the first planetary reduction gear 4 and the second planetary reduction gear 5, respectively. Is formed.
  • the oil hole portion 204 and the oil hole portion 512 are arranged so as to be offset in the rotation axis X direction.
  • the oil hole portion 204 is formed so as to penetrate the motor shaft 20 externally inserted into the drive shaft 8B in the radial direction. One end of the oil hole 204 opens to the outer peripheral surface of the drive shaft 8B, and the other end opens to the space Sb.
  • the oil hole portion 204 is formed at a position between the sun gear 41 of the first planetary reduction gear 4 and the cylindrical wall 132 of the motor support portion 13 in the X direction of the rotation axis.
  • the oil hole portion 512 is formed so as to penetrate the connecting portion 511 of the second planetary reduction gear 5 externally inserted into the drive shaft 8B in the radial direction. One end of the oil hole 512 opens to the outer peripheral surface of the drive shaft 8B, and the other end opens to the space Sb.
  • the oil hole portion 512 is formed at a position bordering the sun gear 51 in the X direction of the rotation axis.
  • the power transmission device 1 includes a catch tank 9 (catch portion) for storing a part of the lubricating oil OL scraped up in the gear case 15. Further, the power transmission device 1 is formed in a pipe 92 for feeding the lubricating oil OL stored in the catch tank 9 to the motor side and a cover 14 as a lubricating oil supply member, and the starting end 81a of the spiral groove 81 from the pipe 92 is formed. Is provided with an oil passage 93 as a lubricating oil supply port for guiding the lubricating oil OL.
  • the catch tank 9 is installed in the gear case 15 at a position that does not interfere with other components, and is shown by a virtual line in FIG.
  • FIG. 4A is a diagram showing a catch tank 9 seen from the rotation axis X direction at position A in FIG. 1.
  • FIG. 4B is a diagram showing an oil passage 93 seen from the rotation axis X direction at position B in FIG. 1.
  • 4A and 4B are schematic views, and components not necessary for explanation are omitted.
  • the catch tank 9 is provided with the upper portion of the gear case 15 bulging in the radial direction.
  • the catch tank 9 has an opening 9a facing the space Sb in the gear case 15.
  • FIG. 4A the portion of the catch tank 9 above the second planetary reduction gear 5 is shown, but the opening 9a extends over the second planetary reduction gear 5 and the first planetary reduction gear 4 (FIG. 4A). 1) is formed.
  • a discharge port 9b for lubricating oil OL is formed on the bottom surface of the catch tank 9. Although not shown in FIG. 4A, the discharge port 9b is connected to the pipe 92 shown in FIG. 4B.
  • the pipe 92 is arranged from the discharge port 9b to the outside of the gear case 15 and the motor case 10 and is connected to the oil passage 93 formed in the cover 14.
  • the oil passage 93 is formed so as to penetrate inward in the radial direction from the outer circumference of the cover 14 to the inner circumference of the support portion 141.
  • the oil passage 93 has a connection portion 93a with the pipe 92 on the outer peripheral side.
  • the oil passage 93 has an opening end 93b on the inner peripheral side of the support portion 141, and the opening end 93b is located above the starting end 81a of the spiral groove 81 formed on the outer peripheral surface of the drive shaft 8B.
  • the height h1 in the vertical direction of the discharge port 9b of the catch tank 9 is higher than the height h2 in the vertical direction of the connecting portion 93a of the oil passage 93.
  • a pair of donut-shaped guide plates 94 and 95 are provided inside the support portion 141 to guide the lubricating oil OL to the outer peripheral surface of the drive shaft 8B.
  • the pair of guide plates 94, 95 face each other with a gap in the rotation axis X direction.
  • the guide plate 94 is attached to the inner circumference of the support portion 141 so as to be sandwiched between the C ring 94a and the bearing B2.
  • the guide plate 95 is attached so as to be sandwiched between the side wall portion 12b of the motor support portion 12 and the end surface 14a of the cover 14.
  • a lip seal RS is installed between the guide plate 95 and the bearing B1 supported by the cylindrical wall 122 of the motor support portion 12, and the lubricating oil OL passing through the oil passage 93 flows into the space Sa in the motor case 10. Prevent that.
  • the reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) and the differential device 6 are provided along the transmission path of the output rotation of the motor 2.
  • Drive shafts 8A and 8B are provided.
  • the sun gear 41 is the input unit for the output rotation of the motor 2
  • the carrier 45 supporting the pinion gear 43 is the output unit for the input rotation.
  • the connecting portion 453 of the carrier 45 is connected to the connecting portion 511 of the sun gear 51 on the second planetary reduction gear 5 side, and the rotation of the carrier 45 (the output rotation of the first planetary reduction gear 4) is the first. 2 Input to the sun gear 51 of the planetary reduction gear 5.
  • the sun gear 51 serves as an input unit for the output rotation of the second planetary reduction gear 5
  • the carrier 55 supporting the stepped pinion gear 53 serves as an output unit for the input rotation. ing.
  • the stepped pinion gear 53 (large diameter gear portion 531 and small diameter gear portion 532) rotates around the axis X2 by the rotation input from the sun gear 51 side.
  • the small-diameter gear portion 532 of the stepped pinion gear 53 meshes with the ring gear 52 fixed to the inner circumference of the gear case 15. Therefore, the stepped pinion gear 53 rotates around the rotation axis X while rotating around the axis X2.
  • the carriers 55 (side plate portions 551 and 651) that support the stepped pinion gear 53 rotate around the rotation axis X at a rotation speed lower than the rotation input from the first planetary reduction gear 4 side.
  • the rotation input to the sun gear 51 of the second planetary reduction gear 5 is greatly decelerated by being transmitted from the large-diameter gear portion 531 of the stepped pinion gear 53 to the small-diameter gear portion 532, and then the side plate portion of the carrier 55.
  • the output is output to the differential case 60 (differential device 6) in which the 651 is integrally formed.
  • the lubricating oil OL which is a cooling medium, is stored in the lower part of the gear case 15. As shown in FIG. 1, in the embodiment, when one end 61a or the other end 61b of the shaft 61 of the differential case 60 is located at the lowermost side, the one end 61a or the other end 61b of the shaft 61 is at least in the lubricating oil OL. Lubricating oil OL is stored in the gear case 15 up to the position where it is located.
  • the scraped up lubricating oil OL is a gear (side gears 63A and 63B of the differential device 6, bevel gears 62A and 62B, sun gear 41 of the first planetary reduction gear 4, ring gear 42, pinion gear 43, and second planetary reduction gear.
  • the meshing portion is cooled by engaging with the meshing portion of the sun gear 51, the ring gear 52, and the stepped pinion gear 53) of 5.
  • the lubricating oil OL that has cooled the meshing portion of the gear falls directly or is scattered by the rotation of the gear, travels along the wall surface of the gear case 15, and is stored again in the lower part of the gear case 15, but some of the lubricating oil OL Is stored in the catch tank 9.
  • the stepped pinion gear 53 rotates around the rotation axis X while rotating around the axis X2 of the pinion shaft 54.
  • the lubricating oil OL supplied to the stepped pinion gear 53 cools the meshing portion of the gear, and at the same time, is scraped up into the gear case 15 again by the rotation of the stepped pinion gear 53.
  • the scraped up lubricating oil OL moves along the rotation direction of the stepped pinion gear 53 due to the centrifugal force generated by the rotation around the rotation axis X of the stepped pinion gear 53, and a part of it moves from the opening 9a to the catch tank 9 Go inside.
  • the lubricating oil OL is similarly scraped up, and a part of the lubricating oil OL is stored in the catch tank 9.
  • the lubricating oil OL stored inside the catch tank 9 flows from the discharge port 9b to the pipe 92 according to gravity, and falls into the oil passage 93 formed in the cover 14 as shown in FIG. 4B.
  • the lubricating oil OL that has fallen into the oil passage 93 is supplied to the starting end 81a of the spiral groove 81 formed on the outer peripheral surface of the drive shaft 8B through the oil passage 93 and the guide plates 94 and 95 (see FIG. 1).
  • FIG. 5 is a diagram showing the flow of the lubricating oil OL supplied to the spiral groove 81.
  • centrifugal force acts on the lubricating oil OL supplied to the starting end 81a of the spiral groove 81 by the rotation of the drive shaft 8B, and the spiral groove formed in the circumferential direction of the rotation axis X of the drive shaft 8B.
  • Oil is fed along 81.
  • the lubricating oil OL passes through the inner peripheral side of the motor shaft 20 inside the motor case 10, enters the inside of the gear case 15, and is oil-fed toward the terminal 81b side.
  • the oil hole portion 204 is formed at a position between the sun gear 41 of the first planetary reduction gear 4 and the cylindrical wall 132 of the motor support portion 13, the lubricating oil OL discharged from the oil hole portion 204 is the first It is supplied from the rotation shaft X side to the meshing portion of the gears (sun gear 41, ring gear 42, stepped pinion gear 43) constituting the planetary reduction gear 4.
  • the oil hole portion 512 is formed at the boundary between the sun gear 51 of the second planetary reduction gear 5 and the connecting portion 511, the lubricating oil OL discharged from the oil hole portion 512 causes the second planetary reduction gear 5 to move. It is supplied from the rotation shaft X side to the meshing portions of the constituent gears (sun gear 51, ring gear 52, stepped pinion gear 53).
  • the lubricating oil OL is also supplied to the needle bearing NB that supports the pinion gear 43 from between the motor shaft 20 and the connecting portion 511. It is also supplied to the needle bearing NB that supports each of the sun gear 51 and the support portion 601. These needle bearings NB are also efficiently cooled by supplying the lubricating oil OL from the rotating shaft X side.
  • the lubricating oil OL remaining in the spiral groove 81 is supplied to the inside of the differential case 60 to which the drive shaft 8B is connected, and the lubricating oil OL is also supplied from the rotating shaft X side to the meshing portion of the gear of the differential case 60. ..
  • an oil passage 93 for guiding the lubricating oil OL stored in the catch tank 9 to the drive shaft 8B is formed in the cover 14. This is because it is relatively easy to secure a space on the side opposite to the gear case 15 side of the motor 2.
  • the bearing B1 that supports the motor 2 and the bearing B2 that supports the drive shaft 8B are provided, respectively, to ensure stable rotation of the motor 2 and the drive shaft 8B. That is, a space is created by increasing the number of bearings, and the oil passage 93 is arranged using this space.
  • the catch tank 9 of the embodiment also acts to adjust the oil level of the lubricating oil OL in the space Sb of the gear case 15 when the vehicle is running and when the vehicle is stopped. While the vehicle is running, the lubricating oil OL is scraped up by the rotation of the differential case 60, and the lubricating oil OL is stored in the catch tank 9, so that the oil level of the lubricating oil OL in the space Sb is lowered.
  • the differential case 60 scoops up the lubricating oil OL, stirring resistance is generated, but by lowering the oil level, the stirring resistance can be reduced.
  • the lubricating oil OL stored in the catch tank 9 is supplied to the spiral groove 81 of the drive shaft 8B via the oil passage 93, and the lubricating oil OL is supplied from the rotating shaft X side to the meshing portion of the gear for cooling. It can be done efficiently.
  • the differential case 60 When the vehicle is stopped, the differential case 60 does not rotate and the lubricating oil OL is not scraped up, so that the oil level of the lubricating oil OL in the space Sb rises. Therefore, when starting the stopped vehicle, the differential case 60 can scrape up a sufficient amount of lubricating oil OL.
  • the power transmission device 1 has the following configuration.
  • Motor 2 and A reduction mechanism 3 and a differential device 6 connected downstream of the motor 2 and It has a drive shaft 8B (shaft) that penetrates the inner circumference of the motor 2.
  • It has an oil feeding structure that feeds lubricating oil OL from the motor 2 side toward the reduction mechanism 3 and the differential device 6 side between the outer circumference of the drive shaft 8B and the inner circumference of the motor 2.
  • the oil feeding structure is formed including a clearance Cr provided between the drive shaft 8B and the motor shaft 20 (that is, the motor 2) and a spiral groove 81.
  • the spiral groove 81 is not an essential configuration. However, it is preferable to form the spiral groove 81 because the oil feeding efficiency can be further improved.
  • the spiral groove 81 when the spiral groove 81 is not provided, it is preferable to increase the clearance Cr between the drive shaft 8B and the motor 2 as compared with the case where the spiral groove 81 is provided. If the spiral groove 81 is not provided, gravity acts, so that the lubricating oil OL is fed from the motor 2 side toward the reduction mechanism 3 and the differential device 6 side via the clearance Cr below the drive shaft. become. In other words, since the hollow shaft of the motor 2 and the drive shaft 8B allow relative rotation, a clearance Cr (gap) between the hollow shaft of the motor 2 and the drive shaft 8B is provided.
  • An oil feeding structure including a spiral groove 81 and a clearance Cr on the outer periphery of a drive shaft 8B penetrating the inner circumference of the reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) and the differential device 6.
  • the vicinity where the reduction mechanism 3 and the differential device 6 of the gear case 15 are arranged has a smaller space than the vicinity where the motor 2 is arranged, and in order to provide the oil passage 93 in this vicinity, It is necessary to secure a space, which may hinder the compactification of the power transmission device 1. Therefore, by setting the shape of the spiral groove 81 so that the lubricating oil OL is fed from the motor 2 side toward the reduction mechanism 3 and the differential device 6, the spiral groove 81 is spiraled into a relatively large space on the motor 2 side. Since the oil passage 93 can be arranged in the groove 81, it is possible to design a compact power transmission device 1.
  • the lubricating oil OL is supplied to the spiral groove 81 (that is, the drive shaft 8B) from above.
  • the power transmission device 1 supplies the lubricating oil OL from the oil passage 93 located above the spiral groove 81 (that is, the drive shaft 8B) in the direction of gravity, and thereby uses the gravity to supply the lubricating oil OL to the spiral groove 81 (that is, the drive shaft 8B). , Drive shaft 8B) can be supplied. As a result, the oil pump becomes unnecessary and the number of parts can be reduced. Further, even when the oil pump is provided, the capacity of the oil pump can be set small by using gravity together.
  • the power transmission device 1 has a catch tank 9 (catch portion) for storing the lubricating oil OL in the space Sb (gear chamber) provided with the reduction mechanism 3 and the differential device 6, and the catch tank 9 (catch portion).
  • Lubricating oil OL is supplied from the catch portion) to the spiral groove 81 (that is, the drive shaft 8B).
  • the catch tank 9 (catch portion) is temporarily lubricated by scraping up the lubricating oil OL by rotating the gears of the reduction mechanism 3 and the differential device 6 while the vehicle is running. Oil OL is stored. That is, it can be said that the catch tank 9 (catch portion) has a function of temporarily storing the lubricating oil OL. Therefore, when the vehicle is stopped, the oil level of the lubricating oil OL in the space Sb is raised so that the gears can be sufficiently lubricated when the vehicle starts, and the lubricating oil OL is scraped up by the gears while the vehicle is running. By storing the lubricating oil OL in the catch tank 9 (catch portion), the oil level in the space Sb can be lowered, and the stirring resistance of the lubricating oil OL by the gear can be lowered.
  • the lubricating oil OL is stably supplied to the spiral groove 81 (that is, the drive shaft 8B), and the spiral groove 81 (that is, that is).
  • the drive shaft 8B) makes it possible to supply the lubricating oil OL to the rotation shaft X side, which is the central shaft of the reduction mechanism 3 and the differential device 6. That is, the lubricating oil OL is supplied to the spiral groove 81 (that is, the drive shaft 8B) via the catch tank 9 (catch portion).
  • oil may be supplied from the catch tank 9 (catch portion) to the spiral groove 81 (that is, the drive shaft 8B) by using gravity, or the catch tank 9 (catch) may be supplied by using an oil pump. Oil may be supplied from the portion) to the spiral groove 81 (that is, the drive shaft 8B).
  • An oil passage 93 (lubricating oil supply port) for supplying lubricating oil OL to the spiral groove 81 (that is, the drive shaft 8B) is provided in the cover 14 (lubricating oil supply member), and the motor 2 has an oil passage 93. Is arranged between the speed reduction mechanism 3 and the differential device 6. That is, the lubricating oil OL is supplied to the spiral groove 81 (that is, the drive shaft 8B) through the oil passage 93 (lubricating oil supply port).
  • the oil passage 93 can be arranged while minimizing the influence of hindering the compactification of the power transmission device 1.
  • the cover 14 constituting the motor case 10 is used as a lubricating oil supply member, and an oil passage 93 is formed in the cover 14 as a lubricating oil supply port, but the present invention is not limited to this.
  • the oil passage 93 may be formed so as to penetrate the inside of the motor support portion 12. Further, the oil passage 93 may be formed as a member separate from the member constituting the motor case 10.
  • the power transmission device 1 is Bearing B1 (motor bearing) that supports the motor shaft 20 (motor output shaft) and It has a bearing B2 (bearing for the shaft) that supports the drive shaft 8B, and has.
  • Bearing B1 is located between motor 2 and bearing B2.
  • the oil passage 93 is located between the bearing B1 and the bearing B2.
  • the motor 2 and the drive shaft 8B can be rotated stably, and the space created by increasing the number of bearings can be effectively used.
  • the oil passage 93 By arranging the oil passage 93, the oil passage 93 can be arranged while minimizing the influence of hindering the compactness.
  • FIG. 6 is a diagram schematically showing a spiral groove 28 according to the first modification.
  • the spiral groove 81 formed on the “outer circumference of the drive shaft 8B” has been described.
  • the "outer circumference of the shaft” is not limited to the "outer peripheral surface of the shaft”.
  • the spiral groove may be provided in the outer peripheral direction of the shaft and may be formed on a member facing the outer peripheral surface of the shaft.
  • a spiral groove 28 may be formed on the inner peripheral surface of the motor shaft 20 facing the outer peripheral surface of the drive shaft 8B.
  • the lubricating oil OL supplied to the outer peripheral surface of the drive shaft 8B is driven by the centrifugal force acting on the rotation of the drive shaft 8B along the spiral groove 28 along the motor case 10 shown in FIG. Oil is fed from the side to the gear case 15 side, and the lubricating oil OL can be efficiently supplied to the meshing portion of the gears of the speed reduction mechanism 3 and the differential device 6.
  • FIG. 7 is a diagram for explaining the opening area of the oil hole portions 204 and 512 according to the modified example 2.
  • the oil hole portion 204 inside the gear case 15 is supplied with the lubricating oil OL fed by the spiral groove 81 to the first planet reduction gear 4 and the second planet reduction gear 5, respectively. 512 is formed.
  • the opening area M1 of the oil hole portion 204 and the opening area M2 of the oil hole portion 512 are different from each other.
  • the opening area of the oil hole is set so as to increase as the distance from the oil passage 93 in the rotation axis X direction increases.
  • the oil hole portion 512 is located on the downstream side of the oil hole portion 204 in the oil feeding direction of the lubricating oil OL.
  • the distance D2 in the rotation axis X direction from the oil passage 93 to the oil hole portion 512 is farther than the distance D1 in the rotation axis X direction from the oil passage 93 to the oil hole portion 204 (D1 ⁇ D2). That is, the opening area M2 of the oil hole portion 512 is set to be larger than the opening area M1 of the oil hole portion 204 (M1 ⁇ M2).
  • the lubricating oil OL that is oil-fed through the spiral groove 81 is subjected to hydraulic pressure due to centrifugal force, but the oil pressure tends to decrease toward the downstream side in the oil-feeding direction. When the oil pressure drops, the lubricating oil OL may not be sufficiently supplied to the meshing portion of the gear.
  • the opening area M2 of the oil hole portion 512 on the downstream side in the oil feeding direction is made larger than the opening area M1 of the oil hole portion 204 on the upstream side in the oil feeding direction.
  • the addition amounts A1 and A2 with respect to the reference supply amount of the lubricating oil are determined according to the distances D1 and D2 of the oil hole portions 204 and 512 from the oil passage 93 in the rotation axis X direction, and the respective addition amounts A1.
  • the opening areas M1 and M2 required to obtain A2 are set. That is, as the distance from the oil passage in the rotation axis X direction increases, the addition amount increases and the set opening area also increases.
  • the addition amounts A1 and A2 and the opening areas M1 and M2 can be determined by conducting a test or a simulation in advance.
  • the opening area of the oil hole on the downstream side in the oil feeding direction may be simply set to be a certain area larger than the oil hole on the upstream side.
  • the opening area M2 of the oil hole portion 512 on the downstream side in the oil feeding direction to be large, the supply amount of the lubricating oil OL in the oil hole portion 512 is increased.
  • the lubricating oil OL can be appropriately supplied to the meshing portion of the gear even on the downstream side in the oil feeding direction where the oil pressure becomes low.
  • the power transmission device 1 has the following configuration. (6) On the outer circumference of the drive shaft 8B, an oil hole portion 204 (first oil hole portion) formed in the motor shaft 20 (first hollow shaft portion) and a connecting portion 511 (second hollow shaft portion) are formed. An oil hole portion 512 (second oil hole portion) is formed. The oil hole portion 204 is arranged offset from the oil hole portion 512 in the rotation axis X direction (axial direction). The opening area M1 of the oil hole portion 204 is different from the opening area M2 of the oil hole portion 512.
  • the oil pressure tends to decrease toward the downstream side in the oil feeding direction. It is preferable to increase the supply amount of the lubricating oil OL at the position where the oil pressure drops, and it is preferable to set the opening area of the oil hole portion larger as the required supply amount of the lubricating oil OL increases. Based on this tendency, in the modified example 2, the opening areas M1 and M2 of the plurality of oil hole portions 204 and 512 are made different rather than equal. This makes it possible to perform appropriate lubrication according to the required supply amount of the lubricating oil OL.
  • the oil hole portion can be appropriately provided in the hollow shaft portion located on the outer periphery of the drive shaft 8B, and the installation position and the number of installations are not limited. Further, each oil hole portion may be composed of one oil hole, or may be composed of a plurality of oil holes. When the oil hole portion is composed of a plurality of oil holes, the opening area means the total area of the plurality of oil holes.
  • the first hollow shaft portion and the second hollow shaft portion are separate shafts of the motor shaft 20 and the connecting portion 511, but the shaft is not limited to this and is integrally formed as the same hollow shaft. You may.
  • the power transmission device 1 is The spiral groove 81 has a cover 14 (lubricating oil supply member) provided with an oil passage 93 (lubricating oil supply port) for supplying the lubricating oil OL.
  • the oil hole portion 512 is farther from the oil passage 93 (that is, the motor 2) in the rotation axis X direction than the oil hole portion 204.
  • the oil hole portion 512 has a larger opening area than the oil hole portion 204.
  • the distance from the oil passage 93 (that is, the motor 2) in the rotation axis X direction is farther toward the downstream side in the oil feeding direction. Increase the opening area of the oil hole. As a result, it is easy to supply the required flow rate of the lubricating oil OL to the downstream side in the oil feeding direction. Further, it is only necessary to adjust the opening areas M1 and M2 of the oil holes 204 and 512, which simplifies the calculation at the time of designing, which leads to a reduction in design man-hours.
  • the opening areas M1 and M2 of the oil holes 204 and 512 are set according to the distances D1 and D2 in the rotation axis X direction from the oil passage 93 (that is, the motor 2), but the opening area is set.
  • the elements that set M1 and M2 are not limited to the distance.
  • the lubricating oil OL is supplied to the first planetary reduction gear 4 and the second planetary reduction gear 5 via the oil holes 204 and 512, and is generated in the meshing portion of the gear and the bearing such as the needle bearing NB. Cool the heat.
  • the opening area M1 of the oil hole portions 204 and 512 according to the rotation speed of the supply destination of the lubricating oil OL. , M2 is set.
  • the addition amounts A1 and A2 according to the rotation axis X direction distances D1 and D2 of the oil hole portions 204 and 512 and the addition amounts C1 and C2 according to the rotation speed are set as parameters, respectively, and the oil hole portions 204 and 512 are set.
  • the opening areas M1 and M2 of the above are determined.
  • the reference rotation speeds V1 and V2 can be calculated from the reduction ratios and the like from the motor 2 to each of the first planetary reduction gear 4 and the second planetary reduction gear 5.
  • the reference rotation speeds V1 and V2 can be determined according to the rotation speeds of the first planetary reduction gear 4 and the second planetary reduction gear 5 when the rotation of the motor 2 is a predetermined rotation.
  • the addition amounts C1 and C2 and the opening areas M1 and M2 can be determined by conducting a test or simulation in advance in the same manner as in the modified example 2.
  • the power transmission device 1 is (8)
  • the spiral groove 81 has a cover 14 (lubricating oil supply member) provided with an oil passage 93 (lubricating oil supply port) for supplying the lubricating oil OL.
  • the opening area M1 of the oil hole portion 204 and the oil hole portion 512 is increased as the addition amounts A1 and A2 (first addition amount) according to the distance (distance) in the rotation axis X direction from the oil passage 93 (that is, the motor 2) are larger. , M2 is set large.
  • the oil hole portion 204 and the oil hole portion 512 are addition amounts C1 and C2 (second addition amount) according to the reference rotation speeds V1 and V2 of the first planet reduction gear 4 and the second planet reduction gear 5 (lubricating oil supply destination). ) Is larger, the opening areas M1 and M2 are set larger. The larger the distances D1 and D2 in the X direction of the rotation axes, the larger the addition amounts A1 and A2 are set. The larger the reference rotation speeds V1 and V2, the larger the addition amounts C1 and C2 are set.
  • the manufacturing method of the power transmission device 1 according to the third modification is as follows.
  • the power transmission device 1 is Motor 2 and A reduction mechanism 3 and a differential device 6 (gear) connected downstream of the motor 2 and A drive shaft 8B (shaft) that penetrates the inner circumference of the motor 2 and It has an oil feeding structure for feeding lubricating oil from the motor 2 side toward the reduction mechanism 3 and the differential device 6 side between the outer circumference of the drive shaft 8B and the inner circumference of the motor 2.
  • a hole portion 512 (second oil hole portion) is formed.
  • the oil hole portion 204 is arranged offset from the oil hole portion 512 in the rotation axis X direction (axial direction).
  • the power transmission device 1 has a cover 14 (lubricating oil supply member) provided with an oil passage 93 (lubricating oil supply port).
  • Lubricating oil OL is supplied to the drive shaft 8B via the oil passage 93.
  • the opening area M1 of the oil hole portion 204 and the oil hole portion 512 is increased as the addition amounts A1 and A2 (first addition amount) according to the distance (distance) in the rotation axis X direction from the oil passage 93 (that is, the motor 2) are larger. , M2 is set large.
  • the oil hole portion 204 and the oil hole portion 512 are addition amounts C1 and C2 (second addition amount) according to the reference rotation speeds V1 and V2 of the first planet reduction gear 4 and the second planet reduction gear 5 (lubricating oil supply destination). ) Is larger, the opening areas M1 and M2 are set larger. The larger the distances D1 and D2 in the X direction of the rotation axis, the larger the addition amounts A1 and A2 are set. The larger the reference rotation speeds V1 and V2, the larger the addition amounts C1 and C2 are set.
  • the distances D1 and D2 in the X direction of the rotation axis from the oil passage 83 (that is, the motor 2) of the oil holes 204 and 512 The additional amounts A1 and A2 of the corresponding lubricating oil OL are set, and the opening areas M1 and M2 of the oil holes 204 and 512 are set according to the added amounts A1 and A2. Since the addition amounts A1 and A2 become larger toward the downstream side of the spiral groove 81 in the oil feeding direction, the opening areas M1 and M2 are set in the direction of increasing.
  • the addition amounts C1 and C2 are set according to V1 and V2, and the opening areas M1 and M2 are set according to the addition amounts C1 and C2. Since the addition amounts C1 and C2 increase as the reference rotation speeds V1 and V2 increase, the opening areas M1 and M2 are set in a direction of increase. As a result, the lubricating oil OL can be appropriately supplied according to the required supply amount.
  • downstream connection means a connection relationship in which power is transmitted from a component arranged upstream to a component arranged downstream.
  • first planetary reduction gear 4 connected downstream of the motor 2 means that power is transmitted from the motor 2 to the first planetary reduction gear 4.
  • the sun gear 41, the ring gear 42 and the pinion gear 43 constituting the first planetary reduction gear 4 of the reduction mechanism 3 and the sun gear 51, the ring gear 52 and the ring gear 52 constituting the second planetary reduction gear 5 are used as gears.
  • the stepped pinion gear 53 and the bevel gears 62A and 62B and the side gears 63A and 63B constituting the differential device 6 have been described, the present invention is not limited to this, and the present invention can be applied to other gears.
  • the drive shaft 8B has been described as the shaft in the embodiment, the present invention is not limited to this, and the present invention can be applied to other shafts. Further, in the embodiment, the drive shaft 8B has been described as a solid shaft, but the drive shaft 8B may be a hollow shaft and the lubricating oil OL may be supplied from the inside of the hollow shaft. As a result, the lubricating oil OL can be more efficiently supplied together with the spiral groove 81 formed on the outer periphery of the drive shaft 8B.
  • the spiral groove 81 (see FIG. 1) is not an indispensable configuration. Therefore, as shown in FIG. 8, the power transmission device 1 has a configuration in which the spiral groove is not provided. It is also possible to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

[Problem] To efficiently supply lubricating oil. [Solution] A power transmission device 1 has a motor 2, a reduction mechanism 3 (first planetary reduction gear 4, second planetary reduction gear 5) and differential 6 connected to the downstream side of the motor 2, and a drive shaft 8B passing through the inner periphery of the motor 2. The power transmission device 1 has, an oil delivery mechanism that delivers lubricating oil OL from the motor 2 side toward the reduction mechanism 3 and differential 6 side between the outer periphery of the drive shaft 8B and the inner periphery of the motor 2.

Description

動力伝達装置および動力伝達装置の製造方法Power transmission device and manufacturing method of power transmission device
 本発明は、動力伝達装置に関する。 The present invention relates to a power transmission device.
 特許文献1は、モータの内周側にドライブシャフトを貫通させた動力伝達装置が開示されている。 Patent Document 1 discloses a power transmission device in which a drive shaft is penetrated on the inner peripheral side of a motor.
特開2016-89860号公報Japanese Unexamined Patent Publication No. 2016-89860
 特許文献1の動力伝達装置は、ギアおよびモータの内周側にドライブシャフトを貫通させた動力伝達装置を開示する。 The power transmission device of Patent Document 1 discloses a power transmission device in which a drive shaft is penetrated on the inner peripheral side of a gear and a motor.
 動力伝達装置を構成するギア等は、潤滑油による潤滑させる必要があるが、ギア全体に潤滑油を行き渡らせるためには遠心力を利用すると効率が良い。そのため、ギアの中心軸側に潤滑油を供給し、ギアの回転による掻き上げを利用して潤滑油を行き渡らせることが好ましい。 It is necessary to lubricate the gears that make up the power transmission device with lubricating oil, but it is efficient to use centrifugal force to distribute the lubricating oil throughout the gears. Therefore, it is preferable to supply the lubricating oil to the central shaft side of the gear and distribute the lubricating oil by utilizing the scraping by the rotation of the gear.
 ここで、特許文献1のように、モータの内周側にシャフトを貫通させた動力伝達装置の場合、シャフトを中空軸にして中空軸の内部から潤滑油を供給する構成とすることも考えられるが、シャフトの耐久性に影響が出る場合がある。また、耐久性を確保しつつシャフトを中空軸とした場合であっても更に潤滑油の供給量を増やしたい場合がある。 Here, in the case of a power transmission device in which a shaft is passed through the inner peripheral side of the motor as in Patent Document 1, it is conceivable that the shaft is a hollow shaft and lubricating oil is supplied from the inside of the hollow shaft. However, the durability of the shaft may be affected. Further, even when the shaft is a hollow shaft while ensuring durability, it may be desired to further increase the supply amount of lubricating oil.
 このように、ギアおよびモータの内周側にドライブシャフトを貫通させた動力伝達装置において、ギアの中心軸側から潤滑油を効率よく供給させることが求められている。 As described above, in the power transmission device in which the drive shaft is penetrated through the inner peripheral side of the gear and the motor, it is required to efficiently supply the lubricating oil from the central shaft side of the gear.
 本発明のある態様の動力伝達装置は、
 モータと、
 前記モータの下流に接続されたギアと、
 前記モータの内周を貫通するシャフトと、を有し、
 前記シャフトの外周と前記モータの内周との間において前記モータ側から前記ギア側へ向かって潤滑油を油送する油送構造を有する。
The power transmission device of an aspect of the present invention is
With the motor
With the gear connected to the downstream of the motor,
It has a shaft that penetrates the inner circumference of the motor.
It has an oil feeding structure that feeds lubricating oil from the motor side to the gear side between the outer circumference of the shaft and the inner circumference of the motor.
 本発明のある態様によれば、シャフトの外周とモータの内周との間において、モータ側からギア側へ向かって潤滑油を油送する油送構造を有することによって、ギアの中心軸側から潤滑油を効率的に供給することができる。特に、ギアの内周を貫通するシャフトの外周に螺旋溝を形成することによって、ギアの中心軸側から潤滑油を効率的に供給することができる。また、ギアの内周を貫通するシャフトの外周に螺旋溝を形成することによって、ギアの中心軸側からより効率的に潤滑油を供給することができる。さらに、油送方向に沿って複数設けた油孔部の開口面積を異ならせることにより、油送方向の位置に応じた油圧の低下傾向を踏まえて、必要流量に応じた適切な潤滑を行うことが可能となる。 According to an aspect of the present invention, by having an oil feeding structure for feeding lubricating oil from the motor side to the gear side between the outer circumference of the shaft and the inner circumference of the motor, from the central shaft side of the gear. Lubricating oil can be supplied efficiently. In particular, by forming a spiral groove on the outer circumference of the shaft penetrating the inner circumference of the gear, lubricating oil can be efficiently supplied from the central shaft side of the gear. Further, by forming a spiral groove on the outer circumference of the shaft penetrating the inner circumference of the gear, the lubricating oil can be supplied more efficiently from the central shaft side of the gear. Furthermore, by making the opening areas of the plurality of oil holes provided along the oil feeding direction different, appropriate lubrication is performed according to the required flow rate in consideration of the tendency of the oil pressure to decrease according to the position in the oil feeding direction. Is possible.
本実施形態にかかる動力伝達装置を説明する図である。It is a figure explaining the power transmission device which concerns on this embodiment. 動力伝達装置のモータ周りの拡大図である。It is an enlarged view around the motor of a power transmission device. 動力伝達装置の減速機構および差動装置周りの拡大図である。It is an enlarged view around the reduction mechanism and the differential device of a power transmission device. 図1の位置Aにおいて回転軸方向から見たキャッチタンクを示す図である。It is a figure which shows the catch tank seen from the rotation axis direction at the position A of FIG. 図1の位置Bにおいて回転軸方向から見た油路を示す図である。It is a figure which shows the oil passage seen from the rotation axis direction at the position B of FIG. 螺旋溝に供給された潤滑油の流れを示す図である。It is a figure which shows the flow of the lubricating oil supplied to a spiral groove. 変形例1にかかる螺旋溝を示す図である。It is a figure which shows the spiral groove which concerns on the modification 1. 変形例2にかかる油孔部の開口面積を説明する図である。It is a figure explaining the opening area of the oil hole part which concerns on the modification 2. さらなる変形例にかかる動力伝達装置を説明する図である。It is a figure explaining the power transmission device which concerns on a further modification.
 以下、実施形態を説明する。
 図1は、本実施形態にかかる動力伝達装置1を説明する図である。
 図2は、動力伝達装置1のモータ周りの拡大図である。
 図3は、動力伝達装置1のギアとしての減速機構3および差動装置6周りの拡大図である。
Hereinafter, embodiments will be described.
FIG. 1 is a diagram illustrating a power transmission device 1 according to the present embodiment.
FIG. 2 is an enlarged view of the power transmission device 1 around the motor.
FIG. 3 is an enlarged view around the reduction mechanism 3 and the differential device 6 as gears of the power transmission device 1.
 図1に示すように、動力伝達装置1は、モータ2と、モータ2の出力回転を減速して差動装置6に入力する減速機構3(第1遊星減速ギア4、第2遊星減速ギア5)と、ドライブシャフト8A、8Bと、を有している。 As shown in FIG. 1, the power transmission device 1 is a reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) that decelerates the output rotation of the motor 2 and the motor 2 and inputs the output rotation to the differential device 6. ) And drive shafts 8A and 8B.
 動力伝達装置1では、モータ2の出力回転の伝達経路に沿って、減速機構3(第1遊星減速ギア4、第2遊星減速ギア5)と、差動装置6と、ドライブシャフト8Aと、シャフトとしてのドライブシャフト8Bと、が設けられている。 In the power transmission device 1, the reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5), the differential device 6, the drive shaft 8A, and the shaft are along the transmission path of the output rotation of the motor 2. The drive shaft 8B and the like are provided.
 モータ2の出力回転は、減速機構3で減速されて差動装置6に入力された後、ドライブシャフト8A、8Bを介して、動力伝達装置1が搭載された車両の左右の駆動輪(図示せず)に伝達される。図1では、ドライブシャフト8Aが、動力伝達装置1を搭載した車両の左輪に回転伝達可能に接続されていると共に、ドライブシャフト8Bが、右輪に回転伝達可能に接続されている。 The output rotation of the motor 2 is decelerated by the speed reduction mechanism 3 and input to the differential device 6, and then the left and right drive wheels of the vehicle on which the power transmission device 1 is mounted (shown) via the drive shafts 8A and 8B. Is transmitted to. In FIG. 1, the drive shaft 8A is rotatably connected to the left wheel of the vehicle equipped with the power transmission device 1, and the drive shaft 8B is rotatably connected to the right wheel.
 ここで、第1遊星減速ギア4は、モータ2の下流に接続されており、第2遊星減速ギア5は、第1遊星減速ギア4の下流に接続されている。差動装置6は、第2遊星減速ギア5の下流に接続されており、ドライブシャフト8A、8Bは、差動装置6の下流に接続されている。 Here, the first planetary reduction gear 4 is connected to the downstream of the motor 2, and the second planetary reduction gear 5 is connected to the downstream of the first planetary reduction gear 4. The differential device 6 is connected downstream of the second planetary reduction gear 5, and the drive shafts 8A and 8B are connected downstream of the differential device 6.
 モータ2は、モータケース10に収容されている。モータケース10は、モータ2の外周を囲むモータハウジング11と、モータ2を回転軸X方向の両端をそれぞれ支持するモータ支持部12、13と、モータ支持部12のモータハウジング11側と反対側に取り付けられたカバー14とから構成される。
 減速機構3および差動装置6は、ギアケース15に収容されている。
The motor 2 is housed in the motor case 10. The motor case 10 includes a motor housing 11 that surrounds the outer periphery of the motor 2, motor support portions 12 and 13 that support the motor 2 at both ends in the rotation axis X direction, and motor support portions 12 on the side opposite to the motor housing 11 side. It is composed of an attached cover 14.
The reduction mechanism 3 and the differential device 6 are housed in the gear case 15.
 ドライブシャフト8Aは、ギアケース15の開口部150を貫通してギアケース15の内部に挿入され、差動装置6に接続される。ドライブシャフト8Aは、差動装置6を構成するデフケース60の支持部602に回転軸X方向から挿入され、サイドギア63Aの内周を貫通する。ドライブシャフト8Aは、支持部602に回転可能に支持される。 The drive shaft 8A penetrates the opening 150 of the gear case 15 and is inserted into the gear case 15 and connected to the differential device 6. The drive shaft 8A is inserted into the support portion 602 of the differential case 60 constituting the differential device 6 from the rotation axis X direction, and penetrates the inner circumference of the side gear 63A. The drive shaft 8A is rotatably supported by the support portion 602.
 開口部150の内周には、リップシールRSが固定されており、リップシールRSの図示しないリップ部が、ドライブシャフト8Aの外周に弾発的に接触することで、ドライブシャフト8Aの外周と開口部150の内周との隙間が封止されている。 A lip seal RS is fixed to the inner circumference of the opening 150, and the lip portion (not shown) of the lip seal RS elastically contacts the outer circumference of the drive shaft 8A to open the outer circumference of the drive shaft 8A. The gap between the inner circumference and the inner circumference of the portion 150 is sealed.
 ドライブシャフト8Bは、モータケース10およびギアケース15の内部を挿通して、ドライブシャフト8Aの回転軸X方向の反対側から差動装置6に接続される。ドライブシャフト8Bは、モータケース10を構成するカバー14の開口部140を貫通する。開口部140の内周には、リップシールRSが固定されており、リップシールRSの図示しないリップ部が、ドライブシャフト8Bの外周に弾発的に接触することで、ドライブシャフト8Bの外周と開口部140の内周との隙間が封止されている。 The drive shaft 8B is inserted into the motor case 10 and the gear case 15 and connected to the differential device 6 from the opposite side of the drive shaft 8A in the rotation axis X direction. The drive shaft 8B penetrates through the opening 140 of the cover 14 constituting the motor case 10. A lip seal RS is fixed to the inner circumference of the opening 140, and the lip portion (not shown) of the lip seal RS elastically contacts the outer circumference of the drive shaft 8B to open the outer circumference of the drive shaft 8B. The gap between the inner circumference and the inner circumference of the portion 140 is sealed.
 図1に示すように、ドライブシャフト8Bは、カバー14の円筒状の支持部141に固定された、シャフト用軸受としてのベアリングB2によって回転可能に支持されている。 As shown in FIG. 1, the drive shaft 8B is rotatably supported by a bearing B2 as a shaft bearing fixed to a cylindrical support portion 141 of the cover 14.
 ドライブシャフト8Bは、モータケース10内において、モータ2を構成するモータのアウトプットシャフトとしてのモータシャフト20に外挿される。ドライブシャフト8Bは、ギアケース15内において、第1遊星減速ギア4を構成するサンギア41の貫通孔410と第2遊星減速ギア5を構成するサンギア51の貫通孔510を貫通する。ドライブシャフト8Bは、デフケース60の支持部601に回転軸X方向から挿入され、サイドギア63Bの内周を貫通する。ドライブシャフト8Bは、支持部601によって、ドライブシャフト8Aと同じ回転軸X上に、回転可能に支持される。 The drive shaft 8B is externally inserted into the motor shaft 20 as an output shaft of the motor constituting the motor 2 in the motor case 10. The drive shaft 8B penetrates through the through hole 410 of the sun gear 41 constituting the first planetary reduction gear 4 and the through hole 510 of the sun gear 51 constituting the second planet reduction gear 5 in the gear case 15. The drive shaft 8B is inserted into the support portion 601 of the differential case 60 from the rotation axis X direction and penetrates the inner circumference of the side gear 63B. The drive shaft 8B is rotatably supported by the support portion 601 on the same rotation shaft X as the drive shaft 8A.
 モータ2、減速機構3(第1遊星減速ギア4、第2遊星減速ギア5)および差動装置6は、ドライブシャフト8Bの回転軸X上に配置され回転軸X方向から見てオーバーラップして設けられている。さらに、モータ2、減速機構3(第1遊星減速ギア4、第2遊星減速ギア5)および差動装置6のそれぞれを構成する部材は、回転軸Xの径方向にオーバーラップして配置されている。 The motor 2, the reduction mechanism 3 (first planet reduction gear 4, the second planet reduction gear 5) and the differential device 6 are arranged on the rotation axis X of the drive shaft 8B and overlap each other when viewed from the rotation axis X direction. It is provided. Further, the members constituting the motor 2, the reduction mechanism 3 (first planet reduction gear 4, the second planet reduction gear 5), and the differential device 6 are arranged so as to overlap in the radial direction of the rotation axis X. There is.
 モータ2は、円筒状のモータシャフト20と、モータシャフト20に外挿された円筒状のロータコア21と、ロータコア21の外周を所定間隔で囲むステータコア25と、を有している。 The motor 2 has a cylindrical motor shaft 20, a cylindrical rotor core 21 extrapolated to the motor shaft 20, and a stator core 25 that surrounds the outer circumference of the rotor core 21 at predetermined intervals.
 モータシャフト20は、ドライブシャフト8Bに外挿されている。モータシャフト20とドライブシャフト8Bの間にはクリアランスCrが設けられており、モータシャフト20は、ドライブシャフト8Bに対して相対回転可能である。
 モータシャフト20は、回転軸X方向の一端20aの近傍において、モータ用軸受としてのベアリングB1が外挿されて固定される。モータシャフト20は、ベアリングB1を介して、円筒状のモータ支持部13の円筒壁132(図2参照)で回転可能に支持されている。
 モータシャフト20は、回転軸X方向の他端20bにおいて、ベアリングB1が外挿されて固定され、ベアリングB1を介して、円筒状のモータ支持部12の円筒壁122(図2参照)で回転可能に支持されている。
The motor shaft 20 is extrapolated to the drive shaft 8B. A clearance Cr is provided between the motor shaft 20 and the drive shaft 8B, and the motor shaft 20 is rotatable relative to the drive shaft 8B.
A bearing B1 as a motor bearing is extrapolated and fixed to the motor shaft 20 in the vicinity of one end 20a in the rotation axis X direction. The motor shaft 20 is rotatably supported by a cylindrical wall 132 (see FIG. 2) of the cylindrical motor support portion 13 via a bearing B1.
The motor shaft 20 has a bearing B1 extrapolated and fixed at the other end 20b in the rotation axis X direction, and can rotate on the cylindrical wall 122 (see FIG. 2) of the cylindrical motor support portion 12 via the bearing B1. Is supported by.
 ロータコア21の外周を、モータハウジング11が所定間隔で囲んでいる。本実施形態では、モータハウジング11の一端11aに、モータ支持部13が接合されており、モータハウジング11の他端11bに、モータ支持部12が接合されている。 The outer circumference of the rotor core 21 is surrounded by the motor housing 11 at predetermined intervals. In the present embodiment, the motor support portion 13 is joined to one end 11a of the motor housing 11, and the motor support portion 12 is joined to the other end 11b of the motor housing 11.
 モータハウジング11の一端11aと他端11bには、シールリングS、Sが設けられている。モータハウジング11の一端11aは、当該一端11aに設けたシールリングSにより、モータ支持部13の一端面13aの外縁近傍に形成された接合部131に隙間なく接合されている。 Seal rings S and S are provided on one end 11a and the other end 11b of the motor housing 11. One end 11a of the motor housing 11 is joined to the joining portion 131 formed near the outer edge of the one end surface 13a of the motor support portion 13 without a gap by the seal ring S provided at the one end 11a.
 モータハウジング11の他端11bは、当該他端11bに設けたシールリングSにより、モータ支持部12の側壁部12aの外縁近傍に形成された接合部121に隙間なく接合されている。 The other end 11b of the motor housing 11 is joined to the joint portion 121 formed near the outer edge of the side wall portion 12a of the motor support portion 12 without a gap by the seal ring S provided on the other end 11b.
 図2に示すように、モータ支持部13の接合部131の内径側は、後記するコイルエンド253aと側板部452と接触を避ける形で形成されている。
 モータ支持部13の一端面13aは、コイルエンド253aの内径側でロータコア21の一端部21aと、回転軸X方向の隙間をあけて対向して配置される。
 モータ支持部13の内径側には回転軸X方向に延びる円筒壁132が形成され、円筒壁132の内周にモータシャフト20を支持するベアリングB1が固定されている。
As shown in FIG. 2, the inner diameter side of the joint portion 131 of the motor support portion 13 is formed so as to avoid contact with the coil end 253a and the side plate portion 452, which will be described later.
One end surface 13a of the motor support portion 13 is arranged on the inner diameter side of the coil end 253a so as to face one end portion 21a of the rotor core 21 with a gap in the rotation axis X direction.
A cylindrical wall 132 extending in the rotation axis X direction is formed on the inner diameter side of the motor support portion 13, and a bearing B1 for supporting the motor shaft 20 is fixed to the inner circumference of the cylindrical wall 132.
 モータ支持部13の一端面13aには、ベアリングリテーナ135が固定されている。ベアリングリテーナ135は、回転軸X方向から見てリング状を成している。ベアリングリテーナ135は円筒壁132の内径側において、ベアリングB1のアウタレースB1bの側面に回転軸X方向から当接している。ベアリングリテーナ135は、モータ支持部13からのベアリングB1の脱落を阻止している。
 図3に示すように、モータ支持部13の他端面13bは、ギアケース15の開口端151に接合され、ギアケース15を閉止している。
A bearing retainer 135 is fixed to one end surface 13a of the motor support portion 13. The bearing retainer 135 has a ring shape when viewed from the rotation axis X direction. The bearing retainer 135 is in contact with the side surface of the outer race B1b of the bearing B1 from the rotation axis X direction on the inner diameter side of the cylindrical wall 132. The bearing retainer 135 prevents the bearing B1 from falling off from the motor support portion 13.
As shown in FIG. 3, the other end surface 13b of the motor support portion 13 is joined to the open end 151 of the gear case 15 to close the gear case 15.
 図2に示すように、モータ支持部12のモータ2側の側壁部12aは、接合部121の内径側において、後記するコイルエンド253bと接触を避け、隙間を空けて対向している。コイルエンド253bと側壁部12aの間を、ステータコア25から引き出された配線Wが通る。配線Wは、接合部121に形成された引き出し部123からモータケース10の外方に引き出され、不図示のインバータに接続される。モータ支持部12の側壁部12aと対向する側壁部12bは、カバー14の端面14aに接合されている。 As shown in FIG. 2, the side wall portion 12a on the motor 2 side of the motor support portion 12 faces the coil end 253b, which will be described later, with a gap on the inner diameter side of the joint portion 121. The wiring W drawn out from the stator core 25 passes between the coil end 253b and the side wall portion 12a. The wiring W is drawn out of the motor case 10 from the lead-out portion 123 formed in the joint portion 121, and is connected to an inverter (not shown). The side wall portion 12b facing the side wall portion 12a of the motor support portion 12 is joined to the end surface 14a of the cover 14.
 モータ支持部12の側壁部12aの内径側には、回転軸X方向に延びる円筒壁122が形成され、円筒壁122の内周にモータシャフト20の他端20bを支持するベアリングB1が固定されている。 A cylindrical wall 122 extending in the rotation axis X direction is formed on the inner diameter side of the side wall portion 12a of the motor support portion 12, and a bearing B1 for supporting the other end 20b of the motor shaft 20 is fixed to the inner circumference of the cylindrical wall 122. There is.
 ロータコア21は、複数の珪素鋼板を積層して形成したものであり、珪素鋼板の各々は、モータシャフト20との相対回転が規制された状態で、モータシャフト20に外挿されている。
 モータシャフト20の回転軸X方向から見て、珪素鋼板はリング状を成しており、珪素鋼板の外周側では、図示しないN極とS極の磁石が、回転軸X周りの周方向に交互に設けられている。
The rotor core 21 is formed by laminating a plurality of silicon steel plates, and each of the silicon steel plates is extrapolated to the motor shaft 20 in a state where the relative rotation with the motor shaft 20 is restricted.
When viewed from the rotation axis X direction of the motor shaft 20, the silicon steel plate has a ring shape, and on the outer peripheral side of the silicon steel plate, magnets of N pole and S pole (not shown) alternate in the circumferential direction around the rotation axis X. It is provided in.
 回転軸X方向におけるロータコア21の一端部21aは、モータシャフト20の外周から径方向外方に張り出した大径部203で位置決めされている。 One end 21a of the rotor core 21 in the X direction of the rotation axis is positioned by a large diameter portion 203 protruding outward in the radial direction from the outer circumference of the motor shaft 20.
 ステータコア25は、複数の電磁鋼板を積層して形成したものであり、電磁鋼板の各々は、モータハウジング11の内周に固定されたリング状のヨーク部251と、ヨーク部251の内周からロータコア21側に突出するティース部252を、有している。 The stator core 25 is formed by laminating a plurality of electromagnetic steel plates, and each of the electromagnetic steel plates has a ring-shaped yoke portion 251 fixed to the inner circumference of the motor housing 11 and a rotor core from the inner circumference of the yoke portion 251. It has a teeth portion 252 that protrudes to the 21 side.
 本実施形態では、巻線253を、複数のティース部252に跨がって分布巻きした構成のステータコア25を採用しており、ステータコア25は、回転軸X方向に突出するコイルエンド253a、253bの分だけ、ロータコア21よりも回転軸X方向の長さが長くなっている。 In the present embodiment, a stator core 25 having a configuration in which the winding 253 is distributed and wound across a plurality of tooth portions 252 is adopted, and the stator core 25 is a coil end 253a, 253b protruding in the rotation axis X direction. The length in the rotation axis X direction is longer than that of the rotor core 21 by the amount.
 なお、ロータコア21側に突出する複数のティース部252の各々に、巻線253を集中巻きした構成のステータコア25を採用しても良い。 It should be noted that a stator core 25 having a configuration in which the winding 253 is centrally wound may be adopted for each of the plurality of tooth portions 252 protruding toward the rotor core 21 side.
 モータ支持部13の円筒壁132の内周に固定されたベアリングB1のインナレースB1aは、回転軸X方向のモータ2側の側面が、モータシャフト20の大径部203に当接している。 In the inner race B1a of the bearing B1 fixed to the inner circumference of the cylindrical wall 132 of the motor support portion 13, the side surface on the motor 2 side in the rotation axis X direction is in contact with the large diameter portion 203 of the motor shaft 20.
 図3に示すように、モータ支持部13の円筒壁132は、ギアケース15に収容された第1遊星減速ギア4のサンギア41の側面41aと隙間をあけて対向する。円筒壁132の開口部132aとモータシャフト20の間にはリップシールRSが設置されている。リップシールRSは、モータケース10の内部の空間Saと、ギアケース15の内径側の空間Sbとを、区画するために設けられている。空間Saは、モータ2を収容するモータ室であり、空間Sbは、減速機構3および差動装置6を収容するギア室である。 As shown in FIG. 3, the cylindrical wall 132 of the motor support portion 13 faces the side surface 41a of the sun gear 41 of the first planetary reduction gear 4 housed in the gear case 15 with a gap. A lip seal RS is installed between the opening 132a of the cylindrical wall 132 and the motor shaft 20. The lip seal RS is provided to partition the space Sa inside the motor case 10 and the space Sb on the inner diameter side of the gear case 15. The space Sa is a motor chamber that houses the motor 2, and the space Sb is a gear chamber that houses the reduction mechanism 3 and the differential device 6.
 空間Sbの下部には、差動装置6および減速機構3の潤滑油OL(図1参照)が封入されている。リップシールRSは、モータケース10内の空間Saへの潤滑油OLの流入を阻止するために設けられている。 Lubricating oil OL (see FIG. 1) of the differential device 6 and the speed reduction mechanism 3 is sealed in the lower part of the space Sb. The lip seal RS is provided to prevent the lubricating oil OL from flowing into the space Sa in the motor case 10.
 モータシャフト20の一端20aは、モータ支持部13の円筒壁132の内周を貫通して、ギアケース15の空間Sb内に延出している。モータシャフト20の一端20aは、第1遊星減速ギア4を構成するサンギア41の貫通孔410を挿通している。この状態において、サンギア41は、モータシャフト20の一端20aの外周に相対回転不能にスプライン嵌合している。 One end 20a of the motor shaft 20 penetrates the inner circumference of the cylindrical wall 132 of the motor support portion 13 and extends into the space Sb of the gear case 15. One end 20a of the motor shaft 20 is inserted through a through hole 410 of the sun gear 41 constituting the first planetary reduction gear 4. In this state, the sun gear 41 is spline-fitted to the outer periphery of one end 20a of the motor shaft 20 so as not to rotate relative to each other.
 そのため、モータ2の出力回転が、モータシャフト20を介して、第1遊星減速ギア4のサンギア41に入力され、サンギア41はモータ2の回転駆動力で、回転軸X回りに回転する。 Therefore, the output rotation of the motor 2 is input to the sun gear 41 of the first planetary reduction gear 4 via the motor shaft 20, and the sun gear 41 rotates around the rotation axis X by the rotational driving force of the motor 2.
 回転軸Xの径方向におけるサンギア41の外径側には、中間部材16を介してギアケース15に固定されたリングギア42が位置している。回転軸Xの径方向において、サンギア41とリングギア42の間では、ピニオン軸44で回転可能に支持されたピニオンギア43が、サンギア41の外周と、リングギア42の内周に噛合している。 A ring gear 42 fixed to the gear case 15 via an intermediate member 16 is located on the outer diameter side of the sun gear 41 in the radial direction of the rotating shaft X. In the radial direction of the rotating shaft X, between the sun gear 41 and the ring gear 42, the pinion gear 43 rotatably supported by the pinion shaft 44 meshes with the outer circumference of the sun gear 41 and the inner circumference of the ring gear 42. ..
 ピニオンギア43は、ニードルベアリングNBを介して、ピニオン軸44の外周で回転可能に支持されている。ピニオン軸44は、ピニオンギア43を回転軸Xに沿う軸線X1方向に貫通している。ピニオン軸44の軸線X1方向の両端は、キャリア45の一対の側板部451、452で支持されている。 The pinion gear 43 is rotatably supported on the outer circumference of the pinion shaft 44 via the needle bearing NB. The pinion shaft 44 penetrates the pinion gear 43 in the direction of the axis X1 along the rotation axis X. Both ends of the pinion shaft 44 in the axis X1 direction are supported by a pair of side plate portions 451 and 452 of the carrier 45.
 側板部451、452は、回転軸X方向に間隔をあけて互いに平行に設けられている。
 側板部451、452の間では、複数のピニオンギア43が回転軸X周りの周方向に所定間隔で複数(例えば、4つ)設けられている。
The side plate portions 451 and 452 are provided parallel to each other at intervals in the rotation axis X direction.
A plurality of pinion gears 43 (for example, four) are provided between the side plate portions 451 and 452 at predetermined intervals in the circumferential direction around the rotation axis X.
 ピニオンギア43の差動装置6側に位置する側板部451には、円筒状の連結部453が設けられている。
 連結部453は、回転軸Xに対して側板部451と同心に配置されていると共に、回転軸Xに沿って、差動装置6に近づく方向(図中、左方向)に突出している。
A cylindrical connecting portion 453 is provided on the side plate portion 451 located on the differential device 6 side of the pinion gear 43.
The connecting portion 453 is arranged concentrically with the side plate portion 451 with respect to the rotation axis X, and protrudes along the rotation axis X in a direction approaching the differential device 6 (left direction in the drawing).
 リングギア42を支持する中間部材16は、回転軸X方向の両端が開口した円筒形状であり、リングギアの外周面を覆って延びる。外周には回転軸Xの径方向外方に張り出す円板部材161が接合されている。円板部材161の外径側に形成された接合部162が、ギアケース15の内壁に接合される。 The intermediate member 16 that supports the ring gear 42 has a cylindrical shape with both ends open in the X direction of the rotation axis, and extends so as to cover the outer peripheral surface of the ring gear. A disk member 161 projecting outward in the radial direction of the rotating shaft X is joined to the outer circumference. The joint portion 162 formed on the outer diameter side of the disk member 161 is joined to the inner wall of the gear case 15.
 中間部材16の内周面には段部163が形成されている。段部163は、リングギア42に差動装置6側から当接している。リングギア42のモータ2側は、中間部材16の内周に係合したスナップリングRで位置決めされ、これにより第1遊星減速ギア4は回転軸X方向の移動が規制される。
 中間部材16のモータ2側の開口端164は、隙間を開けてモータ支持部13の他端面13bと対向している。
A step portion 163 is formed on the inner peripheral surface of the intermediate member 16. The step portion 163 is in contact with the ring gear 42 from the differential device 6 side. The motor 2 side of the ring gear 42 is positioned by a snap ring R engaged with the inner circumference of the intermediate member 16, whereby the movement of the first planet reduction gear 4 in the rotation axis X direction is restricted.
The opening end 164 of the intermediate member 16 on the motor 2 side faces the other end surface 13b of the motor support portion 13 with a gap.
 中間部材16の差動装置6側の開口部165には、後述する第2遊星減速ギア5の筒状部552を支持するベアリングB3が固定されている。 A bearing B3 that supports the tubular portion 552 of the second planetary reduction gear 5, which will be described later, is fixed to the opening 165 on the differential device 6 side of the intermediate member 16.
 第1遊星減速ギア4側の連結部453は、中間部材16の開口部165に固定されたベアリングB3の内周側を貫通する。連結部453の先端453aは、第2遊星減速ギア5のサンギア51の側面51aに、間隔をあけて対向している。 The connecting portion 453 on the first planetary reduction gear 4 side penetrates the inner peripheral side of the bearing B3 fixed to the opening 165 of the intermediate member 16. The tip 453a of the connecting portion 453 faces the side surface 51a of the sun gear 51 of the second planetary reduction gear 5 at a distance.
 連結部453の内径側には、第2遊星減速ギア5のサンギア51から延びる円筒状の連結部511が挿入されてスプライン嵌合しており、第1遊星減速ギア4側の連結部453と、第2遊星減速ギア5側の連結部511とは、ベアリングB3の内径側で、相対回転不能に連結されている。 A cylindrical connecting portion 511 extending from the sun gear 51 of the second planetary reduction gear 5 is inserted into the inner diameter side of the connecting portion 453 and spline-fitted, and the connecting portion 453 on the first planetary reduction gear 4 side and the connecting portion 453. The connecting portion 511 on the side of the second planetary reduction gear 5 is connected to the inner diameter side of the bearing B3 so as not to rotate relative to each other.
 サンギア51の連結部511は、サンギア51と一体に形成されおり、サンギア51の内径側と連結部511の内径側とに跨がって、貫通孔510が形成されている。サンギア51は、貫通孔510を貫通したドライブシャフト8Bの外周で相対回転可能に支持されている。 The connecting portion 511 of the sun gear 51 is integrally formed with the sun gear 51, and a through hole 510 is formed so as to straddle the inner diameter side of the sun gear 51 and the inner diameter side of the connecting portion 511. The sun gear 51 is supported so as to be relatively rotatable on the outer circumference of the drive shaft 8B that penetrates the through hole 510.
 サンギア51の差動装置6側の側面51bは、後記するデフケース60の筒状の支持部601に、回転軸X方向の隙間をあけて対向しており、側面51bと支持部601との間には、ニードルベアリングNBが介在している。 The side surface 51b of the sun gear 51 on the differential device 6 side faces the tubular support portion 601 of the differential case 60 described later with a gap in the rotation axis X direction, and is between the side surface 51b and the support portion 601. Is intervened by the needle bearing NB.
 サンギア51は、段付きピニオンギア53の大径歯車部531に噛合している。 The sun gear 51 meshes with the large diameter gear portion 531 of the stepped pinion gear 53.
 段付きピニオンギア53は、サンギア51に噛合する大径歯車部531と、大径歯車部531よりも小径の小径歯車部532とを有している。
 段付きピニオンギア53は、大径歯車部531と小径歯車部532が、回転軸Xに平行な軸線X2方向で並んで、一体に設けられたギア部品である。
The stepped pinion gear 53 has a large-diameter gear portion 531 that meshes with the sun gear 51, and a small-diameter gear portion 532 that has a smaller diameter than the large-diameter gear portion 531.
The stepped pinion gear 53 is a gear component in which a large-diameter gear portion 531 and a small-diameter gear portion 532 are integrally provided side by side in the direction of the axis X2 parallel to the rotation axis X.
 段付きピニオンギア53は、大径歯車部531と小径歯車部532の内径側を軸線X2方向に貫通した貫通孔530を有している。
 段付きピニオンギア53は、貫通孔530を貫通したピニオン軸54の外周で、ニードルベアリングNBを介して回転可能に支持されている。
The stepped pinion gear 53 has a through hole 530 penetrating the inner diameter side of the large-diameter gear portion 531 and the small-diameter gear portion 532 in the axis X2 direction.
The stepped pinion gear 53 is rotatably supported on the outer circumference of the pinion shaft 54 penetrating the through hole 530 via the needle bearing NB.
 ピニオン軸54の軸線X2方向の両端は、キャリア55を構成する側板部651と側板部551で支持されている。 Both ends of the pinion shaft 54 in the axis X2 direction are supported by the side plate portions 651 and the side plate portions 551 constituting the carrier 55.
 側板部651、551は、回転軸X方向に間隔をあけて互いに平行に設けられている。
 側板部651、551の間では、複数の段付きピニオンギア53が回転軸X周りの周方向に所定間隔で複数(例えば、3つ)設けられている。
The side plate portions 651 and 551 are provided in parallel with each other at intervals in the rotation axis X direction.
A plurality (for example, three) of a plurality of stepped pinion gears 53 are provided between the side plate portions 651 and 551 at predetermined intervals in the circumferential direction around the rotation axis X.
 小径歯車部532の各々は、リングギア52の内周に噛合している。リングギア52は、ギアケース15の内周にスプライン嵌合しており、リングギア52は、ギアケース15との相対回転が規制されている。 Each of the small diameter gear portions 532 meshes with the inner circumference of the ring gear 52. The ring gear 52 is spline-fitted on the inner circumference of the gear case 15, and the ring gear 52 is restricted from rotating relative to the gear case 15.
 側板部551の内径側には、第1遊星減速ギア4側に延びる筒状部552が設けられている。筒状部552は、中間部材16の開口部165を、差動装置6側からモータ2側(図中、右側)に貫通している。筒状部552の先端552aは、回転軸X方向において第1遊星減速ギア4のキャリア45の側板部451に、間隔をあけて対向している。 A tubular portion 552 extending toward the first planetary reduction gear 4 is provided on the inner diameter side of the side plate portion 551. The tubular portion 552 penetrates the opening 165 of the intermediate member 16 from the differential device 6 side to the motor 2 side (right side in the drawing). The tip 552a of the tubular portion 552 faces the side plate portion 451 of the carrier 45 of the first planetary reduction gear 4 at a distance in the rotation axis X direction.
 筒状部552は、第1遊星減速ギア4側の連結部453と、第2遊星減速ギア5側の連結部511との噛み合い部分の径方向外側に位置している。筒状部552の外周には、中間部材16の開口部165に固定されたベアリングB3が接触している。側板部551の筒状部552は、ベアリングB3を介して、中間部材16により回転可能に支持されている。 The tubular portion 552 is located on the radial outer side of the meshing portion between the connecting portion 453 on the first planetary reduction gear 4 side and the connecting portion 511 on the second planet reduction gear 5 side. A bearing B3 fixed to the opening 165 of the intermediate member 16 is in contact with the outer periphery of the tubular portion 552. The tubular portion 552 of the side plate portion 551 is rotatably supported by the intermediate member 16 via the bearing B3.
 第2遊星減速ギア5では、キャリア55を構成する側板部551と側板部651のうちの一方の側板部651は、差動装置6のデフケース60と一体に形成されている。
 そのため、第2遊星減速ギア5のキャリア55(側板部551、651、ピニオン軸54)は、デフケース60と実質的に一体に形成されている。
In the second planetary reduction gear 5, one side plate portion 651 of the side plate portion 551 and the side plate portion 651 constituting the carrier 55 is integrally formed with the differential case 60 of the differential device 6.
Therefore, the carrier 55 ( side plate portions 551, 651, pinion shaft 54) of the second planetary reduction gear 5 is formed substantially integrally with the differential case 60.
 第2遊星減速ギア5では、第1遊星減速ギア4で減速されたモータ2の出力回転が、サンギア51に入力される。
 サンギア51に入力された出力回転は、サンギア51に噛合する大径歯車部531を介して、段付きピニオンギア53に入力されて、段付きピニオンギア53が軸線X2回りに回転する。
In the second planetary reduction gear 5, the output rotation of the motor 2 decelerated by the first planetary reduction gear 4 is input to the sun gear 51.
The output rotation input to the sun gear 51 is input to the stepped pinion gear 53 via the large-diameter gear portion 531 that meshes with the sun gear 51, and the stepped pinion gear 53 rotates around the axis X2.
 これによって、大径歯車部531と一体に形成された小径歯車部532は、大径歯車部531と一体に軸線X2周りに回転する。
 ここで、小径歯車部532は、ギアケース15の内周に固定されたリングギア52に噛合している。そのため、小径歯車部532が軸線X2回りに回転すると、段付きピニオンギア53は、軸線X2回りに自転しながら、回転軸X周りに回転する。
As a result, the small-diameter gear portion 532 integrally formed with the large-diameter gear portion 531 rotates around the axis X2 integrally with the large-diameter gear portion 531.
Here, the small-diameter gear portion 532 meshes with the ring gear 52 fixed to the inner circumference of the gear case 15. Therefore, when the small-diameter gear portion 532 rotates around the axis X2, the stepped pinion gear 53 rotates around the axis X2 while rotating around the axis X2.
 そうすると、ピニオン軸54の一端54aが、デフケース60と一体に形成された側板部651に支持されているので、段付きピニオンギア53の回転軸X周りの周方向の変位に連動して、デフケース60が回転軸X回りに回転する。 Then, since one end 54a of the pinion shaft 54 is supported by the side plate portion 651 formed integrally with the differential case 60, the differential case 60 is interlocked with the circumferential displacement of the stepped pinion gear 53 around the rotation axis X. Rotates around the axis of rotation X.
 第2遊星減速ギア5では、サンギア51が、モータ2の出力回転の入力部となっており、段付きピニオンギア53を支持するキャリア55が、入力された回転の出力部となっている。 In the second planetary reduction gear 5, the sun gear 51 is the input unit for the output rotation of the motor 2, and the carrier 55 that supports the stepped pinion gear 53 is the output unit for the input rotation.
 第2遊星減速ギア5のサンギア51に入力された回転は、段付きピニオンギア53の大径歯車部531から小径歯車部532へ伝達されることにより大きく減速されたのちに、キャリア55の側板部651が一体に形成されたデフケース60に出力される。 The rotation input to the sun gear 51 of the second planetary reduction gear 5 is greatly decelerated by being transmitted from the large-diameter gear portion 531 of the stepped pinion gear 53 to the small-diameter gear portion 532, and then the side plate portion of the carrier 55. The 651 is output to the differential case 60 integrally formed.
 図1に示すように、デフケース60は、シャフト61と、かさ歯車62A、62Bと、サイドギア63A、63Bとを、内部に収納する中空状に形成されている。
 デフケース60では、回転軸X方向(図中、左右方向)の両側部に、筒状の支持部601、602が設けられている。支持部601、602は、シャフト61から離れる方向に、回転軸Xに沿って延出している。
As shown in FIG. 1, the differential case 60 is formed in a hollow shape in which the shaft 61, the bevel gears 62A and 62B, and the side gears 63A and 63B are housed therein.
In the differential case 60, tubular support portions 601 and 602 are provided on both sides of the rotation axis X direction (left-right direction in the drawing). The support portions 601 and 602 extend along the rotation axis X in a direction away from the shaft 61.
 支持部601の外径側には、キャリア55の側板部651と側板部551とを接続する接続片56が設けられている。
 接続片56のデフケース60側の一端56aは、側板部651とデフケース60の外周とに跨がって設けられており、他端56bは、回転軸X方向から側板部551に接続されている。
On the outer diameter side of the support portion 601, a connection piece 56 for connecting the side plate portion 651 and the side plate portion 551 of the carrier 55 is provided.
One end 56a of the connecting piece 56 on the differential case 60 side is provided so as to straddle the side plate portion 651 and the outer circumference of the differential case 60, and the other end 56b is connected to the side plate portion 551 from the rotation axis X direction.
 接続片56は、前記した段付きピニオンギア53との干渉を避けた位置に設けられている。前記したように、段付きピニオンギア53は、回転軸X周りの周方向に所定間隔で複数(例えば、3つ)設けられている。
 接続片56は、回転軸X回りの周方向で隣接する段付きピニオンギア53の間に設けられている。
The connection piece 56 is provided at a position avoiding interference with the stepped pinion gear 53 described above. As described above, a plurality (for example, three) of the stepped pinion gears 53 are provided at predetermined intervals in the circumferential direction around the rotation axis X.
The connecting piece 56 is provided between the stepped pinion gears 53 adjacent to each other in the circumferential direction around the rotation axis X.
 デフケース60の支持部602の外周には、ベアリングB2のインナレースB2aが固定されている。
 ベアリングB2のアウタレースB2bは、ギアケース15のリング状の支持部152で保持されており、デフケース60の支持部602は、ベアリングB2を介して、ギアケース15で回転可能に支持されている。
The inner race B2a of the bearing B2 is fixed to the outer periphery of the support portion 602 of the differential case 60.
The outer race B2b of the bearing B2 is held by the ring-shaped support portion 152 of the gear case 15, and the support portion 602 of the differential case 60 is rotatably supported by the gear case 15 via the bearing B2.
 支持部602にはドライブシャフト8Aが挿入され、支持部601にはドライブシャフト8Bが挿入され、それぞれ回転可能に支持されている。 The drive shaft 8A is inserted into the support portion 602, and the drive shaft 8B is inserted into the support portion 601 and each is rotatably supported.
 デフケース60の内部では、ドライブシャフト8A、8Bの先端部の外周に、サイドギア63A、63Bがスプライン嵌合しており、サイドギア63A、63Bとドライブシャフト8A、8Bとが、回転軸X周りに一体回転可能に連結されている。 Inside the differential case 60, side gears 63A and 63B are spline-fitted on the outer circumference of the tips of the drive shafts 8A and 8B, and the side gears 63A and 63B and the drive shafts 8A and 8B rotate integrally around the rotation shaft X. It is connected as possible.
 デフケース60には、回転軸Xに直交する方向に貫通した軸孔60a、60bが、回転軸Xを挟んで対称となる位置に設けられている。
 軸孔60a、60bは、回転軸Xに直交する軸線Y上に位置しており、シャフト61の一端61a側および他端61b側が挿入されている。
The differential case 60 is provided with shaft holes 60a and 60b penetrating in a direction orthogonal to the rotation axis X at positions symmetrical with respect to the rotation axis X.
The shaft holes 60a and 60b are located on the axis Y orthogonal to the rotation axis X, and one end 61a side and the other end 61b side of the shaft 61 are inserted.
 シャフト61の一端61a側および他端61b側は、ピンPでデフケース60に固定されており、シャフト61は、軸線Y周りの自転が禁止されている。 One end 61a side and the other end 61b side of the shaft 61 are fixed to the differential case 60 by a pin P, and the shaft 61 is prohibited from rotating around the axis Y.
 シャフト61は、デフケース60内において、サイドギア63A、63Bの間に位置しており、軸線Yに沿って配置されている。 The shaft 61 is located between the side gears 63A and 63B in the differential case 60, and is arranged along the axis Y.
 デフケース60内においてシャフト61には、かさ歯車62A、62Bが外挿して回転可能に支持されている。
 かさ歯車62A、62Bは、シャフト61の長手方向(軸線Yの軸方向)で間隔を空けて2つ設けられており、かさ歯車62A、62Bは、互いの歯部を対向させた状態で配置されている。シャフト61においてかさ歯車62A、62Bは、当該かさ歯車62A、62Bの軸心を、シャフト61の軸心と一致させて設けられている。
In the differential case 60, bevel gears 62A and 62B are externally inserted and rotatably supported on the shaft 61.
Two bevel gears 62A and 62B are provided at intervals in the longitudinal direction of the shaft 61 (the axial direction of the axis Y), and the bevel gears 62A and 62B are arranged so that their teeth face each other. ing. In the shaft 61, the bevel gears 62A and 62B are provided so that the axes of the bevel gears 62A and 62B are aligned with the axes of the shaft 61.
 デフケース60内において、回転軸Xの軸方向におけるかさ歯車62A、62Bの両側には、サイドギア63A、63Bが位置している。
 サイドギア63A、63Bは、互いの歯部を対向させた状態で、回転軸Xの軸方向に間隔を空けて2つ設けられており、かさ歯車62A、62Bとサイドギア63A、63Bとは、互いの歯部を噛合させた状態で組み付けられている。
In the differential case 60, side gears 63A and 63B are located on both sides of the bevel gears 62A and 62B in the axial direction of the rotating shaft X.
Two side gears 63A and 63B are provided at intervals in the axial direction of the rotating shaft X with their teeth facing each other, and the bevel gears 62A and 62B and the side gears 63A and 63B are mutually provided. It is assembled with the teeth engaged.
 動力伝達装置1では、モータ2の出力回転の伝達経路上に、減速機構3(第1遊星減速ギア4、第2遊星減速ギア5)と差動装置6(かさ歯車62A、62B、サイドギア63A、63B)を構成するギアが配置されている。
 動力伝達装置1の駆動時には、モータ2において発熱すると共に、減速機構3と差動装置6では、ギア同士が互いに噛合する部分(ギアの噛み合い部分)で発熱が生じる。
In the power transmission device 1, the reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) and the differential device 6 ( bevel gears 62A, 62B, side gear 63A,) are placed on the transmission path of the output rotation of the motor 2. The gears that make up 63B) are arranged.
When the power transmission device 1 is driven, heat is generated in the motor 2, and in the reduction mechanism 3 and the differential device 6, heat is generated at a portion where the gears mesh with each other (gear meshing portion).
 そのため、減速機構3と差動装置6を収容するギアケース15の内部には、冷却用の媒体である潤滑油OLが所定高さまで貯留されている。
 そして、差動装置6が回転軸X回りに回転する際に、ケース内の潤滑油OLが、デフケース60により掻き上げられて、掻き上げられた潤滑油OLが、減速機構3と差動装置6のギアの噛み合い部分に供給される。これにより、ギアの噛み合い部分で発生した熱を、掻き上げた潤滑油OLとの熱交換により回収して、ギアの噛み合い部分を冷却するようにしている。
Therefore, the lubricating oil OL, which is a medium for cooling, is stored up to a predetermined height inside the gear case 15 that houses the speed reduction mechanism 3 and the differential device 6.
Then, when the differential device 6 rotates around the rotation axis X, the lubricating oil OL in the case is scraped up by the differential case 60, and the scraped up lubricating oil OL is the speed reduction mechanism 3 and the differential device 6. It is supplied to the meshing part of the gear. As a result, the heat generated in the meshing portion of the gear is recovered by heat exchange with the scraped-up lubricating oil OL, and the meshing portion of the gear is cooled.
 ここで、ギアの噛み合い部分を効果的に冷却するには、遠心力を利用して、ギアの内側、すなわち回転軸X側から径方向外方に向かって潤滑油OLを供給することが好ましい。しかしながら、デフケース60の掻き上げではギアの回転軸X側に潤滑油OLは供給されにくい。 Here, in order to effectively cool the meshed portion of the gear, it is preferable to supply the lubricating oil OL from the inside of the gear, that is, from the rotation axis X side to the outside in the radial direction by using centrifugal force. However, when the differential case 60 is scraped up, it is difficult to supply the lubricating oil OL to the rotation shaft X side of the gear.
 そこで、本実施形態において、動力伝達装置1はギアの内径側に潤滑油OLを供給するための構成を備える。
 以下、その構成について説明する。
Therefore, in the present embodiment, the power transmission device 1 has a configuration for supplying the lubricating oil OL to the inner diameter side of the gear.
The configuration will be described below.
 ドライブシャフト8Bの外周面に、潤滑油OLを油送する螺旋溝81が形成されている。潤滑油OLは、螺旋溝81によってモータ2側から差動装置6側に向かって油送される。 A spiral groove 81 for feeding the lubricating oil OL is formed on the outer peripheral surface of the drive shaft 8B. The lubricating oil OL is oiled from the motor 2 side toward the differential device 6 side by the spiral groove 81.
 螺旋溝81は、回転軸X回りの上下方向に延びる螺旋を描く。螺旋溝81の始端81aは、回転軸X方向において、モータシャフト20の他端20bと、カバー14の支持部141に支持されたベアリングB2の間に位置する。螺旋溝81の終端81bは、回転軸X方向において、第2遊星減速ギア5を構成するサンギア51と支持部601の間に位置する。すなわち、螺旋溝81は、回転軸Xに沿って、モータケース10内を横断してギアケース15内まで形成されている。 The spiral groove 81 draws a spiral extending in the vertical direction around the rotation axis X. The starting end 81a of the spiral groove 81 is located between the other end 20b of the motor shaft 20 and the bearing B2 supported by the support portion 141 of the cover 14 in the rotation axis X direction. The end 81b of the spiral groove 81 is located between the sun gear 51 constituting the second planetary reduction gear 5 and the support portion 601 in the rotation axis X direction. That is, the spiral groove 81 is formed along the rotation axis X across the inside of the motor case 10 and into the gear case 15.
 図3に示すように、ギアケース15内部には、螺旋溝81によって油送される潤滑油OLを、第1遊星減速ギア4と第2遊星減速ギア5にそれぞれ供給する油孔部204、512が形成されている。油孔部204と油孔部512は、回転軸X方向にオフセットして配置されている。 As shown in FIG. 3, inside the gear case 15, oil holes 204 and 512 that supply the lubricating oil OL fed by the spiral groove 81 to the first planetary reduction gear 4 and the second planetary reduction gear 5, respectively. Is formed. The oil hole portion 204 and the oil hole portion 512 are arranged so as to be offset in the rotation axis X direction.
 油孔部204は、ドライブシャフト8Bに外挿されるモータシャフト20を径方向に貫通して形成される。油孔部204の一端はドライブシャフト8Bの外周面に開口し、他端は空間Sbに開口する。油孔部204は、回転軸X方向における第1遊星減速ギア4のサンギア41とモータ支持部13の円筒壁132の間の位置に形成されている。 The oil hole portion 204 is formed so as to penetrate the motor shaft 20 externally inserted into the drive shaft 8B in the radial direction. One end of the oil hole 204 opens to the outer peripheral surface of the drive shaft 8B, and the other end opens to the space Sb. The oil hole portion 204 is formed at a position between the sun gear 41 of the first planetary reduction gear 4 and the cylindrical wall 132 of the motor support portion 13 in the X direction of the rotation axis.
 油孔部512は、ドライブシャフト8Bに外挿される第2遊星減速ギア5の連結部511を径方向に貫通して形成される。油孔部512の一端はドライブシャフト8Bの外周面に開口し、他端は空間Sbに開口する。油孔部512は、回転軸X方向においてサンギア51との境の位置に形成される。 The oil hole portion 512 is formed so as to penetrate the connecting portion 511 of the second planetary reduction gear 5 externally inserted into the drive shaft 8B in the radial direction. One end of the oil hole 512 opens to the outer peripheral surface of the drive shaft 8B, and the other end opens to the space Sb. The oil hole portion 512 is formed at a position bordering the sun gear 51 in the X direction of the rotation axis.
 さらに、図1に示すように、動力伝達装置1は、ギアケース15内で掻き上げられた潤滑油OLの一部を貯留するキャッチタンク9(キャッチ部)を備える。
 また、動力伝達装置1は、キャッチタンク9に蓄えられた潤滑油OLをモータ側に油送する配管92と、潤滑油供給部材としてのカバー14に形成され、配管92から螺旋溝81の始端81aに潤滑油OLを導く潤滑油供給口としての油路93とを備える。
 キャッチタンク9は、ギアケース15内の、他の構成要素に干渉しない位置に設置されており、図1では仮想線で図示している。
Further, as shown in FIG. 1, the power transmission device 1 includes a catch tank 9 (catch portion) for storing a part of the lubricating oil OL scraped up in the gear case 15.
Further, the power transmission device 1 is formed in a pipe 92 for feeding the lubricating oil OL stored in the catch tank 9 to the motor side and a cover 14 as a lubricating oil supply member, and the starting end 81a of the spiral groove 81 from the pipe 92 is formed. Is provided with an oil passage 93 as a lubricating oil supply port for guiding the lubricating oil OL.
The catch tank 9 is installed in the gear case 15 at a position that does not interfere with other components, and is shown by a virtual line in FIG.
 図4Aは、図1の位置Aにおいて回転軸X方向から見たキャッチタンク9を示す図である。図4Bは、図1の位置Bにおいて回転軸X方向から見た油路93を示す図である。図4A、図4Bは模式図であり、説明に不要な構成要素は図示を省略している。 FIG. 4A is a diagram showing a catch tank 9 seen from the rotation axis X direction at position A in FIG. 1. FIG. 4B is a diagram showing an oil passage 93 seen from the rotation axis X direction at position B in FIG. 1. 4A and 4B are schematic views, and components not necessary for explanation are omitted.
 図4Aに示すように、キャッチタンク9はギアケース15の上方の部分を、径方向に膨出させて設けられている。
 キャッチタンク9は、ギアケース15内の空間Sbに面する開口9aを有する。図4Aでは、キャッチタンク9の第2遊星減速ギア5の上方にある部分を図示しているが、開口9aは第2遊星減速ギア5および第1遊星減速ギア4の上方に跨った範囲(図1参照)に形成されている。
As shown in FIG. 4A, the catch tank 9 is provided with the upper portion of the gear case 15 bulging in the radial direction.
The catch tank 9 has an opening 9a facing the space Sb in the gear case 15. In FIG. 4A, the portion of the catch tank 9 above the second planetary reduction gear 5 is shown, but the opening 9a extends over the second planetary reduction gear 5 and the first planetary reduction gear 4 (FIG. 4A). 1) is formed.
 キャッチタンク9の底面には、潤滑油OLの排出口9bが形成されている。
 排出口9bは、図4Aでは図示を省略しているが、図4Bに示す配管92に接続している。
 配管92は、排出口9bからギアケース15およびモータケース10の外部を配設され、カバー14に形成された油路93に接続するものである。
A discharge port 9b for lubricating oil OL is formed on the bottom surface of the catch tank 9.
Although not shown in FIG. 4A, the discharge port 9b is connected to the pipe 92 shown in FIG. 4B.
The pipe 92 is arranged from the discharge port 9b to the outside of the gear case 15 and the motor case 10 and is connected to the oil passage 93 formed in the cover 14.
 図1に示すように、油路93は、カバー14の外周から支持部141の内周へ径方向内側に貫通して形成される。油路93は、外周側において配管92との接続部93aを有する。油路93は支持部141の内周側に開口端93bを有し、開口端93bはドライブシャフト8Bの外周面に形成された螺旋溝81の始端81aの上方に位置する。 As shown in FIG. 1, the oil passage 93 is formed so as to penetrate inward in the radial direction from the outer circumference of the cover 14 to the inner circumference of the support portion 141. The oil passage 93 has a connection portion 93a with the pipe 92 on the outer peripheral side. The oil passage 93 has an opening end 93b on the inner peripheral side of the support portion 141, and the opening end 93b is located above the starting end 81a of the spiral groove 81 formed on the outer peripheral surface of the drive shaft 8B.
 キャッチタンク9の排出口9bの鉛直線方向の高さh1は、油路93の接続部93aの鉛直方向高さh2よりも高くなっている。これによって、排出口9bから排出された潤滑油OLは、重力にしたがって配管92をモータ2側に流れ、接続部93aから油路93に供給される。 The height h1 in the vertical direction of the discharge port 9b of the catch tank 9 is higher than the height h2 in the vertical direction of the connecting portion 93a of the oil passage 93. As a result, the lubricating oil OL discharged from the discharge port 9b flows through the pipe 92 to the motor 2 side according to gravity, and is supplied to the oil passage 93 from the connection portion 93a.
 図2に示すように、支持部141の内部には、潤滑油OLをドライブシャフト8Bの外周面に導く、ドーナツ状の一対のガイドプレート94、95が設けられている。 As shown in FIG. 2, a pair of donut-shaped guide plates 94 and 95 are provided inside the support portion 141 to guide the lubricating oil OL to the outer peripheral surface of the drive shaft 8B.
 一対のガイドプレート94、95は、回転軸X方向の間隔を空けて対向している。ガイドプレート94は、Cリング94aとベアリングB2の間に挟みこまれる形で支持部141の内周に取り付けられている。ガイドプレート95は、モータ支持部12の側壁部12bとカバー14の端面14aに挟み込まれる形で取り付けられている。ガイドプレート95とモータ支持部12の円筒壁122に支持されたベアリングB1の間にはリップシールRSが設置されており、油路93を通る潤滑油OLがモータケース10内の空間Saへ流入することを阻止する。 The pair of guide plates 94, 95 face each other with a gap in the rotation axis X direction. The guide plate 94 is attached to the inner circumference of the support portion 141 so as to be sandwiched between the C ring 94a and the bearing B2. The guide plate 95 is attached so as to be sandwiched between the side wall portion 12b of the motor support portion 12 and the end surface 14a of the cover 14. A lip seal RS is installed between the guide plate 95 and the bearing B1 supported by the cylindrical wall 122 of the motor support portion 12, and the lubricating oil OL passing through the oil passage 93 flows into the space Sa in the motor case 10. Prevent that.
 かかる構成の動力伝達装置1の作用を説明する。
 図1に示すように、動力伝達装置1では、モータ2の出力回転の伝達経路に沿って、減速機構3(第1遊星減速ギア4、第2遊星減速ギア5)と、差動装置6と、ドライブシャフト8A、8Bと、が設けられている。
The operation of the power transmission device 1 having such a configuration will be described.
As shown in FIG. 1, in the power transmission device 1, the reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) and the differential device 6 are provided along the transmission path of the output rotation of the motor 2. , Drive shafts 8A and 8B are provided.
 モータ2の駆動により、ロータコア21が回転軸X回りに回転すると、ロータコア21と一体に回転するモータシャフト20を介して、第1遊星減速ギア4のサンギア41に回転が入力される。 When the rotor core 21 rotates around the rotation axis X by driving the motor 2, the rotation is input to the sun gear 41 of the first planetary reduction gear 4 via the motor shaft 20 that rotates integrally with the rotor core 21.
 図3に示すように、第1遊星減速ギア4では、サンギア41が、モータ2の出力回転の入力部、ピニオンギア43を支持するキャリア45が、入力された回転の出力部となっている。 As shown in FIG. 3, in the first planetary reduction gear 4, the sun gear 41 is the input unit for the output rotation of the motor 2, and the carrier 45 supporting the pinion gear 43 is the output unit for the input rotation.
 サンギア41がモータ2の出力回転で回転軸X回りに回転すると、サンギア41の外周とリングギア42の内周に噛合したピニオンギア43が、軸線X1回りに自転しながら、回転軸X周りに回転する。これにより、ピニオンギア43を支持するキャリア45(側板部451、452)が、モータ2の出力回転よりも低い回転速度で回転軸X回りに回転する。 When the sun gear 41 rotates around the rotation axis X due to the output rotation of the motor 2, the pinion gear 43 meshing with the outer circumference of the sun gear 41 and the inner circumference of the ring gear 42 rotates around the axis X1 while rotating around the rotation axis X. To do. As a result, the carriers 45 (side plate portions 451 and 452) that support the pinion gear 43 rotate around the rotation axis X at a rotation speed lower than the output rotation of the motor 2.
 前記したようにキャリア45の連結部453は、第2遊星減速ギア5側のサンギア51の連結部511に連結されており、キャリア45の回転(第1遊星減速ギア4の出力回転)は、第2遊星減速ギア5のサンギア51に入力される。 As described above, the connecting portion 453 of the carrier 45 is connected to the connecting portion 511 of the sun gear 51 on the second planetary reduction gear 5 side, and the rotation of the carrier 45 (the output rotation of the first planetary reduction gear 4) is the first. 2 Input to the sun gear 51 of the planetary reduction gear 5.
 第2遊星減速ギア5では、サンギア51が、第2遊星減速ギア5の出力回転の入力部となっており、段付きピニオンギア53を支持するキャリア55が、入力された回転の出力部となっている。 In the second planetary reduction gear 5, the sun gear 51 serves as an input unit for the output rotation of the second planetary reduction gear 5, and the carrier 55 supporting the stepped pinion gear 53 serves as an output unit for the input rotation. ing.
 サンギア51が入力された回転で回転軸X回りに回転すると、段付きピニオンギア53(大径歯車部531、小径歯車部532)が、サンギア51側から入力される回転で、軸線X2回りに回転する。
 ここで、段付きピニオンギア53の小径歯車部532は、ギアケース15の内周に固定されたリングギア52に噛合している。そのため、段付きピニオンギア53は、軸線X2回りに自転しながら、回転軸X周りに回転する。
When the sun gear 51 rotates around the rotation axis X by the input rotation, the stepped pinion gear 53 (large diameter gear portion 531 and small diameter gear portion 532) rotates around the axis X2 by the rotation input from the sun gear 51 side. To do.
Here, the small-diameter gear portion 532 of the stepped pinion gear 53 meshes with the ring gear 52 fixed to the inner circumference of the gear case 15. Therefore, the stepped pinion gear 53 rotates around the rotation axis X while rotating around the axis X2.
 これにより、段付きピニオンギア53を支持するキャリア55(側板部551、651)が、第1遊星減速ギア4側から入力された回転よりも低い回転速度で回転軸X回りに回転する。第2遊星減速ギア5のサンギア51に入力された回転は、段付きピニオンギア53の大径歯車部531から小径歯車部532へ伝達されることにより大きく減速されたのちに、キャリア55の側板部651が一体に形成されたデフケース60(差動装置6)に出力される。 As a result, the carriers 55 (side plate portions 551 and 651) that support the stepped pinion gear 53 rotate around the rotation axis X at a rotation speed lower than the rotation input from the first planetary reduction gear 4 side. The rotation input to the sun gear 51 of the second planetary reduction gear 5 is greatly decelerated by being transmitted from the large-diameter gear portion 531 of the stepped pinion gear 53 to the small-diameter gear portion 532, and then the side plate portion of the carrier 55. The output is output to the differential case 60 (differential device 6) in which the 651 is integrally formed.
 そして、デフケース60が入力された回転で回転軸X回りに回転することにより、ドライブシャフト8A、8Bが回転軸X回りに回転して、動力伝達装置1が搭載された車両の左右の駆動輪(図示せず)に伝達される。 Then, when the differential case 60 rotates around the rotation axis X by the input rotation, the drive shafts 8A and 8B rotate around the rotation axis X, and the left and right drive wheels of the vehicle on which the power transmission device 1 is mounted ( (Not shown) is transmitted.
 前記したように、ギアケース15の下部には、冷却用の媒体である潤滑油OLが貯留されている。
 図1に示すように、実施の形態では、デフケース60のシャフト61の一端61aまたは他端61bが最も下部側に位置した際に、シャフト61の一端61aまたは他端61bが少なくとも潤滑油OL内に位置する高さまで、ギアケース15内に潤滑油OLが貯留されている。
As described above, the lubricating oil OL, which is a cooling medium, is stored in the lower part of the gear case 15.
As shown in FIG. 1, in the embodiment, when one end 61a or the other end 61b of the shaft 61 of the differential case 60 is located at the lowermost side, the one end 61a or the other end 61b of the shaft 61 is at least in the lubricating oil OL. Lubricating oil OL is stored in the gear case 15 up to the position where it is located.
 これによって、デフケース60は回転軸X回りに回転する際に、ギアケース15内の潤滑油OLを掻き上げる。掻き上げられた潤滑油OLは、ギア(差動装置6のサイドギア63A、63B、かさ歯車62A、62B、第1遊星減速ギア4のサンギア41、リングギア42、ピニオンギア43、第2遊星減速ギア5のサンギア51、リングギア52、段付きピニオンギア53)の噛み合い部分に掛かることによって、噛み合い部分を冷却する。 As a result, when the differential case 60 rotates around the rotation axis X, the lubricating oil OL in the gear case 15 is scraped up. The scraped up lubricating oil OL is a gear (side gears 63A and 63B of the differential device 6, bevel gears 62A and 62B, sun gear 41 of the first planetary reduction gear 4, ring gear 42, pinion gear 43, and second planetary reduction gear. The meshing portion is cooled by engaging with the meshing portion of the sun gear 51, the ring gear 52, and the stepped pinion gear 53) of 5.
 ギアの噛み合い部分を冷却した潤滑油OLは、直接落下するか、ギアの回転によって飛散されギアケース15の壁面を伝って、ギアケース15の下部に再び貯留されるが、一部の潤滑油OLはキャッチタンク9内に入って貯留される。 The lubricating oil OL that has cooled the meshing portion of the gear falls directly or is scattered by the rotation of the gear, travels along the wall surface of the gear case 15, and is stored again in the lower part of the gear case 15, but some of the lubricating oil OL Is stored in the catch tank 9.
 図4Aに示すように、段付きピニオンギア53は、ピニオン軸54の軸線X2回りに自転しながら、回転軸X周りに回転している。段付きピニオンギア53に供給された潤滑油OLは、ギアの噛み合い部分を冷却すると同時に、段付きピニオンギア53の自転によって再びギアケース15内に掻き上げられる。掻き上げられた潤滑油OLは、段付きピニオンギア53の回転軸X周りの回転で生じる遠心力によって段付きピニオンギア53の回転方向に沿って移動し、その一部が開口9aからキャッチタンク9の内部に入る。
 図示は省略するが、第1遊星減速ギア4においても、同様に潤滑油OLが掻き上げられ、一部の潤滑油OLがキャッチタンク9に貯留される。
As shown in FIG. 4A, the stepped pinion gear 53 rotates around the rotation axis X while rotating around the axis X2 of the pinion shaft 54. The lubricating oil OL supplied to the stepped pinion gear 53 cools the meshing portion of the gear, and at the same time, is scraped up into the gear case 15 again by the rotation of the stepped pinion gear 53. The scraped up lubricating oil OL moves along the rotation direction of the stepped pinion gear 53 due to the centrifugal force generated by the rotation around the rotation axis X of the stepped pinion gear 53, and a part of it moves from the opening 9a to the catch tank 9 Go inside.
Although not shown, in the first planetary reduction gear 4, the lubricating oil OL is similarly scraped up, and a part of the lubricating oil OL is stored in the catch tank 9.
 キャッチタンク9の内部に貯留された潤滑油OLは、重力にしたがって排出口9bから配管92に流れ、図4Bに示すように、カバー14に形成された油路93に落下する。油路93に落下した潤滑油OLは、油路93およびガイドプレート94、95(図1参照)を伝って、ドライブシャフト8Bの外周面に形成された螺旋溝81の始端81aに供給される。 The lubricating oil OL stored inside the catch tank 9 flows from the discharge port 9b to the pipe 92 according to gravity, and falls into the oil passage 93 formed in the cover 14 as shown in FIG. 4B. The lubricating oil OL that has fallen into the oil passage 93 is supplied to the starting end 81a of the spiral groove 81 formed on the outer peripheral surface of the drive shaft 8B through the oil passage 93 and the guide plates 94 and 95 (see FIG. 1).
 図5は、螺旋溝81に供給された潤滑油OLの流れを示す図である。
 図5に示すように、螺旋溝81の始端81aに供給された潤滑油OLには、ドライブシャフト8Bの回転によって遠心力が働き、ドライブシャフト8Bの回転軸Xの周方向に形成された螺旋溝81に沿って油送される。潤滑油OLは、モータケース10内部のモータシャフト20の内周側を通過し、ギアケース15内部に入り、終端81b側に向かって油送される。
FIG. 5 is a diagram showing the flow of the lubricating oil OL supplied to the spiral groove 81.
As shown in FIG. 5, centrifugal force acts on the lubricating oil OL supplied to the starting end 81a of the spiral groove 81 by the rotation of the drive shaft 8B, and the spiral groove formed in the circumferential direction of the rotation axis X of the drive shaft 8B. Oil is fed along 81. The lubricating oil OL passes through the inner peripheral side of the motor shaft 20 inside the motor case 10, enters the inside of the gear case 15, and is oil-fed toward the terminal 81b side.
 ギアケース15の内部には、ドライブシャフト8Bに連通する油孔部204、512が形成されている。螺旋溝81を油送される潤滑油OLの一部は、油孔部204、512から排出され、ギアケース15の内部に供給される。 Inside the gear case 15, oil holes 204 and 512 that communicate with the drive shaft 8B are formed. A part of the lubricating oil OL fed through the spiral groove 81 is discharged from the oil holes 204 and 512 and supplied to the inside of the gear case 15.
 油孔部204は、第1遊星減速ギア4のサンギア41とモータ支持部13の円筒壁132の間の位置に形成されているため、油孔部204から排出された潤滑油OLは、第1遊星減速ギア4を構成するギア(サンギア41、リングギア42、段付きピニオンギア43)の噛み合い部分に対して、回転軸X側から供給される。 Since the oil hole portion 204 is formed at a position between the sun gear 41 of the first planetary reduction gear 4 and the cylindrical wall 132 of the motor support portion 13, the lubricating oil OL discharged from the oil hole portion 204 is the first It is supplied from the rotation shaft X side to the meshing portion of the gears (sun gear 41, ring gear 42, stepped pinion gear 43) constituting the planetary reduction gear 4.
 油孔部512は、第2遊星減速ギア5のサンギア51と連結部511の境の位置に形成されているため、油孔部512から排出された潤滑油OLは、第2遊星減速ギア5を構成するギア(サンギア51、リングギア52、段付きピニオンギア53)の噛み合い部分に対して、回転軸X側から供給される。 Since the oil hole portion 512 is formed at the boundary between the sun gear 51 of the second planetary reduction gear 5 and the connecting portion 511, the lubricating oil OL discharged from the oil hole portion 512 causes the second planetary reduction gear 5 to move. It is supplied from the rotation shaft X side to the meshing portions of the constituent gears (sun gear 51, ring gear 52, stepped pinion gear 53).
 螺旋溝81を油送される潤滑油OLにはドライブシャフト8Bの回転によって遠心力が作用しているため、油孔部204、512から潤滑油OLは勢い良く飛散する。これによって、第1遊星減速ギア4、第2遊星減速ギア5のギアの噛み合い部分に対して回転軸X側から潤滑油OLが供給されるため、効率的に冷却される。 Since centrifugal force acts on the lubricating oil OL fed through the spiral groove 81 by the rotation of the drive shaft 8B, the lubricating oil OL is vigorously scattered from the oil holes 204 and 512. As a result, the lubricating oil OL is supplied from the rotation shaft X side to the meshing portions of the gears of the first planet reduction gear 4 and the second planet reduction gear 5, so that the cooling oil is efficiently cooled.
 なお、潤滑油OLは、モータシャフト20と連結部511の間からピニオンギア43を支持するニードルベアリングNBにも供給される。サンギア51と支持部601の間からそれぞれを支持するニードルベアリングNBにも供給される。これらのニードルベアリングNBも回転軸X側から潤滑油OLが供給されることで、効率的に冷却される。 The lubricating oil OL is also supplied to the needle bearing NB that supports the pinion gear 43 from between the motor shaft 20 and the connecting portion 511. It is also supplied to the needle bearing NB that supports each of the sun gear 51 and the support portion 601. These needle bearings NB are also efficiently cooled by supplying the lubricating oil OL from the rotating shaft X side.
 螺旋溝81に残った潤滑油OLは、ドライブシャフト8Bが接続するデフケース60の内部に供給され、デフケース60のギアの噛み合い部分についても、潤滑油OLは回転軸X側から供給されることになる。 The lubricating oil OL remaining in the spiral groove 81 is supplied to the inside of the differential case 60 to which the drive shaft 8B is connected, and the lubricating oil OL is also supplied from the rotating shaft X side to the meshing portion of the gear of the differential case 60. ..
 実施の形態では、キャッチタンク9に貯留した潤滑油OLをドライブシャフト8Bに導く油路93を、カバー14に形成している。これは、モータ2のギアケース15側と反対側は比較的スペースを確保しやすいためである。 In the embodiment, an oil passage 93 for guiding the lubricating oil OL stored in the catch tank 9 to the drive shaft 8B is formed in the cover 14. This is because it is relatively easy to secure a space on the side opposite to the gear case 15 side of the motor 2.
 具体的には、実施の形態では、モータ2を支持するベアリングB1と、ドライブシャフト8Bを支持するベアリングB2をそれぞれ設けて、モータ2とドライブシャフト8Bの安定的な回転を図っている。すなわち、ベアリングを増やしたことによるスペースが生じており、このスペースを利用して油路93を配置している。 Specifically, in the embodiment, the bearing B1 that supports the motor 2 and the bearing B2 that supports the drive shaft 8B are provided, respectively, to ensure stable rotation of the motor 2 and the drive shaft 8B. That is, a space is created by increasing the number of bearings, and the oil passage 93 is arranged using this space.
 実施の形態のキャッチタンク9は、また、車両の走行時と停車時におけるギアケース15の空間Sb内における潤滑油OLのオイルレベルを調整するように作用する。
 車両の走行中には、デフケース60の回転によって潤滑油OLが掻き上げられ、潤滑油OLがキャッチタンク9に貯留されるため、空間Sb内の潤滑油OLのオイルレベルは下がる。デフケース60が潤滑油OLを掻き上げる際には撹拌抵抗が生じるが、オイルレベルを下げることで、攪拌抵抗を低減することができる。一方、キャッチタンク9に貯留された潤滑油OLが油路93を経由してドライブシャフト8Bの螺旋溝81へ供給され、回転軸X側からギアの噛み合い部分に潤滑油OLを供給し、冷却を効率的に行うことができる。
The catch tank 9 of the embodiment also acts to adjust the oil level of the lubricating oil OL in the space Sb of the gear case 15 when the vehicle is running and when the vehicle is stopped.
While the vehicle is running, the lubricating oil OL is scraped up by the rotation of the differential case 60, and the lubricating oil OL is stored in the catch tank 9, so that the oil level of the lubricating oil OL in the space Sb is lowered. When the differential case 60 scoops up the lubricating oil OL, stirring resistance is generated, but by lowering the oil level, the stirring resistance can be reduced. On the other hand, the lubricating oil OL stored in the catch tank 9 is supplied to the spiral groove 81 of the drive shaft 8B via the oil passage 93, and the lubricating oil OL is supplied from the rotating shaft X side to the meshing portion of the gear for cooling. It can be done efficiently.
 車両の停車時にはデフケース60が回転せず潤滑油OLの掻き上げは行われないため、空間Sb内の潤滑油OLのオイルレベルが上がる。そのため、停車させた車両を発進させる際には、デフケース60が十分な量の潤滑油OLを掻き上げることができる。 When the vehicle is stopped, the differential case 60 does not rotate and the lubricating oil OL is not scraped up, so that the oil level of the lubricating oil OL in the space Sb rises. Therefore, when starting the stopped vehicle, the differential case 60 can scrape up a sufficient amount of lubricating oil OL.
 以上の通り、本実施形態にかかる動力伝達装置1は、以下の構成を有している。
(1)モータ2と、
 モータ2の下流に接続された減速機構3および差動装置6(ギア)と、
 モータ2の内周を貫通するドライブシャフト8B(シャフト)と、を有し、
 ドライブシャフト8Bの外周とモータ2の内周との間においてモータ2側から減速機構3および差動装置6側へ向かって潤滑油OLを油送する油送構造を有する。
 油送構造は、ドライブシャフト8Bとモータシャフト20(即ち、モータ2)との間に設けられたクリアランスCrと、螺旋溝81と、を含んで形成されている。なお、螺旋溝81は必須の構成ではない。しかし、螺旋溝81を形成することによって、より油送効率を高めることができるので好適である。
 また、螺旋溝81を設けない場合には、螺旋溝81を設ける場合と比較してドライブシャフト8Bとモータ2とのクリアランスCrを大きくすることが好ましい。螺旋溝81を設けない場合には重力が作用するのでドライブシャフトの下方にあるクリアランスCrを介してモータ2側から減速機構3および差動装置6側へ向かって潤滑油OLを油送されることになる。
 言い換えると、モータ2の中空軸とドライブシャフト8Bとは相対回転を許容するので、モータ2の中空軸とドライブシャフト8Bとの間のクリアランスCr(隙間)が設けられる。
 配管92を介してモータ2の裏側の空間に流れ込んだ潤滑油OLは、シャフトをつたって、もしくは、モータ2の裏側の空間からあふれ出るように、クリアランス(隙間)に流れ込む。そして、クリアランスCr(隙間)に流れ込んだ油が少なくともクリアランスCrを含む油送構造を介して油送されることになる。つまり、配管92等を介してモータ2の裏側に潤滑油OLを流し込むことで、モータ2の裏側において潤滑油OLがあふれでることで油送方向が規定されることになるという言い方もできる。さらに、油送構造が螺旋溝81を含んで構成されていると油送効率をより向上させることができるようになる。
As described above, the power transmission device 1 according to the present embodiment has the following configuration.
(1) Motor 2 and
A reduction mechanism 3 and a differential device 6 (gear) connected downstream of the motor 2 and
It has a drive shaft 8B (shaft) that penetrates the inner circumference of the motor 2.
It has an oil feeding structure that feeds lubricating oil OL from the motor 2 side toward the reduction mechanism 3 and the differential device 6 side between the outer circumference of the drive shaft 8B and the inner circumference of the motor 2.
The oil feeding structure is formed including a clearance Cr provided between the drive shaft 8B and the motor shaft 20 (that is, the motor 2) and a spiral groove 81. The spiral groove 81 is not an essential configuration. However, it is preferable to form the spiral groove 81 because the oil feeding efficiency can be further improved.
Further, when the spiral groove 81 is not provided, it is preferable to increase the clearance Cr between the drive shaft 8B and the motor 2 as compared with the case where the spiral groove 81 is provided. If the spiral groove 81 is not provided, gravity acts, so that the lubricating oil OL is fed from the motor 2 side toward the reduction mechanism 3 and the differential device 6 side via the clearance Cr below the drive shaft. become.
In other words, since the hollow shaft of the motor 2 and the drive shaft 8B allow relative rotation, a clearance Cr (gap) between the hollow shaft of the motor 2 and the drive shaft 8B is provided.
The lubricating oil OL that has flowed into the space on the back side of the motor 2 through the pipe 92 flows into the clearance (gap) so as to run through the shaft or overflow from the space on the back side of the motor 2. Then, the oil that has flowed into the clearance Cr (gap) is fed through the oil feeding structure including at least the clearance Cr. That is, it can be said that by pouring the lubricating oil OL into the back side of the motor 2 through the pipe 92 or the like, the lubricating oil OL overflows on the back side of the motor 2 and the oil feeding direction is defined. Further, if the oil feeding structure includes the spiral groove 81, the oil feeding efficiency can be further improved.
 減速機構3(第1遊星減速ギア4、第2遊星減速ギア5)および差動装置6の内周を貫通するドライブシャフト8Bの外周に螺旋溝81及びクリアランスCrを含んで構成された油送構造を形成することによって、回転軸X側から遠心力によって、減速機構3および差動装置6のギアの噛み合い部分やニードルベアリングNB等の軸受に効率的に潤滑油OLを供給することができる。 An oil feeding structure including a spiral groove 81 and a clearance Cr on the outer periphery of a drive shaft 8B penetrating the inner circumference of the reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) and the differential device 6. By forming the above, the lubricating oil OL can be efficiently supplied from the rotation shaft X side to the meshing portion of the gears of the reduction mechanism 3 and the differential device 6 and bearings such as the needle bearing NB by centrifugal force.
 動力伝達装置1において、ギアケース15の減速機構3および差動装置6が配置される近辺は、モータ2が配置される近辺と比較するとスペースが少なく、この近辺に油路93を設けるには、スペースを確保する必要があり動力伝達装置1のコンパクト化の妨げとなり得る。そこで、モータ2側から減速機構3および差動装置6側に向かって潤滑油OLを油送するように螺旋溝81の形状を設定することで、比較的余裕のあるモータ2側のスペースに螺旋溝81への油路93を配置できるのでコンパクトな動力伝達装置1の設計が可能となる。 In the power transmission device 1, the vicinity where the reduction mechanism 3 and the differential device 6 of the gear case 15 are arranged has a smaller space than the vicinity where the motor 2 is arranged, and in order to provide the oil passage 93 in this vicinity, It is necessary to secure a space, which may hinder the compactification of the power transmission device 1. Therefore, by setting the shape of the spiral groove 81 so that the lubricating oil OL is fed from the motor 2 side toward the reduction mechanism 3 and the differential device 6, the spiral groove 81 is spiraled into a relatively large space on the motor 2 side. Since the oil passage 93 can be arranged in the groove 81, it is possible to design a compact power transmission device 1.
(2)動力伝達装置1において、螺旋溝81(即ち、ドライブシャフト8B)に上方から潤滑油OLを供給する。 (2) In the power transmission device 1, the lubricating oil OL is supplied to the spiral groove 81 (that is, the drive shaft 8B) from above.
 動力伝達装置1は、螺旋溝81(即ち、ドライブシャフト8B)の重力方向上方に位置する油路93から潤滑油OLを供給することによって、重力を利用して潤滑油OLを螺旋溝81(即ち、ドライブシャフト8B)に供給することができる。これによって、オイルポンプが不要となり部品点数を低減することができる。また、オイルポンプを設けた場合でも、重力を併せて利用することによって、オイルポンプの容量を小さく設定することができるようになる。 The power transmission device 1 supplies the lubricating oil OL from the oil passage 93 located above the spiral groove 81 (that is, the drive shaft 8B) in the direction of gravity, and thereby uses the gravity to supply the lubricating oil OL to the spiral groove 81 (that is, the drive shaft 8B). , Drive shaft 8B) can be supplied. As a result, the oil pump becomes unnecessary and the number of parts can be reduced. Further, even when the oil pump is provided, the capacity of the oil pump can be set small by using gravity together.
(3)動力伝達装置1は、減速機構3および差動装置6が設けられた空間Sb(ギア室)内の潤滑油OLを貯留するキャッチタンク9(キャッチ部)を有し、キャッチタンク9(キャッチ部)から螺旋溝81(即ち、ドライブシャフト8B)へ潤滑油OLが供給される。 (3) The power transmission device 1 has a catch tank 9 (catch portion) for storing the lubricating oil OL in the space Sb (gear chamber) provided with the reduction mechanism 3 and the differential device 6, and the catch tank 9 (catch portion). Lubricating oil OL is supplied from the catch portion) to the spiral groove 81 (that is, the drive shaft 8B).
 キャッチタンク9(キャッチ部)を設けると、車両の走行中の減速機構3および差動装置6等のギアの回転による潤滑油OLの掻き上げによって、キャッチタンク9(キャッチ部)に一時的に潤滑油OLが貯留される。即ち、キャッチタンク9(キャッチ部)は潤滑油OLを一時的に貯留する機能のある部分であるといえる。
 よって、車両の停車時は空間Sb内の潤滑油OLのオイルレベルを上げ、車両の発進時にギアの潤滑を十分に行えるようにし、車両の走行中はギアによる潤滑油OLの掻き上げを利用してキャッチタンク9(キャッチ部)に潤滑油OLを貯留することで、空間Sb内のオイルレベルを下げて、ギアによる潤滑油OLの撹拌抵抗を下げることができる。
When the catch tank 9 (catch portion) is provided, the catch tank 9 (catch portion) is temporarily lubricated by scraping up the lubricating oil OL by rotating the gears of the reduction mechanism 3 and the differential device 6 while the vehicle is running. Oil OL is stored. That is, it can be said that the catch tank 9 (catch portion) has a function of temporarily storing the lubricating oil OL.
Therefore, when the vehicle is stopped, the oil level of the lubricating oil OL in the space Sb is raised so that the gears can be sufficiently lubricated when the vehicle starts, and the lubricating oil OL is scraped up by the gears while the vehicle is running. By storing the lubricating oil OL in the catch tank 9 (catch portion), the oil level in the space Sb can be lowered, and the stirring resistance of the lubricating oil OL by the gear can be lowered.
 走行中にキャッチタンク9(キャッチ部)に充分な量の潤滑油OLが蓄えられることで、安定的に螺旋溝81(即ち、ドライブシャフト8B)へ潤滑油OLが供給され、螺旋溝81(即ち、ドライブシャフト8B)から減速機構3および差動装置6の中心軸である回転軸X側に潤滑油OLを供給することが可能となる。つまり、螺旋溝81(即ち、ドライブシャフト8B)にはキャッチタンク9(キャッチ部)を介して潤滑油OLが供給されることになる。
 なお、実施の形態では、キャッチタンク9(キャッチ部)から重力を利用して螺旋溝81(即ち、ドライブシャフト8B)へ油を供給しても良いし、オイルポンプを用いてキャッチタンク9(キャッチ部)から螺旋溝81(即ち、ドライブシャフト8B)へ油を供給しても良い。
By storing a sufficient amount of lubricating oil OL in the catch tank 9 (catch portion) during traveling, the lubricating oil OL is stably supplied to the spiral groove 81 (that is, the drive shaft 8B), and the spiral groove 81 (that is, that is). , The drive shaft 8B) makes it possible to supply the lubricating oil OL to the rotation shaft X side, which is the central shaft of the reduction mechanism 3 and the differential device 6. That is, the lubricating oil OL is supplied to the spiral groove 81 (that is, the drive shaft 8B) via the catch tank 9 (catch portion).
In the embodiment, oil may be supplied from the catch tank 9 (catch portion) to the spiral groove 81 (that is, the drive shaft 8B) by using gravity, or the catch tank 9 (catch) may be supplied by using an oil pump. Oil may be supplied from the portion) to the spiral groove 81 (that is, the drive shaft 8B).
(4)螺旋溝81(即ち、ドライブシャフト8B)に潤滑油OLを供給する油路93(潤滑油供給口)がカバー14(潤滑油供給部材)に設けられており、モータ2は油路93と減速機構3および差動装置6との間に配置されている。つまり、螺旋溝81(即ち、ドライブシャフト8B)には油路93(潤滑油供給口)を介して潤滑油OLが供給されることになる。 (4) An oil passage 93 (lubricating oil supply port) for supplying lubricating oil OL to the spiral groove 81 (that is, the drive shaft 8B) is provided in the cover 14 (lubricating oil supply member), and the motor 2 has an oil passage 93. Is arranged between the speed reduction mechanism 3 and the differential device 6. That is, the lubricating oil OL is supplied to the spiral groove 81 (that is, the drive shaft 8B) through the oil passage 93 (lubricating oil supply port).
 モータ2において、ギアケース15側と反対側はスペースを確保しやすいので、動力伝達装置1のコンパクト化を妨げる影響を最小限にして油路93を配置することができる。
 なお、実施の形態では、モータケース10を構成するカバー14を潤滑油供給部材とし、カバー14に潤滑油供給口として油路93を形成したが、これに限定されない。たとえば、油路93をモータ支持部12の内部を貫通させるように形成しても良い。また、油路93を、モータケース10を構成する部材とは別体の部材に形成しても良い。
In the motor 2, since it is easy to secure a space on the side opposite to the gear case 15 side, the oil passage 93 can be arranged while minimizing the influence of hindering the compactification of the power transmission device 1.
In the embodiment, the cover 14 constituting the motor case 10 is used as a lubricating oil supply member, and an oil passage 93 is formed in the cover 14 as a lubricating oil supply port, but the present invention is not limited to this. For example, the oil passage 93 may be formed so as to penetrate the inside of the motor support portion 12. Further, the oil passage 93 may be formed as a member separate from the member constituting the motor case 10.
(5)動力伝達装置1は、
 モータシャフト20(モータのアウトプットシャフト)を支持するベアリングB1(モータ用軸受)と、
 ドライブシャフト8Bを支持するベアリングB2(シャフト用軸受)と、を有し、
 ベアリングB1は、モータ2とベアリングB2との間に位置し、
 油路93は、ベアリングB1とベアリングB2との間に位置する。
(5) The power transmission device 1 is
Bearing B1 (motor bearing) that supports the motor shaft 20 (motor output shaft) and
It has a bearing B2 (bearing for the shaft) that supports the drive shaft 8B, and has.
Bearing B1 is located between motor 2 and bearing B2.
The oil passage 93 is located between the bearing B1 and the bearing B2.
 モータシャフト20を支持するベアリングB1と、ドライブシャフト8Bを支持するベアリングB2をそれぞれ設けることで、モータ2とドライブシャフト8Bを安定的に回転できると共に、ベアリングを増やしたことにより生じたスペースを有効利用して油路93を配置することで、コンパクト化を妨げる影響を最小限にして油路93を配置することができる。 By providing the bearing B1 that supports the motor shaft 20 and the bearing B2 that supports the drive shaft 8B, the motor 2 and the drive shaft 8B can be rotated stably, and the space created by increasing the number of bearings can be effectively used. By arranging the oil passage 93, the oil passage 93 can be arranged while minimizing the influence of hindering the compactness.
<変形例1>
 図6は、変形例1にかかる螺旋溝28を模式的に示す図である。
  実施の形態では、「ドライブシャフト8Bの外周」に形成された螺旋溝81の一例として、「ドライブシャフト8Bの外周面」に形成された螺旋溝81を説明した。しかしながら、「シャフトの外周」は「シャフトの外周面」に限定されるものではない。螺旋溝を、シャフトの外周方向に設けられ、シャフトの外周面と対向する部材に形成しても良い。
<Modification example 1>
FIG. 6 is a diagram schematically showing a spiral groove 28 according to the first modification.
In the embodiment, as an example of the spiral groove 81 formed on the “outer circumference of the drive shaft 8B”, the spiral groove 81 formed on the “outer peripheral surface of the drive shaft 8B” has been described. However, the "outer circumference of the shaft" is not limited to the "outer peripheral surface of the shaft". The spiral groove may be provided in the outer peripheral direction of the shaft and may be formed on a member facing the outer peripheral surface of the shaft.
 たとえば、図6に示すように、ドライブシャフト8Bの外周面に対向するモータシャフト20の内周面に、螺旋溝28を形成しても良い。 For example, as shown in FIG. 6, a spiral groove 28 may be formed on the inner peripheral surface of the motor shaft 20 facing the outer peripheral surface of the drive shaft 8B.
 これによって、実施の形態と同様に、ドライブシャフト8Bの外周面に供給された潤滑油OLは、ドライブシャフト8Bの回転で働く遠心力によって、螺旋溝28に沿って、図1に示すモータケース10側からギアケース15側に油送され、減速機構3および差動装置6のギアの噛み合い部分に効率的に潤滑油OLを供給することができる。 As a result, as in the embodiment, the lubricating oil OL supplied to the outer peripheral surface of the drive shaft 8B is driven by the centrifugal force acting on the rotation of the drive shaft 8B along the spiral groove 28 along the motor case 10 shown in FIG. Oil is fed from the side to the gear case 15 side, and the lubricating oil OL can be efficiently supplied to the meshing portion of the gears of the speed reduction mechanism 3 and the differential device 6.
<変形例2>
 図7は、変形例2にかかる油孔部204、512の開口面積を説明する図である。
 実施の形態で説明したように、ギアケース15内部には、螺旋溝81によって油送される潤滑油OLを、第1遊星減速ギア4と第2遊星減速ギア5にそれぞれ供給する油孔部204、512が形成されている。変形例2においては、図7に示すように、油孔部204の開口面積M1と、油孔部512の開口面積M2を異ならせている。
<Modification 2>
FIG. 7 is a diagram for explaining the opening area of the oil hole portions 204 and 512 according to the modified example 2.
As described in the embodiment, the oil hole portion 204 inside the gear case 15 is supplied with the lubricating oil OL fed by the spiral groove 81 to the first planet reduction gear 4 and the second planet reduction gear 5, respectively. 512 is formed. In the second modification, as shown in FIG. 7, the opening area M1 of the oil hole portion 204 and the opening area M2 of the oil hole portion 512 are different from each other.
 変形例2では、油孔部の開口面積を、油路93からの回転軸X方向の距離が遠くなるほど大きくなるように設定する。油孔部512は油孔部204より、潤滑油OLの油送方向の下流側に位置する。油路93から油孔部512までの回転軸X方向の距離D2は、油路93から油孔部204までの回転軸X方向の距離D1よりも遠くなっている(D1<D2)。すなわち、油孔部512の開口面積M2を、油孔部204の開口面積M1よりも大きくなるように設定する(M1<M2)。 In the second modification, the opening area of the oil hole is set so as to increase as the distance from the oil passage 93 in the rotation axis X direction increases. The oil hole portion 512 is located on the downstream side of the oil hole portion 204 in the oil feeding direction of the lubricating oil OL. The distance D2 in the rotation axis X direction from the oil passage 93 to the oil hole portion 512 is farther than the distance D1 in the rotation axis X direction from the oil passage 93 to the oil hole portion 204 (D1 <D2). That is, the opening area M2 of the oil hole portion 512 is set to be larger than the opening area M1 of the oil hole portion 204 (M1 <M2).
 螺旋溝81を油送される潤滑油OLには、遠心力による油圧がかかるが、油送方向下流側に行くほど油圧は低下する傾向にある。油圧が低下すると、ギアの噛み合い部分に対して潤滑油OLが十分に供給されないおそれがある。 The lubricating oil OL that is oil-fed through the spiral groove 81 is subjected to hydraulic pressure due to centrifugal force, but the oil pressure tends to decrease toward the downstream side in the oil-feeding direction. When the oil pressure drops, the lubricating oil OL may not be sufficiently supplied to the meshing portion of the gear.
 そこで、変形例2では、油送方向下流側の油孔部512の開口面積M2を、油送方向上流側の油孔部204の開口面積M1よりも大きくする。 Therefore, in the second modification, the opening area M2 of the oil hole portion 512 on the downstream side in the oil feeding direction is made larger than the opening area M1 of the oil hole portion 204 on the upstream side in the oil feeding direction.
 一例として、油孔部204、512の、油路93からの回転軸X方向の距離D1、D2に応じて、潤滑油の基準供給量に対する加算量A1、A2を決定し、それぞれの加算量A1、A2を得るために必要な開口面積M1、M2を設定する。すなわち、油路からの回転軸X方向の距離が遠くなるほど、加算量が大きくなり、設定される開口面積も大きくなる。
 なお、加算量A1、A2および開口面積M1、M2の設定は、予め試験またはシミュレーション等を行って決定することができる。
As an example, the addition amounts A1 and A2 with respect to the reference supply amount of the lubricating oil are determined according to the distances D1 and D2 of the oil hole portions 204 and 512 from the oil passage 93 in the rotation axis X direction, and the respective addition amounts A1. , The opening areas M1 and M2 required to obtain A2 are set. That is, as the distance from the oil passage in the rotation axis X direction increases, the addition amount increases and the set opening area also increases.
The addition amounts A1 and A2 and the opening areas M1 and M2 can be determined by conducting a test or a simulation in advance.
 このような設定はあくまで一例であり、単純に油送方向下流側にある油孔部の開口面積を、上流側の油孔部より一定面積大きくなるように設定しても良い。 Such a setting is just an example, and the opening area of the oil hole on the downstream side in the oil feeding direction may be simply set to be a certain area larger than the oil hole on the upstream side.
 このように、油送方向下流側の油孔部512の開口面積M2を大きく設定することで、油孔部512における潤滑油OLの供給量が増加されるようにしている。これによって、油圧が低くなる油送方向下流側でも、ギアの噛み合い部分に適切に潤滑油OLを供給することができる。 In this way, by setting the opening area M2 of the oil hole portion 512 on the downstream side in the oil feeding direction to be large, the supply amount of the lubricating oil OL in the oil hole portion 512 is increased. As a result, the lubricating oil OL can be appropriately supplied to the meshing portion of the gear even on the downstream side in the oil feeding direction where the oil pressure becomes low.
 以上の通り、変形例2にかかる動力伝達装置1は、以下の構成を有している。
(6) ドライブシャフト8Bの外周には、モータシャフト20(第1中空軸部)に形成された油孔部204(第1油孔部)と、連結部511(第2中空軸部)に形成された油孔部512(第2油孔部)と、が形成されている。
 油孔部204は油孔部512と回転軸X方向(軸方向)にオフセットして配置されている。
 油孔部204の開口面積M1は油孔部512の開口面積M2と異なる。
As described above, the power transmission device 1 according to the modified example 2 has the following configuration.
(6) On the outer circumference of the drive shaft 8B, an oil hole portion 204 (first oil hole portion) formed in the motor shaft 20 (first hollow shaft portion) and a connecting portion 511 (second hollow shaft portion) are formed. An oil hole portion 512 (second oil hole portion) is formed.
The oil hole portion 204 is arranged offset from the oil hole portion 512 in the rotation axis X direction (axial direction).
The opening area M1 of the oil hole portion 204 is different from the opening area M2 of the oil hole portion 512.
 減速機構3(第1遊星減速ギア4、第2遊星減速ギア5)および差動装置6の内周を貫通するドライブシャフト8Bの外周に螺旋溝81を形成することによって、回転軸X側から遠心力によって、減速機構3および差動装置6のギアの噛み合い部分やニードルベアリングNB等の軸受に効率的に潤滑油OLを供給することができる。 Centrifugal from the rotation axis X side by forming a spiral groove 81 on the outer circumference of the drive shaft 8B penetrating the inner circumference of the reduction mechanism 3 (first planet reduction gear 4, second planet reduction gear 5) and the differential device 6. By the force, the lubricating oil OL can be efficiently supplied to the meshing portion of the gears of the reduction mechanism 3 and the differential device 6 and bearings such as the needle bearing NB.
 螺旋溝81によって潤滑油OLを油送する場合、油送方向下流側に行くほど油圧が低下する傾向がある。油圧が低下する位置では潤滑油OLの供給量を増やすことが好ましく、潤滑油OLの必要な供給量が多いほど油孔部の開口面積を大きく設定することが好ましい。当該傾向を踏まえ、変形例2では、複数の油孔部204、512の開口面積M1、M2を等しくするのではなく異ならせている。これにより、潤滑油OLの必要供給量に応じた適切な潤滑を行うことが可能となる。 When the lubricating oil OL is fed by the spiral groove 81, the oil pressure tends to decrease toward the downstream side in the oil feeding direction. It is preferable to increase the supply amount of the lubricating oil OL at the position where the oil pressure drops, and it is preferable to set the opening area of the oil hole portion larger as the required supply amount of the lubricating oil OL increases. Based on this tendency, in the modified example 2, the opening areas M1 and M2 of the plurality of oil hole portions 204 and 512 are made different rather than equal. This makes it possible to perform appropriate lubrication according to the required supply amount of the lubricating oil OL.
 油孔部はドライブシャフト8Bの外周に位置する中空軸部に適宜設けることができ、設置する位置や設置する数は限定されない。また、各油孔部を、それぞれ1つの油孔で構成しも良く、複数の油孔から構成しても良い。油孔部を複数の油孔で構成する場合は、開口面積は複数の油孔の総面積を意味する。
 変形例2では、第1中空軸部と第2中空軸部を、モータシャフト20と連結部511の別体の軸としたが、これに限定されず、同じ中空軸として一体的に形成されていても良い。
The oil hole portion can be appropriately provided in the hollow shaft portion located on the outer periphery of the drive shaft 8B, and the installation position and the number of installations are not limited. Further, each oil hole portion may be composed of one oil hole, or may be composed of a plurality of oil holes. When the oil hole portion is composed of a plurality of oil holes, the opening area means the total area of the plurality of oil holes.
In the second modification, the first hollow shaft portion and the second hollow shaft portion are separate shafts of the motor shaft 20 and the connecting portion 511, but the shaft is not limited to this and is integrally formed as the same hollow shaft. You may.
(7)動力伝達装置1は、
 螺旋溝81に潤滑油OLを供給する油路93(潤滑油供給口)が設けられたカバー14(潤滑油供給部材)を有する。
 油孔部512は油孔部204よりも油路93(即ち、モータ2)からの回転軸X方向距離が遠い。
 油孔部512は油孔部204よりも開口面積が大きい。
(7) The power transmission device 1 is
The spiral groove 81 has a cover 14 (lubricating oil supply member) provided with an oil passage 93 (lubricating oil supply port) for supplying the lubricating oil OL.
The oil hole portion 512 is farther from the oil passage 93 (that is, the motor 2) in the rotation axis X direction than the oil hole portion 204.
The oil hole portion 512 has a larger opening area than the oil hole portion 204.
 螺旋溝81は油送方向下流側に行くほど、油圧が低下する傾向にあることを踏まえ、油路93(即ち、モータ2)から回転軸X方向距離が遠い油送方向下流側に行くほど、油孔部の開口面積を大きくする。これによって、油送方向下流側にも必要流量の潤滑油OLを供給しやすい。また、油孔部204、512の開口面積M1、M2を調整するのみで良く、設計時の計算が簡素化されるので設計工数の低減につながる。 Considering that the oil pressure of the spiral groove 81 tends to decrease as it goes downstream in the oil feeding direction, the distance from the oil passage 93 (that is, the motor 2) in the rotation axis X direction is farther toward the downstream side in the oil feeding direction. Increase the opening area of the oil hole. As a result, it is easy to supply the required flow rate of the lubricating oil OL to the downstream side in the oil feeding direction. Further, it is only necessary to adjust the opening areas M1 and M2 of the oil holes 204 and 512, which simplifies the calculation at the time of designing, which leads to a reduction in design man-hours.
<変形例3>
 前記した変形例2では、油孔部204、512の開口面積M1、M2を、油路93(即ち、モータ2)からの回転軸X方向の距離D1、D2に応じて設定したが、開口面積M1、M2を設定する要素は距離だけに限定されない。
 前記したように、潤滑油OLは、油孔部204、512を介して、第1遊星減速ギア4および第2遊星減速ギア5に供給され、ギアの噛み合い部分やニードルベアリングNB等の軸受で発生した熱を冷却する。
<Modification example 3>
In the above-described modification 2, the opening areas M1 and M2 of the oil holes 204 and 512 are set according to the distances D1 and D2 in the rotation axis X direction from the oil passage 93 (that is, the motor 2), but the opening area is set. The elements that set M1 and M2 are not limited to the distance.
As described above, the lubricating oil OL is supplied to the first planetary reduction gear 4 and the second planetary reduction gear 5 via the oil holes 204 and 512, and is generated in the meshing portion of the gear and the bearing such as the needle bearing NB. Cool the heat.
 潤滑油OLの供給先である第1遊星減速ギア4および第2遊星減速ギア5のニードルベアリングNB等の軸受の回転速度が大きくなるほど、発熱も大きくなりやすい。すなわち、回転速度が大きいほど潤滑油OLの必要な供給量が大きくなる傾向がある。 As the rotation speed of bearings such as the needle bearings NB of the first planetary reduction gear 4 and the second planetary reduction gear 5 to which the lubricating oil OL is supplied increases, the heat generation tends to increase. That is, the higher the rotation speed, the larger the required supply amount of the lubricating oil OL tends to be.
 変形例3では、この傾向を踏まえ、油孔部204、512の回転軸X方向距離D1、D2に加え、潤滑油OLの供給先の回転速度に応じて油孔部204、512の開口面積M1、M2を設定する。 In the modified example 3, based on this tendency, in addition to the rotation axis X direction distances D1 and D2 of the oil hole portions 204 and 512, the opening area M1 of the oil hole portions 204 and 512 according to the rotation speed of the supply destination of the lubricating oil OL. , M2 is set.
 具体的には、潤滑油OLの供給先である孔部204、512の、第1遊星減速ギア4および第2遊星減速ギア5のそれぞれの回転速度に応じて、潤滑油OLの基準供給量に対する加算量C1、C2を決定する。 Specifically, with respect to the reference supply amount of the lubricating oil OL according to the respective rotation speeds of the first planetary reduction gear 4 and the second planetary reduction gear 5 of the holes 204 and 512 to which the lubricating oil OL is supplied. The addition amounts C1 and C2 are determined.
 そして、油孔部204、512の回転軸X方向距離D1、D2に応じた加算量A1、A2と、回転速度に応じた加算量C1、C2をそれぞれパラメータとして設定し、油孔部204、512の開口面積M1、M2を決定する。 Then, the addition amounts A1 and A2 according to the rotation axis X direction distances D1 and D2 of the oil hole portions 204 and 512 and the addition amounts C1 and C2 according to the rotation speed are set as parameters, respectively, and the oil hole portions 204 and 512 are set. The opening areas M1 and M2 of the above are determined.
 ここで、第1遊星減速ギア4および第2遊星減速ギア5の実際の回転速度は走行状態に応じて変化するので、それぞれの基準回転速度V1、V2から加算量C1、C2を決定しても良い。基準回転速度V1、V2が大きくなるほど、加算量C1、C2が大きく設定される。 Here, since the actual rotation speeds of the first planetary reduction gear 4 and the second planetary reduction gear 5 change according to the traveling state, even if the addition amounts C1 and C2 are determined from the respective reference rotation speeds V1 and V2, respectively. good. The larger the reference rotation speeds V1 and V2, the larger the addition amounts C1 and C2 are set.
 基準回転速度V1、V2は、モータ2から第1遊星減速ギア4および第2遊星減速ギア5のそれぞれに至るまでの減速比等から算出することができる。例えば、モータ2の回転が所定回転のときの、第1遊星減速ギア4および第2遊星減速ギア5それぞれの回転速度に応じて基準回転速度V1、V2を決定することができる。 The reference rotation speeds V1 and V2 can be calculated from the reduction ratios and the like from the motor 2 to each of the first planetary reduction gear 4 and the second planetary reduction gear 5. For example, the reference rotation speeds V1 and V2 can be determined according to the rotation speeds of the first planetary reduction gear 4 and the second planetary reduction gear 5 when the rotation of the motor 2 is a predetermined rotation.
 加算量C1、C2および開口面積M1、M2は、変形例2と同様に、予め試験またはシミュレーション等を行い決定することができる。 The addition amounts C1 and C2 and the opening areas M1 and M2 can be determined by conducting a test or simulation in advance in the same manner as in the modified example 2.
 以上の通り、変形例3にかかる動力伝達装置1は、
(8)螺旋溝81に潤滑油OLを供給する油路93(潤滑油供給口)が設けられたカバー14(潤滑油供給部材)を有する。
 油孔部204および油孔部512は、油路93(即ち、モータ2)からの回転軸X方向距離(距離)に応じた加算量A1、A2(第1加算量)が大きいほど開口面積M1、M2が大きく設定される。
 油孔部204および油孔部512は、第1遊星減速ギア4および第2遊星減速ギア5(潤滑油供給先)の基準回転速度V1、V2に応じた加算量C1、C2(第2加算量)が大きいほど開口面積M1、M2が大きく設定される。
 回転軸X方向距離D1、D2が大きいほど加算量A1、A2は大きく設定される。
 基準回転速度V1、V2が大きいほど加算量C1、C2は大きく設定される。
As described above, the power transmission device 1 according to the modification 3 is
(8) The spiral groove 81 has a cover 14 (lubricating oil supply member) provided with an oil passage 93 (lubricating oil supply port) for supplying the lubricating oil OL.
The opening area M1 of the oil hole portion 204 and the oil hole portion 512 is increased as the addition amounts A1 and A2 (first addition amount) according to the distance (distance) in the rotation axis X direction from the oil passage 93 (that is, the motor 2) are larger. , M2 is set large.
The oil hole portion 204 and the oil hole portion 512 are addition amounts C1 and C2 (second addition amount) according to the reference rotation speeds V1 and V2 of the first planet reduction gear 4 and the second planet reduction gear 5 (lubricating oil supply destination). ) Is larger, the opening areas M1 and M2 are set larger.
The larger the distances D1 and D2 in the X direction of the rotation axes, the larger the addition amounts A1 and A2 are set.
The larger the reference rotation speeds V1 and V2, the larger the addition amounts C1 and C2 are set.
 また、変形例3に係る動力伝達装置1の製造方法は、以下の通りである。
(9)動力伝達装置1は、
 モータ2と、
 モータ2の下流に接続された減速機構3および差動装置6(ギア)と、
 モータ2の内周を貫通するドライブシャフト8B(シャフト)と、
 ドライブシャフト8Bの外周とモータ2の内周との間においてモータ2側から減速機構3および差動装置6側へ向かって潤滑油を油送する油送構造を有する。
 ドライブシャフト8Bの外周には、モータシャフト20(第1中空軸部)に形成された油孔部204(第1油孔部)と、連結部511(第2中空軸部)に形成された油孔部512(第2油孔部)と、が形成されている。
 油孔部204は油孔部512と回転軸X方向(軸方向)にオフセットして配置されている。
 動力伝達装置1は、油路93(潤滑油供給口)が設けられたカバー14(潤滑油供給部材)を有する。
 ドライブシャフト8Bには、油路93を介して潤滑油OLが供給される。
 油孔部204および油孔部512は、油路93(即ち、モータ2)からの回転軸X方向距離(距離)に応じた加算量A1、A2(第1加算量)が大きいほど開口面積M1、M2を大きく設定する。
 油孔部204および油孔部512は、第1遊星減速ギア4および第2遊星減速ギア5(潤滑油供給先)の基準回転速度V1、V2に応じた加算量C1、C2(第2加算量)が大きいほど開口面積M1、M2を大きく設定する。
 回転軸X方向距離D1、D2が大きいほど加算量A1、A2を大きく設定する。
 基準回転速度V1、V2が大きいほど加算量C1、C2を大きく設定する。
The manufacturing method of the power transmission device 1 according to the third modification is as follows.
(9) The power transmission device 1 is
Motor 2 and
A reduction mechanism 3 and a differential device 6 (gear) connected downstream of the motor 2 and
A drive shaft 8B (shaft) that penetrates the inner circumference of the motor 2 and
It has an oil feeding structure for feeding lubricating oil from the motor 2 side toward the reduction mechanism 3 and the differential device 6 side between the outer circumference of the drive shaft 8B and the inner circumference of the motor 2.
On the outer circumference of the drive shaft 8B, oil formed in the oil hole portion 204 (first oil hole portion) formed in the motor shaft 20 (first hollow shaft portion) and the oil formed in the connecting portion 511 (second hollow shaft portion). A hole portion 512 (second oil hole portion) is formed.
The oil hole portion 204 is arranged offset from the oil hole portion 512 in the rotation axis X direction (axial direction).
The power transmission device 1 has a cover 14 (lubricating oil supply member) provided with an oil passage 93 (lubricating oil supply port).
Lubricating oil OL is supplied to the drive shaft 8B via the oil passage 93.
The opening area M1 of the oil hole portion 204 and the oil hole portion 512 is increased as the addition amounts A1 and A2 (first addition amount) according to the distance (distance) in the rotation axis X direction from the oil passage 93 (that is, the motor 2) are larger. , M2 is set large.
The oil hole portion 204 and the oil hole portion 512 are addition amounts C1 and C2 (second addition amount) according to the reference rotation speeds V1 and V2 of the first planet reduction gear 4 and the second planet reduction gear 5 (lubricating oil supply destination). ) Is larger, the opening areas M1 and M2 are set larger.
The larger the distances D1 and D2 in the X direction of the rotation axis, the larger the addition amounts A1 and A2 are set.
The larger the reference rotation speeds V1 and V2, the larger the addition amounts C1 and C2 are set.
 螺旋溝81は油送方向下流側に行くほど油圧が低下する傾向にあることを踏まえ、油孔部204、512の油路83(即ち、モータ2)からの回転軸X方向距離D1、D2に応じた潤滑油OLの加算量A1、A2を設定し、加算量A1、A2に応じて油孔部204、512の開口面積M1、M2を設定する。螺旋溝81の油送方向下流側に行くほど加算量A1、A2は大きくなるため、開口面積M1、M2は大きくなる方向に設定される。 Considering that the oil pressure of the spiral groove 81 tends to decrease toward the downstream side in the oil feeding direction, the distances D1 and D2 in the X direction of the rotation axis from the oil passage 83 (that is, the motor 2) of the oil holes 204 and 512 The additional amounts A1 and A2 of the corresponding lubricating oil OL are set, and the opening areas M1 and M2 of the oil holes 204 and 512 are set according to the added amounts A1 and A2. Since the addition amounts A1 and A2 become larger toward the downstream side of the spiral groove 81 in the oil feeding direction, the opening areas M1 and M2 are set in the direction of increasing.
 さらに、潤滑油OLの供給先である第1遊星減速ギア4および第2遊星減速ギア5の回転速度が大きくなるほど発熱しやすく、潤滑油OLの必要な供給が大きくなることを踏まえ、基準回転速度V1、V2に応じた加算量C1、C2を設定し、加算量C1、C2に応じて開口面積M1、M2を設定する。基準回転速度V1、V2が大きいほど加算量C1、C2は大きくなるため、開口面積M1、M2は大きくなる方向に設定される。これによって、必要な供給量に応じた潤滑油OLの供給を適切に行うことができる。 Further, the higher the rotation speed of the first planetary reduction gear 4 and the second planetary reduction gear 5, which are the supply destinations of the lubricating oil OL, the more easily heat is generated, and the reference rotation speed is increased in view of the fact that the required supply of the lubricating oil OL increases. The addition amounts C1 and C2 are set according to V1 and V2, and the opening areas M1 and M2 are set according to the addition amounts C1 and C2. Since the addition amounts C1 and C2 increase as the reference rotation speeds V1 and V2 increase, the opening areas M1 and M2 are set in a direction of increase. As a result, the lubricating oil OL can be appropriately supplied according to the required supply amount.
 ここで、本明細書における用語「下流に接続」とは、上流に配置された部品から下流に配置された部品へと動力が伝達される接続関係にあることを意味する。
 例えば、モータ2の下流に接続された第1遊星減速ギア4という場合は、モータ2から第1遊星減速ギア4へと動力が伝達されることを意味する。
Here, the term "downstream connection" as used herein means a connection relationship in which power is transmitted from a component arranged upstream to a component arranged downstream.
For example, the case of the first planetary reduction gear 4 connected downstream of the motor 2 means that power is transmitted from the motor 2 to the first planetary reduction gear 4.
 また、実施の形態では、ギアとして減速機構3の第1遊星減速ギア4を構成するサンギア41、リングギア42およびピニオンギア43と、第2遊星減速ギア5を構成するサンギア51、リングギア52および段付きピニオンギア53と、差動装置6を構成するかさ歯車62A、62Bおよびサイドギア63A、63Bを説明したが、これに限定されず、本発明は他のギアにも適用可能である。 Further, in the embodiment, the sun gear 41, the ring gear 42 and the pinion gear 43 constituting the first planetary reduction gear 4 of the reduction mechanism 3 and the sun gear 51, the ring gear 52 and the ring gear 52 constituting the second planetary reduction gear 5 are used as gears. Although the stepped pinion gear 53 and the bevel gears 62A and 62B and the side gears 63A and 63B constituting the differential device 6 have been described, the present invention is not limited to this, and the present invention can be applied to other gears.
 また、実施の形態ではシャフトとしてドライブシャフト8Bを説明したが、これに限定されず、本発明は他のシャフトにも適用可能である。
 また、実施の形態ではドライブシャフト8Bを中実の軸として説明したが、ドライブシャフト8Bを中空軸とし、中空軸の内部からも潤滑油OLを供給する構成としても良い。これによって、ドライブシャフト8Bの外周に形成した螺旋溝81と併せて潤滑油OLをさらに効率良く供給することができる。
Further, although the drive shaft 8B has been described as the shaft in the embodiment, the present invention is not limited to this, and the present invention can be applied to other shafts.
Further, in the embodiment, the drive shaft 8B has been described as a solid shaft, but the drive shaft 8B may be a hollow shaft and the lubricating oil OL may be supplied from the inside of the hollow shaft. As a result, the lubricating oil OL can be more efficiently supplied together with the spiral groove 81 formed on the outer periphery of the drive shaft 8B.
 なお、実施の形態でも述べたが、本発明において、螺旋溝81(図1参照)は必須の構成ではないので、図8に示すように、動力伝達装置1は、螺旋溝を設けない構成とすることも可能である。 As described in the embodiment, in the present invention, the spiral groove 81 (see FIG. 1) is not an indispensable configuration. Therefore, as shown in FIG. 8, the power transmission device 1 has a configuration in which the spiral groove is not provided. It is also possible to do.
 以上、本発明の実施形態を説明したが、本発明は、これら実施形態に示した態様のみに限定されるものではない。発明の技術的な思想の範囲内で、適宜変更可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments shown in these embodiments. It can be changed as appropriate within the scope of the technical idea of the invention.
 1   動力伝達装置
 10  モータケース
 11  モータハウジング
 12  モータ支持部
 13  モータ支持部
 14  カバー(潤滑油供給部材)
 15  ギアケース
 16  中間部材
 2   モータ
 20  モータシャフト(モータのアウトプットシャフト)(第1中空軸部)
 203 大径部
 204 油孔部(第1油孔部)
 21  ロータコア
 25  ステータコア
 28  螺旋溝
 3   減速機構(ギア)
 4   第1遊星減速ギア
 41  サンギア
 410 貫通孔
 42  リングギア
 43  ピニオンギア
 44  ピニオン軸
 45  キャリア
 5   第2遊星減速ギア
 51  サンギア
 512 油孔部
 52  リングギア
 53  段付きピニオンギア
 54  ピニオン軸
 55  キャリア
 56  接続片
 6   差動装置(ギア)
 60  デフケース
 61  シャフト
 62A、62B かさ歯車
 8A  ドライブシャフト
 8B  ドライブシャフト(シャフト)
 81  螺旋溝
 81a 始端
 81b 終端
 9   キャッチタンク(キャッチ部)
 92  配管
 93  油路(潤滑油供給口)
 94、95  ガイドプレート
 B1  ベアリング(モータ用軸受)
 B2  ベアリング(シャフト用軸受)
 B3  ベアリング
 OL  潤滑油
 Sa  空間(モータ室)
 Sb  空間(ギア室)
1 Power transmission device 10 Motor case 11 Motor housing 12 Motor support 13 Motor support 14 Cover (lubricating oil supply member)
15 Gear case 16 Intermediate member 2 Motor 20 Motor shaft (motor output shaft) (1st hollow shaft)
203 Large diameter part 204 Oil hole part (1st oil hole part)
21 Rotor core 25 Stator core 28 Spiral groove 3 Reduction mechanism (gear)
4 1st planetary reduction gear 41 Sun gear 410 Through hole 42 Ring gear 43 Pinion gear 44 Pinion shaft 45 Carrier 5 2nd planet reduction gear 51 Sun gear 512 Oil hole 52 Ring gear 53 Stepped pinion gear 54 Pinion shaft 55 Carrier 56 Connection piece 6 Differential device (gear)
60 Diff case 61 Shaft 62A, 62B Bevel gear 8A Drive shaft 8B Drive shaft (shaft)
81 Spiral groove 81a Start end 81b End end 9 Catch tank (catch part)
92 Piping 93 Oil passage (lubricant supply port)
94, 95 Guide plate B1 bearing (bearing for motor)
B2 bearing (bearing for shaft)
B3 Bearing OL Lubricating oil Sa space (motor room)
Sb space (gear room)

Claims (11)

  1.  モータと、
     前記モータの下流に接続されたギアと、
     前記モータの内周を貫通するシャフトと、を有し、
     前記シャフトの外周と前記モータの内周との間において前記モータ側から前記ギア側へ向かって潤滑油を油送する油送構造を有する、動力伝達装置。
    With the motor
    With the gear connected to the downstream of the motor,
    It has a shaft that penetrates the inner circumference of the motor.
    A power transmission device having an oil feeding structure for feeding lubricating oil from the motor side to the gear side between the outer circumference of the shaft and the inner circumference of the motor.
  2.  請求項1において、
     前記油送構造は、前記シャフトと前記モータとの間に設けられたクリアランスを含んで構成されている、動力伝達装置。
    In claim 1,
    The oil feeding structure is a power transmission device including a clearance provided between the shaft and the motor.
  3.  請求項1又は請求項2において、
     前記油送構造は、前記シャフトの外周に設けられ、前記モータ側から前記ギア側へ向かって潤滑油を油送する螺旋溝を含んで構成されている、動力伝達装置。
    In claim 1 or 2,
    The oil feeding structure is a power transmission device provided on the outer periphery of the shaft and including a spiral groove for oil feeding lubricating oil from the motor side to the gear side.
  4.  請求項1乃至請求項3のいずれか一において、
     前記シャフトに上方から潤滑油を供給する、動力伝達装置。
    In any one of claims 1 to 3,
    A power transmission device that supplies lubricating oil to the shaft from above.
  5.  請求項乃至請求項4のいずれか一において、
     前記ギアが設けられたギア室内の潤滑油を貯留するキャッチ部を有し、
     前記キャッチ部を介して前記シャフトへ潤滑油が供給される、動力伝達装置。
    In any one of claims to 4.
    It has a catch portion for storing lubricating oil in the gear chamber provided with the gear.
    A power transmission device in which lubricating oil is supplied to the shaft via the catch portion.
  6.  請求項1乃至請求項5のいずれか一において、
     潤滑油供給口が潤滑油供給部材に設けられており、
     前記シャフトには、前記潤滑油供給口を介して潤滑油が供給され、
     前記モータは前記潤滑油供給口と前記ギアとの間に配置されている、動力伝達装置。
    In any one of claims 1 to 5,
    Lubricating oil supply port is provided in the lubricating oil supply member,
    Lubricating oil is supplied to the shaft through the lubricating oil supply port.
    The motor is a power transmission device arranged between the lubricating oil supply port and the gear.
  7.  請求項6において、
     前記モータのアウトプットシャフトを支持するモータ用軸受と、
     前記シャフトを支持するシャフト用軸受と、を有し、
     前記モータ用軸受は、前記モータと前記シャフト用軸受との間に位置し、
     前記潤滑油供給口は、前記モータ用軸受と前記シャフト用軸受との間に位置する、動力伝達装置。
    In claim 6,
    A motor bearing that supports the output shaft of the motor,
    With a shaft bearing that supports the shaft,
    The motor bearing is located between the motor and the shaft bearing.
    The lubricating oil supply port is a power transmission device located between the motor bearing and the shaft bearing.
  8.  請求項1乃至請求項7のいずれか一において、
     前記シャフトの外周には、第1中空軸部に形成された第1油孔部と、第2中空軸部に形成された第2油孔部と、が形成されており、
     前記第1油孔部は前記第2油孔部と軸方向にオフセットして配置されており、
     前記第1油孔部の開口面積は前記第2油孔部の開口面積と異なる、動力伝達装置。
    In any one of claims 1 to 7,
    A first oil hole portion formed in the first hollow shaft portion and a second oil hole portion formed in the second hollow shaft portion are formed on the outer periphery of the shaft.
    The first oil hole portion is arranged so as to be offset in the axial direction from the second oil hole portion.
    A power transmission device in which the opening area of the first oil hole is different from the opening area of the second oil hole.
  9.  請求項8において、
     前記第2油孔部は前記第1油孔部よりも前記モータからの軸方向距離が遠く、
     前記第2油孔部は前記第1油孔部よりも開口面積が大きい、動力伝達装置。
    In claim 8.
    The second oil hole portion has a longer axial distance from the motor than the first oil hole portion.
    A power transmission device in which the second oil hole portion has a larger opening area than the first oil hole portion.
  10.  請求項8において、
     前記第1油孔部及び前記第2油孔部は、前記モータからの距離に応じた第1加算量が大きいほど開口面積が大きく設定され、
     前記第1油孔部及び前記第2油孔部は、潤滑油供給先の基準回転速度に応じた第2加算量が大きいほど開口面積が大きく設定され、
     前記距離が大きいほど前記第1加算量は大きく設定され、
     前記基準回転速度が大きいほど前記第2加算量は大きく設定される、動力伝達装置。
    In claim 8.
    The opening area of the first oil hole portion and the second oil hole portion is set to be larger as the first addition amount according to the distance from the motor is larger.
    The opening area of the first oil hole portion and the second oil hole portion is set to be larger as the second addition amount according to the reference rotation speed of the lubricating oil supply destination is larger.
    The larger the distance, the larger the first addition amount is set.
    A power transmission device in which the second addition amount is set larger as the reference rotation speed is larger.
  11.  モータと、
     前記モータの下流に接続されたギアと、
     前記モータの内周を貫通するシャフトと、を有し、
     前記シャフトの外周と前記モータの内周との間において前記モータ側から前記ギア側へ向かって潤滑油を油送する油送構造を有し、
     前記シャフトの外周には、第1中空軸部に形成された第1油孔部と、第2中空軸部に形成された第2油孔部と、が形成されており、
     前記第1油孔部は前記第2油孔部と軸方向にオフセットして配置された動力伝達装置の製造方法であって、
     前記動力伝達装置は潤滑油供給口が設けられた潤滑油供給部材を有し、
     前記シャフトには、前記潤滑油供給口を介して潤滑油が供給され、
     前記第1油孔部及び前記第2油孔部は、前記モータからの距離に応じた第1加算量が大きいほど開口面積を大きく設定し、
     前記第1油孔部及び前記第2油孔部は、潤滑油供給先の基準回転速度に応じた第2加算量が大きいほど開口面積を大きく設定し、
     前記距離が大きいほど前記第1加算量を大きく設定し、
     前記基準回転速度が大きいほど前記第2加算量を大きく設定する、動力伝達装置の製造方法。
    With the motor
    With the gear connected to the downstream of the motor,
    It has a shaft that penetrates the inner circumference of the motor.
    It has an oil feeding structure that feeds lubricating oil from the motor side to the gear side between the outer circumference of the shaft and the inner circumference of the motor.
    A first oil hole portion formed in the first hollow shaft portion and a second oil hole portion formed in the second hollow shaft portion are formed on the outer periphery of the shaft.
    The first oil hole portion is a method for manufacturing a power transmission device arranged so as to be offset in the axial direction from the second oil hole portion.
    The power transmission device has a lubricating oil supply member provided with a lubricating oil supply port.
    Lubricating oil is supplied to the shaft through the lubricating oil supply port.
    The opening area of the first oil hole portion and the second oil hole portion is set to be larger as the first addition amount according to the distance from the motor is larger.
    The opening area of the first oil hole portion and the second oil hole portion is set larger as the second addition amount according to the reference rotation speed of the lubricating oil supply destination is larger.
    The larger the distance, the larger the first addition amount is set.
    A method for manufacturing a power transmission device, wherein the larger the reference rotation speed is, the larger the second addition amount is set.
PCT/JP2020/021045 2019-06-13 2020-05-28 Power transmission device and method for manufacturing power transmission device WO2020250694A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-110390 2019-06-13
JP2019110390A JP2022120207A (en) 2019-06-13 2019-06-13 Power transmission device and method of manufacturing the same
JP2019-110391 2019-06-13
JP2019110391A JP2022120208A (en) 2019-06-13 2019-06-13 power transmission device

Publications (1)

Publication Number Publication Date
WO2020250694A1 true WO2020250694A1 (en) 2020-12-17

Family

ID=73781975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021045 WO2020250694A1 (en) 2019-06-13 2020-05-28 Power transmission device and method for manufacturing power transmission device

Country Status (1)

Country Link
WO (1) WO2020250694A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681929A (en) * 1992-09-07 1994-03-22 Aisin Aw Co Ltd Driving unit for electric vehicle
JP2008057758A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Power transmission device and vehicle
JP2014009744A (en) * 2012-06-29 2014-01-20 Nifco Inc Lubricant path structure
WO2014097345A1 (en) * 2012-12-17 2014-06-26 株式会社Tbk Fluid supply device
US20180076687A1 (en) * 2016-09-14 2018-03-15 Borgwarner Inc. Electric vehicle drive system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681929A (en) * 1992-09-07 1994-03-22 Aisin Aw Co Ltd Driving unit for electric vehicle
JP2008057758A (en) * 2006-09-04 2008-03-13 Toyota Motor Corp Power transmission device and vehicle
JP2014009744A (en) * 2012-06-29 2014-01-20 Nifco Inc Lubricant path structure
WO2014097345A1 (en) * 2012-12-17 2014-06-26 株式会社Tbk Fluid supply device
US20180076687A1 (en) * 2016-09-14 2018-03-15 Borgwarner Inc. Electric vehicle drive system

Similar Documents

Publication Publication Date Title
JP5136688B2 (en) Lubrication structure of power transmission device
JP2018105419A (en) Lubrication structure of hybrid vehicle
US11022208B2 (en) Drive-force transmitting apparatus for vehicle
JP2018189179A (en) Power device
CN113472137B (en) Driving device
US11906035B2 (en) Power transmission device
JP2016191418A (en) Differential device
JP5304237B2 (en) Lubricating structure of planetary gear mechanism
WO2020250694A1 (en) Power transmission device and method for manufacturing power transmission device
JP7262890B2 (en) power transmission device
JP2021107737A (en) Power transmission device
US20230313877A1 (en) Power transmission device
US11746883B2 (en) Power transmission device
WO2021137278A1 (en) Power transmission device
JP2021124185A (en) Power transmission device
JP7210115B2 (en) power transmission device
JP2012149692A (en) Differential device
JP2022120207A (en) Power transmission device and method of manufacturing the same
JP2021110333A (en) Power transmission device
JP2013060976A (en) Lubrication structure of final reduction gear
JP2021162136A (en) Lubricating structure of transmission
JP2022120208A (en) power transmission device
JP2020128792A (en) Power transmission apparatus
JP7282451B2 (en) power transmission device
WO2021137279A1 (en) Power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20822735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP