WO2021137279A1 - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
WO2021137279A1
WO2021137279A1 PCT/JP2020/045421 JP2020045421W WO2021137279A1 WO 2021137279 A1 WO2021137279 A1 WO 2021137279A1 JP 2020045421 W JP2020045421 W JP 2020045421W WO 2021137279 A1 WO2021137279 A1 WO 2021137279A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
case
gear
rotation axis
power transmission
Prior art date
Application number
PCT/JP2020/045421
Other languages
French (fr)
Japanese (ja)
Inventor
鷹也 加賀見
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2021568457A priority Critical patent/JP7392220B2/en
Publication of WO2021137279A1 publication Critical patent/WO2021137279A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/037Gearboxes for accommodating differential gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating

Definitions

  • the present invention relates to a power transmission device.
  • Patent Document 1 discloses a power transmission device for an electric vehicle having a bevel gear type differential mechanism and a planetary gear mechanism.
  • This planetary gear mechanism comprises a stepped pinion gear having a large pinion gear and a small pinion gear.
  • the components of the power transmission device are densely arranged.
  • Various measures are required to properly lubricate each of the densely arranged components.
  • it is desired to improve the lubrication amount efficiency.
  • the power transmission device in a certain aspect of the present invention is With a differential mechanism It has a case that houses the differential mechanism and has a guide portion, and has.
  • the case has an oil passage in the case into which the lubricating oil is introduced via the inner peripheral surface of the guide portion that projects outward in the axial direction.
  • the lubrication amount efficiency can be improved.
  • FIG. 1 is a skeleton diagram illustrating a power transmission device 1 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view illustrating the power transmission device 1 according to the present embodiment.
  • FIG. 3 is an enlarged view around the planetary reduction gear 4 of the power transmission device 1.
  • FIG. 4 is an enlarged view of the power transmission device 1 around the differential mechanism 5.
  • the power transmission device 1 includes a motor 2 and a planetary reduction gear 4 (reduction mechanism) that decelerates the output rotation of the motor 2 and inputs it to the differential mechanism 5.
  • the power transmission device 1 also has a drive shaft 9 (9A, 9B) and a park lock mechanism 3.
  • the park lock mechanism 3, the planetary reduction gear 4, the differential mechanism 5, and the drive shafts 9 (9A, 9B) are arranged along the transmission path of the output rotation around the rotation axis X of the motor 2. , Are provided.
  • the axis of the drive shaft 9 (9A, 9B) is coaxial with the rotation axis X of the motor 2.
  • the power transmission device 1 After the output rotation of the motor 2 is decelerated by the planetary reduction gear 4 and input to the differential mechanism 5, the power transmission device 1 is mounted via the drive shafts 9 (9A, 9B). It is transmitted to the left and right drive wheels W and W of the vehicle.
  • the planetary reduction gear 4 is connected to the downstream side of the motor 2.
  • the differential mechanism 5 is connected downstream of the planetary reduction gear 4.
  • the drive shafts 9 (9A, 9B) are connected downstream of the differential mechanism 5.
  • the main body box 10 of the power transmission device 1 has a first box 11 that houses the motor 2 and a second box 12 that is externally inserted into the first box 11.
  • the main body box 10 has a third box 13 assembled to the first box 11 and a fourth box 14 assembled to the second box 12.
  • the first box 11 has a cylindrical support wall portion 111 and a flange-shaped joint portion 112 provided at one end 111a of the support wall portion 111.
  • the first box 11 is provided with the support wall portion 111 oriented along the rotation axis X of the motor 2.
  • the motor 2 is housed inside the support wall portion 111.
  • the joint portion 112 is provided in a direction orthogonal to the rotation axis X.
  • the joint portion 112 is formed with an outer diameter larger than that of the support wall portion 111.
  • the second box 12 includes a cylindrical peripheral wall portion 121, a flange-shaped joint portion 122 provided at one end 121a of the peripheral wall portion 121, and a flange-shaped joint portion 123 provided at the other end 121b of the peripheral wall portion 121. ,have.
  • the peripheral wall portion 121 is formed with an inner diameter that can be extrapolated to the support wall portion 111 of the first box 11.
  • the first box 11 and the second box 12 are assembled to each other by externally inserting the peripheral wall portion 121 of the second box 12 into the support wall portion 111 of the first box 11.
  • the joint portion 122 on the one end 121a side of the peripheral wall portion 121 is in contact with the joint portion 112 of the first box 11 from the rotation axis X direction. These joints 122 and 112 are connected to each other by bolts (not shown).
  • a plurality of concave grooves 111b are provided on the outer periphery of the support wall portion 111.
  • a plurality of recessed grooves 111b are provided at intervals in the rotation axis X direction.
  • Each of the concave grooves 111b is provided over the entire circumference in the circumferential direction around the rotation axis X.
  • the peripheral wall portion 121 of the second box 12 is externally inserted into the support wall portion 111 of the first box 11.
  • the opening of the concave groove 111b is closed by the peripheral wall portion 121.
  • a plurality of cooling passages CP through which cooling water flows are formed between the support wall portion 111 and the peripheral wall portion 121.
  • ring grooves 111c and 111c are formed on both sides of the region where the concave groove 111b is provided.
  • Seal rings 113 and 113 are fitted and attached to the ring grooves 111c and 111c. These seal rings 113 are pressed against the inner circumference of the peripheral wall portion 121 extrapolated to the support wall portion 111 to seal the gap between the outer circumference of the support wall portion 111 and the inner circumference of the peripheral wall portion 121.
  • the other end 121b of the second box 12 is provided with a wall portion 120 extending toward the inner diameter side.
  • the wall portion 120 is provided in a direction orthogonal to the rotation axis X.
  • An opening 120a through which the drive shaft 9A is inserted is provided in a region of the wall portion 120 that intersects with the rotation axis X.
  • a tubular motor support portion 125 surrounding the opening 120a is provided on the surface on the motor 2 side (right side in the drawing).
  • the motor support portion 125 is inserted inside the coil end 253b described later.
  • the motor support portion 125 faces the end portion 21b of the rotor core 21 with a gap in the rotation axis X direction.
  • the peripheral wall portion 121 of the second box 12 has a thicker radial thickness in the lower region than in the upper region in the vertical direction with respect to the mounted state of the power transmission device 1 in the vehicle.
  • An oil reservoir 128 is provided so as to penetrate in the rotation axis X direction in the thick region in the radial direction.
  • the oil reservoir 128 communicates with the axial oil passage 138 provided at the joint 132 of the third box 13 via the communication hole 112a.
  • the communication hole 112a is provided in the joint portion 112 of the first box 11.
  • the third box 13 has a wall portion 130 orthogonal to the rotation axis X.
  • a ring-shaped joint 132 is provided on the outer periphery of the wall 130 when viewed from the rotation axis X direction.
  • the third box 13 is located on the opposite side (right side in the drawing) of the differential mechanism 5 when viewed from the first box 11.
  • the joint portion 132 of the third box 13 is joined to the joint portion 112 of the first box 11 from the rotation axis X direction.
  • the third box 13 and the first box 11 are connected to each other by bolts (not shown). In this state, in the first box 11, the opening of the support wall portion 111 on the joint portion 122 side (right side in the drawing) is closed by the third box 13.
  • an insertion hole 130a for the drive shaft 9A is provided in the central portion of the wall portion 130.
  • a lip seal RS is provided on the inner circumference of the insertion hole 130a.
  • a lip portion (not shown) is elastically brought into contact with the outer circumference of the drive shaft 9A.
  • the gap between the inner circumference of the insertion hole 130a and the outer circumference of the drive shaft 9A is sealed by the lip seal RS.
  • a peripheral wall portion 131 surrounding the insertion hole 130a is provided on the surface of the wall portion 130 on the side of the first box 11 (left side in the drawing).
  • a drive shaft 9A is supported on the inner circumference of the peripheral wall portion 131 via a bearing B4.
  • a motor support portion 135 is provided on the motor 2 side (left side in the drawing) when viewed from the peripheral wall portion 131.
  • the motor support portion 135 has a tubular shape that surrounds the outer circumference of the rotating shaft X at intervals.
  • a cylindrical connecting wall 136 is connected to the outer circumference of the motor support portion 135.
  • the connecting wall 136 is formed with an outer diameter larger than that of the peripheral wall portion 131 on the wall portion 130 side (right side in the drawing).
  • the connection wall 136 is provided in a direction along the rotation axis X, and extends in a direction away from the motor 2.
  • the connection wall 136 connects the motor support portion 135 and the wall portion 130 of the third box 13.
  • the motor support portion 135 is supported by the third box 13 via the connecting wall 136.
  • One end 20a side of the motor shaft 20 penetrates the inside of the motor support portion 135 from the motor 2 side to the peripheral wall portion 131 side.
  • a bearing B1 is supported on the inner circumference of the motor support portion 135.
  • the outer circumference of the motor shaft 20 is supported by the motor support portion 135 via the bearing B1.
  • a lip seal RS is provided at a position adjacent to the bearing B1.
  • an oil hole 136a which will be described later, is opened on the inner circumference of the connecting wall 136.
  • the oil OL flows into the space (internal space Sc) surrounded by the connecting wall 136 from the oil hole 136a.
  • the lip seal RS is provided to prevent the oil OL in the connecting wall 136 from flowing into the motor 2 side.
  • the fourth box 14 has a peripheral wall portion 141 surrounding the outer periphery of the planetary reduction gear 4 and the differential mechanism 5, and a flange-shaped joint portion 142 provided at the end portion of the peripheral wall portion 141 on the second box 12 side. doing.
  • the fourth box 14 is located on the differential mechanism 5 side (left side in the drawing) when viewed from the second box 12.
  • the joint portion 142 of the fourth box 14 is joined to the joint portion 123 of the second box 12 from the rotation axis X direction.
  • the fourth box 14 and the second box 12 are connected to each other by bolts (not shown).
  • a motor chamber Sa accommodating the motor 2 and a gear chamber Sb accommodating the planetary reduction gear 4 and the differential mechanism 5 are formed inside the main body box 10 of the power transmission device 1.
  • the motor chamber Sa is formed inside the first box 11 between the wall portion 120 of the second box 12 and the wall portion 130 of the third box 13.
  • the gear chamber Sb is formed on the inner diameter side of the fourth box 14 between the wall portion 120 of the second box 12 and the peripheral wall portion 141 of the fourth box 14.
  • a plate member 8 is provided inside the gear chamber Sb.
  • the plate member 8 is fixed to the fourth box 14.
  • the plate member 8 divides the gear chamber Sb into a first gear chamber Sb1 accommodating the planetary reduction gear 4 and the differential mechanism 5 and a second gear chamber Sb2 accommodating the park lock mechanism 3.
  • the second gear chamber Sb2 is located between the first gear chamber Sb1 and the motor chamber Sa in the X direction of the rotation axis.
  • the motor 2 has a cylindrical motor shaft 20, a cylindrical rotor core 21 extrapolated to the motor shaft 20, and a stator core 25 that surrounds the outer circumference of the rotor core 21 at intervals.
  • bearings B1 and B1 are extrapolated and fixed on both sides of the rotor core 21.
  • the bearing B1 located on one end 20a side (right side in the drawing) of the motor shaft 20 as viewed from the rotor core 21 is supported on the inner circumference of the motor support portion 135 of the third box 13.
  • the bearing B1 located on the other end 20b side is supported on the inner circumference of the cylindrical motor support portion 125 of the second box 12.
  • the motor support portions 135 and 125 are arranged on the inner diameter side of the coil ends 253a and 253b, which will be described later, with one end 21a and the other end 21b of the rotor core 21 facing each other with a gap in the rotation axis X direction. ing.
  • the rotor core 21 is formed by laminating a plurality of silicon steel plates. Each of the silicon steel plates is extrapolated to the motor shaft 20 in a state where the relative rotation with the motor shaft 20 is restricted.
  • the silicon steel plate has a ring shape when viewed from the rotation axis X direction of the motor shaft 20. On the outer peripheral side of the silicon steel plate, magnets of N pole and S pole (not shown) are alternately provided in the circumferential direction around the rotation axis X.
  • the stator core 25 that surrounds the outer circumference of the rotor core 21 is formed by laminating a plurality of electromagnetic steel sheets.
  • the stator core 25 is fixed to the inner circumference of the cylindrical support wall portion 111 of the first box 11.
  • Each of the electrical steel sheets has a ring-shaped yoke portion 251 fixed to the inner circumference of the support wall portion 111, and a teeth portion 252 protruding from the inner circumference of the yoke portion 251 toward the rotor core 21.
  • the stator core 25 having a configuration in which the winding 253 is distributed and wound across a plurality of teeth portions 252 is adopted.
  • the stator core 25 is longer in the rotation axis X direction than the rotor core 21 by the amount of the coil ends 253a and 253b protruding in the rotation axis X direction.
  • stator core having a configuration in which windings are centrally wound may be adopted for each of the plurality of tooth portions 252 protruding toward the rotor core 21 side.
  • the wall portion 120 (motor support portion 125) of the second box 12 is provided with an opening 120a.
  • the other end 20b side of the motor shaft 20 penetrates the opening 120a to the differential mechanism 5 side (left side in the drawing) and is located in the fourth box 14.
  • the other end 20b of the motor shaft 20 faces the side gear 54A, which will be described later, with a gap in the rotation axis X direction inside the fourth box 14.
  • a step portion 201 is provided in a region located in the fourth box 14.
  • the step portion 201 is located in the vicinity of the motor support portion 125.
  • a lip seal RS supported on the inner circumference of the motor support portion 125 is in contact with the outer periphery of the region between the step portion 201 and the bearing B1.
  • the lip seal RS separates the motor chamber Sa accommodating the motor 2 and the gear chamber Sb in the fourth box 14.
  • An oil OL for lubricating the planetary reduction gear 4 and the differential mechanism 5 is sealed in the inner diameter side of the fourth box 14 (see FIG. 2).
  • the lip seal RS is provided to prevent the inflow of oil OL into the motor chamber Sa.
  • the region from the step portion 201 to the vicinity of the other end 20b is a fitting portion 202 provided with a spline on the outer periphery.
  • a park gear 30 and a sun gear 41 are spline-fitted on the outer circumference of the fitting portion 202.
  • one side surface of the park gear 30 in the X direction of the rotation axis is in contact with the step portion 201 (right side in the drawing).
  • One end 410a of the cylindrical base 410 of the sun gear 41 is in contact with the other side surface of the park gear 30 (left side in the figure).
  • a nut N screwed into the other end 20b of the motor shaft 20 is in pressure contact with the other end 410b of the base portion 410 from the rotation axis X direction.
  • the sun gear 41 and the park gear 30 are provided so as not to rotate relative to the motor shaft 20 in a state of being sandwiched between the nut N and the step portion 201.
  • the sun gear 41 has a tooth portion 411 on the outer periphery of the motor shaft 20 on the other end 20b side.
  • a large-diameter gear portion 431 of the stepped pinion gear 43 meshes with the outer periphery of the tooth portion 411.
  • the stepped pinion gear 43 has a large-diameter gear portion 431 that meshes with the sun gear 41 and a small-diameter gear portion 432 having a diameter smaller than that of the large-diameter gear portion 431.
  • the stepped pinion gear 43 is a gear component in which a large-diameter gear portion 431 and a small-diameter gear portion 432 are integrally provided side by side in the direction of the axis X1 parallel to the rotation axis X.
  • the large-diameter gear portion 431 is formed with an outer diameter R1 larger than the outer diameter R2 of the small-diameter gear portion 432.
  • the stepped pinion gear 43 is provided in a direction along the axis X1. In this state.
  • the large-diameter gear portion 431 is located on the motor 2 side (on the right side in the drawing).
  • the outer circumference of the small diameter gear portion 432 meshes with the inner circumference of the ring gear 42.
  • the ring gear 42 has a ring shape that surrounds the rotation shaft X at predetermined intervals.
  • a plurality of engaging teeth 421 protruding outward in the radial direction are provided on the outer periphery of the ring gear 42.
  • the plurality of engaging teeth 421 are provided at intervals in the circumferential direction around the rotation axis X.
  • the engaging teeth 421 provided on the outer circumference are spline-fitted to the tooth portions 146a provided on the support wall portion 146 of the fourth box 14.
  • the ring gear 42 is restricted from rotating around the rotation axis X.
  • the stepped pinion gear 43 has a through hole 430 that penetrates the inner diameter side of the large-diameter gear portion 431 and the small-diameter gear portion 432 in the axis X1 direction.
  • the stepped pinion gear 43 is rotatably supported on the outer circumference of the pinion shaft 44 penetrating the through hole 430 via needle bearings NB and NB.
  • an intermediate spacer MS is interposed between the needle bearing NB that supports the inner circumference of the large-diameter gear portion 431 and the needle bearing NB that supports the inner circumference of the small-diameter gear portion 432.
  • an in-shaft oil passage 440 is provided inside the pinion shaft 44.
  • the in-shaft oil passage 440 penetrates from one end 44a of the pinion shaft 44 to the other end 44b along the axis X1.
  • the pinion shaft 44 is provided with oil holes 442 and 443 that communicate the in-shaft oil passage 440 and the outer circumference of the pinion shaft 44.
  • the oil hole 443 opens in the region where the needle bearing NB that supports the inner circumference of the large-diameter gear portion 431 is provided.
  • the oil hole 442 is open in the region where the needle bearing NB that supports the inner circumference of the small diameter gear portion 432 is provided.
  • the oil holes 443 and 442 are opened in the region where the stepped pinion gear 43 is extrapolated.
  • the pinion shaft 44 is provided with an introduction path 441 for introducing the oil OL into the in-shaft oil passage 440.
  • the introduction path 441 is open to a region located in the support hole 71a of the second case portion 7, which will be described later.
  • the introduction path 441 communicates the in-shaft oil passage 440 with the outer circumference of the pinion shaft 44.
  • An oil passage 781 in the case is opened on the inner circumference of the support hole 71a.
  • the oil passage 781 in the case communicates the outer circumference of the guide portion 78 protruding from the base portion 71 of the second case portion 7 on the rotation axis X side with the inner circumference of the support hole 71a.
  • the oil passage 781 in the case is inclined with respect to the axis X1.
  • the oil passage 781 in the case is inclined toward the rotation axis X side toward the slit-shaped oil hole 710 provided in the base 71.
  • the oil OL scraped up by the differential case 50 flows into the oil passage 781 in the case.
  • the oil OL that moves to the outer diameter side flows into the oil passage 781 inside the case due to the centrifugal force generated by the rotation of the differential case 50.
  • the oil OL that has flowed from the oil passage 781 in the case into the introduction passage 441 flows into the in-shaft oil passage 440 of the pinion shaft 44.
  • the oil OL that has flowed into the in-shaft oil passage 440 is discharged radially outward from the oil holes 442 and 443.
  • the oil OL discharged from the oil holes 442 and 443 lubricates the needle bearing NB extrapolated to the pinion shaft 44.
  • a through hole 444 is provided on the other end 44b side of the region where the introduction path 441 is provided.
  • the through hole 444 penetrates the pinion shaft 44 in the diameter line direction.
  • the pinion shaft 44 is provided so that the through hole 444 and the insertion hole 782 on the second case portion 7 side, which will be described later, are in phase with each other around the axis X1.
  • the positioning pin P inserted into the insertion hole 782 penetrates the through hole 444 of the pinion shaft 44.
  • the pinion shaft 44 is supported on the second case portion 7 side in a state where rotation around the axis X1 is restricted.
  • the region protruding from the stepped pinion gear 43 is the first shaft portion 445.
  • the first shaft portion 445 is supported by a support hole 61a provided in the first case portion 6 of the differential case 50.
  • a region protruding from the stepped pinion gear 43 is the second shaft portion 446.
  • the second shaft portion 446 is supported by a support hole 71a provided in the second case portion 7 of the differential case 50.
  • the first shaft portion 445 means a region on the pinion shaft 44 on the one end 44a side where the stepped pinion gear 43 is not extrapolated.
  • the second shaft portion 446 means a region on the other end 44b side of the pinion shaft 44 where the stepped pinion gear 43 is not extrapolated.
  • the length of the second shaft portion 446 in the axis X1 direction is longer than that of the first shaft portion 445.
  • FIG. 5 is a perspective view of the differential mechanism 5 around the differential case 50.
  • FIG. 6 is an exploded perspective view of the differential mechanism 5 around the differential case 50.
  • the differential case 50 is a case for accommodating the differential mechanism 5.
  • the differential case 50 is formed by assembling the first case portion 6 and the second case portion 7 in the rotation axis X direction.
  • the first case portion 6 and the second case portion 7 of the differential case 50 have a function as a carrier for supporting the pinion shaft 44 of the planetary reduction gear 4.
  • three pinion mate gears 52 and three pinion mate shafts 51 are provided between the first case portion 6 and the second case portion 7 of the differential case 50.
  • the pinion mate shafts 51 are provided at equal intervals in the circumferential direction around the rotation axis X (see FIG. 6).
  • Each inner diameter end of the pinion mate shaft 51 is connected to a common connecting portion 510.
  • One pinion mate gear 52 is extrapolated to each of the pinion mate shaft 51.
  • Each of the pinion mate gears 52 is in contact with the connecting portion 510 from the radial outside of the rotating shaft X. In this state, each of the pinion mate gears 52 is rotatably supported by the pinion mate shaft 51.
  • a spherical washer 53 is extrapolated to the pinion mate shaft 51.
  • the spherical washer 53 is in contact with the spherical outer circumference of the pinion mate gear 52.
  • the side gear 54A is located on one side of the connecting portion 510 in the rotation axis X direction, and the side gear 54B is located on the other side.
  • the side gear 54A is rotatably supported by the first case portion 6.
  • the side gear 54B is rotatably supported by the second case portion 7.
  • the side gear 54A meshes with three pinion mate gears 52 from one side in the rotation axis X direction.
  • the side gear 54B meshes with the three pinion mate gears 52 from the other side in the rotation axis X direction.
  • FIG. 7 to 10 are views for explaining the first case portion 6.
  • FIG. 7 is a perspective view of the first case portion 6 as viewed from the second case portion 7 side.
  • FIG. 8 is a plan view of the first case portion 6 as viewed from the second case portion 7 side.
  • FIG. 9 is a schematic view of a cross section taken along the line AA in FIG.
  • FIG. 9 shows the arrangement of the pinion mate shaft 51 and the pinion mate gear 52 with virtual lines.
  • FIG. 10 is a schematic view of a cross section taken along the line AA in FIG. In FIG. 10, the arrangement of the side gear 54A, the stepped pinion gear 43, and the drive shaft 9A is shown by a virtual line while omitting the illustration of the connecting beam 62 on the back side of the paper.
  • the first case portion 6 has a ring-shaped base portion 61.
  • the base portion 61 is a plate-shaped member having a thickness W61 in the rotation axis X direction.
  • an opening 60 is provided in the central portion of the base portion 61.
  • a tubular wall portion 611 surrounding the opening 60 is provided on the surface of the base portion 61 opposite to the second case portion 7 (on the right side in the drawing). The outer circumference of the tubular wall portion 611 is supported by a plate member 8 via a bearing B3 (see FIG. 3).
  • Three connecting beams 62 extending to the second case portion 7 side are provided on the surface of the base portion 61 on the second case portion 7 side (left side in the drawing).
  • the connecting beams 62 are provided at equal intervals in the circumferential direction around the rotation axis X (see FIGS. 7 and 8).
  • the connecting beam 62 has a base portion 63 orthogonal to the base portion 61 and a connecting portion 64 wider than the base portion 63.
  • the tip surface 64a of the connecting portion 64 is a flat surface orthogonal to the rotation axis X, and the tip surface 64a is provided with a support groove 65 for supporting the pinion mate shaft 51. ..
  • the support groove 65 is formed in a straight line along the radius line L of the ring-shaped base portion 61 when viewed from the rotation axis X direction.
  • the support groove 65 crosses the central portion of the connecting portion 64 in the circumferential direction around the rotation axis X from the inner diameter side to the outer diameter side.
  • the support groove 65 has a semicircular shape along the outer diameter of the pinion mate shaft 51.
  • An arc portion 641 is formed on the inner diameter side (rotation shaft X side) of the connecting portion 64 in a shape along the outer circumference of the pinion mate gear 52.
  • the outer circumference of the pinion mate gear 52 is supported via the spherical washer 53.
  • an oil groove 642 is provided in a direction along the radius line L described above. The oil groove 642 is provided in a range from the support groove 65 of the pinion mate shaft 51 to the gear support portion 66 fixed to the inner circumference of the connecting portion 64.
  • the gear support portion 66 is connected to a boundary portion between the base portion 63 and the connecting portion 64.
  • the gear support portion 66 is provided in a direction orthogonal to the rotation axis X.
  • the gear support portion 66 has a through hole 660 in the central portion. As shown in FIG. 8, the outer circumference of the gear support portion 66 is connected to the inner circumference of the three connecting portions 64. In this state, the center of the through hole 660 is located on the rotation axis X.
  • the gear support portion 66 is provided with a recess 661 surrounding the through hole 660 on the surface opposite to the base portion 61 (left side in the drawing).
  • a ring-shaped washer 55 that supports the back surface of the side gear 54A is housed in the recess 661.
  • a cylindrical wall portion 541 is provided on the back surface of the side gear 54A. The washer 55 is extrapolated to the cylinder wall portion 541.
  • Three oil grooves 662 are provided on the surface of the gear support portion 66 on the recess 661 side when viewed from the rotation axis X direction.
  • the oil grooves 662 are provided at intervals in the circumferential direction around the rotation axis X.
  • the oil groove 662 extends from the inner circumference to the outer circumference of the gear support portion 66 along the radius line L described above.
  • the oil groove 662 communicates with the oil groove 642 on the arc portion 641 side described above.
  • a support hole 61a of the pinion shaft 44 is opened in the base portion 61.
  • the support holes 61a are open in the region between the connecting beams 62, 62 arranged at intervals in the circumferential direction around the rotation axis X.
  • the base portion 61 is provided with a boss portion 616 that surrounds the support hole 61a.
  • a washer Wc (see FIG. 10) extrapolated to the pinion shaft 44 comes into contact with the boss portion 616 from the rotation axis X direction.
  • an oil groove 617 is provided in a range from the central opening 60 to the boss portion 616.
  • the oil groove 617 is formed in a tapered shape in which the width in the circumferential direction around the rotation axis X becomes narrower as it approaches the boss portion 616.
  • the oil groove 617 is in contact with the oil groove 618 provided in the boss portion 616.
  • bolt holes 67 and 67 are provided on both sides of the support groove 65.
  • a connecting portion 74 on the side of the second case portion 7 is joined to the connecting portion 64 of the first case portion 6 from the rotation axis X direction.
  • bolts B penetrating the connecting portion 74 on the second case portion 7 side are screwed into the bolt holes 67 and 67 and joined to each other.
  • FIG. 11 to 16 are views for explaining the second case portion 7.
  • FIG. 11 is a perspective view of the second case portion 7 as viewed from the first case portion 6 side.
  • FIG. 12 is a plan view of the second case portion 7 as viewed from the first case portion 6 side.
  • FIG. 13 is a schematic view of a cross section taken along the line AA in FIG.
  • FIG. 13 shows the arrangement of the pinion mate shaft 51 and the pinion mate gear 52 by a virtual line.
  • FIG. 14 is a schematic view of a cross section taken along the line AA in FIG. In FIG. 14, the arrangement of the side gear 54B, the stepped pinion gear 43, and the drive shaft 9B is shown by a virtual line while omitting the illustration of the connecting portion 74 on the back side of the paper.
  • FIG. 14 is a schematic view of a cross section taken along the line AA in FIG. In FIG. 14, the arrangement of the side gear 54B, the stepped pinion gear 43, and the drive shaft 9B is shown
  • FIG. 15 is a perspective view of the second case portion 7 as viewed from the side opposite to the first case portion 6.
  • FIG. 16 is a plan view of the second case portion 7 as viewed from the side opposite to the first case portion 6.
  • FIG. 17 is a schematic view of a cross section taken along the line AA in FIG.
  • FIG. 18 is a schematic view of a cross section taken along the line BB in FIG.
  • FIG. 19 is a schematic view of a CC cross section in FIG.
  • FIG. 20 is a diagram illustrating the operation of the rib 711.
  • the second case portion 7 has a ring-shaped base portion 71.
  • the base portion 71 is a plate-shaped member having a thickness W71 in the rotation axis X direction.
  • a through hole 70 that penetrates the base portion 71 in the thickness direction is provided in the central portion of the base portion 71.
  • a step portion 722 is provided on the outer periphery of the cylinder wall portion 72.
  • the outer diameter of the tubular wall portion 72 is larger on the base portion 71 side than on the tip end side.
  • the height h72 from the base portion 71 to the step portion 722 is higher than the height h73 from the base portion 71 to the guide portion 73 (h73 ⁇ h72).
  • a protruding portion 73a protruding toward the rotation shaft X side is provided at the tip of the guide portion 73.
  • the protruding portion 73a is provided over the entire circumference in the circumferential direction around the rotation axis X.
  • three support holes 71a of the pinion shaft 44 are opened on the outer diameter side of the guide portion 73.
  • the support holes 71a are provided at intervals in the circumferential direction around the rotation axis X.
  • On the inner diameter side of the guide portion 73 three oil holes 710 that penetrate the base portion 71 in the thickness direction are provided.
  • the oil hole 710 opens toward the outside of the differential case 50 in the X direction of the rotation axis.
  • the oil hole 710 is formed in an arc shape along the inner circumference of the guide portion 73 when viewed from the rotation axis X direction.
  • the oil holes 710 are formed in a predetermined angle range in the circumferential direction around the rotation axis X. As shown in FIG. 13, the outer peripheral edge of the oil hole 710 is flush with the inner peripheral surface 731 of the guide portion 73.
  • the oil holes 710 are provided at intervals in the circumferential direction around the rotation axis X.
  • Each of the oil holes 710 is provided across the inner diameter side of the support hole 71a in the circumferential direction around the rotation axis X.
  • a rib 711 protruding toward the front side of the paper surface is provided between the oil holes 710 and 710 adjacent to each other in the circumferential direction around the rotation axis X.
  • the rib 711 extends linearly in the radial direction of the rotation axis X.
  • the rib 711 is provided so as to straddle the guide portion 73 on the outer diameter side and the cylinder wall portion 72 on the inner diameter side.
  • recessed grooves 711a and 711b are formed on one side and the other side of the rib 711 in the circumferential direction around the rotation axis X.
  • These concave grooves 711a and 711b are formed in a range from the cylinder wall portion 72 on the inner diameter side to the protruding portion 73a of the guide portion 73.
  • the three ribs 711 are provided at intervals in the circumferential direction around the rotation axis X.
  • the three ribs 711 are provided so as to be out of phase with respect to the oil hole 710 in the circumferential direction around the rotation axis X by approximately 45 degrees.
  • bolt accommodating portions 76, 76 recessed on the inner side of the paper surface are provided between the support holes 71a, 71a adjacent to each other in the circumferential direction around the rotation axis X. These bolt accommodating portions 76, 76 are provided in a symmetrical positional relationship with a radius line L in between.
  • the bolt accommodating portion 76 is open to the outer circumference 71c of the base portion 71.
  • a bolt insertion hole 77 is opened inside the bolt accommodating portion 76. The insertion hole 77 penetrates the base 71 in the thickness direction (rotation axis X direction).
  • three connecting portions 74 projecting to the first case portion 6 side are provided on the surface of the base portion 71 on the first case portion 6 side (right side in the drawing).
  • the connecting portions 74 are provided at equal intervals in the circumferential direction around the rotation axis X.
  • the connecting portion 74 is formed with a width W7 in the same circumferential direction as the connecting portion 64 on the first case portion 6 side.
  • the tip surface 74a of the connecting portion 74 is a flat surface orthogonal to the rotation axis X.
  • the tip surface 74a is provided with a support groove 75 for supporting the pinion mate shaft 51.
  • the support groove 75 is formed linearly along the radius line L of the base 71 when viewed from the rotation axis X direction.
  • the support groove 75 is formed so as to cross the connecting portion 74 from the inner diameter side to the outer diameter side.
  • the support groove 75 has a semicircular shape along the outer diameter of the pinion mate shaft 51.
  • An arc portion 741 along the outer circumference of the pinion mate gear 52 is provided on the inner diameter side (rotation shaft X side) of the connecting portion 74.
  • the outer circumference of the pinion mate gear 52 is supported via the spherical washer 53 (see FIGS. 13 and 14).
  • the oil groove 742 is provided in the direction along the radius line L described above.
  • the oil groove 742 is provided in a range from the support groove 75 of the pinion mate shaft 51 to the base portion 71 located on the inner circumference of the connecting portion 74.
  • the oil groove 742 communicates with the oil groove 712 provided on the surface 71b of the base 71.
  • the oil groove 712 is provided along the radius line L when viewed from the rotation axis X direction, and is formed up to the through hole 70 provided in the base portion 71.
  • a ring-shaped washer 55 that supports the back surface of the side gear 54B is placed on the surface 71b of the base portion 71.
  • a cylindrical wall portion 540 is provided on the back surface of the side gear 54B. The washer 55 is extrapolated to the cylinder wall portion 540.
  • An oil groove 721 is formed at a position intersecting the oil groove 712 on the inner circumference of the tubular wall portion 72 surrounding the through hole 70. On the inner circumference of the cylinder wall portion 72, an oil groove 721 is provided along the rotation axis X over the entire length of the cylinder wall portion 72 in the rotation axis X direction.
  • a guide portion 78 is provided between the connecting portions 74 and 74 adjacent to each other in the circumferential direction around the rotation axis X.
  • the guide portion 78 projects toward the first case portion 6 side (front side of the paper surface).
  • the guide portion 78 has a tubular shape when viewed from the rotation axis X direction.
  • the guide portion 78 surrounds the support hole 71a provided in the base portion 71.
  • the outer peripheral portion of the guide portion 78 is cut along the outer peripheral portion 71c of the base portion 71.
  • the pinion shaft 44 is inserted into the support hole 71a of the guide portion 78 from the side of the first case portion 6 in the cross-sectional view along the axis X1.
  • the pinion shaft 44 is positioned in a state where rotation around the axis X1 is restricted by the positioning pin P. In this state, the small-diameter gear portion 432 of the stepped pinion gear 43 extrapolated to the pinion shaft 44 is in contact with the guide portion 78 from the axis X1 direction with the washer Wc sandwiched between them.
  • the bearing B2 is extrapolated to the cylinder wall portion 72 of the second case portion 7.
  • the bearing B2 has an inner race in contact with a step portion 722 provided on the outer periphery of the cylinder wall portion 72 from the rotation axis X direction.
  • the bearing B2 extrapolated to the cylinder wall portion 72 is held by the support portion 145 of the fourth box 14.
  • the tubular wall portion 72 of the differential case 50 is rotatably supported by the fourth box 14 via the bearing B2.
  • a drive shaft 9B penetrating the opening 145a of the fourth box 14 is inserted into the support portion 145 from the rotation axis X direction.
  • the drive shaft 9B is rotatably supported by the support portion 145.
  • a lip seal RS is fixed to the inner circumference of the opening 145a.
  • a lip portion (not shown) of the lip seal RS is elastically in contact with the outer circumference of the cylinder wall portion 540 of the side gear 54B extrapolated to the drive shaft 9B. As a result, the gap between the outer circumference of the cylinder wall portion 540 of the side gear 54B and the inner circumference of the opening 145a is sealed.
  • the first case portion 6 of the differential case 50 is supported by the plate member 8 via the bearing B3 extrapolated to the cylinder wall portion 611 (see FIG. 2).
  • a drive shaft 9A penetrating the insertion hole 130a of the third box 13 is inserted from the direction of the rotation axis.
  • the drive shaft 9A is provided across the motor shaft 20 of the motor 2 and the inner diameter side of the sun gear 41 of the planetary reduction gear 4 in the rotation axis X direction.
  • side gears 54A and 54B are spline-fitted on the outer periphery of the tip of the drive shaft 9 (9A, 9B).
  • the side gears 54A and 54B and the drive shafts 9 (9A and 9B) are integrally rotatably connected around the rotation shaft X.
  • the side gears 54A and 54B are arranged to face each other at intervals in the rotation axis X direction.
  • the connecting portion 510 of the pinion mate shaft 51 is located between the side gears 54A and 54B.
  • a total of three pinion mate shafts 51 extend radially outward from the connecting portion 510.
  • a pinion mate gear 52 is supported on each of the pinion mate shafts 51.
  • the pinion mate gear 52 is assembled to the side gear 54A located on one side in the rotation axis X direction and the side gear 54B located on the other side in a state where the teeth are meshed with each other.
  • the lubricating oil OL is stored inside the fourth box 14.
  • the lower side of the differential case 50 is located in the stored oil OL.
  • the oil OL is stored up to the height at which the connecting beam 62 is located in the oil OL.
  • the stored oil OL is scraped up by the differential case 50 that rotates around the rotation axis X when the output rotation of the motor 2 is transmitted.
  • FIG. 21 to 26 are views for explaining the oil catch portion 15.
  • FIG. 21 is a plan view of the fourth box 14 as viewed from the third box 13 side.
  • FIG. 22 is a perspective view of the oil catch portion 15 shown in FIG. 21 as viewed from diagonally above.
  • FIG. 23 is a plan view of the fourth box 14 as viewed from the third box 13 side, and is a view showing a state in which the differential case 50 is arranged.
  • FIG. 24 is a perspective view of the oil catch portion 15 shown in FIG. 23 as viewed from diagonally above.
  • FIG. 25 is a schematic view of a cross section taken along the line AA in FIG. 23.
  • 26 is a schematic view illustrating the positional relationship between the oil catch portion 15 and the differential case 50 (first case portion 6, second case portion 7) when the power transmission device 1 is viewed from above.
  • hatching is added in order to clarify the positions of the joint portion 142 of the fourth box 14 and the support wall portion 146.
  • the fourth box 14 when viewed from the rotation axis X direction is provided with support wall portions 146 that surround the central opening 145a at predetermined intervals.
  • the inside (rotation axis X) side of the support wall portion 146 is the accommodating portion 140 of the differential case 50.
  • a space for the oil catch portion 15 and a space for the breather chamber 16 are formed in the upper part of the fourth box 14.
  • a communication port 147 for communicating the oil catch portion 15 and the accommodating portion 140 of the differential case 50 is provided in the region intersecting the vertical line VL.
  • the oil catch portion 15 and the breather chamber 16 are located on one side (left side in the figure) and the other side (right side in the figure) of the vertical line VL orthogonal to the rotation axis X, respectively.
  • the oil catch portion 15 is arranged at a position offset from the vertical line VL passing through the rotation center (rotation axis X) of the differential case 50.
  • the vertical line VL is a vertical line VL based on the installation state of the power transmission device 1 in the vehicle.
  • the vertical line VL when viewed from the rotation axis X direction is orthogonal to the rotation axis X.
  • the oil catch portion 15 is formed so as to extend to the back side of the paper surface from the support wall portion 146.
  • a support base portion 151 is provided on the lower edge of the oil catch portion 15 so as to project toward the front side of the paper surface.
  • the support base portion 151 is provided on the front side of the paper surface of the support wall portion 146 and in the range from the joint portion 142 of the fourth box 14 to the back side of the paper surface.
  • a communication port 147 is formed by cutting out a part of the support wall portion 146 on the vertical line VL side (right side in the drawing) of the oil catch portion 15 when viewed from the rotation axis X direction. Has been done.
  • the communication port 147 communicates the oil catch portion 15 with the accommodating portion 140 of the differential case 50.
  • the communication port 147 is provided in a range that crosses the vertical line VL from the breather chamber 16 side (right side in the figure) to the oil catch portion 15 side (left side in the figure) when viewed from the rotation axis X direction.
  • the differential case 50 rotates in the counterclockwise direction CCW around the rotation axis X when viewed from the third box 13 side. .. Therefore, the oil catch portion 15 is located on the downstream side in the rotation direction of the differential case 50.
  • the width of the communication port 147 in the circumferential direction is wider on the left side of the vertical line VL than on the right side.
  • the left side of the vertical line VL is the downstream side in the rotation direction of the differential case 50, and the right side is the upstream side.
  • the outer peripheral position of the rotary orbit of the second shaft portion 446 and the outer peripheral position of the rotary orbit of the large-diameter gear portion 431 are offset in the radial direction of the rotary shaft X.
  • the outer peripheral position of the rotary orbit of the second shaft portion 446 is located on the inner diameter side of the outer peripheral position of the rotary orbit of the large-diameter gear portion 431. Therefore, there is a space margin on the outer diameter side of the second shaft portion 446. By using this space and providing the oil catch portion 15, the space inside the main body box 10 can be effectively used.
  • the second shaft portion 446 projects toward the back side of the small diameter gear portion 432 when viewed from the motor 2.
  • the peripheral member of the second shaft portion 446 (for example, the guide portion 73 of the differential case 50 that supports the second shaft portion 446) is located close to the oil catch portion 15. Therefore, the oil OL (lubricating oil) can be smoothly supplied from the peripheral member to the oil catch portion 15.
  • the guide portion 73 and the oil hole 710 are located on the inner diameter side (rotating shaft X side) of the second shaft portion 446. .. Therefore, the drive shaft 9B is located on the inner diameter side (inner circumference) of the second shaft portion 446. Further, the drive shaft 9A is located on the inner diameter side (inner circumference) of the first shaft portion 445 and the stepped pinion gear 43.
  • an end portion on the outer diameter side of the oil passage 151a is opened on the inner side of the support base portion 151.
  • the oil passage 151a extends in the fourth box 14 toward the inner diameter side.
  • the inner diameter side end of the oil passage 151a is open to the inner circumference of the support portion 145.
  • the end of the oil passage 151a on the inner diameter side of the support portion 145 is open between the lip seal RS and the bearing B2.
  • the oil guide 152 is mounted on the support base portion 151.
  • the oil guide 152 has a catch portion 153 and a guide portion 154 extending from the catch portion 153 to the first box 11 side (the front side of the paper surface in FIG. 24).
  • the support base portion 151 is stepped on the radial side of the rotation axis X at a position overlapping a part of the differential case 50 (first case portion 6, second case portion 7) when viewed from above. It is provided so as to avoid interference with the attached pinion gear 43 (large diameter gear portion 431).
  • the catch portion 153 is provided at a position overlapping the second shaft portion 446 of the pinion shaft 44 when viewed from the radial direction of the rotation shaft X.
  • the guide portion 154 is provided at a position where it overlaps the first shaft portion 445 of the pinion shaft 44 and the large diameter gear portion 431.
  • a wall portion 153a extending in a direction away from the support base portion 151 (upward) is provided on the outer peripheral edge of the catch portion 153.
  • a part of the oil OL scraped up by the differential case 50 that rotates around the rotation axis X by the wall portion 153a is stored in the oil guide 152.
  • a notch portion 155 is provided in the wall portion 153a.
  • the cutout portion 155 is provided in a region facing the oil passage 151a. A part of the oil OL stored in the catch portion 153 is discharged from the notch portion 155 toward the oil passage 151a.
  • the guide portion 154 is inclined downward as the distance from the catch portion 153 increases.
  • Wall portions 154a and 154a are provided on both sides of the guide portion 154 in the width direction.
  • the wall portions 154a and 154a are provided over the entire length of the guide portion 154 in the longitudinal direction.
  • the wall portions 154a and 154a are connected to the wall portion 153a surrounding the outer circumference of the catch portion 153. A part of the oil OL stored in the catch portion 153 is also discharged to the guide portion 154 side.
  • the guide portion 154 extends toward the second box 12 at a position where it avoids interference with the differential case 50.
  • the tip 154b of the guide portion 154 faces the through hole 126a provided in the wall portion 120 of the second box 12 with a gap in the rotation axis X direction.
  • a boss portion 126 surrounding the through hole 126a is provided on the outer periphery of the wall portion 120.
  • One end of the pipe 127 is fitted into the boss portion 126 from the rotation axis X direction.
  • the pipe 127 passes through the outside of the second box 12 and extends to the third box 13.
  • the other end of the pipe 127 communicates with an oil hole 136a (see FIG. 2) provided in the cylindrical connection wall 136 of the third box.
  • a part of the oil OL that has been scraped up by the differential case 50 that rotates around the rotation axis X and has reached the oil catch portion 15 is supplied to the internal space Sc of the connection wall 136 through the guide portion 154 and the pipe 127. ..
  • the third box 13 is provided with a radial oil passage 137 communicating with the internal space Sc.
  • the radial oil passage 137 extends radially downward from the internal space Sc.
  • the radial oil passage 137 communicates with the axial oil passage 138 provided in the joint portion 132.
  • the axial oil passage 138 communicates with the oil reservoir 128 provided at the lower part of the second box 12 via the communication hole 112a provided at the joint portion 112 of the first box 11.
  • the oil sump portion 128 penetrates the inside of the peripheral wall portion 121 in the rotation axis X direction.
  • the oil sump 128 is in contact with the second gear chamber Sb2 provided in the fourth box 14.
  • the operation of the power transmission device 1 having such a configuration will be described.
  • the planetary reduction gear 4, the differential mechanism 5, and the drive shafts 9 (9A, 9B) are provided along the transmission path of the output rotation of the motor 2. ing.
  • the sun gear 41 is an input unit for the output rotation of the motor 2.
  • the differential case 50 that supports the stepped pinion gear 43 serves as an output unit for the input rotation.
  • the stepped pinion gear 43 (large diameter gear portion 431, small diameter gear portion 432) rotates around the axis X1 by the rotation input from the sun gear 41 side.
  • the small-diameter gear portion 432 of the stepped pinion gear 43 meshes with the ring gear 42 fixed to the inner circumference of the fourth box 14. Therefore, the stepped pinion gear 43 revolves around the rotation axis X while rotating around the axis X1.
  • the outer diameter R2 of the small-diameter gear portion 432 of the stepped pinion gear 43 is smaller than the outer diameter R1 of the large-diameter gear portion 431 (see FIG. 3).
  • the differential case 50 first case portion 6, second case portion 7) that supports the stepped pinion gear 43 rotates around the rotation axis X at a rotation speed lower than the rotation input from the motor 2 side. Therefore, the rotation input to the sun gear 41 of the planetary reduction gear 4 is greatly reduced by the stepped pinion gear 43. The reduced rotation is output to the differential case 50 (differential mechanism 5).
  • the lubricating oil OL is stored inside the fourth box 14. Therefore, the stored oil OL is scraped up by the differential case 50 that rotates around the rotation axis X when the output rotation of the motor 2 is transmitted. Due to the oil OL scraped up, the meshing portion between the sun gear 41 and the large diameter gear portion 431, the meshing portion between the small diameter gear portion 432 and the ring gear 42, and the meshing portion between the pinion mate gear 52 and the side gears 54A and 54B. Is lubricated.
  • the differential case 50 rotates in the counterclockwise direction CCW around the rotation axis X when viewed from the third box 13 side.
  • An oil catch portion 15 is provided on the upper portion of the fourth box 14.
  • the oil catch portion 15 is located on the downstream side in the rotation direction of the differential case 50. Most of the oil OL scraped up by the differential case 50 flows into the oil catch portion 15.
  • an oil guide 152 mounted on the support base portion 151 is provided in the oil catch portion 15.
  • the guide portion 154 and the catch portion 153 of the oil guide 152 are located on the radial outside of the first case portion 6 of the differential case 50 and on the radial outside of the second case portion 7 of the differential case 50. Therefore, most of the oil that has been scraped up by the differential case 50 and has flowed into the oil catch portion 15 is captured by the oil guide 152.
  • a part of the oil OL captured by the oil guide 152 is discharged from the notch 155 provided in the wall portion 153a. The discharged oil OL flows into the oil passage 151a having one end opened on the upper surface of the support base portion 151.
  • the end of the oil passage 151a on the inner diameter side is open to the inner circumference of the support portion 145 (see FIG. 2). Therefore, the oil OL that has flowed into the oil passage 151a is discharged into the gap Rx between the inner circumference of the support portion 145 of the fourth box 14 and the cylinder wall portion 540 of the side gear 54B.
  • the oil OL that lubricates the bearing B2 moves on the outside of the differential case 50 (bearing B2 side) to the outer diameter side by the centrifugal force due to the rotation of the differential case 50 (see FIGS. 17 and 18).
  • a guide portion 73 forming an annular shape when viewed from the rotation axis X direction is provided. Therefore, the oil OL that has moved to the outer diameter side is captured by the guide portion 73.
  • an oil hole 710 is provided along the inner peripheral surface 731 of the guide portion 73.
  • the guide portion 73 prevents the oil OL from further moving to the outer diameter side.
  • the oil OL whose movement is hindered passes through the oil hole 710 that opens on the inner circumference of the guide portion 73 toward the first case portion 6 side.
  • ribs 711 are provided between the oil holes 710 and 710 adjacent to each other in the circumferential direction around the rotation axis X (see FIG. 16).
  • the differential case 50 (second case portion 7) rotates clockwise in the drawing when the vehicle equipped with the power transmission device 1 travels forward.
  • the oil OL moves to the outer diameter side by the centrifugal force generated by the rotation of the differential case 50.
  • the oil OL that did not directly flow into the oil hole 710 moves to the downstream side in the rotation direction of the differential case 50 while moving to the outer diameter side as shown by the broken line arrow in FIG. 20.
  • the rib 711 is located on the downstream side in the rotation direction of the differential case 50. The flow of oil OL that has moved to the downstream side is dammed by the rib 711.
  • the area of the oil OL dammed and retained by the rib 711 expands toward the upstream side in the rotation direction of the differential case 50.
  • the oil OL that has spread toward the upstream side reaches the oil hole 710 and flows into the oil hole 710.
  • recessed grooves 711a and 711b are provided on the side surface of the rib 711. Therefore, most of the oil OL that has reached the rib 711 stays at the rib 711 without getting over the rib 711.
  • the concave groove 711a is a portion that contributes to the retention of oil OL when the vehicle equipped with the power transmission device 1 travels forward.
  • the concave groove 711b is a portion that contributes to the retention of oil OL when the vehicle equipped with the power transmission device 1 travels backward.
  • the guide portion 73 is provided with a protruding portion 73a.
  • the inner peripheral surface 731 of the protruding portion 73a between the second case portion 7 and the base portion 71 functions as an oil groove.
  • the oil OL reaches the guide portion 73 by the centrifugal force generated by the rotation of the differential case 50. Most of the oil OL that has reached the guide portion 73 flows into the oil hole 710 that opens in the rotation axis X direction on the side of the inner peripheral surface 731 without getting over the guide portion 73.
  • an oil passage 781 in the case is opened on the inner circumference of the guide portion 78 on the side of the first case portion 6 of the oil hole 710.
  • a part of the oil OL that has passed through the oil hole 710 flows into the oil passage 781 in the case due to the centrifugal force due to the rotation of the differential case.
  • the oil OL that has flowed into the oil passage 781 in the case flows into the in-shaft oil passage 440 of the pinion shaft 44 through the introduction passage 441.
  • the oil OL that has flowed into the in-shaft oil passage 440 is discharged radially outward from the oil holes 442 and 443.
  • the discharged oil OL lubricates the needle bearing NB extrapolated to the pinion shaft 44.
  • the oil passage 781 in the case is inclined with respect to the axis X1 in a direction in which the separation distance Dc from the oil hole 710 becomes shorter toward the rotation axis X side (inner diameter side). ing. Therefore, most of the oil OL that has flowed into the inside of the differential case 50 through the oil hole 710 flows into the oil passage 781 in the case before being diffused by the centrifugal force due to the rotation of the differential case 50.
  • a part of the oil OL discharged into the gap Rx passes through the oil groove 721 provided on the inner circumference of the cylinder wall portion 72 of the second case portion 7.
  • the oil OL that has passed through the oil groove 721 is supplied to the washer 55 that supports the back surface of the side gear 54B to lubricate the washer 55.
  • the oil OL passes through the oil groove 712 provided in the base portion 71 of the second case portion 7 and the oil groove 742 provided in the arc portion 741.
  • the oil OL that has passed through the oil groove 742 is supplied to the spherical washer 53 that supports the back surface of the pinion mate gear 52, and lubricates the spherical washer 53.
  • a boss portion 126 surrounding the through hole 126a is provided on the outer periphery of the wall portion 120.
  • One end of the pipe 127 is fitted into the boss portion 126 from the rotation axis X direction.
  • the pipe 127 passes through the outside of the second box 12 and extends to the third box 13.
  • the other end of the pipe 127 communicates with an oil hole 136a (see FIG. 2) provided in the cylindrical connection wall 136 of the third box.
  • a part of the oil OL that has reached the oil catch portion 15 is supplied to the internal space Sc of the connection wall 136 through the guide portion 154 and the pipe 127.
  • the oil OL discharged from the oil hole 136a into the internal space Sc is stored in the internal space Sc.
  • the oil OL also lubricates the bearing B4 supported by the peripheral wall portion 131 of the third box 13.
  • a part of the oil OL discharged into the internal space Sc moves to the other end 20b side of the motor shaft 20 through the gap between the outer circumference of the drive shaft 9A and the inner circumference of the motor shaft 20.
  • the other end 20b of the motor shaft 20 is inserted inside the tubular wall portion 541 of the side gear 54A.
  • a connecting path 542 communicating with the back surface of the side gear 54A is provided on the inner circumference of the cylinder wall portion 541. Therefore, a part of the oil OL that has moved to the other end 20b side of the motor shaft 20 and has been discharged to the inside of the cylinder wall portion 541 passes through the connecting path 542.
  • the oil OL that has passed through the connecting path 542 is supplied to the washer 55 on the back surface of the side gear 54A to lubricate the washer 55.
  • the oil OL that lubricates the washer 55 on the back surface of the side gear 54A passes through the oil groove 662 provided in the gear support portion 66 of the first case portion 6 and the oil groove 642 provided in the arc portion 641.
  • the oil OL that has passed through the oil groove 642 is supplied to the spherical washer 53 that supports the back surface of the pinion mate gear 52, and lubricates the spherical washer 53.
  • the internal space Sc of the third box 13 includes a radial oil passage 137, an axial oil passage 138, a communication hole 112a, and an oil reservoir provided at the lower part of the second box 12. It communicates with the second gear chamber Sb2 provided in the fourth box 14 via 128. Therefore, the oil OL in the internal space Sc is held at the same height position as the oil OL stored in the fourth box 14.
  • the oil OL in the fourth box 14 is scraped up when the drive wheels W and W rotate, and is used for lubrication of the bearing and the meshing portion between the gears.
  • the oil OL used for lubrication is returned to the fourth box 14 so that it can be scraped up again.
  • the power transmission device 1 has the following configuration.
  • the power transmission device 1 is Differential mechanism 5 and It has a differential case 50 (case) that houses the differential mechanism 5 and has a guide portion 73.
  • the differential case 50 has a case inner oil passage 781 in which oil OL (lubricating oil) is introduced via the inner peripheral surface 731 of the guide portion 73 protruding in the rotation axis X direction (axial direction).
  • oil OL lubricating oil
  • the oil OL lubricating oil
  • the oil OL can be smoothly introduced into the oil hole 710, so that the lubrication efficiency can be improved.
  • the power transmission device 1 has the following configuration. (2)
  • the guide portion 73 is annular when viewed from the rotation axis X direction.
  • the guide portion 73 may be annular or non-annular when viewed from the rotation axis X direction.
  • the rotational resistance of the differential case 50 can be reduced as compared with the case where the guide portion 73 is non-annular.
  • the guide portion 73 is acyclic, the amount of oil OL to be moved toward the oil hole 710 is reduced.
  • By forming the guide portion 73 into an annular shape it is possible to secure the amount of oil OL that moves toward the oil hole 710. As a result, the amount of oil OL supplied to the pinion shaft 44, the pinion mate gear 52, and the side gears 54A and 54B via the oil passage 781 in the case can be secured.
  • the lubrication efficiency of the power transmission device 1 can be improved.
  • the power transmission device 1 has the following configuration.
  • the differential case 50 has an oil hole 710 that opens outward on the inner circumference of the guide portion 73.
  • the guide portion 73 has a protruding portion 73a that projects toward the inner diameter side.
  • the inner circumference of the guide portion 73 has an oil groove between the protruding portion 73a and the oil hole 710.
  • the oil OL that moves to the outer diameter side by the centrifugal force due to the rotation of the differential case 50 can be captured by the portion of the oil groove between the protrusion 73a and the oil hole 710 and guided to the oil hole 710.
  • the power transmission device 1 has the following configuration.
  • the differential case 50 has a rib 711 located on the inner circumference of the guide portion 73 and projecting outward in the X direction of the rotation axis.
  • the oil OL is guided to the inner peripheral surface 731 of the guide portion 73 through the concave grooves 711a and 711b on the side surface of the rib 711. Since the oil OL is introduced to the oil passage 781 in the case along the inner peripheral surface 731, the lubrication efficiency can be improved.
  • the term "position on the outer circumference” in the present specification is synonymous with overlapping in the radial direction on the outside.
  • “Position on the inner circumference” is synonymous with overlapping in the radial direction on the inside.
  • the power transmission device 1 has the following configuration. (5)
  • the axial height of the rib 711 (height h711 in the rolling axis X direction, see (b) in FIG. 12) is the axial height of the guide portion 73 (height h73 in the rotation axis direction, FIG. 12). Lower than (see (a)).
  • the rib 711 when viewed from the rotation axis X direction is a band-shaped portion extending linearly in the radial direction of the rotation axis X, and is acyclic. Therefore, when the differential case 50 rotating around the rotation axis X scrapes up the oil OL, the rib 711 portion becomes the rotation resistance of the differential case 50.
  • the height h711 of the rib 711 portion in the rotation axis X direction lower than the height h73 of the guide portion 73 forming an annular shape when viewed from the rotation axis X direction in the rotation axis X direction, the rotation resistance received by the differential case 50 is reduced. Can be reduced.
  • the power transmission device 1 has the following configuration. (6)
  • the rib 711 extends from the inner circumference of the guide portion 73 toward the inner diameter side when viewed from the rotation axis X direction of the differential case 50.
  • Recessed grooves 711a (oil grooves) and 771b are provided on the side edges of the ribs 711 in the circumferential direction around the rotation axis X.
  • a part of the oil OL that moves to the outer diameter side by the centrifugal force due to the rotation of the differential case 50 can be retained at the rib 711 portion.
  • the region of the oil OL retained in the rib 711 portion expands toward the upstream side in the rotation direction of the differential case 50, and the oil OL flows into the oil hole 710.
  • the amount of oil OL supplied to the pinion shaft 44, the pinion mate gear 52, and the side gears 54A and 54B can be secured, so that the lubrication efficiency can be improved.
  • the power transmission device 1 has the following configuration. (7)
  • the oil groove on the inner circumference of the guide portion 73 (the portion of the inner peripheral surface 731 between the protruding portion 73a and the oil hole 710) is in contact with the concave grooves 711a and 711b (oil grooves) of the rib 711. ..
  • the oil OL accumulated in the rib 711 portion can be guided from the concave grooves 711a and 711b of the rib 711 to the oil groove on the inner circumference of the guide portion 73. Since the oil hole 710 can be formed along the inner circumference of the guide portion 73, the oil OL accumulated in the rib 711 portion can be guided toward the oil hole 710.
  • the power transmission device 1 has the following configuration.
  • the oil passage 781 inside the case is an oil passage that supplies the oil OL (lubricating oil) outside the differential case 50 to the differential mechanism 5.
  • the lubrication efficiency of the differential mechanism 5 can be improved.
  • the power transmission device 1 has the following configuration.
  • the oil passage 781 inside the case is an oil passage that supplies the oil OL (lubricating oil) outside the differential case 50 to a rotating element other than the differential mechanism 5.
  • the power transmission device 1 has the following configuration. (10)
  • the motor 2 is located on the upstream side of the differential mechanism 5 on the power transmission path in the power transmission device 1.
  • the differential mechanism 5 overlaps with the motor 2 in the X direction of the rotation axis.
  • FIG. 17 is a diagram illustrating a modified example of the oil passage 781 in the case.
  • the opening 781a on the inner diameter side of the oil passage 781 in the case opens inside the differential case 50 (on the right side in the drawing) with respect to the base 71 having the oil hole 710.
  • the opening 781a on the inner diameter side of the oil passage 781A in the case may be configured to be opened at the portion of the oil hole 710.
  • the opening 781a on the inner diameter side of the oil passage 781B in the case may be opened outside the oil hole 710 (outside the differential case 50).
  • the opening 781a on the inner diameter side of the oil passage 781C in the case is a region in the base 71 where the oil hole 710 is not provided, and is opened to the outside of the differential case 50. It may be configured as such. In any configuration, among the oil OLs that have moved toward the outer diameter side due to the centrifugal force due to the rotation of the differential case 50, the oil OLs captured by the guide portion 73 are taken from the oil passages 781A to 781C in the case to the pinion shaft 44. It can be guided to the side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Details Of Gearings (AREA)
  • Retarders (AREA)

Abstract

[Problem] To improve lubrication efficiency. [Solution] A power transmission device including a differential mechanism and a case that is for accommodating the differential mechanism and that has a guide section (73). The case has a case inner oil path (781) into which lubricating oil (OL) is introduced via the inner peripheral surface (731) of the guide section (73), which protrudes radially outward.

Description

動力伝達装置Power transmission device
 本発明は、動力伝達装置に関する。 The present invention relates to a power transmission device.
 特許文献1には、傘歯車式の差動機構と、遊星歯車機構を有する電気自動車用の動力伝達装置が開示されている。
 この遊星歯車機構は、ラージピニオンギアとスモールピニオンギアとを有するステップドピニオンギアを、備えている。
Patent Document 1 discloses a power transmission device for an electric vehicle having a bevel gear type differential mechanism and a planetary gear mechanism.
This planetary gear mechanism comprises a stepped pinion gear having a large pinion gear and a small pinion gear.
特開平8-240254号公報Japanese Unexamined Patent Publication No. 8-240254
 動力伝達装置では、当該動力伝達装置の構成部品が密集して配置されている。密集して配置された構成部品各々を適切に潤滑するためには、様々な工夫が必要である。動力伝達装置において、潤滑量効率を向上させることが望まれている。 In the power transmission device, the components of the power transmission device are densely arranged. Various measures are required to properly lubricate each of the densely arranged components. In the power transmission device, it is desired to improve the lubrication amount efficiency.
 本発明のある態様における動力伝達装置は、
 差動機構と、
 前記差動機構を収容し、ガイド部を有するケースと、を有し、
 前記ケースは、軸方向外側に突出する前記ガイド部の内周面を経由して潤滑油が導入されるケース内油路を有する。
The power transmission device in a certain aspect of the present invention is
With a differential mechanism
It has a case that houses the differential mechanism and has a guide portion, and has.
The case has an oil passage in the case into which the lubricating oil is introduced via the inner peripheral surface of the guide portion that projects outward in the axial direction.
 本発明によれば、潤滑量効率を向上できる。 According to the present invention, the lubrication amount efficiency can be improved.
動力伝達装置のスケルトン図である。It is a skeleton diagram of a power transmission device. 動力伝達装置の断面の模式図である。It is a schematic diagram of the cross section of a power transmission device. 動力伝達装置の遊星減速ギア周りの拡大図である。It is an enlarged view around the planetary reduction gear of a power transmission device. 動力伝達装置の差動機構周りの拡大図である。It is an enlarged view around the differential mechanism of a power transmission device. 動力伝達装置の差動機構の斜視図である。It is a perspective view of the differential mechanism of a power transmission device. 動力伝達装置の差動機構の分解斜視図である。It is an exploded perspective view of the differential mechanism of a power transmission device. 差動機構の第1ケース部を説明する図である。It is a figure explaining the 1st case part of a differential mechanism. 差動機構の第1ケース部を説明する図である。It is a figure explaining the 1st case part of a differential mechanism. 差動機構の第1ケース部を説明する図である。It is a figure explaining the 1st case part of a differential mechanism. 差動機構の第1ケース部を説明する図である。It is a figure explaining the 1st case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. 差動機構の第2ケース部を説明する図である。It is a figure explaining the 2nd case part of a differential mechanism. オイルキャッチ部を説明する図である。It is a figure explaining the oil catch part. オイルキャッチ部を説明する図である。It is a figure explaining the oil catch part. オイルキャッチ部を説明する図である。It is a figure explaining the oil catch part. オイルキャッチ部を説明する図である。It is a figure explaining the oil catch part. オイルキャッチ部を説明する図である。It is a figure explaining the oil catch part. オイルキャッチ部を説明する図である。It is a figure explaining the oil catch part. ケース内油路の変形例を説明する図である。It is a figure explaining the deformation example of the oil passage in a case. ケース内油路の変形例を説明する図である。It is a figure explaining the deformation example of the oil passage in a case. ケース内油路の変形例を説明する図である。It is a figure explaining the deformation example of the oil passage in a case. ケース内油路の変形例を説明する図である。It is a figure explaining the deformation example of the oil passage in a case.
 以下、本発明の実施形態を説明する。
 図1は、本実施形態にかかる動力伝達装置1を説明するスケルトン図である。
 図2は、本実施形態にかかる動力伝達装置1を説明する断面の模式図である。
 図3は、動力伝達装置1の遊星減速ギア4周りの拡大図である。
 図4は、動力伝達装置1の差動機構5周りの拡大図である。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a skeleton diagram illustrating a power transmission device 1 according to the present embodiment.
FIG. 2 is a schematic cross-sectional view illustrating the power transmission device 1 according to the present embodiment.
FIG. 3 is an enlarged view around the planetary reduction gear 4 of the power transmission device 1.
FIG. 4 is an enlarged view of the power transmission device 1 around the differential mechanism 5.
 図1に示すように、動力伝達装置1は、モータ2と、モータ2の出力回転を減速して差動機構5に入力する遊星減速ギア4(減速機構)と、有する。動力伝達装置1は、また、ドライブシャフト9(9A、9B)と、パークロック機構3と、を有する。
 動力伝達装置1では、モータ2の回転軸X回りの出力回転の伝達経路に沿って、パークロック機構3と、遊星減速ギア4と、差動機構5と、ドライブシャフト9(9A、9B)と、が設けられている。ドライブシャフト9(9A、9B)の軸線は、モータ2の回転軸Xと同軸である。
As shown in FIG. 1, the power transmission device 1 includes a motor 2 and a planetary reduction gear 4 (reduction mechanism) that decelerates the output rotation of the motor 2 and inputs it to the differential mechanism 5. The power transmission device 1 also has a drive shaft 9 (9A, 9B) and a park lock mechanism 3.
In the power transmission device 1, the park lock mechanism 3, the planetary reduction gear 4, the differential mechanism 5, and the drive shafts 9 (9A, 9B) are arranged along the transmission path of the output rotation around the rotation axis X of the motor 2. , Are provided. The axis of the drive shaft 9 (9A, 9B) is coaxial with the rotation axis X of the motor 2.
 動力伝達装置1では、モータ2の出力回転が、遊星減速ギア4で減速されて差動機構5に入力された後、ドライブシャフト9(9A、9B)を介して、動力伝達装置1が搭載された車両の左右の駆動輪W、Wに伝達される。
 ここで、遊星減速ギア4は、モータ2の下流に接続されている。差動機構5は、遊星減速ギア4の下流に接続されている。ドライブシャフト9(9A、9B)は、差動機構5の下流に接続されている。
In the power transmission device 1, after the output rotation of the motor 2 is decelerated by the planetary reduction gear 4 and input to the differential mechanism 5, the power transmission device 1 is mounted via the drive shafts 9 (9A, 9B). It is transmitted to the left and right drive wheels W and W of the vehicle.
Here, the planetary reduction gear 4 is connected to the downstream side of the motor 2. The differential mechanism 5 is connected downstream of the planetary reduction gear 4. The drive shafts 9 (9A, 9B) are connected downstream of the differential mechanism 5.
 図2に示すように、動力伝達装置1の本体ボックス10は、モータ2を収容する第1ボックス11と、第1ボックス11に外挿される第2ボックス12と、を有する。本体ボックス10は、第1ボックス11に組み付けられる第3ボックス13と、第2ボックス12に組み付けられる第4ボックス14と、を有する。 As shown in FIG. 2, the main body box 10 of the power transmission device 1 has a first box 11 that houses the motor 2 and a second box 12 that is externally inserted into the first box 11. The main body box 10 has a third box 13 assembled to the first box 11 and a fourth box 14 assembled to the second box 12.
 第1ボックス11は、円筒状の支持壁部111と、支持壁部111の一端111aに設けられたフランジ状の接合部112と、を有している。
 第1ボックス11は、支持壁部111をモータ2の回転軸Xに沿わせた向きで設けられている。支持壁部111の内側には、モータ2が収容される。
The first box 11 has a cylindrical support wall portion 111 and a flange-shaped joint portion 112 provided at one end 111a of the support wall portion 111.
The first box 11 is provided with the support wall portion 111 oriented along the rotation axis X of the motor 2. The motor 2 is housed inside the support wall portion 111.
 接合部112は、回転軸Xに直交する向きで設けられている。接合部112は、支持壁部111よりも大きい外径で形成されている。 The joint portion 112 is provided in a direction orthogonal to the rotation axis X. The joint portion 112 is formed with an outer diameter larger than that of the support wall portion 111.
 第2ボックス12は、円筒状の周壁部121と、周壁部121の一端121aに設けられたフランジ状の接合部122と、周壁部121の他端121bに設けられたフランジ状の接合部123と、を有している。
 周壁部121は、第1ボックス11の支持壁部111に外挿可能な内径で形成されている。
 第1ボックス11と第2ボックス12は、第1ボックス11の支持壁部111に、第2ボックス12の周壁部121を外挿して互いに組み付けられている。
The second box 12 includes a cylindrical peripheral wall portion 121, a flange-shaped joint portion 122 provided at one end 121a of the peripheral wall portion 121, and a flange-shaped joint portion 123 provided at the other end 121b of the peripheral wall portion 121. ,have.
The peripheral wall portion 121 is formed with an inner diameter that can be extrapolated to the support wall portion 111 of the first box 11.
The first box 11 and the second box 12 are assembled to each other by externally inserting the peripheral wall portion 121 of the second box 12 into the support wall portion 111 of the first box 11.
 周壁部121の一端121a側の接合部122は、回転軸X方向から、第1ボックス11の接合部112に当接している。これら接合部122、112は、ボルト(図示せず)で互いに連結されている。
 第1ボックス11では、支持壁部111の外周に複数の凹溝111bが設けられている。複数の凹溝111bは、回転軸X方向に間隔をあけて複数設けられている。凹溝111bの各々は、回転軸X周りの周方向の全周に亘って設けられている。
 第1ボックス11の支持壁部111に、第2ボックス12の周壁部121が外挿される。凹溝111bの開口が周壁部121で閉じられている。支持壁部111と周壁部121との間に、冷却水が通流する複数の冷却路CPが形成される。
The joint portion 122 on the one end 121a side of the peripheral wall portion 121 is in contact with the joint portion 112 of the first box 11 from the rotation axis X direction. These joints 122 and 112 are connected to each other by bolts (not shown).
In the first box 11, a plurality of concave grooves 111b are provided on the outer periphery of the support wall portion 111. A plurality of recessed grooves 111b are provided at intervals in the rotation axis X direction. Each of the concave grooves 111b is provided over the entire circumference in the circumferential direction around the rotation axis X.
The peripheral wall portion 121 of the second box 12 is externally inserted into the support wall portion 111 of the first box 11. The opening of the concave groove 111b is closed by the peripheral wall portion 121. A plurality of cooling passages CP through which cooling water flows are formed between the support wall portion 111 and the peripheral wall portion 121.
 第1ボックス11の支持壁部111の外周では、凹溝111bが設けられた領域の両側に、リング溝111c、111cが形成されている。リング溝111c、111cには、シールリング113、113が外嵌して取り付けられている。
 これらシールリング113は、支持壁部111に外挿された周壁部121の内周に圧接して、支持壁部111の外周と、周壁部121の内周との間の隙間を封止する。
On the outer periphery of the support wall portion 111 of the first box 11, ring grooves 111c and 111c are formed on both sides of the region where the concave groove 111b is provided. Seal rings 113 and 113 are fitted and attached to the ring grooves 111c and 111c.
These seal rings 113 are pressed against the inner circumference of the peripheral wall portion 121 extrapolated to the support wall portion 111 to seal the gap between the outer circumference of the support wall portion 111 and the inner circumference of the peripheral wall portion 121.
 第2ボックス12の他端121bには、内径側に延びる壁部120が設けられている。壁部120は、回転軸Xに直交する向きで設けられている。壁部120の回転軸Xと交差する領域に、ドライブシャフト9Aが挿通する開口120aが設けられている。
 壁部120では、モータ2側(図中、右側)の面に、開口120aを囲む筒状のモータ支持部125が設けられている。
 モータ支持部125は、後記するコイルエンド253bの内側に挿入されている。モータ支持部125は、ロータコア21の端部21bに回転軸X方向の隙間をあけて対向している。
The other end 121b of the second box 12 is provided with a wall portion 120 extending toward the inner diameter side. The wall portion 120 is provided in a direction orthogonal to the rotation axis X. An opening 120a through which the drive shaft 9A is inserted is provided in a region of the wall portion 120 that intersects with the rotation axis X.
In the wall portion 120, a tubular motor support portion 125 surrounding the opening 120a is provided on the surface on the motor 2 side (right side in the drawing).
The motor support portion 125 is inserted inside the coil end 253b described later. The motor support portion 125 faces the end portion 21b of the rotor core 21 with a gap in the rotation axis X direction.
 第2ボックス12の周壁部121は、動力伝達装置1の車両への搭載状態を基準とした鉛直線方向において、下側の領域の径方向の厚みが、上側の領域よりも厚くなっている。
 この径方向の厚みが厚い領域には、回転軸X方向に貫通してオイル溜り部128が設けられている。
 オイル溜り部128は、連通孔112aを介して、第3ボックス13の接合部132に設けた軸方向油路138に連絡している。連通孔112aは、第1ボックス11の接合部112に設けられている。
The peripheral wall portion 121 of the second box 12 has a thicker radial thickness in the lower region than in the upper region in the vertical direction with respect to the mounted state of the power transmission device 1 in the vehicle.
An oil reservoir 128 is provided so as to penetrate in the rotation axis X direction in the thick region in the radial direction.
The oil reservoir 128 communicates with the axial oil passage 138 provided at the joint 132 of the third box 13 via the communication hole 112a. The communication hole 112a is provided in the joint portion 112 of the first box 11.
 第3ボックス13は、回転軸Xに直交する壁部130を有している。壁部130の外周部には、回転軸X方向から見てリング状を成す接合部132が設けられている。
 第1ボックス11から見て第3ボックス13は、差動機構5とは反対側(図中、右側)に位置している。第3ボックス13の接合部132は、第1ボックス11の接合部112に回転軸X方向から接合されている。第3ボックス13と第1ボックス11は、ボルト(図示せず)で互いに連結されている。この状態において第1ボックス11は、支持壁部111の接合部122側(図中、右側)の開口が、第3ボックス13で塞がれている。
The third box 13 has a wall portion 130 orthogonal to the rotation axis X. A ring-shaped joint 132 is provided on the outer periphery of the wall 130 when viewed from the rotation axis X direction.
The third box 13 is located on the opposite side (right side in the drawing) of the differential mechanism 5 when viewed from the first box 11. The joint portion 132 of the third box 13 is joined to the joint portion 112 of the first box 11 from the rotation axis X direction. The third box 13 and the first box 11 are connected to each other by bolts (not shown). In this state, in the first box 11, the opening of the support wall portion 111 on the joint portion 122 side (right side in the drawing) is closed by the third box 13.
 第3ボックス13では、壁部130の中央部に、ドライブシャフト9Aの挿通孔130aが設けられている。
 挿通孔130aの内周には、リップシールRSが設けられている。リップシールRSは、図示しないリップ部をドライブシャフト9Aの外周に弾発的に接触させている。挿通孔130aの内周と、ドライブシャフト9Aの外周との隙間が、リップシールRSにより封止されている。
 壁部130における第1ボックス11側(図中、左側)の面には、挿通孔130aを囲む周壁部131が設けられている。周壁部131の内周には、ドライブシャフト9AがベアリングB4を介して支持されている。
In the third box 13, an insertion hole 130a for the drive shaft 9A is provided in the central portion of the wall portion 130.
A lip seal RS is provided on the inner circumference of the insertion hole 130a. In the lip seal RS, a lip portion (not shown) is elastically brought into contact with the outer circumference of the drive shaft 9A. The gap between the inner circumference of the insertion hole 130a and the outer circumference of the drive shaft 9A is sealed by the lip seal RS.
A peripheral wall portion 131 surrounding the insertion hole 130a is provided on the surface of the wall portion 130 on the side of the first box 11 (left side in the drawing). A drive shaft 9A is supported on the inner circumference of the peripheral wall portion 131 via a bearing B4.
 周壁部131から見てモータ2側(図中、左側)には、モータ支持部135が設けられている。モータ支持部135は、回転軸Xの外周を間隔を空けて囲む筒状を成している。
 モータ支持部135の外周には、円筒状の接続壁136が接続されている。接続壁136は、壁部130側(図中、右側)の周壁部131よりも大きい外径で形成されている。接続壁136は、回転軸Xに沿う向きで設けられており、モータ2から離れる方向に延びている。接続壁136は、モータ支持部135と第3ボックス13の壁部130とを接続している。
A motor support portion 135 is provided on the motor 2 side (left side in the drawing) when viewed from the peripheral wall portion 131. The motor support portion 135 has a tubular shape that surrounds the outer circumference of the rotating shaft X at intervals.
A cylindrical connecting wall 136 is connected to the outer circumference of the motor support portion 135. The connecting wall 136 is formed with an outer diameter larger than that of the peripheral wall portion 131 on the wall portion 130 side (right side in the drawing). The connection wall 136 is provided in a direction along the rotation axis X, and extends in a direction away from the motor 2. The connection wall 136 connects the motor support portion 135 and the wall portion 130 of the third box 13.
 モータ支持部135は、接続壁136を介して第3ボックス13で支持されている。モータ支持部135の内側を、モータシャフト20の一端20a側が、モータ2側から周壁部131側に貫通している。
 モータ支持部135の内周には、ベアリングB1が支持されている。モータシャフト20の外周が、ベアリングB1を介してモータ支持部135で支持されている。
 ベアリングB1と隣り合う位置には、リップシールRSが設けられている。
The motor support portion 135 is supported by the third box 13 via the connecting wall 136. One end 20a side of the motor shaft 20 penetrates the inside of the motor support portion 135 from the motor 2 side to the peripheral wall portion 131 side.
A bearing B1 is supported on the inner circumference of the motor support portion 135. The outer circumference of the motor shaft 20 is supported by the motor support portion 135 via the bearing B1.
A lip seal RS is provided at a position adjacent to the bearing B1.
 第3ボックス13では、接続壁136の内周に、後記する油孔136aが開口している。接続壁136で囲まれた空間(内部空間Sc)に、油孔136aからオイルOLが流入するようになっている。リップシールRSは、接続壁136内のオイルOLのモータ2側への流入を阻止するために設けられている。 In the third box 13, an oil hole 136a, which will be described later, is opened on the inner circumference of the connecting wall 136. The oil OL flows into the space (internal space Sc) surrounded by the connecting wall 136 from the oil hole 136a. The lip seal RS is provided to prevent the oil OL in the connecting wall 136 from flowing into the motor 2 side.
 第4ボックス14は、遊星減速ギア4と差動機構5の外周を囲む周壁部141と、周壁部141における第2ボックス12側の端部に設けられたフランジ状の接合部142と、を有している。
 第4ボックス14は、第2ボックス12から見て差動機構5側(図中、左側)に位置している。第4ボックス14の接合部142は、第2ボックス12の接合部123に回転軸X方向から接合されている。第4ボックス14と第2ボックス12は、ボルト(図示せず)で互いに連結されている。
The fourth box 14 has a peripheral wall portion 141 surrounding the outer periphery of the planetary reduction gear 4 and the differential mechanism 5, and a flange-shaped joint portion 142 provided at the end portion of the peripheral wall portion 141 on the second box 12 side. doing.
The fourth box 14 is located on the differential mechanism 5 side (left side in the drawing) when viewed from the second box 12. The joint portion 142 of the fourth box 14 is joined to the joint portion 123 of the second box 12 from the rotation axis X direction. The fourth box 14 and the second box 12 are connected to each other by bolts (not shown).
 動力伝達装置1の本体ボックス10の内部には、モータ2を収容するモータ室Saと、遊星減速ギア4と差動機構5を収容するギア室Sbとが形成されている。
 モータ室Saは、第1ボックス11の内側で、第2ボックス12の壁部120と、第3ボックス13の壁部130との間に形成されている。
 ギア室Sbは、第4ボックス14の内径側で、第2ボックス12の壁部120と、第4ボックス14の周壁部141との間に形成されている。
Inside the main body box 10 of the power transmission device 1, a motor chamber Sa accommodating the motor 2 and a gear chamber Sb accommodating the planetary reduction gear 4 and the differential mechanism 5 are formed.
The motor chamber Sa is formed inside the first box 11 between the wall portion 120 of the second box 12 and the wall portion 130 of the third box 13.
The gear chamber Sb is formed on the inner diameter side of the fourth box 14 between the wall portion 120 of the second box 12 and the peripheral wall portion 141 of the fourth box 14.
 ギア室Sbの内部には、プレート部材8が設けられている。
 プレート部材8は、第4ボックス14に固定されている。
 プレート部材8は、ギア室Sbを、遊星減速ギア4と差動機構5を収容する第1ギア室Sb1と、パークロック機構3を収容する第2ギア室Sb2とに区画している。
 回転軸X方向において第2ギア室Sb2は、第1ギア室Sb1と、モータ室Saとの間に位置している。
A plate member 8 is provided inside the gear chamber Sb.
The plate member 8 is fixed to the fourth box 14.
The plate member 8 divides the gear chamber Sb into a first gear chamber Sb1 accommodating the planetary reduction gear 4 and the differential mechanism 5 and a second gear chamber Sb2 accommodating the park lock mechanism 3.
The second gear chamber Sb2 is located between the first gear chamber Sb1 and the motor chamber Sa in the X direction of the rotation axis.
 モータ2は、円筒状のモータシャフト20と、モータシャフト20に外挿された円筒状のロータコア21と、ロータコア21の外周を間隔を空けて囲むステータコア25とを、有する。 The motor 2 has a cylindrical motor shaft 20, a cylindrical rotor core 21 extrapolated to the motor shaft 20, and a stator core 25 that surrounds the outer circumference of the rotor core 21 at intervals.
 モータシャフト20では、ロータコア21の両側に、ベアリングB1、B1が外挿されて固定されている。
 ロータコア21から見てモータシャフト20の一端20a側(図中、右側)に位置するベアリングB1は、第3ボックス13のモータ支持部135の内周に支持されている。他端20b側に位置するベアリングB1は、第2ボックス12の円筒状のモータ支持部125の内周に支持されている。
In the motor shaft 20, bearings B1 and B1 are extrapolated and fixed on both sides of the rotor core 21.
The bearing B1 located on one end 20a side (right side in the drawing) of the motor shaft 20 as viewed from the rotor core 21 is supported on the inner circumference of the motor support portion 135 of the third box 13. The bearing B1 located on the other end 20b side is supported on the inner circumference of the cylindrical motor support portion 125 of the second box 12.
 モータ支持部135、125は、後記するコイルエンド253a、253bの内径側で、ロータコア21の一方の端部21aと他方の端部21bに、回転軸X方向の隙間をあけて対向して配置されている。 The motor support portions 135 and 125 are arranged on the inner diameter side of the coil ends 253a and 253b, which will be described later, with one end 21a and the other end 21b of the rotor core 21 facing each other with a gap in the rotation axis X direction. ing.
 ロータコア21は、複数の珪素鋼板を積層して形成したものである。珪素鋼板の各々は、モータシャフト20との相対回転が規制された状態で、モータシャフト20に外挿されている。
 モータシャフト20の回転軸X方向から見て、珪素鋼板はリング状を成している。珪素鋼板の外周側では、図示しないN極とS極の磁石が、回転軸X周りの周方向に交互に設けられている。
The rotor core 21 is formed by laminating a plurality of silicon steel plates. Each of the silicon steel plates is extrapolated to the motor shaft 20 in a state where the relative rotation with the motor shaft 20 is restricted.
The silicon steel plate has a ring shape when viewed from the rotation axis X direction of the motor shaft 20. On the outer peripheral side of the silicon steel plate, magnets of N pole and S pole (not shown) are alternately provided in the circumferential direction around the rotation axis X.
 ロータコア21の外周を囲むステータコア25は、複数の電磁鋼板を積層して形成したものである。ステータコア25は、第1ボックス11の円筒状の支持壁部111の内周に固定されている。
 電磁鋼板の各々は、支持壁部111の内周に固定されたリング状のヨーク部251と、ヨーク部251の内周からロータコア21側に突出するティース部252と、を有している。
The stator core 25 that surrounds the outer circumference of the rotor core 21 is formed by laminating a plurality of electromagnetic steel sheets. The stator core 25 is fixed to the inner circumference of the cylindrical support wall portion 111 of the first box 11.
Each of the electrical steel sheets has a ring-shaped yoke portion 251 fixed to the inner circumference of the support wall portion 111, and a teeth portion 252 protruding from the inner circumference of the yoke portion 251 toward the rotor core 21.
 本実施形態では、巻線253を、複数のティース部252に跨がって分布巻きした構成のステータコア25を採用している。ステータコア25は、回転軸X方向に突出するコイルエンド253a、253bの分だけ、ロータコア21よりも回転軸X方向の長さが長くなっている。 In the present embodiment, the stator core 25 having a configuration in which the winding 253 is distributed and wound across a plurality of teeth portions 252 is adopted. The stator core 25 is longer in the rotation axis X direction than the rotor core 21 by the amount of the coil ends 253a and 253b protruding in the rotation axis X direction.
 なお、ロータコア21側に突出する複数のティース部252の各々に、巻線を集中巻きした構成のステータコアを採用しても良い。 Note that a stator core having a configuration in which windings are centrally wound may be adopted for each of the plurality of tooth portions 252 protruding toward the rotor core 21 side.
 第2ボックス12の壁部120(モータ支持部125)には、開口120aが設けられている。モータシャフト20の他端20b側は、開口120aを差動機構5側(図中、左側)に貫通して、第4ボックス14内に位置している。
 モータシャフト20の他端20bは、第4ボックス14の内側で、後記するサイドギア54Aに、回転軸X方向の隙間をあけて対向している。
The wall portion 120 (motor support portion 125) of the second box 12 is provided with an opening 120a. The other end 20b side of the motor shaft 20 penetrates the opening 120a to the differential mechanism 5 side (left side in the drawing) and is located in the fourth box 14.
The other end 20b of the motor shaft 20 faces the side gear 54A, which will be described later, with a gap in the rotation axis X direction inside the fourth box 14.
 図3に示すように、モータシャフト20では、第4ボックス14内に位置する領域に、段部201が設けられている。段部201は、モータ支持部125の近傍に位置している。段部201とベアリングB1との間の領域の外周には、モータ支持部125の内周に支持されたリップシールRSが当接している。
 リップシールRSは、モータ2を収容するモータ室Saと、第4ボックス14内のギア室Sbとを区画している。
As shown in FIG. 3, in the motor shaft 20, a step portion 201 is provided in a region located in the fourth box 14. The step portion 201 is located in the vicinity of the motor support portion 125. A lip seal RS supported on the inner circumference of the motor support portion 125 is in contact with the outer periphery of the region between the step portion 201 and the bearing B1.
The lip seal RS separates the motor chamber Sa accommodating the motor 2 and the gear chamber Sb in the fourth box 14.
 第4ボックス14の内径側には、遊星減速ギア4と差動機構5を潤滑するためのオイルOLが封入されている(図2参照)。
 リップシールRSは、モータ室SaへのオイルOLの流入を阻止するために設けられている。
An oil OL for lubricating the planetary reduction gear 4 and the differential mechanism 5 is sealed in the inner diameter side of the fourth box 14 (see FIG. 2).
The lip seal RS is provided to prevent the inflow of oil OL into the motor chamber Sa.
 図3に示すように、モータシャフト20では、段部201から他端20bの近傍までの領域が、外周にスプラインが設けられた嵌合部202となっている。
 嵌合部202の外周には、パークギア30とサンギア41がスプライン嵌合している。
As shown in FIG. 3, in the motor shaft 20, the region from the step portion 201 to the vicinity of the other end 20b is a fitting portion 202 provided with a spline on the outer periphery.
A park gear 30 and a sun gear 41 are spline-fitted on the outer circumference of the fitting portion 202.
 パークギア30は、回転軸X方向におけるパークギア30の一方の側面が、段部201に当接している(図中、右側)。パークギア30の他方の側面に、サンギア41の円筒状の基部410の一端410aが当接している(図中、左側)。
 基部410の他端410bには、モータシャフト20の他端20bに螺合したナットNが、回転軸X方向から圧接している。
 サンギア41とパークギア30は、ナットNと段部201との間に挟み込まれた状態で、モータシャフト20に対して相対回転不能に設けられている。
In the park gear 30, one side surface of the park gear 30 in the X direction of the rotation axis is in contact with the step portion 201 (right side in the drawing). One end 410a of the cylindrical base 410 of the sun gear 41 is in contact with the other side surface of the park gear 30 (left side in the figure).
A nut N screwed into the other end 20b of the motor shaft 20 is in pressure contact with the other end 410b of the base portion 410 from the rotation axis X direction.
The sun gear 41 and the park gear 30 are provided so as not to rotate relative to the motor shaft 20 in a state of being sandwiched between the nut N and the step portion 201.
 サンギア41は、モータシャフト20の他端20b側の外周に、歯部411を有している。歯部411の外周には、段付きピニオンギア43の大径歯車部431が噛合している。 The sun gear 41 has a tooth portion 411 on the outer periphery of the motor shaft 20 on the other end 20b side. A large-diameter gear portion 431 of the stepped pinion gear 43 meshes with the outer periphery of the tooth portion 411.
 段付きピニオンギア43は、サンギア41に噛合する大径歯車部431と、大径歯車部431よりも小径の小径歯車部432とを有している。
 段付きピニオンギア43は、大径歯車部431と小径歯車部432が、回転軸Xに平行な軸線X1方向で並んで、一体に設けられたギア部品である。
 大径歯車部431は、小径歯車部432の外径R2よりも大きい外径R1で形成されている。
 段付きピニオンギア43は、軸線X1に沿う向きで設けられている。この状態において。大径歯車部431はモータ2側(図中、右側)に位置している。
The stepped pinion gear 43 has a large-diameter gear portion 431 that meshes with the sun gear 41 and a small-diameter gear portion 432 having a diameter smaller than that of the large-diameter gear portion 431.
The stepped pinion gear 43 is a gear component in which a large-diameter gear portion 431 and a small-diameter gear portion 432 are integrally provided side by side in the direction of the axis X1 parallel to the rotation axis X.
The large-diameter gear portion 431 is formed with an outer diameter R1 larger than the outer diameter R2 of the small-diameter gear portion 432.
The stepped pinion gear 43 is provided in a direction along the axis X1. In this state. The large-diameter gear portion 431 is located on the motor 2 side (on the right side in the drawing).
 小径歯車部432の外周は、リングギア42の内周に噛合している。リングギア42は、回転軸Xを所定間隔で囲むリング状を成している。リングギア42の外周には、径方向外側に突出する複数の係合歯421が設けられている。複数の係合歯421は、回転軸X周りの周方向に間隔を空けて設けられている。
 リングギア42は、外周に設けた係合歯421を、第4ボックス14の支持壁部146に設けた歯部146aにスプライン嵌合している。リングギア42は、回転軸X回りの回転が規制されている。
The outer circumference of the small diameter gear portion 432 meshes with the inner circumference of the ring gear 42. The ring gear 42 has a ring shape that surrounds the rotation shaft X at predetermined intervals. A plurality of engaging teeth 421 protruding outward in the radial direction are provided on the outer periphery of the ring gear 42. The plurality of engaging teeth 421 are provided at intervals in the circumferential direction around the rotation axis X.
In the ring gear 42, the engaging teeth 421 provided on the outer circumference are spline-fitted to the tooth portions 146a provided on the support wall portion 146 of the fourth box 14. The ring gear 42 is restricted from rotating around the rotation axis X.
 段付きピニオンギア43は、大径歯車部431と小径歯車部432の内径側を軸線X1方向に貫通した貫通孔430を有している。
 段付きピニオンギア43は、貫通孔430を貫通したピニオン軸44の外周で、ニードルベアリングNB、NBを介して回転可能に支持されている。
The stepped pinion gear 43 has a through hole 430 that penetrates the inner diameter side of the large-diameter gear portion 431 and the small-diameter gear portion 432 in the axis X1 direction.
The stepped pinion gear 43 is rotatably supported on the outer circumference of the pinion shaft 44 penetrating the through hole 430 via needle bearings NB and NB.
 ピニオン軸44の外周では、大径歯車部431の内周を支持するニードルベアリングNBと、小径歯車部432の内周を支持するニードルベアリングNBとの間に、中間スペーサMSが介在している。 On the outer circumference of the pinion shaft 44, an intermediate spacer MS is interposed between the needle bearing NB that supports the inner circumference of the large-diameter gear portion 431 and the needle bearing NB that supports the inner circumference of the small-diameter gear portion 432.
 図4に示すように、ピニオン軸44の内部には、軸内油路440が設けられている。軸内油路440は、軸線X1に沿ってピニオン軸44の一端44aから、他端44bまで貫通している。
 ピニオン軸44には、軸内油路440とピニオン軸44の外周とを連通させる油孔442、443が設けられている。
As shown in FIG. 4, an in-shaft oil passage 440 is provided inside the pinion shaft 44. The in-shaft oil passage 440 penetrates from one end 44a of the pinion shaft 44 to the other end 44b along the axis X1.
The pinion shaft 44 is provided with oil holes 442 and 443 that communicate the in-shaft oil passage 440 and the outer circumference of the pinion shaft 44.
 油孔443は、大径歯車部431の内周を支持するニードルベアリングNBが設けられた領域に開口している。
 油孔442は、小径歯車部432の内周を支持するニードルベアリングNBが設けられた領域に開口している。
 ピニオン軸44において油孔443、442は、段付きピニオンギア43が外挿された領域内に開口している。
The oil hole 443 opens in the region where the needle bearing NB that supports the inner circumference of the large-diameter gear portion 431 is provided.
The oil hole 442 is open in the region where the needle bearing NB that supports the inner circumference of the small diameter gear portion 432 is provided.
In the pinion shaft 44, the oil holes 443 and 442 are opened in the region where the stepped pinion gear 43 is extrapolated.
 さらに、ピニオン軸44には、オイルOLを軸内油路440に導入するための導入路441が設けられている。
 ピニオン軸44の外周において導入路441は、後記する第2ケース部7の支持孔71a内に位置する領域に開口している。導入路441は、軸内油路440とピニオン軸44の外周とを連通させている。
Further, the pinion shaft 44 is provided with an introduction path 441 for introducing the oil OL into the in-shaft oil passage 440.
On the outer circumference of the pinion shaft 44, the introduction path 441 is open to a region located in the support hole 71a of the second case portion 7, which will be described later. The introduction path 441 communicates the in-shaft oil passage 440 with the outer circumference of the pinion shaft 44.
 支持孔71aの内周には、ケース内油路781が開口している。ケース内油路781は、第2ケース部7の基部71から突出するガイド部78の回転軸X側の外周と、支持孔71aの内周とを連通させている。
 軸線X1に沿う断面視においてケース内油路781は、軸線X1に対して傾斜している。ケース内油路781は、回転軸X側に向かうにつれて、基部71に設けたスリット状の油孔710に近づく向きで傾斜している。
An oil passage 781 in the case is opened on the inner circumference of the support hole 71a. The oil passage 781 in the case communicates the outer circumference of the guide portion 78 protruding from the base portion 71 of the second case portion 7 on the rotation axis X side with the inner circumference of the support hole 71a.
In a cross-sectional view along the axis X1, the oil passage 781 in the case is inclined with respect to the axis X1. The oil passage 781 in the case is inclined toward the rotation axis X side toward the slit-shaped oil hole 710 provided in the base 71.
 ケース内油路781には、後記するデフケース50が掻き上げたオイルOLが流入する。ケース内油路781には、デフケース50の回転による遠心力で外径側に移動するオイルOLが流入する。
 ケース内油路781から導入路441に流入したオイルOLは、ピニオン軸44の軸内油路440に流入する。軸内油路440に流入したオイルOLは、油孔442、443から径方向外側に排出される。油孔442、443から排出されたオイルOLは、ピニオン軸44に外挿されたニードルベアリングNBを潤滑する。
The oil OL scraped up by the differential case 50, which will be described later, flows into the oil passage 781 in the case. The oil OL that moves to the outer diameter side flows into the oil passage 781 inside the case due to the centrifugal force generated by the rotation of the differential case 50.
The oil OL that has flowed from the oil passage 781 in the case into the introduction passage 441 flows into the in-shaft oil passage 440 of the pinion shaft 44. The oil OL that has flowed into the in-shaft oil passage 440 is discharged radially outward from the oil holes 442 and 443. The oil OL discharged from the oil holes 442 and 443 lubricates the needle bearing NB extrapolated to the pinion shaft 44.
 ピニオン軸44では、導入路441が設けられた領域よりも他端44b側に、貫通孔444が設けられている。貫通孔444は、ピニオン軸44を直径線方向に貫通している。
 ピニオン軸44は、貫通孔444と、後記する第2ケース部7側の挿入穴782との軸線X1回りの位相を合わせて設けられている。挿入穴782に挿入された位置決めピンPが、ピニオン軸44の貫通孔444を貫通する。これによって、ピニオン軸44は、軸線X1回りの回転が規制された状態で、第2ケース部7側で支持される。
In the pinion shaft 44, a through hole 444 is provided on the other end 44b side of the region where the introduction path 441 is provided. The through hole 444 penetrates the pinion shaft 44 in the diameter line direction.
The pinion shaft 44 is provided so that the through hole 444 and the insertion hole 782 on the second case portion 7 side, which will be described later, are in phase with each other around the axis X1. The positioning pin P inserted into the insertion hole 782 penetrates the through hole 444 of the pinion shaft 44. As a result, the pinion shaft 44 is supported on the second case portion 7 side in a state where rotation around the axis X1 is restricted.
 図4に示すように、ピニオン軸44の長手方向の一端44a側では、段付きピニオンギア43から突出した領域が第1軸部445となっている。第1軸部445は、デフケース50の第1ケース部6に設けた支持孔61aで支持されている。
 ピニオン軸44の長手方向の他端44b側では、段付きピニオンギア43から突出した領域が第2軸部446となっている。第2軸部446は、デフケース50の第2ケース部7に設けた支持孔71aで支持されている。
As shown in FIG. 4, on the one end 44a side of the pinion shaft 44 in the longitudinal direction, the region protruding from the stepped pinion gear 43 is the first shaft portion 445. The first shaft portion 445 is supported by a support hole 61a provided in the first case portion 6 of the differential case 50.
On the other end 44b side of the pinion shaft 44 in the longitudinal direction, a region protruding from the stepped pinion gear 43 is the second shaft portion 446. The second shaft portion 446 is supported by a support hole 71a provided in the second case portion 7 of the differential case 50.
 ここで、第1軸部445は、ピニオン軸44における段付きピニオンギア43が外挿されていない一端44a側の領域を意味する。第2軸部446は、ピニオン軸44における段付きピニオンギア43が外挿されていない他端44b側の領域を意味する。
 ピニオン軸44では、第1軸部445よりも第2軸部446のほうが、軸線X1方向の長さが長くなっている。
Here, the first shaft portion 445 means a region on the pinion shaft 44 on the one end 44a side where the stepped pinion gear 43 is not extrapolated. The second shaft portion 446 means a region on the other end 44b side of the pinion shaft 44 where the stepped pinion gear 43 is not extrapolated.
In the pinion shaft 44, the length of the second shaft portion 446 in the axis X1 direction is longer than that of the first shaft portion 445.
 以下、差動機構5の主要構成を説明する。
 図5は、差動機構5のデフケース50周りの斜視図である。
 図6は、差動機構5のデフケース50周りの分解斜視図である。
 図4から図6に示すように、デフケース50は、差動機構5を収容するケースである。デフケース50は、第1ケース部6と第2ケース部7を回転軸X方向で組み付けて形成される。本実施形態では、デフケース50の第1ケース部6と第2ケース部7が、遊星減速ギア4のピニオン軸44を支持するキャリアとしての機能を有している。
Hereinafter, the main configuration of the differential mechanism 5 will be described.
FIG. 5 is a perspective view of the differential mechanism 5 around the differential case 50.
FIG. 6 is an exploded perspective view of the differential mechanism 5 around the differential case 50.
As shown in FIGS. 4 to 6, the differential case 50 is a case for accommodating the differential mechanism 5. The differential case 50 is formed by assembling the first case portion 6 and the second case portion 7 in the rotation axis X direction. In the present embodiment, the first case portion 6 and the second case portion 7 of the differential case 50 have a function as a carrier for supporting the pinion shaft 44 of the planetary reduction gear 4.
 図6に示すように、デフケース50の、第1ケース部6と第2ケース部7との間には、3つのピニオンメートギア52と、3つのピニオンメートシャフト51と、が設けられている。
 ピニオンメートシャフト51は、回転軸X周りの周方向に等間隔で設けられている(図6参照)。
 ピニオンメートシャフト51の各々の内径側の端部は、共通の連結部510に連結されている。
As shown in FIG. 6, three pinion mate gears 52 and three pinion mate shafts 51 are provided between the first case portion 6 and the second case portion 7 of the differential case 50.
The pinion mate shafts 51 are provided at equal intervals in the circumferential direction around the rotation axis X (see FIG. 6).
Each inner diameter end of the pinion mate shaft 51 is connected to a common connecting portion 510.
 ピニオンメートギア52は、ピニオンメートシャフト51の各々に1つずつ外挿されている。ピニオンメートギア52の各々は、回転軸Xの径方向外側から、連結部510に接触している。
 この状態においてピニオンメートギア52の各々は、ピニオンメートシャフト51で回転可能に支持されている。
One pinion mate gear 52 is extrapolated to each of the pinion mate shaft 51. Each of the pinion mate gears 52 is in contact with the connecting portion 510 from the radial outside of the rotating shaft X.
In this state, each of the pinion mate gears 52 is rotatably supported by the pinion mate shaft 51.
 図4に示すように、ピニオンメートシャフト51には、球面状ワッシャ53が外挿されている。球面状ワッシャ53は、ピニオンメートギア52の球面状の外周に接触している。 As shown in FIG. 4, a spherical washer 53 is extrapolated to the pinion mate shaft 51. The spherical washer 53 is in contact with the spherical outer circumference of the pinion mate gear 52.
 デフケース50では、回転軸X方向における連結部510の一方側にサイドギア54Aが位置し、他方側にサイドギア54Bが位置する。サイドギア54Aは第1ケース部6で回転可能に支持される。サイドギア54Bは、第2ケース部7で回転可能に支持される。
 サイドギア54Aは、回転軸X方向における一方側から、3つのピニオンメートギア52に噛合している。サイドギア54Bは、回転軸X方向における他方側から、3つのピニオンメートギア52に噛合している。
In the differential case 50, the side gear 54A is located on one side of the connecting portion 510 in the rotation axis X direction, and the side gear 54B is located on the other side. The side gear 54A is rotatably supported by the first case portion 6. The side gear 54B is rotatably supported by the second case portion 7.
The side gear 54A meshes with three pinion mate gears 52 from one side in the rotation axis X direction. The side gear 54B meshes with the three pinion mate gears 52 from the other side in the rotation axis X direction.
 図7から図10は、第1ケース部6を説明する図である。
 図7は、第1ケース部6を第2ケース部7側から見た斜視図である。
 図8は、第1ケース部6を第2ケース部7側から見た平面図である。
 図9は、図8におけるA-A断面の模式図である。図9は、ピニオンメートシャフト51とピニオンメートギア52の配置を仮想線で示している。
 図10は、図8におけるA-A断面の模式図である。図10は、紙面奥側の連結梁62の図示を省略しつつ、サイドギア54Aと段付きピニオンギア43とドライブシャフト9Aの配置を仮想線で示している。
7 to 10 are views for explaining the first case portion 6.
FIG. 7 is a perspective view of the first case portion 6 as viewed from the second case portion 7 side.
FIG. 8 is a plan view of the first case portion 6 as viewed from the second case portion 7 side.
FIG. 9 is a schematic view of a cross section taken along the line AA in FIG. FIG. 9 shows the arrangement of the pinion mate shaft 51 and the pinion mate gear 52 with virtual lines.
FIG. 10 is a schematic view of a cross section taken along the line AA in FIG. In FIG. 10, the arrangement of the side gear 54A, the stepped pinion gear 43, and the drive shaft 9A is shown by a virtual line while omitting the illustration of the connecting beam 62 on the back side of the paper.
 図7および図8に示すように、第1ケース部6は、リング状の基部61を有している。基部61は、回転軸X方向に厚みW61を有する板状部材である。
 図9および図10に示すように、基部61の中央部には、開口60が設けられている。基部61における第2ケース部7とは反対側(図中、右側)の面には、開口60を囲む筒壁部611が設けられている。筒壁部611の外周は、ベアリングB3を介して、プレート部材8で支持されている(図3参照)。
As shown in FIGS. 7 and 8, the first case portion 6 has a ring-shaped base portion 61. The base portion 61 is a plate-shaped member having a thickness W61 in the rotation axis X direction.
As shown in FIGS. 9 and 10, an opening 60 is provided in the central portion of the base portion 61. A tubular wall portion 611 surrounding the opening 60 is provided on the surface of the base portion 61 opposite to the second case portion 7 (on the right side in the drawing). The outer circumference of the tubular wall portion 611 is supported by a plate member 8 via a bearing B3 (see FIG. 3).
 基部61における第2ケース部7側(図中、左側)の面には、第2ケース部7側に延びる3つの連結梁62が設けられている。
 連結梁62は、回転軸X周りの周方向に、等間隔で設けられている(図7および図8参照)。
 連結梁62は、基部61に対して直交する基部63と、基部63よりも幅広の連結部64と、を有している。
Three connecting beams 62 extending to the second case portion 7 side are provided on the surface of the base portion 61 on the second case portion 7 side (left side in the drawing).
The connecting beams 62 are provided at equal intervals in the circumferential direction around the rotation axis X (see FIGS. 7 and 8).
The connecting beam 62 has a base portion 63 orthogonal to the base portion 61 and a connecting portion 64 wider than the base portion 63.
 図9に示すように、連結部64の先端面64aは、回転軸Xに直交する平坦面であり、先端面64aには、ピニオンメートシャフト51を支持するための支持溝65が設けられている。 As shown in FIG. 9, the tip surface 64a of the connecting portion 64 is a flat surface orthogonal to the rotation axis X, and the tip surface 64a is provided with a support groove 65 for supporting the pinion mate shaft 51. ..
 図8に示すように、回転軸X方向から見て支持溝65は、リング状の基部61の半径線Lに沿って、直線状に形成されている。支持溝65は、回転軸X周りの周方向における連結部64の中央部を、内径側から外径側に横断している。
 図9および図10に示すように、支持溝65は、ピニオンメートシャフト51の外径に沿う半円形を成している。支持溝65は、円柱状のピニオンメートシャフト51の半分を収容可能な深さで形成されている。すなわち、支持溝65は、ピニオンメートシャフト51の直径Daの半分(=Da/2)に相当する深さで形成されている。
As shown in FIG. 8, the support groove 65 is formed in a straight line along the radius line L of the ring-shaped base portion 61 when viewed from the rotation axis X direction. The support groove 65 crosses the central portion of the connecting portion 64 in the circumferential direction around the rotation axis X from the inner diameter side to the outer diameter side.
As shown in FIGS. 9 and 10, the support groove 65 has a semicircular shape along the outer diameter of the pinion mate shaft 51. The support groove 65 is formed to a depth that can accommodate half of the columnar pinion mate shaft 51. That is, the support groove 65 is formed at a depth corresponding to half (= Da / 2) of the diameter Da of the pinion mate shaft 51.
 連結部64の内径側(回転軸X側)には、ピニオンメートギア52の外周に沿う形状で円弧部641が形成されている。
 円弧部641では、ピニオンメートギア52の外周が、球面状ワッシャ53を介して支持される。
 円弧部641では、前記した半径線Lに沿う向きで油溝642が設けられている。油溝642は、ピニオンメートシャフト51の支持溝65から、連結部64の内周に固定されたギア支持部66までの範囲に設けられている。
An arc portion 641 is formed on the inner diameter side (rotation shaft X side) of the connecting portion 64 in a shape along the outer circumference of the pinion mate gear 52.
In the arc portion 641, the outer circumference of the pinion mate gear 52 is supported via the spherical washer 53.
In the arc portion 641, an oil groove 642 is provided in a direction along the radius line L described above. The oil groove 642 is provided in a range from the support groove 65 of the pinion mate shaft 51 to the gear support portion 66 fixed to the inner circumference of the connecting portion 64.
 ギア支持部66は、基部63と連結部64との境界部に接続されている。ギア支持部66は、回転軸Xに直交する向きで設けられている。ギア支持部66は、中央部に貫通孔660を有している。
 図8に示すように、ギア支持部66の外周は、3つの連結部64の内周に接続されている。この状態において貫通孔660の中心は、回転軸X上に位置している。
The gear support portion 66 is connected to a boundary portion between the base portion 63 and the connecting portion 64. The gear support portion 66 is provided in a direction orthogonal to the rotation axis X. The gear support portion 66 has a through hole 660 in the central portion.
As shown in FIG. 8, the outer circumference of the gear support portion 66 is connected to the inner circumference of the three connecting portions 64. In this state, the center of the through hole 660 is located on the rotation axis X.
 図9および図10に示すように、ギア支持部66では、基部61とは反対側(図中、左側)の面に、貫通孔660を囲む凹部661が設けられている。凹部661には、サイドギア54Aの裏面を支持するリング状のワッシャ55が収容される。
 サイドギア54Aの裏面には、円筒状の筒壁部541が設けられている。ワッシャ55は筒壁部541に外挿されている。
As shown in FIGS. 9 and 10, the gear support portion 66 is provided with a recess 661 surrounding the through hole 660 on the surface opposite to the base portion 61 (left side in the drawing). A ring-shaped washer 55 that supports the back surface of the side gear 54A is housed in the recess 661.
A cylindrical wall portion 541 is provided on the back surface of the side gear 54A. The washer 55 is extrapolated to the cylinder wall portion 541.
 回転軸X方向から見て、ギア支持部66における凹部661側の面には、3つの油溝662が設けられている。油溝662は、回転軸X周りの周方向に間隔を空けて設けられている。
 油溝662は、前記した半径線Lに沿って、ギア支持部66の内周から外周まで及んでいる。油溝662は、前記した円弧部641側の油溝642に連絡している。
Three oil grooves 662 are provided on the surface of the gear support portion 66 on the recess 661 side when viewed from the rotation axis X direction. The oil grooves 662 are provided at intervals in the circumferential direction around the rotation axis X.
The oil groove 662 extends from the inner circumference to the outer circumference of the gear support portion 66 along the radius line L described above. The oil groove 662 communicates with the oil groove 642 on the arc portion 641 side described above.
 図7および図8に示すように、基部61には、ピニオン軸44の支持孔61aが開口している。支持孔61aは、回転軸X周りの周方向で間隔をあけて配置された連結梁62、62の間の領域に開口している。
 基部61には、支持孔61aを囲むボス部616が設けられている。ボス部616には、ピニオン軸44に外挿されたワッシャWc(図10参照)が、回転軸X方向から接触する。
As shown in FIGS. 7 and 8, a support hole 61a of the pinion shaft 44 is opened in the base portion 61. The support holes 61a are open in the region between the connecting beams 62, 62 arranged at intervals in the circumferential direction around the rotation axis X.
The base portion 61 is provided with a boss portion 616 that surrounds the support hole 61a. A washer Wc (see FIG. 10) extrapolated to the pinion shaft 44 comes into contact with the boss portion 616 from the rotation axis X direction.
 基部61では、中央の開口60からボス部616までの範囲に、油溝617が設けられている。
 図8に示すように、油溝617は、ボス部616に近づくにつれて、回転軸X周りの周方向の幅が狭くなる先細り形状で形成されている。油溝617は、ボス部616に設けた油溝618に連絡している。
In the base portion 61, an oil groove 617 is provided in a range from the central opening 60 to the boss portion 616.
As shown in FIG. 8, the oil groove 617 is formed in a tapered shape in which the width in the circumferential direction around the rotation axis X becomes narrower as it approaches the boss portion 616. The oil groove 617 is in contact with the oil groove 618 provided in the boss portion 616.
 連結部64では、支持溝65の両側に、ボルト穴67、67が設けられている。
 第1ケース部6の連結部64には、第2ケース部7側の連結部74が回転軸X方向から接合される。第1ケース部6と第2ケース部7は、第2ケース部7側の連結部74を貫通したボルトBが、ボルト穴67、67に螺入されて、互いに接合される。
In the connecting portion 64, bolt holes 67 and 67 are provided on both sides of the support groove 65.
A connecting portion 74 on the side of the second case portion 7 is joined to the connecting portion 64 of the first case portion 6 from the rotation axis X direction. In the first case portion 6 and the second case portion 7, bolts B penetrating the connecting portion 74 on the second case portion 7 side are screwed into the bolt holes 67 and 67 and joined to each other.
 図11から図16は、第2ケース部7を説明する図である。
 図11は、第2ケース部7を第1ケース部6側から見た斜視図である。
 図12は、第2ケース部7を第1ケース部6側から見た平面図である。
 図13は、図12におけるA-A断面の模式図である。図13は、ピニオンメートシャフト51とピニオンメートギア52の配置を仮想線で示している。
 図14は、図12におけるA-A断面の模式図である。図14は、紙面奥側の連結部74の図示を省略しつつ、サイドギア54Bと段付きピニオンギア43とドライブシャフト9Bの配置を仮想線で示している。
 図15は、第2ケース部7を第1ケース部6とは反対側から見た斜視図である。
 図16は、第2ケース部7を第1ケース部6とは反対側から見た平面図である。
 図17は、図16におけるA-A断面の模式図である。
 図18は、図16におけるB-B断面の模式図である。
 図19は、図16におけるC-C断面の模式図である。
 図20は、リブ711の作用を説明する図である。
11 to 16 are views for explaining the second case portion 7.
FIG. 11 is a perspective view of the second case portion 7 as viewed from the first case portion 6 side.
FIG. 12 is a plan view of the second case portion 7 as viewed from the first case portion 6 side.
FIG. 13 is a schematic view of a cross section taken along the line AA in FIG. FIG. 13 shows the arrangement of the pinion mate shaft 51 and the pinion mate gear 52 by a virtual line.
FIG. 14 is a schematic view of a cross section taken along the line AA in FIG. In FIG. 14, the arrangement of the side gear 54B, the stepped pinion gear 43, and the drive shaft 9B is shown by a virtual line while omitting the illustration of the connecting portion 74 on the back side of the paper.
FIG. 15 is a perspective view of the second case portion 7 as viewed from the side opposite to the first case portion 6.
FIG. 16 is a plan view of the second case portion 7 as viewed from the side opposite to the first case portion 6.
FIG. 17 is a schematic view of a cross section taken along the line AA in FIG.
FIG. 18 is a schematic view of a cross section taken along the line BB in FIG.
FIG. 19 is a schematic view of a CC cross section in FIG.
FIG. 20 is a diagram illustrating the operation of the rib 711.
 図13および図14に示すように、第2ケース部7は、リング状の基部71を有している。
 基部71は、回転軸X方向に厚みW71を有する板状部材である。
 基部71の中央部には、基部71を厚み方向に貫通する貫通孔70が設けられている。
 基部71における第1ケース部6とは反対側(図中、左側)の面には、貫通孔70を囲む筒壁部72と、筒壁部72を所定間隔で囲む円筒状のガイド部73が設けられている。
As shown in FIGS. 13 and 14, the second case portion 7 has a ring-shaped base portion 71.
The base portion 71 is a plate-shaped member having a thickness W71 in the rotation axis X direction.
A through hole 70 that penetrates the base portion 71 in the thickness direction is provided in the central portion of the base portion 71.
On the surface of the base portion 71 opposite to the first case portion 6 (on the left side in the drawing), a cylindrical wall portion 72 surrounding the through hole 70 and a cylindrical guide portion 73 surrounding the tubular wall portion 72 at predetermined intervals are provided. It is provided.
 図17に示すように、筒壁部72の外周には、段部722が設けられている。筒壁部72は、基部71側のほうが先端側よりも外径が大きくなっている。基部71から段部722までの高さh72は、基部71からガイド部73までの高さh73よりも高くなっている(h73<h72)。
 ガイド部73の先端には、回転軸X側に突出する突出部73aが設けられている。突出部73aは、回転軸X周りの周方向の全周に亘って設けられている。
As shown in FIG. 17, a step portion 722 is provided on the outer periphery of the cylinder wall portion 72. The outer diameter of the tubular wall portion 72 is larger on the base portion 71 side than on the tip end side. The height h72 from the base portion 71 to the step portion 722 is higher than the height h73 from the base portion 71 to the guide portion 73 (h73 <h72).
At the tip of the guide portion 73, a protruding portion 73a protruding toward the rotation shaft X side is provided. The protruding portion 73a is provided over the entire circumference in the circumferential direction around the rotation axis X.
 図16に示すようにガイド部73の外径側には、ピニオン軸44の3つの支持孔71aが開口している。
 支持孔71aは、回転軸X周りの周方向に間隔を空けて設けられている。
 ガイド部73の内径側には、基部71を厚み方向に貫通する3つの油孔710が設けられている。油孔710は、回転軸X方向においてデフケース50の外側に向かって開口している。
 回転軸X方向から見て油孔710は、ガイド部73の内周に沿う弧状を成している。油孔710は、回転軸X周りの周方向に所定の角度範囲で形成されている。
 図13に示すように、油孔710の外周縁は、ガイド部73の内周面731と面一となっている。
As shown in FIG. 16, three support holes 71a of the pinion shaft 44 are opened on the outer diameter side of the guide portion 73.
The support holes 71a are provided at intervals in the circumferential direction around the rotation axis X.
On the inner diameter side of the guide portion 73, three oil holes 710 that penetrate the base portion 71 in the thickness direction are provided. The oil hole 710 opens toward the outside of the differential case 50 in the X direction of the rotation axis.
The oil hole 710 is formed in an arc shape along the inner circumference of the guide portion 73 when viewed from the rotation axis X direction. The oil holes 710 are formed in a predetermined angle range in the circumferential direction around the rotation axis X.
As shown in FIG. 13, the outer peripheral edge of the oil hole 710 is flush with the inner peripheral surface 731 of the guide portion 73.
 図16に示すように、第2ケース部7において油孔710は、回転軸X周りの周方向に間隔を空けて設けられている。油孔710の各々は、支持孔71aの内径側を、回転軸X周りの周方向に横切って設けられている。 As shown in FIG. 16, in the second case portion 7, the oil holes 710 are provided at intervals in the circumferential direction around the rotation axis X. Each of the oil holes 710 is provided across the inner diameter side of the support hole 71a in the circumferential direction around the rotation axis X.
 回転軸X周りの周方向で隣り合う油孔710、710の間には、紙面手前側に突出したリブ711が設けられている。リブ711は、回転軸Xの径方向に直線状に延びている。リブ711は、外径側のガイド部73と内径側の筒壁部72とに跨がって設けられている。
 図19および図20に示すように、回転軸X回りの周方向におけるリブ711の一方側と他方側には、凹溝711a、711bが形成されている。
 これら凹溝711a、711bは、内径側の筒壁部72から、ガイド部73の突出部73aまでの範囲に形成されている。
A rib 711 protruding toward the front side of the paper surface is provided between the oil holes 710 and 710 adjacent to each other in the circumferential direction around the rotation axis X. The rib 711 extends linearly in the radial direction of the rotation axis X. The rib 711 is provided so as to straddle the guide portion 73 on the outer diameter side and the cylinder wall portion 72 on the inner diameter side.
As shown in FIGS. 19 and 20, recessed grooves 711a and 711b are formed on one side and the other side of the rib 711 in the circumferential direction around the rotation axis X.
These concave grooves 711a and 711b are formed in a range from the cylinder wall portion 72 on the inner diameter side to the protruding portion 73a of the guide portion 73.
 図16に示すように、3つのリブ711は、回転軸X周りの周方向に間隔を空けて設けられている。3つのリブ711は、油孔710に対して、回転軸X周りの周方向に大凡45度位相をずらして設けられている。 As shown in FIG. 16, the three ribs 711 are provided at intervals in the circumferential direction around the rotation axis X. The three ribs 711 are provided so as to be out of phase with respect to the oil hole 710 in the circumferential direction around the rotation axis X by approximately 45 degrees.
 ガイド部73の外径側では、回転軸X周りの周方向で隣り合う支持孔71a、71aの間に、紙面奥側に窪んだボルト収容部76、76が設けられている。これらボルト収容部76、76は、半径線Lを間に挟んで対称となる位置関係で設けられている。ボルト収容部76は、基部71の外周71cに開口している。
 ボルト収容部76の内側には、ボルトの挿通孔77が開口している。挿通孔77は、基部71を厚み方向(回転軸X方向)に貫通している。
On the outer diameter side of the guide portion 73, bolt accommodating portions 76, 76 recessed on the inner side of the paper surface are provided between the support holes 71a, 71a adjacent to each other in the circumferential direction around the rotation axis X. These bolt accommodating portions 76, 76 are provided in a symmetrical positional relationship with a radius line L in between. The bolt accommodating portion 76 is open to the outer circumference 71c of the base portion 71.
A bolt insertion hole 77 is opened inside the bolt accommodating portion 76. The insertion hole 77 penetrates the base 71 in the thickness direction (rotation axis X direction).
 図11および図12に示すように、基部71における第1ケース部6側(図中、右側)の面には、第1ケース部6側に突出する3つの連結部74が設けられている。
 連結部74は、回転軸X周りの周方向に、等間隔で設けられている。連結部74は、第1ケース部6側の連結部64と同じ周方向の幅W7で形成されている。
As shown in FIGS. 11 and 12, three connecting portions 74 projecting to the first case portion 6 side are provided on the surface of the base portion 71 on the first case portion 6 side (right side in the drawing).
The connecting portions 74 are provided at equal intervals in the circumferential direction around the rotation axis X. The connecting portion 74 is formed with a width W7 in the same circumferential direction as the connecting portion 64 on the first case portion 6 side.
 図13に示すように、連結部74の先端面74aは、回転軸Xに直交する平坦面である。先端面74aには、ピニオンメートシャフト51を支持するための支持溝75が設けられている。 As shown in FIG. 13, the tip surface 74a of the connecting portion 74 is a flat surface orthogonal to the rotation axis X. The tip surface 74a is provided with a support groove 75 for supporting the pinion mate shaft 51.
 図12に示すように、回転軸X方向から見て支持溝75は、基部71の半径線Lに沿って直線状に形成されている。支持溝75は、連結部74を内径側から外径側に横断して形成されている。
 図5に示すように、支持溝75は、ピニオンメートシャフト51の外径に沿う半円形を成している。
 図13に示すように、支持溝75は、円柱状のピニオンメートシャフト51の半分を収容可能な深さで形成されている。すなわち、支持溝75は、ピニオンメートシャフト51の直径Daの半分(=Da/2)に相当する深さで形成されている。
As shown in FIG. 12, the support groove 75 is formed linearly along the radius line L of the base 71 when viewed from the rotation axis X direction. The support groove 75 is formed so as to cross the connecting portion 74 from the inner diameter side to the outer diameter side.
As shown in FIG. 5, the support groove 75 has a semicircular shape along the outer diameter of the pinion mate shaft 51.
As shown in FIG. 13, the support groove 75 is formed at a depth capable of accommodating half of the columnar pinion mate shaft 51. That is, the support groove 75 is formed at a depth corresponding to half (= Da / 2) of the diameter Da of the pinion mate shaft 51.
 連結部74の内径側(回転軸X側)には、ピニオンメートギア52の外周に沿う円弧部741が設けられている。
 円弧部741では、ピニオンメートギア52の外周が、球面状ワッシャ53を介して支持される(図13および図14参照)。
 円弧部741では、前記した半径線Lに沿う向きで油溝742が設けられている。油溝742は、ピニオンメートシャフト51の支持溝75から、連結部74の内周に位置する基部71までの範囲に設けられている。
An arc portion 741 along the outer circumference of the pinion mate gear 52 is provided on the inner diameter side (rotation shaft X side) of the connecting portion 74.
In the arc portion 741, the outer circumference of the pinion mate gear 52 is supported via the spherical washer 53 (see FIGS. 13 and 14).
In the arc portion 741, the oil groove 742 is provided in the direction along the radius line L described above. The oil groove 742 is provided in a range from the support groove 75 of the pinion mate shaft 51 to the base portion 71 located on the inner circumference of the connecting portion 74.
 油溝742は、基部71の表面71bに設けた油溝712に連絡している。回転軸X方向から見て油溝712は、半径線Lに沿って設けられており、基部71に設けた貫通孔70まで形成されている。
 基部71の表面71bには、サイドギア54Bの裏面を支持するリング状のワッシャ55が載置される。サイドギア54Bの裏面には、円筒状の筒壁部540が設けられている。ワッシャ55は筒壁部540に外挿されている。
The oil groove 742 communicates with the oil groove 712 provided on the surface 71b of the base 71. The oil groove 712 is provided along the radius line L when viewed from the rotation axis X direction, and is formed up to the through hole 70 provided in the base portion 71.
A ring-shaped washer 55 that supports the back surface of the side gear 54B is placed on the surface 71b of the base portion 71. A cylindrical wall portion 540 is provided on the back surface of the side gear 54B. The washer 55 is extrapolated to the cylinder wall portion 540.
 貫通孔70を囲む筒壁部72の内周には、油溝712と交差する位置に油溝721が形成されている。筒壁部72の内周では、油溝721が、回転軸Xに沿う向きで、筒壁部72の回転軸X方向の全長に亘って設けられている。 An oil groove 721 is formed at a position intersecting the oil groove 712 on the inner circumference of the tubular wall portion 72 surrounding the through hole 70. On the inner circumference of the cylinder wall portion 72, an oil groove 721 is provided along the rotation axis X over the entire length of the cylinder wall portion 72 in the rotation axis X direction.
 図11および図12に示すように、第2ケース部7の基部71では、回転軸X周りの周方向で隣り合う連結部74、74の間に、ガイド部78が設けられている。ガイド部78は、第1ケース部6側(紙面手前側)に突出している。
 回転軸X方向から見て、ガイド部78は筒状を成している。ガイド部78は、基部71に設けた支持孔71aを囲んでいる。ガイド部78の外周部は、基部71の外周71cに沿って切除されている。
As shown in FIGS. 11 and 12, in the base portion 71 of the second case portion 7, a guide portion 78 is provided between the connecting portions 74 and 74 adjacent to each other in the circumferential direction around the rotation axis X. The guide portion 78 projects toward the first case portion 6 side (front side of the paper surface).
The guide portion 78 has a tubular shape when viewed from the rotation axis X direction. The guide portion 78 surrounds the support hole 71a provided in the base portion 71. The outer peripheral portion of the guide portion 78 is cut along the outer peripheral portion 71c of the base portion 71.
 図13および図14に示すように、軸線X1に沿う断面視において、ガイド部78の支持孔71aには、第1ケース部6側からピニオン軸44が挿入される。ピニオン軸44は、位置決めピンPにより、軸線X1回りの回転が規制された状態で位置決めされている。
 この状態において、ピニオン軸44に外挿された段付きピニオンギア43の小径歯車部432が、ワッシャWcを間に挟んで、軸線X1方向からガイド部78に当接している。
As shown in FIGS. 13 and 14, the pinion shaft 44 is inserted into the support hole 71a of the guide portion 78 from the side of the first case portion 6 in the cross-sectional view along the axis X1. The pinion shaft 44 is positioned in a state where rotation around the axis X1 is restricted by the positioning pin P.
In this state, the small-diameter gear portion 432 of the stepped pinion gear 43 extrapolated to the pinion shaft 44 is in contact with the guide portion 78 from the axis X1 direction with the washer Wc sandwiched between them.
 図4に示すように、デフケース50では、第2ケース部7の筒壁部72に、ベアリングB2が外挿されている。ベアリングB2は、筒壁部72の外周に設けた段部722に、インナレースを回転軸X方向から当接させている。筒壁部72に外挿されたベアリングB2は、第4ボックス14の支持部145で保持されている。デフケース50の筒壁部72は、ベアリングB2を介して、第4ボックス14で回転可能に支持されている。 As shown in FIG. 4, in the differential case 50, the bearing B2 is extrapolated to the cylinder wall portion 72 of the second case portion 7. The bearing B2 has an inner race in contact with a step portion 722 provided on the outer periphery of the cylinder wall portion 72 from the rotation axis X direction. The bearing B2 extrapolated to the cylinder wall portion 72 is held by the support portion 145 of the fourth box 14. The tubular wall portion 72 of the differential case 50 is rotatably supported by the fourth box 14 via the bearing B2.
 支持部145には、第4ボックス14の開口部145aを貫通したドライブシャフト9Bが、回転軸X方向から挿入されている。ドライブシャフト9Bは、支持部145で回転可能に支持されている。
 開口部145aの内周には、リップシールRSが固定されている。リップシールRSの図示しないリップ部が、ドライブシャフト9Bに外挿されたサイドギア54Bの筒壁部540の外周に弾発的に接触している。
 これにより、サイドギア54Bの筒壁部540の外周と開口部145aの内周との隙間が封止されている。
A drive shaft 9B penetrating the opening 145a of the fourth box 14 is inserted into the support portion 145 from the rotation axis X direction. The drive shaft 9B is rotatably supported by the support portion 145.
A lip seal RS is fixed to the inner circumference of the opening 145a. A lip portion (not shown) of the lip seal RS is elastically in contact with the outer circumference of the cylinder wall portion 540 of the side gear 54B extrapolated to the drive shaft 9B.
As a result, the gap between the outer circumference of the cylinder wall portion 540 of the side gear 54B and the inner circumference of the opening 145a is sealed.
 デフケース50の第1ケース部6は、筒壁部611に外挿されたベアリングB3を介して、プレート部材8で支持されている(図2参照)。 The first case portion 6 of the differential case 50 is supported by the plate member 8 via the bearing B3 extrapolated to the cylinder wall portion 611 (see FIG. 2).
 第1ケース部6の内部には、第3ボックス13の挿通孔130aを貫通したドライブシャフト9Aが、回転軸方向から挿入されている。
 ドライブシャフト9Aは、モータ2のモータシャフト20と、遊星減速ギア4のサンギア41の内径側を回転軸X方向に横切って設けられている。
Inside the first case portion 6, a drive shaft 9A penetrating the insertion hole 130a of the third box 13 is inserted from the direction of the rotation axis.
The drive shaft 9A is provided across the motor shaft 20 of the motor 2 and the inner diameter side of the sun gear 41 of the planetary reduction gear 4 in the rotation axis X direction.
 図4に示すように、デフケース50の内部では、ドライブシャフト9(9A、9B)の先端部の外周に、サイドギア54A、54Bがスプライン嵌合している。サイドギア54A、54Bとドライブシャフト9(9A、9B)とが、回転軸X周りに一体回転可能に連結されている。 As shown in FIG. 4, inside the differential case 50, side gears 54A and 54B are spline-fitted on the outer periphery of the tip of the drive shaft 9 (9A, 9B). The side gears 54A and 54B and the drive shafts 9 (9A and 9B) are integrally rotatably connected around the rotation shaft X.
 この状態においてサイドギア54A、54Bは、回転軸X方向で間隔をあけて、対向配置されている。サイドギア54A、54Bの間に、ピニオンメートシャフト51の連結部510が位置している。
 本実施形態では、合計3つのピニオンメートシャフト51が、連結部510から径方向外側に延びている。ピニオンメートシャフト51の各々に、ピニオンメートギア52が支持されている。ピニオンメートギア52は、回転軸X方向の一方側に位置するサイドギア54Aおよび他方側に位置するサイドギア54Bに、互いの歯部を噛合させた状態で組み付けられている。
In this state, the side gears 54A and 54B are arranged to face each other at intervals in the rotation axis X direction. The connecting portion 510 of the pinion mate shaft 51 is located between the side gears 54A and 54B.
In this embodiment, a total of three pinion mate shafts 51 extend radially outward from the connecting portion 510. A pinion mate gear 52 is supported on each of the pinion mate shafts 51. The pinion mate gear 52 is assembled to the side gear 54A located on one side in the rotation axis X direction and the side gear 54B located on the other side in a state where the teeth are meshed with each other.
 図2に示すように、第4ボックス14の内部には、潤滑用のオイルOLが貯留されている。デフケース50の下部側は、貯留されたオイルOL内に位置している。
 本実施形態では、連結梁62が最も下部側に位置した際に、連結梁62がオイルOL内に位置する高さまで、オイルOLが貯留されている。
 貯留されたオイルOLは、モータ2の出力回転の伝達時に、回転軸X回りに回転するデフケース50により掻き上げられる。
As shown in FIG. 2, the lubricating oil OL is stored inside the fourth box 14. The lower side of the differential case 50 is located in the stored oil OL.
In the present embodiment, when the connecting beam 62 is located on the lowermost side, the oil OL is stored up to the height at which the connecting beam 62 is located in the oil OL.
The stored oil OL is scraped up by the differential case 50 that rotates around the rotation axis X when the output rotation of the motor 2 is transmitted.
 図21から図26は、オイルキャッチ部15を説明する図である。
 図21は、第4ボックス14を第3ボックス13側から見た平面図である。
 図22は、図21に示したオイルキャッチ部15を斜め上方から見た斜視図である。
 図23は、第4ボックス14を第3ボックス13側から見た平面図であって、デフケース50を配置した状態を示した図である。
 図24は、図23に示したオイルキャッチ部15を斜め上方から見た斜視図である。
 図25は、図23におけるA-A断面の模式図である。
 図26は、動力伝達装置1を上方から見た場合におけるオイルキャッチ部15と、デフケース50(第1ケース部6、第2ケース部7)との位置関係を説明する模式図である。
 尚、図21および図23では、第4ボックス14の接合部142と、支持壁部146の位置を明確にするために、ハッチングを付して示している。
21 to 26 are views for explaining the oil catch portion 15.
FIG. 21 is a plan view of the fourth box 14 as viewed from the third box 13 side.
FIG. 22 is a perspective view of the oil catch portion 15 shown in FIG. 21 as viewed from diagonally above.
FIG. 23 is a plan view of the fourth box 14 as viewed from the third box 13 side, and is a view showing a state in which the differential case 50 is arranged.
FIG. 24 is a perspective view of the oil catch portion 15 shown in FIG. 23 as viewed from diagonally above.
FIG. 25 is a schematic view of a cross section taken along the line AA in FIG. 23.
FIG. 26 is a schematic view illustrating the positional relationship between the oil catch portion 15 and the differential case 50 (first case portion 6, second case portion 7) when the power transmission device 1 is viewed from above.
In addition, in FIG. 21 and FIG. 23, hatching is added in order to clarify the positions of the joint portion 142 of the fourth box 14 and the support wall portion 146.
 図21に示すように、回転軸X方向から見て第4ボックス14には、中央の開口部145aを所定間隔で囲む支持壁部146が設けられている。支持壁部146の内側(回転軸X)側が、デフケース50の収容部140となっている。
 第4ボックス14内の上部には、オイルキャッチ部15の空間と、ブリーザ室16の空間が形成されている。
As shown in FIG. 21, the fourth box 14 when viewed from the rotation axis X direction is provided with support wall portions 146 that surround the central opening 145a at predetermined intervals. The inside (rotation axis X) side of the support wall portion 146 is the accommodating portion 140 of the differential case 50.
A space for the oil catch portion 15 and a space for the breather chamber 16 are formed in the upper part of the fourth box 14.
 第4ボックス14の支持壁部146では、鉛直線VLと交差する領域に、オイルキャッチ部15と、デフケース50の収容部140とを連通させる連通口147が設けられている。 In the support wall portion 146 of the fourth box 14, a communication port 147 for communicating the oil catch portion 15 and the accommodating portion 140 of the differential case 50 is provided in the region intersecting the vertical line VL.
 オイルキャッチ部15とブリーザ室16は、回転軸Xと直交する鉛直線VLを挟んだ一方側(図中、左側)と他方側(図中、右側)に、それぞれ位置している。
 オイルキャッチ部15は、デフケース50の回転中心(回転軸X)を通る鉛直線VLからオフセットした位置に配置されている。図26に示すように、上方からオイルキャッチ部15を見ると、オイルキャッチ部15は、デフケース50の真上からオフセットした位置に配置されている。
 ここで、鉛直線VLは、動力伝達装置1の車両での設置状態を基準とした鉛直線VLである。回転軸X方向から見て鉛直線VLは、回転軸Xと直交している。
The oil catch portion 15 and the breather chamber 16 are located on one side (left side in the figure) and the other side (right side in the figure) of the vertical line VL orthogonal to the rotation axis X, respectively.
The oil catch portion 15 is arranged at a position offset from the vertical line VL passing through the rotation center (rotation axis X) of the differential case 50. As shown in FIG. 26, when the oil catch portion 15 is viewed from above, the oil catch portion 15 is arranged at a position offset from directly above the differential case 50.
Here, the vertical line VL is a vertical line VL based on the installation state of the power transmission device 1 in the vehicle. The vertical line VL when viewed from the rotation axis X direction is orthogonal to the rotation axis X.
 図22に示すように、オイルキャッチ部15は、支持壁部146よりも紙面奥側まで及んで形成されている。オイルキャッチ部15の下縁には、紙面手前側に突出して支持台部151が設けられている。支持台部151は、支持壁部146よりも紙面手前側であって、第4ボックス14の接合部142よりも紙面奥側までの範囲に設けられている。 As shown in FIG. 22, the oil catch portion 15 is formed so as to extend to the back side of the paper surface from the support wall portion 146. A support base portion 151 is provided on the lower edge of the oil catch portion 15 so as to project toward the front side of the paper surface. The support base portion 151 is provided on the front side of the paper surface of the support wall portion 146 and in the range from the joint portion 142 of the fourth box 14 to the back side of the paper surface.
 図21に示すように、回転軸X方向から見て、オイルキャッチ部15の鉛直線VL側(図中、右側)には、連通口147が、支持壁部146の一部を切り欠いて形成されている。連通口147は、オイルキャッチ部15と、デフケース50の収容部140とを連通させる。
 回転軸X方向から見て連通口147は、鉛直線VLをブリーザ室16側(図中、右側)から、オイルキャッチ部15側(図中、左側)に横切る範囲に設けられている。
As shown in FIG. 21, a communication port 147 is formed by cutting out a part of the support wall portion 146 on the vertical line VL side (right side in the drawing) of the oil catch portion 15 when viewed from the rotation axis X direction. Has been done. The communication port 147 communicates the oil catch portion 15 with the accommodating portion 140 of the differential case 50.
The communication port 147 is provided in a range that crosses the vertical line VL from the breather chamber 16 side (right side in the figure) to the oil catch portion 15 side (left side in the figure) when viewed from the rotation axis X direction.
 図23に示すように、本実施形態では、動力伝達装置1を搭載した車両の前進走行時に、第3ボックス13側から見てデフケース50は、回転軸X周りの反時計回り方向CCWに回転する。
 そのため、オイルキャッチ部15は、デフケース50の回転方向における下流側に位置している。そして、連通口147の周方向の幅は、鉛直線VLを挟んだ左側のほうが、右側よりも広くなっている。鉛直線VLを挟んだ左側は、デフケース50の回転方向における下流側であり、右側は上流側である。これにより、回転軸X回りに回転するデフケース50で掻き上げられたオイルOLの多くが、オイルキャッチ部15内に流入できるようになっている。
As shown in FIG. 23, in the present embodiment, when the vehicle equipped with the power transmission device 1 is traveling forward, the differential case 50 rotates in the counterclockwise direction CCW around the rotation axis X when viewed from the third box 13 side. ..
Therefore, the oil catch portion 15 is located on the downstream side in the rotation direction of the differential case 50. The width of the communication port 147 in the circumferential direction is wider on the left side of the vertical line VL than on the right side. The left side of the vertical line VL is the downstream side in the rotation direction of the differential case 50, and the right side is the upstream side. As a result, most of the oil OL scraped up by the differential case 50 that rotates around the rotation axis X can flow into the oil catch portion 15.
 さらに、図26に示すように、第2軸部446の回転軌道の外周位置と、大径歯車部431の回転軌道の外周位置は、回転軸Xの径方向でオフセットしている。第2軸部446の回転軌道の外周位置のほうが、大径歯車部431の回転軌道の外周位置よりも内径側に位置している。
 そのため、第2軸部446の外径側に空間的な余裕がある。この空間を利用して、オイルキャッチ部15を設けることで、本体ボックス10内の空間スペースの有効利用が可能となっている。
Further, as shown in FIG. 26, the outer peripheral position of the rotary orbit of the second shaft portion 446 and the outer peripheral position of the rotary orbit of the large-diameter gear portion 431 are offset in the radial direction of the rotary shaft X. The outer peripheral position of the rotary orbit of the second shaft portion 446 is located on the inner diameter side of the outer peripheral position of the rotary orbit of the large-diameter gear portion 431.
Therefore, there is a space margin on the outer diameter side of the second shaft portion 446. By using this space and providing the oil catch portion 15, the space inside the main body box 10 can be effectively used.
 そして、第2軸部446は、モータ2から見て小径歯車部432の奥側に突出している。第2軸部446の周辺部材(例えば、第2軸部446を支持するデフケース50のガイド部73)が、オイルキャッチ部15に近接した位置になる。
 よって、当該周辺部材からオイルキャッチ部15へのオイルOL(潤滑油)の供給をスムーズに行うことができる。
The second shaft portion 446 projects toward the back side of the small diameter gear portion 432 when viewed from the motor 2. The peripheral member of the second shaft portion 446 (for example, the guide portion 73 of the differential case 50 that supports the second shaft portion 446) is located close to the oil catch portion 15.
Therefore, the oil OL (lubricating oil) can be smoothly supplied from the peripheral member to the oil catch portion 15.
 また、図26に示すように、第2軸部446と回転軸Xとの間では、第2軸部446の内径側(回転軸X側)にガイド部73と油孔710が位置している。そのため、第2軸部446の内径側(内周)に、ドライブシャフト9Bが位置することになる。
 さらに、第1軸部445および段付きピニオンギア43の内径側(内周)に、ドライブシャフト9Aが位置することになる。
Further, as shown in FIG. 26, between the second shaft portion 446 and the rotating shaft X, the guide portion 73 and the oil hole 710 are located on the inner diameter side (rotating shaft X side) of the second shaft portion 446. .. Therefore, the drive shaft 9B is located on the inner diameter side (inner circumference) of the second shaft portion 446.
Further, the drive shaft 9A is located on the inner diameter side (inner circumference) of the first shaft portion 445 and the stepped pinion gear 43.
 図22に示すように、支持台部151の奥側には、油路151aの外径側の端部が開口している。油路151aは、第4ボックス14内を内径側に延びている。油路151aの内径側の端部は、支持部145の内周に開口している。
 図2に示すように、支持部145において油路151aの内径側の端部は、リップシールRSとベアリングB2との間に開口している。
As shown in FIG. 22, an end portion on the outer diameter side of the oil passage 151a is opened on the inner side of the support base portion 151. The oil passage 151a extends in the fourth box 14 toward the inner diameter side. The inner diameter side end of the oil passage 151a is open to the inner circumference of the support portion 145.
As shown in FIG. 2, the end of the oil passage 151a on the inner diameter side of the support portion 145 is open between the lip seal RS and the bearing B2.
 図24および図26に示すように、支持台部151には、オイルガイド152が載置されている。
 オイルガイド152は、キャッチ部153と、キャッチ部153から第1ボックス11側(図24における紙面手前側)に延びるガイド部154とを有している。
As shown in FIGS. 24 and 26, the oil guide 152 is mounted on the support base portion 151.
The oil guide 152 has a catch portion 153 and a guide portion 154 extending from the catch portion 153 to the first box 11 side (the front side of the paper surface in FIG. 24).
 図26に示すように、上方から見て支持台部151は、回転軸Xの径方向外側で、デフケース50(第1ケース部6、第2ケース部7)の一部に重なる位置に、段付きピニオンギア43(大径歯車部431)との干渉を避けて設けられている。
 回転軸Xの径方向から見て、キャッチ部153は、ピニオン軸44の第2軸部446と重なる位置に設けられている。さらにガイド部154は、ピニオン軸44の第1軸部445と大径歯車部431と重なる位置に設けられている。
As shown in FIG. 26, the support base portion 151 is stepped on the radial side of the rotation axis X at a position overlapping a part of the differential case 50 (first case portion 6, second case portion 7) when viewed from above. It is provided so as to avoid interference with the attached pinion gear 43 (large diameter gear portion 431).
The catch portion 153 is provided at a position overlapping the second shaft portion 446 of the pinion shaft 44 when viewed from the radial direction of the rotation shaft X. Further, the guide portion 154 is provided at a position where it overlaps the first shaft portion 445 of the pinion shaft 44 and the large diameter gear portion 431.
 そのため、デフケース50が回転軸X回りに回転する際に、デフケース50で掻き上げられたオイルOLが、キャッチ部153とガイド部154側に向けて移動する。 Therefore, when the differential case 50 rotates around the rotation axis X, the oil OL scraped up by the differential case 50 moves toward the catch portion 153 and the guide portion 154 side.
 図24に示すように、キャッチ部153の外周縁には、支持台部151から離れる方向(上方向)に延びる壁部153aが設けられている。壁部153aによって、回転軸X回りに回転するデフケース50で掻き上げられたオイルOLの一部が、オイルガイド152に貯留される。 As shown in FIG. 24, a wall portion 153a extending in a direction away from the support base portion 151 (upward) is provided on the outer peripheral edge of the catch portion 153. A part of the oil OL scraped up by the differential case 50 that rotates around the rotation axis X by the wall portion 153a is stored in the oil guide 152.
 キャッチ部153の奥側(図24における紙面奥側)では、壁部153aに切欠部155が設けられている。
 切欠部155は、油路151aに対向する領域に設けられている。キャッチ部153に貯留されたオイルOLの一部が、切欠部155の部分から油路151aに向けて排出される。
On the back side of the catch portion 153 (the back side of the paper surface in FIG. 24), a notch portion 155 is provided in the wall portion 153a.
The cutout portion 155 is provided in a region facing the oil passage 151a. A part of the oil OL stored in the catch portion 153 is discharged from the notch portion 155 toward the oil passage 151a.
 ガイド部154は、キャッチ部153から離れるにつれて下方に傾斜している。ガイド部154の幅方向の両側には、壁部154a、154aが設けられている。壁部154a、154aは、ガイド部154の長手方向の全長に亘って設けられている。壁部154a、154aは、キャッチ部153の外周を囲む壁部153aに接続する。
 キャッチ部153に貯留されたオイルOLの一部は、ガイド部154側にも排出される。
The guide portion 154 is inclined downward as the distance from the catch portion 153 increases. Wall portions 154a and 154a are provided on both sides of the guide portion 154 in the width direction. The wall portions 154a and 154a are provided over the entire length of the guide portion 154 in the longitudinal direction. The wall portions 154a and 154a are connected to the wall portion 153a surrounding the outer circumference of the catch portion 153.
A part of the oil OL stored in the catch portion 153 is also discharged to the guide portion 154 side.
 図25および図26に示すように、ガイド部154は、デフケース50との干渉を避けた位置を、第2ボックス12側に延びている。ガイド部154の先端154bは、第2ボックス12の壁部120に設けた貫通孔126aに、回転軸X方向の隙間を空けて対向している。
 図25に示すように、壁部120の外周には、貫通孔126aを囲むボス部126が設けられている。ボス部126には、回転軸X方向から配管127の一端が嵌入している。
As shown in FIGS. 25 and 26, the guide portion 154 extends toward the second box 12 at a position where it avoids interference with the differential case 50. The tip 154b of the guide portion 154 faces the through hole 126a provided in the wall portion 120 of the second box 12 with a gap in the rotation axis X direction.
As shown in FIG. 25, a boss portion 126 surrounding the through hole 126a is provided on the outer periphery of the wall portion 120. One end of the pipe 127 is fitted into the boss portion 126 from the rotation axis X direction.
 配管127は、第2ボックス12の外側を通って第3ボックス13まで及んでいる。配管127の他端は、第3ボックスの円筒状の接続壁136に設けた油孔136a(図2参照)に連通している。 The pipe 127 passes through the outside of the second box 12 and extends to the third box 13. The other end of the pipe 127 communicates with an oil hole 136a (see FIG. 2) provided in the cylindrical connection wall 136 of the third box.
 回転軸X回りに回転するデフケース50で掻き上げられて、オイルキャッチ部15に到達したオイルOLの一部が、ガイド部154と配管127を通って、接続壁136の内部空間Scに供給される。 A part of the oil OL that has been scraped up by the differential case 50 that rotates around the rotation axis X and has reached the oil catch portion 15 is supplied to the internal space Sc of the connection wall 136 through the guide portion 154 and the pipe 127. ..
 第3ボックス13には、内部空間Scに連通する径方向油路137が設けられている。
 径方向油路137は、内部空間Scから径方向下側に延びる。径方向油路137は、接合部132内に設けた軸方向油路138に連通する。
The third box 13 is provided with a radial oil passage 137 communicating with the internal space Sc.
The radial oil passage 137 extends radially downward from the internal space Sc. The radial oil passage 137 communicates with the axial oil passage 138 provided in the joint portion 132.
 軸方向油路138は、第1ボックス11の接合部112に設けた連通孔112aを介して、第2ボックス12の下部に設けたオイル溜り部128に連絡している。
 オイル溜り部128は、周壁部121内を回転軸X方向に貫通している。オイル溜り部128は、第4ボックス14に設けた第2ギア室Sb2に連絡している。
The axial oil passage 138 communicates with the oil reservoir 128 provided at the lower part of the second box 12 via the communication hole 112a provided at the joint portion 112 of the first box 11.
The oil sump portion 128 penetrates the inside of the peripheral wall portion 121 in the rotation axis X direction. The oil sump 128 is in contact with the second gear chamber Sb2 provided in the fourth box 14.
 かかる構成の動力伝達装置1の作用を説明する。
 図1に示すように、動力伝達装置1では、モータ2の出力回転の伝達経路に沿って、遊星減速ギア4と、差動機構5と、ドライブシャフト9(9A、9B)と、が設けられている。
The operation of the power transmission device 1 having such a configuration will be described.
As shown in FIG. 1, in the power transmission device 1, the planetary reduction gear 4, the differential mechanism 5, and the drive shafts 9 (9A, 9B) are provided along the transmission path of the output rotation of the motor 2. ing.
 図2に示すように、モータ2の駆動により、ロータコア21が回転軸X回りに回転すると、ロータコア21と一体に回転するモータシャフト20を介して、遊星減速ギア4のサンギア41に回転が入力される。 As shown in FIG. 2, when the rotor core 21 rotates about the rotation axis X by driving the motor 2, the rotation is input to the sun gear 41 of the planetary reduction gear 4 via the motor shaft 20 that rotates integrally with the rotor core 21. To.
 図3に示すように、遊星減速ギア4では、サンギア41が、モータ2の出力回転の入力部となっている。段付きピニオンギア43を支持するデフケース50が、入力された回転の出力部となっている。 As shown in FIG. 3, in the planetary reduction gear 4, the sun gear 41 is an input unit for the output rotation of the motor 2. The differential case 50 that supports the stepped pinion gear 43 serves as an output unit for the input rotation.
 サンギア41が入力された回転で回転軸X回りに回転すると、段付きピニオンギア43(大径歯車部431、小径歯車部432)が、サンギア41側から入力される回転で、軸線X1回りに回転する。
 ここで、段付きピニオンギア43の小径歯車部432は、第4ボックス14の内周に固定されたリングギア42に噛合している。そのため、段付きピニオンギア43は、軸線X1回りに自転しながら、回転軸X周りに公転する。
When the sun gear 41 rotates around the rotation axis X by the input rotation, the stepped pinion gear 43 (large diameter gear portion 431, small diameter gear portion 432) rotates around the axis X1 by the rotation input from the sun gear 41 side. To do.
Here, the small-diameter gear portion 432 of the stepped pinion gear 43 meshes with the ring gear 42 fixed to the inner circumference of the fourth box 14. Therefore, the stepped pinion gear 43 revolves around the rotation axis X while rotating around the axis X1.
 ここで、段付きピニオンギア43の小径歯車部432の外径R2は、大径歯車部431の外径R1よりも小さくなっている(図3参照)。
 これにより、段付きピニオンギア43を支持するデフケース50(第1ケース部6、第2ケース部7)が、モータ2側から入力された回転よりも低い回転速度で回転軸X回りに回転する。
 そのため、遊星減速ギア4のサンギア41に入力された回転は、段付きピニオンギア43により、大きく減速される。減速された回転は、デフケース50(差動機構5)に出力される。
Here, the outer diameter R2 of the small-diameter gear portion 432 of the stepped pinion gear 43 is smaller than the outer diameter R1 of the large-diameter gear portion 431 (see FIG. 3).
As a result, the differential case 50 (first case portion 6, second case portion 7) that supports the stepped pinion gear 43 rotates around the rotation axis X at a rotation speed lower than the rotation input from the motor 2 side.
Therefore, the rotation input to the sun gear 41 of the planetary reduction gear 4 is greatly reduced by the stepped pinion gear 43. The reduced rotation is output to the differential case 50 (differential mechanism 5).
 そして、デフケース50が、入力された回転で回転軸X回りに回転することにより、デフケース50内で、ピニオンメートギア52と噛合するドライブシャフト9(9A、9B)が回転軸X回りに回転する。これにより動力伝達装置1が搭載された車両の左右の駆動輪W、W(図1参照)が、伝達された回転駆動力で回転する。 Then, when the differential case 50 rotates around the rotation axis X by the input rotation, the drive shafts 9 (9A, 9B) that mesh with the pinion mate gear 52 rotate around the rotation axis X in the differential case 50. As a result, the left and right drive wheels W and W (see FIG. 1) of the vehicle on which the power transmission device 1 is mounted are rotated by the transmitted rotational driving force.
 図2に示すように、第4ボックス14の内部には、潤滑用のオイルOLが貯留されている。そのため、貯留されたオイルOLは、モータ2の出力回転の伝達時に、回転軸X回りに回転するデフケース50により掻き上げられる。
 掻き上げられたオイルOLにより、サンギア41と大径歯車部431との噛合部と、小径歯車部432とリングギア42との噛合部と、ピニオンメートギア52とサイドギア54A、54Bとの噛合部とが潤滑される。
As shown in FIG. 2, the lubricating oil OL is stored inside the fourth box 14. Therefore, the stored oil OL is scraped up by the differential case 50 that rotates around the rotation axis X when the output rotation of the motor 2 is transmitted.
Due to the oil OL scraped up, the meshing portion between the sun gear 41 and the large diameter gear portion 431, the meshing portion between the small diameter gear portion 432 and the ring gear 42, and the meshing portion between the pinion mate gear 52 and the side gears 54A and 54B. Is lubricated.
 図23に示すように、第3ボックス13側から見てデフケース50は、回転軸X周りの反時計回り方向CCWに回転する。
 第4ボックス14の上部には、オイルキャッチ部15が設けられている。オイルキャッチ部15は、デフケース50の回転方向における下流側に位置している。デフケース50で掻き上げられたオイルOLの多くが、オイルキャッチ部15内に流入する。
As shown in FIG. 23, the differential case 50 rotates in the counterclockwise direction CCW around the rotation axis X when viewed from the third box 13 side.
An oil catch portion 15 is provided on the upper portion of the fourth box 14. The oil catch portion 15 is located on the downstream side in the rotation direction of the differential case 50. Most of the oil OL scraped up by the differential case 50 flows into the oil catch portion 15.
 図26に示すように、オイルキャッチ部15内には、支持台部151に載置されたオイルガイド152が設けられている。
 デフケース50の第1ケース部6の径方向外側と、デフケース50の第2ケース部7の径方向外側に、オイルガイド152のガイド部154とキャッチ部153が位置している。
 そのため、デフケース50で掻き上げられてオイルキャッチ部15内に流入したオイルの多くが、オイルガイド152に捕捉される。
 オイルガイド152に捕捉されたオイルOLの一部は、壁部153aに設けた切欠部155から排出される。排出されたオイルOLは、支持台部151の上面に一端が開口した油路151aに流入する。
As shown in FIG. 26, an oil guide 152 mounted on the support base portion 151 is provided in the oil catch portion 15.
The guide portion 154 and the catch portion 153 of the oil guide 152 are located on the radial outside of the first case portion 6 of the differential case 50 and on the radial outside of the second case portion 7 of the differential case 50.
Therefore, most of the oil that has been scraped up by the differential case 50 and has flowed into the oil catch portion 15 is captured by the oil guide 152.
A part of the oil OL captured by the oil guide 152 is discharged from the notch 155 provided in the wall portion 153a. The discharged oil OL flows into the oil passage 151a having one end opened on the upper surface of the support base portion 151.
 油路151aの内径側の端部は、支持部145の内周に開口している(図2参照)。そのため、油路151aに流入したオイルOLは、第4ボックス14の支持部145の内周と、サイドギア54Bの筒壁部540との間の隙間Rxに排出される。 The end of the oil passage 151a on the inner diameter side is open to the inner circumference of the support portion 145 (see FIG. 2). Therefore, the oil OL that has flowed into the oil passage 151a is discharged into the gap Rx between the inner circumference of the support portion 145 of the fourth box 14 and the cylinder wall portion 540 of the side gear 54B.
 隙間Rxに排出されたオイルOLの一部は、支持部145で支持されたベアリングB2を潤滑する。ベアリングB2を潤滑したオイルOLは、デフケース50の外側(ベアリングB2側)を、デフケース50の回転による遠心力で外径側に移動する(図17、図18参照)。
 デフケース50の外径側には、回転軸X方向から見て環状を成すガイド部73が設けられている。そのため、外径側に移動したオイルOLは、ガイド部73の部分で捕捉される。
 図13に示すように、第2ケース部7の基部71では、ガイド部73の内周面731に沿って油孔710が設けられている。オイルOLは、ガイド部73によって更なる外径側への移動が妨げられる。移動が妨げられたオイルOLは、ガイド部73の内周に開口する油孔710を、第1ケース部6側に通過する。
A part of the oil OL discharged into the gap Rx lubricates the bearing B2 supported by the support portion 145. The oil OL that lubricates the bearing B2 moves on the outside of the differential case 50 (bearing B2 side) to the outer diameter side by the centrifugal force due to the rotation of the differential case 50 (see FIGS. 17 and 18).
On the outer diameter side of the differential case 50, a guide portion 73 forming an annular shape when viewed from the rotation axis X direction is provided. Therefore, the oil OL that has moved to the outer diameter side is captured by the guide portion 73.
As shown in FIG. 13, in the base portion 71 of the second case portion 7, an oil hole 710 is provided along the inner peripheral surface 731 of the guide portion 73. The guide portion 73 prevents the oil OL from further moving to the outer diameter side. The oil OL whose movement is hindered passes through the oil hole 710 that opens on the inner circumference of the guide portion 73 toward the first case portion 6 side.
 ここで、第2ケース部7におけるベアリングB2側の面では、回転軸X周りの周方向で隣接する油孔710、710の間にリブ711が設けられている(図16参照)。
 図16および図20に示すように、動力伝達装置1を搭載した車両の前進走行時には、デフケース50(第2ケース部7)は、図中時計回り方向に回転する。
Here, on the surface of the second case portion 7 on the bearing B2 side, ribs 711 are provided between the oil holes 710 and 710 adjacent to each other in the circumferential direction around the rotation axis X (see FIG. 16).
As shown in FIGS. 16 and 20, the differential case 50 (second case portion 7) rotates clockwise in the drawing when the vehicle equipped with the power transmission device 1 travels forward.
 オイルOLは、デフケース50の回転による遠心力で外径側に移動する。油孔710に直接流入しなかったオイルOLは、図20の破線の矢印で示すように、外径側に移動しながら、デフケース50の回転方向における下流側に移動する。
 デフケース50の回転方向における下流側には、リブ711が位置している。下流側に移動したオイルOLの流れは、リブ711によってせき止められる。
The oil OL moves to the outer diameter side by the centrifugal force generated by the rotation of the differential case 50. The oil OL that did not directly flow into the oil hole 710 moves to the downstream side in the rotation direction of the differential case 50 while moving to the outer diameter side as shown by the broken line arrow in FIG. 20.
The rib 711 is located on the downstream side in the rotation direction of the differential case 50. The flow of oil OL that has moved to the downstream side is dammed by the rib 711.
 リブ711でせき止められ滞留したオイルOLの領域は、デフケース50の回転方向における上流側に向けて広がる。上流側に向けて広がったオイルOLは油孔710に到達して、油孔710に流入する。 The area of the oil OL dammed and retained by the rib 711 expands toward the upstream side in the rotation direction of the differential case 50. The oil OL that has spread toward the upstream side reaches the oil hole 710 and flows into the oil hole 710.
 本実施形態では、図19に示すように、リブ711の側面に凹溝711a、711bが設けられている。そのため、リブ711に到達したオイルOLの多くが、リブ711を乗り越えずにリブ711で滞留する。
 なお、凹溝711aは、動力伝達装置1を搭載した車両の前進走行時にオイルOLの滞留に寄与する部位である。凹溝711bは、動力伝達装置1を搭載した車両の後進走行時にオイルOLの滞留に寄与する部位である。
In the present embodiment, as shown in FIG. 19, recessed grooves 711a and 711b are provided on the side surface of the rib 711. Therefore, most of the oil OL that has reached the rib 711 stays at the rib 711 without getting over the rib 711.
The concave groove 711a is a portion that contributes to the retention of oil OL when the vehicle equipped with the power transmission device 1 travels forward. The concave groove 711b is a portion that contributes to the retention of oil OL when the vehicle equipped with the power transmission device 1 travels backward.
 さらに、図19および図20に示すように、ガイド部73に突出部73aが設けられている。突出部73aにおける第2ケース部7の基部71との間の内周面731が、油溝として機能する。
 オイルOLは、デフケース50の回転による遠心力でガイド部73まで到達する。ガイド部73に到達したオイルOLの多くが、ガイド部73を乗り越えずに、内周面731の側方で、回転軸X方向に開口する油孔710に流入する。
Further, as shown in FIGS. 19 and 20, the guide portion 73 is provided with a protruding portion 73a. The inner peripheral surface 731 of the protruding portion 73a between the second case portion 7 and the base portion 71 functions as an oil groove.
The oil OL reaches the guide portion 73 by the centrifugal force generated by the rotation of the differential case 50. Most of the oil OL that has reached the guide portion 73 flows into the oil hole 710 that opens in the rotation axis X direction on the side of the inner peripheral surface 731 without getting over the guide portion 73.
 図4に示すように、油孔710の第1ケース部6側で、ガイド部78の内周において、ケース内油路781が開口している。油孔710を通過したオイルOLの一部は、デフケースの回転による遠心力によりケース内油路781内に流入する。
 ケース内油路781に流入したオイルOLは、導入路441を通ってピニオン軸44の軸内油路440に流入する。軸内油路440に流入したオイルOLは、油孔442、443から径方向外側に排出される。排出されたオイルOLは、ピニオン軸44に外挿されたニードルベアリングNBを潤滑する。
As shown in FIG. 4, an oil passage 781 in the case is opened on the inner circumference of the guide portion 78 on the side of the first case portion 6 of the oil hole 710. A part of the oil OL that has passed through the oil hole 710 flows into the oil passage 781 in the case due to the centrifugal force due to the rotation of the differential case.
The oil OL that has flowed into the oil passage 781 in the case flows into the in-shaft oil passage 440 of the pinion shaft 44 through the introduction passage 441. The oil OL that has flowed into the in-shaft oil passage 440 is discharged radially outward from the oil holes 442 and 443. The discharged oil OL lubricates the needle bearing NB extrapolated to the pinion shaft 44.
 ここで、図13に示すように、ケース内油路781は、回転軸X側(内径側)に向かうにつれて、油孔710との離間距離Dcが短くなる向きで、軸線X1に対して傾斜している。
 そのため、油孔710を通ってデフケース50の内部に流入したオイルOLの多くが、デフケース50の回転による遠心力で拡散する前に、ケース内油路781に流入する。
Here, as shown in FIG. 13, the oil passage 781 in the case is inclined with respect to the axis X1 in a direction in which the separation distance Dc from the oil hole 710 becomes shorter toward the rotation axis X side (inner diameter side). ing.
Therefore, most of the oil OL that has flowed into the inside of the differential case 50 through the oil hole 710 flows into the oil passage 781 in the case before being diffused by the centrifugal force due to the rotation of the differential case 50.
 なお、ケース内油路781の回転軸X側の開口781aと油孔710との離間距離Dcが大きくなると、開口781aに到達する前に、デフケース50の回転による遠心力で拡散するオイルOLの量が増える。その結果、ケース内油路781に流入するオイルOLの総量が減少する。 When the separation distance Dc between the opening 781a on the rotation axis X side of the oil passage 781 in the case and the oil hole 710 becomes large, the amount of oil OL diffused by the centrifugal force due to the rotation of the differential case 50 before reaching the opening 781a. Will increase. As a result, the total amount of oil OL flowing into the oil passage 781 in the case is reduced.
 さらに、油孔710を第1ケース部6側に通過したオイルOLのうち、ケース内油路781に流入しなかったオイルOLの多くは、段付きピニオンギア43の内径側に位置するピニオンメートギア52と、ピニオンメートギア52とサイドギア54A、54Bとの噛合部を潤滑する。 Further, among the oil OLs that have passed through the oil holes 710 to the first case portion 6 side, most of the oil OLs that have not flowed into the oil passage 781 in the case are pinion mate gears located on the inner diameter side of the stepped pinion gear 43. Lubricate the meshing portion of the 52, the pinion mate gear 52, and the side gears 54A and 54B.
 さらに、隙間Rxに排出されたオイルOLの一部は、図14に示すように、第2ケース部7の筒壁部72の内周に設けた油溝721を通る。油溝721を通ったオイルOLは、サイドギア54Bの裏面を支持するワッシャ55に供給されて、ワッシャ55を潤滑する。
 さらに、オイルOLは、第2ケース部7の基部71に設けた油溝712と、円弧部741に設けた油溝742を通る。油溝742を通ったオイルOLは、ピニオンメートギア52の裏面を支持する球面状ワッシャ53に供給されて、球面状ワッシャ53を潤滑する。
Further, as shown in FIG. 14, a part of the oil OL discharged into the gap Rx passes through the oil groove 721 provided on the inner circumference of the cylinder wall portion 72 of the second case portion 7. The oil OL that has passed through the oil groove 721 is supplied to the washer 55 that supports the back surface of the side gear 54B to lubricate the washer 55.
Further, the oil OL passes through the oil groove 712 provided in the base portion 71 of the second case portion 7 and the oil groove 742 provided in the arc portion 741. The oil OL that has passed through the oil groove 742 is supplied to the spherical washer 53 that supports the back surface of the pinion mate gear 52, and lubricates the spherical washer 53.
 また、オイルキャッチ部15のオイルガイド152に捕捉されたオイルOLの一部は、ガイド部154側に排出される(図24参照)。ガイド部154の先端154bは、第2ボックス12の壁部120に設けた貫通孔126aに、回転軸X方向の隙間を空けて対向している(図25参照)。
 そのため、ガイド部154側に排出されたオイルOLの多くが、第2ボックス12の貫通孔126aに流入する。
Further, a part of the oil OL captured by the oil guide 152 of the oil catch portion 15 is discharged to the guide portion 154 side (see FIG. 24). The tip 154b of the guide portion 154 faces the through hole 126a provided in the wall portion 120 of the second box 12 with a gap in the rotation axis X direction (see FIG. 25).
Therefore, most of the oil OL discharged to the guide portion 154 side flows into the through hole 126a of the second box 12.
 壁部120の外周には、貫通孔126aを囲むボス部126が設けられている。ボス部126には、回転軸X方向から配管127の一端が嵌入している。
 配管127は、第2ボックス12の外側を通って第3ボックス13まで及んでいる。配管127の他端は、第3ボックスの円筒状の接続壁136に設けた油孔136a(図2参照)に連通している。
A boss portion 126 surrounding the through hole 126a is provided on the outer periphery of the wall portion 120. One end of the pipe 127 is fitted into the boss portion 126 from the rotation axis X direction.
The pipe 127 passes through the outside of the second box 12 and extends to the third box 13. The other end of the pipe 127 communicates with an oil hole 136a (see FIG. 2) provided in the cylindrical connection wall 136 of the third box.
 そのため、本実施形態では、オイルキャッチ部15に到達したオイルOLの一部が、ガイド部154と配管127を通って、接続壁136の内部空間Scに供給される。
 油孔136aから内部空間Scに排出されたオイルOLは、内部空間Scに貯留される。オイルOLは、また、第3ボックス13の周壁部131で支持されたベアリングB4を潤滑する。
Therefore, in the present embodiment, a part of the oil OL that has reached the oil catch portion 15 is supplied to the internal space Sc of the connection wall 136 through the guide portion 154 and the pipe 127.
The oil OL discharged from the oil hole 136a into the internal space Sc is stored in the internal space Sc. The oil OL also lubricates the bearing B4 supported by the peripheral wall portion 131 of the third box 13.
 内部空間Scに排出されたオイルOLの一部は、ドライブシャフト9Aの外周とモータシャフト20の内周との隙間を通って、モータシャフト20の他端20b側まで移動する。
 図10に示すように、モータシャフト20の他端20bは、サイドギア54Aの筒壁部541の内側に挿入されている。筒壁部541の内周には、サイドギア54Aの裏面に連通する連絡路542が設けられている。
 そのため、モータシャフト20の他端20b側まで移動して、筒壁部541の内側に排出されたオイルOLの一部は、連絡路542を通る。連絡路542を通ったオイルOLは、サイドギア54Aの裏面のワッシャ55に供給されて、ワッシャ55を潤滑する。
A part of the oil OL discharged into the internal space Sc moves to the other end 20b side of the motor shaft 20 through the gap between the outer circumference of the drive shaft 9A and the inner circumference of the motor shaft 20.
As shown in FIG. 10, the other end 20b of the motor shaft 20 is inserted inside the tubular wall portion 541 of the side gear 54A. A connecting path 542 communicating with the back surface of the side gear 54A is provided on the inner circumference of the cylinder wall portion 541.
Therefore, a part of the oil OL that has moved to the other end 20b side of the motor shaft 20 and has been discharged to the inside of the cylinder wall portion 541 passes through the connecting path 542. The oil OL that has passed through the connecting path 542 is supplied to the washer 55 on the back surface of the side gear 54A to lubricate the washer 55.
 さらに、サイドギア54Aの裏面のワッシャ55を潤滑したオイルOLは、第1ケース部6のギア支持部66に設けた油溝662と、円弧部641に設けた油溝642を通る。油溝642を通ったオイルOLは、ピニオンメートギア52の裏面を支持する球面状ワッシャ53に供給されて、球面状ワッシャ53を潤滑する。 Further, the oil OL that lubricates the washer 55 on the back surface of the side gear 54A passes through the oil groove 662 provided in the gear support portion 66 of the first case portion 6 and the oil groove 642 provided in the arc portion 641. The oil OL that has passed through the oil groove 642 is supplied to the spherical washer 53 that supports the back surface of the pinion mate gear 52, and lubricates the spherical washer 53.
 また、図2に示すように、第3ボックス13の内部空間Scは、径方向油路137と、軸方向油路138と、連通孔112aと、第2ボックス12の下部に設けたオイル溜り部128と、を介して、第4ボックス14に設けた第2ギア室Sb2に連絡している。
 そのため、内部空間Sc内のオイルOLは、第4ボックス14内に貯留されたオイルOLと同じ高さ位置に保持される。
Further, as shown in FIG. 2, the internal space Sc of the third box 13 includes a radial oil passage 137, an axial oil passage 138, a communication hole 112a, and an oil reservoir provided at the lower part of the second box 12. It communicates with the second gear chamber Sb2 provided in the fourth box 14 via 128.
Therefore, the oil OL in the internal space Sc is held at the same height position as the oil OL stored in the fourth box 14.
 このように、回転軸X回りに回転するデフケース50で掻き上げられたオイルOLの多くが、オイルキャッチ部15内に流入する。オイルOLは、オイルキャッチ部15から、第4ボックス14の支持部145内に供給されてベアリングB2を潤滑する。オイルOLは、また、第3ボックス13内の内部空間Scに供給されてベアリングB4を潤滑する。
 そして、これらベアリングB2、B4を潤滑したオイルOLは、最終的に第4ボックス14内に戻されて、回転するデフケース50により掻き上げられる。
In this way, most of the oil OL scraped up by the differential case 50 that rotates around the rotation axis X flows into the oil catch portion 15. The oil OL is supplied from the oil catch portion 15 into the support portion 145 of the fourth box 14 to lubricate the bearing B2. The oil OL is also supplied to the internal space Sc in the third box 13 to lubricate the bearing B4.
Then, the oil OL that lubricates the bearings B2 and B4 is finally returned to the fourth box 14, and is scraped up by the rotating differential case 50.
 よって、動力伝達装置1では、駆動輪W、Wの回転時に第4ボックス14内のオイルOLが掻き上げられて、ベアリングや、ギア同士の噛合部の潤滑に用いられる。潤滑に用いられたオイルOLは、第4ボックス14内に戻されて、再び掻き上げられるようになっている。 Therefore, in the power transmission device 1, the oil OL in the fourth box 14 is scraped up when the drive wheels W and W rotate, and is used for lubrication of the bearing and the meshing portion between the gears. The oil OL used for lubrication is returned to the fourth box 14 so that it can be scraped up again.
 以上の通り、本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(1)動力伝達装置1は、
 差動機構5と、
 差動機構5を収容し、ガイド部73を有するデフケース50(ケース)と、を有する。
 デフケース50は、回転軸X方向(軸方向)に突出するガイド部73の内周面731を経由してオイルOL(潤滑油)が導入されるケース内油路781を有する。
As described above, the power transmission device 1 according to the present embodiment has the following configuration.
(1) The power transmission device 1 is
Differential mechanism 5 and
It has a differential case 50 (case) that houses the differential mechanism 5 and has a guide portion 73.
The differential case 50 has a case inner oil passage 781 in which oil OL (lubricating oil) is introduced via the inner peripheral surface 731 of the guide portion 73 protruding in the rotation axis X direction (axial direction).
 デフケース50の回転による遠心力と、第2ケース部7のガイド部73を利用して、デフケース50の外側のオイルOL(潤滑油)を、油孔710に向けて移動させる。これによって、油孔710内にオイルOLをスムーズに導入することができるので、潤滑効率を向上させることができる。 Using the centrifugal force generated by the rotation of the differential case 50 and the guide portion 73 of the second case portion 7, the oil OL (lubricating oil) on the outside of the differential case 50 is moved toward the oil hole 710. As a result, the oil OL can be smoothly introduced into the oil hole 710, so that the lubrication efficiency can be improved.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(2)回転軸X方向から見てガイド部73は環状である。
The power transmission device 1 according to the present embodiment has the following configuration.
(2) The guide portion 73 is annular when viewed from the rotation axis X direction.
 回転軸X方向から見てガイド部73は、環状でも非環状でもよい。ガイド部73を環状とした場合、非環状とした場合と比較してデフケース50の回転抵抗を低減できる。
 また、ガイド部73を非環状とした場合には、油孔710に向けて移動させるオイルOLの量が減少する。ガイド部73を環状とすることで、油孔710に向けて移動するオイルOLの量を確保できる。
 これにより、ケース内油路781を介してピニオン軸44や、ピニオンメートギア52およびサイドギア54A、54Bに供給するオイルOLの量を確保できる。動力伝達装置1の潤滑効率を向上させることができる。
The guide portion 73 may be annular or non-annular when viewed from the rotation axis X direction. When the guide portion 73 is annular, the rotational resistance of the differential case 50 can be reduced as compared with the case where the guide portion 73 is non-annular.
Further, when the guide portion 73 is acyclic, the amount of oil OL to be moved toward the oil hole 710 is reduced. By forming the guide portion 73 into an annular shape, it is possible to secure the amount of oil OL that moves toward the oil hole 710.
As a result, the amount of oil OL supplied to the pinion shaft 44, the pinion mate gear 52, and the side gears 54A and 54B via the oil passage 781 in the case can be secured. The lubrication efficiency of the power transmission device 1 can be improved.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(3)デフケース50は、ガイド部73の内周に、外側に向かって開口する油孔710を有している。
 ガイド部73は、内径側に突出する突出部73aを有している。
 ガイド部73の内周は、突出部73aと油孔710との間が油溝となっている。
The power transmission device 1 according to the present embodiment has the following configuration.
(3) The differential case 50 has an oil hole 710 that opens outward on the inner circumference of the guide portion 73.
The guide portion 73 has a protruding portion 73a that projects toward the inner diameter side.
The inner circumference of the guide portion 73 has an oil groove between the protruding portion 73a and the oil hole 710.
 デフケース50の回転による遠心力で外径側に移動するオイルОLを、突出部73aと油孔710との間の油溝の部分で捕捉して、油孔710に誘導できる。 The oil OL that moves to the outer diameter side by the centrifugal force due to the rotation of the differential case 50 can be captured by the portion of the oil groove between the protrusion 73a and the oil hole 710 and guided to the oil hole 710.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(4)デフケース50は、ガイド部73の内周に位置し、回転軸X方向外側に突出するリブ711を有する。
The power transmission device 1 according to the present embodiment has the following configuration.
(4) The differential case 50 has a rib 711 located on the inner circumference of the guide portion 73 and projecting outward in the X direction of the rotation axis.
 オイルOLは、リブ711の側面の凹溝711a、711bを伝って、ガイド部73の内周面731に導かれる。オイルOLは内周面731を伝ってケース内油路781まで導入されるので、潤滑効率を向上させることができる。
ここで、本明細書における用語「外周に位置」とは、外側において径方向に重なることと同義である。「内周に位置」とは内側において径方向に重なることと同義である。
The oil OL is guided to the inner peripheral surface 731 of the guide portion 73 through the concave grooves 711a and 711b on the side surface of the rib 711. Since the oil OL is introduced to the oil passage 781 in the case along the inner peripheral surface 731, the lubrication efficiency can be improved.
Here, the term "position on the outer circumference" in the present specification is synonymous with overlapping in the radial direction on the outside. "Position on the inner circumference" is synonymous with overlapping in the radial direction on the inside.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(5)リブ711の軸方向高さ(転軸X方向の高さh711、図12の(b)参照)は、ガイド部73の軸方向高さ(回転軸方向の高さh73、図12の(a)参照)よりも低い。
The power transmission device 1 according to the present embodiment has the following configuration.
(5) The axial height of the rib 711 (height h711 in the rolling axis X direction, see (b) in FIG. 12) is the axial height of the guide portion 73 (height h73 in the rotation axis direction, FIG. 12). Lower than (see (a)).
 回転軸X方向から見てリブ711は、回転軸Xの径方向に直線状に延びる帯状の部位であり、非環状である。そのため、回転軸X回りに回転するデフケース50がオイルOLを掻き上げる際に、リブ711の部分が、デフケース50の回転抵抗になる。
 リブ711の部分の回転軸X方向の高さh711を、回転軸X方向から見て環状成すガイド部73の回転軸X方向の高さh73よりも低くすることにより、デフケース50が受ける回転抵抗を低減できる。
The rib 711 when viewed from the rotation axis X direction is a band-shaped portion extending linearly in the radial direction of the rotation axis X, and is acyclic. Therefore, when the differential case 50 rotating around the rotation axis X scrapes up the oil OL, the rib 711 portion becomes the rotation resistance of the differential case 50.
By making the height h711 of the rib 711 portion in the rotation axis X direction lower than the height h73 of the guide portion 73 forming an annular shape when viewed from the rotation axis X direction in the rotation axis X direction, the rotation resistance received by the differential case 50 is reduced. Can be reduced.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(6)デフケース50の回転軸X方向から見て、リブ711は、ガイド部73の内周から内径側に延びている。
 回転軸X回りの周方向におけるリブ711の側縁には凹溝711a(油溝)、771bが設けられている。
The power transmission device 1 according to the present embodiment has the following configuration.
(6) The rib 711 extends from the inner circumference of the guide portion 73 toward the inner diameter side when viewed from the rotation axis X direction of the differential case 50.
Recessed grooves 711a (oil grooves) and 771b are provided on the side edges of the ribs 711 in the circumferential direction around the rotation axis X.
 デフケース50の回転による遠心力で外径側に移動するオイルOLの一部を、リブ711の部分で滞留させることができる。リブ711の部分に滞留したオイルOLの領域が、デフケース50の回転方向における上流側に向けて広がり、オイルOLが油孔710に流入する。
 これにより、ピニオン軸44や、ピニオンメートギア52およびサイドギア54A、54Bに供給するオイルOLの量を確保できるので、潤滑効率を向上させることができる。
A part of the oil OL that moves to the outer diameter side by the centrifugal force due to the rotation of the differential case 50 can be retained at the rib 711 portion. The region of the oil OL retained in the rib 711 portion expands toward the upstream side in the rotation direction of the differential case 50, and the oil OL flows into the oil hole 710.
As a result, the amount of oil OL supplied to the pinion shaft 44, the pinion mate gear 52, and the side gears 54A and 54B can be secured, so that the lubrication efficiency can be improved.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(7)ガイド部73の内周の油溝(突出部73aと油孔710との間の内周面731の部分)は、リブ711の凹溝711a、711b(油溝)と連絡している。
The power transmission device 1 according to the present embodiment has the following configuration.
(7) The oil groove on the inner circumference of the guide portion 73 (the portion of the inner peripheral surface 731 between the protruding portion 73a and the oil hole 710) is in contact with the concave grooves 711a and 711b (oil grooves) of the rib 711. ..
 リブ711の部分に滞留したオイルOLを、リブ711の凹溝711a、711bからガイド部73の内周の油溝に誘導できる。ガイド部73の内周に沿って油孔710が形成できるので、リブ711の部分に滞留したオイルOLを油孔710に向けて誘導できる。 The oil OL accumulated in the rib 711 portion can be guided from the concave grooves 711a and 711b of the rib 711 to the oil groove on the inner circumference of the guide portion 73. Since the oil hole 710 can be formed along the inner circumference of the guide portion 73, the oil OL accumulated in the rib 711 portion can be guided toward the oil hole 710.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(8)ケース内油路781は、デフケース50の外側のオイルOL(潤滑油)を、差動機構5へ供給する油路である。
The power transmission device 1 according to the present embodiment has the following configuration.
(8) The oil passage 781 inside the case is an oil passage that supplies the oil OL (lubricating oil) outside the differential case 50 to the differential mechanism 5.
 差動機構5の潤滑効率を高めることができる。 The lubrication efficiency of the differential mechanism 5 can be improved.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(9)ケース内油路781は、デフケース50の外側のオイルOL(潤滑油)を、差動機構5以外の回転要素へ供給する油路である。
The power transmission device 1 according to the present embodiment has the following configuration.
(9) The oil passage 781 inside the case is an oil passage that supplies the oil OL (lubricating oil) outside the differential case 50 to a rotating element other than the differential mechanism 5.
 差動機構5以外の回転要素、例えば、段付きピニオンギア43を支持するニードルベアリングNB(軸受)などの潤滑効率を高めることができる。 It is possible to improve the lubrication efficiency of rotating elements other than the differential mechanism 5, for example, the needle bearing NB (bearing) that supports the stepped pinion gear 43.
 本実施形態にかかる動力伝達装置1は、以下の構成を有する。
(10)動力伝達装置1における動力伝達経路上で、差動機構5の上流側にモータ2が位置している。
 差動機構5は、モータ2と回転軸X方向でオーバラップしている
The power transmission device 1 according to the present embodiment has the following configuration.
(10) The motor 2 is located on the upstream side of the differential mechanism 5 on the power transmission path in the power transmission device 1.
The differential mechanism 5 overlaps with the motor 2 in the X direction of the rotation axis.
 1軸の電気自動車用の動力伝達装置であり、コンパクトな動力伝達装置を提供することができる。 It is a power transmission device for a single-axis electric vehicle, and can provide a compact power transmission device.
 図17は、ケース内油路781の変形例を説明する図である。
 前記した実施形態では、図17の(a)に示すように、ケース内油路781の内径側の開口781aが、油孔710を有する基部71よりもデフケース50内側(図中、右側)に開口している場合を例示した。
 図17の(b)に示すように、ケース内油路781Aの内径側の開口781aが、油孔710の部分で開口している構成としても良い。図17の(c)に示すように、ケース内油路781Bの内径側の開口781aが、油孔710よりも外側(デフケース50の外側)で開口している構成としても良い。
FIG. 17 is a diagram illustrating a modified example of the oil passage 781 in the case.
In the above-described embodiment, as shown in FIG. 17A, the opening 781a on the inner diameter side of the oil passage 781 in the case opens inside the differential case 50 (on the right side in the drawing) with respect to the base 71 having the oil hole 710. The case where it is done is illustrated.
As shown in FIG. 17B, the opening 781a on the inner diameter side of the oil passage 781A in the case may be configured to be opened at the portion of the oil hole 710. As shown in FIG. 17 (c), the opening 781a on the inner diameter side of the oil passage 781B in the case may be opened outside the oil hole 710 (outside the differential case 50).
 また、図17の(d)に示すように、ケース内油路781Cの内径側の開口781aが、基部71における油孔710が設けられていない領域であって、デフケース50の外側に開口している構成としても良い。
 何れの構成においても、デフケース50の回転による遠心力により外径側に向けて移動したオイルOLのうち、ガイド部73で捕捉されたオイルOLを、ケース内油路781A~781Cから、ピニオン軸44側に誘導することがきる。
Further, as shown in FIG. 17D, the opening 781a on the inner diameter side of the oil passage 781C in the case is a region in the base 71 where the oil hole 710 is not provided, and is opened to the outside of the differential case 50. It may be configured as such.
In any configuration, among the oil OLs that have moved toward the outer diameter side due to the centrifugal force due to the rotation of the differential case 50, the oil OLs captured by the guide portion 73 are taken from the oil passages 781A to 781C in the case to the pinion shaft 44. It can be guided to the side.
 以上、本願発明の実施形態を説明したが、本願発明は、これら実施形態に示した態様のみに限定されるものではない。発明の技術的な思想の範囲内で、適宜変更可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the embodiments shown in these embodiments. It can be changed as appropriate within the scope of the technical idea of the invention.
1    動力伝達装置
2    モータ
4    遊星減速ギア
43   段付きピニオンギア
5    差動機構
50   デフケース
710  油孔
711  リブ
711a、711b 凹溝
73   ガイド部
73a  突出部
731  内周面
742  油溝
781  ケース内油路
X    回転軸
1 Power transmission device 2 Motor 4 Planetary reduction gear 43 Stepped pinion gear 5 Differential mechanism 50 Diff case 710 Oil hole 711 Rib 711a, 711b Recessed groove 73 Guide part 73a Protruding part 731 Inner peripheral surface 742 Oil groove 781 Oil passage in case X Axis of rotation

Claims (10)

  1.  差動機構と、
     前記差動機構を収容し、ガイド部を有するケースと、を有し、
     前記ケースは、軸方向外側に突出する前記ガイド部の内周面を経由して潤滑油が導入されるケース内油路を有する、動力伝達装置。
    With a differential mechanism
    It has a case that houses the differential mechanism and has a guide portion, and has.
    The case is a power transmission device having an oil passage in the case into which lubricating oil is introduced via an inner peripheral surface of the guide portion protruding outward in the axial direction.
  2.  請求項1において、
     前記ガイド部は、環状であることを特徴とする動力伝達装置。
    In claim 1,
    The guide portion is a power transmission device characterized by having an annular shape.
  3.  請求項1または請求項2において、
     前記ケースは、前記ガイド部の内周に、外側に向かって開口する油孔を有しており、
     前記ガイド部は、内径側に突出する突出部を有しており、
     前記ガイド部の内周は、前記突出部と前記油孔との間が油溝となっている、動力伝達装置。
    In claim 1 or 2,
    The case has an oil hole that opens outward on the inner circumference of the guide portion.
    The guide portion has a protruding portion that protrudes toward the inner diameter side.
    The inner circumference of the guide portion is a power transmission device in which an oil groove is formed between the protruding portion and the oil hole.
  4.  請求項3において、
     前記ケースは、前記ガイド部の内周に位置し軸方向外側に突出するリブを有する、動力伝達装置。
    In claim 3,
    The case is a power transmission device having ribs located on the inner circumference of the guide portion and projecting outward in the axial direction.
  5.  請求項4において、
     前記リブの軸方向高さは、前記ガイド部の軸方向高さよりも低い、動力伝達装置。
    In claim 4,
    A power transmission device in which the axial height of the rib is lower than the axial height of the guide portion.
  6.  請求項5において、
     前記ケースの回転軸方向から見て、前記リブは、前記ガイド部の内周から内径側に延びており、
     前記回転軸回りの周方向における前記リブの側縁には油溝が設けられている、動力伝達装置。
    In claim 5,
    When viewed from the rotation axis direction of the case, the rib extends from the inner circumference of the guide portion toward the inner diameter side.
    A power transmission device provided with an oil groove on the side edge of the rib in the circumferential direction around the rotation axis.
  7.  請求項6において、
     前記ガイド部の内周の前記油溝は、前記リブの前記油溝と連絡している、動力伝達装置。
    In claim 6,
    A power transmission device in which the oil groove on the inner circumference of the guide portion is in contact with the oil groove on the rib.
  8.  請求項1乃至請求項7のいずれか一において、
     前記ケース内油路は、前記ケースの外側の潤滑油を前記差動機構へ供給する油路である、動力伝達装置。
    In any one of claims 1 to 7,
    The oil passage in the case is a power transmission device which is an oil passage for supplying lubricating oil outside the case to the differential mechanism.
  9.  請求項1乃至請求項7のいずれか一において、
     前記ケース内油路は、前記ケースの外側の潤滑油を前記差動機構以外の回転要素へ供給する油路である、動力伝達装置。
    In any one of claims 1 to 7,
    The oil passage in the case is a power transmission device which is an oil passage for supplying lubricating oil on the outside of the case to a rotating element other than the differential mechanism.
  10.  請求項1乃至請求項9のいずれか一において、
     前記差動機構の上流に配置されるモータを有し、
     前記差動機構は、前記モータと軸方向にオーバラップする、動力伝達装置。
    In any one of claims 1 to 9,
    It has a motor located upstream of the differential mechanism and has a motor.
    The differential mechanism is a power transmission device that overlaps with the motor in the axial direction.
PCT/JP2020/045421 2019-12-30 2020-12-07 Power transmission device WO2021137279A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021568457A JP7392220B2 (en) 2019-12-30 2020-12-07 power transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019240040 2019-12-30
JP2019-240040 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021137279A1 true WO2021137279A1 (en) 2021-07-08

Family

ID=76687419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045421 WO2021137279A1 (en) 2019-12-30 2020-12-07 Power transmission device

Country Status (2)

Country Link
JP (1) JP7392220B2 (en)
WO (1) WO2021137279A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583526A (en) * 1991-09-20 1993-04-02 Canon Inc Image processor
JPH0658391A (en) * 1992-08-10 1994-03-01 Toyota Motor Corp Lubricating mechanism for gear transmission device
WO2016158059A1 (en) * 2015-03-27 2016-10-06 アイシン・エィ・ダブリュ株式会社 Differential apparatus
CN108194625A (en) * 2018-01-09 2018-06-22 清华大学 A kind of method for arranging of drive axle differential case body oil duct and drive axle differential mechanism
JP2019152243A (en) * 2018-03-01 2019-09-12 本田技研工業株式会社 Differential device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4095675A (en) * 1976-07-28 1978-06-20 Rockwell International Corporation Multi-speed planetary drive axle assembly
JPH0583526U (en) * 1992-04-17 1993-11-12 三菱自動車工業株式会社 Differential gear
JP3287972B2 (en) * 1995-03-06 2002-06-04 トヨタ自動車株式会社 Power transmission device for electric vehicles
JP2001330111A (en) * 2000-05-23 2001-11-30 Aisin Seiki Co Ltd Lubricating device for power transmission for electric vehicle
JP3774749B2 (en) * 2001-09-06 2006-05-17 株式会社ジェイテクト Hybrid differential gear unit
US8049384B2 (en) * 2009-06-19 2011-11-01 GM Global Technology Operations LLC Electronic drive unit
FR3041054B1 (en) * 2015-09-15 2017-09-15 Hispano-Suiza OIL SUPPLY DEVICE FOR AN EPICYCLOIDAL TRAIN REDUCER.
JP6457476B2 (en) * 2016-12-20 2019-01-23 本田技研工業株式会社 Power equipment
JP6732689B2 (en) * 2017-03-30 2020-07-29 武蔵精密工業株式会社 Differential

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583526A (en) * 1991-09-20 1993-04-02 Canon Inc Image processor
JPH0658391A (en) * 1992-08-10 1994-03-01 Toyota Motor Corp Lubricating mechanism for gear transmission device
WO2016158059A1 (en) * 2015-03-27 2016-10-06 アイシン・エィ・ダブリュ株式会社 Differential apparatus
CN108194625A (en) * 2018-01-09 2018-06-22 清华大学 A kind of method for arranging of drive axle differential case body oil duct and drive axle differential mechanism
JP2019152243A (en) * 2018-03-01 2019-09-12 本田技研工業株式会社 Differential device

Also Published As

Publication number Publication date
JP7392220B2 (en) 2023-12-06
JPWO2021137279A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
WO2021137289A1 (en) Power transmission device
WO2021137284A1 (en) Power transmission device
JP2021107737A (en) Power transmission device
WO2021137278A1 (en) Power transmission device
JP2023155466A (en) power transmission device
WO2021137279A1 (en) Power transmission device
JP7350450B2 (en) power transmission device
WO2021137280A1 (en) Power transmission device
WO2021137287A1 (en) Power transmission device
WO2021137290A1 (en) Power transmission device
JP7371310B2 (en) power transmission device
WO2021137288A1 (en) Power transmission device
JP7375262B2 (en) power transmission device
JP7350452B2 (en) power transmission device
JP7073031B2 (en) Power transmission device
JP2021110334A (en) Power transmission device
JP2021124183A (en) Power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908456

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908456

Country of ref document: EP

Kind code of ref document: A1