WO2020250651A1 - Aerosol measurement device and aerosol measurement method - Google Patents

Aerosol measurement device and aerosol measurement method Download PDF

Info

Publication number
WO2020250651A1
WO2020250651A1 PCT/JP2020/020555 JP2020020555W WO2020250651A1 WO 2020250651 A1 WO2020250651 A1 WO 2020250651A1 JP 2020020555 W JP2020020555 W JP 2020020555W WO 2020250651 A1 WO2020250651 A1 WO 2020250651A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
aerosol
measuring device
etalon
emitted
Prior art date
Application number
PCT/JP2020/020555
Other languages
French (fr)
Japanese (ja)
Inventor
博子 池嶋
大山 達史
宮下 万里子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021525969A priority Critical patent/JP7507384B2/en
Publication of WO2020250651A1 publication Critical patent/WO2020250651A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the present disclosure relates to an aerosol measuring device and an aerosol measuring method.
  • the lidar is a technique for observing aerosols floating in the air such as yellow sand, pollen, dust, or minute water droplets by measuring and analyzing the scattered light of pulsed light emitted into the atmosphere.
  • the scattered light usually includes Mie scattered light and Rayleigh scattered light.
  • the Mie scattered light is scattered light generated by Mie scattering, which is a scattering phenomenon caused by fine particles having a particle size equal to or larger than the wavelength of the emitted light.
  • the Mie scattered light is, for example, scattered light from an aerosol which is an object to be measured.
  • Rayleigh scattering is a scattering phenomenon caused by fine particles and atmospheric molecules smaller than the wavelength of emitted light. By excluding Rayleigh scattered light from scattered light, Mie scattered light can be obtained.
  • Patent Document 1 discloses a technique for spectroscopically separating scattered light from a single laser beam into Mie scattered light and Rayleigh scattered light using a filter.
  • Patent Document 2 describes an interferometer that selectively transmits light having the same spectral interval as the emitted laser light by utilizing the fact that the mode interval of the spectrum of the laser beam in the multi-longitudinal mode is constant.
  • a technique for dispersing scattered light using a laser is disclosed.
  • the present disclosure provides a small aerosol measuring device capable of easily measuring an aerosol, and an aerosol measuring method capable of easily measuring an aerosol.
  • the aerosol measuring device is an aerosol measuring device for measuring an aerosol contained in the atmosphere, has a light source, a first surface and a second surface, and is emitted from the light source. It comprises a first light and an etalon through which the second light scattered by the aerosol passes. The first light is incident on the first surface along a first direction oblique to the first surface.
  • the aerosol measurement method is to irradiate the aerosol contained in the atmosphere with the first light emitted from the light source and passing through the etalon, and the second method scattered by the aerosol. Including light incident on the aerosol. The first light enters the etalon along an oblique direction with respect to the surface of the etalon.
  • one aspect of the present disclosure can be realized as a program for causing a computer to execute the above aerosol measurement method.
  • it can be realized as a computer-readable non-temporary recording medium in which the program is stored.
  • FIG. 1 is a diagram showing a configuration of an aerosol measuring device according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the aerosol measuring device according to the first embodiment.
  • FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device according to the first embodiment.
  • FIG. 4 is a diagram for explaining the 0th transmitted light and the 1st transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment.
  • FIG. 5 is a diagram for explaining the 0th transmitted light and the 2nd transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of an aerosol measuring device according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the aerosol measuring device according to the first embodiment.
  • FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device according to the
  • FIG. 6 is a diagram showing an example of a spectrum of scattered light generated by scattering the multi-laser light emitted by the aerosol measuring device according to the first embodiment.
  • FIG. 7 is a diagram showing a calculation result of an interferogram when scattered light including Mie scattered light and Rayleigh scattered light is interfered with by a Michelson interferometer.
  • FIG. 8 is an enlarged view of a part of FIG. 7.
  • FIG. 9 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when there is no scattering by the aerosol and only the atmospheric scattering is considered.
  • FIG. 10 is a diagram schematically showing the spread angle of the emitted light emitted from the light source according to the first embodiment.
  • FIG. 11 is a diagram schematically showing a path of light when the emitted light emitted from the light source according to the first embodiment is incident on the optical element from the front.
  • FIG. 12 is a diagram schematically showing a path of light when the emitted light emitted from the light source according to the first embodiment is obliquely incident on the optical element.
  • FIG. 13 is a diagram for explaining the refraction of the emitted light incident on the optical element according to the first embodiment.
  • FIG. 14A is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 1 °.
  • FIG. 14B is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 1.1 °.
  • FIG. 14C is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 2 °.
  • FIG. 14D is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 5 °.
  • FIG. 14E is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 21 °.
  • FIG. 15 is a diagram showing a configuration of an aerosol measuring device according to a second embodiment.
  • FIG. 16 is a diagram schematically showing a path of light when scattered light is obliquely incident on an optical element.
  • FIG. 17 is a diagram showing a configuration of an aerosol measuring device according to a third embodiment.
  • FIG. 18 is a diagram for explaining the operation of the light-shielding portion of the aerosol measuring device according to the third embodiment.
  • the aerosol measuring device is an aerosol measuring device for measuring an aerosol contained in the atmosphere, has a light source, a first surface and a second surface, and is emitted from the light source. It comprises a first light and an etalon through which the second light scattered by the aerosol passes. The first light is incident on the first surface along a first direction oblique to the first surface.
  • the light incident on the incident surface of the etalon which is an optical element, at an angle, it is possible to suppress the influence of stray light caused by the emitted light emitted by the light source on the scattered light. For example, it is possible to suppress stray light from interfering with scattered light. As a result, the measurement accuracy of the aerosol can be improved.
  • an optical element such as an etalon changes its optical characteristics when it expands under the influence of heat. According to this aspect, even if the optical characteristics of the optical element change, since the first light and the scattered light pass through the same single optical element, the influence of the change in the characteristics of the optical element can be sufficiently suppressed. Can be done. Therefore, the measurement accuracy of the aerosol can be improved.
  • the first light incident on the etalon may be emitted from the second surface of the etalon, and the second light may be incident on the etalon from the second surface.
  • the second light may be incident on the second surface along a second direction oblique to the second surface.
  • the optical path length can be changed by adjusting the incident angle of the scattered light.
  • the second light may be incident on the etalon from the first surface.
  • the emitted light and the scattered light can be incident on the optical element Etalon from the same surface, so that the light reflected by the optical element among the emitted light emitted from the light source is less likely to be incident on the receiver. can do. Therefore, it is possible to suppress erroneous detection of aerosol due to reflected light and failure of the receiver.
  • the second light may be incident on the first surface along a third direction oblique to the first surface.
  • the optical path length can be changed by adjusting the incident angle of the scattered light.
  • the etalon has a first portion including a path through which the first light passes, and a second portion including a path through which the second light passes and different from the first portion. You may.
  • the path of the emitted light and the path of the scattered light can be easily separated, so that the stray light caused by the emitted light can be suppressed from entering the path of the scattered light. Therefore, it is possible to suppress the stray light from interfering with the scattered light.
  • the receiver and the light source can be arranged separately. By arranging the receiver and the light source apart from each other, it is possible to prevent the receiver from receiving the reflected light of the emitted light emitted from the light source by the optical element.
  • the reflected light causes false detection of aerosol.
  • the intensity exceeds the limit intensity that can be detected by the receiver and may cause a failure of the receiver. According to this aspect, since it is possible to suppress the reflected light from being received by the receiver, it is possible to suppress erroneous detection of aerosol and failure of the receiver.
  • the first direction may be a direction away from the second portion.
  • the path of the first light in the first portion is inclined in a direction away from the second portion with respect to a direction orthogonal to the first surface, and the first light is , May be reflected multiple times in the etalon.
  • the path of the first light in the etalon is separated from the scattered light, so that the stray light caused by the first light can be further suppressed from affecting the scattered light. Therefore, the measurement accuracy of the aerosol can be further improved.
  • the path of the second light in the second portion is inclined in a direction away from the first portion with respect to a direction orthogonal to the first surface or the second surface.
  • the second light may be reflected multiple times within the etalon.
  • the path of the scattered light in the etalon is separated from the first light, so that the stray light caused by the first light can be further suppressed from affecting the scattered light. Therefore, the measurement accuracy of the aerosol can be further improved.
  • the direction in which the intensity of the first light becomes 10 to 3 times the maximum intensity coincides with the direction orthogonal to the first surface, or the first. It may be inclined from the direction orthogonal to the surface to the direction away from the second portion.
  • the etalon may interfere with the first light internally and emit as interference light having a plurality of peaks separated from each other at equal frequency intervals.
  • the frequency interval may be 3.9 GHz or less.
  • the transmission of Rayleigh scattered light can be suppressed by the optical element Etalon, so that the receiver can receive Mie scattered light based on the aerosol. Therefore, the presence / absence and concentration of aerosol can be easily measured based on the intensity of light received by the light receiver.
  • each of the first light and the second light has a plurality of peaks separated from each other at equal frequency intervals, and the frequency of each of the plurality of peaks and the frequency of the plurality of peaks
  • the difference from the average center frequency is defined as the frequency difference
  • each of the first light and the second light has the transmission rate of the first light with respect to the etalon and the second light with respect to the etalon. It may have a frequency difference in which the product of the light transmission rate is 0.3 or more.
  • the aerosol measuring device may further include a receiver that receives the second light that has passed through the etalon.
  • the receiver may output a signal corresponding to the intensity of Mie scattered light among the second light.
  • the first light is pulsed light
  • the receiver receives the etalon from the time when the pulsed light is emitted from the light source until the end of a predetermined period longer than the time width of the pulsed light. You may stop receiving the second light that has passed through and receive the second light that has passed through the etalon after the predetermined period ends.
  • the aerosol measuring device may further include an analysis unit that analyzes the aerosol based on the signal output from the receiver.
  • the light source may be a laser element or a light emitting diode (LED: Light Emitting Diode) element.
  • LED Light Emitting Diode
  • the emitted light having a sufficient intensity can be emitted toward the aerosol.
  • the aerosol measuring device may further include a condensing unit that condenses the second light and causes it to enter the etalon.
  • the aerosol measurement method is to irradiate the aerosol contained in the atmosphere with the first light emitted from the light source and passing through the etalon, and the second method scattered by the aerosol. Including light incident on the aerosol. The first light enters the etalon along an oblique direction with respect to the surface of the etalon.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (Large Scale Integration). It may be executed by one or more electronic circuits including.
  • the LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips.
  • functional blocks other than the storage element may be integrated on one chip.
  • it is called an LSI or an IC, but the name changes depending on the degree of integration, and it may be called a system LSI, a VLSI (Very Large Scale Integration), or a ULSI (Ultra Large Scale Integration).
  • FPGA Field Programmable Gate Array
  • circuits, units, devices, members or parts can be executed by software processing.
  • the software is recorded on one or more ROMs, optical disks, non-temporary recording media such as hard disk drives, and when the software is executed by a processor, the functions identified by the software are It is executed by a processor and peripheral devices.
  • the system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware device, such as an interface.
  • each figure is a schematic view and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
  • FIG. 1 is a diagram showing a configuration of an aerosol measuring device 1 according to the present embodiment.
  • the aerosol measuring device 1 emits the irradiation light L2 into the atmosphere, and the scattering body 90 existing in the atmosphere scatters the emitted light L2 to generate scattering.
  • the scattering body 90 existing in the atmosphere scatters the emitted light L2 to generate scattering.
  • the scatterer 90 exists in the target space for measurement by the aerosol measuring device 1.
  • the scattered light L3 corresponds to the second light.
  • the target space is, for example, a room in a building such as a residence, office, long-term care facility, or hospital.
  • the target space is, for example, a space partitioned by walls, windows, doors, floors, ceilings, etc., and is a closed space, but is not limited to this.
  • the target space may be an outdoor open space. Further, the target space may be the internal space of a moving body such as a bus or an airplane.
  • the scatterer 90 includes an aerosol to be measured, machined dust, coarse particles, and molecules constituting air.
  • the aerosol is dust floating in the target space, suspended particulate matter such as PM2.5, biological particles, or minute water droplets.
  • Biological particles also include molds or mites floating in the air, pollen, and the like.
  • minute water droplets include substances dynamically generated from the human body such as coughing or sneezing.
  • Aerosol which is the object to be measured, is sufficiently large compared to the molecules that make up air.
  • the aerosol scatters the irradiation light L2 to generate Mie scattered light.
  • the molecules constituting air are sufficiently smaller than the wavelength of the irradiation light L2, Rayleigh scattered light is generated by scattering the irradiation light L2. Therefore, the scattered light L3 acquired by the aerosol measuring device 1 includes Mie scattered light and Rayleigh scattered light.
  • the Mie scattered light here is backscattered light due to Mie scattering.
  • the aerosol measuring device 1 extracts Mie scattered light from the scattered light L3 and measures the presence / absence and concentration of the aerosol based on the extracted Mie scattered light.
  • the aerosol measuring device 1 emits irradiation light L2 for irradiating the scatterer 90 in different directions in the target space.
  • the emission direction of the irradiation light L2 is changed by, for example, a MEMS (Micro-Electro-Mechanical Systems) mirror (not shown).
  • the emission direction of the irradiation light L2 may be changed by changing the direction of the entire aerosol measuring device 1.
  • the aerosol measuring device 1 can create an aerosol distribution in the target space by scanning the target space.
  • the aerosol measuring device 1 includes an optical element 10, a light source 20, a mirror 22, a condensing unit 30, a condensing lens 40, a receiver 50, and an analysis unit 60. ..
  • An example of the condensing unit 30 is a condensing lens 30a.
  • the optical element 10 internally interferes with the incident light and emits it as light having a plurality of peaks separated from each other at equal frequency intervals. Light having a plurality of peaks is also called multi-light.
  • the optical element 10 is a single optical element. That is, the optical element 10 is one member integrally configured.
  • the shape of the optical element 10 is, for example, a cylinder or a prism.
  • the optical element 10 is an etalon.
  • the optical element 10 has a light transmitting portion 11 and two multilayer films 12 and 13.
  • the translucent portion 11 is formed by using a transparent material such as quartz or quartz.
  • the translucent portion 11 is sandwiched between the two multilayer films 12 and 13, and is in contact with each of the two multilayer films 12 and 13.
  • the two multilayer films 12 and 13 are dielectric multilayer films having a laminated structure of a plurality of dielectric films, respectively.
  • the two multilayer films 12 and 13 are each formed by alternately laminating a dielectric film having a low refractive index and a dielectric film having a high refractive index.
  • the dielectric film for example, a titanium oxide film, a hafnium oxide film, a silicon oxide film, or the like is used.
  • the light transmitting portion 11 may be an air layer, and the two multilayer films 12 and 13 may be fixed by a frame or the like so as to maintain a constant distance.
  • the optical element 10 is incident with the emitted light L1 emitted from the light source 20, causes the emitted light L1 to interfere internally, and emits as irradiation light L2 which is light having a plurality of peaks separated from each other at equal frequency intervals. To do.
  • the irradiation light L2 is a multi-laser light.
  • the emitted light L1 corresponds to the first light.
  • the irradiation light L2 is light having a plurality of peaks separated from each other at equal frequency intervals, the irradiation light L2 may be light having one peak.
  • the emitted light L1 is incident on the multilayer film 12 of the optical element 10 and emitted from the multilayer film 13.
  • the first surface 12a of the multilayer film 12 opposite to the translucent portion 11 is an incident surface on which the emitted light L1 is incident.
  • the second surface 13a of the multilayer film 13 opposite to the translucent portion 11 is an exit surface from which the irradiation light L2 is emitted.
  • the second surface 13a, which is the exit surface, is a surface opposite to the first surface 12a, which is the incident surface.
  • the first surface 12a and the second surface 13a are parallel to each other.
  • the direction orthogonal to the first surface 12a and the second surface 13a is parallel to the central axis of the optical element 10.
  • the scattered light L3 condensed by the condenser lens 30a is incident on the optical element 10.
  • the scattered light L3 is incident from the multilayer film 13 of the optical element 10, and the Mie scattered light L4, which is a part of the scattered light L3, is emitted from the multilayer film 12.
  • the second surface 13a of the multilayer film 13 opposite to the light transmitting portion 11 is an incident surface on which scattered light L3 is incident.
  • the first surface 12a of the multilayer film 12 opposite to the light transmitting portion 11 is an exit surface from which the Mie scattered light L4 is emitted. That is, the incident surface of the emitted light L1 and the incident surface of the scattered light L3 are different.
  • the optical element 10 has a first portion 10a including a path through which the emitted light L1 passes and a second portion 10b including a path through which the scattered light L3 passes.
  • the boundary between the first portion 10a and the second portion 10b is schematically represented by a broken line.
  • the first portion 10a and the second portion 10b are different portions from each other.
  • the optical element 10 is a columnar etalon
  • the first portion 10a and the second portion 10b correspond to a semi-cylindrical portion when the etalon is virtually divided on a surface including the central axis.
  • the circular upper and lower surfaces of the cylindrical etalon correspond to the entrance surface and the emission surface of light.
  • the scattered light L3 includes light having a plurality of peaks separated from each other at equal frequency intervals, each light causes interference when passing through the optical element 10.
  • the thickness of the optical element 10 is adjusted so that the Mie scattered light L4 included in the scattered light L3 is passed and the Rayleigh scattered light is suppressed from passing.
  • the Rayleigh scattered light can be appropriately removed from the scattered light L3, so that the Mie scattered light L4 caused by the aerosol can be received by the receiver 50.
  • the optical element 10 is located on the optical path of the emitted light L1 emitted from the light source 20. Specifically, the optical element 10 is located between the mirror 22 and the opening provided in the outer housing of the aerosol measuring device 1. The opening is provided for the irradiation light L2 emitted from the optical element 10 to pass through. Further, the optical element 10 is located on the optical path of the scattered light L3 generated from the scattering body 90. Specifically, the optical element 10 is located between the condenser lens 30a and the condenser lens 40.
  • the light source 20 emits the irradiation light L2 into the atmosphere via the optical element 10. Specifically, the light source 20 emits the emitted light L1.
  • the emitted light L1 is, for example, pulsed light, but may be continuous light.
  • the emitted light L1 may be monochromatic light having a peak in a specific wavelength band, or light including a broad wavelength band.
  • the emitted light L1 contains, for example, a wavelength component in the range from a wavelength 10 pm to 10 nm shorter than the peak wavelength to a wavelength 10 pm to 10 nm longer than the peak wavelength.
  • the emitted light L1 is, for example, ultraviolet light, blue light, infrared light, or the like.
  • Emission light L1 From a short wavelength, after being reflected by the mirror 22, it is emitted into the atmosphere as irradiation light L2, which is light having a plurality of peaks separated from each other at equal frequency intervals due to interference inside the optical element 10.
  • the light source 20 is, for example, a semiconductor laser element that emits pulsed laser light as emitted light L1.
  • the beam mode of the emitted light L1 is, for example, a multi-mode, but may be a single mode.
  • the light source 20 emits a laser beam having a peak in the vicinity of 405 nm as the emitted light L1.
  • the light source 20 may be a light emitting diode (LED: Light Emitting Diode).
  • the light source 20 may be a discharge lamp such as a halogen lamp.
  • the mirror 22 reflects the emitted light L1. By arranging the mirror 22 at an appropriate angle with respect to the emitted light L1, the course of the emitted light L1 can be bent in a desired direction. In the present embodiment, the mirror 22 reflects the emitted light L1 and causes it to enter the optical element 10.
  • the aerosol measuring device 1 does not have to include the mirror 22.
  • the emitted light L1 emitted from the light source 20 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10. Further, the emitted light L1 is light that spreads at a spreading angle ⁇ . Specific examples of the emitted light L1 and its incident angle ⁇ will be described later.
  • the light collecting unit 30 collects the scattered light L3 generated by the scattering body 90 contained in the atmosphere scattering the irradiation light L2.
  • the condensing unit 30 there is, for example, a convex condensing lens 30a, or at least one reflecting mirror.
  • the light collected by the condenser lens 30a is converted into parallel light and emitted by a lens group including a collimating lens. Therefore, the scattered light L3 collected by the condenser lens 30a is incident on the optical element 10.
  • the condensing unit 30 may not be arranged.
  • the scattered light L3 collected by the condenser lens 30a is incident on the optical element 10.
  • the scattered light L3 is incident on the optical element 10 from the front with respect to the second surface 13a of the optical element 10, that is, at an incident angle of 0 °.
  • the condenser lens 40 collects the Mie scattered light L4 that has passed through the optical element 10 among the scattered light L3 condensed by the condenser lens 30a.
  • the condenser lens 40 is, for example, a convex lens.
  • the condenser lens 40 concentrates the Mie scattered light L4 on the light receiving surface of the receiver 50.
  • the light receiver 50 receives the Mie scattered light L4 that has passed through the optical element 10 among the scattered light L3 collected by the condenser lens 30a, and outputs a signal corresponding to the light receiving intensity.
  • the light receiving intensity is the intensity of the Mie scattered light L4, and is represented by, for example, the signal level of the signal output by the light receiver 50.
  • the light receiver 50 is an element that performs photoelectric conversion, for example, a PMT (Photomultiplier Tube).
  • the receiver 50 may have a PMT and a photon counter.
  • the receiver 50 may be an avalanche photodiode.
  • the analysis unit 60 analyzes the aerosol contained in the scatterer 90 by analyzing the signal output from the receiver 50. For example, the analysis unit 60 determines the presence / absence and concentration of aerosol based on the signal level of the signal. Specifically, the analysis unit 60 determines the concentration of the aerosol corresponding to the signal level by referring to the correspondence information in which the signal level and the concentration of the aerosol are associated with each other. Correspondence information is stored in advance in, for example, a memory (not shown) included in the analysis unit 60.
  • the analysis unit 60 calculates the distance to the aerosol by the TOF (Time Of Flight) method based on the time required from the emission of the irradiation light L2 to the reception of the Mie scattered light L4.
  • the analysis unit 60 identifies the position of the aerosol in the target space based on the calculated distance and the direction in which the irradiation light L2 is emitted. By repeating the identification of the position of the aerosol while changing the emission direction of the irradiation light L2, the analysis unit 60 creates the distribution of the aerosol in the target space.
  • the analysis unit 60 is composed of one or a plurality of electronic circuits including a plurality of circuit components. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit. That is, the function executed by the analysis unit 60 is realized by hardware such as an electronic circuit. Alternatively, the analysis unit 60 may be realized by a non-volatile memory in which the program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor in which the program is executed, or the like. The function executed by the analysis unit 60 may be realized by software executed by the processor.
  • Each component included in the aerosol measuring device 1 is housed inside a housing (not shown), for example.
  • the housing is an outer housing of the aerosol measuring device 1 and has a light-shielding property.
  • the housing is provided with an opening for passing the irradiation light L2 and the scattered light L3.
  • One aperture may be provided corresponding to each of the irradiation light L2 and the scattered light L3.
  • the condenser lens 30a may be provided in the aperture.
  • FIG. 2 is a flowchart showing the operation of the aerosol measuring device 1 according to the present embodiment.
  • the light source 20 emits the emitted light L1 (S10).
  • the emitted light L1 is reflected by the mirror 22 and its traveling direction is bent, and is incident on the optical element 10 along a direction oblique to the first surface 12a of the optical element 10.
  • the emitted light L1 is converted into multi-light, which is light having a plurality of peaks separated from each other at equal frequency intervals by passing through the optical element 10 at an angle. That is, the optical element 10 internally interferes with the incident light and emits it as light having a plurality of peaks separated from each other at equal frequency intervals (S12).
  • the irradiation light L2 which is multi-light, is emitted into the atmosphere and scattered by the scatterer 90.
  • the condenser lens 30a collects the scattered light L3 generated from the scatterer 90 (S14).
  • the scattered light L3 collected by the condenser lens 30a is incident on the second surface 13a of the optical element 10 from the front.
  • the Mie scattered light L4 is extracted. That is, the scattered light L3 collected by the condensing unit 30 interferes with each other inside the optical element 10 and passes through the Mie scattered light L4 (S16).
  • the optical element 10 substantially removes the Rayleigh scattered light among the scattered light L3 and allows only the Mie scattered light L4 to pass through.
  • the light receiver 50 receives the Mie scattered light L4 and outputs a signal according to the light receiving intensity (S18).
  • the analysis unit 60 analyzes the aerosol contained in the scatterer 90 by processing the signal output from the receiver 50 (S20).
  • the aerosol measuring device 1 repeats the above processes from step S10 to step S20 while changing the emission direction of the irradiation light L2. For example, when the irradiation light L2 is emitted in a predetermined direction in the target space and the scattered light L3 can be acquired, the position and concentration of the aerosol contained in the scattering body 90 that is the source of the scattered light L3 can be determined. Identify. As a result, the aerosol measuring device 1 can generate, for example, a distribution map showing the position and concentration of the aerosol in the target space. The aerosol measuring device 1 may generate a distribution map showing only the position of the aerosol.
  • the optical element 10 is a multi-laser light composed of light having a plurality of peaks separated from each other at equal frequency intervals by internally interfering with the emitted light L1 which is the laser light emitted from the light source 20. It is emitted as a certain irradiation light L2.
  • the multi-laser light will be described with reference to FIG.
  • FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device 1 according to the present embodiment.
  • the horizontal axis represents the frequency and the vertical axis represents the signal strength.
  • Part (a) of FIG. 3 shows the spectrum of the irradiation light L2, which is the multi-laser light after passing through the optical element 10.
  • Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the irradiation light L2.
  • the frequency intervals LW2 of the plurality of peaks are equal to each other, for example, 3 GHz.
  • an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other.
  • the center wavelength ⁇ of the irradiation light L2 is, for example, 405 nm.
  • Part (b) of FIG. 3 is an enlarged view of part (a) of FIG. 3, and shows one peak of the spectrum, that is, only one light included in the irradiation light L2 in an enlarged manner.
  • the full width at half maximum LW1 of one light is, for example, 360 MHz.
  • LW1 is 1/20 or more and 1/5 or less of LW2, but may be 1/10 or more and 1/8 or less.
  • the emitted light L1 passes through the optical element 10, it interferes with the inside of the optical element 10 and is emitted as the irradiation light L2.
  • the etalon which is the optical element 10, utilizes the interference between the incident light and the light that is repeatedly reflected in the etalon.
  • the multilayer films 12 and 13 of Etalon can transmit or reflect light.
  • the transmittance of each of the multilayer films 12 and 13 is, for example, 75%, but is not limited to this.
  • FIGS. 4 and 5 are diagrams for explaining light passing through the optical element 10 of the aerosol measuring device 1 according to the present embodiment, respectively.
  • FIG. 4 schematically shows the 0th transmitted light and the 1st transmitted light.
  • FIG. 5 schematically represents the 0th transmitted light and the 2nd transmitted light.
  • the optical element 10 transmits a part of the incident light as it is. As shown in FIGS. 4 and 5, the light transmitted as it is without being reflected by the multilayer films 12 and 13 of the optical element 10 is the 0th transmitted light.
  • the first transmitted light is light that is reflected once by the multilayer film 12 after the incident light is reflected once by the multilayer film 13. Interference occurs when the phases of the 0th transmitted light and the 1st transmitted light match, and the light corresponding to the first interference fringe is emitted. Interfering fringes will be described later with reference to FIGS. 7 and 8.
  • the second transmitted light is light in which the incident light is reflected twice by the multilayer film 13 and the multilayer film 12, respectively. Interference occurs when the phases of the 0th transmitted light and the 2nd transmitted light match, and the light corresponding to the second interference fringe is emitted.
  • the optical element 10 can emit the irradiation light L2 having a plurality of peaks separated by the same frequency interval LW2.
  • the length ⁇ x of the etalon for realizing the frequency interval LW2 is determined based on the following equation (1).
  • the length ⁇ x of the etalon is the distance between the multilayer film 12 and the multilayer film 13, that is, the thickness of the translucent portion 11, as shown in FIGS. 4 and 5.
  • n 0 is the refractive index in vacuum, for example 1.0.
  • n is the refractive index of the translucent portion 11 of etalon, which is 1.47 in the case of quartz.
  • c is the speed of light, which is 3 ⁇ 10 8 m / s.
  • optical path difference dx when Fabry-Perot interference is caused by Etalon is expressed by the following equation (2).
  • the optical path difference dx is 100 mm.
  • FIG. 6 is a diagram showing an example of the spectrum of scattered light L3 generated by scattering the multi-laser light emitted by the aerosol measuring device 1 according to the present embodiment.
  • the horizontal axis represents the frequency and the vertical axis represents the signal strength.
  • Part (a) of FIG. 6 shows the spectrum of scattered light L3.
  • the scattered light L3, like the irradiation light L2, is composed of light having a plurality of peaks separated from each other at a frequency interval MW2 equal to each other.
  • Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the irradiation light L2.
  • the frequency interval MW2 of the scattered light L3 is equal to the frequency interval LW2 of the irradiation light L2.
  • an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other.
  • Part (b) of FIG. 6 is an enlarged view of part (a) of FIG. 6, and shows one peak of the spectrum, that is, only one light included in the scattered light L3 in an enlarged manner.
  • the scattered light L3 includes Mie scattered light and Rayleigh scattered light.
  • the spectrum of Mie scattered light is substantially the same as the spectrum of irradiation light L2 before scattering.
  • the frequency width of Rayleigh scattered light is widened by the thermal motion of the molecules that make up the atmosphere.
  • the intensity of Rayleigh scattered light is usually lower than the intensity of Mie scattered light.
  • the spectrum of the scattered light L3 has a shape in which the base of the peak is widened as compared with the spectrum of the irradiation light L2 shown in FIG.
  • the high peak at the center corresponds to Mie scattered light
  • the base part corresponds to Rayleigh scattered light.
  • the signal intensity of Rayleigh scattered light by the molecules constituting the atmosphere and the signal intensity of Mie scattered light by the aerosol are set to 3: 1.
  • the signal strength here is represented by the area of the peak.
  • the full width at half maximum MW1 of the peak representing the Mie scattered light is equal to the full width at half maximum LW1 of the irradiation light L2.
  • the full width at half maximum RW of the foot portion representing the Rayleigh scattered light is about 3.4 GHz to 3.9 GHz according to a general actual measurement.
  • ⁇ f RW.
  • c is the speed of light, which is 3 ⁇ 10 8 m / s.
  • is the central wavelength, which is 405 nm here.
  • the optical element 10 by passing the scattered light L3 through the optical element 10, light having a plurality of peaks appearing at a frequency interval of 3 GHz, that is, Me scattered light is transmitted, and light of another frequency component, that is, , Rayleigh scattered light can be removed.
  • FIG. 7 is a diagram showing the calculation result of the interferogram when the scattered light including the Mie scattered light by the aerosol and the Rayleigh scattered light by the molecules constituting the atmosphere are interfered with by the Michelson interferometer.
  • the horizontal axis represents the optical path difference dx that causes interference
  • the vertical axis represents the intensity of the interference light.
  • FIG. 8 is an enlarged view of the region VIII surrounded by the broken line in FIG. 7.
  • an interference fringe appears every time the optical path difference dx becomes an integral multiple of ⁇ x.
  • n is a natural number.
  • FIG. 8 shows the 0th interference fringe, the 1st interference fringe, and the 2nd interference fringe.
  • the first interference fringe is the light generated by the interference between the 0th transmitted light and the 1st transmitted light shown in FIG.
  • the second interference fringe is the light generated by the interference between the 0th transmitted light and the second transmitted light shown in FIG.
  • the interference light including the 0th interference fringe to the nth interference fringe is received as Mie scattered light L4.
  • the interference fringe due to the Rayleigh scattered light caused by atmospheric scattering can be removed. A method for determining a length ⁇ x suitable for removing Rayleigh scattered light will be described.
  • FIG. 9 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when only atmospheric scattering is considered without scattering by aerosol.
  • the horizontal axis represents dx and the vertical axis represents the signal strength.
  • the frequency intervals LW2 of the irradiation light L2 are 2.4 GHz, 3.0 GHz, 3.6 GHz, 3.7 GHz, 3.8 GHz, 3.9 GHz, 4 GHz, 5 GHz, respectively. It shows the calculation result of the interferogram in the case of 6 GHz, 10 GHz, 15 GHz, and 30 GHz.
  • the frequency interval LW2 increases, the number of appearing interference fringes increases, and the signal strength of the appearing interference fringes increases.
  • the frequency interval LW2 is 2.4 GHz
  • the frequency interval LW2 in the range of 3.0 GHz to 4 GHz
  • the 0th interference fringe and the 1st interference fringe appear, and the second and higher interference fringes do not appear.
  • the frequency interval LW2 is 5 GHz
  • a second interference fringe appears in addition to the 0th interference fringe and the first interference fringe.
  • the range in which the first interference fringe and above appear is represented by a broken line frame.
  • the appearance of the second or higher interference fringes when only atmospheric scattering is taken into consideration means that interference is occurring only by Rayleigh scattered light. That is, it means that the Rayleigh scattered light is transmitted when the Rayleigh scattered light is incident on the optical element 10. Therefore, if the frequency interval LW2 is 3.9 GHz or less, the first interference fringe becomes small, and the transmission of Rayleigh scattered light is suppressed.
  • the magnitude of the first interference fringe when the frequency interval LW2 is 3.9 GHz is 50% or less of the magnitude of the 0th interference fringe. Therefore, since the first interference fringe is small, it is possible to suppress the Rayleigh scattered light from passing through the optical element 10.
  • the frequency interval LW2 when the frequency interval LW2 is 3.9 GHz or less, Rayleigh scattered light can be efficiently removed from the scattered light L3.
  • the length ⁇ x of the etalon made of quartz is about 26 mm according to the formula (1). That is, by using an etalon having a length ⁇ x of 26 mm or more as the optical element 10, Rayleigh scattered light can be efficiently removed, and the measurement accuracy of the aerosol can be improved.
  • FIG. 10 is a diagram schematically showing the spread angle of the emitted light L1 emitted from the light source 20 according to the present embodiment.
  • the emitted light L1 emitted from the light source 20 has a predetermined spread angle ⁇ . That is, the emitted light L1 is light whose beam diameter is not always constant and spreads outward as the distance from the light source 20 increases.
  • the spread angle ⁇ of the emitted light L1 is an angle formed by the optical axis direction of the emitted light L1 and the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity.
  • the optical axis direction is shown by the broken line in FIG. 10, and coincides with the normal direction of the exit surface of the light source 20.
  • the spread angle ⁇ is, for example, 2 ° or less.
  • FIG. 11 is a diagram schematically showing a path of light when the emitted light L1 is incident on the optical element 10 from the front.
  • incident from the front means a case where the optical axis direction of the emitted light L1 is perpendicular to the first surface 12a which is the incident surface. That is, in FIG. 11, the incident angle ⁇ of the emitted light L1 is 0 °.
  • the incident angle ⁇ of the emitted light L1 is an angle formed by the optical axis direction of the emitted light L1 and the normal direction of the first surface 12a.
  • the optical axis of light is represented by a solid arrow.
  • FIG. 11 for the sake of simplicity, the refraction when the emitted light L1 is incident on the optical element 10 is not shown.
  • dots are shaded in the range of the emitted light L1 having an intensity of 10 to 3 times or more the maximum intensity. The same applies to FIGS. 12 and 16 described later.
  • the emitted light L1 spreading at the spreading angle ⁇ As shown in FIG. 11, of the emitted light L1 spreading at the spreading angle ⁇ , a part of the light spreading toward the path side of the scattered light L3 is at the interface between the light transmitting portion 11 and each of the multilayer films 12 and 13. By multiple reflection, it can pass on the path of scattered light L3 as stray light L5. Therefore, since the stray light L5 and the scattered light L3 interfere with each other, the Mie scattered light L4 contains a noise component not caused by the aerosol. Therefore, the detection accuracy of the aerosol is lowered.
  • FIG. 12 is a diagram schematically showing a path of light when the emitted light L1 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10.
  • the emitted light L1 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10.
  • the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity coincides with the normal direction D orthogonal to the first surface 12a, or is from the normal direction D. Is also inclined in a direction away from the path through which the scattered light L3 passes.
  • the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity is inclined in a direction away from the path of the scattered light L3 at an angle ⁇ with respect to the normal direction D. ⁇ is 0 ° or more.
  • the light L6 closest to the path of the scattered light L3 among the emitted light L1 that is, the light L6 corresponding to the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity is with respect to the normal direction D. It is inclined in a direction away from the path of the scattered light L3. Therefore, since the light L6 is multiplely reflected in the direction away from the path of the scattered light L3, the interference with the scattered light L3 is sufficiently suppressed. Since the noise component caused by the stray light L6 is sufficiently suppressed, the detection accuracy of the aerosol can be improved.
  • FIG. 13 is a diagram for explaining the refraction of the emitted light L1 incident on the optical element 10.
  • the emitted light L1 shown in FIG. 13 is incident on the first surface 12a at an incident angle ⁇ .
  • the emitted light L1 is refracted when it enters the optical element 10 and when it passes through the multilayer film 12, and travels in the translucent portion 11 at a refraction angle ⁇ .
  • nsin ⁇ sin ⁇ is established.
  • the incident angle ⁇ of the emitted light L1 is ⁇ or more.
  • each of the emitted light L1 and the scattered light L3 has a plurality of peaks separated from each other at equal frequency intervals, and the frequency of each of the plurality of peaks and the center frequency which is the average of the frequencies of the plurality of peaks. If the difference is defined as a frequency difference, the output light L1 has a product (T1 ⁇ T2) of the transmittance T1 of the emitted light L1 with respect to the optical element 10 and the transmittance T2 of the scattered light L3 with respect to the optical element 10 of 0.3. It is incident on the first surface 12a at an angle having the above frequency difference.
  • the incident angle ⁇ of the scattered light L1 is an angle having a frequency difference df at which T1 ⁇ T2 is 0.3 or more.
  • the incident angle ⁇ is an angle at which a frequency difference df in which the product of T1 ⁇ T2 is 0.3 or more exists within a range of a predetermined frequency difference.
  • the range of the predetermined frequency difference is, for example, a range of ⁇ 6 GHz or more and + 6 GHz or less.
  • the product of T1 ⁇ T2 may be 0.5 or more.
  • the transmittance T is represented by the following equations (4), (5) and (6).
  • is the central wavelength of the emitted light L1 or the scattered light L3.
  • is 405 nm.
  • c is the speed of light, which is 3 ⁇ 10 8 m / s. Therefore, when ⁇ is 405 nm, the center frequency f 0 is 7.41 ⁇ 10 14 Hz.
  • R is the reflectance at the end face of the optical element 10. In the case of the emitted light L1, R is the reflectance on the first surface 12a. In the case of scattered light L3, it is the reflectance on the second surface 13a. A is the loss of the emitted light L1 or the scattered light L3 by the optical element 10.
  • df is the frequency difference.
  • n is the refractive index of the optical element 10. Specifically, n is the refractive index of the translucent portion 11 of the optical element 10.
  • ⁇ x is the length of the optical element 10. Specifically, ⁇ x is the length of the translucent portion 11 of the optical element 10.
  • is the incident angle of the emitted light L1 or the scattered light L3.
  • the frequency difference characteristics of T1 ⁇ T2 when the incident angles ⁇ are set to 1 °, 1.1 °, 2 °, 5 ° and 21 ° will be described with reference to FIGS. 14A to 14E.
  • the horizontal axis is indicated by a frequency difference which is a value obtained by removing the center frequency from the frequency.
  • T1 and T2 are diagrams showing the frequency difference characteristics of T1 ⁇ T2 when the incident angles of the emitted light L1 are 1 °, 1.1 °, 2 °, 5 ° and 21 °, respectively.
  • the horizontal axis represents the frequency difference df
  • the vertical axis represents T1 ⁇ T2.
  • T1 and T2 can be obtained by calculating each of the emitted light L1 and the scattered light L3 using the above formulas (4) to (6).
  • the incident angle of the scattered light L3 is set to 0 °, but the same applies even if the incident angle of the scattered light L3 is larger than 0 °.
  • T1 ⁇ T2 is about 0.03 at the maximum. Therefore, since Mie scattered light L4 having sufficient intensity cannot be obtained, it is not suitable for detecting aerosols.
  • the intensity of the Mie scattered light L4 corresponds to the area of the graph shown in FIG. 14A, substantially the total value of the areas of each peak. Therefore, the larger the area of each peak, the more the Mie scattered light L4 having sufficient intensity can be received by the receiver 50, so that the state is suitable for aerosol detection.
  • T1 ⁇ T2 is about 0.03 at the maximum. Therefore, since Mie scattered light L4 having sufficient intensity cannot be obtained, it is not suitable for detecting aerosols.
  • T1 ⁇ T2 when the incident angle ⁇ is 21 °, the value of T1 ⁇ T2 is small when the frequency difference is a negative number. On the other hand, when the frequency difference is about 0, the value of T1 ⁇ T2 exceeds 0.3. Further, when the frequency difference is a positive number, there is a frequency difference in which T1 ⁇ T2 exceeds 0.6 and 0.9, respectively. Therefore, since Mie scattered light L4 having sufficient intensity can be obtained, it is suitable for detecting aerosols.
  • the incident angle ⁇ in an appropriate range, it is possible to suppress the inclusion of noise in the Mie scattered light L4, and the Mie scattered light L4 is received by the receiver 50 with sufficient intensity. Can be made to. As a result, the aerosol detection accuracy can be improved.
  • the incident surface with respect to the optical element 10 is different between the emitted light L1 and the scattered light L3.
  • the incident surfaces of the emitted light L1 and the scattered light L3 with respect to the optical element 10 are the same. In the following, the differences from the first embodiment will be mainly described, and the common points will be omitted or simplified.
  • FIG. 15 is a diagram showing the configuration of the aerosol measuring device 101 according to the present embodiment.
  • the aerosol measuring device 101 includes mirrors 32, 34 and 36 instead of the mirror 22 as compared with the aerosol measuring device 1 shown in FIG. Further, the arrangement of the light source 20, the condenser lens 40, the receiver 50, and the analysis unit 60 is different from that of the first embodiment.
  • the mirrors 32 and 34 reflect the scattered light L3 condensed by the condenser lens 30a.
  • the course of the scattered light L3 can be bent in a desired direction.
  • the mirrors 32 and 34 reflect the scattered light L3 and cause it to enter the optical element 10.
  • both the emitted light L1 and the scattered light L3 are incident on the optical element 10 from the first surface 12a of the multilayer film 12. That is, the emitted light L1 and the scattered light L3 are incident on the first surface 12a of the optical element 10 and emitted from the second surface 13a on the opposite side of the first surface 12a.
  • the incident surfaces of the emitted light L1 and the scattered light L3 it is possible to easily separate the light paths in the optical element 10.
  • the mirror 36 reflects the Mie scattered light L4 that has passed through the optical element 10. By arranging the mirror 36 at an appropriate angle with respect to the Mie scattered light L4, the course of the Mie scattered light L4 can be bent in a desired direction. In the present embodiment, the Mie scattered light L4 is reflected and incident on the receiver 50 via the condenser lens 40.
  • the light source 20 and the receiver 50 can be arranged apart from each other. Specifically, of the emitted light L1 emitted from the light source 20, the reflected light reflected by the optical element 10 can be prevented from being incident on the receiver 50. The reflected light causes false detection of aerosol. Further, since the reflected light has a higher intensity than the scattered light, the intensity exceeds the limit intensity that can be detected by the receiver 50 and may cause a failure of the receiver 50. Therefore, according to the present embodiment, it is possible to suppress erroneous detection of aerosol due to reflected light and failure of the receiver 50.
  • the scattered light L3 reflected by the mirror 34 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10.
  • the incident angle ⁇ of the scattered light L3 is, for example, 5 ° or less.
  • the optical path difference dx that causes Fabry-Perot interference when the scattered light L3 passes through the optical element 10 is represented by the following equation (7).
  • FIG. 16 is a diagram for explaining a case where the scattered light L3 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10.
  • the scattered light L3 is incident on the optical element 10 from an oblique direction with respect to the first surface 12a of the optical element 10.
  • the scattered light L3 is multiplely reflected at the interface between the light transmitting portion 11 and each of the multilayer films 12 and 13.
  • the multiplely reflected scattered light L3 is inclined in a direction away from the path of the emitted light L1 with respect to the normal direction D. Since the emitted light L1 and the scattered light L3 pass through the optical element 10 in a direction away from each other, the interference of the light with each other is sufficiently suppressed. Therefore, the noise component contained in the Mie scattered light L4 is sufficiently suppressed, so that the detection accuracy of the aerosol can be improved.
  • the receiver 50 has a function of blocking light incident on the predetermined period.
  • the differences from the first or second embodiment will be mainly described, and the common points will be omitted or simplified.
  • FIG. 17 is a diagram showing the configuration of the aerosol measuring device 201 according to the present embodiment. As shown in FIG. 17, the aerosol measuring device 201 is newly provided with a light-shielding portion 251 as compared with the aerosol measuring device 1 shown in FIG.
  • the light-shielding unit 251 blocks the emitted light L1 emitted by the light source 20.
  • the light-shielding unit 251 is, for example, a movable light-shielding shutter. As shown by the white double-headed arrow in FIG. 17, the light-shielding portion 251 is movable between a position that covers the light-receiving surface of the receiver 50 and a position that does not cover it. The position shown by the broken line in FIG. 17 is the position that covers the light receiving surface, and the light shielding portion 251 covers the light receiving surface, so that the light incident on the light receiving device 50 can be blocked. Further, when the light-shielding portion 251 does not cover the light-receiving surface, light can be incident on the light-receiving receiver 50. The position of the light-shielding portion 251 is controlled by the receiver 50.
  • FIG. 18 is a diagram for explaining the operation of the light-shielding portion 251 of the aerosol measuring device 201 according to the present embodiment.
  • the horizontal axis represents time and the vertical axis represents the intensity of the emitted light L1.
  • the horizontal axis represents time and the vertical axis represents the light receiving intensity by the receiver 50.
  • the light source 20 emits the pulse-shaped emitted light L1.
  • the time width tp of the emitted light L1 is, for example, 10 nanoseconds.
  • the light source 20 periodically emits a pulsed emitted light L1 having a time width of tp.
  • the emission interval of the emitted light L1, that is, the time interval of the pulse is not particularly limited, but is longer than, for example, the time required for the light to travel twice the maximum distance at which the aerosol can be detected.
  • the reflected light L7 by the optical element 10 is the Mie scattered light L4 after the emitted light L1 is emitted. Is received by the light receiver 50 within the period until the light is received.
  • the receiver 50 controls the light-shielding unit 251 to block the light-receiving light until the end of the predetermined period tm after the emitted light L1 is emitted.
  • the period tm is a period longer than the time width tp of the pulsed emitted light L1.
  • the period tm is 10.1 nanoseconds.
  • the start time of the period tm is, for example, the same as the emission of the emitted light L1.
  • the aerosol measuring device 201 As described above, according to the aerosol measuring device 201 according to the present embodiment, it is possible to suppress erroneous detection of aerosol due to reflected light and failure due to saturation of the receiver 50.
  • the present invention is not limited to this.
  • the signal corresponding to the reflected light may be ignored by the analysis unit 60, that is, it may not be used for aerosol analysis.
  • the receiver 50 does not have to output a signal during the period tm. That is, the aerosol measuring device 201 may block the light incident on the receiver 50 in a signal processing manner.
  • the optical element does not have to be etalon.
  • the optical element may be an element that causes Fabry-Perot interference, like Etalon.
  • another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. Further, the distribution of the components of the aerosol measuring device to a plurality of devices is an example. For example, the components of one device may be included in another device. Further, the aerosol measuring device may be realized as a single device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device or system, or may be realized by distributed processing using a plurality of devices. .. Further, the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • all or a part of the components such as the analysis unit may be composed of dedicated hardware, or may be realized by executing a software program suitable for each component. May be good.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a component such as an analysis unit may be composed of one or a plurality of electronic circuits.
  • the one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.
  • One or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like.
  • the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • An FPGA Field Programmable Gate Array programmed after the LSI is manufactured can also be used for the same purpose.
  • the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program.
  • a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored.
  • it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
  • the present disclosure can be used as a small aerosol measuring device or the like capable of easily measuring an aerosol, and can be used, for example, for measuring harmful fine particles indoors and observing weather outdoors.
  • Aerosol measuring device 10
  • Optical element 10a 1st part 10b 2nd part 11 Translucent part 12, 13 Multilayer film 12a 1st surface 13a 2nd surface 20
  • Mirror 30 Condensing part 30a, 40
  • Condensing lens 50 Receiver 60
  • Analytical unit 90 Scatterer 251 Shading unit L1 Emitting light L2 Irradiating light L3 Scattered light L4 Mie scattered light L5 Stray light L6 Light L7 Reflected light

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An aerosol measurement device according to an aspect of the present disclosure is an aerosol measurement device for measuring aerosol contained in the air, the aerosol measurement device including: a light source; and an etalon that includes a first surface and a second surface and through which first light emitted from the light source and second light scattered by the aerosol pass. The first light is incident on the first surface along a first direction oblique to the first surface.

Description

エアロゾル計測装置及びエアロゾル計測方法Aerosol measuring device and aerosol measuring method
 本開示は、エアロゾル計測装置及びエアロゾル計測方法に関する。 The present disclosure relates to an aerosol measuring device and an aerosol measuring method.
 従来、ライダー(LIDAR:Light Detection and Ranging)を用いて大気中のエアロゾルを計測する技術が知られている。ライダーは、大気中に出射されたパルス状の光の散乱光を測定し、解析することにより黄砂、花粉、埃又は微小水滴などの空気中を浮遊するエアロゾルを観測する技術である。 Conventionally, a technique for measuring aerosols in the atmosphere using a lidar (LIDAR: Light Detection and Ringing) is known. The lidar is a technique for observing aerosols floating in the air such as yellow sand, pollen, dust, or minute water droplets by measuring and analyzing the scattered light of pulsed light emitted into the atmosphere.
 散乱光には、通常、ミー散乱光とレイリー散乱光とが含まれる。ミー散乱光は、出射光の波長と同等以上の粒径の微粒子によって起こる散乱現象であるミー散乱により発生する散乱光である。ミー散乱光は、例えば、計測対象物であるエアロゾルからの散乱光である。レイリー散乱は、出射光の波長よりも小さな微粒子及び大気分子によって起こる散乱現象である。散乱光からレイリー散乱光を除外することで、ミー散乱光を得ることができる。 The scattered light usually includes Mie scattered light and Rayleigh scattered light. The Mie scattered light is scattered light generated by Mie scattering, which is a scattering phenomenon caused by fine particles having a particle size equal to or larger than the wavelength of the emitted light. The Mie scattered light is, for example, scattered light from an aerosol which is an object to be measured. Rayleigh scattering is a scattering phenomenon caused by fine particles and atmospheric molecules smaller than the wavelength of emitted light. By excluding Rayleigh scattered light from scattered light, Mie scattered light can be obtained.
 例えば、特許文献1には、単一のレーザ光による散乱光をミー散乱光とレイリー散乱光とにフィルタを用いて分光分離する技術が開示されている。また、例えば、特許文献2には、マルチ縦モードのレーザ光のスペクトルのモード間隔が一定であることを利用して、出射されたレーザ光と同じスペクトル間隔の光を選択的に透過させる干渉計を用いて散乱光を分光する技術が開示されている。 For example, Patent Document 1 discloses a technique for spectroscopically separating scattered light from a single laser beam into Mie scattered light and Rayleigh scattered light using a filter. Further, for example, Patent Document 2 describes an interferometer that selectively transmits light having the same spectral interval as the emitted laser light by utilizing the fact that the mode interval of the spectrum of the laser beam in the multi-longitudinal mode is constant. A technique for dispersing scattered light using a laser is disclosed.
国際公開第2003/073127号International Publication No. 2003/073127 特許第6243088号公報Japanese Patent No. 6243088
 しかしながら、上記の従来技術では、温度変化などによってレーザ光のピーク波長が変化した場合に、光路差をレーザ光の1波長分掃引させながら同調させる必要がある。このため、光路差を可変にする構造を必要とし、装置が大型化し、測定方法が複雑化するという問題がある。 However, in the above-mentioned conventional technique, when the peak wavelength of the laser beam changes due to a temperature change or the like, it is necessary to synchronize the optical path difference while sweeping one wavelength of the laser beam. Therefore, there is a problem that a structure for making the optical path difference variable is required, the device becomes large, and the measurement method becomes complicated.
 そこで、本開示は、エアロゾルを簡単に計測することができる小型のエアロゾル計測装置、及び、エアロゾルを簡単に計測することができるエアロゾル計測方法を提供する。 Therefore, the present disclosure provides a small aerosol measuring device capable of easily measuring an aerosol, and an aerosol measuring method capable of easily measuring an aerosol.
 本開示の一態様に係るエアロゾル計測装置は、大気中に含まれるエアロゾルを計測するためのエアロゾル計測装置であって、光源と、第1面および第2面を有し、前記光源から出射された第1の光、および前記エアロゾルで散乱された第2の光が通過するエタロンと、を備える。前記第1の光は、前記第1面に対して斜めの第1方向に沿って前記第1面に入射する。 The aerosol measuring device according to one aspect of the present disclosure is an aerosol measuring device for measuring an aerosol contained in the atmosphere, has a light source, a first surface and a second surface, and is emitted from the light source. It comprises a first light and an etalon through which the second light scattered by the aerosol passes. The first light is incident on the first surface along a first direction oblique to the first surface.
 また、本開示の一態様に係るエアロゾル計測方法は、光源から出射され、エタロンを通過した第1の光を、大気中に含まれるエアロゾルに照射することと、前記エアロゾルで散乱された第2の光を、前記エタロンに入射させることと、を含む。前記第1の光は、前記エタロンの表面に対して斜めの方向に沿って前記エタロンに入射する。 Further, the aerosol measurement method according to one aspect of the present disclosure is to irradiate the aerosol contained in the atmosphere with the first light emitted from the light source and passing through the etalon, and the second method scattered by the aerosol. Including light incident on the aerosol. The first light enters the etalon along an oblique direction with respect to the surface of the etalon.
 また、本開示の一態様は、上記エアロゾル計測方法をコンピュータに実行させるためのプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な非一時的な記録媒体として実現することもできる。 Further, one aspect of the present disclosure can be realized as a program for causing a computer to execute the above aerosol measurement method. Alternatively, it can be realized as a computer-readable non-temporary recording medium in which the program is stored.
 本開示によれば、エアロゾルを簡単に計測することができる小型のエアロゾル計測装置などを提供することができる。 According to the present disclosure, it is possible to provide a small aerosol measuring device or the like capable of easily measuring an aerosol.
図1は、実施の形態1に係るエアロゾル計測装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an aerosol measuring device according to the first embodiment. 図2は、実施の形態1に係るエアロゾル計測装置の動作を示すフローチャートである。FIG. 2 is a flowchart showing the operation of the aerosol measuring device according to the first embodiment. 図3は、実施の形態1に係るエアロゾル計測装置が出射するマルチレーザ光のスペクトルの一例を示す図である。FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device according to the first embodiment. 図4は、実施の形態1に係るエアロゾル計測装置の光学素子を通過する第0の透過光及び第1の透過光を説明するための図である。FIG. 4 is a diagram for explaining the 0th transmitted light and the 1st transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment. 図5は、実施の形態1に係るエアロゾル計測装置の光学素子を通過する第0の透過光及び第2の透過光を説明するための図である。FIG. 5 is a diagram for explaining the 0th transmitted light and the 2nd transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment. 図6は、実施の形態1に係るエアロゾル計測装置が出射したマルチレーザ光を散乱させることで発生する散乱光のスペクトルの一例を示す図である。FIG. 6 is a diagram showing an example of a spectrum of scattered light generated by scattering the multi-laser light emitted by the aerosol measuring device according to the first embodiment. 図7は、ミー散乱光とレイリー散乱光とを含む散乱光をマイケルソン干渉計で干渉させた場合のインターフェログラムの計算結果を表す図である。FIG. 7 is a diagram showing a calculation result of an interferogram when scattered light including Mie scattered light and Rayleigh scattered light is interfered with by a Michelson interferometer. 図8は、図7の一部を拡大して示す図である。FIG. 8 is an enlarged view of a part of FIG. 7. 図9は、エアロゾルによる散乱がなく、大気散乱だけを考慮した場合のマイケルソン干渉計による干渉フリンジの周波数間隔の依存性を説明するための図である。FIG. 9 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when there is no scattering by the aerosol and only the atmospheric scattering is considered. 図10は、実施の形態1に係る光源から発せられる出射光の拡がり角を模式的に示す図である。FIG. 10 is a diagram schematically showing the spread angle of the emitted light emitted from the light source according to the first embodiment. 図11は、実施の形態1に係る光源から発せられる出射光を光学素子に対して正面から入射させた場合の光の経路を模式的に示す図である。FIG. 11 is a diagram schematically showing a path of light when the emitted light emitted from the light source according to the first embodiment is incident on the optical element from the front. 図12は、実施の形態1に係る光源から発せられる出射光を光学素子に対して斜めに入射させた場合の光の経路を模式的に示す図である。FIG. 12 is a diagram schematically showing a path of light when the emitted light emitted from the light source according to the first embodiment is obliquely incident on the optical element. 図13は、実施の形態1に係る光学素子に入射する出射光の屈折を説明するための図である。FIG. 13 is a diagram for explaining the refraction of the emitted light incident on the optical element according to the first embodiment. 図14Aは、出射光の入射角が1°の場合における出射光の透過率T1と散乱光の透過率T2との積の周波数差特性を示す図である。FIG. 14A is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 1 °. 図14Bは、出射光の入射角が1.1°の場合における出射光の透過率T1と散乱光の透過率T2との積の周波数差特性を示す図である。FIG. 14B is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 1.1 °. 図14Cは、出射光の入射角が2°の場合における出射光の透過率T1と散乱光の透過率T2との積の周波数差特性を示す図である。FIG. 14C is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 2 °. 図14Dは、出射光の入射角が5°の場合における出射光の透過率T1と散乱光の透過率T2との積の周波数差特性を示す図である。FIG. 14D is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 5 °. 図14Eは、出射光の入射角が21°の場合における出射光の透過率T1と散乱光の透過率T2との積の周波数差特性を示す図である。FIG. 14E is a diagram showing a frequency difference characteristic of the product of the transmittance T1 of the emitted light and the transmittance T2 of the scattered light when the incident angle of the emitted light is 21 °. 図15は、実施の形態2に係るエアロゾル計測装置の構成を示す図である。FIG. 15 is a diagram showing a configuration of an aerosol measuring device according to a second embodiment. 図16は、散乱光を光学素子に斜めに入射させた場合の光の経路を模式的に示す図である。FIG. 16 is a diagram schematically showing a path of light when scattered light is obliquely incident on an optical element. 図17は、実施の形態3に係るエアロゾル計測装置の構成を示す図である。FIG. 17 is a diagram showing a configuration of an aerosol measuring device according to a third embodiment. 図18は、実施の形態3に係るエアロゾル計測装置の遮光部の動作を説明するための図である。FIG. 18 is a diagram for explaining the operation of the light-shielding portion of the aerosol measuring device according to the third embodiment.
 (本開示の概要)
 本開示の一態様に係るエアロゾル計測装置は、大気中に含まれるエアロゾルを計測するためのエアロゾル計測装置であって、光源と、第1面および第2面を有し、前記光源から出射された第1の光、および前記エアロゾルで散乱された第2の光が通過するエタロンと、を備える。前記第1の光は、前記第1面に対して斜めの第1方向に沿って前記第1面に入射する。
(Summary of this disclosure)
The aerosol measuring device according to one aspect of the present disclosure is an aerosol measuring device for measuring an aerosol contained in the atmosphere, has a light source, a first surface and a second surface, and is emitted from the light source. It comprises a first light and an etalon through which the second light scattered by the aerosol passes. The first light is incident on the first surface along a first direction oblique to the first surface.
 これにより、光学素子であるエタロンの入射面に対して光を斜めに入射させることで、光源が発する出射光に起因する迷光が散乱光に影響を及ぼすのを抑制することができる。例えば、迷光が散乱光と干渉するのを抑制することができる。これにより、エアロゾルの計測精度を高めることができる。 As a result, by making the light incident on the incident surface of the etalon, which is an optical element, at an angle, it is possible to suppress the influence of stray light caused by the emitted light emitted by the light source on the scattered light. For example, it is possible to suppress stray light from interfering with scattered light. As a result, the measurement accuracy of the aerosol can be improved.
 また、光路長を可変にする構成を必要としないので、エアロゾル計測装置の大型化を抑制することができる。また、エタロンによってレイリー散乱光を除去することができるので、複雑な信号処理を必要とせず、エアロゾルを簡単に計測することができる。このように、本態様によれば、エアロゾルを簡単かつ精度良く計測することができる小型のエアロゾル計測装置を実現することができる。 Moreover, since a configuration in which the optical path length is variable is not required, it is possible to suppress an increase in the size of the aerosol measuring device. Moreover, since Rayleigh scattered light can be removed by etalon, the aerosol can be easily measured without requiring complicated signal processing. As described above, according to this aspect, it is possible to realize a small aerosol measuring device capable of measuring aerosol easily and accurately.
 また、エタロンを光学素子として用いているので、エアロゾル計測装置の大型化を抑制することができる。例えば、エタロンなどの光学素子は、熱の影響を受けて膨張した場合に光学特性も変化する。本態様によれば、光学素子の光学特性が変化したとしても、第1の光と散乱光とが同じ単一の光学素子を通過するので、光学素子の特性の変化による影響を十分に抑えることができる。したがって、エアロゾルの計測精度を高めることができる。 Moreover, since etalon is used as an optical element, it is possible to suppress an increase in the size of the aerosol measuring device. For example, an optical element such as an etalon changes its optical characteristics when it expands under the influence of heat. According to this aspect, even if the optical characteristics of the optical element change, since the first light and the scattered light pass through the same single optical element, the influence of the change in the characteristics of the optical element can be sufficiently suppressed. Can be done. Therefore, the measurement accuracy of the aerosol can be improved.
 また、例えば、前記エタロンに入射した前記第1の光は、前記エタロンの前記第2面から出射され、前記第2の光は、前記第2面から前記エタロンに入射してもよい。 Further, for example, the first light incident on the etalon may be emitted from the second surface of the etalon, and the second light may be incident on the etalon from the second surface.
 これにより、エアロゾル計測装置内で光の経路を曲げる回数を少なくすることができる。このため、ミラーなどの構成部品の個数及び配置スペースを削減することができ、軽量で小型のエアロゾル計測装置を実現することができる。 This makes it possible to reduce the number of times the light path is bent in the aerosol measuring device. Therefore, the number of components such as mirrors and the arrangement space can be reduced, and a lightweight and compact aerosol measuring device can be realized.
 また、例えば、前記第2の光は、前記第2面に対して斜めの第2方向に沿って前記第2面に入射してもよい。 Further, for example, the second light may be incident on the second surface along a second direction oblique to the second surface.
 これにより、散乱光の入射角を調整することにより、光路長を変化させることができる。 As a result, the optical path length can be changed by adjusting the incident angle of the scattered light.
 また、例えば、前記第2の光は、前記第1面から前記エタロンに入射してもよい。 Further, for example, the second light may be incident on the etalon from the first surface.
 これにより、出射光と散乱光とを同じ面から光学素子であるエタロンに入射させることができるので、光源から出射された出射光のうち、光学素子で反射された光が受光器に入射されにくくすることができる。したがって、反射光によるエアロゾルの誤検知及び受光器の故障などを抑制することができる。 As a result, the emitted light and the scattered light can be incident on the optical element Etalon from the same surface, so that the light reflected by the optical element among the emitted light emitted from the light source is less likely to be incident on the receiver. can do. Therefore, it is possible to suppress erroneous detection of aerosol due to reflected light and failure of the receiver.
 また、例えば、前記第2の光は、前記第1面に対して斜めの第3方向に沿って前記第1面に入射してもよい。 Further, for example, the second light may be incident on the first surface along a third direction oblique to the first surface.
 これにより、散乱光の入射角を調整することにより、光路長を変化させることができる。 As a result, the optical path length can be changed by adjusting the incident angle of the scattered light.
 また、例えば、前記エタロンは、前記第1の光が通過する経路を含む第1部分と、前記第2の光が通過する経路を含み、前記第1部分とは異なる第2部分と、を有してもよい。 Further, for example, the etalon has a first portion including a path through which the first light passes, and a second portion including a path through which the second light passes and different from the first portion. You may.
 これにより、出射光の経路と散乱光の経路とを容易に分離させることができるので、出射光に起因する迷光が散乱光の経路に入るのを抑制することができる。このため、迷光が散乱光と干渉するのを抑制することができる。 As a result, the path of the emitted light and the path of the scattered light can be easily separated, so that the stray light caused by the emitted light can be suppressed from entering the path of the scattered light. Therefore, it is possible to suppress the stray light from interfering with the scattered light.
 また、出射光の経路と散乱光の経路とを容易に分離させることができるので、例えば、受光器と光源とを離して配置することができる。受光器と光源とを離して配置することによって、光源から出射された出射光の光学素子による反射光などが受光器に受光されるのを抑制することができる。反射光は、エアロゾルの誤検知の要因になる。また、反射光は、散乱光に比べて強度が強いので、受光器が検出できる限界強度を超えて受光器の故障の要因にもなりうる。本態様によれば、反射光が受光器に受光されるのを抑制することができるので、エアロゾルの誤検知及び受光器の故障などを抑制することができる。 Further, since the path of the emitted light and the path of the scattered light can be easily separated, for example, the receiver and the light source can be arranged separately. By arranging the receiver and the light source apart from each other, it is possible to prevent the receiver from receiving the reflected light of the emitted light emitted from the light source by the optical element. The reflected light causes false detection of aerosol. Further, since the reflected light has a higher intensity than the scattered light, the intensity exceeds the limit intensity that can be detected by the receiver and may cause a failure of the receiver. According to this aspect, since it is possible to suppress the reflected light from being received by the receiver, it is possible to suppress erroneous detection of aerosol and failure of the receiver.
 また、例えば、前記第1方向は、前記第2部分から離れる方向であってもよい。 Further, for example, the first direction may be a direction away from the second portion.
 また、例えば、前記第1部分内での前記第1の光の前記経路は、前記第1面に直交する方向に対して前記第2部分から離れる方向に傾いており、前記第1の光は、前記エタロン内で複数回反射してもよい。 Further, for example, the path of the first light in the first portion is inclined in a direction away from the second portion with respect to a direction orthogonal to the first surface, and the first light is , May be reflected multiple times in the etalon.
 これにより、エタロン内の第1の光の経路が散乱光から離れるので、第1の光に起因する迷光が散乱光に影響を及ぼすのを更に抑制することができる。したがって、エアロゾルの計測精度を更に高めることができる。 As a result, the path of the first light in the etalon is separated from the scattered light, so that the stray light caused by the first light can be further suppressed from affecting the scattered light. Therefore, the measurement accuracy of the aerosol can be further improved.
 また、例えば、前記第2部分内での前記第2の光の前記経路は、前記第1面または前記第2面に直交する方向に対して前記第1部分から離れる方向に傾いており、前記第2の光は、前記エタロン内で複数回反射してもよい。 Further, for example, the path of the second light in the second portion is inclined in a direction away from the first portion with respect to a direction orthogonal to the first surface or the second surface. The second light may be reflected multiple times within the etalon.
 これにより、エタロン内の散乱光の経路が第1の光から離れるので、第1の光に起因する迷光が散乱光に影響を及ぼすのを更に抑制することができる。したがって、エアロゾルの計測精度を更に高めることができる。 As a result, the path of the scattered light in the etalon is separated from the first light, so that the stray light caused by the first light can be further suppressed from affecting the scattered light. Therefore, the measurement accuracy of the aerosol can be further improved.
 また、例えば、前記第1の光において、前記第1の光の強度が最大強度の10-3倍になる方向が、前記第1面に直交する方向に一致している、又は、前記第1面に直交する方向から前記第2部分から離れる方向に傾いていてもよい。 Further, for example, in the first light, the direction in which the intensity of the first light becomes 10 to 3 times the maximum intensity coincides with the direction orthogonal to the first surface, or the first. It may be inclined from the direction orthogonal to the surface to the direction away from the second portion.
 これにより、第1の光に起因する迷光が散乱光に影響を及ぼすのを抑制することができるので、エアロゾルの計測精度を高めることができる。 As a result, it is possible to suppress the influence of stray light caused by the first light on the scattered light, so that the measurement accuracy of the aerosol can be improved.
 また、例えば、前記エタロンは、前記第1の光を内部で干渉させて、互いに等しい周波数間隔で離れた複数のピークを有する干渉光として出射してもよい。 Further, for example, the etalon may interfere with the first light internally and emit as interference light having a plurality of peaks separated from each other at equal frequency intervals.
 また、例えば、前記周波数間隔は、3.9GHz以下であってもよい。 Further, for example, the frequency interval may be 3.9 GHz or less.
 これにより、レイリー散乱光の透過を光学素子であるエタロンが抑制することができるので、受光器には、エアロゾルに基づくミー散乱光を受光させることができる。したがって、受光器による受光強度に基づいてエアロゾルの有無及び濃度を容易に計測することができる。 As a result, the transmission of Rayleigh scattered light can be suppressed by the optical element Etalon, so that the receiver can receive Mie scattered light based on the aerosol. Therefore, the presence / absence and concentration of aerosol can be easily measured based on the intensity of light received by the light receiver.
 また、例えば、前記第1の光及び前記第2の光の各々は、互いに等しい周波数間隔で離れた複数のピークを有し、前記複数のピークの各々の周波数と、前記複数のピークの周波数の平均である中心周波数と、の差を周波数差と定義すると、前記第1の光及び前記第2の光の各々は、前記エタロンに対する前記第1の光の透過率と、前記エタロンに対する前記第2の光の透過率との積が0.3以上になる周波数差を有していてもよい。 Further, for example, each of the first light and the second light has a plurality of peaks separated from each other at equal frequency intervals, and the frequency of each of the plurality of peaks and the frequency of the plurality of peaks When the difference from the average center frequency is defined as the frequency difference, each of the first light and the second light has the transmission rate of the first light with respect to the etalon and the second light with respect to the etalon. It may have a frequency difference in which the product of the light transmission rate is 0.3 or more.
 これにより、第1の光の透過率と散乱光の透過率との積が高い程、受光器に入射するミー散乱光の受光量を増やすことができる。 As a result, the higher the product of the first light transmittance and the scattered light transmittance, the more the amount of Mie scattered light incident on the receiver can be increased.
 また、例えば、本開示の一態様に係るエアロゾル計測装置は、さらに、前記エタロンを通過した前記第2の光を受光する受光器を備えてもよい。 Further, for example, the aerosol measuring device according to one aspect of the present disclosure may further include a receiver that receives the second light that has passed through the etalon.
 また、例えば、前記受光器は、前記第2の光のうち、ミー散乱光の強度に応じた信号を出力してもよい。 Further, for example, the receiver may output a signal corresponding to the intensity of Mie scattered light among the second light.
 また、例えば、前記第1の光はパルス光であり、前記受光器は、前記パルス光が前記光源から出射されてから、前記パルス光の時間幅より長い所定期間が終了するまで、前記エタロンを通過した前記第2の光の受光を停止し、前記所定期間が終了した後に、前記エタロンを通過した前記第2の光を受光してもよい。 Further, for example, the first light is pulsed light, and the receiver receives the etalon from the time when the pulsed light is emitted from the light source until the end of a predetermined period longer than the time width of the pulsed light. You may stop receiving the second light that has passed through and receive the second light that has passed through the etalon after the predetermined period ends.
 これにより、反射光によるエアロゾルの誤検知及び受光器の飽和による故障などを抑制することができる。 As a result, it is possible to suppress false detection of aerosol due to reflected light and failure due to saturation of the receiver.
 また、例えば、本開示の一態様に係るエアロゾル計測装置は、さらに、前記受光器から出力された信号に基づいて前記エアロゾルを分析する分析部を備えてもよい。 Further, for example, the aerosol measuring device according to one aspect of the present disclosure may further include an analysis unit that analyzes the aerosol based on the signal output from the receiver.
 また、例えば、前記光源は、レーザ素子又は発光ダイオード(LED:Light Emitting Diode)素子であってもよい。 Further, for example, the light source may be a laser element or a light emitting diode (LED: Light Emitting Diode) element.
 これにより、光学素子によって強度が減衰したとしても、十分な強度の出射光をエアロゾルに向けて出射させることができる。 As a result, even if the intensity is attenuated by the optical element, the emitted light having a sufficient intensity can be emitted toward the aerosol.
 また、例えば、本開示の一態様に係るエアロゾル計測装置は、さらに、前記第2の光を集光して、前記エタロンに入射させる集光部を備えてもよい。 Further, for example, the aerosol measuring device according to one aspect of the present disclosure may further include a condensing unit that condenses the second light and causes it to enter the etalon.
 これにより、エタロン内での干渉効率を高めることができる。また、光の受光感度を高めることができるので、エアロゾル粒子の計測精度を高めることができる。 This makes it possible to increase the interference efficiency within the etalon. Further, since the light receiving sensitivity can be increased, the measurement accuracy of the aerosol particles can be improved.
 また、本開示の一態様に係るエアロゾル計測方法は、光源から出射され、エタロンを通過した第1の光を、大気中に含まれるエアロゾルに照射することと、前記エアロゾルで散乱された第2の光を、前記エタロンに入射させることと、を含む。前記第1の光は、前記エタロンの表面に対して斜めの方向に沿って前記エタロンに入射する。 Further, the aerosol measurement method according to one aspect of the present disclosure is to irradiate the aerosol contained in the atmosphere with the first light emitted from the light source and passing through the etalon, and the second method scattered by the aerosol. Including light incident on the aerosol. The first light enters the etalon along an oblique direction with respect to the surface of the etalon.
 これにより、光学素子であるエタロンによってレイリー散乱光を除去することができるので、複雑な信号処理を必要とせず、受光器による受光強度に基づいてエアロゾルを簡単に計測することができる。 As a result, Rayleigh scattered light can be removed by the optical element Etalon, so that the aerosol can be easily measured based on the light receiving intensity by the light receiver without requiring complicated signal processing.
 本開示において、回路、ユニット、装置、部材又は部の全部又は一部、又はブロック図の機能ブロックの全部又は一部は、半導体装置、半導体集積回路(IC)、又はLSI(Large Scale Integration)を含む一つ又は複数の電子回路によって実行されてもよい。LSI又はICは、一つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、一つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In the present disclosure, all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram, is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (Large Scale Integration). It may be executed by one or more electronic circuits including. The LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips. For example, functional blocks other than the storage element may be integrated on one chip. Here, it is called an LSI or an IC, but the name changes depending on the degree of integration, and it may be called a system LSI, a VLSI (Very Large Scale Integration), or a ULSI (Ultra Large Scale Integration). Field Programmable Gate Array (FPGA), which is programmed after the manufacture of the LSI, or reconfigurable logistic device, which can reconfigure the connection relationship inside the LSI or set up the circuit partition inside the LSI, can also be used for the same purpose.
 さらに、回路、ユニット、装置、部材又は部の全部又は一部の機能又は操作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは一つ又は複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システム又は装置は、ソフトウェアが記録されている一つ又は複数の非一時的記録媒体、処理装置(processor)、及び必要とされるハードウェアデバイス、例えばインタフェース、を備えていてもよい。 Furthermore, all or part of the functions or operations of circuits, units, devices, members or parts can be executed by software processing. In this case, the software is recorded on one or more ROMs, optical disks, non-temporary recording media such as hard disk drives, and when the software is executed by a processor, the functions identified by the software are It is executed by a processor and peripheral devices. The system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware device, such as an interface.
 以下では、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, the embodiment will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that all of the embodiments described below show comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, etc. shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims will be described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic view and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
 また、本明細書において、平行などの要素間の関係性を示す用語、及び、円柱又は角柱などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Further, in the present specification, terms indicating relationships between elements such as parallel, terms indicating the shape of elements such as cylinders or prisms, and numerical ranges are not expressions that express only strict meanings, but are substantial. It is an expression meaning that the same range, for example, a difference of about several percent is included.
 (実施の形態1)
 [1.構成]
 まず、実施の形態1に係るエアロゾル計測装置の概要について、図1を用いて説明する。図1は、本実施の形態に係るエアロゾル計測装置1の構成を示す図である。
(Embodiment 1)
[1. Constitution]
First, an outline of the aerosol measuring device according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of an aerosol measuring device 1 according to the present embodiment.
 図1に示されるように、本実施の形態に係るエアロゾル計測装置1は、大気中に照射光L2を出射し、大気中に存在する散乱体90が出射光L2を散乱させることで発生する散乱光L3を取得し、取得した散乱光L3を処理することで、散乱体90に含まれるエアロゾルの有無及び濃度を計測する。散乱体90は、エアロゾル計測装置1による計測の対象空間中に存在する。散乱光L3は第2の光に相当する。 As shown in FIG. 1, the aerosol measuring device 1 according to the present embodiment emits the irradiation light L2 into the atmosphere, and the scattering body 90 existing in the atmosphere scatters the emitted light L2 to generate scattering. By acquiring the light L3 and processing the acquired scattered light L3, the presence / absence and concentration of the aerosol contained in the scatterer 90 are measured. The scatterer 90 exists in the target space for measurement by the aerosol measuring device 1. The scattered light L3 corresponds to the second light.
 対象空間は、例えば、住居、オフィス、介護施設又は病院などの建物の一部屋である。対象空間は、例えば、壁、窓、ドア、床及び天井などで仕切られた空間であり、閉じられた空間であるが、これに限らない。対象空間は、屋外の開放された空間であってもよい。また、対象空間は、バス又は飛行機などの移動体の内部空間であってもよい。 The target space is, for example, a room in a building such as a residence, office, long-term care facility, or hospital. The target space is, for example, a space partitioned by walls, windows, doors, floors, ceilings, etc., and is a closed space, but is not limited to this. The target space may be an outdoor open space. Further, the target space may be the internal space of a moving body such as a bus or an airplane.
 散乱体90は、計測対象物であるエアロゾル、機械加工による粉塵、粗大粒子、及び、空気を構成する分子を含む。エアロゾルは、具体的には、対象空間内を浮遊している塵埃、PM2.5などの浮遊粒子状物質、生物系粒子、又は、微小水滴などである。生物系粒子には、空中に浮遊するカビ若しくはダニ、又は花粉なども含まれる。また、微小水滴には、咳又はくしゃみなどの人体から動的に発生する物質が含まれる。 The scatterer 90 includes an aerosol to be measured, machined dust, coarse particles, and molecules constituting air. Specifically, the aerosol is dust floating in the target space, suspended particulate matter such as PM2.5, biological particles, or minute water droplets. Biological particles also include molds or mites floating in the air, pollen, and the like. In addition, minute water droplets include substances dynamically generated from the human body such as coughing or sneezing.
 計測対象物であるエアロゾルは、空気を構成する分子に比べて十分に大きい。本実施の形態では、エアロゾルの粒径が照射光L2の波長以上であるので、エアロゾルは、照射光L2を散乱させることでミー散乱光を発生させる。空気を構成する分子は、照射光L2の波長よりも十分に小さいので、照射光L2を散乱させることでレイリー散乱光を発生させる。したがって、エアロゾル計測装置1が取得する散乱光L3には、ミー散乱光とレイリー散乱光とが含まれる。ここでのミー散乱光は、ミー散乱による後方散乱光である。本実施の形態に係るエアロゾル計測装置1は、散乱光L3からミー散乱光を抽出し、抽出したミー散乱光に基づいてエアロゾルの有無及び濃度を計測する。 Aerosol, which is the object to be measured, is sufficiently large compared to the molecules that make up air. In the present embodiment, since the particle size of the aerosol is equal to or larger than the wavelength of the irradiation light L2, the aerosol scatters the irradiation light L2 to generate Mie scattered light. Since the molecules constituting air are sufficiently smaller than the wavelength of the irradiation light L2, Rayleigh scattered light is generated by scattering the irradiation light L2. Therefore, the scattered light L3 acquired by the aerosol measuring device 1 includes Mie scattered light and Rayleigh scattered light. The Mie scattered light here is backscattered light due to Mie scattering. The aerosol measuring device 1 according to the present embodiment extracts Mie scattered light from the scattered light L3 and measures the presence / absence and concentration of the aerosol based on the extracted Mie scattered light.
 本実施の形態に係るエアロゾル計測装置1は、対象空間内の異なる方向に向けて、散乱体90に照射するための照射光L2を出射する。照射光L2の出射方向は、例えば、MEMS(Micro-Electro-Mechanical Systems)ミラー(図示せず)などによって変更される。あるいは、エアロゾル計測装置1全体の向きを変更することで、照射光L2の出射方向が変更されてもよい。エアロゾル計測装置1は、対象空間内を走査することにより、対象空間内のエアロゾルの分布を作成することができる。 The aerosol measuring device 1 according to the present embodiment emits irradiation light L2 for irradiating the scatterer 90 in different directions in the target space. The emission direction of the irradiation light L2 is changed by, for example, a MEMS (Micro-Electro-Mechanical Systems) mirror (not shown). Alternatively, the emission direction of the irradiation light L2 may be changed by changing the direction of the entire aerosol measuring device 1. The aerosol measuring device 1 can create an aerosol distribution in the target space by scanning the target space.
 図1に示されるように、エアロゾル計測装置1は、光学素子10と、光源20と、ミラー22と、集光部30と、集光レンズ40と、受光器50と、分析部60とを備える。なお、集光部30の一例が集光レンズ30aである。以下では、エアロゾル計測装置1が備える各構成要素について説明する。 As shown in FIG. 1, the aerosol measuring device 1 includes an optical element 10, a light source 20, a mirror 22, a condensing unit 30, a condensing lens 40, a receiver 50, and an analysis unit 60. .. An example of the condensing unit 30 is a condensing lens 30a. Hereinafter, each component included in the aerosol measuring device 1 will be described.
 光学素子10は、入射する光を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光として出射する。複数本のピークを有する光は、マルチ光とも呼称される。本実施の形態では、光学素子10は、単一の光学素子である。つまり、光学素子10は、一体的に構成された1つの部材である。光学素子10の形状は、例えば、円柱体又は角柱体などである。光学素子10は、具体的にはエタロンである。 The optical element 10 internally interferes with the incident light and emits it as light having a plurality of peaks separated from each other at equal frequency intervals. Light having a plurality of peaks is also called multi-light. In the present embodiment, the optical element 10 is a single optical element. That is, the optical element 10 is one member integrally configured. The shape of the optical element 10 is, for example, a cylinder or a prism. Specifically, the optical element 10 is an etalon.
 図1に示されるように、光学素子10は、透光部11と、2つの多層膜12及び13とを有する。透光部11は、例えば石英又は水晶などの透明な材料を用いて形成されている。透光部11は、2つの多層膜12及び13に挟まれており、2つの多層膜12及び13の各々に接触している。2つの多層膜12及び13はそれぞれ、複数の誘電体膜の積層構造を有する誘電体多層膜である。例えば、2つの多層膜12及び13はそれぞれ、屈折率が低い誘電体膜と屈折率が高い誘電体膜とを交互に積層されることで形成されている。誘電体膜としては、例えば、チタン酸化膜、ハフニウム酸化膜、シリコン酸化膜などが用いられる。なお、透光部11は、空気層であってもよく、2つの多層膜12及び13は、一定距離を保つように枠体などによって固定されていてもよい。 As shown in FIG. 1, the optical element 10 has a light transmitting portion 11 and two multilayer films 12 and 13. The translucent portion 11 is formed by using a transparent material such as quartz or quartz. The translucent portion 11 is sandwiched between the two multilayer films 12 and 13, and is in contact with each of the two multilayer films 12 and 13. The two multilayer films 12 and 13 are dielectric multilayer films having a laminated structure of a plurality of dielectric films, respectively. For example, the two multilayer films 12 and 13 are each formed by alternately laminating a dielectric film having a low refractive index and a dielectric film having a high refractive index. As the dielectric film, for example, a titanium oxide film, a hafnium oxide film, a silicon oxide film, or the like is used. The light transmitting portion 11 may be an air layer, and the two multilayer films 12 and 13 may be fixed by a frame or the like so as to maintain a constant distance.
 光学素子10は、光源20から発せられた出射光L1が入射されて、出射光L1を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光である照射光L2として出射する。照射光L2は、マルチレーザ光である。出射光L1は、第1の光に相当する。 The optical element 10 is incident with the emitted light L1 emitted from the light source 20, causes the emitted light L1 to interfere internally, and emits as irradiation light L2 which is light having a plurality of peaks separated from each other at equal frequency intervals. To do. The irradiation light L2 is a multi-laser light. The emitted light L1 corresponds to the first light.
 なお、照射光L2を、互いに等しい周波数間隔で離れた複数本のピークを有する光としたが、照射光L2は、1つのピークを有する光でもよい。 Although the irradiation light L2 is light having a plurality of peaks separated from each other at equal frequency intervals, the irradiation light L2 may be light having one peak.
 本実施の形態では、出射光L1は、光学素子10の多層膜12から入射し、多層膜13から出射される。多層膜12の、透光部11とは反対側の第1面12aは、出射光L1が入射する入射面である。多層膜13の、透光部11とは反対側の第2面13aは、照射光L2が出射される出射面である。出射面である第2面13aは、入射面である第1面12aとは反対側の面である。第1面12aと第2面13aとは、互いに平行である。第1面12a及び第2面13aに直交する方向は、光学素子10の中心軸に平行である。 In the present embodiment, the emitted light L1 is incident on the multilayer film 12 of the optical element 10 and emitted from the multilayer film 13. The first surface 12a of the multilayer film 12 opposite to the translucent portion 11 is an incident surface on which the emitted light L1 is incident. The second surface 13a of the multilayer film 13 opposite to the translucent portion 11 is an exit surface from which the irradiation light L2 is emitted. The second surface 13a, which is the exit surface, is a surface opposite to the first surface 12a, which is the incident surface. The first surface 12a and the second surface 13a are parallel to each other. The direction orthogonal to the first surface 12a and the second surface 13a is parallel to the central axis of the optical element 10.
 また、光学素子10には、集光レンズ30aによって集光された散乱光L3が入射する。本実施の形態では、散乱光L3は、光学素子10の多層膜13から入射し、散乱光L3の一部であるミー散乱光L4が、多層膜12から出射される。多層膜13の、透光部11とは反対側の第2面13aは、散乱光L3が入射する入射面である。多層膜12の、透光部11とは反対側の第1面12aは、ミー散乱光L4が出射される出射面である。つまり、出射光L1の入射面と散乱光L3の入射面とは異なっている。 Further, the scattered light L3 condensed by the condenser lens 30a is incident on the optical element 10. In the present embodiment, the scattered light L3 is incident from the multilayer film 13 of the optical element 10, and the Mie scattered light L4, which is a part of the scattered light L3, is emitted from the multilayer film 12. The second surface 13a of the multilayer film 13 opposite to the light transmitting portion 11 is an incident surface on which scattered light L3 is incident. The first surface 12a of the multilayer film 12 opposite to the light transmitting portion 11 is an exit surface from which the Mie scattered light L4 is emitted. That is, the incident surface of the emitted light L1 and the incident surface of the scattered light L3 are different.
 また、図1に示されるように、光学素子10は、出射光L1が通過する経路を含む第1部分10aと、散乱光L3が通過する経路を含む第2部分10bとを有する。図1では、第1部分10aと第2部分10bとの境界を破線で模式的に表している。第1部分10aと第2部分10bとは、互いに異なる部分である。例えば、光学素子10が円柱状のエタロンである場合、第1部分10aと第2部分10bとは、中心軸を含む面で仮想的にエタロンを分割したときの半円柱状の部分に相当する。なお、円柱状のエタロンの円形の上面及び底面が光の入射面及び出射面に相当する。 Further, as shown in FIG. 1, the optical element 10 has a first portion 10a including a path through which the emitted light L1 passes and a second portion 10b including a path through which the scattered light L3 passes. In FIG. 1, the boundary between the first portion 10a and the second portion 10b is schematically represented by a broken line. The first portion 10a and the second portion 10b are different portions from each other. For example, when the optical element 10 is a columnar etalon, the first portion 10a and the second portion 10b correspond to a semi-cylindrical portion when the etalon is virtually divided on a surface including the central axis. The circular upper and lower surfaces of the cylindrical etalon correspond to the entrance surface and the emission surface of light.
 散乱光L3には、互いに等しい周波数間隔で離れた複数本のピークを有する光が含まれるので、光学素子10を通過する際に、それぞれの光が干渉を起こす。本実施の形態では、光学素子10の厚みが調整されており、散乱光L3に含まれるミー散乱光L4を通過させ、レイリー散乱光の通過を抑制する。これにより、散乱光L3からレイリー散乱光を適切に除去することができるので、エアロゾルに起因するミー散乱光L4を受光器50に受光させることができる。 Since the scattered light L3 includes light having a plurality of peaks separated from each other at equal frequency intervals, each light causes interference when passing through the optical element 10. In the present embodiment, the thickness of the optical element 10 is adjusted so that the Mie scattered light L4 included in the scattered light L3 is passed and the Rayleigh scattered light is suppressed from passing. As a result, the Rayleigh scattered light can be appropriately removed from the scattered light L3, so that the Mie scattered light L4 caused by the aerosol can be received by the receiver 50.
 本実施の形態では、光学素子10は、光源20から出射された出射光L1の光路上に位置している。具体的には、光学素子10は、ミラー22と、エアロゾル計測装置1の外郭筐体に設けられた開口との間に位置している。当該開口は、光学素子10から出射される照射光L2が通過するために設けられている。さらに、光学素子10は、散乱体90から発生する散乱光L3の光路上に位置している。具体的には、光学素子10は、集光レンズ30aと集光レンズ40との間に位置している。 In the present embodiment, the optical element 10 is located on the optical path of the emitted light L1 emitted from the light source 20. Specifically, the optical element 10 is located between the mirror 22 and the opening provided in the outer housing of the aerosol measuring device 1. The opening is provided for the irradiation light L2 emitted from the optical element 10 to pass through. Further, the optical element 10 is located on the optical path of the scattered light L3 generated from the scattering body 90. Specifically, the optical element 10 is located between the condenser lens 30a and the condenser lens 40.
 光源20は、光学素子10を介して、照射光L2を大気中に出射する。具体的には、光源20は、出射光L1を発する。出射光L1は、例えばパルス光であるが、連続光であってもよい。出射光L1は、特定の波長帯域にピークを有する単色光であってもよく、ブロードな波長帯域を含む光であってもよい。出射光L1は、例えば、ピークの波長よりも10pmから10nm短い波長から、ピークの波長よりも10pmから10nm長い波長までの範囲の波長成分を含んでいる。出射光L1は、例えば、紫外光、青色光又は赤外光などである。出射光L1短い波長からは、ミラー22で反射された後、光学素子10の内部での干渉により、互いに等しい周波数間隔で離れた複数のピークを有する光である照射光L2として大気中に出射される。 The light source 20 emits the irradiation light L2 into the atmosphere via the optical element 10. Specifically, the light source 20 emits the emitted light L1. The emitted light L1 is, for example, pulsed light, but may be continuous light. The emitted light L1 may be monochromatic light having a peak in a specific wavelength band, or light including a broad wavelength band. The emitted light L1 contains, for example, a wavelength component in the range from a wavelength 10 pm to 10 nm shorter than the peak wavelength to a wavelength 10 pm to 10 nm longer than the peak wavelength. The emitted light L1 is, for example, ultraviolet light, blue light, infrared light, or the like. Emission light L1 From a short wavelength, after being reflected by the mirror 22, it is emitted into the atmosphere as irradiation light L2, which is light having a plurality of peaks separated from each other at equal frequency intervals due to interference inside the optical element 10. To.
 光源20は、例えば、パルスレーザ光を出射光L1として発する半導体レーザ素子である。出射光L1のビームモードは、例えばマルチモードであるが、シングルモードであってもよい。一例として、光源20は、405nmの近傍にピークを有するレーザ光を出射光L1として発する。あるいは、光源20は、発光ダイオード(LED:Light Emitting Diode)であってもよい。また、光源20は、ハロゲンランプなどの放電ランプであってもよい。 The light source 20 is, for example, a semiconductor laser element that emits pulsed laser light as emitted light L1. The beam mode of the emitted light L1 is, for example, a multi-mode, but may be a single mode. As an example, the light source 20 emits a laser beam having a peak in the vicinity of 405 nm as the emitted light L1. Alternatively, the light source 20 may be a light emitting diode (LED: Light Emitting Diode). Further, the light source 20 may be a discharge lamp such as a halogen lamp.
 ミラー22は、出射光L1を反射する。出射光L1に対してミラー22を適切な角度で配置することにより、出射光L1の進路を所望の方向に曲げることができる。本実施の形態では、ミラー22は、出射光L1を反射して光学素子10に入射させる。なお、エアロゾル計測装置1は、ミラー22を備えなくてもよい。 The mirror 22 reflects the emitted light L1. By arranging the mirror 22 at an appropriate angle with respect to the emitted light L1, the course of the emitted light L1 can be bent in a desired direction. In the present embodiment, the mirror 22 reflects the emitted light L1 and causes it to enter the optical element 10. The aerosol measuring device 1 does not have to include the mirror 22.
 本実施の形態では、光源20から発せられる出射光L1は、光学素子10の第1面12aに対して斜めの方向に沿って、光学素子10に入射する。また、出射光L1は、拡がり角αで拡がる光である。出射光L1及びその入射角θの具体例については、後で説明する。 In the present embodiment, the emitted light L1 emitted from the light source 20 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10. Further, the emitted light L1 is light that spreads at a spreading angle α. Specific examples of the emitted light L1 and its incident angle θ will be described later.
 集光部30は、大気中に含まれる散乱体90が照射光L2を散乱させることで発生する散乱光L3を集光する。集光部30の一例として、例えば、凸状の集光レンズ30a、又は、少なくとも1つの反射鏡などがある。例えば、集光レンズ30aで集光された光は、コリメートレンズを含むレンズ群により、平行光に変換して出射される。よって、集光レンズ30aによって集光された散乱光L3は、光学素子10に入射する。散乱光L3の信号強度が強い場合は、特に、集光部30が配置されていなくてもよい。 The light collecting unit 30 collects the scattered light L3 generated by the scattering body 90 contained in the atmosphere scattering the irradiation light L2. As an example of the condensing unit 30, there is, for example, a convex condensing lens 30a, or at least one reflecting mirror. For example, the light collected by the condenser lens 30a is converted into parallel light and emitted by a lens group including a collimating lens. Therefore, the scattered light L3 collected by the condenser lens 30a is incident on the optical element 10. When the signal intensity of the scattered light L3 is strong, the condensing unit 30 may not be arranged.
 集光レンズ30aによって集光された散乱光L3は、光学素子10に入射する。本実施の形態では、散乱光L3は、光学素子10の第2面13aに対して正面から、すなわち、入射角が0°で光学素子10に入射する。 The scattered light L3 collected by the condenser lens 30a is incident on the optical element 10. In the present embodiment, the scattered light L3 is incident on the optical element 10 from the front with respect to the second surface 13a of the optical element 10, that is, at an incident angle of 0 °.
 集光レンズ40は、集光レンズ30aによって集光された散乱光L3のうち、光学素子10を通過したミー散乱光L4を集光する。集光レンズ40は、例えば凸レンズである。集光レンズ40は、受光器50の受光面にミー散乱光L4を集光する。 The condenser lens 40 collects the Mie scattered light L4 that has passed through the optical element 10 among the scattered light L3 condensed by the condenser lens 30a. The condenser lens 40 is, for example, a convex lens. The condenser lens 40 concentrates the Mie scattered light L4 on the light receiving surface of the receiver 50.
 受光器50は、集光レンズ30aによって集光された散乱光L3のうち、光学素子10を通過したミー散乱光L4を受光し、受光強度に応じた信号を出力する。受光強度は、ミー散乱光L4の強度であり、例えば、受光器50が出力する信号の信号レベルで表される。 The light receiver 50 receives the Mie scattered light L4 that has passed through the optical element 10 among the scattered light L3 collected by the condenser lens 30a, and outputs a signal corresponding to the light receiving intensity. The light receiving intensity is the intensity of the Mie scattered light L4, and is represented by, for example, the signal level of the signal output by the light receiver 50.
 受光器50は、光電変換を行う素子であり、例えば、PMT(Photomultiplier Tube)である。あるいは、受光器50は、PMTとフォトンカウンタとを有してもよい。また、受光器50は、アバランシェフォトダイオードであってもよい。 The light receiver 50 is an element that performs photoelectric conversion, for example, a PMT (Photomultiplier Tube). Alternatively, the receiver 50 may have a PMT and a photon counter. Further, the receiver 50 may be an avalanche photodiode.
 分析部60は、受光器50から出力された信号を分析することで、散乱体90に含まれるエアロゾルを分析する。例えば、分析部60は、信号の信号レベルに基づいてエアロゾルの有無及び濃度を決定する。具体的には、分析部60は、信号レベルとエアロゾルの濃度とを対応付けた対応情報を参照することで、信号レベルに対応するエアロゾルの濃度を決定する。対応情報は、例えば、分析部60が備えるメモリ(図示せず)に予め記憶されている。 The analysis unit 60 analyzes the aerosol contained in the scatterer 90 by analyzing the signal output from the receiver 50. For example, the analysis unit 60 determines the presence / absence and concentration of aerosol based on the signal level of the signal. Specifically, the analysis unit 60 determines the concentration of the aerosol corresponding to the signal level by referring to the correspondence information in which the signal level and the concentration of the aerosol are associated with each other. Correspondence information is stored in advance in, for example, a memory (not shown) included in the analysis unit 60.
 また、分析部60は、照射光L2が出射されてからミー散乱光L4を受光するまでに要する時間に基づいて、TOF(Time Of Flight)方式によってエアロゾルまでの距離を算出する。分析部60は、算出した距離と照射光L2を出射した方向とに基づいて、対象空間内のエアロゾルの位置を特定する。照射光L2の出射方向を変更しながらエアロゾルの位置の特定を繰り返すことで、分析部60は、対象空間内でのエアロゾルの分布を作成する。 Further, the analysis unit 60 calculates the distance to the aerosol by the TOF (Time Of Flight) method based on the time required from the emission of the irradiation light L2 to the reception of the Mie scattered light L4. The analysis unit 60 identifies the position of the aerosol in the target space based on the calculated distance and the direction in which the irradiation light L2 is emitted. By repeating the identification of the position of the aerosol while changing the emission direction of the irradiation light L2, the analysis unit 60 creates the distribution of the aerosol in the target space.
 分析部60は、複数の回路部品を含む1つ又は複数の電子回路で構成されている。1つ又は複数の電子回路はそれぞれ、汎用的な回路でもよく、専用の回路でもよい。つまり、分析部60が実行する機能は、電子回路などのハードウェアで実現される。あるいは、分析部60は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現されてもよい。分析部60が実行する機能は、プロセッサで実行されるソフトウェアで実現されてもよい。 The analysis unit 60 is composed of one or a plurality of electronic circuits including a plurality of circuit components. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit. That is, the function executed by the analysis unit 60 is realized by hardware such as an electronic circuit. Alternatively, the analysis unit 60 may be realized by a non-volatile memory in which the program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor in which the program is executed, or the like. The function executed by the analysis unit 60 may be realized by software executed by the processor.
 エアロゾル計測装置1が備える各構成要素は、例えば、図示しない筐体の内部に収容されている。筐体は、エアロゾル計測装置1の外郭筐体であり、遮光性を有する。筐体には、照射光L2及び散乱光L3を通過させるための開口が設けられている。開口は、照射光L2と散乱光L3との各々に対応させて1つずつ設けられていてもよい。集光レンズ30aは、当該開口に設けられていてもよい。 Each component included in the aerosol measuring device 1 is housed inside a housing (not shown), for example. The housing is an outer housing of the aerosol measuring device 1 and has a light-shielding property. The housing is provided with an opening for passing the irradiation light L2 and the scattered light L3. One aperture may be provided corresponding to each of the irradiation light L2 and the scattered light L3. The condenser lens 30a may be provided in the aperture.
 [2.動作]
 次に、エアロゾル計測装置1の動作について、図2を用いて説明する。図2は、本実施の形態に係るエアロゾル計測装置1の動作を示すフローチャートである。
[2. motion]
Next, the operation of the aerosol measuring device 1 will be described with reference to FIG. FIG. 2 is a flowchart showing the operation of the aerosol measuring device 1 according to the present embodiment.
 図2に示されるように、まず、光源20が出射光L1を出射する(S10)。出射光L1は、ミラー22に反射されて進行方向が曲げられて、光学素子10の第1面12aに対して斜めの方向に沿って光学素子10に入射する。出射光L1は、光学素子10を斜めに通過することによって、互いに等しい周波数間隔で離れた複数本のピークを有する光であるマルチ光に変換される。つまり、光学素子10は、入射する光を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光として出射する(S12)。マルチ光である照射光L2は、大気中に出射されて散乱体90によって散乱される。 As shown in FIG. 2, first, the light source 20 emits the emitted light L1 (S10). The emitted light L1 is reflected by the mirror 22 and its traveling direction is bent, and is incident on the optical element 10 along a direction oblique to the first surface 12a of the optical element 10. The emitted light L1 is converted into multi-light, which is light having a plurality of peaks separated from each other at equal frequency intervals by passing through the optical element 10 at an angle. That is, the optical element 10 internally interferes with the incident light and emits it as light having a plurality of peaks separated from each other at equal frequency intervals (S12). The irradiation light L2, which is multi-light, is emitted into the atmosphere and scattered by the scatterer 90.
 次に、集光レンズ30aは、散乱体90から発生する散乱光L3を集光する(S14)。集光レンズ30aによって集光された散乱光L3は、光学素子10の第2面13aに対して正面から入射する。光学素子10を通過することによって、ミー散乱光L4が抽出される。つまり、集光部30によって集光された散乱光L3を光学素子10の内部で干渉させて、ミー散乱光L4を通過させる(S16)。言い換えると、光学素子10は、散乱光L3のうち、レイリー散乱光を実質的に除去し、ミー散乱光L4のみを通過させる。 Next, the condenser lens 30a collects the scattered light L3 generated from the scatterer 90 (S14). The scattered light L3 collected by the condenser lens 30a is incident on the second surface 13a of the optical element 10 from the front. By passing through the optical element 10, the Mie scattered light L4 is extracted. That is, the scattered light L3 collected by the condensing unit 30 interferes with each other inside the optical element 10 and passes through the Mie scattered light L4 (S16). In other words, the optical element 10 substantially removes the Rayleigh scattered light among the scattered light L3 and allows only the Mie scattered light L4 to pass through.
 次に、受光器50は、ミー散乱光L4を受光し、受光強度に応じた信号を出力する(S18)。 Next, the light receiver 50 receives the Mie scattered light L4 and outputs a signal according to the light receiving intensity (S18).
 分析部60は、受光器50から出力された信号を処理することで、散乱体90に含まれるエアロゾルを分析する(S20)。 The analysis unit 60 analyzes the aerosol contained in the scatterer 90 by processing the signal output from the receiver 50 (S20).
 エアロゾル計測装置1は、以上のステップS10からステップS20までの処理を、照射光L2の出射方向を変えながら繰り返し行う。例えば、対象空間内の所定の方向に向かって照射光L2を出射し、散乱光L3が取得できた場合に、散乱光L3の発生源となった散乱体90に含まれるエアロゾルの位置及び濃度を特定する。これにより、エアロゾル計測装置1は、例えば、対象空間内のエアロゾルの位置及び濃度を示す分布図を生成することができる。なお、エアロゾル計測装置1は、エアロゾルの位置のみを示す分布図を生成してもよい。 The aerosol measuring device 1 repeats the above processes from step S10 to step S20 while changing the emission direction of the irradiation light L2. For example, when the irradiation light L2 is emitted in a predetermined direction in the target space and the scattered light L3 can be acquired, the position and concentration of the aerosol contained in the scattering body 90 that is the source of the scattered light L3 can be determined. Identify. As a result, the aerosol measuring device 1 can generate, for example, a distribution map showing the position and concentration of the aerosol in the target space. The aerosol measuring device 1 may generate a distribution map showing only the position of the aerosol.
 [3.光学素子の機能]
 続いて、光学素子10の具体的な機能について説明する。
[3. Function of optical element]
Subsequently, a specific function of the optical element 10 will be described.
 上述したように、光学素子10は、光源20から発せられたレーザ光である出射光L1を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光からなるマルチレーザ光である照射光L2として出射する。以下ではまず、マルチレーザ光について図3を用いて説明する。 As described above, the optical element 10 is a multi-laser light composed of light having a plurality of peaks separated from each other at equal frequency intervals by internally interfering with the emitted light L1 which is the laser light emitted from the light source 20. It is emitted as a certain irradiation light L2. In the following, first, the multi-laser light will be described with reference to FIG.
 図3は、本実施の形態に係るエアロゾル計測装置1が出射するマルチレーザ光のスペクトルの一例を示す図である。図3の部分(a)及び(b)の各々において横軸は周波数を表し、縦軸は信号強度を表している。 FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device 1 according to the present embodiment. In each of the parts (a) and (b) of FIG. 3, the horizontal axis represents the frequency and the vertical axis represents the signal strength.
 図3の部分(a)は、光学素子10を通過した後のマルチレーザ光である照射光L2のスペクトルを示している。スペクトルに含まれる複数のピークがそれぞれ、照射光L2に含まれる複数本のピークに対応している。複数本のピークの周波数間隔LW2が互いに等しく、例えば3GHzである。ここでは、複数本のピークの信号強度が互いに等しい例を示しているが、互いに異なっていてもよい。照射光L2の中心波長λは、例えば405nmである。 Part (a) of FIG. 3 shows the spectrum of the irradiation light L2, which is the multi-laser light after passing through the optical element 10. Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the irradiation light L2. The frequency intervals LW2 of the plurality of peaks are equal to each other, for example, 3 GHz. Here, an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other. The center wavelength λ of the irradiation light L2 is, for example, 405 nm.
 図3の部分(b)は、図3の部分(a)の拡大図であり、スペクトルの1つのピーク、すなわち、照射光L2に含まれる1つの光のみを拡大して示している。1つの光の半値全幅LW1は、例えば360MHzである。LW1は、LW2の1/20以上1/5以下であるが、1/10以上1/8以下であってもよい。 Part (b) of FIG. 3 is an enlarged view of part (a) of FIG. 3, and shows one peak of the spectrum, that is, only one light included in the irradiation light L2 in an enlarged manner. The full width at half maximum LW1 of one light is, for example, 360 MHz. LW1 is 1/20 or more and 1/5 or less of LW2, but may be 1/10 or more and 1/8 or less.
 本実施の形態では、出射光L1が光学素子10を通過することで、光学素子10内で干渉されて、照射光L2として出射される。光学素子10であるエタロンは、入射する光と、エタロン内で反射を繰り返す光との干渉を利用する。入射する光の位相と、エタロン内の反射を繰り返す光の位相とが一致した場合、光を強め合う干渉が起こり、エタロン内で光が増強されて透過する。エタロンの多層膜12及び13は、光を透過したり、反射したりすることができる。多層膜12及び13の各々の透過率は、例えば75%であるが、これに限らない。 In the present embodiment, when the emitted light L1 passes through the optical element 10, it interferes with the inside of the optical element 10 and is emitted as the irradiation light L2. The etalon, which is the optical element 10, utilizes the interference between the incident light and the light that is repeatedly reflected in the etalon. When the phase of the incident light and the phase of the light repeatedly reflected in the etalon match, interference that strengthens the light occurs, and the light is enhanced and transmitted in the etalon. The multilayer films 12 and 13 of Etalon can transmit or reflect light. The transmittance of each of the multilayer films 12 and 13 is, for example, 75%, but is not limited to this.
 ここで、図4及び図5はそれぞれ、本実施の形態に係るエアロゾル計測装置1の光学素子10を通過する光を説明するための図である。具体的には、図4は、第0の透過光及び第1の透過光を模式的に表している。図5は、第0の透過光及び第2の透過光を模式的に表している。 Here, FIGS. 4 and 5 are diagrams for explaining light passing through the optical element 10 of the aerosol measuring device 1 according to the present embodiment, respectively. Specifically, FIG. 4 schematically shows the 0th transmitted light and the 1st transmitted light. FIG. 5 schematically represents the 0th transmitted light and the 2nd transmitted light.
 光学素子10は、入射する光の一部をそのまま透過させる。図4及び図5に示されるように、光学素子10の多層膜12及び13で反射されずにそのまま透過する光が第0の透過光である。 The optical element 10 transmits a part of the incident light as it is. As shown in FIGS. 4 and 5, the light transmitted as it is without being reflected by the multilayer films 12 and 13 of the optical element 10 is the 0th transmitted light.
 第1の透過光は、図4に示されるように、入射した光が多層膜13で1回反射された後、多層膜12で1回反射された光である。第0の透過光と第1の透過光との位相が一致することによって干渉が起こり、第1の干渉フリンジに対応する光が出射される。干渉フリンジについては、図7及び図8を用いて後で説明する。 As shown in FIG. 4, the first transmitted light is light that is reflected once by the multilayer film 12 after the incident light is reflected once by the multilayer film 13. Interference occurs when the phases of the 0th transmitted light and the 1st transmitted light match, and the light corresponding to the first interference fringe is emitted. Interfering fringes will be described later with reference to FIGS. 7 and 8.
 第2の透過光は、図5に示されるように、入射した光が多層膜13及び多層膜12でそれぞれ2回ずつ反射された光である。第0の透過光と第2の透過光との位相が一致することによって干渉が起こり、第2の干渉フリンジに対応する光が出射される。 As shown in FIG. 5, the second transmitted light is light in which the incident light is reflected twice by the multilayer film 13 and the multilayer film 12, respectively. Interference occurs when the phases of the 0th transmitted light and the 2nd transmitted light match, and the light corresponding to the second interference fringe is emitted.
 入射する光の位相と、反射を繰り返す光の位相とが一致しない場合、光が入射した面に向けて反射され、エタロンを通過する光の強度が弱くなる。この結果、透過光は、周期的なスペクトルを有する。つまり、光学素子10は、出射光L1が入射された場合に、等しい周波数間隔LW2で離れた複数のピークを有する照射光L2を出射することができる。 If the phase of the incident light and the phase of the repeatedly reflected light do not match, the light is reflected toward the incident surface and the intensity of the light passing through the etalon is weakened. As a result, the transmitted light has a periodic spectrum. That is, when the emitted light L1 is incident, the optical element 10 can emit the irradiation light L2 having a plurality of peaks separated by the same frequency interval LW2.
 周波数間隔LW2を実現するためのエタロンの長さΔxは、以下の式(1)に基づいて定められる。なお、エタロンの長さΔxは、図4及び図5に示されるように、多層膜12と多層膜13との距離、すなわち、透光部11の厚さである。 The length Δx of the etalon for realizing the frequency interval LW2 is determined based on the following equation (1). The length Δx of the etalon is the distance between the multilayer film 12 and the multilayer film 13, that is, the thickness of the translucent portion 11, as shown in FIGS. 4 and 5.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、nは、真空中の屈折率であり、例えば1.0である。nは、エタロンの透光部11の屈折率であり、石英の場合1.47である。cは、光速であり、3×10m/sである。LW2=3GHzである場合、上記式(1)より、エタロンの長さΔxが34mmになる。また、エタロンの長さΔxは、製造上、80mm程度が限界である。このため、LW2の下限値は、1.3GHz程度になる。 In the formula (1), n 0 is the refractive index in vacuum, for example 1.0. n is the refractive index of the translucent portion 11 of etalon, which is 1.47 in the case of quartz. c is the speed of light, which is 3 × 10 8 m / s. When LW2 = 3 GHz, the length Δx of the etalon is 34 mm from the above formula (1). Further, the length Δx of the etalon is limited to about 80 mm in manufacturing. Therefore, the lower limit of LW2 is about 1.3 GHz.
 エタロンによって、ファブリペロー干渉を起こす場合の光路差dxは、以下の式(2)で表される。 The optical path difference dx when Fabry-Perot interference is caused by Etalon is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 例えば、Δx=34mmの場合、光路差dxは100mmになる。 For example, when Δx = 34 mm, the optical path difference dx is 100 mm.
 次に、図3に示される照射光L2を散乱体90が散乱させることで発生する散乱光L3について、図6を用いて説明する。 Next, the scattered light L3 generated by the scattering body 90 scattering the irradiation light L2 shown in FIG. 3 will be described with reference to FIG.
 図6は、本実施の形態に係るエアロゾル計測装置1が出射したマルチレーザ光を散乱させることで発生する散乱光L3のスペクトルの一例を示す図である。図6の部分(a)及び(b)の各々において、横軸は周波数を表し、縦軸は信号強度を表している。 FIG. 6 is a diagram showing an example of the spectrum of scattered light L3 generated by scattering the multi-laser light emitted by the aerosol measuring device 1 according to the present embodiment. In each of the parts (a) and (b) of FIG. 6, the horizontal axis represents the frequency and the vertical axis represents the signal strength.
 図6の部分(a)は、散乱光L3のスペクトルを示している。散乱光L3は、照射光L2と同様に、互いに等しい周波数間隔MW2で離れた複数本のピークを有する光からなる。スペクトルに含まれる複数のピークがそれぞれ、照射光L2に含まれる複数本のピークに対応している。散乱光L3の周波数間隔MW2は、照射光L2の周波数間隔LW2に等しい。ここでは、複数本のピークの信号強度が互いに等しい例を示しているが、互いに異なっていてもよい。 Part (a) of FIG. 6 shows the spectrum of scattered light L3. The scattered light L3, like the irradiation light L2, is composed of light having a plurality of peaks separated from each other at a frequency interval MW2 equal to each other. Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the irradiation light L2. The frequency interval MW2 of the scattered light L3 is equal to the frequency interval LW2 of the irradiation light L2. Here, an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other.
 図6の部分(b)は、図6の部分(a)の拡大図であり、スペクトルの1つのピーク、すなわち、散乱光L3に含まれる1つの光のみを拡大して示している。 Part (b) of FIG. 6 is an enlarged view of part (a) of FIG. 6, and shows one peak of the spectrum, that is, only one light included in the scattered light L3 in an enlarged manner.
 上述したように、散乱光L3は、ミー散乱光とレイリー散乱光とを含んでいる。ミー散乱光のスペクトルは、散乱前の照射光L2のスペクトルと実質的に同じである。一方で、レイリー散乱光は、大気を構成する分子の熱運動によって周波数幅が広がる。また、レイリー散乱光の強度は、通常、ミー散乱光の強度よりも低い。 As described above, the scattered light L3 includes Mie scattered light and Rayleigh scattered light. The spectrum of Mie scattered light is substantially the same as the spectrum of irradiation light L2 before scattering. On the other hand, the frequency width of Rayleigh scattered light is widened by the thermal motion of the molecules that make up the atmosphere. Also, the intensity of Rayleigh scattered light is usually lower than the intensity of Mie scattered light.
 このため、図6の部分(b)に示されるように、散乱光L3のスペクトルは、図3に示される照射光L2のスペクトルと比較して、ピークの裾野が広がった形状を有する。中心の高いピークがミー散乱光に相当し、裾野部分がレイリー散乱光に相当する。なお、図6の部分(b)では、大気を構成する分子によるレイリー散乱光の信号強度と、エアロゾルによるミー散乱光の信号強度とを3:1としている。なお、ここでの信号強度は、ピークの面積で表される。また、ミー散乱光を表すピークの半値全幅MW1は、照射光L2の半値全幅LW1に等しい。 Therefore, as shown in the part (b) of FIG. 6, the spectrum of the scattered light L3 has a shape in which the base of the peak is widened as compared with the spectrum of the irradiation light L2 shown in FIG. The high peak at the center corresponds to Mie scattered light, and the base part corresponds to Rayleigh scattered light. In the part (b) of FIG. 6, the signal intensity of Rayleigh scattered light by the molecules constituting the atmosphere and the signal intensity of Mie scattered light by the aerosol are set to 3: 1. The signal strength here is represented by the area of the peak. Further, the full width at half maximum MW1 of the peak representing the Mie scattered light is equal to the full width at half maximum LW1 of the irradiation light L2.
 レイリー散乱光を表す裾野部分の半値全幅RWは、一般的な実測によれば、3.4GHzから3.9GHz程度であることが知られている。一例として、レイリー散乱光の半値全幅RWは、3.6GHz(Δλ=1.9pm)とすることができる。 It is known that the full width at half maximum RW of the foot portion representing the Rayleigh scattered light is about 3.4 GHz to 3.9 GHz according to a general actual measurement. As an example, the full width at half maximum RW of Rayleigh scattered light can be 3.6 GHz (Δλ = 1.9 pm).
 なお、Δλは、以下の式(3)に基づいて算出される。 Note that Δλ is calculated based on the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)において、Δf=RWである。cは、光速であり、3×10m/sである。λは、中心波長であり、ここでは405nmである。 In the formula (3), Δf = RW. c is the speed of light, which is 3 × 10 8 m / s. λ is the central wavelength, which is 405 nm here.
 本実施の形態では、光学素子10に散乱光L3を通過させることによって、3GHzの周波数間隔で現れる複数本のピークを有する光、すなわち、ミー散乱光を透過させ、他の周波数成分の光、すなわち、レイリー散乱光を除去することができる。 In the present embodiment, by passing the scattered light L3 through the optical element 10, light having a plurality of peaks appearing at a frequency interval of 3 GHz, that is, Me scattered light is transmitted, and light of another frequency component, that is, , Rayleigh scattered light can be removed.
 図7は、エアロゾルによるミー散乱光と大気を構成する分子によるレイリー散乱光とを含む散乱光を、マイケルソン干渉計で干渉させた場合のインターフェログラムの計算結果を表す図である。図7において、横軸は干渉を起こす光路差dxを表し、縦軸は干渉光の強度を表している。図8は、図7の破線で囲まれた領域VIIIを拡大した図である。 FIG. 7 is a diagram showing the calculation result of the interferogram when the scattered light including the Mie scattered light by the aerosol and the Rayleigh scattered light by the molecules constituting the atmosphere are interfered with by the Michelson interferometer. In FIG. 7, the horizontal axis represents the optical path difference dx that causes interference, and the vertical axis represents the intensity of the interference light. FIG. 8 is an enlarged view of the region VIII surrounded by the broken line in FIG. 7.
 図7及び図8に示されるように、光路差dxがΔxの整数倍になる度に、干渉フリンジが現れる。dx=0の干渉フリンジを第0の干渉フリンジと定義し、dx=n×Δxの干渉フリンジを第nの干渉フリンジと定義する。nは自然数である。図8は、第0の干渉フリンジ、第1の干渉フリンジ、第2の干渉フリンジを表している。第1の干渉フリンジは、図4に示される第0の透過光と第1の透過光との干渉によって生じる光である。第2の干渉フリンジは、図5に示される第0の透過光と第2の透過光との干渉によって生じる光である。 As shown in FIGS. 7 and 8, an interference fringe appears every time the optical path difference dx becomes an integral multiple of Δx. The interference fringe of dx = 0 is defined as the 0th interference fringe, and the interference fringe of dx = n × Δx is defined as the nth interference fringe. n is a natural number. FIG. 8 shows the 0th interference fringe, the 1st interference fringe, and the 2nd interference fringe. The first interference fringe is the light generated by the interference between the 0th transmitted light and the 1st transmitted light shown in FIG. The second interference fringe is the light generated by the interference between the 0th transmitted light and the second transmitted light shown in FIG.
 受光器50では、第0の干渉フリンジから第nの干渉フリンジまでを合わせた干渉光がミー散乱光L4として受光される。本実施の形態では、光学素子10であるエタロンの長さΔxを調整することにより、大気散乱に起因するレイリー散乱光に基づく干渉フリンジを除去することができる。レイリー散乱光を除去するのに適した長さΔxの決定方法について説明する。 In the receiver 50, the interference light including the 0th interference fringe to the nth interference fringe is received as Mie scattered light L4. In the present embodiment, by adjusting the length Δx of the etalon which is the optical element 10, the interference fringe due to the Rayleigh scattered light caused by atmospheric scattering can be removed. A method for determining a length Δx suitable for removing Rayleigh scattered light will be described.
 図9は、エアロゾルによる散乱がなく、大気散乱だけを考慮した場合のマイケルソン干渉計による干渉フリンジの周波数間隔の依存性を説明するための図である。図9の部分(a)から(l)ではそれぞれ、横軸がdxを表し、縦軸が信号強度を表している。図9の部分(a)から(l)はそれぞれ、照射光L2の周波数間隔LW2が2.4GHz、3.0GHz、3.6GHz、3.7GHz、3.8GHz、3.9GHz、4GHz、5GHz、6GHz、10GHz、15GHz、30GHzの場合のインターフェログラムの計算結果を表している。 FIG. 9 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when only atmospheric scattering is considered without scattering by aerosol. In the parts (a) to (l) of FIG. 9, the horizontal axis represents dx and the vertical axis represents the signal strength. In the parts (a) to (l) of FIG. 9, the frequency intervals LW2 of the irradiation light L2 are 2.4 GHz, 3.0 GHz, 3.6 GHz, 3.7 GHz, 3.8 GHz, 3.9 GHz, 4 GHz, 5 GHz, respectively. It shows the calculation result of the interferogram in the case of 6 GHz, 10 GHz, 15 GHz, and 30 GHz.
 図9に示されるように、周波数間隔LW2が大きくなるにつれて、出現する干渉フリンジの個数が増加し、かつ、出現する干渉フリンジの信号強度が大きくなっている。例えば、周波数間隔LW2が2.4GHzの場合は、実質的に第0の干渉フリンジのみが出現しており、第1以上の干渉フリンジが出現していない。周波数間隔LW2が3.0GHzから4GHzの範囲では、第0の干渉フリンジと第1の干渉フリンジとが出現しており、第2以上の干渉フリンジが出現していない。周波数間隔LW2が5GHzの場合には、第0の干渉フリンジ及び第1の干渉フリンジに加えて、第2の干渉フリンジが出現している。図9では、第1の干渉フリンジ以上が現れている範囲を破線の枠で表している。 As shown in FIG. 9, as the frequency interval LW2 increases, the number of appearing interference fringes increases, and the signal strength of the appearing interference fringes increases. For example, when the frequency interval LW2 is 2.4 GHz, substantially only the 0th interference fringe appears, and the first or more interference fringes do not appear. In the frequency interval LW2 in the range of 3.0 GHz to 4 GHz, the 0th interference fringe and the 1st interference fringe appear, and the second and higher interference fringes do not appear. When the frequency interval LW2 is 5 GHz, a second interference fringe appears in addition to the 0th interference fringe and the first interference fringe. In FIG. 9, the range in which the first interference fringe and above appear is represented by a broken line frame.
 大気散乱だけを考慮に入れた場合に第2以上の干渉フリンジが現れているということは、レイリー散乱光のみによる干渉が起きていることを意味する。すなわち、光学素子10にレイリー散乱光を入射させた場合に、レイリー散乱光が透過することを意味する。したがって、周波数間隔LW2は3.9GHz以下であれば、第1の干渉フリンジが小さくなるので、レイリー散乱光の透過が抑制される。 The appearance of the second or higher interference fringes when only atmospheric scattering is taken into consideration means that interference is occurring only by Rayleigh scattered light. That is, it means that the Rayleigh scattered light is transmitted when the Rayleigh scattered light is incident on the optical element 10. Therefore, if the frequency interval LW2 is 3.9 GHz or less, the first interference fringe becomes small, and the transmission of Rayleigh scattered light is suppressed.
 すなわち、周波数間隔LW2が3.9GHzの場合の第1の干渉フリンジの大きさは、第0の干渉フリンジの大きさの50%以下になっている。このため、第1の干渉フリンジが小さくなっているので、レイリー散乱光が光学素子10を透過するのを抑制することができる。 That is, the magnitude of the first interference fringe when the frequency interval LW2 is 3.9 GHz is 50% or less of the magnitude of the 0th interference fringe. Therefore, since the first interference fringe is small, it is possible to suppress the Rayleigh scattered light from passing through the optical element 10.
 以上のことから、周波数間隔LW2は3.9GHz以下であることで、散乱光L3からレイリー散乱光を効率良く除去することができる。周波数間隔LW2が3.9GHzである場合、式(1)により、石英で作られたエタロンの長さΔxは、約26mmとなる。つまり、長さΔxが26mm以上のエタロンを光学素子10として用いることで、レイリー散乱光を効率良く除去することができ、エアロゾルの計測精度を高めることができる。 From the above, when the frequency interval LW2 is 3.9 GHz or less, Rayleigh scattered light can be efficiently removed from the scattered light L3. When the frequency interval LW2 is 3.9 GHz, the length Δx of the etalon made of quartz is about 26 mm according to the formula (1). That is, by using an etalon having a length Δx of 26 mm or more as the optical element 10, Rayleigh scattered light can be efficiently removed, and the measurement accuracy of the aerosol can be improved.
 [4.出射光の特性]
 図10は、本実施の形態に係る光源20から発せられる出射光L1の拡がり角を模式的に示す図である。図10に示されるように、光源20から発せられる出射光L1は、所定の拡がり角αを有する。つまり、出射光L1は、ビーム径が常に一定ではなく、光源20から離れる程、外側に広がる光である。
[4. Characteristics of emitted light]
FIG. 10 is a diagram schematically showing the spread angle of the emitted light L1 emitted from the light source 20 according to the present embodiment. As shown in FIG. 10, the emitted light L1 emitted from the light source 20 has a predetermined spread angle α. That is, the emitted light L1 is light whose beam diameter is not always constant and spreads outward as the distance from the light source 20 increases.
 出射光L1の拡がり角αは、出射光L1の光軸方向と、出射光L1の強度が最大強度の10-3倍になる方向とがなす角度である。なお、光軸方向は、図10の破線で示されており、光源20の出射面の法線方向に一致する。拡がり角αは、例えば、2°以下である。 The spread angle α of the emitted light L1 is an angle formed by the optical axis direction of the emitted light L1 and the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity. The optical axis direction is shown by the broken line in FIG. 10, and coincides with the normal direction of the exit surface of the light source 20. The spread angle α is, for example, 2 ° or less.
 出射光L1が拡がり角αで拡がることで、光学素子10に対して正面から入射した場合、一部の光が散乱光L3に影響を及ぼす。図11は、出射光L1を光学素子10に対して正面から入射させた場合の光の経路を模式的に示す図である。本実施の形態では、「正面から入射」とは、入射面である第1面12aに対して出射光L1の光軸方向が垂直である場合を意味する。すなわち、図11では、出射光L1の入射角θは、0°である。なお、詳細については図13を用いて説明するが、出射光L1の入射角θは、出射光L1の光軸方向と第1面12aの法線方向とがなす角度である。図11から図13において、光の光軸は、実線の矢印で表される。 When the emitted light L1 spreads at the spreading angle α and is incident on the optical element 10 from the front, a part of the light affects the scattered light L3. FIG. 11 is a diagram schematically showing a path of light when the emitted light L1 is incident on the optical element 10 from the front. In the present embodiment, "incident from the front" means a case where the optical axis direction of the emitted light L1 is perpendicular to the first surface 12a which is the incident surface. That is, in FIG. 11, the incident angle θ of the emitted light L1 is 0 °. Although details will be described with reference to FIG. 13, the incident angle θ of the emitted light L1 is an angle formed by the optical axis direction of the emitted light L1 and the normal direction of the first surface 12a. In FIGS. 11 to 13, the optical axis of light is represented by a solid arrow.
 なお、図11では、説明を簡単にするために、出射光L1が光学素子10に入射するときの屈折の図示を省略している。また、出射光L1のうち、最大強度の10-3倍以上の強度を有する範囲にドットの網掛けを付している。後述する図12及び図16についても同様である。 In FIG. 11, for the sake of simplicity, the refraction when the emitted light L1 is incident on the optical element 10 is not shown. In addition, dots are shaded in the range of the emitted light L1 having an intensity of 10 to 3 times or more the maximum intensity. The same applies to FIGS. 12 and 16 described later.
 図11に示されるように、拡がり角αで拡がる出射光L1のうち、散乱光L3の経路側に拡がった一部の光は、透光部11と多層膜12及び13の各々との界面で多重反射することで、迷光L5として散乱光L3の経路上を通過しうる。このため、迷光L5と散乱光L3とが互いに干渉されるので、ミー散乱光L4には、エアロゾルに起因しないノイズ成分が含まれる。このため、エアロゾルの検出精度が低下する。 As shown in FIG. 11, of the emitted light L1 spreading at the spreading angle α, a part of the light spreading toward the path side of the scattered light L3 is at the interface between the light transmitting portion 11 and each of the multilayer films 12 and 13. By multiple reflection, it can pass on the path of scattered light L3 as stray light L5. Therefore, since the stray light L5 and the scattered light L3 interfere with each other, the Mie scattered light L4 contains a noise component not caused by the aerosol. Therefore, the detection accuracy of the aerosol is lowered.
 これに対して、本実施の形態では、図12に示されるように、出射光L1を、光学素子10の第1面12aに対して斜めの方向に沿って光学素子10に入射させる。図12は、出射光L1を、」光学素子10の第1面12aに対して斜めの方向に沿って光学素子10に入射させた場合の光の経路を模式的に示す図である。 On the other hand, in the present embodiment, as shown in FIG. 12, the emitted light L1 is incident on the optical element 10 along a direction oblique to the first surface 12a of the optical element 10. FIG. 12 is a diagram schematically showing a path of light when the emitted light L1 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10.
 図12に示されるように、出射光L1は、光学素子10の第1面12aに対して斜めの方向に沿って光学素子10に入射している。本実施の形態では、出射光L1は、出射光L1の強度が最大強度の10-3倍になる方向が、第1面12aに直交する法線方向Dに一致、又は、法線方向Dよりも散乱光L3が通過する経路から離れる方向に傾斜している。図12に示される例では、出射光L1の強度が最大強度の10-3倍になる方向は、法線方向Dに対して角度βで散乱光L3の経路から離れる方向に傾斜している。βは0°以上である。 As shown in FIG. 12, the emitted light L1 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10. In the present embodiment, in the emitted light L1, the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity coincides with the normal direction D orthogonal to the first surface 12a, or is from the normal direction D. Is also inclined in a direction away from the path through which the scattered light L3 passes. In the example shown in FIG. 12, the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity is inclined in a direction away from the path of the scattered light L3 at an angle β with respect to the normal direction D. β is 0 ° or more.
 図12に示されるように、拡がり角αで拡がる出射光L1のうち、散乱光L3の経路側に拡がった一部の光は、透光部11と多層膜12及び13の各々との界面で多重反射する。このとき、出射光L1のうち最も散乱光L3の経路に近い光L6、すなわち、出射光L1の強度が最大強度の10-3倍になる方向に一致する光L6は、法線方向Dに対して散乱光L3の経路から離れる方向に傾斜している。このため、光L6は、散乱光L3の経路から離れる方向に多重反射するので、散乱光L3との干渉が充分に抑制される。迷光である光L6に起因するノイズ成分が充分に抑制されるので、エアロゾルの検出精度を高めることができる。 As shown in FIG. 12, of the emitted light L1 spreading at the spreading angle α, a part of the light spreading toward the path side of the scattered light L3 is at the interface between the light transmitting portion 11 and each of the multilayer films 12 and 13. Multiple reflections. At this time, the light L6 closest to the path of the scattered light L3 among the emitted light L1, that is, the light L6 corresponding to the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity is with respect to the normal direction D. It is inclined in a direction away from the path of the scattered light L3. Therefore, since the light L6 is multiplely reflected in the direction away from the path of the scattered light L3, the interference with the scattered light L3 is sufficiently suppressed. Since the noise component caused by the stray light L6 is sufficiently suppressed, the detection accuracy of the aerosol can be improved.
 [5.角度]
 続いて、出射光L1の入射角θのとりうる範囲について説明する。
[5. angle]
Subsequently, the range in which the incident angle θ of the emitted light L1 can be taken will be described.
 図13は、光学素子10に入射する出射光L1の屈折を説明するための図である。図13に示される出射光L1は、入射角θで第1面12aに入射する。出射光L1は、光学素子10に入射する際、及び、多層膜12を通過する際に屈折され、屈折角φで透光部11内を進行する。光学素子10の周囲の屈折率を1とし、透光部11の屈折率をnとした場合、nsinφ=sinθが成立する。 FIG. 13 is a diagram for explaining the refraction of the emitted light L1 incident on the optical element 10. The emitted light L1 shown in FIG. 13 is incident on the first surface 12a at an incident angle θ. The emitted light L1 is refracted when it enters the optical element 10 and when it passes through the multilayer film 12, and travels in the translucent portion 11 at a refraction angle φ. When the refractive index around the optical element 10 is 1 and the refractive index of the translucent portion 11 is n, nsinφ = sinθ is established.
 また、出射光L1のうち、出射光L1の強度が最大強度の10-3倍になる方向上の光L6の入射角は、拡がり角がαであるので、θ-αである。このため、nsinβ=sin(θ-α)が成立する。 Further, among the emitted light L1, the incident angle of the light L6 in the direction in which the intensity of the emitted light L1 becomes 10 to 3 times the maximum intensity is θ−α because the spreading angle is α. Therefore, nsinβ = sin (θ−α) is established.
 本実施の形態では、βが0°以上になるように出射光L1が第1面12aに入射するので、出射光L1の入射角θは、α以上である。 In the present embodiment, since the emitted light L1 is incident on the first surface 12a so that β is 0 ° or more, the incident angle θ of the emitted light L1 is α or more.
 また、出射光L1及び散乱光L3の各々が、互いに等しい周波数間隔で離れた複数のピークを有し、複数のピークの各々の周波数と、複数のピークの周波数の平均である中心周波数と、の差を周波数差と定義すると、出射光L1は、光学素子10に対する出射光L1の透過率T1と、光学素子10に対する散乱光L3の透過率T2との積(T1×T2)が、0.3以上になる周波数差を有する角度で第1面12aに入射する。すなわち、散乱光L1の入射角θは、T1×T2が0.3以上になる周波数差dfを有する角度である。具体的には、入射角θは、所定の周波数差の範囲内に、T1×T2の積が0.3以上になる周波数差dfが存在する角度である。所定の周波数差の範囲は、例えば-6GHz以上+6GHz以下の範囲である。また、T1×T2の積は0.5以上であってもよい。 Further, each of the emitted light L1 and the scattered light L3 has a plurality of peaks separated from each other at equal frequency intervals, and the frequency of each of the plurality of peaks and the center frequency which is the average of the frequencies of the plurality of peaks. If the difference is defined as a frequency difference, the output light L1 has a product (T1 × T2) of the transmittance T1 of the emitted light L1 with respect to the optical element 10 and the transmittance T2 of the scattered light L3 with respect to the optical element 10 of 0.3. It is incident on the first surface 12a at an angle having the above frequency difference. That is, the incident angle θ of the scattered light L1 is an angle having a frequency difference df at which T1 × T2 is 0.3 or more. Specifically, the incident angle θ is an angle at which a frequency difference df in which the product of T1 × T2 is 0.3 or more exists within a range of a predetermined frequency difference. The range of the predetermined frequency difference is, for example, a range of −6 GHz or more and + 6 GHz or less. Further, the product of T1 × T2 may be 0.5 or more.
 透過率Tは、以下の式(4)、(5)及び(6)で表される。 The transmittance T is represented by the following equations (4), (5) and (6).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)、(5)及び(6)において、λは、出射光L1又は散乱光L3の中心波長である。一例として、λは405nmである。cは、光速であり、3×10m/sである。このため、λは405nmである場合、中心周波数fは、7.41×1014Hzになる。 In the formulas (4), (5) and (6), λ is the central wavelength of the emitted light L1 or the scattered light L3. As an example, λ is 405 nm. c is the speed of light, which is 3 × 10 8 m / s. Therefore, when λ is 405 nm, the center frequency f 0 is 7.41 × 10 14 Hz.
 Rは、光学素子10の端面での反射率である。出射光L1の場合、Rは、第1面12aでの反射率である。散乱光L3の場合、第2面13aでの反射率である。Aは、光学素子10による出射光L1又は散乱光L3の損失である。 R is the reflectance at the end face of the optical element 10. In the case of the emitted light L1, R is the reflectance on the first surface 12a. In the case of scattered light L3, it is the reflectance on the second surface 13a. A is the loss of the emitted light L1 or the scattered light L3 by the optical element 10.
 dfは、周波数差である。周波数差dfは、ある周波数fの中心周波数fからの差分である(df=f-f)。したがって、光学素子10を透過した光の複数本のピークの周波数間隔は、周波数差の間隔となる。nは、光学素子10の屈折率である。具体的には、nは、光学素子10の透光部11の屈折率である。Δxは、光学素子10の長さである。具体的には、Δxは、光学素子10の透光部11の長さである。θは、出射光L1又は散乱光L3の入射角である。φは、光学素子10の内部の入射角、すなわち、透光部11内を進行する方向のなす角度である。θ及びφはいずれも、図13に示されるθ及びφに相当する。上述したように、sinθ=nsinφが成立する。 df is the frequency difference. The frequency difference df is the difference from the center frequency f 0 of a certain frequency f (df = ff 0 ). Therefore, the frequency interval of the plurality of peaks of the light transmitted through the optical element 10 is the interval of the frequency difference. n is the refractive index of the optical element 10. Specifically, n is the refractive index of the translucent portion 11 of the optical element 10. Δx is the length of the optical element 10. Specifically, Δx is the length of the translucent portion 11 of the optical element 10. θ is the incident angle of the emitted light L1 or the scattered light L3. φ is the angle of incidence inside the optical element 10, that is, the angle formed by the direction of travel in the translucent portion 11. Both θ and φ correspond to θ and φ shown in FIG. As described above, sinθ = nsinφ holds.
 以下では、入射角θを1°、1.1°、2°、5°及び21°にした場合における、T1×T2の周波数差特性について、図14Aから図14Eを用いて説明する。なお、図14Aから図14Eにおいて、横軸は、周波数から中心周波数を除いた値である周波数差で示されている。 In the following, the frequency difference characteristics of T1 × T2 when the incident angles θ are set to 1 °, 1.1 °, 2 °, 5 ° and 21 ° will be described with reference to FIGS. 14A to 14E. In FIGS. 14A to 14E, the horizontal axis is indicated by a frequency difference which is a value obtained by removing the center frequency from the frequency.
 図14Aから図14Eはそれぞれ、出射光L1の入射角が1°、1.1°、2°、5°及び21°の場合におけるT1×T2の周波数差特性を示す図である。横軸は、周波数差dfであり、縦軸はT1×T2を表している。T1及びT2は、上述した式(4)から(6)を用いて、出射光L1及び散乱光L3の各々について算出することにより得られる。なお、散乱光L3の入射角は0°としているが、散乱光L3の入射角が0°より大きくても同様である。 14A to 14E are diagrams showing the frequency difference characteristics of T1 × T2 when the incident angles of the emitted light L1 are 1 °, 1.1 °, 2 °, 5 ° and 21 °, respectively. The horizontal axis represents the frequency difference df, and the vertical axis represents T1 × T2. T1 and T2 can be obtained by calculating each of the emitted light L1 and the scattered light L3 using the above formulas (4) to (6). The incident angle of the scattered light L3 is set to 0 °, but the same applies even if the incident angle of the scattered light L3 is larger than 0 °.
 図14Aに示されるように、入射角θが1°の場合には、T1×T2が最大でも約0.03である。このため、充分な強度のミー散乱光L4が得られないので、エアロゾルの検出には適していない。 As shown in FIG. 14A, when the incident angle θ is 1 °, T1 × T2 is about 0.03 at the maximum. Therefore, since Mie scattered light L4 having sufficient intensity cannot be obtained, it is not suitable for detecting aerosols.
 なお、ミー散乱光L4の強度は、図14Aに示されるグラフの面積、実質的には各ピークの面積の合計値に対応している。このため、各ピークの面積が大きい程、充分な強度のミー散乱光L4を受光器50で受光できるので、エアロゾルの検出に適した状態になる。 The intensity of the Mie scattered light L4 corresponds to the area of the graph shown in FIG. 14A, substantially the total value of the areas of each peak. Therefore, the larger the area of each peak, the more the Mie scattered light L4 having sufficient intensity can be received by the receiver 50, so that the state is suitable for aerosol detection.
 図14Bに示されるように、入射角θが1.1°の場合には、T1×T2が1を満たす周波数差dfが存在する。このため、十分な強度のミー散乱光L4が得られるので、エアロゾルの検出に適している。 As shown in FIG. 14B, when the incident angle θ is 1.1 °, there is a frequency difference df in which T1 × T2 satisfies 1. Therefore, since Mie scattered light L4 having sufficient intensity can be obtained, it is suitable for detecting aerosols.
 同様に、図14Cに示されるように、入射角θが2°の場合には、T1×T2が約0.5になる周波数差dfが存在する。このため、十分な強度のミー散乱光L4が得られるので、エアロゾルの検出に適している。 Similarly, as shown in FIG. 14C, when the incident angle θ is 2 °, there is a frequency difference df in which T1 × T2 is about 0.5. Therefore, since Mie scattered light L4 having sufficient intensity can be obtained, it is suitable for detecting aerosols.
 また、図14Dに示されるように、入射角が5°の場合には、T1×T2が最大でも約0.03である。このため、充分な強度のミー散乱光L4が得られないので、エアロゾルの検出には適していない。 Further, as shown in FIG. 14D, when the incident angle is 5 °, T1 × T2 is about 0.03 at the maximum. Therefore, since Mie scattered light L4 having sufficient intensity cannot be obtained, it is not suitable for detecting aerosols.
 また、図14Eに示されるように、入射角θが21°の場合には、周波数差が負の数である場合にはT1×T2の値が小さくなっている。その一方で、周波数差が約0の場合にはT1×T2の値が0.3を超えている。また、周波数差が正の数の場合には、T1×T2が0.6及び0.9をそれぞれ超える周波数差が存在する。このため、十分な強度のミー散乱光L4が得られるので、エアロゾルの検出に適している。 Further, as shown in FIG. 14E, when the incident angle θ is 21 °, the value of T1 × T2 is small when the frequency difference is a negative number. On the other hand, when the frequency difference is about 0, the value of T1 × T2 exceeds 0.3. Further, when the frequency difference is a positive number, there is a frequency difference in which T1 × T2 exceeds 0.6 and 0.9, respectively. Therefore, since Mie scattered light L4 having sufficient intensity can be obtained, it is suitable for detecting aerosols.
 以上のように、入射角θを適切な範囲にすることで、ミー散乱光L4にノイズが含まれることを抑制することができ、かつ、充分な強度でミー散乱光L4を受光器50に受光させることができる。これにより、エアロゾルの検出精度を高めることができる。 As described above, by setting the incident angle θ in an appropriate range, it is possible to suppress the inclusion of noise in the Mie scattered light L4, and the Mie scattered light L4 is received by the receiver 50 with sufficient intensity. Can be made to. As a result, the aerosol detection accuracy can be improved.
 (実施の形態2)
 次に、実施の形態2について説明する。
(Embodiment 2)
Next, the second embodiment will be described.
 実施の形態1では、出射光L1と散乱光L3とで光学素子10に対する入射面が相違している。これに対して、本実施の形態では、出射光L1と散乱光L3との光学素子10に対する入射面が同じである。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 In the first embodiment, the incident surface with respect to the optical element 10 is different between the emitted light L1 and the scattered light L3. On the other hand, in the present embodiment, the incident surfaces of the emitted light L1 and the scattered light L3 with respect to the optical element 10 are the same. In the following, the differences from the first embodiment will be mainly described, and the common points will be omitted or simplified.
 図15は、本実施の形態に係るエアロゾル計測装置101の構成を示す図である。図15に示されるように、エアロゾル計測装置101は、図1に示されるエアロゾル計測装置1と比較して、ミラー22の代わりに、ミラー32、34及び36を備える。また、光源20、集光レンズ40、受光器50及び分析部60の配置が実施の形態1とは相違している。 FIG. 15 is a diagram showing the configuration of the aerosol measuring device 101 according to the present embodiment. As shown in FIG. 15, the aerosol measuring device 101 includes mirrors 32, 34 and 36 instead of the mirror 22 as compared with the aerosol measuring device 1 shown in FIG. Further, the arrangement of the light source 20, the condenser lens 40, the receiver 50, and the analysis unit 60 is different from that of the first embodiment.
 図15に示されるように、ミラー32及び34は、集光レンズ30aによって集光された散乱光L3を反射する。散乱光L3に対してミラー32及び34を適切な角度で配置することにより、散乱光L3の進路を所望の方向に曲げることができる。本実施の形態では、ミラー32及び34は、散乱光L3を反射して光学素子10に入射させる。 As shown in FIG. 15, the mirrors 32 and 34 reflect the scattered light L3 condensed by the condenser lens 30a. By arranging the mirrors 32 and 34 at an appropriate angle with respect to the scattered light L3, the course of the scattered light L3 can be bent in a desired direction. In the present embodiment, the mirrors 32 and 34 reflect the scattered light L3 and cause it to enter the optical element 10.
 これにより、出射光L1と散乱光L3とはいずれも、多層膜12の第1面12aから光学素子10に入射する。つまり、出射光L1と散乱光L3とは、光学素子10の第1面12aから入射し、第1面12aとは反対側の第2面13aから出射される。出射光L1及び散乱光L3の入射面を同じにすることで、光学素子10内での光の経路を分離させやすくすることができる。 As a result, both the emitted light L1 and the scattered light L3 are incident on the optical element 10 from the first surface 12a of the multilayer film 12. That is, the emitted light L1 and the scattered light L3 are incident on the first surface 12a of the optical element 10 and emitted from the second surface 13a on the opposite side of the first surface 12a. By making the incident surfaces of the emitted light L1 and the scattered light L3 the same, it is possible to easily separate the light paths in the optical element 10.
 ミラー36は、光学素子10を通過したミー散乱光L4を反射する。ミー散乱光L4に対してミラー36を適切な角度で配置することにより、ミー散乱光L4の進路を所望の方向に曲げることができる。本実施の形態では、ミー散乱光L4を反射して集光レンズ40を介して受光器50に入射させる。 The mirror 36 reflects the Mie scattered light L4 that has passed through the optical element 10. By arranging the mirror 36 at an appropriate angle with respect to the Mie scattered light L4, the course of the Mie scattered light L4 can be bent in a desired direction. In the present embodiment, the Mie scattered light L4 is reflected and incident on the receiver 50 via the condenser lens 40.
 これにより、図15に示されるように、光源20と受光器50とを離して配置することができる。具体的には、光源20から出射された出射光L1のうち、光学素子10で反射された反射光が受光器50に入射されにくくすることができる。反射光は、エアロゾルの誤検知の要因になる。また、反射光は、散乱光に比べて強度が強いので、受光器50が検出できる限界強度を超えて受光器50の故障の要因にもなりうる。このため、本実施の形態によれば、反射光によるエアロゾルの誤検知及び受光器50の故障などを抑制することができる。 As a result, as shown in FIG. 15, the light source 20 and the receiver 50 can be arranged apart from each other. Specifically, of the emitted light L1 emitted from the light source 20, the reflected light reflected by the optical element 10 can be prevented from being incident on the receiver 50. The reflected light causes false detection of aerosol. Further, since the reflected light has a higher intensity than the scattered light, the intensity exceeds the limit intensity that can be detected by the receiver 50 and may cause a failure of the receiver 50. Therefore, according to the present embodiment, it is possible to suppress erroneous detection of aerosol due to reflected light and failure of the receiver 50.
 また、本実施の形態では、ミラー34によって反射された散乱光L3は、光学素子10の第1面12aに対して斜めの方向に沿って光学素子10に入射する。散乱光L3の入射角γは、例えば5°以下である。これにより、散乱光L3が光学素子10内を通過する際に、ファブリペロー干渉を起こす光路差dxは、以下の式(7)で表される。 Further, in the present embodiment, the scattered light L3 reflected by the mirror 34 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10. The incident angle γ of the scattered light L3 is, for example, 5 ° or less. As a result, the optical path difference dx that causes Fabry-Perot interference when the scattered light L3 passes through the optical element 10 is represented by the following equation (7).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このとき、γ=0の場合からの変化量Δdxは、式(8)で表される。 At this time, the amount of change Δdx from the case of γ = 0 is expressed by the equation (8).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 光路差の変化量Δdxが、光源20が出射する光の波長λの整数倍になるように調整することで、干渉フリンジ内の波長による干渉の明点に調整することができる。 By adjusting the amount of change Δdx of the optical path difference to be an integral multiple of the wavelength λ of the light emitted by the light source 20, it is possible to adjust to the bright point of interference due to the wavelength in the interference fringe.
 また、図16に示されるように、散乱光L3は、出射光L1が通過する経路とは離れる方向に傾いて光学素子10内で多重反射する。図16は、散乱光L3を、光学素子10の第1面12aに対して斜めの方向に沿って光学素子10に入射させた場合を説明するための図である。 Further, as shown in FIG. 16, the scattered light L3 is inclined in a direction away from the path through which the emitted light L1 passes, and is multiple-reflected in the optical element 10. FIG. 16 is a diagram for explaining a case where the scattered light L3 is incident on the optical element 10 along an oblique direction with respect to the first surface 12a of the optical element 10.
 図16に示されるように、散乱光L3は、光学素子10の第1面12aに対して斜めの方向から光学素子10に入射している。散乱光L3は、透光部11と多層膜12及び13の各々との界面で多重反射する。多重反射した散乱光L3は、法線方向Dに対して出射光L1の経路から離れる方向に傾斜している。出射光L1及び散乱光L3が互いに離れる方向に光学素子10内を通過するので、互いの光の干渉が充分に抑制される。このため、ミー散乱光L4に含まれるノイズ成分が充分に抑制されるので、エアロゾルの検出精度を高めることができる。 As shown in FIG. 16, the scattered light L3 is incident on the optical element 10 from an oblique direction with respect to the first surface 12a of the optical element 10. The scattered light L3 is multiplely reflected at the interface between the light transmitting portion 11 and each of the multilayer films 12 and 13. The multiplely reflected scattered light L3 is inclined in a direction away from the path of the emitted light L1 with respect to the normal direction D. Since the emitted light L1 and the scattered light L3 pass through the optical element 10 in a direction away from each other, the interference of the light with each other is sufficiently suppressed. Therefore, the noise component contained in the Mie scattered light L4 is sufficiently suppressed, so that the detection accuracy of the aerosol can be improved.
 (実施の形態3)
 続いて、実施の形態3について説明する。
(Embodiment 3)
Subsequently, the third embodiment will be described.
 実施の形態3では、受光器50が、所定期間に入射する光を遮断する機能を有する。以下では、実施の形態1又は2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 In the third embodiment, the receiver 50 has a function of blocking light incident on the predetermined period. In the following, the differences from the first or second embodiment will be mainly described, and the common points will be omitted or simplified.
 図17は、本実施の形態に係るエアロゾル計測装置201の構成を示す図である。図17に示されるように、エアロゾル計測装置201は、図1に示されるエアロゾル計測装置1と比較して、新たに遮光部251を備える。 FIG. 17 is a diagram showing the configuration of the aerosol measuring device 201 according to the present embodiment. As shown in FIG. 17, the aerosol measuring device 201 is newly provided with a light-shielding portion 251 as compared with the aerosol measuring device 1 shown in FIG.
 遮光部251は、光源20が出射する出射光L1を遮断する。遮光部251は、例えば、可動式の遮光シャッターである。図17の白抜きの両矢印で示されるように、遮光部251は、受光器50の受光面を覆う位置と覆わない位置との間で移動可能である。図17の破線で示される位置が、受光面を覆う位置であり、遮光部251が受光面を覆うことで、受光器50への光の入射を遮断することができる。また、遮光部251が受光面を覆わない場合には、受光器50に光を入射させることができる。遮光部251の位置は、受光器50によって制御される。 The light-shielding unit 251 blocks the emitted light L1 emitted by the light source 20. The light-shielding unit 251 is, for example, a movable light-shielding shutter. As shown by the white double-headed arrow in FIG. 17, the light-shielding portion 251 is movable between a position that covers the light-receiving surface of the receiver 50 and a position that does not cover it. The position shown by the broken line in FIG. 17 is the position that covers the light receiving surface, and the light shielding portion 251 covers the light receiving surface, so that the light incident on the light receiving device 50 can be blocked. Further, when the light-shielding portion 251 does not cover the light-receiving surface, light can be incident on the light-receiving receiver 50. The position of the light-shielding portion 251 is controlled by the receiver 50.
 図18は、本実施の形態に係るエアロゾル計測装置201の遮光部251の動作を説明するための図である。図18の部分(a)では、横軸が時間を表し、縦軸が出射光L1の強度を表している。図18の部分(b)では、横軸が時間を表し、縦軸が受光器50による受光強度を表している。 FIG. 18 is a diagram for explaining the operation of the light-shielding portion 251 of the aerosol measuring device 201 according to the present embodiment. In the part (a) of FIG. 18, the horizontal axis represents time and the vertical axis represents the intensity of the emitted light L1. In the part (b) of FIG. 18, the horizontal axis represents time and the vertical axis represents the light receiving intensity by the receiver 50.
 図18の部分(a)に示されるように、光源20は、パルス状の出射光L1を出射する。出射光L1の時間幅tpは、例えば10ナノ秒である。例えば、光源20は、時間幅tpのパルス状の出射光L1を定期的に出射する。出射光L1の出射間隔、すなわち、パルスの時間間隔は、特に限定されないが、例えば、エアロゾルを検出可能な最大距離の2倍を光が進むのに要する時間より長い。 As shown in the part (a) of FIG. 18, the light source 20 emits the pulse-shaped emitted light L1. The time width tp of the emitted light L1 is, for example, 10 nanoseconds. For example, the light source 20 periodically emits a pulsed emitted light L1 having a time width of tp. The emission interval of the emitted light L1, that is, the time interval of the pulse is not particularly limited, but is longer than, for example, the time required for the light to travel twice the maximum distance at which the aerosol can be detected.
 出射光L1が光学素子10に入射した場合、図17に示されるように、一部の光は、光学素子10を透過せずに、入射側に反射光L7として反射される。このときの反射光L7が受光器50によって受光された場合に、図18の部分(b)に示されるように、反射光L7の強度に応じた信号が出力される。 When the emitted light L1 is incident on the optical element 10, as shown in FIG. 17, some light is reflected as reflected light L7 on the incident side without passing through the optical element 10. When the reflected light L7 at this time is received by the light receiver 50, a signal corresponding to the intensity of the reflected light L7 is output as shown in the portion (b) of FIG.
 光学素子10と受光器50との距離は、散乱体90と受光器50との距離よりも十分に短いため、光学素子10による反射光L7は、出射光L1が出射されてからミー散乱光L4が受光されるまでの期間内に受光器50に受光される。 Since the distance between the optical element 10 and the light receiver 50 is sufficiently shorter than the distance between the scatterer 90 and the light receiver 50, the reflected light L7 by the optical element 10 is the Mie scattered light L4 after the emitted light L1 is emitted. Is received by the light receiver 50 within the period until the light is received.
 このため、本実施の形態では、受光器50は、遮光部251を制御することで、出射光L1が出射されてから所定の期間tmが終了するまで、受光を遮断する。期間tmは、パルス状の出射光L1の時間幅tpより長い期間である。例えば、期間tmは、10.1ナノ秒である。期間tmの開始時点は、例えば、出射光L1の出射と同時である。 Therefore, in the present embodiment, the receiver 50 controls the light-shielding unit 251 to block the light-receiving light until the end of the predetermined period tm after the emitted light L1 is emitted. The period tm is a period longer than the time width tp of the pulsed emitted light L1. For example, the period tm is 10.1 nanoseconds. The start time of the period tm is, for example, the same as the emission of the emitted light L1.
 以上のように、本実施の形態に係るエアロゾル計測装置201によれば、反射光によるエアロゾルの誤検知及び受光器50の飽和による故障などを抑制することができる。 As described above, according to the aerosol measuring device 201 according to the present embodiment, it is possible to suppress erroneous detection of aerosol due to reflected light and failure due to saturation of the receiver 50.
 なお、本実施の形態では、受光器50に入射する光を物理的に遮断する例を説明したが、これに限らない。例えば、受光器50から出力される信号のうち、反射光に相当する信号を分析部60が無視、すなわち、エアロゾルの分析に用いなくてもよい。あるいは、受光器50は、期間tmの間は信号を出力しなくてもよい。つまり、エアロゾル計測装置201は、受光器50に入射する光を信号処理的に遮断してもよい。 In the present embodiment, an example of physically blocking the light incident on the receiver 50 has been described, but the present invention is not limited to this. For example, among the signals output from the receiver 50, the signal corresponding to the reflected light may be ignored by the analysis unit 60, that is, it may not be used for aerosol analysis. Alternatively, the receiver 50 does not have to output a signal during the period tm. That is, the aerosol measuring device 201 may block the light incident on the receiver 50 in a signal processing manner.
 (他の実施の形態)
 以上、1つ又は複数の態様に係るエアロゾル計測装置及びエアロゾル計測方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
Although the aerosol measuring device and the aerosol measuring method according to one or more embodiments have been described above based on the embodiments, the present disclosure is not limited to these embodiments. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and a form constructed by combining components in different embodiments is also included in the scope of the present disclosure. Is done.
 例えば、光学素子は、エタロンでなくてもよい。光学素子は、エタロンと同様に、ファブリペロー干渉を起こさせる素子であればよい。 For example, the optical element does not have to be etalon. The optical element may be an element that causes Fabry-Perot interference, like Etalon.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、エアロゾル計測装置が備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。また、エアロゾル計測装置は、単一の装置として実現されてもよい。 Further, in the above embodiment, another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. Further, the distribution of the components of the aerosol measuring device to a plurality of devices is an example. For example, the components of one device may be included in another device. Further, the aerosol measuring device may be realized as a single device.
 例えば、上記実施の形態において説明した処理は、単一の装置またはシステムを用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 For example, the processing described in the above embodiment may be realized by centralized processing using a single device or system, or may be realized by distributed processing using a plurality of devices. .. Further, the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
 また、上記実施の形態において、分析部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, all or a part of the components such as the analysis unit may be composed of dedicated hardware, or may be realized by executing a software program suitable for each component. May be good. Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
 また、分析部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Further, a component such as an analysis unit may be composed of one or a plurality of electronic circuits. The one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)などが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。 One or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like. The IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). An FPGA (Field Programmable Gate Array) programmed after the LSI is manufactured can also be used for the same purpose.
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Further, the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program. Alternatively, it may be realized by a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored. Further, it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
 また、上記の各実施の形態は、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, in each of the above embodiments, various changes, replacements, additions, omissions, etc. can be made within the scope of claims or the equivalent scope thereof.
 本開示は、エアロゾルを簡単に計測することができる小型のエアロゾル計測装置などとして利用でき、例えば、屋内での有害な微粒子の計測及び屋外での気象観測などに利用することができる。 The present disclosure can be used as a small aerosol measuring device or the like capable of easily measuring an aerosol, and can be used, for example, for measuring harmful fine particles indoors and observing weather outdoors.
1、101、201 エアロゾル計測装置
10 光学素子
10a 第1部分
10b 第2部分
11 透光部
12、13 多層膜
12a 第1面
13a 第2面
20 光源
22、32、34、36 ミラー
30 集光部
30a、40 集光レンズ
50 受光器
60 分析部
90 散乱体
251 遮光部
L1 出射光
L2 照射光
L3 散乱光
L4 ミー散乱光
L5 迷光
L6 光
L7 反射光
1, 101, 201 Aerosol measuring device 10 Optical element 10a 1st part 10b 2nd part 11 Translucent part 12, 13 Multilayer film 12a 1st surface 13a 2nd surface 20 Light source 22, 32, 34, 36 Mirror 30 Condensing part 30a, 40 Condensing lens 50 Receiver 60 Analytical unit 90 Scatterer 251 Shading unit L1 Emitting light L2 Irradiating light L3 Scattered light L4 Mie scattered light L5 Stray light L6 Light L7 Reflected light

Claims (20)

  1.  大気中に含まれるエアロゾルを計測するためのエアロゾル計測装置であって、
     光源と、
     第1面および第2面を有し、前記光源から出射された第1の光、および前記エアロゾルで散乱された第2の光が通過するエタロンと、を備え、
     前記第1の光は、前記第1面に対して斜めの第1方向に沿って前記第1面に入射する、
     エアロゾル計測装置。
    An aerosol measuring device for measuring aerosols contained in the atmosphere.
    Light source and
    It has a first surface and a second surface, and includes a first light emitted from the light source and an etalon through which a second light scattered by the aerosol passes.
    The first light is incident on the first surface along a first direction oblique to the first surface.
    Aerosol measuring device.
  2.  前記エタロンに入射した前記第1の光は、前記エタロンの前記第2面から出射され、
     前記第2の光は、前記第2面から前記エタロンに入射する、
     請求項1に記載のエアロゾル計測装置。
    The first light incident on the etalon is emitted from the second surface of the etalon.
    The second light is incident on the etalon from the second surface.
    The aerosol measuring device according to claim 1.
  3.  前記第2の光は、前記第2面に対して斜めの第2方向に沿って前記第2面に入射する、
     請求項2に記載のエアロゾル計測装置。
    The second light is incident on the second surface along a second direction oblique to the second surface.
    The aerosol measuring device according to claim 2.
  4.  前記第2の光は、前記第1面から前記エタロンに入射する、
     請求項1に記載のエアロゾル計測装置。
    The second light is incident on the etalon from the first surface.
    The aerosol measuring device according to claim 1.
  5.  前記第2の光は、前記第1面に対して斜めの第3方向に沿って前記第1面に入射する、
     請求項4に記載のエアロゾル計測装置。
    The second light is incident on the first surface along a third direction oblique to the first surface.
    The aerosol measuring device according to claim 4.
  6.  前記エタロンは、
      前記第1の光が通過する経路を含む第1部分と、
      前記第2の光が通過する経路を含み、前記第1部分とは異なる第2部分と、を有する、
     請求項1から5のいずれか一項に記載のエアロゾル計測装置。
    The etalon is
    The first part including the path through which the first light passes, and
    It includes a path through which the second light passes and has a second portion that is different from the first portion.
    The aerosol measuring device according to any one of claims 1 to 5.
  7.  前記第1方向は、前記第2部分から離れる方向である、
     請求項6に記載のエアロゾル計測装置。
    The first direction is a direction away from the second portion.
    The aerosol measuring device according to claim 6.
  8.  前記第1部分内での前記第1の光の前記経路は、前記第1面に直交する方向に対して前記第2部分から離れる方向に傾いており、
     前記第1の光は、前記エタロン内で複数回反射する、
     請求項6または7に記載のエアロゾル計測装置。
    The path of the first light in the first portion is inclined in a direction away from the second portion with respect to a direction orthogonal to the first surface.
    The first light is reflected a plurality of times in the etalon.
    The aerosol measuring device according to claim 6 or 7.
  9.  前記第2部分内での前記第2の光の前記経路は、前記第1面または前記第2面に直交する方向に対して前記第1部分から離れる方向に傾いており、
     前記第2の光は、前記エタロン内で複数回反射する、
     請求項6から8のいずれか一項に記載のエアロゾル計測装置。
    The path of the second light in the second portion is inclined in a direction away from the first portion with respect to a direction orthogonal to the first surface or the second surface.
    The second light is reflected multiple times within the etalon.
    The aerosol measuring device according to any one of claims 6 to 8.
  10.  前記第1の光において、前記第1の光の強度が最大強度の10-3倍になる方向が、前記第1面に直交する方向に一致している、又は、前記第1面に直交する方向から前記第2部分から離れる方向に傾いている、
     請求項6から9のいずれか一項に記載のエアロゾル計測装置。
    In the first light, the direction in which the intensity of the first light becomes 10 to 3 times the maximum intensity coincides with the direction orthogonal to the first surface, or is orthogonal to the first surface. Tilt from the direction away from the second part,
    The aerosol measuring device according to any one of claims 6 to 9.
  11.  前記エタロンは、前記第1の光を内部で干渉させて、互いに等しい周波数間隔で離れた複数のピークを有する干渉光として出射する、
     請求項1から10のいずれか一項に記載のエアロゾル計測装置。
    The etalon internally interferes with the first light and emits it as interference light having a plurality of peaks separated from each other at equal frequency intervals.
    The aerosol measuring device according to any one of claims 1 to 10.
  12.  前記周波数間隔は、3.9GHz以下である、
     請求項11に記載のエアロゾル計測装置。
    The frequency interval is 3.9 GHz or less.
    The aerosol measuring device according to claim 11.
  13.  前記第1の光及び前記第2の光の各々は、互いに等しい周波数間隔で離れた複数のピークを有し、
     前記複数のピークの各々の周波数と、前記複数のピークの周波数の平均である中心周波数と、の差を周波数差と定義すると、
     前記第1の光及び前記第2の光の各々は、前記エタロンに対する前記第1の光の透過率と、前記エタロンに対する前記第2の光の透過率との積が0.3以上になる周波数差を有する、
     請求項1から12のいずれか一項に記載のエアロゾル計測装置。
    Each of the first light and the second light has a plurality of peaks separated from each other at equal frequency intervals.
    The difference between the frequency of each of the plurality of peaks and the center frequency, which is the average of the frequencies of the plurality of peaks, is defined as the frequency difference.
    Each of the first light and the second light has a frequency at which the product of the transmittance of the first light with respect to the etalon and the transmittance of the second light with respect to the etalon is 0.3 or more. Have a difference,
    The aerosol measuring device according to any one of claims 1 to 12.
  14.  さらに、前記エタロンを通過した前記第2の光を受光する受光器を備える、
     請求項1から13のいずれか一項に記載のエアロゾル計測装置。
    Further, it includes a receiver that receives the second light that has passed through the etalon.
    The aerosol measuring device according to any one of claims 1 to 13.
  15.  前記受光器は、前記第2の光のうち、ミー散乱光の強度に応じた信号を出力する、
     請求項14に記載のエアロゾル計測装置。
    The receiver outputs a signal corresponding to the intensity of Mie scattered light among the second light.
    The aerosol measuring device according to claim 14.
  16.  前記第1の光はパルス光であり、
     前記受光器は、
      前記パルス光が前記光源から出射されてから、前記パルス光の時間幅より長い所定期間が終了するまで、前記エタロンを通過した前記第2の光の受光を停止し、
      前記所定期間が終了した後に、前記エタロンを通過した前記第2の光を受光する、
     請求項14または15に記載のエアロゾル計測装置。
    The first light is pulsed light.
    The receiver is
    After the pulsed light is emitted from the light source, the reception of the second light that has passed through the etalon is stopped until a predetermined period longer than the time width of the pulsed light ends.
    After the predetermined period ends, the second light that has passed through the etalon is received.
    The aerosol measuring device according to claim 14 or 15.
  17.  さらに、前記受光器から出力された信号に基づいて前記エアロゾルを分析する分析部を備える、
     請求項14から16のいずれか一項に記載のエアロゾル計測装置。
    Further, it includes an analysis unit that analyzes the aerosol based on the signal output from the receiver.
    The aerosol measuring device according to any one of claims 14 to 16.
  18.  前記光源は、レーザ素子又は発光ダイオードである、
     請求項1から17のいずれか一項に記載のエアロゾル計測装置。
    The light source is a laser element or a light emitting diode.
    The aerosol measuring device according to any one of claims 1 to 17.
  19.  さらに、前記第2の光を集光して、前記エタロンに入射させる集光部を備える、
     請求項1から18のいずれか一項に記載のエアロゾル計測装置。
    Further, a condensing unit that condenses the second light and causes it to enter the etalon is provided.
    The aerosol measuring device according to any one of claims 1 to 18.
  20.  光源から出射され、エタロンを通過した第1の光を、大気中に含まれるエアロゾルに照射することと、
     前記エアロゾルで散乱された第2の光を、前記エタロンに入射させることと、を含み、
     前記第1の光は、前記エタロンの表面に対して斜めの方向に沿って前記エタロンに入射する、
     エアロゾル計測方法。
    Irradiating the aerosol contained in the atmosphere with the first light emitted from the light source and passing through the etalon,
    Including that the second light scattered by the aerosol is incident on the etalon.
    The first light enters the etalon along an oblique direction with respect to the surface of the etalon.
    Aerosol measurement method.
PCT/JP2020/020555 2019-06-10 2020-05-25 Aerosol measurement device and aerosol measurement method WO2020250651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021525969A JP7507384B2 (en) 2019-06-10 2020-05-25 Aerosol measuring device and aerosol measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-108063 2019-06-10
JP2019108063 2019-06-10

Publications (1)

Publication Number Publication Date
WO2020250651A1 true WO2020250651A1 (en) 2020-12-17

Family

ID=73781953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020555 WO2020250651A1 (en) 2019-06-10 2020-05-25 Aerosol measurement device and aerosol measurement method

Country Status (1)

Country Link
WO (1) WO2020250651A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113134331A (en) * 2021-05-08 2021-07-20 南开大学 Reactor, system and method for quickly detecting tail gas secondary aerosol generating factor
US20220091010A1 (en) * 2020-09-23 2022-03-24 ebm-papst neo GmbH & Co. KG Method for detecting the concentration of organic particles in the air and apparatus therefor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113620A (en) * 1995-10-24 1997-05-02 Ishikawajima Harima Heavy Ind Co Ltd Laser radar equipment
JP2001159604A (en) * 1999-12-01 2001-06-12 Mitsubishi Heavy Ind Ltd Method and apparatus for monitoring air pollutant
WO2003073127A1 (en) * 2002-02-21 2003-09-04 Eko Instruments Trading Co., Ltd. Meteorological observation lider system
JP2005077606A (en) * 2003-08-29 2005-03-24 Toshiba Corp Laser oscillation device and air pollutant monitoring device
JP2006023330A (en) * 2004-07-06 2006-01-26 Takao Kobayashi Optical filter having a plurality of optical characteristics and application thereof to meteorological observation
CN105974396A (en) * 2016-06-30 2016-09-28 南京信息工程大学 Speed measurement method and system based on double etalons
US20170212219A1 (en) * 2015-05-27 2017-07-27 University Corporation For Atmospheric Research Micropulse differential absorption lidar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113620A (en) * 1995-10-24 1997-05-02 Ishikawajima Harima Heavy Ind Co Ltd Laser radar equipment
JP2001159604A (en) * 1999-12-01 2001-06-12 Mitsubishi Heavy Ind Ltd Method and apparatus for monitoring air pollutant
WO2003073127A1 (en) * 2002-02-21 2003-09-04 Eko Instruments Trading Co., Ltd. Meteorological observation lider system
JP2005077606A (en) * 2003-08-29 2005-03-24 Toshiba Corp Laser oscillation device and air pollutant monitoring device
JP2006023330A (en) * 2004-07-06 2006-01-26 Takao Kobayashi Optical filter having a plurality of optical characteristics and application thereof to meteorological observation
US20170212219A1 (en) * 2015-05-27 2017-07-27 University Corporation For Atmospheric Research Micropulse differential absorption lidar
CN105974396A (en) * 2016-06-30 2016-09-28 南京信息工程大学 Speed measurement method and system based on double etalons

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220091010A1 (en) * 2020-09-23 2022-03-24 ebm-papst neo GmbH & Co. KG Method for detecting the concentration of organic particles in the air and apparatus therefor
CN113134331A (en) * 2021-05-08 2021-07-20 南开大学 Reactor, system and method for quickly detecting tail gas secondary aerosol generating factor
CN113134331B (en) * 2021-05-08 2021-10-26 南开大学 Reactor, system and method for quickly detecting tail gas secondary aerosol generating factor

Also Published As

Publication number Publication date
JPWO2020250651A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
TWI692622B (en) Optical filter and method for obtaining a spectrum of an optical beam propagating along an optical path
JP7129809B2 (en) Optical filters and spectrometers
WO2020250651A1 (en) Aerosol measurement device and aerosol measurement method
ES2799427T3 (en) Optical filter element for devices to convert spectral information into location information
CN107209116B (en) Optical inspection system and method including accounting for variations in optical path length within a sample
JP7411935B2 (en) Scatterer measurement method and scatterer measurement device
US11740178B2 (en) Aerosol measurement apparatus and aerosol measurement method
RU2396546C2 (en) Spectrophotometre
JP6782470B2 (en) Measuring device and measuring method
JP2007333409A (en) Suspended particle measurement device
JP6725988B2 (en) Thickness measuring device and thickness measuring method
JP7507384B2 (en) Aerosol measuring device and aerosol measuring method
WO2021024698A1 (en) Aerosol measurement device
RU2448340C1 (en) Method for optical detection of fluorescence and scattering signals of aerosol particles in stream and optical system for realising said method
WO2020241212A1 (en) Aerosol measurement device and aerosol measurement method
JP7233372B2 (en) particle optical detector
JP2022012708A (en) Aerosol measurement device and aerosol measurement method
EP4062153B1 (en) Optical based particulate matter sensing
KR102100940B1 (en) Particulate matter sensor having self-diagnostic function
KR101326204B1 (en) Device and method for measuring thickness of thin film
JP2021121787A (en) Scattering body measurement device and scattering body measurement method
WO2020261972A1 (en) Purification method and purification system
JPH0781836B2 (en) Optical measuring device
WO2023228451A1 (en) Optical detector and spectroscopic measurement device
CN217542855U (en) Tandem grating spectrometer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20821588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021525969

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20821588

Country of ref document: EP

Kind code of ref document: A1