WO2020261972A1 - Purification method and purification system - Google Patents

Purification method and purification system Download PDF

Info

Publication number
WO2020261972A1
WO2020261972A1 PCT/JP2020/022656 JP2020022656W WO2020261972A1 WO 2020261972 A1 WO2020261972 A1 WO 2020261972A1 JP 2020022656 W JP2020022656 W JP 2020022656W WO 2020261972 A1 WO2020261972 A1 WO 2020261972A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol
purification
light
scattered light
unit
Prior art date
Application number
PCT/JP2020/022656
Other languages
French (fr)
Japanese (ja)
Inventor
博子 池嶋
大山 達史
宮下 万里子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021528105A priority Critical patent/JPWO2020261972A1/ja
Publication of WO2020261972A1 publication Critical patent/WO2020261972A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • A61L9/04Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
    • A61L9/12Apparatus, e.g. holders, therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions

Definitions

  • This disclosure relates to purification methods and purification systems.
  • Patent Document 1 discloses a technique of using an air cannon generator to convey a gas or fine liquid component to a target place in a room at a target concentration and purify the air.
  • the present disclosure provides a purification method and a purification system capable of efficiently purifying an aerosol floating in the air.
  • the purification method uses a purification system including an optical sensor and a purification unit.
  • the position and amount of the aerosol are specified by detecting the scattered light scattered by the aerosol floating in the target space by using the optical sensor, and the amount of the aerosol sets a threshold value. When the amount is exceeded, the aerosol is purified by the purification unit.
  • the purification system includes an optical sensor and a purification unit.
  • the optical sensor identifies the position and amount of the aerosol by detecting scattered light scattered by the aerosol floating in the target space.
  • the purification unit purifies the aerosol when the amount of the aerosol exceeds a threshold value.
  • one aspect of the present disclosure can be realized as a program for causing a computer to execute the above purification method.
  • it can be realized as a computer-readable non-temporary recording medium in which the program is stored.
  • aerosols floating in the air can be efficiently purified.
  • FIG. 1 is a diagram showing a configuration of a purification system according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the purification system according to the first embodiment.
  • FIG. 3 is a diagram schematically showing a state of purification by the purification system according to the first embodiment.
  • FIG. 4 is a flowchart showing an aerosol detection process in the operation of the purification system according to the first embodiment.
  • FIG. 5 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device according to the first embodiment.
  • FIG. 6 is a diagram for explaining the 0th transmitted light and the 1st transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of a purification system according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the purification system according to the first embodiment.
  • FIG. 3 is a diagram schematically showing a state of pur
  • FIG. 7 is a diagram for explaining the 0th transmitted light and the 2nd transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment.
  • FIG. 8 is a diagram showing an example of a spectrum of scattered light generated by scattering the multi-laser light emitted by the aerosol measuring device according to the first embodiment.
  • FIG. 9 is a diagram showing a calculation result of an interferogram when scattered light including Mie scattered light and Rayleigh scattered light is interfered with by a Michelson interferometer.
  • FIG. 10 is an enlarged view of a part of FIG.
  • FIG. 11 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when there is no scattering by the aerosol and only the atmospheric scattering is considered.
  • FIG. 12 is a diagram schematically showing a state of purification by the purification system according to the first modification of the first embodiment.
  • FIG. 13 is a diagram schematically showing a state of purification by the purification system according to the second modification of the first embodiment.
  • FIG. 14 is a diagram schematically showing a state of purification by the purification system according to the third modification of the first embodiment.
  • FIG. 15 is a diagram showing an example of the configuration of the purification system according to the second embodiment and the state of purification by the purification system.
  • FIG. 16 is a flowchart showing the operation of the purification system according to the second embodiment.
  • FIG. 17 is a flowchart showing an avoidance process in the operation of the purification system according to the second embodiment.
  • FIG. 18 is a diagram schematically showing another example of the state of purification by the purification system according to the second embodiment.
  • FIG. 19 is a diagram showing a configuration of a purification system according to the third embodiment.
  • the purification method uses a purification system including an optical sensor and a purification unit.
  • the position and amount of the aerosol are specified by detecting the scattered light scattered by the aerosol floating in the target space by using the optical sensor, and the amount of the aerosol sets a threshold value. When the amount is exceeded, the aerosol is purified by the purification unit.
  • the amount of aerosol exceeding the threshold value can be collectively purified, so that the aerosol floating in the air can be efficiently purified.
  • the purification unit may release a gas or a liquid to the position of the aerosol.
  • the aerosol can be efficiently purified by using a liquid having the ability to detoxify the aerosol.
  • the purification unit includes a suction port for sucking the aerosol, and in the purification, the purification unit may collect or detoxify the aerosol by sucking the aerosol from the suction port. Good.
  • the purification unit may suck the aerosol from the suction port by generating an air flow for sucking the aerosol.
  • the aerosol in the target space can be reduced by sucking the aerosol through the suction port.
  • the purification system further includes an airflow generator, and in the purification, the airflow generator may discharge an airflow to the position of the aerosol.
  • the aerosol can be guided to a position where it is easy to purify by the air flow, so that the aerosol floating in the air can be efficiently purified.
  • the purification system further includes a discharge port that opens toward the outside of the target space, and the purification means that the aerosol guided by the air flow is discharged from the discharge port to the outside. It may be included.
  • the aerosol can be discharged from the discharge port by the air flow, so that the aerosol in the target space can be easily and efficiently reduced.
  • the purification system further includes a sensor for detecting the position of an object in the target space, and the purification method uses the sensor to identify whether or not the object is a person or an animal. It may further include that.
  • the purification system further includes an airflow generator, and when the object is identified as a person or an animal in the identification, the airflow generator will have the aerosol with the object.
  • the airflow generator may generate an airflow that guides the aerosol to the purification section along the avoidance path.
  • the airflow generator predicts the movement path of the object, and the path that the aerosol can reach the purification unit while avoiding contact with the object moving along the movement path is described. It may be determined as an avoidance route.
  • the object may be a person or an animal.
  • the aerosol contains a virus, there is a possibility of causing health hazards to humans or animals. Since it is possible to easily avoid contact between humans or animals and aerosols, it is possible to suppress the occurrence of health hazards.
  • the optical sensor emits light having a plurality of peaks separated from each other at the same frequency interval into the target space, and the frequency interval is Rayleigh scattering by molecules constituting the atmosphere. It may be less than the half width of the peak of the frequency of light.
  • the optical sensor can detect the presence / absence and concentration of the aerosol by receiving the scattered light of the emitted light by the aerosol, for example.
  • the received light includes not only Mie scattered light caused by the aerosol but also Rayleigh scattered light caused by the molecules constituting the atmosphere.
  • the Rayleigh scattered light can be removed at the time of receiving the light by utilizing the interference, so that the aerosol can be detected with high accuracy.
  • the purification system may further include a purification device that releases a chemical that detoxifies the aerosol at the position of the aerosol.
  • the scattered light may include Mie scattered light.
  • the scattered light may include Rayleigh scattered light.
  • the purification system includes an optical sensor and a purification unit.
  • the optical sensor identifies the position and amount of the aerosol by detecting scattered light scattered by the aerosol floating in the target space.
  • the purification unit purifies the aerosol when the amount of the aerosol exceeds a threshold value.
  • the amount of aerosol exceeding the threshold value can be collectively purified, so that the aerosol floating in the air can be efficiently purified.
  • the purification method includes a step of detecting an aerosol in a target space using an optical sensor and generating an air flow that guides the aerosol to a purification unit when the amount of the aerosol exceeds a threshold value.
  • the purifying unit includes a step of purifying the aerosol guided by the air flow.
  • purification means to suppress the occurrence of health damage due to the aerosol detected in the target space by reducing the aerosol detected in the target space.
  • purification as used herein also means detoxifying a virus contained in an aerosol and / or simply discharging the aerosol from a target space. Further, in the present specification, “purification” also means that by reducing the concentration of aerosol, the risk of aerosol is lowered and the occurrence of health damage is suppressed.
  • the aerosol in the target space can be reduced by sucking the aerosol through the suction port.
  • the aerosol sucked from the suction port may be further collected or rendered harmless.
  • the purification unit includes a discharge port that communicates the target space with the outside of the target space, and in the purification step, the aerosol guided by the air flow is discharged from the discharge port to the outside. You may.
  • the aerosol can be discharged from the discharge port by the air flow, so that the aerosol in the target space can be easily and efficiently reduced.
  • the purification method further includes a step of detecting an object and a step of determining an avoidance route capable of the aerosol avoiding contact with the object and reaching the purification unit.
  • the airflow that guides the aerosol along the avoidance path may be generated when the amount of the aerosol exceeds the threshold.
  • a route that does not pass the position where the object is detected may be determined as the avoidance route.
  • the purification method according to one aspect of the present disclosure further includes a step of predicting a movement path of the object, and in the determination step, the aerosol moves with the object moving along the movement path.
  • the route that can reach the purification unit while avoiding the contact with the above may be determined as the avoidance route.
  • the object in the step of detecting the object, the object may be detected by using a sensor different from the optical sensor.
  • a dedicated sensor for detecting an object can be used, so that the accuracy of detecting an object can be improved.
  • the detection accuracy of the object it becomes easy to avoid the contact between the object and the aerosol, and the aerosol can be efficiently purified.
  • the frequency interval may be 3.9 GHz or less.
  • the optical sensor includes a light source and an etalon, and the light having a plurality of peaks may be light emitted from the light source and passed through the etalon.
  • the number of parts can be reduced compared to the case of using a Michelson interferometer, so the structure of the optical sensor can be simplified.
  • the aerosol can be easily and accurately detected based on the light receiving intensity of the light receiver without requiring complicated signal processing.
  • the purification system includes an optical sensor for detecting an aerosol in a target space, a purification unit, and the aerosol to the purification unit when the amount of the aerosol exceeds a threshold value.
  • the purification unit is provided with a generator for generating a guided air flow, and the purification unit purifies the aerosol guided by the air flow.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (Large Scale Integration). It may be executed by one or more electronic circuits including.
  • the LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips.
  • functional blocks other than the storage element may be integrated on one chip.
  • it is called an LSI or an IC, but the name changes depending on the degree of integration, and it may be called a system LSI, a VLSI (Very Large Scale Integration), or a ULSI (Ultra Large Scale Integration).
  • a Field Programmable Gate Array (FPGA) programmed after the LSI is manufactured, or a reconfigurable logistic device capable of reconfiguring the junction relationship inside the LSI or setting up the circuit partition inside the LSI can also be used for the same purpose.
  • FPGA Field Programmable Gate Array
  • circuits, units, devices, members or parts can be executed by software processing.
  • the software is recorded on one or more ROMs, optical disks, non-temporary recording media such as hard disk drives, and when the software is executed by a processor, the functions identified by the software are It is executed by a processor and peripheral devices.
  • the system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware device, such as an interface.
  • each figure is a schematic view and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
  • FIG. 1 is a diagram showing a configuration of a purification system 1 according to the present embodiment.
  • the purification system 1 includes an aerosol measuring device 100, an airflow generating device 110, and a purification unit 120.
  • the aerosol measuring device 100 detects the aerosol 90, the detected aerosol 90 is guided to the purification unit 120 by the air flow 112 generated by the air flow generator 110, and the guided aerosol 90 is purified by the purification unit 120. To do.
  • Aerosol measuring device The aerosol measuring device 100 is an example of an optical sensor. As shown in FIG. 1, the aerosol measuring device 100 emits the irradiation light L2 into the air in the target space, and the aerosol 90 floating in the air scatters the irradiation light L2 to generate scattered light L3. get. The aerosol measuring device 100 measures the aerosol 90 by processing the acquired scattered light L3.
  • the target space is, for example, a room in a building such as a residence, office, long-term care facility, or hospital.
  • the target space is, for example, a space partitioned by walls, windows, doors, floors, ceilings, etc., and is a closed space, but is not limited to this.
  • the target space may be an outdoor open space. Further, the target space may be the internal space of a moving body such as a bus or an airplane.
  • the aerosol 90 to be measured is, for example, dust floating in the target space, suspended particulate matter such as PM2.5, biological particles, or minute water droplets.
  • Biological particles include molds or mites floating in the air, pollen and the like.
  • minute water droplets include substances dynamically generated from the human body such as coughing or sneezing.
  • Aerosol 90 is sufficiently large compared to the molecules that make up air. In the present embodiment, since the particle size of the aerosol 90 is equal to or larger than the wavelength of the irradiation light L2, the aerosol 90 scatters the irradiation light L2 to generate Mie scattered light.
  • the causative substance that generates scattered light L3 includes not only aerosol 90 but also molecules constituting air. Since the molecules constituting air are sufficiently smaller than the wavelength of the irradiation light L2, Rayleigh scattered light is generated by scattering the irradiation light L2.
  • the scattered light L3 acquired by the aerosol measuring device 100 includes Mie scattered light and Rayleigh scattered light.
  • the Mie scattered light here is backscattered light due to Mie scattering.
  • the aerosol measuring device 100 extracts Mie scattered light from the scattered light L3, and measures the presence / absence and concentration of the aerosol 90 based on the extracted Mie scattered light.
  • the aerosol measuring device 100 emits the irradiation light L2 in different directions in the target space.
  • the emission direction of the irradiation light L2 is changed by, for example, a MEMS (Micro-Electro-Mechanical Systems) mirror (not shown).
  • the emission direction of the irradiation light L2 may be changed by changing the direction of the entire aerosol measuring device 100.
  • the aerosol measuring device 100 can create a distribution of aerosols 90 in the target space by scanning the target space.
  • the aerosol measuring device 100 includes an optical element 10, a light source 20, a mirror 22, a condensing unit 30, a condensing lens 40, a receiver 50, and an analysis unit 60. ..
  • An example of the condensing unit 30 is a condensing lens 30a.
  • the optical element 10 internally interferes with the incident light to emit light having a plurality of peaks separated from each other at equal frequency intervals. Light having a plurality of peaks is also called multi-light.
  • the optical element 10 is a single optical element. That is, the optical element 10 is one member integrally configured.
  • the shape of the optical element 10 is, for example, a cylinder or a prism.
  • the optical element 10 is an etalon.
  • the optical element 10 has a light transmitting portion 11 and two multilayer films 12 and 13.
  • the translucent portion 11 is formed by using a transparent material such as quartz or quartz.
  • the translucent portion 11 is sandwiched between the two multilayer films 12 and 13, and is in contact with each of the two multilayer films 12 and 13.
  • the two multilayer films 12 and 13 are dielectric multilayer films having a laminated structure of a plurality of dielectric films, respectively.
  • the two multilayer films 12 and 13 are each formed by alternately laminating a dielectric film having a low refractive index and a dielectric film having a high refractive index.
  • the dielectric film for example, a titanium oxide film, a hafnium oxide film, a silicon oxide film, or the like is used.
  • the light transmitting portion 11 may be an air layer, and the two multilayer films 12 and 13 may be fixed by a frame or the like so as to maintain a constant distance.
  • the optical element 10 internally interferes with the emitted light L1 emitted from the light source 20 and emits it as irradiation light L2 which is light having a plurality of peaks separated from each other at equal frequency intervals.
  • the irradiation light L2 is a multi-laser light.
  • the emitted light L1 is incident on the multilayer film 12 of the optical element 10 and emitted from the multilayer film 13.
  • the first surface 12a of the multilayer film 12 opposite to the surface in contact with the translucent portion 11 is an incident surface on which the emitted light L1 is incident.
  • the second surface 13a of the multilayer film 13 opposite to the surface in contact with the translucent portion 11 is an exit surface from which the irradiation light L2 is emitted.
  • the second surface 13a which is the exit surface, is a surface opposite to the first surface 12a, which is the incident surface.
  • the first surface 12a and the second surface 13a are parallel to each other.
  • the direction orthogonal to the first surface 12a and the second surface 13a is parallel to the central axis of the optical element 10.
  • the scattered light L3 condensed by the condenser lens 30a is incident on the optical element 10.
  • the scattered light L3 is incident from the multilayer film 13 of the optical element 10, and the Mie scattered light L4, which is a part of the scattered light L3, is emitted from the multilayer film 12.
  • the second surface 13a of the multilayer film 13 is an incident surface on which scattered light L3 is incident.
  • the first surface 12a of the multilayer film 12 is an exit surface from which the Mie scattered light L4 is emitted. That is, the incident surface of the emitted light L1 and the incident surface of the scattered light L3 are different.
  • the incident surface of the emitted light L1 and the incident surface of the scattered light L3 may be the same surface by using a mirror or the like.
  • the optical element 10 has a first portion 10a including a path through which the emitted light L1 passes and a second portion 10b including a path through which the scattered light L3 passes.
  • the boundary between the first portion 10a and the second portion 10b is schematically represented by a broken line.
  • the first portion 10a and the second portion 10b are different portions from each other.
  • the optical element 10 is a columnar etalon
  • the first portion 10a and the second portion 10b correspond to a semi-cylindrical portion when the etalon is virtually divided on a surface including the central axis.
  • the circular upper and lower surfaces of the cylindrical etalon correspond to the entrance surface and the emission surface of light.
  • the first part 10a and the second part 10b may be different etalons. That is, the aerosol measuring device 100 may include two etalons, one for the emitted light L1 and the other for the scattered light L3, as the optical element 10.
  • the scattered light L3 includes light having a plurality of peaks separated from each other at equal frequency intervals, each light causes interference when passing through the optical element 10.
  • the thickness of the optical element 10 is adjusted so that the Mie scattered light L4 included in the scattered light L3 is passed and the Rayleigh scattered light is suppressed from passing.
  • the Rayleigh scattered light can be appropriately removed from the scattered light L3, so that the Mie scattered light L4 caused by the aerosol 90 can be received by the receiver 50.
  • the optical element 10 is located on the optical path of the emitted light L1 emitted from the light source 20. Specifically, the optical element 10 is located between the mirror 22 and the opening provided in the housing of the aerosol measuring device 100. The opening is provided for the irradiation light L2 emitted from the optical element 10 to pass through. Further, the optical element 10 is located on the optical path of the scattered light L3 generated from the aerosol 90. Specifically, the optical element 10 is located between the condenser lens 30a and the condenser lens 40.
  • the light source 20 emits the irradiation light L2 into the atmosphere via the optical element 10. Specifically, the light source 20 emits the emitted light L1.
  • the emitted light L1 is, for example, pulsed light, but may be continuous light.
  • the emitted light L1 may be monochromatic light having a peak in a specific wavelength band, or light including a broad wavelength band.
  • the emitted light L1 contains, for example, a wavelength component in the range from a wavelength 10 pm to 10 nm shorter than the peak wavelength to a wavelength 10 pm to 10 nm longer than the peak wavelength.
  • the emitted light L1 is, for example, ultraviolet light, blue light, infrared light, or the like.
  • the emitted light L1 is emitted into the atmosphere as irradiation light L2, which is light having a plurality of peaks separated from each other at equal frequency intervals due to interference inside the optical element 10.
  • the light source 20 is, for example, a semiconductor laser element that emits pulsed laser light as emitted light L1.
  • the beam mode of the emitted light L1 is, for example, a multi-mode, but may be a single mode.
  • the light source 20 emits a laser beam having a peak in the vicinity of 405 nm as the emitted light L1.
  • the light source 20 may be a light emitting diode (LED: Light Emitting Diode) element.
  • the light source 20 may be a discharge lamp such as a halogen lamp.
  • the mirror 22 reflects the emitted light L1. By arranging the mirror 22 at an appropriate angle with respect to the emitted light L1, the course of the emitted light L1 can be bent in a desired direction. In the present embodiment, the mirror 22 reflects the emitted light L1 and causes it to enter the optical element 10.
  • the aerosol measuring device 100 does not have to include the mirror 22.
  • the light collecting unit 30 collects the scattered light L3 generated by the scattering body containing the aerosol 90 contained in the atmosphere scattering the irradiation light L2.
  • the condensing unit 30 there is, for example, a convex condensing lens 30a, or at least one reflecting mirror.
  • the light collected by the condenser lens 30a is converted into parallel light by a lens group including a collimating lens and emitted.
  • the scattered light L3 collected by the condenser lens 30a is incident on the optical element 10.
  • the light collecting unit 30 may not be arranged.
  • the scattered light L3 collected by the condenser lens 30a is incident on the optical element 10.
  • the scattered light L3 is incident on the second surface 13a of the optical element 10 from the front, that is, at an incident angle of 0 °.
  • the condenser lens 40 collects the Mie scattered light L4 that has passed through the optical element 10 among the scattered light L3 condensed by the condenser lens 30a.
  • the condenser lens 40 is, for example, a convex lens.
  • the condenser lens 40 concentrates the Mie scattered light L4 on the light receiving surface of the receiver 50.
  • the light receiver 50 receives the Mie scattered light L4 that has passed through the optical element 10 among the scattered light L3 collected by the condenser lens 30a, and outputs a signal corresponding to the light receiving intensity.
  • the light receiving intensity is the intensity of the Mie scattered light L4, and is represented by, for example, the signal level of the signal output by the light receiver 50.
  • the light receiver 50 is an element that performs photoelectric conversion, for example, a PMT (Photomultiplier Tube).
  • the receiver 50 may have a PMT and a photon counter.
  • the receiver 50 may be an avalanche photodiode.
  • the analysis unit 60 analyzes the aerosol 90 contained in the scatterer by analyzing the signal output from the receiver 50. For example, the analysis unit 60 determines the presence / absence and concentration of the aerosol 90 based on the signal level of the signal. Specifically, the analysis unit 60 determines the concentration of the aerosol 90 corresponding to the signal level by referring to the correspondence information in which the signal level and the concentration of the aerosol 90 are associated with each other. Correspondence information is stored in advance in, for example, a memory (not shown) included in the analysis unit 60.
  • the analysis unit 60 calculates the distance to the aerosol 90 by the TOF (Time Of Flight) method based on the time required from the emission of the irradiation light L2 to the reception of the Mie scattered light L4.
  • the analysis unit 60 identifies the position of the aerosol 90 in the target space based on the calculated distance and the direction in which the irradiation light L2 is emitted. By repeating the identification of the position of the aerosol 90 while changing the emission direction of the irradiation light L2, the analysis unit 60 creates the distribution of the aerosol 90 in the target space.
  • the analysis unit 60 is composed of one or a plurality of electronic circuits including a plurality of circuit components. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit. That is, the function executed by the analysis unit 60 is realized by hardware such as an electronic circuit. Alternatively, the analysis unit 60 may be realized by a non-volatile memory in which the program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor in which the program is executed, or the like. The function executed by the analysis unit 60 may be realized by software executed by the processor.
  • Each component included in the aerosol measuring device 100 is housed inside, for example, a housing (not shown).
  • the housing is an outer housing of the aerosol measuring device 100 and has a light-shielding property.
  • the housing is provided with an opening for passing the irradiation light L2 and the scattered light L3.
  • One aperture may be provided corresponding to each of the irradiation light L2 and the scattered light L3.
  • the condenser lens 30a may be provided in the aperture.
  • the aerosol measuring device 100 includes the optical element 10 and the condenser lens 40 .
  • the optical element 10 and the condenser lens 40 may not be arranged. That is, the aerosol measuring device 100 may include only the light source 20 and the receiver 50.
  • the airflow generator 110 is an example of a generator that generates an airflow 112.
  • the airflow generator 110 generates and discharges the airflow 112 when the amount of aerosol 90 in the target space measured by the aerosol measuring device 100 exceeds the threshold value.
  • the target space is a space that emits the irradiation light L2.
  • the airflow generator 110 is, for example, a device including a fan, and specifically, a ventilation fan, a blower, a fan, an air conditioner, an air purifier, or the like arranged in the target space.
  • the airflow generator 110 may include a pump or vortex ring generator in place of or in addition to the fan that generates the airflow.
  • the threshold value is a predetermined value and is stored in, for example, the memory of the airflow generator 110.
  • the threshold value is, for example, an upper limit of the amount of aerosol 90 in a range in which the aerosol 90 does not cause a health hazard to the human body.
  • the airflow generator 110 is communicably connected to the aerosol measuring device 100.
  • the communication may be wired communication or wireless communication.
  • the airflow generation device 110 acquires the measurement result of the aerosol 90 by the aerosol measuring device 100, and generates the airflow 112 based on the acquired measurement result.
  • the air flow 112 is an air flow that guides the aerosol 90 to the purification unit 120.
  • the airflow generator 110 determines the parameters of the airflow 112 based on the positional relationship between the aerosol 90, the purification unit 120, and the airflow generator 110, and discharges the airflow 112 with the determined parameters.
  • the parameters are at least one of air volume, wind speed, wind direction and emission range.
  • the purification system 1 may include a plurality of airflow generators 110.
  • the aerosol 90 may be guided to the purification unit 120 by utilizing the plurality of airflows 112 discharged from the plurality of airflow generators 110.
  • the aerosol 90 can be led to the purification unit 120.
  • the purification unit 120 purifies the aerosol 90 guided by the air flow 112.
  • the purification unit 120 includes a discharge port 121 that communicates with the outside of the target space.
  • the discharge port 121 is open toward the outside of the target space.
  • the purification unit 120 discharges the aerosol 90 guided by the air flow 112 to the outside from the discharge port 121.
  • the purification unit 120 is, for example, a ventilation port provided on the wall or ceiling of the room forming the target space.
  • the purification unit 120 may be a window or a door. That is, the purification unit 120 may have only the function of discharging the aerosol 90 to the outside, and may not have the function of detoxifying the aerosol 90.
  • FIG. 2 is a flowchart showing the operation of the purification system 1 according to the present embodiment.
  • FIG. 3 is a diagram schematically showing a state of purification by the purification system 1 according to the present embodiment.
  • the aerosol measuring device 100 first detects the aerosol 90 (S10). Specifically, as shown in the portion (a) of FIG. 3, the aerosol measuring device 100 irradiates the irradiation light L2 in a predetermined direction in the target space to obtain the aerosol 90 existing in the target space. To detect. Specific processing of the method for detecting the aerosol 90 will be described later.
  • the purification system 1 compares the amount of the detected aerosol 90 with the threshold value based on the detection result of the aerosol 90 (S20). When the amount of aerosol 90 exceeds the threshold (“greater than threshold” in S20), the purification system 1 purifies the aerosol 90 (S30).
  • the airflow generator 110 generates the airflow 112 to guide the aerosol 90 to the purification unit 120.
  • the aerosol 90 rarely exists as a single fine particle, and usually, a plurality of fine particles are gathered and exist as an aggregate.
  • the airflow generator 110 generates an airflow 112 that pushes out the entire aerosol 90 aggregate so that the detected aerosol 90 aggregate is not dispersed.
  • the emission range of the airflow 112 is larger than that of the aggregate of aerosol 90.
  • the purification unit 120 purifies the aerosol 90 guided by the air flow 112. Specifically, the purification unit 120 discharges the aerosol 90 guided by the air flow 112 from the discharge port 121 to the outside of the target space.
  • the comparison with the threshold value (S20) is performed by, for example, the airflow generator 110, but may be performed by the aerosol measuring device 100. Alternatively, a control device (not shown) that controls the overall operation of the purification system 1 may be performed.
  • FIG. 4 is a flowchart showing an aerosol detection process (S10) in the operation of the purification system according to the present embodiment.
  • the light source 20 emits the emitted light L1 (S11).
  • the emitted light L1 is reflected by the mirror 22 and its traveling direction is bent, and is incident on the optical element 10 from the first surface 12a of the optical element 10.
  • the emitted light L1 is converted into multi-light, which is light having a plurality of peaks separated from each other at equal frequency intervals. That is, the optical element 10 internally interferes with the incident light and emits it as light having a plurality of peaks separated from each other at equal frequency intervals (S12).
  • the irradiation light L2, which is multi-light is emitted into the target space and scattered by a scatterer containing the aerosol 90.
  • the condenser lens 30a collects the scattered light L3 generated from the scatterer (S13).
  • the scattered light L3 collected by the condenser lens 30a is incident on the optical element 10 from the second surface 13a of the optical element 10.
  • the Mie scattered light L4 is extracted. That is, the scattered light L3 collected by the condensing unit 30 interferes with each other inside the optical element 10 and passes through the optical element 10 (S14).
  • the optical element 10 substantially removes the Rayleigh scattered light among the scattered light L3 and allows only the Mie scattered light L4 to pass through.
  • the light receiver 50 receives the Mie scattered light L4 and outputs a signal according to the light receiving intensity (S15).
  • the analysis unit 60 analyzes the aerosol 90 contained in the scatterer by analyzing the signal output from the receiver 50 (S16). Specifically, the analysis unit 60 detects the presence / absence, the number, and the position of the aerosol 90 based on the intensity of the Mie scattered light L4. The detection result is output to the airflow generator 110.
  • the aerosol measuring device 100 repeats the above processes from step S11 to step S16 while changing the emission direction of the irradiation light L2. That is, the aerosol measuring device 100 scans the inside of the target space using the irradiation light L2. For example, when the irradiation light L2 is emitted in a predetermined direction in the target space and the scattered light L3 can be acquired, the source of the scattered light L3 can be specified as the position of the aerosol 90. Further, the amount of aerosol 90 can be specified based on the intensity of the scattered light L3 at that time. As a result, the aerosol measuring device 100 can generate a distribution map showing the position and amount of the aerosol 90 in the target space.
  • the aerosol measuring device 100 may only emit the emitted light by the light source 20 and receive the scattered light of the aerosol 90 by the receiver 50.
  • purification may be performed after scanning the target space with the aerosol measuring device 100 and generating a distribution map. Specifically, the purification system 1 may purify the aerosol 90 based on the generated distribution map. As a result, an appropriate purification method can be determined based on the distribution of the aerosol 90, so that more effective purification can be performed. For example, when the aerosol 90 is present at a plurality of locations, the aerosol 90 at the plurality of locations can be collectively guided to the purification unit 120 by the air flow 112. Further, when the aerosols 90 at a plurality of locations are individually guided to the purification unit 120, when the airflow 112 is generated toward the aerosol 90 located at a certain position, the aerosol 90 located at another position is not scattered. be able to.
  • the comparison with the threshold value (S20) and the purification of the aerosol 90 (S30) may be performed.
  • the aerosol 90 detected in the target space can be sequentially purified, and the inside of the target space can be kept in a clean state at all times.
  • the optical element 10 is a multi-laser light composed of light having a plurality of peaks separated from each other at equal frequency intervals by internally interfering with the emitted light L1 which is the laser light emitted from the light source 20. It is emitted as a certain irradiation light L2.
  • the multi-laser light will be described with reference to FIG.
  • FIG. 5 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device 100 according to the present embodiment.
  • the horizontal axis represents the frequency and the vertical axis represents the signal strength.
  • Part (a) of FIG. 5 shows the spectrum of the irradiation light L2, which is the multi-laser light after passing through the optical element 10.
  • Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the irradiation light L2.
  • the frequency intervals LW2 of the plurality of peaks are equal to each other, for example, 3 GHz.
  • an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other.
  • the center wavelength ⁇ of the irradiation light L2 is, for example, 405 nm.
  • Part (b) of FIG. 5 is an enlarged view of part (a) of FIG. 5, and shows one peak of the spectrum, that is, only one light included in the irradiation light L2 in an enlarged manner.
  • the full width at half maximum LW1 of one light is, for example, 360 MHz.
  • LW1 is 1/20 or more and 1/5 or less of LW2, but may be 1/10 or more and 1/8 or less.
  • the emitted light L1 passes through the optical element 10, it interferes with the inside of the optical element 10 and is emitted as the irradiation light L2.
  • the etalon which is the optical element 10, utilizes the interference between the incident light and the light that is repeatedly reflected in the etalon.
  • the multilayer films 12 and 13 of Etalon can transmit or reflect light.
  • the transmittance of each of the multilayer films 12 and 13 is, for example, 75%, but is not limited to this.
  • FIGS. 6 and 7 are diagrams for explaining light passing through the optical element 10 of the aerosol measuring device 100 according to the present embodiment, respectively.
  • FIG. 6 schematically represents the 0th transmitted light and the 1st transmitted light.
  • FIG. 7 schematically represents the 0th transmitted light and the 2nd transmitted light.
  • the optical element 10 transmits a part of the incident light as it is. As shown in FIGS. 6 and 7, the light transmitted as it is without being reflected by the multilayer films 12 and 13 of the optical element 10 is the 0th transmitted light.
  • the first transmitted light is light that is reflected once by the multilayer film 13 after the incident light is reflected once by the multilayer film 13. Interference occurs when the phases of the 0th transmitted light and the 1st transmitted light match, and the light corresponding to the first interference fringe is emitted. Interfering fringes will be described later with reference to FIGS. 9 and 10.
  • the second transmitted light is light in which the incident light is reflected twice by the multilayer film 13 and the multilayer film 12, respectively. Interference occurs when the phases of the 0th transmitted light and the 2nd transmitted light match, and the light corresponding to the second interference fringe is emitted.
  • the optical element 10 can emit the irradiation light L2 having the same frequency interval LW2 when the emitted light L1 is incident.
  • the length ⁇ x of the etalon for realizing the frequency interval LW2 is determined based on the following equation (1).
  • the length ⁇ x of the etalon is the distance between the multilayer film 12 and the multilayer film 13, that is, the thickness of the translucent portion 11, as shown in FIGS. 6 and 7.
  • n 0 is the refractive index in vacuum, for example 1.0.
  • n is the refractive index of the translucent portion 11 of etalon, which is 1.47 in the case of quartz.
  • c is the speed of light, which is 3 ⁇ 10 8 m / s.
  • optical path difference dx when Fabry-Perot interference is caused by Etalon is expressed by the following equation (2).
  • the optical path difference dx is 100 mm.
  • FIG. 8 is a diagram showing an example of the spectrum of scattered light L3 generated by scattering the multi-laser light emitted by the aerosol measuring device 100 according to the present embodiment.
  • the horizontal axis represents the frequency and the vertical axis represents the signal strength.
  • Part (b) of FIG. 8 is an enlarged view of part (a) of FIG. 8, and shows one peak of the spectrum, that is, only one light contained in the scattered light L3 in an enlarged manner.
  • the scattered light L3 includes Mie scattered light and Rayleigh scattered light.
  • the spectrum of Mie scattered light is substantially the same as the spectrum of irradiation light L2 before scattering.
  • the frequency width of Rayleigh scattered light is widened by the thermal motion of the molecules that make up the atmosphere.
  • the intensity of Rayleigh scattered light is usually lower than the intensity of Mie scattered light.
  • the spectrum of the scattered light L3 has a shape in which the base of the peak is widened as compared with the spectrum of the irradiation light L2 shown in FIG.
  • the high peak at the center corresponds to Mie scattered light
  • the base part corresponds to Rayleigh scattered light.
  • the signal intensity of Rayleigh scattered light by the molecules constituting the atmosphere and the signal intensity of Mie scattered light by the aerosol are set to 3: 1.
  • the signal strength here is represented by the area of the peak.
  • the full width at half maximum MW1 of the peak representing the Mie scattered light is equal to the full width at half maximum LW1 of the irradiation light L2.
  • the full width at half maximum RW of the foot portion representing the Rayleigh scattered light is about 3.4 GHz to 3.9 GHz according to a general actual measurement.
  • ⁇ f RW.
  • c is the speed of light, which is 3 ⁇ 10 8 m / s.
  • is the central wavelength, which is 405 nm here.
  • the optical element 10 by passing the scattered light L3 through the optical element 10, light having a plurality of peaks appearing at a frequency interval of 3 GHz, that is, Me scattered light is transmitted, and light of another frequency component, that is, , Rayleigh scattered light can be removed.
  • FIG. 9 is a diagram showing the calculation result of the interferogram when the scattered light including the Mie scattered light by the aerosol and the Rayleigh scattered light by the molecules constituting the atmosphere are interfered with by the Michelson interferometer.
  • the horizontal axis represents the optical path difference dx that causes interference
  • the vertical axis represents the intensity of the interference light.
  • FIG. 10 is an enlarged view of the region X surrounded by the broken line in FIG.
  • an interference fringe appears every time the optical path difference dx becomes an integral multiple of ⁇ x.
  • n is a natural number.
  • FIG. 10 shows the 0th interference fringe, the 1st interference fringe, and the 2nd interference fringe.
  • the first interference fringe is the light generated by the interference between the 0th transmitted light and the 1st transmitted light shown in FIG.
  • the second interference fringe is the light generated by the interference between the 0th transmitted light and the second transmitted light shown in FIG. 7.
  • the interference light including the 0th interference fringe to the nth interference fringe is received as Mie scattered light L4.
  • the interference fringe due to the Rayleigh scattered light caused by atmospheric scattering can be removed. A method for determining a length ⁇ x suitable for removing Rayleigh scattered light will be described.
  • FIG. 11 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when only the atmospheric scattering is considered without the scattering by the aerosol.
  • the horizontal axis represents dx and the vertical axis represents the signal strength.
  • the frequency intervals LW2 of the irradiation light L2 are 2.4 GHz, 3.0 GHz, 3.6 GHz, 3.7 GHz, 3.8 GHz, 3.9 GHz, 4 GHz, 5 GHz, respectively. , 6 GHz, 10 GHz, 15 GHz, 30 GHz, and the calculation result of the interferogram is shown.
  • the frequency interval LW2 increases, the number of appearing interference fringes increases, and the signal strength of the appearing interference fringes increases.
  • the frequency interval LW2 is 2.4 GHz
  • the frequency interval LW2 in the range of 3.0 GHz to 4 GHz
  • the 0th interference fringe and the 1st interference fringe appear, and the second and higher interference fringes do not appear.
  • the frequency interval LW2 is 5 GHz
  • a second interference fringe appears in addition to the 0th interference fringe and the first interference fringe.
  • the range in which the first interference fringe and above appear is represented by a broken line frame.
  • the appearance of the second or higher interference fringes when only atmospheric scattering is taken into consideration means that interference is occurring only by Rayleigh scattered light. That is, it means that the Rayleigh scattered light is transmitted when the Rayleigh scattered light is incident on the optical element 10. Therefore, if the frequency interval LW2 is 3.9 GHz or less, the first interference fringe becomes small, and the transmission of Rayleigh scattered light is suppressed.
  • the size of the first interference fringe when the frequency interval LW2 is 3.9 GHz is 50% or less of the size of the first interference fringe of the frequency interval LW2. Therefore, since the first interference fringe is small, it is possible to suppress the Rayleigh scattered light from passing through the optical element 10.
  • the frequency interval LW2 when the frequency interval LW2 is 3.9 GHz or less, Rayleigh scattered light can be efficiently removed from the scattered light L3.
  • the length ⁇ x of the etalon made of quartz is about 26 mm according to the formula (1). That is, by using an etalon having a length ⁇ x of 26 mm or more as the optical element 10, Rayleigh scattered light can be efficiently removed, and the measurement accuracy of the aerosol can be improved.
  • the purification unit 120 has the discharge port 121, and the aerosol 90 is discharged to the outside from the discharge port 121, but the purification treatment is not limited to the discharge of the aerosol 90.
  • the purification treatment is not limited to the discharge of the aerosol 90.
  • a modified example of the purification treatment will be described. In the following description, the differences from the first embodiment will be mainly described, and the common points will be omitted or simplified.
  • FIG. 12 is a diagram schematically showing a state of purification by the purification system 2 according to the first modification.
  • the purification system 2 according to the present modification is different from the purification system 1 shown in FIGS. 1 and 3 in that it further includes a purification unit 220.
  • the purification system 2 may include a purification unit 220 instead of the purification unit 120.
  • the purification unit 220 includes a suction port 221 provided in the target space.
  • the purification unit 220 sucks the aerosol 90 guided by the air flow 112 from the suction port 221.
  • the purification unit 220 is, for example, a device including a fan, specifically, an air purifier or a vacuum cleaner arranged in the target space.
  • the purification unit 220 collects or detoxifies the aerosol 90 sucked from the suction port 221.
  • the purification unit 220 may include a filter (not shown) for collecting the aerosol 90 in addition to the fan.
  • the filter is provided at the suction port 221.
  • the purification unit 220 may detoxify the aerosol 90 by bringing the chemical stored in the container into contact with the aerosol 90.
  • the drug is, but is not limited to, alcohol preparations, hypochlorous acid water, and the like.
  • the purification unit 220 may have an ozone generator that generates ozone, and may detoxify the aerosol 90 by bringing the generated ozone into contact with the sucked aerosol 90.
  • Detoxification of the aerosol 90 is often performed by bringing the aerosol 90 attached to the filter into contact with a chemical or ozone.
  • the purification unit 220 may detoxify the aerosol by, for example, bringing an ion molecule having a purification function into contact with the aerosol 90.
  • the ion molecule having a purifying function is, for example, nanoe or plasma cluster.
  • the purification unit 220 can be moved like a so-called robot vacuum cleaner.
  • the purification unit 220 can move to a place where the aerosol 90 can be easily sucked based on the detection result of the aerosol 90.
  • the airflow generator 110 generates an airflow 112 to be sucked. That is, the airflow generator 110 may generate not only the extruded airflow but also the sucked airflow.
  • the process of detecting the aerosol 90 is the same as that of the first embodiment.
  • the airflow generator 110 brings the aerosol 90 closer to the airflow generator 110 by generating a suction airflow 112.
  • the purification unit 220 moves to the vicinity of the airflow generator 110 and sucks the aerosol 90 guided by the airflow 112 from the suction port 221.
  • the purification unit 220 collects or detoxifies the sucked aerosol 90.
  • the airflow in the suction direction is usually weaker than the airflow in the extrusion direction. For this reason, it is particularly useful when the aerosol 90 is present near the airflow generator 110. Further, since the purification unit 220 is movable, the purification unit 220 can be moved to a position where the aerosol 90 can be sucked. For example, even if the aerosol 90 cannot be guided to the purification unit 120 when the distance between the aerosol 90 and the purification unit 120 is long or there is an obstacle in the middle, the aerosol 90 is sucked into the purification unit 220. Purification can be realized by making it.
  • FIG. 13 is a diagram schematically showing a state of purification by the purification system 3 according to the modified example 2.
  • the purification system 3 according to the present modification is different from the purification system 1 shown in FIGS. 1 and 3 in that the purification device 310 is provided instead of the airflow generator 110. ..
  • the purification device 310 releases the agent 91 that detoxifies the aerosol 90, as shown in part (b) of FIG.
  • the agent 91 is, for example, an alcohol preparation, hypochlorite water, ozone water, or the like.
  • the purification device 310 atomizes the drug 91 and sprays it. Alternatively, the purification device 310 may eject the drug 91 on an air flow such as a vortex ring.
  • the purification device 310 is an example of an airflow generator, and may generate an extruded airflow or a sucked airflow.
  • the purification device 310 may spray the drug 91 after attracting the aerosol 90 by generating an air flow to be sucked. As a result, it is not necessary to release the drug 91 to a long distance, so that the probability of contact between the drug 91 and the aerosol 90 can be increased. Since the waste of the drug 91 can be reduced and the drug 91 can be effectively used, the aerosol 90 can be efficiently purified.
  • FIG. 14 is a diagram schematically showing a state of purification by the purification system 4 according to the modified example 3.
  • the purification system 4 according to the present modification is different from the purification system 1 shown in FIGS. 1 and 3 in that it does not include the purification unit 120 having the discharge port 121.
  • the airflow generator 110 included in the purification system 4 also has a function of a purification unit. That is, in this modification, the purification unit that purifies the aerosol 90 and the airflow generator 110 that discharges the airflow to the position of the aerosol 90 are realized by one integrated device.
  • the airflow generator 110 generates an airflow 92 as shown in FIG.
  • the air flow 92 is an air flow for dispersing and diffusing the aerosol 90 to dilute the concentration of the aerosol 90.
  • the airflow generator 110 emits a strong and highly diffusive airflow 92 toward the aerosol 90 detected by the aerosol measuring device 100.
  • the airflow generator 110 may discharge the airflow 92 while changing the discharge direction of the airflow 92 within a predetermined range including the position of the aerosol 90.
  • the concentration of aerosol 90 can be diluted in the target space.
  • the risk of the aerosol 90 is reduced, so that the occurrence of health hazards can be suppressed.
  • reducing the concentration of the aerosol 90 by dilution is also effective for purifying the aerosol 90.
  • an object existing in the target space is detected, an avoidance route for avoiding contact between the aerosol 90 and the object is determined based on the detection result, and the aerosol 90 is used as a purification unit along the determined avoidance route.
  • the differences from the first embodiment will be mainly described, and the common points will be omitted or simplified.
  • FIG. 15 is a diagram showing an example of the configuration of the purification system 5 according to the present embodiment and the state of purification by the purification system 5.
  • the purification system 5 includes an aerosol measuring device 100, airflow generating devices 110 and 410, purification units 120 and 220, and a sensor 430.
  • FIG. 15 schematically shows the layout of the target space 490 and the objects and devices in the target space 490.
  • a desk 491 chairs 492a, 492b, 492c and 492d arranged so as to surround the desk 491, and a shelf 493 arranged on the side of the desk 491 are arranged.
  • An airflow generator 110 is arranged on the desk 491.
  • An airflow generator 410 is arranged on the shelf 493.
  • the aerosol measuring device 100 and the purification unit 220 are arranged side by side in the corner of the target space 490. Further, the purification unit 120 is arranged in another corner of the target space 490.
  • the sensor 430 is provided, for example, on the wall surface or ceiling of the target space 490 so that almost the entire target space 490 is within the detection range. The arrangement and number of these are only examples.
  • the airflow generator 410 has the same function as the airflow generator 110.
  • the sensor 430 is a sensor that detects the position of an object in the target space 490.
  • the sensor 430 is, for example, an image sensor that captures an image of the target space 490.
  • the sensor 430 may be an infrared sensor, a sound sensor, or the like.
  • the object to be detected by the sensor 430 is a person or an animal.
  • the sensor 430 identifies whether the detected object is a person or an animal. For example, in FIG. 15, two people 495a and 495b exist in the target space 490 as an example of an object. Person 495a sits still on chair 492d. Person 495b sits still on chair 492b. The meaning of resting means that there is no large movement such as not leaving the chair 492b.
  • the object to be detected by the sensor 430 may be an autonomous mobile robot such as a robot vacuum cleaner.
  • At least one of the airflow generators 110 and 410 determines the avoidance route.
  • the airflow generator 110 is communicably connected to each of the aerosol measuring device 100, the airflow generator 410, and the sensor 430.
  • the airflow generation device 110 acquires the detection result of the aerosol 90 from the aerosol measuring device 100, acquires the detection result of the object from the sensor 430, and determines the avoidance route based on the two detection results.
  • the airflow generator 110 transmits a control signal for generating an appropriate airflow based on the determined avoidance path to the airflow generator 410.
  • the avoidance route may be determined by the aerosol measuring device 100, the airflow generating device 410, or the sensor 430. Alternatively, the avoidance route may be determined by a control device (not shown) that controls the entire purification system 5.
  • the device that determines the avoidance route stores information on the positions of all purification units and all airflow generators existing in the target space, and the functions related to airflow generation of all airflow generators in a memory or the like. ing.
  • the avoidance route is a route through which the aerosol 90 can reach the purification unit 120 or 220 while avoiding contact with an object.
  • At least one of the airflow generators 110 and 410 generates an airflow that guides the aerosol 90 along the avoidance path when the amount of aerosol 90 exceeds the threshold.
  • both the airflow generators 110 and 410 may generate predetermined airflows simultaneously or in predetermined order to guide the aerosol 90 to the purification unit 120 or 220 along the avoidance path. If the object detected by the sensor 430 is not a person or an animal, the airflow may be generated by the shortest path without avoiding the object. As a result, the aerosol can be reliably purified.
  • FIG. 16 is a flowchart showing the operation of the purification system 5 according to the present embodiment.
  • an avoidance process is performed (S40). The point is different.
  • the avoidance process (S40) may be performed before the comparison with the threshold value (S20).
  • FIG. 17 is a flowchart showing an avoidance process (S40) among the operations by the purification system 5 according to the present embodiment.
  • the sensor 430 detects an object (S41). If no object is detected, the avoidance process is terminated and the purification process (S30) is performed as shown in FIG. The detection result is transmitted to the airflow generator 110.
  • the airflow generator 110 determines whether the detected object is moving or stationary (S42). For example, the airflow generator 110 determines that the object is stationary when the object has not moved during that period based on the detection result for a certain period of time.
  • the fixed period here is, for example, 1 second or more and several tens of seconds or less, but is not limited to this.
  • the airflow generator 110 determines a route that does not pass the position where the object is detected as an avoidance route (S44). For example, the example shown in FIG. 15 shows a state in which the persons 495a and 495b are stationary. The purification unit 220 is located closest to the aerosol 90, but a person 495a is stationary between the aerosol 90 and the purification unit 220. Therefore, when the airflow generator 110 generates an airflow that guides the aerosol 90 to the purification unit 220, the aerosol 90 comes into contact with the person 495a.
  • the airflow generator 110 determines the route that guides the aerosol 90 to the purification unit 120 as an avoidance route. For example, as shown in FIG. 15, first, the airflow generator 110 discharges the airflow 112 to guide the aerosol 90 between the airflow generator 410 and the purification unit 120. After that, the airflow generator 410 discharges the airflow 412 to guide the aerosol 90 to the purification unit 120. As a result, the purification unit 120 can discharge the aerosol 90 to the outside from the discharge port 121.
  • the avoidance route shown in FIG. 15 is only an example, and is not particularly limited as long as it can avoid contact with the persons 495a and 495b.
  • the airflow generator 110 predicts the movement path when the position of the object is moving (“movement” in S42) based on the detection result for a certain period (S43). Specifically, the airflow generator 110 calculates the moving direction and moving speed of the object based on the detection result for a certain period, and predicts the moving path based on the calculated result. For example, the predicted movement path is a path when the object moves while maintaining the calculated movement direction and movement speed.
  • the airflow generator 110 determines a path that can reach the purification unit by avoiding contact with an object moving along the predicted movement path as an avoidance path (S44). For example, in the example shown in FIG. 18, the person 495b is stationary while the person 495a is moving. The person 495a is moving in the direction from the vicinity of the airflow generator 410 toward the purification unit 120. Therefore, when the airflow generator 110 generates an airflow that guides the aerosol 90 to the purification unit 120, the aerosol 90 may come into contact with the moving person 495a.
  • the airflow generator 110 determines the route that guides the aerosol 90 to the purification unit 220 as an avoidance route. For example, as shown in FIG. 18, the airflow generators 110 and 410 release the airflows 112 and 412, respectively, to guide the aerosol 90 to the purification unit 220. As a result, the purification unit 220 sucks the aerosol 90 from the suction port 221 to collect or detoxify it.
  • the avoidance route shown in FIG. 18 is only an example, and is not particularly limited as long as it can avoid contact with the persons 495a and 495b.
  • the present embodiment it is possible to increase the possibility of avoiding contact between an object such as a person and the aerosol 90. As a result, it is possible to prevent the aerosol 90 from causing a health hazard to a person.
  • the sensor 430 is a sensor different from the aerosol measuring device 100
  • an object may be detected by using the aerosol measuring device 100. For example, when the emitted light L1 emitted by the aerosol measuring device 100 is reflected by an object, light stronger than the scattered light L3 by the aerosol 90 is detected. Therefore, the object can be detected based on strong light. For example, when the position where strong light is detected moves, it can be determined that the object is moving along with the movement of the source of strong light.
  • the scattered light L3 is interfered with by using an interferometer different from the etalon.
  • the differences from the first or second embodiment will be mainly described, and the common points will be omitted or simplified.
  • FIG. 19 is a diagram showing the configuration of the purification system 6 according to the present embodiment.
  • the purification system 6 is different from the purification system 1 according to the first embodiment in that it includes an aerosol measuring device 500 instead of the aerosol measuring device 100.
  • the aerosol measuring device 500 is different in that it includes a light source 520 and an analysis unit 560 instead of the light source 20 and the analysis unit 60. Further, the aerosol measuring device 500 includes an interference unit 510 instead of the optical element 10.
  • the light source 520 emits multi-laser light including laser light having a plurality of peaks separated by a frequency interval LW2 equal to each other as irradiation light L2.
  • the center wavelength ⁇ of the irradiation light L2 is, for example, 400 nm.
  • the frequency interval LW2 of the plurality of peaks is, for example, 10 GHz or less, and 6 GHz as an example.
  • the full width at half maximum LW1 of each of the plurality of peaks is, for example, a value of 1/10 or less of the frequency interval LW2, and is 360 MHz as an example.
  • the frequency interval which is the mode interval of the multi-laser light described above, can be, for example, 5 GHz or less. As a result, the atmospheric scattering signal can be efficiently removed.
  • the scattered light L3 generated by irradiating the aerosol 90 with the irradiation light L2 includes Mie scattered light having a plurality of peaks separated by a frequency interval MW2 equal to each other.
  • the frequency interval MW2 is equal to the frequency interval LW2 of the irradiation light L2.
  • the full width at half maximum MW1 of each of the plurality of peaks is equal to the full width at half maximum LW1 of each peak of the irradiation light L2.
  • the scattered light L3 passes through the air, it includes Rayleigh scattered light by the molecules constituting the air.
  • the full width at half maximum RW of Rayleigh scattered light is expanded by the thermal motion of molecules.
  • the full width at half maximum RW of Rayleigh scattered light in the actual measurement is about 3.4 GHz to 3.9 GHz.
  • the full width at half maximum RW of Rayleigh scattered light is 3.6 GHz.
  • the interferometer 510 is an interferometer capable of changing the optical path difference.
  • the interference unit 510 is provided on the optical path of the scattered light L3, and the scattered light L3 is incident on the interference unit 510.
  • the scattered light L3 after passing through the interference unit 510 is received by the receiver 50.
  • the interference unit 510 separates the scattered light L3 into a plurality of scattered lights having different optical path lengths, and causes the plurality of scattered lights to interfere with each other. By receiving the interference light, an interferogram can be formed. An interferogram is an interference fringe caused by interference.
  • the interferometer 510 is, for example, a Michelson interferometer, a Mach-Zehnder interferometer, a Fabry-Perot interferometer, or the like.
  • ⁇ x be the interval of the interference fringes in the interferogram generated when the scattered light L3 is passed through the interference unit 510.
  • the interference unit 510 sweeps the optical path difference in a range larger than 1/4 of the center wavelength of the emitted light L1 and smaller than 1/2 of the interference fringe interval ⁇ x.
  • the optical path difference generated by the interference unit 510 is dx
  • the interference fringe at dx n ⁇ ⁇ x. Is defined as the nth interference fringe.
  • a signal in the vicinity of the first interference fringe corresponding to the frequency interval is acquired, and the Rayleigh scattered light component is removed from the acquired signal.
  • the influence of Rayleigh scattering by the molecules constituting air is extremely small, and the dependence on the intensity of Mie scattered light from the aerosol 90 is high.
  • the signal intensity of the first interference fringe increases monotonically according to the intensity of the Mie scattered light from the aerosol 90. Therefore, by measuring the signal intensity of the first interference fringe, the intensity of the Mie scattered light from the aerosol 90 can be accurately obtained.
  • the analysis unit 560 extracts the signal component corresponding to the first interference fringe from the interferogram of the scattered light L3 obtained by sweeping the optical path difference dx, and calculates the velocity based on the extracted signal component. Specifically, the analysis unit 560 generates an interferogram based on the scattered light L3 that has passed through the interference unit 510. The analysis unit 560 can acquire the signal intensity of the first interference fringe based on the generated interferogram, and can acquire the received intensity of the Mie scattered light from the aerosol 90 based on the signal intensity. As a result, the analysis unit 560 can accurately calculate the velocity of the aerosol 90.
  • the analysis unit 560 may perform a Fourier transform based on a signal in the vicinity of the first interference fringe.
  • the analysis unit 560 can generate wavelength spectrum data by Fourier transform and acquire the maximum value as the intensity of Mie scattered light.
  • the aerosol measuring device 500 may include a condensing unit 30 for condensing the scattered light L3, which is provided on the path of the scattered light L3. For example, at least one or more at least one place between the aperture (not shown) and the mirror 22 through which the scattered light L3 is transmitted, between the mirror 22 and the interference unit 510, and between the interference unit 510 and the receiver 50.
  • the light collecting unit 30 may be provided.
  • the condensing unit 30 is, for example, a lens group including at least one of a condensing lens and a collimating lens.
  • the light collecting unit 30 collects the scattered light L3 from the aerosol 90, converts it into parallel light, and emits it. By providing the light collecting unit 30, the detection accuracy of the scattered light L3 can be improved. In addition, the interference effect of the interference unit 510 can be enhanced.
  • an example of removing Rayleigh scattered light by using an interferometer such as an Etalon or Michelson interferometer is shown, but the present invention is not limited to this.
  • the aerosol measuring device does not have to include an interferometer such as an etalon or Michelson interferometer. Even when the interference unit is not used, the aerosol 90 can be detected by receiving the scattered light by the aerosol 90.
  • another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. Further, the distribution of the components of the purification system to a plurality of devices is an example. For example, the components of one device may be included in another device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good. Further, the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • all or a part of the components such as the analysis unit may be composed of dedicated hardware, or may be realized by executing a software program suitable for each component. May be good. Even if each component is realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a component such as an analysis unit may be composed of one or a plurality of electronic circuits.
  • the one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.
  • One or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like.
  • the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • An FPGA Field Programmable Gate Array programmed after the LSI is manufactured can also be used for the same purpose.
  • the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program.
  • a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored.
  • it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
  • the present disclosure can be used as a purification method and a purification system capable of efficiently purifying an aerosol floating in the air, and can be used, for example, in a purification facility such as a general household, an office, a nursing care facility, or a hospital. ..
  • Purification system 10 Optical element 10a First part 10b Second part 11 Translucent part 12, 13 Multilayer film 12a First surface 13a Second surface 20, 520 Light source 22 Mirror 30 Condensing Units 30a, 40 Condensing lens 50 Receiver 60, 560 Analytical unit 90 Aerosol 91 Drug 92, 112, 412 Airflow 100, 500 Aerosol measuring device 110, 410 Airflow generator 120, 220 Purification unit 121 Discharge port 221 Suction port 310 Purification Device 430 Sensor 490 Target space 491 Desk 492a, 492b, 492c, 492d Chair 493 Shelf 495a, 495b Person 510 Interfering part

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The purification method according to one embodiment of the present invention employs a purification system that includes an optical sensor and a purification unit. This purification method comprises: detecting, by using an optical sensor, scattering light scattered by an aerosol floating in a subject space so as to identify the position and amount of the aerosol; and causing the purification unit to purify the aerosol in the case when the amount of aerosol exceeds a threshold value.

Description

浄化方法及び浄化システムPurification method and purification system
 本開示は、浄化方法及び浄化システムに関する。 This disclosure relates to purification methods and purification systems.
 例えば、特許文献1には、気体又は微細な液体の成分を室内の目的の場所に目的の濃度で搬送し、空気を清浄にするため、空気砲発生装置を利用する技術が開示されている。 For example, Patent Document 1 discloses a technique of using an air cannon generator to convey a gas or fine liquid component to a target place in a room at a target concentration and purify the air.
特開2008-188189号公報Japanese Unexamined Patent Publication No. 2008-188189
 しかしながら、空気中を浮遊するウイルスなどのエアロゾルが浄化の対象物である場合、エアロゾルが空気中を移動しうるため、浄化成分とエアロゾルとの接触確率が悪くなる。このため、エアロゾルの浄化を効率良く行うことができない。 However, when an aerosol such as a virus floating in the air is the object of purification, the aerosol can move in the air, so that the contact probability between the purification component and the aerosol becomes worse. Therefore, it is not possible to efficiently purify the aerosol.
 そこで、本開示は、空気中に浮遊するエアロゾルを効率良く浄化することができる浄化方法及び浄化システムを提供する。 Therefore, the present disclosure provides a purification method and a purification system capable of efficiently purifying an aerosol floating in the air.
 本開示の一態様に係る浄化方法は、光センサと、浄化部と、を含む浄化システムを用いる。前記浄化方法は、前記光センサを用いて、対象空間内に浮遊するエアロゾルで散乱した散乱光を検知することにより、前記エアロゾルの位置及び量を特定することと、前記エアロゾルの前記量が閾値を超えた場合に、前記浄化部により前記エアロゾルを浄化することと、を含む。 The purification method according to one aspect of the present disclosure uses a purification system including an optical sensor and a purification unit. In the purification method, the position and amount of the aerosol are specified by detecting the scattered light scattered by the aerosol floating in the target space by using the optical sensor, and the amount of the aerosol sets a threshold value. When the amount is exceeded, the aerosol is purified by the purification unit.
 また、本開示の一態様に係る浄化システムは、光センサと、浄化部と、を備える。前記光センサは、対象空間内に浮遊するエアロゾルで散乱した散乱光を検知することにより、前記エアロゾルの位置及び量を特定する。前記浄化部は、前記エアロゾルの前記量が閾値を超えた場合に、前記エアロゾルを浄化する。 Further, the purification system according to one aspect of the present disclosure includes an optical sensor and a purification unit. The optical sensor identifies the position and amount of the aerosol by detecting scattered light scattered by the aerosol floating in the target space. The purification unit purifies the aerosol when the amount of the aerosol exceeds a threshold value.
 また、本開示の一態様は、上記浄化方法をコンピュータに実行させるプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な非一時的な記録媒体として実現することもできる。 Further, one aspect of the present disclosure can be realized as a program for causing a computer to execute the above purification method. Alternatively, it can be realized as a computer-readable non-temporary recording medium in which the program is stored.
 本開示によれば、空気中に浮遊するエアロゾルを効率良く浄化することができる。 According to the present disclosure, aerosols floating in the air can be efficiently purified.
図1は、実施の形態1に係る浄化システムの構成を示す図である。FIG. 1 is a diagram showing a configuration of a purification system according to the first embodiment. 図2は、実施の形態1に係る浄化システムの動作を示すフローチャートである。FIG. 2 is a flowchart showing the operation of the purification system according to the first embodiment. 図3は、実施の形態1に係る浄化システムによる浄化の様子を模式的に示す図である。FIG. 3 is a diagram schematically showing a state of purification by the purification system according to the first embodiment. 図4は、実施の形態1に係る浄化システムの動作のうち、エアロゾルの検出処理を示すフローチャートである。FIG. 4 is a flowchart showing an aerosol detection process in the operation of the purification system according to the first embodiment. 図5は、実施の形態1に係るエアロゾル計測装置が出射するマルチレーザ光のスペクトルの一例を示す図である。FIG. 5 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device according to the first embodiment. 図6は、実施の形態1に係るエアロゾル計測装置の光学素子を通過する第0の透過光及び第1の透過光を説明するための図である。FIG. 6 is a diagram for explaining the 0th transmitted light and the 1st transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment. 図7は、実施の形態1に係るエアロゾル計測装置の光学素子を通過する第0の透過光及び第2の透過光を説明するための図である。FIG. 7 is a diagram for explaining the 0th transmitted light and the 2nd transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment. 図8は、実施の形態1に係るエアロゾル計測装置が出射したマルチレーザ光を散乱させることで発生する散乱光のスペクトルの一例を示す図である。FIG. 8 is a diagram showing an example of a spectrum of scattered light generated by scattering the multi-laser light emitted by the aerosol measuring device according to the first embodiment. 図9は、ミー散乱光とレイリー散乱光とを含む散乱光をマイケルソン干渉計で干渉させた場合のインターフェログラムの計算結果を表す図である。FIG. 9 is a diagram showing a calculation result of an interferogram when scattered light including Mie scattered light and Rayleigh scattered light is interfered with by a Michelson interferometer. 図10は、図9の一部を拡大して示す図である。FIG. 10 is an enlarged view of a part of FIG. 図11は、エアロゾルによる散乱がなく、大気散乱だけを考慮した場合のマイケルソン干渉計による干渉フリンジの周波数間隔の依存性を説明するための図である。FIG. 11 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when there is no scattering by the aerosol and only the atmospheric scattering is considered. 図12は、実施の形態1の変形例1に係る浄化システムによる浄化の様子を模式的に示す図である。FIG. 12 is a diagram schematically showing a state of purification by the purification system according to the first modification of the first embodiment. 図13は、実施の形態1の変形例2に係る浄化システムによる浄化の様子を模式的に示す図である。FIG. 13 is a diagram schematically showing a state of purification by the purification system according to the second modification of the first embodiment. 図14は、実施の形態1の変形例3に係る浄化システムによる浄化の様子を模式的に示す図である。FIG. 14 is a diagram schematically showing a state of purification by the purification system according to the third modification of the first embodiment. 図15は、実施の形態2に係る浄化システムの構成と、当該浄化システムによる浄化の様子の一例を示す図である。FIG. 15 is a diagram showing an example of the configuration of the purification system according to the second embodiment and the state of purification by the purification system. 図16は、実施の形態2に係る浄化システムの動作を示すフローチャートである。FIG. 16 is a flowchart showing the operation of the purification system according to the second embodiment. 図17は、実施の形態2に係る浄化システムの動作のうち、回避処理を示すフローチャートである。FIG. 17 is a flowchart showing an avoidance process in the operation of the purification system according to the second embodiment. 図18は、実施の形態2に係る浄化システムによる浄化の様子の別の例を模式的に示す図である。FIG. 18 is a diagram schematically showing another example of the state of purification by the purification system according to the second embodiment. 図19は、実施の形態3に係る浄化システムの構成を示す図である。FIG. 19 is a diagram showing a configuration of a purification system according to the third embodiment.
 (本開示の概要)
 本開示の一態様に係る浄化方法は、光センサと、浄化部と、を含む浄化システムを用いる。前記浄化方法は、前記光センサを用いて、対象空間内に浮遊するエアロゾルで散乱した散乱光を検知することにより、前記エアロゾルの位置及び量を特定することと、前記エアロゾルの前記量が閾値を超えた場合に、前記浄化部により前記エアロゾルを浄化することと、を含む。
(Summary of this disclosure)
The purification method according to one aspect of the present disclosure uses a purification system including an optical sensor and a purification unit. In the purification method, the position and amount of the aerosol are specified by detecting the scattered light scattered by the aerosol floating in the target space by using the optical sensor, and the amount of the aerosol sets a threshold value. When the amount is exceeded, the aerosol is purified by the purification unit.
 これにより、閾値を超えた量のエアロゾルをまとめて浄化することができるので、空気中に浮遊するエアロゾルを効率良く浄化することができる。 As a result, the amount of aerosol exceeding the threshold value can be collectively purified, so that the aerosol floating in the air can be efficiently purified.
 また、例えば、前記浄化することにおいて、前記浄化部は、前記エアロゾルの前記位置に気体又は液体を放出してもよい。 Further, for example, in the purification, the purification unit may release a gas or a liquid to the position of the aerosol.
 これにより、気体によってエアロゾルの濃度を低下させることにより、エアロゾルの危険度が下がり、健康被害の発生を抑制することができる。あるいは、例えば、エアロゾルを無害化する能力を有する液体を用いることによって、エアロゾルを効率良く浄化することができる。 As a result, by lowering the concentration of aerosol by gas, the risk of aerosol is lowered and the occurrence of health damage can be suppressed. Alternatively, for example, the aerosol can be efficiently purified by using a liquid having the ability to detoxify the aerosol.
 また、例えば、前記浄化部は、前記エアロゾルを吸い込む吸引口を含み、前記浄化することにおいて、前記浄化部は、前記吸引口から前記エアロゾルを吸い込むことにより、前記エアロゾルを捕集又は無害化してもよい。 Further, for example, the purification unit includes a suction port for sucking the aerosol, and in the purification, the purification unit may collect or detoxify the aerosol by sucking the aerosol from the suction port. Good.
 これにより、吸い込んだエアロゾルを捕集又は無害化することで、浄化部からエアロゾルが対象空間に放出されないようすることができ、対象空間内のエアロゾルを効率良く減らすことができる。 As a result, by collecting or detoxifying the sucked aerosol, it is possible to prevent the aerosol from being released from the purification unit into the target space, and it is possible to efficiently reduce the aerosol in the target space.
 また、例えば、前記浄化部は、前記エアロゾルを吸い込む気流を生成することにより、前記吸引口から前記エアロゾルを吸い込んでもよい。 Further, for example, the purification unit may suck the aerosol from the suction port by generating an air flow for sucking the aerosol.
 これにより、吸引口を介してエアロゾルを吸い込むことで、対象空間内のエアロゾルを減らすことができる。 As a result, the aerosol in the target space can be reduced by sucking the aerosol through the suction port.
 また、例えば、前記浄化システムは、気流生成装置をさらに含み、前記浄化することにおいて、前記気流生成装置は、前記エアロゾルの前記位置に気流を放出してもよい。 Further, for example, the purification system further includes an airflow generator, and in the purification, the airflow generator may discharge an airflow to the position of the aerosol.
 これにより、気流によってエアロゾルを浄化しやすい位置に導くことができるので、空気中に浮遊するエアロゾルを効率良く浄化することができる。 As a result, the aerosol can be guided to a position where it is easy to purify by the air flow, so that the aerosol floating in the air can be efficiently purified.
 また、例えば、前記浄化システムは、前記対象空間の外部に向けて開口する排出口をさらに含み、前記浄化することは、前記気流によって導かれたエアロゾルを前記排出口から前記外部に排出することを含んでもよい。 Further, for example, the purification system further includes a discharge port that opens toward the outside of the target space, and the purification means that the aerosol guided by the air flow is discharged from the discharge port to the outside. It may be included.
 これにより、気流でエアロゾルを排出口から排出することができるので、対象空間内のエアロゾルを簡単に効率良く減らすことができる。 As a result, the aerosol can be discharged from the discharge port by the air flow, so that the aerosol in the target space can be easily and efficiently reduced.
 また、例えば、前記浄化システムは、前記対象空間内にある物体の位置を検出するセンサをさらに含み、前記浄化方法は、前記センサを用いて前記物体が人物又は動物であるか否かを識別することをさらに含んでもよい。 Further, for example, the purification system further includes a sensor for detecting the position of an object in the target space, and the purification method uses the sensor to identify whether or not the object is a person or an animal. It may further include that.
 これにより、物体が人物又は動物であるか否かを識別することができるので、人物又は動物に気流などを当てないようにすることができる。 With this, it is possible to identify whether or not the object is a person or an animal, so that it is possible to prevent the person or the animal from being exposed to an air flow or the like.
 また、例えば、前記浄化システムは、気流生成装置をさらに含み、前記識別することにおいて、前記物体が人物又は動物であると識別された場合、前記気流生成装置は、前記エアロゾルが、前記物体との接触を避けて前記浄化部まで至る回避経路を決定し、前記浄化することにおいて、前記気流生成装置は、前記回避経路に沿って前記エアロゾルを前記浄化部に導く気流を生成してもよい。 Also, for example, the purification system further includes an airflow generator, and when the object is identified as a person or an animal in the identification, the airflow generator will have the aerosol with the object. In determining an avoidance path to the purification section while avoiding contact and purifying the purification, the airflow generator may generate an airflow that guides the aerosol to the purification section along the avoidance path.
 これにより、対象空間内に存在する物体とエアロゾルとの接触を回避しやすくなるので、物体に妨げられずにエアロゾルを効率良く浄化することができる。 This makes it easier to avoid contact between the object existing in the target space and the aerosol, so that the aerosol can be efficiently purified without being disturbed by the object.
 また、例えば、前記気流生成装置は、前記物体の移動経路を予測し、前記エアロゾルが、前記移動経路に沿って移動する前記物体との接触を避けて前記浄化部まで至ることができる経路を前記回避経路として決定してもよい。 Further, for example, the airflow generator predicts the movement path of the object, and the path that the aerosol can reach the purification unit while avoiding contact with the object moving along the movement path is described. It may be determined as an avoidance route.
 これにより、物体が移動している場合に、移動中の物体とエアロゾルとの接触を回避しやすくすることができる。 This makes it easier to avoid contact between the moving object and the aerosol when the object is moving.
 また、例えば、前記物体は、人物又は動物であってもよい。 Further, for example, the object may be a person or an animal.
 これにより、エアロゾルがウイルスを含む場合には、人又は動物に対する健康被害が発生する可能性がある。人又は動物とエアロゾルとの接触を回避しやすくすることができるので、健康被害の発生を抑制することができる。 As a result, if the aerosol contains a virus, there is a possibility of causing health hazards to humans or animals. Since it is possible to easily avoid contact between humans or animals and aerosols, it is possible to suppress the occurrence of health hazards.
 また、例えば、前記特定することにおいて、前記光センサは、互いに等しい周波数間隔で離れた複数のピークを有する光を前記対象空間内に出射し、前記周波数間隔は、大気を構成する分子によるレイリー散乱光の周波数のピークの半値幅未満であってもよい。 Further, for example, in the above-mentioned identification, the optical sensor emits light having a plurality of peaks separated from each other at the same frequency interval into the target space, and the frequency interval is Rayleigh scattering by molecules constituting the atmosphere. It may be less than the half width of the peak of the frequency of light.
 光センサは、例えば、出射した光のエアロゾルによる散乱光を受光することで、エアロゾルの有無及び濃度を検出することができる。このとき、受光する光には、エアロゾルに起因するミー散乱光だけでなく、大気を構成する分子に起因するレイリー散乱光が含まれる。本態様に係る光センサによれば、干渉を利用することでレイリー散乱光を受光の際に除去することができるので、エアロゾルを精度良く検出することができる。 The optical sensor can detect the presence / absence and concentration of the aerosol by receiving the scattered light of the emitted light by the aerosol, for example. At this time, the received light includes not only Mie scattered light caused by the aerosol but also Rayleigh scattered light caused by the molecules constituting the atmosphere. According to the optical sensor according to this aspect, the Rayleigh scattered light can be removed at the time of receiving the light by utilizing the interference, so that the aerosol can be detected with high accuracy.
 また、例えば、前記浄化システムは、前記エアロゾルの前記位置に前記エアロゾルを無害化する薬剤を放出する浄化装置をさらに含んでもよい。 Further, for example, the purification system may further include a purification device that releases a chemical that detoxifies the aerosol at the position of the aerosol.
 これにより、薬剤によってエアロゾルを直接的に無害化することができる。 This makes it possible to directly detoxify aerosols with chemicals.
 また、例えば、前記散乱光はミー散乱光を含んでもよい。 Further, for example, the scattered light may include Mie scattered light.
 これにより、大気を構成する分子よりも大きいエアロゾルを精度良く検出することができる。 This makes it possible to accurately detect aerosols that are larger than the molecules that make up the atmosphere.
 また、例えば、前記散乱光はレイリー散乱光を含んでもよい。 Further, for example, the scattered light may include Rayleigh scattered light.
 これにより、例えばエタロン等を利用してレイリー散乱光を除去することで、大気を構成する分子よりも大きいエアロゾルを精度良く検出することができる。 As a result, by removing Rayleigh scattered light using, for example, etalon, it is possible to accurately detect aerosols larger than the molecules that make up the atmosphere.
 また、本開示の一態様に係る浄化システムは、光センサと、浄化部と、を備える。前記光センサは、対象空間内に浮遊するエアロゾルで散乱した散乱光を検知することにより、前記エアロゾルの位置及び量を特定する。前記浄化部は、前記エアロゾルの前記量が閾値を超えた場合に、前記エアロゾルを浄化する。 Further, the purification system according to one aspect of the present disclosure includes an optical sensor and a purification unit. The optical sensor identifies the position and amount of the aerosol by detecting scattered light scattered by the aerosol floating in the target space. The purification unit purifies the aerosol when the amount of the aerosol exceeds a threshold value.
 これにより、閾値を超えた量のエアロゾルをまとめて浄化することができるので、空気中に浮遊するエアロゾルを効率良く浄化することができる。 As a result, the amount of aerosol exceeding the threshold value can be collectively purified, so that the aerosol floating in the air can be efficiently purified.
 本開示の一態様に係る浄化方法は、光センサを用いて対象空間内のエアロゾルを検出するステップと、前記エアロゾルの量が閾値を超えた場合に、前記エアロゾルを浄化部に導く気流を生成するステップと、前記浄化部が、前記気流によって導かれたエアロゾルを浄化するステップとを含む。 The purification method according to one aspect of the present disclosure includes a step of detecting an aerosol in a target space using an optical sensor and generating an air flow that guides the aerosol to a purification unit when the amount of the aerosol exceeds a threshold value. The purifying unit includes a step of purifying the aerosol guided by the air flow.
 これにより、光センサを用いてエアロゾルを検出し、検出したエアロゾルを気流で浄化部に導くことができる。エアロゾルの浄化を行う浄化部にエアロゾルが導かれるので、空気中に浮遊するエアロゾルを効率良く浄化することができる。 This makes it possible to detect aerosols using an optical sensor and guide the detected aerosols to the purification unit with an air flow. Since the aerosol is guided to the purification unit that purifies the aerosol, the aerosol floating in the air can be efficiently purified.
 なお、本明細書において「浄化」とは、対象空間内で検出されるエアロゾルを減らすことで、対象空間内で検出されるエアロゾルによる健康被害の発生を抑制することを意味する。また、本明細書において「浄化」とは、エアロゾルに含まれるウイルスを無害化すること、及び/又は、エアロゾルを対象空間から単に排出することも意味する。また、本明細書において「浄化」とは、エアロゾルの濃度を低下させることにより、エアロゾルの危険度が下がり、健康被害の発生を抑制することも意味する。 In addition, in the present specification, "purification" means to suppress the occurrence of health damage due to the aerosol detected in the target space by reducing the aerosol detected in the target space. In addition, "purification" as used herein also means detoxifying a virus contained in an aerosol and / or simply discharging the aerosol from a target space. Further, in the present specification, "purification" also means that by reducing the concentration of aerosol, the risk of aerosol is lowered and the occurrence of health damage is suppressed.
 また、例えば、前記浄化部は、前記対象空間に設けられた吸引口を含み、前記浄化するステップでは、前記気流によって導かれたエアロゾルを前記吸引口から吸い込んでもよい。 Further, for example, the purification unit includes a suction port provided in the target space, and in the purification step, the aerosol guided by the air flow may be sucked from the suction port.
 これにより、吸引口を介してエアロゾルを吸い込むことで、対象空間内のエアロゾルを減らすことができる。 As a result, the aerosol in the target space can be reduced by sucking the aerosol through the suction port.
 また、例えば、前記浄化するステップでは、さらに、前記吸引口から吸い込んだエアロゾルを捕集又は無害化してもよい。 Further, for example, in the purification step, the aerosol sucked from the suction port may be further collected or rendered harmless.
 これにより、吸い込んだエアロゾルを捕集又は無害化することで、浄化部からエアロゾルが対象空間に放出されないようすることができ、対象空間内のエアロゾルを効率良く減らすことができる。 As a result, by collecting or detoxifying the sucked aerosol, it is possible to prevent the aerosol from being released from the purification unit into the target space, and it is possible to efficiently reduce the aerosol in the target space.
 また、例えば、前記浄化部は、前記対象空間と当該対象空間の外部とを連通する排出口を含み、前記浄化するステップでは、前記気流によって導かれたエアロゾルを前記排出口から前記外部に排出してもよい。 Further, for example, the purification unit includes a discharge port that communicates the target space with the outside of the target space, and in the purification step, the aerosol guided by the air flow is discharged from the discharge port to the outside. You may.
 これにより、気流でエアロゾルを排出口から排出することができるので、対象空間内のエアロゾルを簡単に効率良く減らすことができる。 As a result, the aerosol can be discharged from the discharge port by the air flow, so that the aerosol in the target space can be easily and efficiently reduced.
 また、例えば、本開示の一態様に係る浄化方法は、さらに、物体を検出するステップと、前記エアロゾルが前記物体との接触を避けて前記浄化部まで至ることができる回避経路を決定するステップとを含み、前記生成するステップでは、前記エアロゾルの量が前記閾値を超えた場合に、前記回避経路に沿って前記エアロゾルを導く前記気流を生成してもよい。 Further, for example, the purification method according to one aspect of the present disclosure further includes a step of detecting an object and a step of determining an avoidance route capable of the aerosol avoiding contact with the object and reaching the purification unit. In the step of producing, the airflow that guides the aerosol along the avoidance path may be generated when the amount of the aerosol exceeds the threshold.
 これにより、対象空間内に存在する物体とエアロゾルとの接触を回避しやすくなるので、物体に妨げられずにエアロゾルを効率良く浄化することができる。 This makes it easier to avoid contact between the object existing in the target space and the aerosol, so that the aerosol can be efficiently purified without being disturbed by the object.
 また、例えば、前記決定するステップでは、前記物体が検出された位置を通過しない経路を前記回避経路として決定してもよい。 Further, for example, in the step of determining, a route that does not pass the position where the object is detected may be determined as the avoidance route.
 これにより、物体が静止している場合に、物体とエアロゾルとの接触を回避しやすくすることができる。 This makes it easier to avoid contact between the object and the aerosol when the object is stationary.
 また、例えば、本開示の一態様に係る浄化方法は、さらに、前記物体の移動経路を予測するステップを含み、前記決定するステップでは、前記エアロゾルが、前記移動経路に沿って移動する前記物体との接触を避けて前記浄化部まで至ることができる経路を前記回避経路として決定してもよい。 Further, for example, the purification method according to one aspect of the present disclosure further includes a step of predicting a movement path of the object, and in the determination step, the aerosol moves with the object moving along the movement path. The route that can reach the purification unit while avoiding the contact with the above may be determined as the avoidance route.
 これにより、物体が移動している場合に、移動中の物体とエアロゾルとの接触を回避しやすくすることができる。 This makes it easier to avoid contact between the moving object and the aerosol when the object is moving.
 また、例えば、前記物体を検出するステップでは、前記光センサと異なるセンサを用いて前記物体を検出してもよい。 Further, for example, in the step of detecting the object, the object may be detected by using a sensor different from the optical sensor.
 これにより、物体を検出する専用のセンサを利用することができるので、物体の検出精度を高めることができる。物体の検出精度が高まることにより、物体とエアロゾルとの接触を回避しやすくなり、エアロゾルを効率良く浄化することができる。 As a result, a dedicated sensor for detecting an object can be used, so that the accuracy of detecting an object can be improved. By increasing the detection accuracy of the object, it becomes easy to avoid the contact between the object and the aerosol, and the aerosol can be efficiently purified.
 また、例えば、前記周波数間隔は、3.9GHz以下であってもよい。 Further, for example, the frequency interval may be 3.9 GHz or less.
 これにより、干渉を利用することでレイリー散乱光を充分に抑制することができるので、受光器には、エアロゾルに基づくミー散乱光を受光させることができる。したがって、受光器による受光強度に基づいてエアロゾルの有無及び濃度を容易に計測することができる。 As a result, Rayleigh scattered light can be sufficiently suppressed by utilizing interference, so that the receiver can receive Mie scattered light based on the aerosol. Therefore, the presence / absence and concentration of aerosol can be easily measured based on the intensity of light received by the light receiver.
 また、例えば、前記光センサは、光源及びエタロンを含み、前記複数本のピークを有する光は、前記光源から発せられて前記エタロンを通過した光であってもよい。 Further, for example, the optical sensor includes a light source and an etalon, and the light having a plurality of peaks may be light emitted from the light source and passed through the etalon.
 これにより、エタロンを利用することで、マイケルソン干渉計を用いる場合に比べて部品点数を削減することができるので、光センサの構造を簡単にすることができる。また、エタロンによってレイリー散乱光を除去することができるので、複雑な信号処理を必要とせず、受光器による受光強度に基づいてエアロゾルを簡単に精度良く検出することができる。 As a result, by using Etalon, the number of parts can be reduced compared to the case of using a Michelson interferometer, so the structure of the optical sensor can be simplified. In addition, since Rayleigh scattered light can be removed by etalon, the aerosol can be easily and accurately detected based on the light receiving intensity of the light receiver without requiring complicated signal processing.
 また、例えば、本開示の一態様に係る浄化システムは、対象空間内のエアロゾルを検出する光センサと、浄化部と、前記エアロゾルの量が閾値を超えた場合に、前記エアロゾルを前記浄化部に導く気流を生成する生成装置とを備え、前記浄化部は、前記気流によって導かれたエアロゾルを浄化する。 Further, for example, the purification system according to one aspect of the present disclosure includes an optical sensor for detecting an aerosol in a target space, a purification unit, and the aerosol to the purification unit when the amount of the aerosol exceeds a threshold value. The purification unit is provided with a generator for generating a guided air flow, and the purification unit purifies the aerosol guided by the air flow.
 これにより、光センサを用いてエアロゾルを検出し、検出したエアロゾルを気流で浄化部に導くことができる。エアロゾルの浄化を行う浄化部にエアロゾルが導かれるので、空気中に浮遊するエアロゾルを効率良く浄化することができる。 This makes it possible to detect aerosols using an optical sensor and guide the detected aerosols to the purification unit with an air flow. Since the aerosol is guided to the purification unit that purifies the aerosol, the aerosol floating in the air can be efficiently purified.
 本開示において、回路、ユニット、装置、部材又は部の全部又は一部、又はブロック図の機能ブロックの全部又は一部は、半導体装置、半導体集積回路(IC)、又はLSI(Large Scale Integration)を含む一つ又は複数の電子回路によって実行されてもよい。LSI又はICは、一つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、一つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In the present disclosure, all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram, is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (Large Scale Integration). It may be executed by one or more electronic circuits including. The LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips. For example, functional blocks other than the storage element may be integrated on one chip. Here, it is called an LSI or an IC, but the name changes depending on the degree of integration, and it may be called a system LSI, a VLSI (Very Large Scale Integration), or a ULSI (Ultra Large Scale Integration). A Field Programmable Gate Array (FPGA) programmed after the LSI is manufactured, or a reconfigurable logistic device capable of reconfiguring the junction relationship inside the LSI or setting up the circuit partition inside the LSI can also be used for the same purpose.
 さらに、回路、ユニット、装置、部材又は部の全部又は一部の機能又は操作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは一つ又は複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システム又は装置は、ソフトウェアが記録されている一つ又は複数の非一時的記録媒体、処理装置(processor)、及び必要とされるハードウェアデバイス、例えばインタフェース、を備えていてもよい。 Furthermore, all or part of the functions or operations of circuits, units, devices, members or parts can be executed by software processing. In this case, the software is recorded on one or more ROMs, optical disks, non-temporary recording media such as hard disk drives, and when the software is executed by a processor, the functions identified by the software are It is executed by a processor and peripheral devices. The system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware device, such as an interface.
 以下では、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, the embodiment will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that all of the embodiments described below show comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, etc. shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims will be described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic view and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
 また、本明細書において、直交又は一致などの要素間の関係性を示す用語、及び、円柱又は角柱などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Further, in the present specification, terms indicating relationships between elements such as orthogonality or coincidence, terms indicating the shape of elements such as cylinders or prisms, and numerical ranges are not expressions expressing only strict meanings. , Is an expression meaning that a substantially equivalent range, for example, a difference of about several percent is included.
 (実施の形態1)
 [1.構成]
 まず、実施の形態1に係る浄化システムの構成について、図1を用いて説明する。図1は、本実施の形態に係る浄化システム1の構成を示す図である。
(Embodiment 1)
[1. Constitution]
First, the configuration of the purification system according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of a purification system 1 according to the present embodiment.
 図1に示されるように、浄化システム1は、エアロゾル計測装置100と、気流生成装置110と、浄化部120とを備える。浄化システム1では、エアロゾル計測装置100がエアロゾル90を検出し、気流生成装置110が生成する気流112によって、検出されたエアロゾル90を浄化部120まで導き、導かれたエアロゾル90を浄化部120が浄化する。 As shown in FIG. 1, the purification system 1 includes an aerosol measuring device 100, an airflow generating device 110, and a purification unit 120. In the purification system 1, the aerosol measuring device 100 detects the aerosol 90, the detected aerosol 90 is guided to the purification unit 120 by the air flow 112 generated by the air flow generator 110, and the guided aerosol 90 is purified by the purification unit 120. To do.
 [1-1.エアロゾル計測装置]
 エアロゾル計測装置100は、光センサの一例である。図1に示されるように、エアロゾル計測装置100は、対象空間内の空気中に照射光L2を出射し、空気中に浮遊するエアロゾル90が照射光L2を散乱させることで発生する散乱光L3を取得する。エアロゾル計測装置100は、取得した散乱光L3を処理することで、エアロゾル90を計測する。
[1-1. Aerosol measuring device]
The aerosol measuring device 100 is an example of an optical sensor. As shown in FIG. 1, the aerosol measuring device 100 emits the irradiation light L2 into the air in the target space, and the aerosol 90 floating in the air scatters the irradiation light L2 to generate scattered light L3. get. The aerosol measuring device 100 measures the aerosol 90 by processing the acquired scattered light L3.
 対象空間は、例えば、住居、オフィス、介護施設又は病院などの建物の一部屋である。対象空間は、例えば、壁、窓、ドア、床及び天井などで仕切られた空間であり、閉じられた空間であるが、これに限らない。対象空間は、屋外の開放された空間であってもよい。また、対象空間は、バス又は飛行機などの移動体の内部空間であってもよい。 The target space is, for example, a room in a building such as a residence, office, long-term care facility, or hospital. The target space is, for example, a space partitioned by walls, windows, doors, floors, ceilings, etc., and is a closed space, but is not limited to this. The target space may be an outdoor open space. Further, the target space may be the internal space of a moving body such as a bus or an airplane.
 計測対象物であるエアロゾル90は、例えば、対象空間内を浮遊している塵埃、PM2.5などの浮遊粒子状物質、生物系粒子、又は、微小水滴などである。生物系粒子には、空気中に浮遊するカビ若しくはダニ、又は花粉などが含まれる。また、微小水滴には、咳又はくしゃみなどの人体から動的に発生する物質が含まれる。 The aerosol 90 to be measured is, for example, dust floating in the target space, suspended particulate matter such as PM2.5, biological particles, or minute water droplets. Biological particles include molds or mites floating in the air, pollen and the like. In addition, minute water droplets include substances dynamically generated from the human body such as coughing or sneezing.
 エアロゾル90は、空気を構成する分子に比べて十分に大きい。本実施の形態では、エアロゾル90の粒径が照射光L2の波長以上であるので、エアロゾル90は、照射光L2を散乱させることでミー散乱光を発生させる。 Aerosol 90 is sufficiently large compared to the molecules that make up air. In the present embodiment, since the particle size of the aerosol 90 is equal to or larger than the wavelength of the irradiation light L2, the aerosol 90 scatters the irradiation light L2 to generate Mie scattered light.
 なお、散乱光L3を発生させる要因物質には、エアロゾル90だけでなく、空気を構成する分子も含まれる。空気を構成する分子は、照射光L2の波長よりも十分に小さいので、照射光L2を散乱させることでレイリー散乱光を発生させる。 The causative substance that generates scattered light L3 includes not only aerosol 90 but also molecules constituting air. Since the molecules constituting air are sufficiently smaller than the wavelength of the irradiation light L2, Rayleigh scattered light is generated by scattering the irradiation light L2.
 したがって、エアロゾル計測装置100が取得する散乱光L3には、ミー散乱光とレイリー散乱光とが含まれる。ここでのミー散乱光は、ミー散乱による後方散乱光である。本実施の形態に係るエアロゾル計測装置100は、散乱光L3からミー散乱光を抽出し、抽出したミー散乱光に基づいてエアロゾル90の有無及び濃度を計測する。 Therefore, the scattered light L3 acquired by the aerosol measuring device 100 includes Mie scattered light and Rayleigh scattered light. The Mie scattered light here is backscattered light due to Mie scattering. The aerosol measuring device 100 according to the present embodiment extracts Mie scattered light from the scattered light L3, and measures the presence / absence and concentration of the aerosol 90 based on the extracted Mie scattered light.
 本実施の形態に係るエアロゾル計測装置100は、対象空間内の異なる方向に向けて照射光L2を出射する。照射光L2の出射方向は、例えば、MEMS(Micro-Electro-Mechanical Systems)ミラー(図示せず)などによって変更される。あるいは、エアロゾル計測装置100全体の向きを変更することで、照射光L2の出射方向が変更されてもよい。エアロゾル計測装置100は、対象空間内を走査することにより、対象空間内のエアロゾル90の分布を作成することができる。 The aerosol measuring device 100 according to the present embodiment emits the irradiation light L2 in different directions in the target space. The emission direction of the irradiation light L2 is changed by, for example, a MEMS (Micro-Electro-Mechanical Systems) mirror (not shown). Alternatively, the emission direction of the irradiation light L2 may be changed by changing the direction of the entire aerosol measuring device 100. The aerosol measuring device 100 can create a distribution of aerosols 90 in the target space by scanning the target space.
 図1に示されるように、エアロゾル計測装置100は、光学素子10と、光源20と、ミラー22と、集光部30と、集光レンズ40と、受光器50と、分析部60とを備える。なお、集光部30の一例が集光レンズ30aである。以下では、エアロゾル計測装置100が備える各構成要素について説明する。 As shown in FIG. 1, the aerosol measuring device 100 includes an optical element 10, a light source 20, a mirror 22, a condensing unit 30, a condensing lens 40, a receiver 50, and an analysis unit 60. .. An example of the condensing unit 30 is a condensing lens 30a. Hereinafter, each component included in the aerosol measuring device 100 will be described.
 光学素子10は、入射する光を内部で干渉させることにより、互いに等しい周波数間隔で離れた複数本のピークを有する光として出射する。複数本のピークを有する光は、マルチ光とも呼称される。本実施の形態では、光学素子10は、単一の光学素子である。つまり、光学素子10は、一体的に構成された1つの部材である。光学素子10の形状は、例えば、円柱体又は角柱体などである。光学素子10は、具体的にはエタロンである。 The optical element 10 internally interferes with the incident light to emit light having a plurality of peaks separated from each other at equal frequency intervals. Light having a plurality of peaks is also called multi-light. In the present embodiment, the optical element 10 is a single optical element. That is, the optical element 10 is one member integrally configured. The shape of the optical element 10 is, for example, a cylinder or a prism. Specifically, the optical element 10 is an etalon.
 図1に示されるように、光学素子10は、透光部11と、2つの多層膜12及び13とを有する。透光部11は、例えば石英又は水晶などの透明な材料を用いて形成されている。透光部11は、2つの多層膜12及び13に挟まれており、2つの多層膜12及び13の各々に接触している。2つの多層膜12及び13はそれぞれ、複数の誘電体膜の積層構造を有する誘電体多層膜である。例えば、2つの多層膜12及び13はそれぞれ、屈折率が低い誘電体膜と屈折率が高い誘電体膜とを交互に積層されることで形成されている。誘電体膜としては、例えば、チタン酸化膜、ハフニウム酸化膜、シリコン酸化膜などが用いられる。なお、透光部11は、空気層であってもよく、2つの多層膜12及び13は、一定距離を保つように枠体などによって固定されていてもよい。 As shown in FIG. 1, the optical element 10 has a light transmitting portion 11 and two multilayer films 12 and 13. The translucent portion 11 is formed by using a transparent material such as quartz or quartz. The translucent portion 11 is sandwiched between the two multilayer films 12 and 13, and is in contact with each of the two multilayer films 12 and 13. The two multilayer films 12 and 13 are dielectric multilayer films having a laminated structure of a plurality of dielectric films, respectively. For example, the two multilayer films 12 and 13 are each formed by alternately laminating a dielectric film having a low refractive index and a dielectric film having a high refractive index. As the dielectric film, for example, a titanium oxide film, a hafnium oxide film, a silicon oxide film, or the like is used. The light transmitting portion 11 may be an air layer, and the two multilayer films 12 and 13 may be fixed by a frame or the like so as to maintain a constant distance.
 光学素子10は、光源20から発せられた出射光L1を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光である照射光L2として出射する。照射光L2は、マルチレーザ光である。本実施の形態では、出射光L1は、光学素子10の多層膜12から入射し、多層膜13から出射される。多層膜12の、透光部11に接する面とは反対側の第1面12aは、出射光L1が入射する入射面である。多層膜13の、透光部11と接する面とは反対側の第2面13aは、照射光L2が出射される出射面である。出射面である第2面13aは、入射面である第1面12aとは反対側の面である。第1面12aと第2面13aとは、互いに平行である。第1面12a及び第2面13aに直交する方向は、光学素子10の中心軸に平行である。 The optical element 10 internally interferes with the emitted light L1 emitted from the light source 20 and emits it as irradiation light L2 which is light having a plurality of peaks separated from each other at equal frequency intervals. The irradiation light L2 is a multi-laser light. In the present embodiment, the emitted light L1 is incident on the multilayer film 12 of the optical element 10 and emitted from the multilayer film 13. The first surface 12a of the multilayer film 12 opposite to the surface in contact with the translucent portion 11 is an incident surface on which the emitted light L1 is incident. The second surface 13a of the multilayer film 13 opposite to the surface in contact with the translucent portion 11 is an exit surface from which the irradiation light L2 is emitted. The second surface 13a, which is the exit surface, is a surface opposite to the first surface 12a, which is the incident surface. The first surface 12a and the second surface 13a are parallel to each other. The direction orthogonal to the first surface 12a and the second surface 13a is parallel to the central axis of the optical element 10.
 また、光学素子10には、集光レンズ30aによって集光された散乱光L3が入射する。本実施の形態では、散乱光L3が、光学素子10の多層膜13から入射し、散乱光L3の一部であるミー散乱光L4が、多層膜12から出射される。多層膜13の第2面13aは、散乱光L3が入射する入射面である。多層膜12の第1面12aは、ミー散乱光L4が出射される出射面である。つまり、出射光L1の入射面と散乱光L3の入射面とは異なっている。なお、ミラーなどを利用して、出射光L1の入射面と散乱光L3の入射面とが同じ面であってもよい。 Further, the scattered light L3 condensed by the condenser lens 30a is incident on the optical element 10. In the present embodiment, the scattered light L3 is incident from the multilayer film 13 of the optical element 10, and the Mie scattered light L4, which is a part of the scattered light L3, is emitted from the multilayer film 12. The second surface 13a of the multilayer film 13 is an incident surface on which scattered light L3 is incident. The first surface 12a of the multilayer film 12 is an exit surface from which the Mie scattered light L4 is emitted. That is, the incident surface of the emitted light L1 and the incident surface of the scattered light L3 are different. The incident surface of the emitted light L1 and the incident surface of the scattered light L3 may be the same surface by using a mirror or the like.
 また、図1に示されるように、光学素子10は、出射光L1が通過する経路を含む第1部分10aと、散乱光L3が通過する経路を含む第2部分10bとを有する。図1では、第1部分10aと第2部分10bとの境界を破線で模式的に表している。第1部分10aと第2部分10bとは、互いに異なる部分である。例えば、光学素子10が円柱状のエタロンである場合、第1部分10aと第2部分10bとは、中心軸を含む面で仮想的にエタロンを分割したときの半円柱状の部分に相当する。なお、円柱状のエタロンの円形の上面及び底面が光の入射面及び出射面に相当する。 Further, as shown in FIG. 1, the optical element 10 has a first portion 10a including a path through which the emitted light L1 passes and a second portion 10b including a path through which the scattered light L3 passes. In FIG. 1, the boundary between the first portion 10a and the second portion 10b is schematically represented by a broken line. The first portion 10a and the second portion 10b are different portions from each other. For example, when the optical element 10 is a columnar etalon, the first portion 10a and the second portion 10b correspond to a semi-cylindrical portion when the etalon is virtually divided on a surface including the central axis. The circular upper and lower surfaces of the cylindrical etalon correspond to the entrance surface and the emission surface of light.
 なお、第1部分10aと第2部分10bとはそれぞれ、別のエタロンであってもよい。つまり、エアロゾル計測装置100は、出射光L1用のエタロンと、散乱光L3用のエタロンとである2つのエタロンを光学素子10として備えてもよい。 The first part 10a and the second part 10b may be different etalons. That is, the aerosol measuring device 100 may include two etalons, one for the emitted light L1 and the other for the scattered light L3, as the optical element 10.
 散乱光L3には、互いに等しい周波数間隔で離れた複数本のピークを有する光が含まれるので、光学素子10を通過する際に、それぞれの光が干渉を起こす。本実施の形態では、光学素子10の厚みが調整されており、散乱光L3に含まれるミー散乱光L4を通過させ、レイリー散乱光の通過を抑制する。これにより、散乱光L3からレイリー散乱光を適切に除去することができるので、エアロゾル90に起因するミー散乱光L4を受光器50に受光させることができる。 Since the scattered light L3 includes light having a plurality of peaks separated from each other at equal frequency intervals, each light causes interference when passing through the optical element 10. In the present embodiment, the thickness of the optical element 10 is adjusted so that the Mie scattered light L4 included in the scattered light L3 is passed and the Rayleigh scattered light is suppressed from passing. As a result, the Rayleigh scattered light can be appropriately removed from the scattered light L3, so that the Mie scattered light L4 caused by the aerosol 90 can be received by the receiver 50.
 本実施の形態では、光学素子10は、光源20から出射された出射光L1の光路上に位置している。具体的には、光学素子10は、ミラー22と、エアロゾル計測装置100の筐体に設けられた開口との間に位置している。当該開口は、光学素子10から出射される照射光L2が通過するために設けられている。さらに、光学素子10は、エアロゾル90から発生する散乱光L3の光路上に位置している。具体的には、光学素子10は、集光レンズ30aと集光レンズ40との間に位置している。 In the present embodiment, the optical element 10 is located on the optical path of the emitted light L1 emitted from the light source 20. Specifically, the optical element 10 is located between the mirror 22 and the opening provided in the housing of the aerosol measuring device 100. The opening is provided for the irradiation light L2 emitted from the optical element 10 to pass through. Further, the optical element 10 is located on the optical path of the scattered light L3 generated from the aerosol 90. Specifically, the optical element 10 is located between the condenser lens 30a and the condenser lens 40.
 光源20は、光学素子10を介して、照射光L2を大気中に出射する。具体的には、光源20は、出射光L1を発する。出射光L1は、例えばパルス光であるが、連続光であってもよい。出射光L1は、特定の波長帯域にピークを有する単色光であってもよく、ブロードな波長帯域を含む光であってもよい。出射光L1は、例えば、ピークの波長よりも10pmから10nm短い波長から、ピークの波長よりも10pmから10nm長い波長までの範囲の波長成分を含んでいる。出射光L1は、例えば、紫外光、青色光又は赤外光などである。出射光L1は、ミラー22で反射された後、光学素子10の内部での干渉により、互いに等しい周波数間隔で離れた複数のピークを有する光である照射光L2として大気中に出射される。 The light source 20 emits the irradiation light L2 into the atmosphere via the optical element 10. Specifically, the light source 20 emits the emitted light L1. The emitted light L1 is, for example, pulsed light, but may be continuous light. The emitted light L1 may be monochromatic light having a peak in a specific wavelength band, or light including a broad wavelength band. The emitted light L1 contains, for example, a wavelength component in the range from a wavelength 10 pm to 10 nm shorter than the peak wavelength to a wavelength 10 pm to 10 nm longer than the peak wavelength. The emitted light L1 is, for example, ultraviolet light, blue light, infrared light, or the like. After being reflected by the mirror 22, the emitted light L1 is emitted into the atmosphere as irradiation light L2, which is light having a plurality of peaks separated from each other at equal frequency intervals due to interference inside the optical element 10.
 光源20は、例えば、パルスレーザ光を出射光L1として発する半導体レーザ素子である。出射光L1のビームモードは、例えばマルチモードであるが、シングルモードであってもよい。一例として、光源20は、405nmの近傍にピークを有するレーザ光を出射光L1として発する。あるいは、光源20は、発光ダイオード(LED:Light Emitting Diode)素子であってもよい。また、光源20は、ハロゲンランプなどの放電ランプであってもよい。 The light source 20 is, for example, a semiconductor laser element that emits pulsed laser light as emitted light L1. The beam mode of the emitted light L1 is, for example, a multi-mode, but may be a single mode. As an example, the light source 20 emits a laser beam having a peak in the vicinity of 405 nm as the emitted light L1. Alternatively, the light source 20 may be a light emitting diode (LED: Light Emitting Diode) element. Further, the light source 20 may be a discharge lamp such as a halogen lamp.
 ミラー22は、出射光L1を反射する。出射光L1に対してミラー22を適切な角度で配置することにより、出射光L1の進路を所望の方向に曲げることができる。本実施の形態では、ミラー22は、出射光L1を反射して光学素子10に入射させる。なお、エアロゾル計測装置100は、ミラー22を備えなくてもよい。 The mirror 22 reflects the emitted light L1. By arranging the mirror 22 at an appropriate angle with respect to the emitted light L1, the course of the emitted light L1 can be bent in a desired direction. In the present embodiment, the mirror 22 reflects the emitted light L1 and causes it to enter the optical element 10. The aerosol measuring device 100 does not have to include the mirror 22.
 集光部30は、大気中に含まれるエアロゾル90を含む散乱体が照射光L2を散乱させることで発生する散乱光L3を集光するものである。集光部30の一例として、例えば、凸状の集光レンズ30a、又は、少なくとも1つの反射鏡などがある。例えば、集光レンズ30aで集光された光は、コリメートレンズを含むレンズ群により、平行光に変換されて出射される。集光レンズ30aによって集光された散乱光L3は、光学素子10に入射する。散乱光L3の信号強度が強い場合は、特に、集光部30が配置されていなくてもよい。 The light collecting unit 30 collects the scattered light L3 generated by the scattering body containing the aerosol 90 contained in the atmosphere scattering the irradiation light L2. As an example of the condensing unit 30, there is, for example, a convex condensing lens 30a, or at least one reflecting mirror. For example, the light collected by the condenser lens 30a is converted into parallel light by a lens group including a collimating lens and emitted. The scattered light L3 collected by the condenser lens 30a is incident on the optical element 10. When the signal intensity of the scattered light L3 is strong, the light collecting unit 30 may not be arranged.
 集光レンズ30aによって集光された散乱光L3は、光学素子10に入射する。本実施の形態では、散乱光L3は、光学素子10の第2面13aに対して正面から、すなわち、入射角が0°で入射する。 The scattered light L3 collected by the condenser lens 30a is incident on the optical element 10. In the present embodiment, the scattered light L3 is incident on the second surface 13a of the optical element 10 from the front, that is, at an incident angle of 0 °.
 集光レンズ40は、集光レンズ30aによって集光された散乱光L3のうち、光学素子10を通過したミー散乱光L4を集光する。集光レンズ40は、例えば凸レンズである。集光レンズ40は、受光器50の受光面にミー散乱光L4を集光する。 The condenser lens 40 collects the Mie scattered light L4 that has passed through the optical element 10 among the scattered light L3 condensed by the condenser lens 30a. The condenser lens 40 is, for example, a convex lens. The condenser lens 40 concentrates the Mie scattered light L4 on the light receiving surface of the receiver 50.
 受光器50は、集光レンズ30aによって集光された散乱光L3のうち、光学素子10を通過したミー散乱光L4を受光し、受光強度に応じた信号を出力する。受光強度は、ミー散乱光L4の強度であり、例えば、受光器50が出力する信号の信号レベルで表される。 The light receiver 50 receives the Mie scattered light L4 that has passed through the optical element 10 among the scattered light L3 collected by the condenser lens 30a, and outputs a signal corresponding to the light receiving intensity. The light receiving intensity is the intensity of the Mie scattered light L4, and is represented by, for example, the signal level of the signal output by the light receiver 50.
 受光器50は、光電変換を行う素子であり、例えば、PMT(Photomultiplier Tube)である。あるいは、受光器50は、PMTとフォトンカウンタとを有してもよい。また、受光器50は、アバランシェフォトダイオードであってもよい。 The light receiver 50 is an element that performs photoelectric conversion, for example, a PMT (Photomultiplier Tube). Alternatively, the receiver 50 may have a PMT and a photon counter. Further, the receiver 50 may be an avalanche photodiode.
 分析部60は、受光器50から出力された信号を分析することで、散乱体に含まれるエアロゾル90を分析する。例えば、分析部60は、信号の信号レベルに基づいてエアロゾル90の有無及び濃度を決定する。具体的には、分析部60は、信号レベルとエアロゾル90の濃度とを対応付けた対応情報を参照することで、信号レベルに対応するエアロゾル90の濃度を決定する。対応情報は、例えば、分析部60が備えるメモリ(図示せず)に予め記憶されている。 The analysis unit 60 analyzes the aerosol 90 contained in the scatterer by analyzing the signal output from the receiver 50. For example, the analysis unit 60 determines the presence / absence and concentration of the aerosol 90 based on the signal level of the signal. Specifically, the analysis unit 60 determines the concentration of the aerosol 90 corresponding to the signal level by referring to the correspondence information in which the signal level and the concentration of the aerosol 90 are associated with each other. Correspondence information is stored in advance in, for example, a memory (not shown) included in the analysis unit 60.
 また、分析部60は、照射光L2が出射されてからミー散乱光L4を受光するまでに要する時間に基づいて、TOF(Time Of Flight)方式によってエアロゾル90までの距離を算出する。分析部60は、算出した距離と照射光L2を出射した方向とに基づいて、対象空間内のエアロゾル90の位置を特定する。照射光L2の出射方向を変更しながらエアロゾル90の位置の特定を繰り返すことで、分析部60は、対象空間内でのエアロゾル90の分布を作成する。 Further, the analysis unit 60 calculates the distance to the aerosol 90 by the TOF (Time Of Flight) method based on the time required from the emission of the irradiation light L2 to the reception of the Mie scattered light L4. The analysis unit 60 identifies the position of the aerosol 90 in the target space based on the calculated distance and the direction in which the irradiation light L2 is emitted. By repeating the identification of the position of the aerosol 90 while changing the emission direction of the irradiation light L2, the analysis unit 60 creates the distribution of the aerosol 90 in the target space.
 分析部60は、複数の回路部品を含む1つ又は複数の電子回路で構成されている。1つ又は複数の電子回路はそれぞれ、汎用的な回路でもよく、専用の回路でもよい。つまり、分析部60が実行する機能は、電子回路などのハードウェアで実現される。あるいは、分析部60は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現されてもよい。分析部60が実行する機能は、プロセッサで実行されるソフトウェアで実現されてもよい。 The analysis unit 60 is composed of one or a plurality of electronic circuits including a plurality of circuit components. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit. That is, the function executed by the analysis unit 60 is realized by hardware such as an electronic circuit. Alternatively, the analysis unit 60 may be realized by a non-volatile memory in which the program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor in which the program is executed, or the like. The function executed by the analysis unit 60 may be realized by software executed by the processor.
 エアロゾル計測装置100が備える各構成要素は、例えば、図示しない筐体の内部に収容されている。筐体は、エアロゾル計測装置100の外郭筐体であり、遮光性を有する。筐体には、照射光L2及び散乱光L3を通過させるための開口が設けられている。開口は、照射光L2と散乱光L3との各々に対応させて1つずつ設けられていてもよい。集光レンズ30aは、当該開口に設けられていてもよい。 Each component included in the aerosol measuring device 100 is housed inside, for example, a housing (not shown). The housing is an outer housing of the aerosol measuring device 100 and has a light-shielding property. The housing is provided with an opening for passing the irradiation light L2 and the scattered light L3. One aperture may be provided corresponding to each of the irradiation light L2 and the scattered light L3. The condenser lens 30a may be provided in the aperture.
 上記態様では、エアロゾル計測装置100が光学素子10及び集光レンズ40を備える構成を説明した。これに対して、例えば散乱光L3の信号強度が強い場合などは、特に、光学素子10及び集光レンズ40が配置されていなくてもよい。つまり、エアロゾル計測装置100は、光源20と受光器50とのみを備えてもよい。 In the above aspect, the configuration in which the aerosol measuring device 100 includes the optical element 10 and the condenser lens 40 has been described. On the other hand, for example, when the signal intensity of the scattered light L3 is strong, the optical element 10 and the condenser lens 40 may not be arranged. That is, the aerosol measuring device 100 may include only the light source 20 and the receiver 50.
 [1-2.気流生成装置]
 気流生成装置110は、気流112を生成する生成装置の一例である。気流生成装置110は、エアロゾル計測装置100によって計測された対象空間内のエアロゾル90の量が閾値を超えた場合に、気流112を生成して放出する。対象空間とは、言い換えれば、照射光L2を出射する空間のことである。
[1-2. Airflow generator]
The airflow generator 110 is an example of a generator that generates an airflow 112. The airflow generator 110 generates and discharges the airflow 112 when the amount of aerosol 90 in the target space measured by the aerosol measuring device 100 exceeds the threshold value. In other words, the target space is a space that emits the irradiation light L2.
 気流生成装置110は、例えば、ファンを含む機器であり、具体的には、対象空間に配置された換気扇、送風機、扇風機、エアコン又は空気清浄機などである。気流生成装置110は、気流を発生するファンの代わりに又はファンに加えて、ポンプ又は渦輪発生装置を含んでもよい。 The airflow generator 110 is, for example, a device including a fan, and specifically, a ventilation fan, a blower, a fan, an air conditioner, an air purifier, or the like arranged in the target space. The airflow generator 110 may include a pump or vortex ring generator in place of or in addition to the fan that generates the airflow.
 閾値は、予め定められた値であり、例えば気流生成装置110のメモリなどに記憶されている。閾値は、例えば、エアロゾル90が人体に健康被害を与える可能性がない範囲におけるエアロゾル90の量の上限値である。 The threshold value is a predetermined value and is stored in, for example, the memory of the airflow generator 110. The threshold value is, for example, an upper limit of the amount of aerosol 90 in a range in which the aerosol 90 does not cause a health hazard to the human body.
 気流生成装置110は、エアロゾル計測装置100と通信可能に接続されている。通信は、有線通信であってもよく、無線通信であってもよい。気流生成装置110は、エアロゾル計測装置100によるエアロゾル90の計測結果を取得し、取得した計測結果に基づいて気流112を生成する。 The airflow generator 110 is communicably connected to the aerosol measuring device 100. The communication may be wired communication or wireless communication. The airflow generation device 110 acquires the measurement result of the aerosol 90 by the aerosol measuring device 100, and generates the airflow 112 based on the acquired measurement result.
 気流112は、エアロゾル90を浄化部120に導く気流である。気流生成装置110は、エアロゾル90と浄化部120と気流生成装置110との位置関係に基づいて気流112のパラメータを決定し、決定したパラメータで気流112を放出する。パラメータは、風量、風速、風向及び放出範囲の少なくとも1つである。 The air flow 112 is an air flow that guides the aerosol 90 to the purification unit 120. The airflow generator 110 determines the parameters of the airflow 112 based on the positional relationship between the aerosol 90, the purification unit 120, and the airflow generator 110, and discharges the airflow 112 with the determined parameters. The parameters are at least one of air volume, wind speed, wind direction and emission range.
 なお、浄化システム1は、複数の気流生成装置110を備えてもよい。複数の気流生成装置110から放出される複数の気流112を利用して、エアロゾル90を浄化部120に導いてもよい。これにより、エアロゾル90と浄化部120とを結ぶ直線上に障害物が存在する場合、又は、エアロゾル90と浄化部120と気流生成装置110との位置関係が複雑な場合であっても、エアロゾル90を浄化部120に導くことができる。 The purification system 1 may include a plurality of airflow generators 110. The aerosol 90 may be guided to the purification unit 120 by utilizing the plurality of airflows 112 discharged from the plurality of airflow generators 110. As a result, even if an obstacle exists on the straight line connecting the aerosol 90 and the purification unit 120, or the positional relationship between the aerosol 90, the purification unit 120, and the airflow generator 110 is complicated, the aerosol 90 Can be led to the purification unit 120.
 [1-3.浄化部]
 浄化部120は、気流112によって導かれたエアロゾル90を浄化する。本実施の形態では、浄化部120は、対象空間の外部と連通する排出口121を含む。排出口121は、対象空間の外部に向けて開いている。浄化部120は、気流112によって導かれたエアロゾル90を排出口121から外部に排出する。
[1-3. Purification Department]
The purification unit 120 purifies the aerosol 90 guided by the air flow 112. In the present embodiment, the purification unit 120 includes a discharge port 121 that communicates with the outside of the target space. The discharge port 121 is open toward the outside of the target space. The purification unit 120 discharges the aerosol 90 guided by the air flow 112 to the outside from the discharge port 121.
 浄化部120は、例えば、対象空間を形成する部屋の壁又は天井に設けられた換気口である。あるいは、浄化部120は、窓又はドアであってもよい。すなわち、浄化部120は、エアロゾル90を外部に排出する機能だけを有してもよく、エアロゾル90を無害化する機能を有しなくてもよい。 The purification unit 120 is, for example, a ventilation port provided on the wall or ceiling of the room forming the target space. Alternatively, the purification unit 120 may be a window or a door. That is, the purification unit 120 may have only the function of discharging the aerosol 90 to the outside, and may not have the function of detoxifying the aerosol 90.
 [2.動作]
 続いて、本実施の形態に係る浄化システム1の動作について、図2及び図3を用いて説明する。図2は、本実施の形態に係る浄化システム1の動作を示すフローチャートである。図3は、本実施の形態に係る浄化システム1による浄化の様子を模式的に示す図である。
[2. motion]
Subsequently, the operation of the purification system 1 according to the present embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 is a flowchart showing the operation of the purification system 1 according to the present embodiment. FIG. 3 is a diagram schematically showing a state of purification by the purification system 1 according to the present embodiment.
 図2に示されるように、浄化システム1では、まずエアロゾル計測装置100がエアロゾル90の検出を行う(S10)。具体的には、図3の部分(a)に示されるように、エアロゾル計測装置100は、対象空間内の所定の方向に照射光L2を照射することで、対象空間内に存在するエアロゾル90を検出する。エアロゾル90の検出方法の具体的な処理については、後で説明する。 As shown in FIG. 2, in the purification system 1, the aerosol measuring device 100 first detects the aerosol 90 (S10). Specifically, as shown in the portion (a) of FIG. 3, the aerosol measuring device 100 irradiates the irradiation light L2 in a predetermined direction in the target space to obtain the aerosol 90 existing in the target space. To detect. Specific processing of the method for detecting the aerosol 90 will be described later.
 次に、浄化システム1は、エアロゾル90の検出結果に基づいて、検出されたエアロゾル90の量と閾値とを比較する(S20)。エアロゾル90の量が閾値を超えた場合(S20で“閾値より大きい”)、浄化システム1は、エアロゾル90の浄化を行う(S30)。 Next, the purification system 1 compares the amount of the detected aerosol 90 with the threshold value based on the detection result of the aerosol 90 (S20). When the amount of aerosol 90 exceeds the threshold (“greater than threshold” in S20), the purification system 1 purifies the aerosol 90 (S30).
 具体的には、図3の部分(b)に示されるように、気流生成装置110が気流112を生成することで、エアロゾル90を浄化部120に導く。なお、エアロゾル90は、微粒子単体で存在することは稀であり、通常、複数の微粒子が集まって集合体として存在する。気流生成装置110は、検出されたエアロゾル90の集合体が分散しないように、エアロゾル90の集合体の全体を押し出すような気流112を生成する。例えば、気流112の放出範囲は、エアロゾル90の集合体よりも大きな範囲である。 Specifically, as shown in the part (b) of FIG. 3, the airflow generator 110 generates the airflow 112 to guide the aerosol 90 to the purification unit 120. It should be noted that the aerosol 90 rarely exists as a single fine particle, and usually, a plurality of fine particles are gathered and exist as an aggregate. The airflow generator 110 generates an airflow 112 that pushes out the entire aerosol 90 aggregate so that the detected aerosol 90 aggregate is not dispersed. For example, the emission range of the airflow 112 is larger than that of the aggregate of aerosol 90.
 浄化部120は、気流112によって導かれたエアロゾル90を浄化する。具体的には、浄化部120は、気流112によって導かれたエアロゾル90を排出口121から対象空間の外部に排出する。 The purification unit 120 purifies the aerosol 90 guided by the air flow 112. Specifically, the purification unit 120 discharges the aerosol 90 guided by the air flow 112 from the discharge port 121 to the outside of the target space.
 エアロゾル90の量が閾値以下である場合(S20で“閾値以下”)、浄化処理は終了する。 When the amount of aerosol 90 is below the threshold value (“below the threshold value” in S20), the purification process ends.
 なお、閾値との比較(S20)は、例えば、気流生成装置110で行われるが、エアロゾル計測装置100が行ってもよい。あるいは、浄化システム1の全体の動作を制御する制御装置(図示せず)が行ってもよい。 The comparison with the threshold value (S20) is performed by, for example, the airflow generator 110, but may be performed by the aerosol measuring device 100. Alternatively, a control device (not shown) that controls the overall operation of the purification system 1 may be performed.
 [3.エアロゾルの検出処理]
 続いて、本実施の形態に係る浄化システム1の動作のうち、エアロゾル90の検出処理の詳細について、図4を用いて説明する。図4は、本実施の形態に係る浄化システムの動作のうち、エアロゾルの検出処理(S10)を示すフローチャートである。
[3. Aerosol detection process]
Subsequently, among the operations of the purification system 1 according to the present embodiment, the details of the detection process of the aerosol 90 will be described with reference to FIG. FIG. 4 is a flowchart showing an aerosol detection process (S10) in the operation of the purification system according to the present embodiment.
 図4に示されるように、光源20が出射光L1を出射する(S11)。出射光L1は、ミラー22に反射されて進行方向が曲げられて、光学素子10の第1面12aから光学素子10に入射する。出射光L1は、光学素子10を通過することによって、互いに等しい周波数間隔で離れた複数本のピークを有する光であるマルチ光に変換される。つまり、光学素子10は、入射する光を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光として出射する(S12)。マルチ光である照射光L2は、対象空間内に出射されて、エアロゾル90を含む散乱体によって散乱される。 As shown in FIG. 4, the light source 20 emits the emitted light L1 (S11). The emitted light L1 is reflected by the mirror 22 and its traveling direction is bent, and is incident on the optical element 10 from the first surface 12a of the optical element 10. By passing through the optical element 10, the emitted light L1 is converted into multi-light, which is light having a plurality of peaks separated from each other at equal frequency intervals. That is, the optical element 10 internally interferes with the incident light and emits it as light having a plurality of peaks separated from each other at equal frequency intervals (S12). The irradiation light L2, which is multi-light, is emitted into the target space and scattered by a scatterer containing the aerosol 90.
 次に、集光レンズ30aは、散乱体から発生する散乱光L3を集光する(S13)。集光レンズ30aによって集光された散乱光L3は、光学素子10の第2面13aから光学素子10に入射する。光学素子10を通過することによって、ミー散乱光L4が抽出される。つまり、集光部30によって集光された散乱光L3を光学素子10の内部で干渉させて、光学素子10を通過させる(S14)。言い換えると、光学素子10は、散乱光L3のうち、レイリー散乱光を実質的に除去し、ミー散乱光L4のみを通過させる。 Next, the condenser lens 30a collects the scattered light L3 generated from the scatterer (S13). The scattered light L3 collected by the condenser lens 30a is incident on the optical element 10 from the second surface 13a of the optical element 10. By passing through the optical element 10, the Mie scattered light L4 is extracted. That is, the scattered light L3 collected by the condensing unit 30 interferes with each other inside the optical element 10 and passes through the optical element 10 (S14). In other words, the optical element 10 substantially removes the Rayleigh scattered light among the scattered light L3 and allows only the Mie scattered light L4 to pass through.
 次に、受光器50は、ミー散乱光L4を受光し、受光強度に応じた信号を出力する(S15)。 Next, the light receiver 50 receives the Mie scattered light L4 and outputs a signal according to the light receiving intensity (S15).
 分析部60は、受光器50から出力された信号を分析することで、散乱体に含まれるエアロゾル90を分析する(S16)。具体的には、分析部60は、ミー散乱光L4の強度に基づいてエアロゾル90の有無、個数及び位置を検出する。検出結果は、気流生成装置110に出力される。 The analysis unit 60 analyzes the aerosol 90 contained in the scatterer by analyzing the signal output from the receiver 50 (S16). Specifically, the analysis unit 60 detects the presence / absence, the number, and the position of the aerosol 90 based on the intensity of the Mie scattered light L4. The detection result is output to the airflow generator 110.
 エアロゾル計測装置100は、以上のステップS11からステップS16までの処理を、照射光L2の出射方向を変えながら繰り返し行う。すなわち、エアロゾル計測装置100は、対象空間内を、照射光L2を用いてスキャンする。例えば、対象空間内の所定の方向に向かって照射光L2を出射し、散乱光L3が取得できた場合に、散乱光L3の発生源をエアロゾル90の位置として特定することができる。また、そのときの散乱光L3の強度に基づいてエアロゾル90の量を特定することができる。これにより、エアロゾル計測装置100は、対象空間内のエアロゾル90の位置及び量を示す分布図を生成することができる。 The aerosol measuring device 100 repeats the above processes from step S11 to step S16 while changing the emission direction of the irradiation light L2. That is, the aerosol measuring device 100 scans the inside of the target space using the irradiation light L2. For example, when the irradiation light L2 is emitted in a predetermined direction in the target space and the scattered light L3 can be acquired, the source of the scattered light L3 can be specified as the position of the aerosol 90. Further, the amount of aerosol 90 can be specified based on the intensity of the scattered light L3 at that time. As a result, the aerosol measuring device 100 can generate a distribution map showing the position and amount of the aerosol 90 in the target space.
 上記態様では、出射光又は散乱光をエタロンで干渉させ、散乱光を集光する例を説明した。これに対して、例えば散乱光L3の信号強度が強い場合などは、出射光又は散乱光のエタロンによる干渉、及び、散乱光の集光はされなくてもよい。つまり、エアロゾル計測装置100では、光源20による出射光の出射と、受光器50によるエアロゾル90の散乱光の受光とを行うだけでもよい。 In the above aspect, an example in which the emitted light or the scattered light is interfered with by an etalon and the scattered light is condensed has been described. On the other hand, for example, when the signal intensity of the scattered light L3 is strong, it is not necessary to interfere with the emitted light or the scattered light by the etalon and to collect the scattered light. That is, the aerosol measuring device 100 may only emit the emitted light by the light source 20 and receive the scattered light of the aerosol 90 by the receiver 50.
 浄化システム1では、エアロゾル計測装置100による対象空間内のスキャンを行い、分布図を生成した後に、浄化(S30)を行ってもよい。具体的には、浄化システム1は、生成された分布図に基づいてエアロゾル90を浄化してもよい。これにより、エアロゾル90の分布に基づいて適切な浄化方法を決定することができるので、より効果的な浄化を行うことができる。例えば、複数箇所にエアロゾル90が存在する場合に、複数箇所のエアロゾル90をまとめて気流112で浄化部120に導くことができる。また、複数箇所のエアロゾル90を個々に浄化部120に導く場合において、ある位置に位置するエアロゾル90に向けて気流112を生成する際に、別の位置に位置するエアロゾル90を散らさないようにすることができる。 In the purification system 1, purification (S30) may be performed after scanning the target space with the aerosol measuring device 100 and generating a distribution map. Specifically, the purification system 1 may purify the aerosol 90 based on the generated distribution map. As a result, an appropriate purification method can be determined based on the distribution of the aerosol 90, so that more effective purification can be performed. For example, when the aerosol 90 is present at a plurality of locations, the aerosol 90 at the plurality of locations can be collectively guided to the purification unit 120 by the air flow 112. Further, when the aerosols 90 at a plurality of locations are individually guided to the purification unit 120, when the airflow 112 is generated toward the aerosol 90 located at a certain position, the aerosol 90 located at another position is not scattered. be able to.
 なお、浄化システム1では、一方向に照射光L2を出射する度に、閾値との比較(S20)及びエアロゾル90の浄化(S30)を行ってもよい。これにより、対象空間内に検出されたエアロゾル90を逐次浄化することができ、対象空間内を常に清浄な状態に保つことができる。 In the purification system 1, each time the irradiation light L2 is emitted in one direction, the comparison with the threshold value (S20) and the purification of the aerosol 90 (S30) may be performed. As a result, the aerosol 90 detected in the target space can be sequentially purified, and the inside of the target space can be kept in a clean state at all times.
 [4.光学素子の機能]
 続いて、エアロゾル90の検出を精度良く行うための光学素子10の具体的な機能について説明する。
[4. Function of optical element]
Subsequently, a specific function of the optical element 10 for accurately detecting the aerosol 90 will be described.
 上述したように、光学素子10は、光源20から発せられたレーザ光である出射光L1を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光からなるマルチレーザ光である照射光L2として出射する。以下ではまず、マルチレーザ光について図5を用いて説明する。 As described above, the optical element 10 is a multi-laser light composed of light having a plurality of peaks separated from each other at equal frequency intervals by internally interfering with the emitted light L1 which is the laser light emitted from the light source 20. It is emitted as a certain irradiation light L2. In the following, first, the multi-laser light will be described with reference to FIG.
 図5は、本実施の形態に係るエアロゾル計測装置100が出射するマルチレーザ光のスペクトルの一例を示す図である。図5の部分(a)及び部分(b)の各々において横軸は周波数を表し、縦軸は信号強度を表している。 FIG. 5 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device 100 according to the present embodiment. In each of the parts (a) and (b) of FIG. 5, the horizontal axis represents the frequency and the vertical axis represents the signal strength.
 図5の部分(a)は、光学素子10を通過した後のマルチレーザ光である照射光L2のスペクトルを示している。スペクトルに含まれる複数のピークがそれぞれ、照射光L2に含まれる複数本のピークに対応している。複数本のピークの周波数間隔LW2が互いに等しく、例えば3GHzである。ここでは、複数本のピークの信号強度が互いに等しい例を示しているが、互いに異なっていてもよい。照射光L2の中心波長λは、例えば405nmである。 Part (a) of FIG. 5 shows the spectrum of the irradiation light L2, which is the multi-laser light after passing through the optical element 10. Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the irradiation light L2. The frequency intervals LW2 of the plurality of peaks are equal to each other, for example, 3 GHz. Here, an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other. The center wavelength λ of the irradiation light L2 is, for example, 405 nm.
 図5の部分(b)は、図5の部分(a)の拡大図であり、スペクトルの1つのピーク、すなわち、照射光L2に含まれる1つの光のみを拡大して示している。1つの光の半値全幅LW1は、例えば360MHzである。LW1は、LW2の1/20以上1/5以下であるが、1/10以上1/8以下であってもよい。 Part (b) of FIG. 5 is an enlarged view of part (a) of FIG. 5, and shows one peak of the spectrum, that is, only one light included in the irradiation light L2 in an enlarged manner. The full width at half maximum LW1 of one light is, for example, 360 MHz. LW1 is 1/20 or more and 1/5 or less of LW2, but may be 1/10 or more and 1/8 or less.
 本実施の形態では、出射光L1が光学素子10を通過することで、光学素子10内で干渉されて、照射光L2として出射される。光学素子10であるエタロンは、入射する光と、エタロン内で反射を繰り返す光との干渉を利用する。入射する光の位相と、エタロン内の反射を繰り返す光の位相とが一致した場合、光を強め合う干渉が起こり、エタロン内で光が増強されて透過する。エタロンの多層膜12及び13は、光を透過したり、反射したりすることができる。多層膜12及び13の各々の透過率は、例えば75%であるが、これに限らない。 In the present embodiment, when the emitted light L1 passes through the optical element 10, it interferes with the inside of the optical element 10 and is emitted as the irradiation light L2. The etalon, which is the optical element 10, utilizes the interference between the incident light and the light that is repeatedly reflected in the etalon. When the phase of the incident light and the phase of the light repeatedly reflected in the etalon match, interference that strengthens the light occurs, and the light is enhanced and transmitted in the etalon. The multilayer films 12 and 13 of Etalon can transmit or reflect light. The transmittance of each of the multilayer films 12 and 13 is, for example, 75%, but is not limited to this.
 ここで、図6及び図7はそれぞれ、本実施の形態に係るエアロゾル計測装置100の光学素子10を通過する光を説明するための図である。具体的には、図6は、第0の透過光及び第1の透過光を模式的に表している。図7は、第0の透過光及び第2の透過光を模式的に表している。 Here, FIGS. 6 and 7 are diagrams for explaining light passing through the optical element 10 of the aerosol measuring device 100 according to the present embodiment, respectively. Specifically, FIG. 6 schematically represents the 0th transmitted light and the 1st transmitted light. FIG. 7 schematically represents the 0th transmitted light and the 2nd transmitted light.
 光学素子10は、入射する光の一部をそのまま透過させる。図6及び図7に示されるように、光学素子10の多層膜12及び13で反射されずにそのまま透過する光が第0の透過光である。 The optical element 10 transmits a part of the incident light as it is. As shown in FIGS. 6 and 7, the light transmitted as it is without being reflected by the multilayer films 12 and 13 of the optical element 10 is the 0th transmitted light.
 第1の透過光は、図6に示されるように、入射した光が多層膜13で1回反射された後、多層膜12で1回反射された光である。第0の透過光と第1の透過光との位相が一致することによって干渉が起こり、第1の干渉フリンジに対応する光が出射される。干渉フリンジについては、図9及び図10を用いて後で説明する。 As shown in FIG. 6, the first transmitted light is light that is reflected once by the multilayer film 13 after the incident light is reflected once by the multilayer film 13. Interference occurs when the phases of the 0th transmitted light and the 1st transmitted light match, and the light corresponding to the first interference fringe is emitted. Interfering fringes will be described later with reference to FIGS. 9 and 10.
 第2の透過光は、図7に示されるように、入射した光が多層膜13及び多層膜12でそれぞれ2回ずつ反射された光である。第0の透過光と第2の透過光との位相が一致することによって干渉が起こり、第2の干渉フリンジに対応する光が出射される。 As shown in FIG. 7, the second transmitted light is light in which the incident light is reflected twice by the multilayer film 13 and the multilayer film 12, respectively. Interference occurs when the phases of the 0th transmitted light and the 2nd transmitted light match, and the light corresponding to the second interference fringe is emitted.
 入射する光の位相と、反射を繰り返す光の位相とが一致しない場合、入射面側に反射され、エタロンを通過する光が弱くなる。この結果、透過光は、周期的なスペクトルを有する。つまり、光学素子10は、出射光L1が入射された場合に、等しい周波数間隔LW2を有する照射光L2を出射することができる。 If the phase of the incident light and the phase of the light that repeats reflection do not match, the light that is reflected toward the incident surface side and passes through the etalon becomes weak. As a result, the transmitted light has a periodic spectrum. That is, the optical element 10 can emit the irradiation light L2 having the same frequency interval LW2 when the emitted light L1 is incident.
 周波数間隔LW2を実現するためのエタロンの長さΔxは、以下の式(1)に基づいて定められる。なお、エタロンの長さΔxは、図6及び図7に示されるように、多層膜12と多層膜13との距離、すなわち、透光部11の厚さである。 The length Δx of the etalon for realizing the frequency interval LW2 is determined based on the following equation (1). The length Δx of the etalon is the distance between the multilayer film 12 and the multilayer film 13, that is, the thickness of the translucent portion 11, as shown in FIGS. 6 and 7.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、nは、真空中の屈折率であり、例えば1.0である。nは、エタロンの透光部11の屈折率であり、石英の場合1.47である。cは、光速であり、3×10m/sである。LW2=3GHzである場合、上記式(1)より、エタロンの長さΔxが34mmになる。また、エタロンの長さΔxは、製造上、80mm程度が限界である。このため、LW2の下限値は、1.3GHz程度になる。 In the formula (1), n 0 is the refractive index in vacuum, for example 1.0. n is the refractive index of the translucent portion 11 of etalon, which is 1.47 in the case of quartz. c is the speed of light, which is 3 × 10 8 m / s. When LW2 = 3 GHz, the length Δx of the etalon is 34 mm from the above formula (1). Further, the length Δx of the etalon is limited to about 80 mm in manufacturing. Therefore, the lower limit of LW2 is about 1.3 GHz.
 エタロンによって、ファブリペロー干渉を起こす場合の光路差dxは、以下の式(2)で表される。 The optical path difference dx when Fabry-Perot interference is caused by Etalon is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 例えば、Δx=34mmの場合、光路差dxは100mmになる。 For example, when Δx = 34 mm, the optical path difference dx is 100 mm.
 次に、図5に示される照射光L2を散乱体が散乱させることで発生する散乱光L3について、図8を用いて説明する。 Next, the scattered light L3 generated by the scattering body scattering the irradiation light L2 shown in FIG. 5 will be described with reference to FIG.
 図8は、本実施の形態に係るエアロゾル計測装置100が出射したマルチレーザ光を散乱させることで発生する散乱光L3のスペクトルの一例を示す図である。図8の部分(a)及び部分(b)の各々において、横軸は周波数を表し、縦軸は信号強度を表している。 FIG. 8 is a diagram showing an example of the spectrum of scattered light L3 generated by scattering the multi-laser light emitted by the aerosol measuring device 100 according to the present embodiment. In each of the parts (a) and (b) of FIG. 8, the horizontal axis represents the frequency and the vertical axis represents the signal strength.
 図8の部分(a)は、散乱光L3のスペクトルを示している。散乱光L3は、照射光L2と同様に、互いに等しい周波数間隔MW2で離れた複数本のピークを有する光からなる。スペクトルに含まれる複数のピークがそれぞれ、照射光L2に含まれる複数本のピークに対応している。散乱光L3の周波数間隔MW2は、照射光L2の周波数間隔LW2に等しい。ここでは、複数本のピークの信号強度が互いに等しい例を示しているが、互いに異なっていてもよい。 Part (a) of FIG. 8 shows the spectrum of scattered light L3. The scattered light L3, like the irradiation light L2, is composed of light having a plurality of peaks separated from each other at a frequency interval MW2 equal to each other. Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the irradiation light L2. The frequency interval MW2 of the scattered light L3 is equal to the frequency interval LW2 of the irradiation light L2. Here, an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other.
 図8の部分(b)は、図8の部分(a)の拡大図であり、スペクトルの1つのピーク、すなわち、散乱光L3に含まれる1つの光のみを拡大して示している。 Part (b) of FIG. 8 is an enlarged view of part (a) of FIG. 8, and shows one peak of the spectrum, that is, only one light contained in the scattered light L3 in an enlarged manner.
 上述したように、散乱光L3は、ミー散乱光とレイリー散乱光とを含んでいる。ミー散乱光のスペクトルは、散乱前の照射光L2のスペクトルと実質的に同じである。一方で、レイリー散乱光は、大気を構成する分子の熱運動によって周波数幅が広がる。また、レイリー散乱光の強度は、通常、ミー散乱光の強度よりも低い。 As described above, the scattered light L3 includes Mie scattered light and Rayleigh scattered light. The spectrum of Mie scattered light is substantially the same as the spectrum of irradiation light L2 before scattering. On the other hand, the frequency width of Rayleigh scattered light is widened by the thermal motion of the molecules that make up the atmosphere. Also, the intensity of Rayleigh scattered light is usually lower than the intensity of Mie scattered light.
 このため、図8の部分(b)に示されるように、散乱光L3のスペクトルは、図5に示される照射光L2のスペクトルと比較して、ピークの裾野が広がった形状を有する。中心の高いピークがミー散乱光に相当し、裾野部分がレイリー散乱光に相当する。なお、図8の部分(b)では、大気を構成する分子によるレイリー散乱光の信号強度と、エアロゾルによるミー散乱光の信号強度とを3:1としている。なお、ここでの信号強度は、ピークの面積で表される。また、ミー散乱光を表すピークの半値全幅MW1は、照射光L2の半値全幅LW1に等しい。 Therefore, as shown in the portion (b) of FIG. 8, the spectrum of the scattered light L3 has a shape in which the base of the peak is widened as compared with the spectrum of the irradiation light L2 shown in FIG. The high peak at the center corresponds to Mie scattered light, and the base part corresponds to Rayleigh scattered light. In the part (b) of FIG. 8, the signal intensity of Rayleigh scattered light by the molecules constituting the atmosphere and the signal intensity of Mie scattered light by the aerosol are set to 3: 1. The signal strength here is represented by the area of the peak. Further, the full width at half maximum MW1 of the peak representing the Mie scattered light is equal to the full width at half maximum LW1 of the irradiation light L2.
 レイリー散乱光を表す裾野部分の半値全幅RWは、一般的な実測によれば、3.4GHzから3.9GHz程度であることが知られている。一例として、レイリー散乱光の半値全幅RWは、3.6GHz(Δλ=1.9pm)とすることができる。 It is known that the full width at half maximum RW of the foot portion representing the Rayleigh scattered light is about 3.4 GHz to 3.9 GHz according to a general actual measurement. As an example, the full width at half maximum RW of Rayleigh scattered light can be 3.6 GHz (Δλ = 1.9 pm).
 なお、Δλは、以下の式(3)に基づいて算出される。 Note that Δλ is calculated based on the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)において、Δf=RWである。cは、光速であり、3×10m/sである。λは、中心波長であり、ここでは405nmである。 In the formula (3), Δf = RW. c is the speed of light, which is 3 × 10 8 m / s. λ is the central wavelength, which is 405 nm here.
 本実施の形態では、光学素子10に散乱光L3を通過させることによって、3GHzの周波数間隔で現れる複数本のピークを有する光、すなわち、ミー散乱光を透過させ、他の周波数成分の光、すなわち、レイリー散乱光を除去することができる。 In the present embodiment, by passing the scattered light L3 through the optical element 10, light having a plurality of peaks appearing at a frequency interval of 3 GHz, that is, Me scattered light is transmitted, and light of another frequency component, that is, , Rayleigh scattered light can be removed.
 図9は、エアロゾルによるミー散乱光と大気を構成する分子によるレイリー散乱光とを含む散乱光を、マイケルソン干渉計で干渉させた場合のインターフェログラムの計算結果を表す図である。図9において、横軸は干渉を起こす光路差dxを表し、縦軸は干渉光の強度を表している。図10は、図9の破線で囲まれた領域Xを拡大した図である。 FIG. 9 is a diagram showing the calculation result of the interferogram when the scattered light including the Mie scattered light by the aerosol and the Rayleigh scattered light by the molecules constituting the atmosphere are interfered with by the Michelson interferometer. In FIG. 9, the horizontal axis represents the optical path difference dx that causes interference, and the vertical axis represents the intensity of the interference light. FIG. 10 is an enlarged view of the region X surrounded by the broken line in FIG.
 図9及び図10に示されるように、光路差dxがΔxの整数倍になる度に、干渉フリンジが現れる。dx=0の干渉フリンジを第0の干渉フリンジと定義し、dx=n×Δxの干渉フリンジを第nの干渉フリンジと定義する。nは自然数である。図10は、第0の干渉フリンジ、第1の干渉フリンジ、第2の干渉フリンジを表している。第1の干渉フリンジは、図6に示される第0の透過光と第1の透過光との干渉によって生じる光である。第2の干渉フリンジは、図7に示される第0の透過光と第2の透過光との干渉によって生じる光である。 As shown in FIGS. 9 and 10, an interference fringe appears every time the optical path difference dx becomes an integral multiple of Δx. The interference fringe of dx = 0 is defined as the 0th interference fringe, and the interference fringe of dx = n × Δx is defined as the nth interference fringe. n is a natural number. FIG. 10 shows the 0th interference fringe, the 1st interference fringe, and the 2nd interference fringe. The first interference fringe is the light generated by the interference between the 0th transmitted light and the 1st transmitted light shown in FIG. The second interference fringe is the light generated by the interference between the 0th transmitted light and the second transmitted light shown in FIG. 7.
 受光器50では、第0の干渉フリンジから第nの干渉フリンジまでを合わせた干渉光がミー散乱光L4として受光される。本実施の形態では、光学素子10であるエタロンの長さΔxを調整することにより、大気散乱に起因するレイリー散乱光に基づく干渉フリンジを除去することができる。レイリー散乱光を除去するのに適した長さΔxの決定方法について説明する。 In the receiver 50, the interference light including the 0th interference fringe to the nth interference fringe is received as Mie scattered light L4. In the present embodiment, by adjusting the length Δx of the etalon which is the optical element 10, the interference fringe due to the Rayleigh scattered light caused by atmospheric scattering can be removed. A method for determining a length Δx suitable for removing Rayleigh scattered light will be described.
 図11は、エアロゾルによる散乱がなく、大気散乱だけを考慮した場合のマイケルソン干渉計による干渉フリンジの周波数間隔の依存性を説明するための図である。図11の部分(a)から部分(l)ではそれぞれ、横軸がdxを表し、縦軸が信号強度を表している。図11の部分(a)から部分(l)はそれぞれ、照射光L2の周波数間隔LW2が2.4GHz、3.0GHz、3.6GHz、3.7GHz、3.8GHz、3.9GHz、4GHz、5GHz、6GHz、10GHz、15GHz、30GHzの場合のインターフェログラムの計算結果を表している。 FIG. 11 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when only the atmospheric scattering is considered without the scattering by the aerosol. In each of the parts (a) to (l) of FIG. 11, the horizontal axis represents dx and the vertical axis represents the signal strength. In the parts (a) to (l) of FIG. 11, the frequency intervals LW2 of the irradiation light L2 are 2.4 GHz, 3.0 GHz, 3.6 GHz, 3.7 GHz, 3.8 GHz, 3.9 GHz, 4 GHz, 5 GHz, respectively. , 6 GHz, 10 GHz, 15 GHz, 30 GHz, and the calculation result of the interferogram is shown.
 図11に示されるように、周波数間隔LW2が大きくなるにつれて、出現する干渉フリンジの個数が増加し、かつ、出現する干渉フリンジの信号強度が大きくなっている。例えば、周波数間隔LW2が2.4GHzの場合は、実質的に第0の干渉フリンジのみが出現しており、第1以上の干渉フリンジが出現していない。周波数間隔LW2が3.0GHzから4GHzの範囲では、第0の干渉フリンジと第1の干渉フリンジとが出現しており、第2以上の干渉フリンジが出現していない。周波数間隔LW2が5GHzの場合には、第0の干渉フリンジ及び第1の干渉フリンジに加えて、第2の干渉フリンジが出現している。図11では、第1の干渉フリンジ以上が現れている範囲を破線の枠で表している。 As shown in FIG. 11, as the frequency interval LW2 increases, the number of appearing interference fringes increases, and the signal strength of the appearing interference fringes increases. For example, when the frequency interval LW2 is 2.4 GHz, substantially only the 0th interference fringe appears, and the first or more interference fringes do not appear. In the frequency interval LW2 in the range of 3.0 GHz to 4 GHz, the 0th interference fringe and the 1st interference fringe appear, and the second and higher interference fringes do not appear. When the frequency interval LW2 is 5 GHz, a second interference fringe appears in addition to the 0th interference fringe and the first interference fringe. In FIG. 11, the range in which the first interference fringe and above appear is represented by a broken line frame.
 大気散乱だけを考慮に入れた場合に第2以上の干渉フリンジが現れているということは、レイリー散乱光のみによる干渉が起きていることを意味する。すなわち、光学素子10にレイリー散乱光を入射させた場合に、レイリー散乱光が透過することを意味する。したがって、周波数間隔LW2は3.9GHz以下であれば、第1の干渉フリンジが小さくなるので、レイリー散乱光の透過が抑制される。 The appearance of the second or higher interference fringes when only atmospheric scattering is taken into consideration means that interference is occurring only by Rayleigh scattered light. That is, it means that the Rayleigh scattered light is transmitted when the Rayleigh scattered light is incident on the optical element 10. Therefore, if the frequency interval LW2 is 3.9 GHz or less, the first interference fringe becomes small, and the transmission of Rayleigh scattered light is suppressed.
 すなわち、周波数間隔LW2が3.9GHzの場合の第1の干渉フリンジの大きさは、周波数間隔LW2の第1の干渉フリンジの大きさの50%以下になっている。このため、第1の干渉フリンジが小さくなっているので、レイリー散乱光が光学素子10を透過するのを抑制することができる。 That is, the size of the first interference fringe when the frequency interval LW2 is 3.9 GHz is 50% or less of the size of the first interference fringe of the frequency interval LW2. Therefore, since the first interference fringe is small, it is possible to suppress the Rayleigh scattered light from passing through the optical element 10.
 以上のことから、周波数間隔LW2は3.9GHz以下であることで、散乱光L3からレイリー散乱光を効率良く除去することができる。周波数間隔LW2が3.9GHzである場合、式(1)により、石英で作られたエタロンの長さΔxは、約26mmとなる。つまり、長さΔxが26mm以上のエタロンを光学素子10として用いることで、レイリー散乱光を効率良く除去することができ、エアロゾルの計測精度を高めることができる。 From the above, when the frequency interval LW2 is 3.9 GHz or less, Rayleigh scattered light can be efficiently removed from the scattered light L3. When the frequency interval LW2 is 3.9 GHz, the length Δx of the etalon made of quartz is about 26 mm according to the formula (1). That is, by using an etalon having a length Δx of 26 mm or more as the optical element 10, Rayleigh scattered light can be efficiently removed, and the measurement accuracy of the aerosol can be improved.
 [5.変形例]
 上記の実施の形態では、浄化部120が排出口121を有し、排出口121からエアロゾル90を外部に排出する例を説明したが、浄化処理は、エアロゾル90の排出に限られない。以下では、浄化処理の変形例について説明する。なお、以下の説明では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
[5. Modification example]
In the above embodiment, the purification unit 120 has the discharge port 121, and the aerosol 90 is discharged to the outside from the discharge port 121, but the purification treatment is not limited to the discharge of the aerosol 90. Hereinafter, a modified example of the purification treatment will be described. In the following description, the differences from the first embodiment will be mainly described, and the common points will be omitted or simplified.
 [5-1.変形例1]
 図12は、変形例1に係る浄化システム2による浄化の様子を模式的に示す図である。図12に示されるように、本変形例に係る浄化システム2は、図1及び図3に示される浄化システム1と比較して、浄化部220をさらに備える点が相違する。なお、浄化システム2は、浄化部120の代わりに浄化部220を備えてもよい。
[5-1. Modification 1]
FIG. 12 is a diagram schematically showing a state of purification by the purification system 2 according to the first modification. As shown in FIG. 12, the purification system 2 according to the present modification is different from the purification system 1 shown in FIGS. 1 and 3 in that it further includes a purification unit 220. The purification system 2 may include a purification unit 220 instead of the purification unit 120.
 浄化部220は、対象空間に設けられた吸引口221を含む。浄化部220は、気流112によって導かれたエアロゾル90を吸引口221から吸い込む。浄化部220は、例えば、ファンを含む機器であり、具体的には、対象空間に配置された空気清浄機又は掃除機などである。 The purification unit 220 includes a suction port 221 provided in the target space. The purification unit 220 sucks the aerosol 90 guided by the air flow 112 from the suction port 221. The purification unit 220 is, for example, a device including a fan, specifically, an air purifier or a vacuum cleaner arranged in the target space.
 浄化部220は、吸引口221から吸い込んだエアロゾル90を捕集又は無害化する。例えば、浄化部220は、ファンに加え、エアロゾル90を捕集するフィルタ(図示せず)を備えてもよい。フィルタは、吸引口221に設けられている。浄化部220は、容器に貯められた薬剤とエアロゾル90とを接触させることにより、エアロゾル90を無害化してもよい。薬剤は、アルコール製剤又は次亜塩素酸水などであるが、これらに限定されない。あるいは、浄化部220は、オゾンを生成するオゾン発生器を有してもよく、生成したオゾンと吸引したエアロゾル90とを接触させることによって、エアロゾル90を無害化してもよい。エアロゾル90の無害化は、フィルタに付着したエアロゾル90に薬剤又はオゾンと接触させることで行われることが多い。また、浄化部220は、例えば、浄化機能を有するイオン分子とエアロゾル90とを接触させることにより、エアロゾルを無害化してもよい。浄化機能を有するイオン分子は、例えば、ナノイー又はプラズマクラスターなどである。 The purification unit 220 collects or detoxifies the aerosol 90 sucked from the suction port 221. For example, the purification unit 220 may include a filter (not shown) for collecting the aerosol 90 in addition to the fan. The filter is provided at the suction port 221. The purification unit 220 may detoxify the aerosol 90 by bringing the chemical stored in the container into contact with the aerosol 90. The drug is, but is not limited to, alcohol preparations, hypochlorous acid water, and the like. Alternatively, the purification unit 220 may have an ozone generator that generates ozone, and may detoxify the aerosol 90 by bringing the generated ozone into contact with the sucked aerosol 90. Detoxification of the aerosol 90 is often performed by bringing the aerosol 90 attached to the filter into contact with a chemical or ozone. Further, the purification unit 220 may detoxify the aerosol by, for example, bringing an ion molecule having a purification function into contact with the aerosol 90. The ion molecule having a purifying function is, for example, nanoe or plasma cluster.
 本実施の形態では、浄化部220は、いわゆるロボット掃除機のように移動可能である。浄化部220は、エアロゾル90の検出結果に基づいて、エアロゾル90の吸引を行いやすい場所に移動することができる。 In the present embodiment, the purification unit 220 can be moved like a so-called robot vacuum cleaner. The purification unit 220 can move to a place where the aerosol 90 can be easily sucked based on the detection result of the aerosol 90.
 また、本変形例では、気流生成装置110は、吸い込む気流112を生成する。つまり、気流生成装置110は、押し出す気流だけでなく、吸い込む気流を生成してもよい。 Further, in this modification, the airflow generator 110 generates an airflow 112 to be sucked. That is, the airflow generator 110 may generate not only the extruded airflow but also the sucked airflow.
 図12の部分(a)に示されるように、エアロゾル90の検出を行う処理は実施の形態1と同様である。次に、図12の部分(b)に示されるように、気流生成装置110は、吸い込む気流112を生成することで、気流生成装置110にエアロゾル90を近づける。さらに、浄化部220は、気流生成装置110の近傍に移動し、気流112によって導かれたエアロゾル90を吸引口221から吸い込む。浄化部220は、吸い込んだエアロゾル90を捕集又は無害化する。 As shown in the part (a) of FIG. 12, the process of detecting the aerosol 90 is the same as that of the first embodiment. Next, as shown in part (b) of FIG. 12, the airflow generator 110 brings the aerosol 90 closer to the airflow generator 110 by generating a suction airflow 112. Further, the purification unit 220 moves to the vicinity of the airflow generator 110 and sucks the aerosol 90 guided by the airflow 112 from the suction port 221. The purification unit 220 collects or detoxifies the sucked aerosol 90.
 なお、吸引方向への気流は、通常、押出方向への気流よりも弱い。このため、エアロゾル90が気流生成装置110の近くに存在する場合に特に有用である。また、浄化部220が移動可能であることで、エアロゾル90を吸引可能な位置に浄化部220が移動することができる。例えば、エアロゾル90と浄化部120との距離が遠い、又は、途中に障害物がある場合などのエアロゾル90を浄化部120に導くことができない場合であっても、浄化部220にエアロゾル90を吸引させることで浄化を実現することができる。 The airflow in the suction direction is usually weaker than the airflow in the extrusion direction. For this reason, it is particularly useful when the aerosol 90 is present near the airflow generator 110. Further, since the purification unit 220 is movable, the purification unit 220 can be moved to a position where the aerosol 90 can be sucked. For example, even if the aerosol 90 cannot be guided to the purification unit 120 when the distance between the aerosol 90 and the purification unit 120 is long or there is an obstacle in the middle, the aerosol 90 is sucked into the purification unit 220. Purification can be realized by making it.
 [5-2.変形例2]
 図13は、変形例2に係る浄化システム3による浄化の様子を模式的に示す図である。図13に示されるように、本変形例に係る浄化システム3は、図1及び図3に示される浄化システム1と比較して、気流生成装置110の代わりに浄化装置310を備える点が相違する。
[5-2. Modification 2]
FIG. 13 is a diagram schematically showing a state of purification by the purification system 3 according to the modified example 2. As shown in FIG. 13, the purification system 3 according to the present modification is different from the purification system 1 shown in FIGS. 1 and 3 in that the purification device 310 is provided instead of the airflow generator 110. ..
 浄化装置310は、図13の部分(b)に示されるように、エアロゾル90を無害化する薬剤91を放出する。薬剤91は、例えば、アルコール製剤、次亜塩素酸水又はオゾン水などである。浄化装置310は、薬剤91を霧状にして噴霧する。あるいは、浄化装置310は、渦輪などの気流に乗せて薬剤91を噴出してもよい。 The purification device 310 releases the agent 91 that detoxifies the aerosol 90, as shown in part (b) of FIG. The agent 91 is, for example, an alcohol preparation, hypochlorite water, ozone water, or the like. The purification device 310 atomizes the drug 91 and sprays it. Alternatively, the purification device 310 may eject the drug 91 on an air flow such as a vortex ring.
 浄化装置310は、気流生成装置の一例であり、押し出す気流又は吸い込む気流を生成してもよい。浄化装置310は、吸い込む気流を生成することで、エアロゾル90を引き寄せた後、薬剤91を噴霧してもよい。これにより、薬剤91を遠くまで放出しなくてもよくなるので、薬剤91とエアロゾル90との接触確率も高めることができる。薬剤91の無駄が減らすことができ、薬剤91を有効に利用することができるので、効率良くエアロゾル90を浄化することができる。 The purification device 310 is an example of an airflow generator, and may generate an extruded airflow or a sucked airflow. The purification device 310 may spray the drug 91 after attracting the aerosol 90 by generating an air flow to be sucked. As a result, it is not necessary to release the drug 91 to a long distance, so that the probability of contact between the drug 91 and the aerosol 90 can be increased. Since the waste of the drug 91 can be reduced and the drug 91 can be effectively used, the aerosol 90 can be efficiently purified.
 [5-3.変形例3]
 図14は、変形例3に係る浄化システム4による浄化の様子を模式的に示す図である。図14に示されるように、本変形例に係る浄化システム4は、図1及び図3に示される浄化システム1と比較して、排出口121を有する浄化部120を備えない点が相違する。具体的には、浄化システム4が備える気流生成装置110が、浄化部の機能も有する。つまり、本変形例では、エアロゾル90の浄化を行う浄化部と、エアロゾル90の位置に気流を放出する気流生成装置110とは、一体化された1つの装置で実現されている。
[5-3. Modification 3]
FIG. 14 is a diagram schematically showing a state of purification by the purification system 4 according to the modified example 3. As shown in FIG. 14, the purification system 4 according to the present modification is different from the purification system 1 shown in FIGS. 1 and 3 in that it does not include the purification unit 120 having the discharge port 121. Specifically, the airflow generator 110 included in the purification system 4 also has a function of a purification unit. That is, in this modification, the purification unit that purifies the aerosol 90 and the airflow generator 110 that discharges the airflow to the position of the aerosol 90 are realized by one integrated device.
 本変形例に係る気流生成装置110は、図14に示されるように、気流92を発生させる。気流92は、エアロゾル90を散らして拡散させ、エアロゾル90の濃度を希釈させるための気流である。気流生成装置110は、エアロゾル計測装置100によって検出されたエアロゾル90に向けて、強く、拡散性の高い気流92を放出する。気流生成装置110は、エアロゾル90の位置を含む所定の範囲内で気流92の放出方向を変更しながら気流92を放出してもよい。 The airflow generator 110 according to this modification generates an airflow 92 as shown in FIG. The air flow 92 is an air flow for dispersing and diffusing the aerosol 90 to dilute the concentration of the aerosol 90. The airflow generator 110 emits a strong and highly diffusive airflow 92 toward the aerosol 90 detected by the aerosol measuring device 100. The airflow generator 110 may discharge the airflow 92 while changing the discharge direction of the airflow 92 within a predetermined range including the position of the aerosol 90.
 これにより、エアロゾル90を散らして拡散させることで、対象空間内で局所的にエアロゾル90の濃度が高い空間が形成されないようにすることができる。すなわち、エアロゾル90の濃度を対象空間内で希釈させることができる。これにより、エアロゾル90の危険度が低下するので、健康被害の発生を抑制することができる。このように、希釈によってエアロゾル90の濃度を低下させることも、エアロゾル90の浄化として有効である。 Thereby, by scattering and diffusing the aerosol 90, it is possible to prevent the formation of a space having a high concentration of the aerosol 90 locally in the target space. That is, the concentration of aerosol 90 can be diluted in the target space. As a result, the risk of the aerosol 90 is reduced, so that the occurrence of health hazards can be suppressed. As described above, reducing the concentration of the aerosol 90 by dilution is also effective for purifying the aerosol 90.
 (実施の形態2)
 続いて、実施の形態2について説明する。
(Embodiment 2)
Subsequently, the second embodiment will be described.
 実施の形態2では、対象空間内に存在する物体を検出し、検出結果に基づいてエアロゾル90と物体との接触を避ける回避経路を決定し、決定した回避経路に沿ってエアロゾル90を浄化部に導く。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 In the second embodiment, an object existing in the target space is detected, an avoidance route for avoiding contact between the aerosol 90 and the object is determined based on the detection result, and the aerosol 90 is used as a purification unit along the determined avoidance route. Guide. In the following, the differences from the first embodiment will be mainly described, and the common points will be omitted or simplified.
 [1.構成]
 図15は、本実施の形態に係る浄化システム5の構成と、浄化システム5による浄化の様子の一例を示す図である。図15に示されるように、浄化システム5は、エアロゾル計測装置100と、気流生成装置110及び410と、浄化部120及び220と、センサ430とを備える。
[1. Constitution]
FIG. 15 is a diagram showing an example of the configuration of the purification system 5 according to the present embodiment and the state of purification by the purification system 5. As shown in FIG. 15, the purification system 5 includes an aerosol measuring device 100, airflow generating devices 110 and 410, purification units 120 and 220, and a sensor 430.
 また、図15には、対象空間490と、対象空間490内の物体及び装置のレイアウトを模式的に示している。対象空間490には、机491と、机491を囲むように配置された椅子492a、492b、492c及び492dと、机491の側方に配置された棚493とが配置されている。机491の上には、気流生成装置110が配置されている。棚493の上には、気流生成装置410が配置されている。エアロゾル計測装置100及び浄化部220は並んで対象空間490の隅に配置されている。また、浄化部120は、対象空間490の別の隅に配置されている。センサ430は、例えば対象空間490のほぼ全体が検知範囲になるように対象空間490の壁面又は天井などに設けられている。なお、これらの配置及び個数は一例に過ぎない。 Further, FIG. 15 schematically shows the layout of the target space 490 and the objects and devices in the target space 490. In the target space 490, a desk 491, chairs 492a, 492b, 492c and 492d arranged so as to surround the desk 491, and a shelf 493 arranged on the side of the desk 491 are arranged. An airflow generator 110 is arranged on the desk 491. An airflow generator 410 is arranged on the shelf 493. The aerosol measuring device 100 and the purification unit 220 are arranged side by side in the corner of the target space 490. Further, the purification unit 120 is arranged in another corner of the target space 490. The sensor 430 is provided, for example, on the wall surface or ceiling of the target space 490 so that almost the entire target space 490 is within the detection range. The arrangement and number of these are only examples.
 気流生成装置410は、気流生成装置110と同じ機能を有する。 The airflow generator 410 has the same function as the airflow generator 110.
 センサ430は、対象空間490における物体の位置を検出するセンサである。センサ430は、例えば、対象空間490を撮像するイメージセンサである。あるいは、センサ430は、赤外線センサ又は音センサなどであってもよい。 The sensor 430 is a sensor that detects the position of an object in the target space 490. The sensor 430 is, for example, an image sensor that captures an image of the target space 490. Alternatively, the sensor 430 may be an infrared sensor, a sound sensor, or the like.
 センサ430による検出対象である物体は、人物又は動物である。センサ430は、検出した物体が人物又は動物であるか否かを識別する。例えば、図15には、物体の一例として2人の人物495a及び495bが対象空間490内に存在している。人物495aは椅子492dに座って静止している。人物495bは椅子492bに座って静止している。なお、静止の意味は、椅子492bから離れないなどの大きな移動がないことを意味する。また、センサ430による検出対象である物体は、ロボット掃除機などの自律移動型ロボットであってもよい。 The object to be detected by the sensor 430 is a person or an animal. The sensor 430 identifies whether the detected object is a person or an animal. For example, in FIG. 15, two people 495a and 495b exist in the target space 490 as an example of an object. Person 495a sits still on chair 492d. Person 495b sits still on chair 492b. The meaning of resting means that there is no large movement such as not leaving the chair 492b. Further, the object to be detected by the sensor 430 may be an autonomous mobile robot such as a robot vacuum cleaner.
 本実施の形態では、気流生成装置110及び410の少なくとも一方が回避経路を決定する。例えば、センサ430による検出対象である物体が、人物又は動物である場合に、人物又は動物を回避するような気流を生成してもよい。例えば、気流生成装置110は、エアロゾル計測装置100、気流生成装置410及びセンサ430の各々と通信可能に接続されている。気流生成装置110は、エアロゾル計測装置100からエアロゾル90の検出結果を取得し、センサ430から物体の検出結果を取得し、2つの検出結果に基づいて回避経路を決定する。気流生成装置110は、決定した回避経路に基づいて適切な気流を生成するための制御信号を気流生成装置410に送信する。なお、回避経路の決定は、エアロゾル計測装置100が行ってもよく、気流生成装置410が行ってもよく、センサ430が行ってもよい。あるいは、回避経路の決定は、浄化システム5の全体を制御する制御装置(図示せず)が行ってもよい。回避経路の決定を行う装置は、対象空間内に存在する全ての浄化部及び全ての気流生成装置の位置、並びに、全ての気流生成装置の気流の生成に関わる機能の情報をメモリなどに記憶している。 In the present embodiment, at least one of the airflow generators 110 and 410 determines the avoidance route. For example, when the object to be detected by the sensor 430 is a person or an animal, an air flow that avoids the person or the animal may be generated. For example, the airflow generator 110 is communicably connected to each of the aerosol measuring device 100, the airflow generator 410, and the sensor 430. The airflow generation device 110 acquires the detection result of the aerosol 90 from the aerosol measuring device 100, acquires the detection result of the object from the sensor 430, and determines the avoidance route based on the two detection results. The airflow generator 110 transmits a control signal for generating an appropriate airflow based on the determined avoidance path to the airflow generator 410. The avoidance route may be determined by the aerosol measuring device 100, the airflow generating device 410, or the sensor 430. Alternatively, the avoidance route may be determined by a control device (not shown) that controls the entire purification system 5. The device that determines the avoidance route stores information on the positions of all purification units and all airflow generators existing in the target space, and the functions related to airflow generation of all airflow generators in a memory or the like. ing.
 回避経路は、エアロゾル90が物体との接触を避けて浄化部120又は220まで至ることができる経路である。気流生成装置110及び410の少なくとも一方は、エアロゾル90の量が閾値を超えた場合に、回避経路に沿ってエアロゾル90を導く気流を生成する。あるいは、気流生成装置110及び410の両方が同時に又は所定の順序で所定の気流を生成することで、エアロゾル90を回避経路に沿って浄化部120又は220まで導いてもよい。センサ430により検出された物体が、人物又は動物ではなかった場合、その物体を回避することなく、最短経路で気流を生成してもよい。これにより、エアロゾルを確実に浄化することができる。 The avoidance route is a route through which the aerosol 90 can reach the purification unit 120 or 220 while avoiding contact with an object. At least one of the airflow generators 110 and 410 generates an airflow that guides the aerosol 90 along the avoidance path when the amount of aerosol 90 exceeds the threshold. Alternatively, both the airflow generators 110 and 410 may generate predetermined airflows simultaneously or in predetermined order to guide the aerosol 90 to the purification unit 120 or 220 along the avoidance path. If the object detected by the sensor 430 is not a person or an animal, the airflow may be generated by the shortest path without avoiding the object. As a result, the aerosol can be reliably purified.
 [2.動作]
 続いて、本実施の形態に係る浄化システム5の動作について、図16及び図17を用いて説明する。
[2. motion]
Subsequently, the operation of the purification system 5 according to the present embodiment will be described with reference to FIGS. 16 and 17.
 図16は、本実施の形態に係る浄化システム5の動作を示すフローチャートである。図16に示されるように、実施の形態1に係る浄化システム1の動作と比較して、エアロゾル90の量が閾値より大きい場合(S20で“閾値より大きい”)、回避処理を行う(S40)点が相違する。なお、回避処理(S40)は、閾値との比較(S20)を行う前に行われてもよい。 FIG. 16 is a flowchart showing the operation of the purification system 5 according to the present embodiment. As shown in FIG. 16, when the amount of aerosol 90 is larger than the threshold value (“greater than the threshold value” in S20) as compared with the operation of the purification system 1 according to the first embodiment, an avoidance process is performed (S40). The point is different. The avoidance process (S40) may be performed before the comparison with the threshold value (S20).
 図17は、本実施の形態に係る浄化システム5による動作のうち、回避処理(S40)を示すフローチャートである。図17に示されるように、センサ430が物体を検出する(S41)。物体が検出されなかった場合は、回避処理は終了され、図16に示されるように、浄化処理(S30)が行われる。検出結果は、気流生成装置110に送信される。 FIG. 17 is a flowchart showing an avoidance process (S40) among the operations by the purification system 5 according to the present embodiment. As shown in FIG. 17, the sensor 430 detects an object (S41). If no object is detected, the avoidance process is terminated and the purification process (S30) is performed as shown in FIG. The detection result is transmitted to the airflow generator 110.
 次に、気流生成装置110は、検出された物体が移動しているか静止しているかを判定する(S42)。例えば、気流生成装置110は、一定期間の検出結果に基づいて物体がその間移動していない場合には、静止していると判定する。ここでの一定期間は、例えば、1秒以上数十秒以下であるが、これに限らない。 Next, the airflow generator 110 determines whether the detected object is moving or stationary (S42). For example, the airflow generator 110 determines that the object is stationary when the object has not moved during that period based on the detection result for a certain period of time. The fixed period here is, for example, 1 second or more and several tens of seconds or less, but is not limited to this.
 物体が静止していると判定した場合(S42で“静止”)、気流生成装置110は、物体が検出された位置を通過しない経路を回避経路として決定する(S44)。例えば、図15に示される例では、人物495a及び495bが静止している状態を示している。浄化部220がエアロゾル90から最も近い位置に位置しているが、エアロゾル90と浄化部220との間に人物495aが静止している。このため、気流生成装置110がエアロゾル90を浄化部220に導く気流を生成した場合、エアロゾル90が人物495aと接触する。 When it is determined that the object is stationary (“stationary” in S42), the airflow generator 110 determines a route that does not pass the position where the object is detected as an avoidance route (S44). For example, the example shown in FIG. 15 shows a state in which the persons 495a and 495b are stationary. The purification unit 220 is located closest to the aerosol 90, but a person 495a is stationary between the aerosol 90 and the purification unit 220. Therefore, when the airflow generator 110 generates an airflow that guides the aerosol 90 to the purification unit 220, the aerosol 90 comes into contact with the person 495a.
 そこで、気流生成装置110は、エアロゾル90を浄化部120に導く経路を回避経路として決定する。例えば、図15に示されるように、まず、気流生成装置110が気流112を放出することで、エアロゾル90を気流生成装置410と浄化部120との間に導く。その後、気流生成装置410が気流412を放出することにより、エアロゾル90を浄化部120に導く。これにより、浄化部120は、排出口121からエアロゾル90を外部に排出することができる。なお、図15に示される回避経路は一例に過ぎず、人物495a及び495bとの接触を回避できる経路であれば、特に限定されない。 Therefore, the airflow generator 110 determines the route that guides the aerosol 90 to the purification unit 120 as an avoidance route. For example, as shown in FIG. 15, first, the airflow generator 110 discharges the airflow 112 to guide the aerosol 90 between the airflow generator 410 and the purification unit 120. After that, the airflow generator 410 discharges the airflow 412 to guide the aerosol 90 to the purification unit 120. As a result, the purification unit 120 can discharge the aerosol 90 to the outside from the discharge port 121. The avoidance route shown in FIG. 15 is only an example, and is not particularly limited as long as it can avoid contact with the persons 495a and 495b.
 図17に戻り、気流生成装置110は、一定期間の検出結果に基づいて、物体の位置が移動している場合には(S42で“移動”)、移動経路を予測する(S43)。具体的には、気流生成装置110は、一定期間の検出結果に基づいて物体の移動方向及び移動速度を算出し、算出結果に基づいて移動経路を予測する。例えば、予測される移動経路は、算出した移動方向及び移動速度を維持して物体が移動した場合の経路である。 Returning to FIG. 17, the airflow generator 110 predicts the movement path when the position of the object is moving (“movement” in S42) based on the detection result for a certain period (S43). Specifically, the airflow generator 110 calculates the moving direction and moving speed of the object based on the detection result for a certain period, and predicts the moving path based on the calculated result. For example, the predicted movement path is a path when the object moves while maintaining the calculated movement direction and movement speed.
 次に、気流生成装置110は、予測した移動経路に沿って移動する物体との接触を避けて浄化部まで至ることができる経路を回避経路として決定する(S44)。例えば、図18に示される例では、人物495bが静止している一方で、人物495aが移動している状態を示している。人物495aは、気流生成装置410の近くから浄化部120に向かう方向に移動している。このため、気流生成装置110がエアロゾル90を浄化部120に導く気流を生成した場合、エアロゾル90は、移動している人物495aと接触する可能性がある。 Next, the airflow generator 110 determines a path that can reach the purification unit by avoiding contact with an object moving along the predicted movement path as an avoidance path (S44). For example, in the example shown in FIG. 18, the person 495b is stationary while the person 495a is moving. The person 495a is moving in the direction from the vicinity of the airflow generator 410 toward the purification unit 120. Therefore, when the airflow generator 110 generates an airflow that guides the aerosol 90 to the purification unit 120, the aerosol 90 may come into contact with the moving person 495a.
 そこで、気流生成装置110は、エアロゾル90を浄化部220に導く経路を回避経路として決定する。例えば、図18に示されるように、気流生成装置110及び410がそれぞれ気流112及び412を放出することで、エアロゾル90を浄化部220に導く。これにより、浄化部220は、吸引口221からエアロゾル90を吸い込んで捕集又は無害化する。なお、図18に示される回避経路は一例に過ぎず、人物495a及び495bとの接触を回避できる経路であれば、特に限定されない。 Therefore, the airflow generator 110 determines the route that guides the aerosol 90 to the purification unit 220 as an avoidance route. For example, as shown in FIG. 18, the airflow generators 110 and 410 release the airflows 112 and 412, respectively, to guide the aerosol 90 to the purification unit 220. As a result, the purification unit 220 sucks the aerosol 90 from the suction port 221 to collect or detoxify it. The avoidance route shown in FIG. 18 is only an example, and is not particularly limited as long as it can avoid contact with the persons 495a and 495b.
 以上のように、本実施の形態によれば、人物などの物体とエアロゾル90との接触を回避できる可能性を高めることができる。これにより、エアロゾル90が人物への健康被害を与えるのを抑制することができる。 As described above, according to the present embodiment, it is possible to increase the possibility of avoiding contact between an object such as a person and the aerosol 90. As a result, it is possible to prevent the aerosol 90 from causing a health hazard to a person.
 なお、センサ430は、エアロゾル計測装置100とは異なるセンサであるが、エアロゾル計測装置100を利用して物体を検出してもよい。例えば、エアロゾル計測装置100が出射した出射光L1が物体で反射された場合には、エアロゾル90による散乱光L3よりも強い光が検出される。このため、強い光に基づいて物体を検出することができる。例えば、強い光が検出される位置が移動する場合には、強い光の発生源の移動に沿って物体が移動していると判定することができる。 Although the sensor 430 is a sensor different from the aerosol measuring device 100, an object may be detected by using the aerosol measuring device 100. For example, when the emitted light L1 emitted by the aerosol measuring device 100 is reflected by an object, light stronger than the scattered light L3 by the aerosol 90 is detected. Therefore, the object can be detected based on strong light. For example, when the position where strong light is detected moves, it can be determined that the object is moving along with the movement of the source of strong light.
 また、図16及び図17に示される例では、エアロゾル90の量が閾値を超えた場合に、物体の検出を行う例を示したが、物体の検出は、常に行われていてもよい。 Further, in the examples shown in FIGS. 16 and 17, an example of detecting an object when the amount of aerosol 90 exceeds the threshold value is shown, but the detection of the object may always be performed.
 (実施の形態3)
 続いて、実施の形態3について説明する。
(Embodiment 3)
Subsequently, the third embodiment will be described.
 実施の形態1では、出射光L1及び散乱光L3の各々をエタロンによって干渉させる例について示したが、実施の形態3では、エタロンとは異なる干渉計を用いて散乱光L3を干渉させる。以下では、実施の形態1又は2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 In the first embodiment, an example in which each of the emitted light L1 and the scattered light L3 is interfered with by the etalon is shown, but in the third embodiment, the scattered light L3 is interfered with by using an interferometer different from the etalon. In the following, the differences from the first or second embodiment will be mainly described, and the common points will be omitted or simplified.
 図19は、本実施の形態に係る浄化システム6の構成を示す図である。図19に示されるように、浄化システム6は、実施の形態1に係る浄化システム1と比較して、エアロゾル計測装置100の代わりにエアロゾル計測装置500を備える点が相違する。エアロゾル計測装置500は、光源20及び分析部60の代わりに、光源520及び分析部560を備える点が相違する。また、エアロゾル計測装置500は、光学素子10の代わりに干渉部510を備える。 FIG. 19 is a diagram showing the configuration of the purification system 6 according to the present embodiment. As shown in FIG. 19, the purification system 6 is different from the purification system 1 according to the first embodiment in that it includes an aerosol measuring device 500 instead of the aerosol measuring device 100. The aerosol measuring device 500 is different in that it includes a light source 520 and an analysis unit 560 instead of the light source 20 and the analysis unit 60. Further, the aerosol measuring device 500 includes an interference unit 510 instead of the optical element 10.
 光源520は、互いに等しい周波数間隔LW2で離れた複数本のピークを有するレーザ光を含むマルチレーザ光を、照射光L2として出射する。照射光L2の中心波長λは、例えば400nmである。複数本のピークの周波数間隔LW2は、例えば10GHz以下であり、一例として6GHzである。複数本のピークの各々の半値全幅LW1は、例えば、周波数間隔LW2の1/10以下の値であり、一例として360MHzである。 The light source 520 emits multi-laser light including laser light having a plurality of peaks separated by a frequency interval LW2 equal to each other as irradiation light L2. The center wavelength λ of the irradiation light L2 is, for example, 400 nm. The frequency interval LW2 of the plurality of peaks is, for example, 10 GHz or less, and 6 GHz as an example. The full width at half maximum LW1 of each of the plurality of peaks is, for example, a value of 1/10 or less of the frequency interval LW2, and is 360 MHz as an example.
 上述したマルチレーザ光のモード間隔である周波数間隔は、例えば、5GHz以下とすることができる。これにより、効率良く大気散乱信号を除去することができる。 The frequency interval, which is the mode interval of the multi-laser light described above, can be, for example, 5 GHz or less. As a result, the atmospheric scattering signal can be efficiently removed.
 照射光L2がエアロゾル90に照射されることで発生する散乱光L3は、互いに等しい周波数間隔MW2で離れた複数本のピークを有するミー散乱光を含む。周波数間隔MW2は、照射光L2の周波数間隔LW2に等しい。複数本のピークの各々の半値全幅MW1は、照射光L2の各ピークの半値全幅LW1に等しい。 The scattered light L3 generated by irradiating the aerosol 90 with the irradiation light L2 includes Mie scattered light having a plurality of peaks separated by a frequency interval MW2 equal to each other. The frequency interval MW2 is equal to the frequency interval LW2 of the irradiation light L2. The full width at half maximum MW1 of each of the plurality of peaks is equal to the full width at half maximum LW1 of each peak of the irradiation light L2.
 また、散乱光L3は、空気中を通過するので、空気を構成する分子によるレイリー散乱光を含む。レイリー散乱光の半値全幅RWは、分子の熱運動により広がる。実測でのレイリー散乱光の半値全幅RWは、3.4GHzから3.9GHz程度である。一例として、レイリー散乱光の半値全幅RWは、3.6GHzである。 Further, since the scattered light L3 passes through the air, it includes Rayleigh scattered light by the molecules constituting the air. The full width at half maximum RW of Rayleigh scattered light is expanded by the thermal motion of molecules. The full width at half maximum RW of Rayleigh scattered light in the actual measurement is about 3.4 GHz to 3.9 GHz. As an example, the full width at half maximum RW of Rayleigh scattered light is 3.6 GHz.
 干渉部510は、光路差を変更可能な干渉計である。干渉部510は、散乱光L3の光路上に設けられており、散乱光L3が入射する。干渉部510を通過した後の散乱光L3が受光器50に受光される。 The interferometer 510 is an interferometer capable of changing the optical path difference. The interference unit 510 is provided on the optical path of the scattered light L3, and the scattered light L3 is incident on the interference unit 510. The scattered light L3 after passing through the interference unit 510 is received by the receiver 50.
 干渉部510は、互いに光路長が異なる複数の散乱光に散乱光L3を分離し、複数の散乱光を干渉させる。干渉光を受光することで、インターフェログラムを形成することができる。インターフェログラムは、干渉によって生じる干渉フリンジのことである。干渉部510は、例えば、マイケルソン干渉計、マッハツェンダー干渉計、ファブリペロー干渉計などである。 The interference unit 510 separates the scattered light L3 into a plurality of scattered lights having different optical path lengths, and causes the plurality of scattered lights to interfere with each other. By receiving the interference light, an interferogram can be formed. An interferogram is an interference fringe caused by interference. The interferometer 510 is, for example, a Michelson interferometer, a Mach-Zehnder interferometer, a Fabry-Perot interferometer, or the like.
 ここで、散乱光L3に干渉部510を通過させた場合に生成されるインターフェログラムにおける干渉フリンジの間隔をΔxとする。Δxは、光速c(=3×10m/s)を周波数間隔MW2で割った値である。例えば、周波数間隔MW2が6GHzであり、波長λが400nmである場合、Δxは50mmになる。 Here, let Δx be the interval of the interference fringes in the interferogram generated when the scattered light L3 is passed through the interference unit 510. Δx is a value obtained by dividing the speed of light c (= 3 × 10 8 m / s) by the frequency interval MW2. For example, when the frequency interval MW2 is 6 GHz and the wavelength λ is 400 nm, Δx is 50 mm.
 本実施の形態では、干渉部510は、出射光L1の中心波長の1/4より大きく、かつ、干渉フリンジの間隔Δxの1/2より小さい範囲で光路差を掃引する。干渉部510によって生成される光路差をdxとし、dx=0での干渉フリンジを第0の干渉フリンジ、dx=Δxでの干渉フリンジを第1の干渉フリンジ、dx=n×Δxでの干渉フリンジを第nの干渉フリンジと定義する。本実施の形態では、干渉部510における光路差dxを調整することで、周波数間隔に対応した第1の干渉フリンジの近傍の信号を取得し、取得した信号からレイリー散乱光成分を除去することで、ミー散乱光を選択的に取得する。第1の干渉フリンジでは、空気を構成する分子によるレイリー散乱の影響が極めて小さく、エアロゾル90からのミー散乱光の強度に対する依存性が高い。具体的には、エアロゾル90からのミー散乱光の強度に応じて、第1の干渉フリンジの信号強度が単調に増加する。このため、第1の干渉フリンジの信号強度を測定することにより、エアロゾル90からのミー散乱光の強度を精度良く取得することができる。 In the present embodiment, the interference unit 510 sweeps the optical path difference in a range larger than 1/4 of the center wavelength of the emitted light L1 and smaller than 1/2 of the interference fringe interval Δx. The optical path difference generated by the interference unit 510 is dx, the interference fringe at dx = 0 is the 0th interference fringe, the interference fringe at dx = Δx is the first interference fringe, and the interference fringe at dx = n × Δx. Is defined as the nth interference fringe. In the present embodiment, by adjusting the optical path difference dx in the interference unit 510, a signal in the vicinity of the first interference fringe corresponding to the frequency interval is acquired, and the Rayleigh scattered light component is removed from the acquired signal. , Me Selectively obtains scattered light. In the first interference fringe, the influence of Rayleigh scattering by the molecules constituting air is extremely small, and the dependence on the intensity of Mie scattered light from the aerosol 90 is high. Specifically, the signal intensity of the first interference fringe increases monotonically according to the intensity of the Mie scattered light from the aerosol 90. Therefore, by measuring the signal intensity of the first interference fringe, the intensity of the Mie scattered light from the aerosol 90 can be accurately obtained.
 分析部560は、光路差dxを掃引させて得られる散乱光L3のインターフェログラムから、第1の干渉フリンジに対応する信号成分を抽出し、抽出した信号成分に基づいて速度を算出する。具体的には、分析部560は、干渉部510を通過した散乱光L3に基づいてインターフェログラムを生成する。分析部560は、生成したインターフェログラムに基づいて第1の干渉フリンジの信号強度を取得し、当該信号強度に基づいてエアロゾル90からのミー散乱光の受光強度を取得することができる。これにより、分析部560は、エアロゾル90の速度を精度良く算出することができる。 The analysis unit 560 extracts the signal component corresponding to the first interference fringe from the interferogram of the scattered light L3 obtained by sweeping the optical path difference dx, and calculates the velocity based on the extracted signal component. Specifically, the analysis unit 560 generates an interferogram based on the scattered light L3 that has passed through the interference unit 510. The analysis unit 560 can acquire the signal intensity of the first interference fringe based on the generated interferogram, and can acquire the received intensity of the Mie scattered light from the aerosol 90 based on the signal intensity. As a result, the analysis unit 560 can accurately calculate the velocity of the aerosol 90.
 なお、分析部560は、第1の干渉フリンジの近傍の信号に基づいてフーリエ変換を行ってもよい。分析部560は、フーリエ変換によって波長スペクトルデータを生成し、その最大値をミー散乱光の強度として取得することができる。 Note that the analysis unit 560 may perform a Fourier transform based on a signal in the vicinity of the first interference fringe. The analysis unit 560 can generate wavelength spectrum data by Fourier transform and acquire the maximum value as the intensity of Mie scattered light.
 以上のように、本実施の形態に係る浄化システム6によれば、散乱光L3からレイリー散乱光を除去することができる。したがって、実施の形態1又は2と同様に、エアロゾル90の検出精度を高めることができる。 As described above, according to the purification system 6 according to the present embodiment, Rayleigh scattered light can be removed from the scattered light L3. Therefore, the detection accuracy of the aerosol 90 can be improved as in the first or second embodiment.
 なお、エアロゾル計測装置500は、散乱光L3の経路上に設けられた、散乱光L3を集光する集光部30を備えてもよい。例えば、散乱光L3を透過させる開口(図示せず)とミラー22との間、ミラー22と干渉部510との間、干渉部510と受光器50との間の少なくとも1ヶ所に、1つ以上の集光部30が設けられていてもよい。 The aerosol measuring device 500 may include a condensing unit 30 for condensing the scattered light L3, which is provided on the path of the scattered light L3. For example, at least one or more at least one place between the aperture (not shown) and the mirror 22 through which the scattered light L3 is transmitted, between the mirror 22 and the interference unit 510, and between the interference unit 510 and the receiver 50. The light collecting unit 30 may be provided.
 集光部30は、例えば、集光レンズ及びコリメートレンズの少なくとも1つを含むレンズ群である。集光部30は、エアロゾル90からの散乱光L3を集光し、平行光に変換して出射する。集光部30が設けられていることにより、散乱光L3の検出精度を高めることができる。また、干渉部510による干渉効果を高めることができる。 The condensing unit 30 is, for example, a lens group including at least one of a condensing lens and a collimating lens. The light collecting unit 30 collects the scattered light L3 from the aerosol 90, converts it into parallel light, and emits it. By providing the light collecting unit 30, the detection accuracy of the scattered light L3 can be improved. In addition, the interference effect of the interference unit 510 can be enhanced.
 (他の実施の形態)
 以上、1つ又は複数の態様に係るエアロゾル計測装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
Although the aerosol measuring device according to one or more embodiments has been described above based on the embodiments, the present disclosure is not limited to these embodiments. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and a form constructed by combining components in different embodiments is also included in the scope of the present disclosure. Is done.
 例えば、上記の実施の形態では、エタロン又はマイケルソン干渉計などの干渉部を用いてレイリー散乱光を除去する例を示したが、これに限らない。エアロゾル計測装置は、エタロン又はマイケルソン干渉計などの干渉部を備えなくてもよい。干渉部を用いない場合であっても、エアロゾル90による散乱光を受光することで、エアロゾル90を検出することができる。 For example, in the above embodiment, an example of removing Rayleigh scattered light by using an interferometer such as an Etalon or Michelson interferometer is shown, but the present invention is not limited to this. The aerosol measuring device does not have to include an interferometer such as an etalon or Michelson interferometer. Even when the interference unit is not used, the aerosol 90 can be detected by receiving the scattered light by the aerosol 90.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、浄化システムが備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。 Further, in the above embodiment, another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. Further, the distribution of the components of the purification system to a plurality of devices is an example. For example, the components of one device may be included in another device.
 例えば、上記実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 For example, the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good. Further, the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
 また、上記実施の形態において、分析部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, all or a part of the components such as the analysis unit may be composed of dedicated hardware, or may be realized by executing a software program suitable for each component. May be good. Even if each component is realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
 また、分析部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Further, a component such as an analysis unit may be composed of one or a plurality of electronic circuits. The one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)などが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。 One or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like. The IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). An FPGA (Field Programmable Gate Array) programmed after the LSI is manufactured can also be used for the same purpose.
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Further, the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program. Alternatively, it may be realized by a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored. Further, it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
 また、上記の各実施の形態は、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, in each of the above embodiments, various changes, replacements, additions, omissions, etc. can be made within the scope of claims or the equivalent scope thereof.
 本開示は、空気中に浮遊するエアロゾルを効率良く浄化することができる浄化方法及び浄化システムなどとして利用でき、例えば、一般家庭、オフィス、介護施設又は病院などの浄化設備などに利用することができる。 The present disclosure can be used as a purification method and a purification system capable of efficiently purifying an aerosol floating in the air, and can be used, for example, in a purification facility such as a general household, an office, a nursing care facility, or a hospital. ..
1、2、3、4、5、6 浄化システム
10 光学素子
10a 第1部分
10b 第2部分
11 透光部
12、13 多層膜
12a 第1面
13a 第2面
20、520 光源
22 ミラー
30 集光部
30a、40 集光レンズ
50 受光器
60、560 分析部
90 エアロゾル
91 薬剤
92、112、412 気流
100、500 エアロゾル計測装置
110、410 気流生成装置
120、220 浄化部
121 排出口
221 吸引口
310 浄化装置
430 センサ
490 対象空間
491 机
492a、492b、492c、492d 椅子
493 棚
495a、495b 人物
510 干渉部
1, 2, 3, 4, 5, 6 Purification system 10 Optical element 10a First part 10b Second part 11 Translucent part 12, 13 Multilayer film 12a First surface 13a Second surface 20, 520 Light source 22 Mirror 30 Condensing Units 30a, 40 Condensing lens 50 Receiver 60, 560 Analytical unit 90 Aerosol 91 Drug 92, 112, 412 Airflow 100, 500 Aerosol measuring device 110, 410 Airflow generator 120, 220 Purification unit 121 Discharge port 221 Suction port 310 Purification Device 430 Sensor 490 Target space 491 Desk 492a, 492b, 492c, 492d Chair 493 Shelf 495a, 495b Person 510 Interfering part

Claims (14)

  1.  光センサと、浄化部と、を含む浄化システムを用いる浄化方法であって、
     前記光センサを用いて、対象空間内に浮遊するエアロゾルで散乱した散乱光を検知することにより、前記エアロゾルの位置及び量を特定することと、
     前記エアロゾルの前記量が閾値を超えた場合に、前記浄化部により前記エアロゾルを浄化することと、を含む、
     浄化方法。
    A purification method that uses a purification system that includes an optical sensor and a purification unit.
    By using the optical sensor to detect scattered light scattered by the aerosol floating in the target space, the position and amount of the aerosol can be specified.
    Including purifying the aerosol by the purifying unit when the amount of the aerosol exceeds a threshold value.
    Purification method.
  2.  前記浄化することにおいて、前記浄化部は、前記エアロゾルの前記位置に気体又は液体を放出する、
     請求項1に記載の浄化方法。
    In purifying, the purifying unit releases a gas or liquid to the position of the aerosol.
    The purification method according to claim 1.
  3.  前記浄化部は、前記エアロゾルを吸い込む吸引口を含み、
     前記浄化することにおいて、前記浄化部は、前記吸引口から前記エアロゾルを吸い込むことにより、前記エアロゾルを捕集又は無害化する、
     請求項1又は2に記載の浄化方法。
    The purification unit includes a suction port for sucking the aerosol.
    In the purification, the purification unit collects or detoxifies the aerosol by sucking the aerosol from the suction port.
    The purification method according to claim 1 or 2.
  4.  前記浄化部は、前記エアロゾルを吸い込む気流を生成することにより、前記吸引口から前記エアロゾルを吸い込む、
     請求項3に記載の浄化方法。
    The purification unit sucks the aerosol from the suction port by generating an air flow that sucks the aerosol.
    The purification method according to claim 3.
  5.  前記浄化システムは、気流生成装置をさらに含み、
     前記浄化することにおいて、前記気流生成装置は、前記エアロゾルの前記位置に気流を放出する、
     請求項1から3のいずれか一項に記載の浄化方法。
    The purification system further includes an airflow generator.
    In purifying, the airflow generator discharges the airflow to the position of the aerosol.
    The purification method according to any one of claims 1 to 3.
  6.  前記浄化システムは、前記対象空間の外部に向けて開口する排出口をさらに含み、
     前記浄化することは、前記気流によって導かれたエアロゾルを前記排出口から前記外部に排出することを含む、
     請求項4又は5に記載の浄化方法。
    The purification system further includes an outlet that opens to the outside of the target space.
    The purification includes discharging the aerosol guided by the air flow from the discharge port to the outside.
    The purification method according to claim 4 or 5.
  7.  前記浄化システムは、前記対象空間内にある物体の位置を検出するセンサをさらに含み、
     前記センサを用いて前記物体が人物又は動物であるか否かを識別することをさらに含む、
     請求項1から4のいずれか一項に記載の浄化方法。
    The purification system further includes a sensor that detects the position of an object in the target space.
    It further comprises using the sensor to identify whether the object is a person or an animal.
    The purification method according to any one of claims 1 to 4.
  8.  前記浄化システムは、気流生成装置をさらに含み、
     前記識別することにおいて、前記物体が人物又は動物であると識別された場合、前記気流生成装置は、前記エアロゾルが、前記物体との接触を避けて前記浄化部まで至る回避経路を決定し、
     前記浄化することにおいて、前記気流生成装置は、前記回避経路に沿って前記エアロゾルを前記浄化部に導く気流を生成する、
     請求項7に記載の浄化方法。
    The purification system further includes an airflow generator.
    In the identification, when the object is identified as a person or an animal, the airflow generator determines an avoidance path for the aerosol to avoid contact with the object and reach the purification unit.
    In purifying, the airflow generator generates an airflow that guides the aerosol to the purifying section along the avoidance path.
    The purification method according to claim 7.
  9.  前記気流生成装置は、前記物体の移動経路を予測し、前記エアロゾルが、前記移動経路に沿って移動する前記物体との接触を避けて前記浄化部まで至ることができる経路を前記回避経路として決定する、
     請求項8に記載の浄化方法。
    The airflow generator predicts the movement path of the object, and determines as the avoidance path a path through which the aerosol can reach the purification unit while avoiding contact with the object moving along the movement path. To do
    The purification method according to claim 8.
  10.  前記特定することにおいて、前記光センサは、互いに等しい周波数間隔で離れた複数のピークを有する光を前記対象空間内に出射し、
     前記周波数間隔は、大気を構成する分子によるレイリー散乱光の周波数のピークの半値幅未満である、
     請求項1から9のいずれか1項に記載の浄化方法。
    In the above-mentioned identification, the optical sensor emits light having a plurality of peaks separated from each other at equal frequency intervals into the target space.
    The frequency interval is less than the half width of the peak frequency of Rayleigh scattered light by the molecules constituting the atmosphere.
    The purification method according to any one of claims 1 to 9.
  11.  前記浄化システムは、前記エアロゾルの前記位置に前記エアロゾルを無害化する薬剤を放出する浄化装置をさらに含む、
     請求項1から10のいずれか一項に記載の浄化方法。
    The purification system further comprises a purification device that releases a detoxifying agent to the aerosol at the location of the aerosol.
    The purification method according to any one of claims 1 to 10.
  12.  前記散乱光はミー散乱光を含む、
     請求項1から11のいずれか一項に記載の浄化方法。
    The scattered light includes Mie scattered light,
    The purification method according to any one of claims 1 to 11.
  13.  前記散乱光はレイリー散乱光を含む、
     請求項1から12のいずれか一項に記載の浄化方法。
    The scattered light includes Rayleigh scattered light,
    The purification method according to any one of claims 1 to 12.
  14.  光センサと、
     浄化部と、を備え、
     前記光センサは、対象空間内に浮遊するエアロゾルで散乱した散乱光を検知することにより、前記エアロゾルの位置及び量を特定し、
     前記浄化部は、前記エアロゾルの前記量が閾値を超えた場合に、前記エアロゾルを浄化する、
     浄化システム。
    Optical sensor and
    Equipped with a purification unit
    The optical sensor identifies the position and amount of the aerosol by detecting scattered light scattered by the aerosol floating in the target space.
    The purification unit purifies the aerosol when the amount of the aerosol exceeds a threshold value.
    Purification system.
PCT/JP2020/022656 2019-06-26 2020-06-09 Purification method and purification system WO2020261972A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021528105A JPWO2020261972A1 (en) 2019-06-26 2020-06-09

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-119074 2019-06-26
JP2019119074 2019-06-26
JP2020-049490 2020-03-19
JP2020049490 2020-03-19

Publications (1)

Publication Number Publication Date
WO2020261972A1 true WO2020261972A1 (en) 2020-12-30

Family

ID=74060891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022656 WO2020261972A1 (en) 2019-06-26 2020-06-09 Purification method and purification system

Country Status (2)

Country Link
JP (1) JPWO2020261972A1 (en)
WO (1) WO2020261972A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586U (en) * 1981-06-26 1983-01-05 日野自動車株式会社 Automotive ventilation fan control device
JPH01261832A (en) * 1988-04-12 1989-10-18 Nec Corp Dust counter for controlling cleanliness of semiconductor manufacturing equipment
JP2003202129A (en) * 2002-01-10 2003-07-18 Mitsubishi Heavy Ind Ltd Air-conditioning system, air conditioning method and program
JP2007171012A (en) * 2005-12-22 2007-07-05 Japan Atomic Energy Agency Remote selection image measuring method of aerosol including specific material
JP2007187326A (en) * 2006-01-11 2007-07-26 Hitachi Appliances Inc Air conditioner
JP2011110508A (en) * 2009-11-27 2011-06-09 Panasonic Corp Room dust collector, and program for letting the same functionate
CN205461441U (en) * 2016-03-29 2016-08-17 南京信息工程大学 Intelligence efficient aerosol concentration measurement and purifier
WO2016208013A1 (en) * 2015-06-24 2016-12-29 国立研究開発法人国立環境研究所 Lidar system and measurement method
CN107941665A (en) * 2017-12-21 2018-04-20 北京厚力德仪器设备有限公司 A kind of high-resolution aerosol particle diameter survey meter
KR20180078832A (en) * 2016-12-30 2018-07-10 주식회사 쓰리에이치굿스 air purification processing system for dust and microorganism dectection

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586U (en) * 1981-06-26 1983-01-05 日野自動車株式会社 Automotive ventilation fan control device
JPH01261832A (en) * 1988-04-12 1989-10-18 Nec Corp Dust counter for controlling cleanliness of semiconductor manufacturing equipment
JP2003202129A (en) * 2002-01-10 2003-07-18 Mitsubishi Heavy Ind Ltd Air-conditioning system, air conditioning method and program
JP2007171012A (en) * 2005-12-22 2007-07-05 Japan Atomic Energy Agency Remote selection image measuring method of aerosol including specific material
JP2007187326A (en) * 2006-01-11 2007-07-26 Hitachi Appliances Inc Air conditioner
JP2011110508A (en) * 2009-11-27 2011-06-09 Panasonic Corp Room dust collector, and program for letting the same functionate
WO2016208013A1 (en) * 2015-06-24 2016-12-29 国立研究開発法人国立環境研究所 Lidar system and measurement method
CN205461441U (en) * 2016-03-29 2016-08-17 南京信息工程大学 Intelligence efficient aerosol concentration measurement and purifier
KR20180078832A (en) * 2016-12-30 2018-07-10 주식회사 쓰리에이치굿스 air purification processing system for dust and microorganism dectection
CN107941665A (en) * 2017-12-21 2018-04-20 北京厚力德仪器设备有限公司 A kind of high-resolution aerosol particle diameter survey meter

Also Published As

Publication number Publication date
JPWO2020261972A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
US20210311087A1 (en) Scatterer measurement method and scatterer measurement apparatus
US20200384144A1 (en) Purifying method, purifying apparatus, and purifying system
US6885440B2 (en) System and method for detecting and classifying biological particles
KR20050113598A (en) Airborne pathogen detector system and method
CN110849781B (en) Alarm Condition Detector Based on Multispectral Sensor
JP2009501907A (en) Pathogen and particulate detection system and detection method
JP6782470B2 (en) Measuring device and measuring method
US20070097366A1 (en) Optical system and method for detecting particles
WO2020202887A1 (en) Aerosol measurement device and aerosol measurement method
WO2020250651A1 (en) Aerosol measurement device and aerosol measurement method
EP4128130A1 (en) Identifying, reducing health risks, and tracking occupancy in a facility
WO2020261972A1 (en) Purification method and purification system
US20220404361A1 (en) Compact spectroscopic analyzer device
KR101919103B1 (en) MIRRIRLESS OPTICAL DETECTION APPARATUS of MICROORGANISM
JP2007333409A (en) Suspended particle measurement device
KR20160103287A (en) Detection apparatus for micro dust and organism
CN111263645A (en) Purification method, purification device, and purification system
KR20160103285A (en) Detection apparatus for micro dust and organism
WO2021024698A1 (en) Aerosol measurement device
JP2021121787A (en) Scattering body measurement device and scattering body measurement method
JP2022012708A (en) Aerosol measurement device and aerosol measurement method
JP2006010353A (en) Fine particle measuring instrument
JP7426612B2 (en) Aerosol measuring device and aerosol measuring method
US11366048B2 (en) Smoke detector for aspiration smoke detector system
JP2004138387A (en) Photocatalyst function evaluating apparatus and photocatalyst function evaluation method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833063

Country of ref document: EP

Kind code of ref document: A1