WO2020241212A1 - Aerosol measurement device and aerosol measurement method - Google Patents

Aerosol measurement device and aerosol measurement method Download PDF

Info

Publication number
WO2020241212A1
WO2020241212A1 PCT/JP2020/018755 JP2020018755W WO2020241212A1 WO 2020241212 A1 WO2020241212 A1 WO 2020241212A1 JP 2020018755 W JP2020018755 W JP 2020018755W WO 2020241212 A1 WO2020241212 A1 WO 2020241212A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
etalon
aerosol
measuring device
optical path
Prior art date
Application number
PCT/JP2020/018755
Other languages
French (fr)
Japanese (ja)
Inventor
大山 達史
宮下 万里子
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021522168A priority Critical patent/JP7426612B2/en
Publication of WO2020241212A1 publication Critical patent/WO2020241212A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Definitions

  • the present disclosure relates to an aerosol measuring device and an aerosol measuring method.
  • the lidar is a technique for observing aerosols floating in the air such as yellow sand, pollen, dust, or minute water droplets by measuring and analyzing the scattered light of pulsed light emitted into the atmosphere.
  • the scattered light usually includes Mie scattered light and Rayleigh scattered light.
  • the Mie scattered light is scattered light generated by Mie scattering, which is a scattering phenomenon caused by fine particles having a particle size equal to or larger than the wavelength of the emitted light.
  • the Mie scattered light is, for example, scattered light from an aerosol which is an object to be measured.
  • Rayleigh scattering is a scattering phenomenon caused by fine particles and atmospheric molecules smaller than the wavelength of emitted light. By excluding Rayleigh scattered light from scattered light, Mie scattered light can be obtained.
  • Patent Document 1 discloses a technique for spectroscopically separating scattered light from a single laser beam into Mie scattered light and Rayleigh scattered light using a filter. Further, for example, in Patent Document 2, an interferometer that selectively transmits light having the same spectral interval as the emitted laser light by utilizing the fact that the mode interval of the spectrum of the laser beam in the multi-longitudinal mode is constant. A technique for dispersing scattered light using a laser is disclosed.
  • the present disclosure provides an aerosol measuring device and an aerosol measuring method capable of easily and accurately measuring an aerosol.
  • the aerosol measuring device is a device for measuring aerosol contained in the atmosphere.
  • the aerosol measuring device includes a light source, a first etalon through which the first light emitted from the light source passes, and a second etalon through which the second light scattered by the aerosol passes.
  • An etalon and a control unit that changes at least one optical path length selected from the group consisting of the optical path length of the first light in the first etalon and the optical path length of the second light in the second etalon. , Equipped with.
  • the first light emitted from the light source is incident on the first etalon, and the light emitted from the first etalon is included in the atmosphere. Irradiating the aerosol, making the second light scattered by the aerosol incident on the second etalon, and in the optical path length of the first light in the first etalon and in the second etalon. Including changing at least one optical path length selected from the group consisting of the optical path length of the second light.
  • one aspect of the present disclosure can be realized as a program for causing a computer to execute the above aerosol measurement method.
  • it can be realized as a computer-readable non-temporary recording medium in which the program is stored.
  • aerosols can be measured easily and accurately.
  • FIG. 1 is a diagram showing a configuration of an aerosol measuring device according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the aerosol measuring device according to the first embodiment.
  • FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device according to the first embodiment.
  • FIG. 4 is a diagram for explaining the 0th transmitted light and the 1st transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment.
  • FIG. 5 is a diagram for explaining the 0th transmitted light and the 2nd transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of an aerosol measuring device according to the first embodiment.
  • FIG. 2 is a flowchart showing the operation of the aerosol measuring device according to the first embodiment.
  • FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device according to the
  • FIG. 6 is a diagram showing an example of a spectrum of scattered light generated by scattering the multi-laser light emitted by the aerosol measuring device according to the first embodiment.
  • FIG. 7 is a diagram showing a calculation result of an interferogram when scattered light including Mie scattered light and Rayleigh scattered light is interfered with by a Michelson interferometer.
  • FIG. 8 is an enlarged view of a part of FIG. 7.
  • FIG. 9 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when there is no scattering by the aerosol and only the atmospheric scattering is considered.
  • FIG. 10 is a diagram showing the frequency characteristics of the transmittances of two etalons having different optical path lengths.
  • FIG. 11 is a diagram showing an example of a change in the optical path length of the etalon by the aerosol measuring device according to the first embodiment.
  • FIG. 12 is a diagram showing the relationship between the temperature difference of etalon and the intensity of emitted light.
  • FIG. 13 is a diagram showing a configuration of an aerosol measuring device according to the second embodiment.
  • FIG. 14 is a diagram showing an example of a change in the optical path length of the etalon by the aerosol measuring device according to the second embodiment.
  • FIG. 15 is a diagram showing the relationship between the inclination of the optical axis of Etalon and the intensity of emitted light.
  • FIG. 16 is a diagram showing a configuration of an aerosol measuring device according to a third embodiment.
  • FIG. 17 is a diagram showing a configuration of an aerosol measuring device according to a fourth embodiment.
  • FIG. 18 is a diagram for explaining the operation of the light-shielding portion of the aerosol measuring device according to the fourth embodiment.
  • the aerosol measuring device is a device for measuring aerosol contained in the atmosphere.
  • the aerosol measuring device includes a light source, a first etalon through which the first light emitted from the light source passes, and a second light through which the second light scattered by the aerosol passes.
  • An etalon and a control unit that changes at least one optical path length selected from the group consisting of the optical path length of the first light in the first etalon and the optical path length of the second light in the second etalon. , Equipped with.
  • the first etalon irradiates the aerosol with interference light having a plurality of peaks separated from each other at equal frequency intervals, which is generated by internally interfering the first light, and the second etalon is produced.
  • the Mie scattered light may be emitted by interfering the second light internally.
  • the aerosol measuring device may further include a receiver that receives the Mie scattered light.
  • the aerosol measuring device can be simplified.
  • the configuration of the aerosol measuring device can be simplified.
  • the aerosol can be easily measured based on the light receiving intensity by the light receiver without requiring complicated signal processing.
  • the optical path length of the first light in the first etalon and the first in the second etalon is tuned. Can be done. Note that tuning is to match the peak positions. By synchronizing the peak positions, it is possible to allow the receiver to receive Mie scattered light of sufficient intensity while sufficiently suppressing the transmission of Rayleigh scattered light. As a result, the measurement accuracy of the aerosol can be improved.
  • control unit may change the optical path length of the second light in the second etalon.
  • the optical path length of the first light in the first etalon can be kept constant, so that the configuration and control for changing the optical path length can be simplified.
  • control unit may periodically change the at least one optical path length within a predetermined range.
  • the aerosol can be easily measured with an appropriate optical path length for synchronizing the peak positions.
  • the frequency interval may be 3.9 GHz or less.
  • Etalon can sufficiently suppress the transmission of Rayleigh scattered light, so that the receiver can receive Mie scattered light based on the aerosol. Therefore, the presence / absence and concentration of aerosol can be easily measured based on the intensity of light received by the light receiver.
  • the aerosol measuring device further includes a temperature adjusting device that adjusts at least one selected from the group consisting of the temperature of the first etalon and the temperature of the second etalon.
  • the control unit may change the at least one optical path length by controlling the temperature adjusting device.
  • the optical path length can be easily changed by utilizing the thermal expansion and contraction of etalon.
  • the aerosol measuring device further comprises at least one selected from the group consisting of the inclination of the optical axis of the first etalon and the inclination of the optical axis of the second etalon.
  • a shaft adjusting device for adjusting is provided, and the control unit may change the at least one optical path length by controlling the shaft adjusting device.
  • the optical path length of the etalon can be easily changed by tilting the optical axis of the etalon with respect to the incident direction of the light.
  • the first light is pulsed light
  • the receiver receives the Mie from the time when the pulsed light is emitted from the light source until the end of a predetermined period longer than the time width of the pulsed light.
  • the Mie scattered light may be received after the reception of the scattered light is stopped and the predetermined period is completed.
  • the second light may enter the second etalon from an oblique direction with respect to the optical axis of the second etalon.
  • the optical path length can be changed by adjusting the incident angle of the second light which is scattered light.
  • the light source may be a laser element or a light emitting diode (LED: Light Emitting Diode).
  • LED Light Emitting Diode
  • the aerosol measuring device may further include a condensing unit that condenses the second light and causes it to be incident on the second etalon.
  • the first light emitted from the light source is incident on the first etalon, and the light emitted from the first etalon is brought into the atmosphere.
  • To irradiate the aerosol contained in the above, to make the second light scattered by the aerosol incident on the second etalon, and to make the optical path length of the first light in the first etalon and the second light. Includes changing at least one optical path length selected from the group consisting of said second light path lengths in etalon.
  • the aerosol can be measured easily and accurately in the same manner as the aerosol measuring device described above.
  • all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (Large Scale Integration). It may be executed by one or more electronic circuits including.
  • the LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips.
  • functional blocks other than the storage element may be integrated on one chip.
  • it is called LSI or IC, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGA Field Programmable Gate Array
  • circuits, units, devices, members or parts can be executed by software processing.
  • the software is recorded on one or more ROMs, optical discs, non-temporary recording media such as hard disk drives, and when the software is executed by a processor, the functions identified by the software It is executed by a processor and peripheral devices.
  • the system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware device, such as an interface.
  • each figure is a schematic view and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
  • FIG. 1 is a diagram showing a configuration of an aerosol measuring device 1 according to the present embodiment.
  • the aerosol measuring device 1 emits the emitted light L2 into the atmosphere, and the scattering body 90 existing in the atmosphere scatters the emitted light L2 to generate scattering.
  • the scattering body 90 existing in the atmosphere scatters the emitted light L2 to generate scattering.
  • the presence / absence and concentration of the aerosol contained in the scatterer 90 are measured.
  • the scatterer 90 exists in the target space for measurement by the aerosol measuring device 1.
  • the target space is, for example, a room in a building such as a residence, office, long-term care facility, or hospital.
  • the target space is, for example, a space partitioned by walls, windows, doors, floors, ceilings, etc., and is a closed space, but is not limited to this.
  • the target space may be an outdoor open space. Further, the target space may be the internal space of a moving body such as a bus or an airplane.
  • the scatterer 90 includes an aerosol to be measured, machined dust, coarse particles, and molecules constituting air.
  • the aerosol is dust floating in the target space, suspended particulate matter such as PM2.5, biological particles, or minute water droplets.
  • Biological particles also include molds or mites floating in the air, pollen, and the like.
  • minute water droplets include substances dynamically generated from the human body such as coughing or sneezing.
  • Aerosol which is the object to be measured, is sufficiently large compared to the molecules that make up air.
  • the aerosol scatters the emitted light L2 to generate Mie scattered light.
  • the molecules constituting the air are sufficiently smaller than the wavelength of the emitted light L2, Rayleigh scattered light is generated by scattering the emitted light L2. Therefore, the scattered light L3 acquired by the aerosol measuring device 1 includes Mie scattered light and Rayleigh scattered light.
  • the Mie scattered light here is backscattered light due to Mie scattering.
  • the aerosol measuring device 1 extracts Mie scattered light from the scattered light L3, and measures the presence / absence and concentration of the aerosol based on the extracted Mie scattered light.
  • the aerosol measuring device 1 emits emitted light L2 in different directions in the target space.
  • the emission direction of the emitted light L2 is changed by, for example, a MEMS (Micro-Electro-Mechanical Systems) mirror (not shown).
  • the emission direction of the emitted light L2 may be changed by changing the direction of the entire aerosol measuring device 1.
  • the aerosol measuring device 1 can create an aerosol distribution in the target space by scanning the target space with the emitted light L2.
  • the aerosol measuring device 1 includes an etalon 10 and 15, a light source 20, a mirror 22, a condensing unit 30, a condensing lens 40, a receiver 50, an analysis unit 60, and the like. It includes a control unit 70 and a heater 80.
  • An example of the condensing unit 30 is a condensing lens 30a.
  • Etalon 10 is a first etalon that interferes with incident light internally and emits as light having a plurality of peaks separated from each other at equal frequency intervals. Light having a plurality of peaks is also called multi-light.
  • the etalon 10 is a single etalon. That is, the etalon 10 is one member integrally configured.
  • the shape of the etalon 10 is, for example, a cylinder or a prism.
  • the etalon 10 has a translucent portion 11 and two multilayer films 12 and 13.
  • the translucent portion 11 is formed by using a transparent material such as quartz or quartz.
  • the translucent portion 11 is sandwiched between the two multilayer films 12 and 13, and is in contact with each of the two multilayer films 12 and 13.
  • the two multilayer films 12 and 13 are dielectric multilayer films having a laminated structure of a plurality of dielectric films, respectively.
  • the two multilayer films 12 and 13 are each formed by alternately laminating a dielectric film having a low refractive index and a dielectric film having a high refractive index.
  • the dielectric film for example, a titanium oxide film, a hafnium oxide film, a silicon oxide film, or the like is used.
  • the light transmitting portion 11 may be an air layer, and the two multilayer films 12 and 13 may be fixed by a frame or the like so as to maintain a constant distance.
  • the emitted light L1 emitted from the light source 20 is incident on the etalon 10.
  • the etalon 10 internally interferes with the emitted light L1 and emits as emitted light L2 which is light having a plurality of peaks separated from each other at equal frequency intervals.
  • the emitted light L2 is a multi-laser light.
  • the emitted light L1 is incident on the multilayer film 12 of the etalon 10 and emitted from the multilayer film 13.
  • the surface of the multilayer film 12 opposite to the surface in contact with the translucent portion 11 is an incident surface on which the emitted light L1 is incident.
  • the surface of the multilayer film 13 opposite to the surface in contact with the translucent portion 11 is an exit surface from which the emitted light L2 is emitted.
  • the etalon 15 is an example of a second etalon in which the scattered light L3 is internally interfered with and the Mie scattered light L4 contained in the scattered light L3 is passed through. Like the etalon 10, the etalon 15 internally interferes with the incident light and emits the light as light having a plurality of peaks separated from each other at equal frequency intervals. Etalon 15 and Etalon 10 have the same optical properties. That is, when the same light is incident on each of the etalons 10 and 15, the frequency intervals of the light emitted from each are the same.
  • the etalon 15 is a single etalon. That is, the etalon 15 is one member integrally configured.
  • the shape of the etalon 15 is, for example, a cylinder or a prism.
  • the etalon 15 has a translucent portion 16 and two multilayer films 17 and 18.
  • the translucent portions 16 and the multilayer films 17 and 18 correspond to the translucent portions 11 and the multilayer films 12 and 13 of the etalon 10, respectively, and have the same configuration.
  • the scattered light L3 condensed by the condenser lens 30a is incident on the etalon 15.
  • the scattered light L3 is incident from the multilayer film 17 of the etalon 15, and the Mie scattered light L4, which is a part of the scattered light L3, is emitted from the multilayer film 18.
  • the surface of the multilayer film 17 opposite to the surface in contact with the translucent portion 16 is an incident surface on which scattered light L3 is incident.
  • the surface of the multilayer film 18 opposite to the surface in contact with the light transmitting portion 16 is an exit surface from which Mie scattered light L4 is emitted.
  • the scattered light L3 includes light having a plurality of peaks separated from each other at equal frequency intervals, each light causes interference when passing through the etalon 15.
  • the thickness of the etalon 15 is adjusted so that the Mie scattered light L4 contained in the scattered light L3 is passed and the Rayleigh scattered light is suppressed from passing.
  • the Rayleigh scattered light can be appropriately removed from the scattered light L3, so that the Mie scattered light L4 caused by the aerosol can be received by the receiver 50.
  • the etalon 10 and the etalon 15 are arranged with a gap between them.
  • the etalon 10 is located on the optical path of the emitted light L1 emitted from the light source 20. More specifically, the etalon 10 is located between the mirror 22 and the opening provided in the outer housing of the aerosol measuring device 1. The opening is provided for the emission light L2 emitted from the etalon 10 to pass through.
  • Etalon 15 is located on the optical path of the scattered light L3 generated from the scattering body 90. Specifically, the etalon 15 is located between the condenser lens 30a and the condenser lens 40.
  • the light source 20 emits the emitted light L2 into the atmosphere via the etalon 10. Specifically, the light source 20 emits the emitted light L1.
  • the emitted light L1 is, for example, pulsed light, but may be continuous light.
  • the emitted light L1 may be monochromatic light having a peak in a specific wavelength band, or light containing a component in a broad wavelength band. The peak bandwidth is, for example, in the range of 10 pm to 10 nm.
  • the emitted light L1 is, for example, ultraviolet light, blue light, infrared light, or the like.
  • the emitted light L1 is reflected by the mirror 22 and then enters the etalon 10. Interference light having a plurality of peaks separated from each other at equal frequency intervals generated by interfering the emitted light L1 incident on the etalon 10 inside the etalon 10 is emitted into the atmosphere as the emitted light L2.
  • the light source 20 is, for example, a semiconductor laser element that emits pulsed laser light as emitted light L1.
  • the beam mode of the emitted light L1 is, for example, a multi-mode, but may be a single mode.
  • the light source 20 emits a laser beam having a peak in the vicinity of 405 nm as an emitted light L1.
  • the light source 20 may be a light emitting diode (LED: Light Emitting Diode).
  • the light source 20 may be a discharge lamp such as a halogen lamp.
  • the mirror 22 reflects the emitted light L1. By arranging the mirror 22 at an appropriate angle with respect to the emitted light L1, the course of the emitted light L1 can be bent in a desired direction. In the present embodiment, the mirror 22 reflects the emitted light L1 and causes it to enter the etalon 10.
  • the aerosol measuring device 1 does not have to include the mirror 22.
  • the light collecting unit 30 is a member that collects the scattered light L3 generated by the scattering body 90 contained in the atmosphere scattering the emitted light L2.
  • the light collecting unit 30 is arranged between the scatterer 90 and the etalon 15.
  • the condensing unit 30 there is, for example, the convex condensing lens 30a shown in FIG. 1, or at least one reflecting mirror.
  • the light collected by the condenser lens 30a is converted into parallel light and emitted by a lens group including a collimating lens. Therefore, the scattered light L3 collected by the condenser lens 30a is incident on the etalon 15.
  • the condensing unit 30 includes an optical element such as a collimating lens or a pinhole. When the signal intensity of the scattered light L3 is strong, the light collecting unit 30 may not be arranged. That is, the aerosol measuring device 1 does not have to include the condensing unit 30.
  • the condenser lens 40 collects the Mie scattered light L4 that has passed through the etalon 15 among the scattered light L3 condensed by the condenser lens 30a.
  • the condenser lens 40 is, for example, a convex lens.
  • the condenser lens 40 concentrates the Mie scattered light L4 on the light receiving surface of the receiver 50.
  • the light receiver 50 receives the Mie scattered light L4 that has passed through the etalon 15 among the scattered light L3 collected by the condenser lens 30a, and outputs a signal according to the light receiving intensity.
  • the light receiving intensity is the intensity of the Mie scattered light L4, and is represented by, for example, the signal level of the signal output by the light receiver 50.
  • the light receiver 50 is an element that performs photoelectric conversion, for example, a PMT (Photomultiplier Tube).
  • the receiver 50 may have a PMT and a photon counter.
  • the receiver 50 may be an avalanche photodiode.
  • the analysis unit 60 analyzes the aerosol contained in the scatterer 90 by analyzing the signal output from the receiver 50. For example, the analysis unit 60 determines the presence / absence and concentration of aerosol based on the signal level of the signal. Specifically, the analysis unit 60 determines the concentration of the aerosol corresponding to the signal level by referring to the correspondence information in which the signal level and the concentration of the aerosol are associated with each other. Correspondence information is stored in advance in, for example, a memory (not shown) included in the analysis unit 60.
  • the analysis unit 60 calculates the distance to the aerosol by the TOF (Time Of Flight) method based on the time required from the emission of the emitted light L2 to the reception of the Mie scattered light L4.
  • the analysis unit 60 identifies the position of the aerosol in the target space based on the calculated distance and the direction in which the emitted light L2 is emitted. By repeating the identification of the position of the aerosol while changing the emission direction of the emitted light L2, the analysis unit 60 creates the distribution of the aerosol in the target space.
  • the analysis unit 60 is composed of one or a plurality of electronic circuits including a plurality of circuit components. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit. That is, the function executed by the analysis unit 60 is realized by hardware such as an electronic circuit. Alternatively, the analysis unit 60 may be realized by a non-volatile memory in which the program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor in which the program is executed, or the like. The function executed by the analysis unit 60 may be realized by software executed by the processor.
  • the control unit 70 changes at least one optical path length selected from the group consisting of the optical path length of the emitted light L1 in the etalon 10 and the optical path length of the scattered light L3 in the etalon 15.
  • the control unit 70 changes the optical path length of the scattered light L3 in the etalon 15.
  • the control unit 70 changes the optical path length of the scattered light L3 in the etalon 15 by controlling the heater 80.
  • the control unit 70 is composed of one or a plurality of electronic circuits including a plurality of circuit components. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit. That is, the function executed by the control unit 70 is realized by hardware such as an electronic circuit.
  • the control unit 70 may be, for example, a microcontroller. Specifically, the control unit 70 is realized by a non-volatile memory in which the program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like. May be good.
  • the function executed by the control unit 70 may be realized by software executed by the processor.
  • the control unit 70 and the analysis unit 60 may share hardware resources such as memory.
  • the heater 80 is an example of a temperature adjusting device that adjusts the temperature of at least one of the etalons 10 and 15. In this embodiment, the heater 80 adjusts the temperature of the etalon 15.
  • the etalon 15 thermally expands or contracts as the temperature changes. As a result, the optical path length of the scattered light L3 passing through the etalon 15 changes. The purpose of changing the optical path length and the details of the specific processing will be described later.
  • Each component included in the aerosol measuring device 1 is housed inside a housing (not shown), for example.
  • the housing is an outer housing of the aerosol measuring device 1 and has a light-shielding property.
  • the housing is provided with an opening for passing the emitted light L2 and the scattered light L3.
  • One aperture may be provided corresponding to each of the emitted light L2 and the scattered light L3.
  • the condenser lens 30a may be provided in the aperture.
  • FIG. 2 is a flowchart showing the operation of the aerosol measuring device 1 according to the present embodiment.
  • the control unit 70 controls the heater 80 to adjust the optical path length (S10).
  • the light source 20 emits the emitted light L1 (S12).
  • the emitted light L1 is converted into multi-light, which is light having a plurality of peaks separated from each other at equal frequency intervals. That is, the etalon 10 internally interferes with the incident light and emits it as light having a plurality of peaks separated from each other at equal frequency intervals (S14).
  • the emitted light L2 which is multi-light, is emitted into the atmosphere and scattered by the scatterer 90.
  • the condenser lens 30a collects the scattered light L3 generated from the scatterer 90 (S16).
  • the scattered light L3 collected by the condenser lens 30a passes through the etalon 15 to extract the Mie scattered light L4. That is, the scattered light collected by the condensing unit interferes with the inside of the etalon 15 and passes through the etalon 15. (S18).
  • the etalon 15 substantially removes the Rayleigh scattered light among the scattered light L3 and allows only the Mie scattered light L4 to pass through.
  • the light receiver 50 receives the Mie scattered light L4 and outputs a signal according to the light receiving intensity (S20).
  • the analysis unit 60 analyzes the aerosol contained in the scatterer 90 by analyzing the signal output from the receiver 50 (S22).
  • the aerosol measuring device 1 repeats the above processes from step S12 to step S22 while changing the emission direction of the emission light L2. For example, when the emitted light L2 is emitted in a predetermined direction in the target space and the scattered light L3 can be acquired, the position and concentration of the aerosol contained in the scattering body 90 that is the source of the scattered light L3 can be determined. Identify. As a result, the aerosol measuring device 1 can generate, for example, a distribution map showing the position and concentration of the aerosol in the target space. The aerosol measuring device 1 may generate a distribution map showing only the position of the aerosol.
  • FIG. 2 shows an example in which the optical path length is adjusted first
  • the optical path length may be adjusted repeatedly while measuring the aerosol.
  • the control unit 70 may periodically change the optical path length of the etalon 10 or 15 within a predetermined range.
  • the emitted light L2 may be emitted and the Mie scattered light L4 may be received while periodically changing the optical path length.
  • the etalon 10 is a multi-laser light composed of light having a plurality of peaks separated from each other at equal frequency intervals by internally interfering with the emitted light L1 which is a laser light emitted from the light source 20. It is emitted as emitted light L2.
  • the multi-laser light will be described with reference to FIG.
  • FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device 1 according to the present embodiment.
  • the horizontal axis represents the frequency and the vertical axis represents the signal strength.
  • Part (a) of FIG. 3 shows the spectrum of the emitted light L2, which is the multi-laser light after passing through the etalon 10.
  • Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the emitted light L2.
  • the frequency intervals LW2 of the plurality of peaks are equal to each other, for example, 3 GHz.
  • an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other.
  • the center wavelength ⁇ of the emitted light L2 is, for example, 405 nm.
  • Part (b) of FIG. 3 is an enlarged view of part (a) of FIG. 3, and shows one peak of the spectrum, that is, only one light contained in the emitted light L2 in an enlarged manner.
  • the full width at half maximum LW1 of one light is, for example, 360 MHz.
  • LW1 is 1/20 or more and 1/5 or less of LW2, but may be 1/8 or more and 1/10 or less.
  • the emitted light L1 passes through the etalon 10, it is interfered with in the etalon 10 and emitted as the emitted light L2.
  • the etalon 10 utilizes the interference between the incident light and the light that is repeatedly reflected in the etalon 10.
  • the multilayer film 13 of the etalon 10 can transmit or reflect light.
  • the transmittance of the multilayer film 13 is, for example, 75%, but the transmittance is not limited to this.
  • FIGS. 4 and 5 are diagrams for explaining the light passing through the etalon 10 of the aerosol measuring device 1 according to the present embodiment, respectively. Specifically, FIG. 4 schematically shows the 0th transmitted light and the 1st transmitted light. FIG. 5 schematically represents the 0th transmitted light and the 2nd transmitted light. The same applies to the light passing through the etalon 15.
  • Etalon 10 allows a part of the incident light to pass through as it is. As shown in FIGS. 4 and 5, the light transmitted as it is without being reflected by the multilayer films 12 and 13 of the etalon 10 is the 0th transmitted light.
  • the first transmitted light is light that is reflected once by the multilayer film 12 after the incident light is reflected once by the multilayer film 13. Interference occurs when the phases of the 0th transmitted light and the 1st transmitted light match, and the light corresponding to the first interference fringe is emitted. Interfering fringes will be described later with reference to FIGS. 7 and 8.
  • the second transmitted light is light in which the incident light is reflected twice by the multilayer film 13 and the multilayer film 12, respectively. Interference occurs when the phases of the 0th transmitted light and the 2nd transmitted light match, and the light corresponding to the second interference fringe is emitted.
  • the etalon 10 can emit the emitted light L2 having the same frequency interval LW2 when the emitted light L1 is incident.
  • FIGS. 4 and 5 the path of the light is shown diagonally in order to make it easy to understand how the light is reflected, but the same applies when the light is incident on the etalon 10 from the front.
  • the case where the light is incident on the etalon 10 from the front that is, the case where the incident angle of the light with respect to the etalon 10 is 0 ° will be described.
  • the frequency characteristics of the transmittance of the etalon 10 when light is obliquely incident on the etalon 10 will be described later.
  • the length ⁇ x of the etalon 10 for realizing the frequency interval LW2 is determined based on the following equation (1).
  • the length ⁇ x of the etalon 10 is the distance between the multilayer film 12 and the multilayer film 13, that is, the thickness of the translucent portion 11, as shown in FIGS. 4 and 5.
  • n 0 is the refractive index in vacuum, for example 1.0.
  • n is the refractive index of the translucent portion 11 of the etalon 10, which is 1.47 in the case of quartz.
  • c is the speed of light, which is 3 ⁇ 10 8 m / s.
  • optical path difference dx when Fabry-Perot interference is caused by Etalon 10 is expressed by the following equation (2).
  • the optical path difference dx is 100 mm.
  • FIG. 6 is a diagram showing an example of the spectrum of scattered light L3 generated by scattering the multi-laser light emitted by the aerosol measuring device 1 according to the present embodiment.
  • the horizontal axis represents the frequency and the vertical axis represents the signal strength.
  • Part (a) of FIG. 6 shows the spectrum of scattered light L3.
  • the scattered light L3, like the emitted light L2, is composed of light having a plurality of peaks separated from each other at a frequency interval MW2 equal to each other.
  • Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the emitted light L2.
  • the frequency interval MW2 of the scattered light L3 is equal to the frequency interval LW2 of the emitted light L2.
  • the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other.
  • Part (b) of FIG. 6 is an enlarged view of part (a) of FIG. 6, and shows one peak of the spectrum, that is, only one light included in the scattered light L3 in an enlarged manner.
  • the scattered light L3 includes Mie scattered light and Rayleigh scattered light.
  • the spectrum of Mie scattered light is substantially the same as the spectrum of emitted light L2 before scattering.
  • the frequency width of Rayleigh scattered light is widened by the thermal motion of the molecules that make up the atmosphere.
  • the intensity of Rayleigh scattered light is usually lower than the intensity of Mie scattered light.
  • the spectrum of the scattered light L3 has a shape in which the base of the peak is widened as compared with the spectrum of the emitted light L2 shown in FIG.
  • the high peak in the center corresponds to Mie scattered light
  • the base part corresponds to Rayleigh scattered light.
  • the signal intensity of Rayleigh scattered light by the molecules constituting the atmosphere and the signal intensity of Mie scattered light by the aerosol are set to 3: 1.
  • the signal strength here is represented by the area of the peak.
  • the full width at half maximum MW1 of the peak representing the Mie scattered light is equal to the full width at half maximum LW1 of the emitted light L2.
  • the full width at half maximum RW of the foot portion representing the Rayleigh scattered light is about 3.4 GHz to 3.9 GHz according to a general actual measurement.
  • ⁇ f RW.
  • c is the speed of light, which is 3 ⁇ 10 8 m / s.
  • is the central wavelength, which is 405 nm here.
  • the scattered light L3 by passing the scattered light L3 through the etalon 15, light having a plurality of peaks appearing at a frequency interval of 3 GHz, that is, Me scattered light is transmitted, and light of another frequency component, that is, Rayleigh scattered light can be removed.
  • FIG. 7 is a diagram showing the calculation result of the interferogram when the scattered light including the Mie scattered light by the aerosol and the Rayleigh scattered light by the molecules constituting the atmosphere are interfered with by the Michelson interferometer.
  • the horizontal axis represents the optical path difference dx that causes interference
  • the vertical axis represents the intensity of the interference light.
  • FIG. 8 is an enlarged view of the region VIII surrounded by the broken line in FIG. 7.
  • an interference fringe appears every time the optical path difference dx becomes an integral multiple of ⁇ x.
  • n is a natural number.
  • FIG. 8 shows the 0th interference fringe, the 1st interference fringe, and the 2nd interference fringe.
  • the first interference fringe is the light generated by the interference between the 0th transmitted light and the 1st transmitted light shown in FIG.
  • the second interference fringe is the light generated by the interference between the 0th transmitted light and the second transmitted light shown in FIG.
  • the interference light including the 0th interference fringe to the nth interference fringe is received as Mie scattered light L4.
  • the length ⁇ x of the etalon 15 it is possible to remove the interference fringes based on the Rayleigh scattered light caused by atmospheric scattering. A method for determining a length ⁇ x suitable for removing Rayleigh scattered light will be described.
  • FIG. 9 is a diagram for explaining the dependence of the interference fringe by the Michelson interferometer on the frequency interval of the emitted light L2 when there is no scattering by the aerosol and only the atmospheric scattering is considered.
  • the horizontal axis represents dx and the vertical axis represents the signal strength.
  • the frequency intervals LW2 of the emitted light L2 are 2.4 GHz, 3.0 GHz, 3.6 GHz, 3.7 GHz, 3.8 GHz, 3.9 GHz, 4 GHz, 5 GHz, respectively. It shows the calculation result of the interferogram in the case of 6 GHz, 10 GHz, 15 GHz, and 30 GHz.
  • the frequency interval LW2 increases, the number of appearing interference fringes increases, and the signal strength of the appearing interference fringes increases.
  • the frequency interval LW2 is 2.4 GHz
  • the frequency interval LW2 in the range of 3.0 GHz to 4 GHz
  • the 0th interference fringe and the 1st interference fringe appear, and the second and higher interference fringes do not appear.
  • the frequency interval LW2 is 5 GHz
  • a second interference fringe appears in addition to the 0th interference fringe and the first interference fringe.
  • the range in which the first interference fringe and above appear is represented by a broken line frame.
  • the appearance of the second or higher interference fringes when only atmospheric scattering is taken into consideration means that interference is occurring only by Rayleigh scattered light. That is, it means that the Rayleigh scattered light is transmitted when the Rayleigh scattered light is incident on the etalon 15. If the frequency interval LW2 of the emitted light L2 is 3.9 GHz or less, the first interference fringe becomes small, so that the transmission of Rayleigh scattered light is suppressed.
  • the magnitude of the first interference fringe when the frequency interval LW2 of the emitted light L2 is 3.9 GHz is 50% or less of the magnitude of the first interference fringe of the frequency interval LW2. Therefore, since the first interference fringe is small, it is possible to suppress the Rayleigh scattered light from passing through the etalon 15.
  • the frequency interval LW2 of the emitted light L2 is 3.9 GHz or less, Rayleigh scattered light can be efficiently removed from the scattered light L3.
  • the length ⁇ x of the etalon 15 including the translucent portion 16 made of quartz is about 26 mm according to the equation (1). That is, by using the etalon 15 having a length ⁇ x of 26 mm or more, Rayleigh scattered light can be efficiently removed, and the measurement accuracy of the aerosol can be improved.
  • the aerosol measuring device 1 includes two etalons 10 and 15. Therefore, the path of the emitted light L1 and the path of the scattered light L3 can be easily separated. In addition, it is possible to increase the degree of freedom in designing the arrangement of each element and the light path in the aerosol measuring device 1.
  • the etalons 10 and 15 etalons having the same optical characteristics as each other are used. However, it is difficult to make the optical characteristics of the etalons 10 and 15 completely the same due to the variation in the production of the etalons. Specifically, the length of the etalon 10 and the length of the etalon 15 may be different. For example, the length of the etalon 10 and the length of the etalon 15 may differ by about 10 ⁇ m due to manufacturing variations. In this case, the frequency characteristics of the light passing through the etalon 10 and the frequency characteristics of the light passing through the etalon 15 do not match.
  • the transmittance of the etalon 10 or 15 and the frequency interval FSR (Free Spectral Range) of the light having a plurality of peaks that have passed through the etalon 10 or 15 are represented by the following equations (4) and (5). ..
  • R is the reflectance of the end face of Etalon 10 or 15.
  • A is the loss due to Etalon 10 or 15.
  • n is the refractive index of the translucent portion 11 or 16 of the etalon 10 or 15.
  • ⁇ x is the length of etalon 10 or 15.
  • is the center frequency of the emitted light L1 or the scattered light L3 incident on the etalon 10 or 15.
  • c is the speed of light, which is 3 ⁇ 10 8 m / s.
  • is the incident angle of the emitted light L1 or the scattered light L3 with respect to the etalon 10 or 15.
  • is the incident angle of the emitted light L1 or the scattered light L3 with respect to the translucent portion 11 or 16 of the etalon 10 or 15.
  • the frequency interval FSR is the same as the frequency interval LW2 shown in FIG. 3 or the frequency interval MW2 shown in FIG
  • the reflectance R of etalon 10 or 15 is, for example, 70% or more and 95% or less, and as an example, 74%.
  • the ratio of the frequency interval FSR to the full width at half maximum LW1 or MW1 of the peak is about 10.
  • the full width at half maximum LW1 or MW1 of the peak becomes small. Therefore, the total intensity of the light having a plurality of peaks, specifically, the emitted light L2 or the Mie scattered light L4 is reduced.
  • the half-value full width at half maximum LW1 or MW1 of the peak becomes large. Therefore, the separation ability of Rayleigh scattered light is lowered, and the detection accuracy of the aerosol is lowered.
  • FIG. 10 is a diagram showing the frequency characteristics of the transmittances of two etalons having different optical path lengths.
  • Part (a) of FIG. 10 represents a case where the length ⁇ x of the etalon is 34.01 mm.
  • Part (b) of FIG. 10 represents a case where the length ⁇ x of the etalon is 34 mm.
  • the frequency interval FSR is substantially the same.
  • the control unit 70 adjusts the optical path length of the etalon 10 or 15 to determine the position of the peak of the transmittance of the etalon 10 and the position of the peak of the transmittance of the etalon 15. Synchronize. As a result, the light receiving intensity of the Mie scattered light L4 is increased, so that the aerosol detection accuracy is improved. Note that tuning is to make the frequency position of the transmittance peak of Etalon 10 substantially equal to the frequency position of the transmittance peak of Etalon 15. Specifically, the control unit 70 adjusts the optical path length of the etalon 10 or 15, so that the optical path length of the etalon 10 and the optical path length of the etalon 15 are the same.
  • FIG. 11 is a diagram showing an example of a change in the optical path length in the etalon 15 by the aerosol measuring device 1 according to the present embodiment.
  • Part (a) of FIG. 11 represents the etalon 15 before heating or after cooling.
  • Part (b) of FIG. 11 represents the etalon 15 after heating or before cooling.
  • the etalon 15 is mainly equipped with a heater 80 that partially or wholly contacts and covers the side surface of the translucent portion 16.
  • the heater 80 is, for example, a sheet-shaped silicon rubber heater.
  • the heater 80 may be a heating wire.
  • the heater 80 is heated and stopped by the control unit 70, and the target temperature for heating and the rate of temperature rise are controlled.
  • a temperature sensor 71 is provided between the heater 80 and the etalon 15.
  • the temperature sensor 71 is, for example, a thermistor or a thermocouple, but is not limited to this.
  • the temperature sensor 71 measures the temperature of the etalon 15 and outputs the measurement result to the control unit 70.
  • the control unit 70 controls the heater 80 based on the measurement result by the temperature sensor 71.
  • the temperature sensor 71 measures, for example, the surface temperature of the etalon 15, but may also measure the temperature inside the etalon 15.
  • the length ⁇ x of the etalon 15 changes.
  • the portion (a) of FIG. 11 shows a case where the length ⁇ x of the etalon 15 is ⁇ x1.
  • the translucent portion 16 formed of quartz is thermally expanded.
  • the length ⁇ x of the etalon 15 becomes ⁇ x2, which is longer than ⁇ x1. Therefore, the optical path length of the scattered light L3 incident on the etalon 15 becomes long.
  • the control unit 70 can heat or cool the etalon 15 and change the optical length of the etalon 15 by controlling the heater 80.
  • control unit 70 periodically changes the optical path length of the scattered light L3 in the etalon 15 within a predetermined range. Specifically, the control unit 70 periodically changes the temperature of the etalon 15 within a predetermined range to periodically change the optical path length.
  • FIG. 12 is a diagram showing the relationship between the temperature difference of etalon and the intensity of emitted light.
  • the horizontal axis represents the temperature difference between the etalon 10 and the etalon 15, and the vertical axis represents the intensity of the emitted light.
  • the peak of the intensity of the emitted light appears in the range where the temperature difference is 5 ° C. or higher and 7 ° C. or lower.
  • the intensity peak appears when the position of the peak of Etalon 10 and the position of the peak of Etalon 15 are synchronized.
  • the intensity of the emitted light is maximized when the temperature difference is about 5.8 ° C.
  • the control unit 70 periodically changes the temperature difference in the range of 5 ° C. or higher and 7 ° C. or lower.
  • the optical path length in the etalon 15 also changes periodically. Since the timing at which the peak position of the etalon 10 and the peak position of the etalon 15 are synchronized is included in the range of the periodic change, the Mie scattered light L4 having sufficient intensity is received by the receiver 50.
  • the difference between the optical path length of the Etalon 10 and the optical path length of the Etalon 15 can occur not only during manufacturing variations but also during operation.
  • the etalon 10 since the etalon 10 is close to the light source 20, it is affected by the heat generated by the light source 20 and is more likely to be thermally expanded during operation than the etalon 15.
  • the aerosol measuring device 1 even if the length of the etalon 10 changes, the position of the peak of the etalon 10 and the position of the peak of the etalon 15 can be changed by changing the temperature of the etalon 15. Can be synchronized. Therefore, it is possible to suppress a decrease in detection accuracy due to operation variation.
  • the means for changing the optical path length in the etalon 10 or 15 is different from that of the first embodiment. Specifically, in the second embodiment, the inclination of the optical axis of the etalon 10 or 15 is adjusted.
  • the differences from the first embodiment will be mainly described, and the common points will be omitted or simplified.
  • FIG. 13 is a diagram showing the configuration of the aerosol measuring device 101 according to the present embodiment.
  • the aerosol measuring device 101 includes a control unit 170 and a shaft adjusting device 180 instead of the control unit 70 and the heater 80, as compared with the aerosol measuring device 1 according to the first embodiment. Is different.
  • the control unit 170 changes at least one optical path length selected from the group consisting of the optical path length of the emitted light L1 in the etalon 10 and the optical path length of the scattered light L3 in the etalon 15.
  • the control unit 170 changes the optical path length of the scattered light L3 in the etalon.
  • the control unit 170 changes the optical path length of the scattered light L3 in the etalon 15 by controlling the axis adjusting device 180.
  • the control unit 170 is, for example, a microcontroller.
  • the axis adjusting device 180 adjusts the inclination of at least one of the optical axes of the etalons 10 and 15. In the present embodiment, the axis adjusting device 180 adjusts the inclination of the optical axis of the etalon 15. By changing the inclination of the optical axis of the etalon 15, the optical path length of the scattered light L3 passing through the etalon 15 changes.
  • the shaft adjusting device 180 includes, for example, a support portion that supports the etalon 15 and a stepping motor that rotates the support portion.
  • the stepping motor for example, rotates the support portion in parallel with the optical axis of the etalon 15 and in a plane including the optical axis.
  • the shaft adjusting device 180 may include an actuator instead of the stepping motor, and is not particularly limited.
  • the optical axis of etalon means an axis perpendicular to the multilayer film surface of etalon.
  • FIG. 14 is a diagram showing an example of a change in the optical path length of the scattered light L3 in the etalon 15 by the aerosol measuring device 101 according to the present embodiment.
  • Part (a) of FIG. 14 shows a case where the optical axis P of the etalon 15 coincides with the incident direction of the scattered light L3, that is, a case where the incident angle ⁇ of the scattered light L3 is 0 °.
  • Part (b) of FIG. 14 shows a case where the optical axis P of the etalon 15 is inclined at an angle ⁇ with respect to the incident direction of the scattered light L3, that is, a case where the incident angle ⁇ of the scattered light L3 is ⁇ . ing.
  • the incident angle of the scattered light L3 incident on the etalon 15 changes. Since the traveling direction of the scattered light L3 changes due to the refraction due to the change in the incident angle, the distance through which the scattered light L3 passes through the light transmitting portion 16 changes. For example, in the part (a) of FIG. 14, scattered light L3 is incident on the etalon 15 from the front. When the axis adjusting device 180 tilts the optical axis P of the etalon 15, the optical path length of the scattered light L3 passing through the translucent portion 16 of the etalon 15 becomes long as shown in the portion (b) of FIG. In the part (b) of FIG. 14, the change in the traveling direction due to the refraction of the scattered light L3 at the interface between the translucent portion 16 and each of the multilayer films 17 and 18 is omitted.
  • the control unit 170 can change the inclination of the optical axis P of the etalon 15 and change the optical path length of the scattered light L3 in the etalon 15 by controlling the axis adjusting device 180.
  • control unit 170 periodically changes the optical path length of the scattered light L3 in the etalon 15 within a predetermined range. Specifically, the control unit 170 periodically changes the optical path length by periodically changing the inclination of the optical axis P of the etalon 15 within a predetermined range.
  • FIG. 15 is a diagram showing the relationship between the inclination of the optical axis P of the etalon 15 and the intensity of the emitted light.
  • the horizontal axis represents the angle of inclination of the optical axis P of the etalon 15
  • the vertical axis represents the intensity of the emitted light.
  • the peak of the intensity of the emitted light appears in the range where the angle ⁇ of the optical axis P is 0.125 ° or more and 0.175 ° or less.
  • the intensity of the emitted light is maximized when the angle ⁇ of the optical axis P is about 0.144 °.
  • the control unit 170 periodically changes the angle ⁇ in the range of 0.125 ° or more and 0.175 ° or less.
  • the optical path length of the scattered light L3 in the etalon 15 also changes periodically. Since the timing at which the peak position of the etalon 10 and the peak position of the etalon 15 are synchronized is included in the range of the periodic change, the Mie scattered light L4 having sufficient intensity is received by the receiver 50.
  • control unit 170 may adjust the temperature of the etalon 10 or 15 in the same manner as in the first embodiment, in addition to adjusting the inclination of the optical axis P of the etalon 10 or 15. That is, the aerosol measuring device 101 may include a heater 80.
  • the incident surface of the emitted light L1 with respect to the etalon 10 and the incident surface of the scattered light L3 with respect to the etalon 15 are located on opposite sides of each other.
  • the incident surface of the emitted light L1 with respect to the etalon 10 and the incident surface of the scattered light L3 with respect to the etalon 15 are located on the same side.
  • the differences from the first or second embodiment will be mainly described, and the common points will be omitted or simplified.
  • FIG. 16 is a diagram showing the configuration of the aerosol measuring device 201 according to the present embodiment.
  • the aerosol measuring device 201 includes mirrors 32, 34 and 36 instead of the mirror 22 as compared with the aerosol measuring device 1 shown in FIG. Further, the arrangement of the light source 20, the condenser lens 40, the receiver 50, and the analysis unit 60 is different from that of the first embodiment.
  • the mirrors 32 and 34 reflect the scattered light L3 condensed by the condenser lens 30a.
  • the course of the scattered light L3 can be bent in a desired direction.
  • the mirrors 32 and 34 reflect the scattered light L3 and make it incident on the etalon 15.
  • the mirror 36 reflects the Mie scattered light L4 that has passed through the etalon 15. By arranging the mirror 36 at an appropriate angle with respect to the Mie scattered light L4, the course of the Mie scattered light L4 can be bent in a desired direction. In the present embodiment, the Mie scattered light L4 is reflected and incident on the receiver 50 via the condenser lens 40.
  • the light source 20 and the receiver 50 can be arranged apart from each other. Specifically, of the emitted light L1 emitted from the light source 20, the reflected light reflected by the etalon 10 can be made difficult to enter the receiver 50. The reflected light causes false detection of aerosol. Further, since the reflected light has a higher intensity than the scattered light, the intensity exceeds the limit intensity that can be detected by the receiver 50 and may cause a failure of the receiver 50. Therefore, according to the present embodiment, it is possible to suppress erroneous detection of aerosol due to reflected light and failure of the receiver 50.
  • the scattered light L3 reflected by the mirror 34 is obliquely incident on the etalon 15.
  • the incident angle ⁇ of the scattered light L3 is, for example, 5 ° or less.
  • the optical path difference dx that causes Fabry-Perot interference when the scattered light L3 passes through the etalon 15 is represented by the following equation (6).
  • the receiver 50 has a function of blocking light incident on the predetermined period.
  • the differences from the first, second, and third embodiments will be mainly described, and the common points will be omitted or simplified.
  • FIG. 17 is a diagram showing the configuration of the aerosol measuring device 301 according to the present embodiment. As shown in FIG. 17, the aerosol measuring device 301 is newly provided with a light-shielding portion 351 as compared with the aerosol measuring device 1 shown in FIG.
  • the light-shielding unit 351 blocks the emitted light L1 emitted by the light source 20.
  • the light-shielding unit 351 is, for example, a movable light-shielding shutter. As shown by the white double-headed arrow in FIG. 17, the light-shielding portion 351 is movable between a position that covers the light-receiving surface of the receiver 50 and a position that does not cover the light-receiving surface. The position shown by the broken line in FIG. 17 is the position that covers the light receiving surface, and the light shielding portion 351 covers the light receiving surface, so that the light incident on the light receiving device 50 can be blocked. Further, when the light shielding portion 351 does not cover the light receiving surface, light can be incident on the light receiving receiver 50. The position of the light-shielding portion 351 is controlled by the receiver 50.
  • FIG. 18 is a diagram for explaining the operation of the light-shielding portion 351 of the aerosol measuring device 301 according to the present embodiment.
  • the horizontal axis represents time and the vertical axis represents the intensity of the emitted light L1.
  • the horizontal axis represents time and the vertical axis represents the light receiving intensity by the light receiver 50.
  • the light source 20 emits the pulsed emitted light L1.
  • the time width tp of the emitted light L1 is, for example, 10 nanoseconds.
  • the light source 20 periodically emits a pulsed emitted light L1 having a time width of tp.
  • the emission interval of the emitted light L1, that is, the time interval of the pulse is not particularly limited, but is longer than, for example, the time required for the light to travel twice the maximum distance at which the aerosol can be detected.
  • the reflected light L5 by the etalon 10 receives the Mie scattered light L4 after the emitted light L1 is emitted.
  • the light is received by the light receiver 50 within the period until the light is received.
  • the receiver 50 blocks the light reception for a predetermined period tm after the emitted light L1 is emitted by controlling the light-shielding unit 351.
  • the period tm is a period longer than the time width tp of the pulsed emitted light L1.
  • the period tm is 10.1 nanoseconds.
  • the start time of the period tm is, for example, the same as the emission of the emitted light L1.
  • the aerosol measuring device 301 As described above, according to the aerosol measuring device 301 according to the present embodiment, it is possible to suppress erroneous detection of aerosol due to reflected light and failure due to saturation of the receiver 50.
  • the present invention is not limited to this.
  • the signal corresponding to the reflected light may be ignored by the analysis unit 60, that is, it may not be used for aerosol analysis.
  • the receiver 50 does not have to output a signal during the period tm. That is, the aerosol measuring device 301 may block the light incident on the receiver 50 in a signal processing manner.
  • the optical path length of the scattered light L3 in the etalon 15 has been described, but the optical path length of the emitted light L1 in the etalon 10 may be changed.
  • the optical path length in each of the etalons 10 and 15 may be changed.
  • the optical path length of the scattered light L3 in the etalon may be changed in one direction while the optical path length of the emitted light L1 in the etalon 10 is fixed. May be changed.
  • the one direction is either a direction of increasing the optical path length or a direction of decreasing the optical path length.
  • the optical path length of the scattered light L3 in the etalon 15 may be changed in one direction while the optical path length of the emitted light L1 in the etalon 10 may be changed in one direction, or may be changed periodically. In this case, the optical path length of the scattered light L3 in the etalon 15 may be fixed.
  • the optical path length of the scattered light L3 in the etalon 15 may be changed in one direction while the optical path length of the emitted light L1 in the etalon 10 may be changed periodically, or may be changed periodically. In this case, the optical path length of the scattered light L3 in the etalon 15 may be fixed.
  • the aerosol measuring device 1 may include a pressure adjusting device for adjusting the pressure of the etalon 10 or 15.
  • the control unit 70 controls the pressure adjusting device.
  • the pressure adjusting device can compress the translucent portion 11 or 16 of the etalon 10 or 15 by pressurizing the etalon 10 or 15, and shorten the length ⁇ x.
  • the pressure adjusting device can extend the translucent portion 11 or 16 of the etalon 10 or 15 by reducing the pressure with respect to the etalon 10 or 15, and increase the length ⁇ x.
  • the optical path length of the emitted light L1 or the scattered light L3 passing through the etalon 10 or 15 becomes long.
  • the length ⁇ x can be easily changed by adjusting the pressure, and the optical path length can be easily changed.
  • another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. Further, the distribution of the components of the aerosol measuring device to a plurality of devices is an example. For example, the components of one device may be included in another device. Further, the aerosol measuring device may be realized as a single device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device or system, or may be realized by distributed processing using a plurality of devices. .. Further, the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • all or a part of the components such as the analysis unit and the control unit may be configured by dedicated hardware, or by executing a software program suitable for each component. It may be realized. Even if each component is realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a component such as an analysis unit may be composed of one or a plurality of electronic circuits.
  • the one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.
  • the one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like.
  • the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGA Field Programmable Gate Array
  • programmed after manufacturing the LSI can also be used for the same purpose.
  • the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program.
  • a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored.
  • it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
  • the present disclosure can be used as an aerosol measuring device or the like capable of easily and accurately measuring an aerosol, and can be used, for example, for measuring harmful fine particles indoors and observing weather outdoors.

Abstract

According to one mode of the present invention, the aerosol measurement device (1) comprises: a light source (20); a first etalon (10) wherethrough a first light (L1) which has been emitted from the light source passes; a second etalon (15) wherethrough a second light (L3) which has been scattered by an aerosol (90) contained in the atmosphere passes; and a control unit (70) changing at least one light path length selected from the group consisting of the light path length of the first light in the first etalon and the light path length of the second light in the second etalon.

Description

エアロゾル計測装置及びエアロゾル計測方法Aerosol measuring device and aerosol measuring method
 本開示は、エアロゾル計測装置及びエアロゾル計測方法に関する。 The present disclosure relates to an aerosol measuring device and an aerosol measuring method.
 従来、ライダー(LIDAR:Light Detection and Ranging)を用いて大気中のエアロゾルを計測する技術が知られている。ライダーは、大気中に出射されたパルス状の光の散乱光を測定し、解析することにより黄砂、花粉、埃又は微小水滴などの空気中を浮遊するエアロゾルを観測する技術である。 Conventionally, a technique for measuring aerosols in the atmosphere using a lidar (LIDAR: Light Detection and Ringing) is known. The lidar is a technique for observing aerosols floating in the air such as yellow sand, pollen, dust, or minute water droplets by measuring and analyzing the scattered light of pulsed light emitted into the atmosphere.
 散乱光には、通常、ミー散乱光とレイリー散乱光とが含まれる。ミー散乱光は、出射光の波長と同等以上の粒径の微粒子によって起こる散乱現象であるミー散乱により発生する散乱光である。ミー散乱光は、例えば、計測対象物であるエアロゾルからの散乱光である。レイリー散乱は、出射光の波長よりも小さな微粒子及び大気分子によって起こる散乱現象である。散乱光からレイリー散乱光を除外することで、ミー散乱光を得ることができる。 The scattered light usually includes Mie scattered light and Rayleigh scattered light. The Mie scattered light is scattered light generated by Mie scattering, which is a scattering phenomenon caused by fine particles having a particle size equal to or larger than the wavelength of the emitted light. The Mie scattered light is, for example, scattered light from an aerosol which is an object to be measured. Rayleigh scattering is a scattering phenomenon caused by fine particles and atmospheric molecules smaller than the wavelength of emitted light. By excluding Rayleigh scattered light from scattered light, Mie scattered light can be obtained.
 例えば、特許文献1には、単一のレーザ光による散乱光をミー散乱光とレイリー散乱光とにフィルタを用いて分光分離する技術が開示されている。また、例えば、特許文献2には、マルチ縦モードのレーザ光のスペクトルのモード間隔が一定であることを利用して、出射されたレーザ光と同じスペクトル間隔の光を選択的に透過させる干渉計を用いて散乱光を分光する技術が開示されている。 For example, Patent Document 1 discloses a technique for spectroscopically separating scattered light from a single laser beam into Mie scattered light and Rayleigh scattered light using a filter. Further, for example, in Patent Document 2, an interferometer that selectively transmits light having the same spectral interval as the emitted laser light by utilizing the fact that the mode interval of the spectrum of the laser beam in the multi-longitudinal mode is constant. A technique for dispersing scattered light using a laser is disclosed.
国際公開第2003/073127号International Publication No. 2003/073127 特許第6243088号公報Japanese Patent No. 6243088
 しかしながら、上記の従来技術では、温度変化などによってレーザ光のピーク波長が変化した場合に、光路差をレーザ光の1波長分掃引させながら同調させる必要がある。このため、光路差を可変にする構造を必要とし、装置が大型化し、測定方法が複雑化するという問題がある。 However, in the above-mentioned conventional technique, when the peak wavelength of the laser beam changes due to a temperature change or the like, it is necessary to synchronize the optical path difference while sweeping one wavelength of the laser beam. Therefore, there is a problem that a structure for making the optical path difference variable is required, the device becomes large, and the measurement method becomes complicated.
 そこで、本開示は、エアロゾルを簡単かつ精度良く計測することができるエアロゾル計測装置及びエアロゾル計測方法を提供する。 Therefore, the present disclosure provides an aerosol measuring device and an aerosol measuring method capable of easily and accurately measuring an aerosol.
 本開示の一態様に係るエアロゾル計測装置は、大気中に含まれるエアロゾルを計測するための装置である。本開示の一態様に係るエアロゾル計測装置は、光源と、前記光源から出射された第1の光が通過する第1のエタロンと、前記エアロゾルで散乱された第2の光が通過する第2のエタロンと、前記第1のエタロンにおける前記第1の光の光路長及び前記第2のエタロンにおける前記第2の光の光路長からなる群から選択される少なくとも1つの光路長を変化させる制御部と、を備える。 The aerosol measuring device according to one aspect of the present disclosure is a device for measuring aerosol contained in the atmosphere. The aerosol measuring device according to one aspect of the present disclosure includes a light source, a first etalon through which the first light emitted from the light source passes, and a second etalon through which the second light scattered by the aerosol passes. An etalon and a control unit that changes at least one optical path length selected from the group consisting of the optical path length of the first light in the first etalon and the optical path length of the second light in the second etalon. , Equipped with.
 また、本開示の一態様に係るエアロゾル計測方法は、光源から出射された第1の光を第1のエタロンに入射させることと、前記第1のエタロンから出射された光を、大気中に含まれるエアロゾルに照射することと、前記エアロゾルで散乱された第2の光を第2のエタロンに入射させることと、前記第1のエタロンにおける前記第1の光の光路長及び前記第2のエタロンにおける前記第2の光の光路長からなる群から選択される少なくとも1つの光路長を変化させることと、を含む。 Further, in the aerosol measurement method according to one aspect of the present disclosure, the first light emitted from the light source is incident on the first etalon, and the light emitted from the first etalon is included in the atmosphere. Irradiating the aerosol, making the second light scattered by the aerosol incident on the second etalon, and in the optical path length of the first light in the first etalon and in the second etalon. Including changing at least one optical path length selected from the group consisting of the optical path length of the second light.
 また、本開示の一態様は、上記エアロゾル計測方法をコンピュータに実行させるためのプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な非一時的な記録媒体として実現することもできる。 Further, one aspect of the present disclosure can be realized as a program for causing a computer to execute the above aerosol measurement method. Alternatively, it can be realized as a computer-readable non-temporary recording medium in which the program is stored.
 本開示によれば、エアロゾルを簡単かつ精度良く計測することができる。 According to the present disclosure, aerosols can be measured easily and accurately.
図1は、実施の形態1に係るエアロゾル計測装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of an aerosol measuring device according to the first embodiment. 図2は、実施の形態1に係るエアロゾル計測装置の動作を示すフローチャートである。FIG. 2 is a flowchart showing the operation of the aerosol measuring device according to the first embodiment. 図3は、実施の形態1に係るエアロゾル計測装置が出射するマルチレーザ光のスペクトルの一例を示す図である。FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device according to the first embodiment. 図4は、実施の形態1に係るエアロゾル計測装置の光学素子を通過する第0の透過光及び第1の透過光を説明するための図である。FIG. 4 is a diagram for explaining the 0th transmitted light and the 1st transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment. 図5は、実施の形態1に係るエアロゾル計測装置の光学素子を通過する第0の透過光及び第2の透過光を説明するための図である。FIG. 5 is a diagram for explaining the 0th transmitted light and the 2nd transmitted light passing through the optical element of the aerosol measuring device according to the first embodiment. 図6は、実施の形態1に係るエアロゾル計測装置が出射したマルチレーザ光を散乱させることで発生する散乱光のスペクトルの一例を示す図である。FIG. 6 is a diagram showing an example of a spectrum of scattered light generated by scattering the multi-laser light emitted by the aerosol measuring device according to the first embodiment. 図7は、ミー散乱光とレイリー散乱光とを含む散乱光をマイケルソン干渉計で干渉させた場合のインターフェログラムの計算結果を表す図である。FIG. 7 is a diagram showing a calculation result of an interferogram when scattered light including Mie scattered light and Rayleigh scattered light is interfered with by a Michelson interferometer. 図8は、図7の一部を拡大して示す図である。FIG. 8 is an enlarged view of a part of FIG. 7. 図9は、エアロゾルによる散乱がなく、大気散乱だけを考慮した場合のマイケルソン干渉計による干渉フリンジの周波数間隔の依存性を説明するための図である。FIG. 9 is a diagram for explaining the dependence of the frequency interval of the interference fringe by the Michelson interferometer when there is no scattering by the aerosol and only the atmospheric scattering is considered. 図10は、光路長が異なる2つのエタロンの透過率の周波数特性を示す図である。FIG. 10 is a diagram showing the frequency characteristics of the transmittances of two etalons having different optical path lengths. 図11は、実施の形態1に係るエアロゾル計測装置によるエタロンの光路長の変化例を示す図である。FIG. 11 is a diagram showing an example of a change in the optical path length of the etalon by the aerosol measuring device according to the first embodiment. 図12は、エタロンの温度差と出射光の強度との関係を示す図である。FIG. 12 is a diagram showing the relationship between the temperature difference of etalon and the intensity of emitted light. 図13は、実施の形態2に係るエアロゾル計測装置の構成を示す図である。FIG. 13 is a diagram showing a configuration of an aerosol measuring device according to the second embodiment. 図14は、実施の形態2に係るエアロゾル計測装置によるエタロンの光路長の変化例を示す図である。FIG. 14 is a diagram showing an example of a change in the optical path length of the etalon by the aerosol measuring device according to the second embodiment. 図15は、エタロンの光軸の傾きと出射光の強度との関係を示す図である。FIG. 15 is a diagram showing the relationship between the inclination of the optical axis of Etalon and the intensity of emitted light. 図16は、実施の形態3に係るエアロゾル計測装置の構成を示す図である。FIG. 16 is a diagram showing a configuration of an aerosol measuring device according to a third embodiment. 図17は、実施の形態4に係るエアロゾル計測装置の構成を示す図である。FIG. 17 is a diagram showing a configuration of an aerosol measuring device according to a fourth embodiment. 図18は、実施の形態4に係るエアロゾル計測装置の遮光部の動作を説明するための図である。FIG. 18 is a diagram for explaining the operation of the light-shielding portion of the aerosol measuring device according to the fourth embodiment.
 (本開示の概要)
 本開示の一態様に係るエアロゾル計測装置は、大気中に含まれるエアロゾルを計測するための装置である。本開示の一態様に係るエアロゾル計測装置は、光源と、前記光源から出射された第1の光が通過する第1のエタロンと、前記エアロゾルで散乱された第2の光が通過する第2のエタロンと、前記第1のエタロンにおける前記第1の光の光路長及び前記第2のエタロンにおける前記第2の光の光路長からなる群から選択される少なくとも1つの光路長を変化させる制御部と、を備える。
(Summary of this disclosure)
The aerosol measuring device according to one aspect of the present disclosure is a device for measuring aerosol contained in the atmosphere. The aerosol measuring device according to one aspect of the present disclosure includes a light source, a first etalon through which the first light emitted from the light source passes, and a second light through which the second light scattered by the aerosol passes. An etalon and a control unit that changes at least one optical path length selected from the group consisting of the optical path length of the first light in the first etalon and the optical path length of the second light in the second etalon. , Equipped with.
 前記第1のエタロンは、前記第1の光を内部で干渉させることにより生じた、互いに等しい周波数間隔で離れた複数本のピークを有する干渉光を前記エアロゾルに照射し、前記第2のエタロンは、前記第2の光を内部で干渉させることによりミー散乱光を出射してもよい。 The first etalon irradiates the aerosol with interference light having a plurality of peaks separated from each other at equal frequency intervals, which is generated by internally interfering the first light, and the second etalon is produced. , The Mie scattered light may be emitted by interfering the second light internally.
 本開示の一態様に係るエアロゾル計測装置は、前記ミー散乱光を受光する受光器をさらに備えていてもよい。 The aerosol measuring device according to one aspect of the present disclosure may further include a receiver that receives the Mie scattered light.
 これにより、第1のエタロン及び第2のエタロンによってそれぞれ、光を干渉させることができるので、マイケルソン干渉計を用いる場合に比べて部品点数を削減することができ、エアロゾル計測装置の構成を簡単にすることができる。また、第2のエタロンによってレイリー散乱光を除去することができるので、複雑な信号処理を必要とせず、受光器による受光強度に基づいてエアロゾルを簡単に計測することができる。 As a result, light can be interfered with by the first etalon and the second etalon, respectively, so that the number of parts can be reduced as compared with the case of using a Michelson interferometer, and the configuration of the aerosol measuring device can be simplified. Can be. Further, since the Rayleigh scattered light can be removed by the second etalon, the aerosol can be easily measured based on the light receiving intensity by the light receiver without requiring complicated signal processing.
 さらに、製造ばらつき又は動作ばらつきに基づいて第1のエタロンと第2のエタロンとの光学特性に差が生じたとしても、第1のエタロンにおける第1の光の光路長及び第2のエタロンにおける第2の光の光路長からなる群から選択される少なくとも1つの光路長を変化させることができるので、第1のエタロン及び第2のエタロンの各々の透過率の周波数特性におけるピーク位置を同調させることができる。なお、同調とは、ピーク位置を一致させることである。ピーク位置が同調することで、レイリー散乱光の透過を充分に抑制しながら、充分な強度のミー散乱光を受光器に受光させることができる。これにより、エアロゾルの計測精度を高めることができる。 Further, even if there is a difference in the optical characteristics between the first etalon and the second etalon due to manufacturing variation or operation variation, the optical path length of the first light in the first etalon and the first in the second etalon. Since at least one optical path length selected from the group consisting of two optical path lengths can be changed, the peak positions in the frequency characteristics of the transmittances of the first etalon and the second etalon are tuned. Can be done. Note that tuning is to match the peak positions. By synchronizing the peak positions, it is possible to allow the receiver to receive Mie scattered light of sufficient intensity while sufficiently suppressing the transmission of Rayleigh scattered light. As a result, the measurement accuracy of the aerosol can be improved.
 また、例えば、前記制御部は、前記第2のエタロンにおける前記第2の光の光路長を変化させてもよい。 Further, for example, the control unit may change the optical path length of the second light in the second etalon.
 これにより、第1のエタロンにおける前記第1の光の光路長を一定にしておくことができるので、光路長を変化させる構成及び制御を簡単にすることができる。 As a result, the optical path length of the first light in the first etalon can be kept constant, so that the configuration and control for changing the optical path length can be simplified.
 また、例えば、前記制御部は、前記少なくとも1つの光路長を所定の範囲内で周期的に変化させてもよい。 Further, for example, the control unit may periodically change the at least one optical path length within a predetermined range.
 これにより、光路長を所定の範囲内で周期的に変化させることにより、ピーク位置を同調させる適切な光路長でエアロゾルの測定を容易に行うことができる。また、動作ばらつきによって2つのエタロンの光路長が変化した場合であっても、ピーク位置を同調させる適切な光路長でエアロゾルの測定を容易に行うことができる。 As a result, by periodically changing the optical path length within a predetermined range, it is possible to easily measure the aerosol with an appropriate optical path length for synchronizing the peak position. Further, even when the optical path lengths of the two etalons change due to the operation variation, the aerosol can be easily measured with an appropriate optical path length for synchronizing the peak positions.
 また、例えば、前記周波数間隔は、3.9GHz以下であってもよい。 Further, for example, the frequency interval may be 3.9 GHz or less.
 これにより、レイリー散乱光の透過をエタロンが充分に抑制することができるので、受光器には、エアロゾルに基づくミー散乱光を受光させることができる。したがって、受光器による受光強度に基づいてエアロゾルの有無及び濃度を容易に計測することができる。 As a result, Etalon can sufficiently suppress the transmission of Rayleigh scattered light, so that the receiver can receive Mie scattered light based on the aerosol. Therefore, the presence / absence and concentration of aerosol can be easily measured based on the intensity of light received by the light receiver.
 また、例えば、本開示の一態様に係るエアロゾル計測装置は、さらに、前記第1のエタロンの温度及び前記第2のエタロンの温度からなる群から選択される少なくとも1つを調整する温度調整装置を備え、前記制御部は、前記温度調整装置を制御することにより、前記少なくとも1つの光路長を変化させてもよい。 Further, for example, the aerosol measuring device according to one aspect of the present disclosure further includes a temperature adjusting device that adjusts at least one selected from the group consisting of the temperature of the first etalon and the temperature of the second etalon. In addition, the control unit may change the at least one optical path length by controlling the temperature adjusting device.
 これにより、エタロンの熱膨張及び収縮を利用して光路長を容易に変化させることができる。 As a result, the optical path length can be easily changed by utilizing the thermal expansion and contraction of etalon.
 また、例えば、本開示の一態様に係るエアロゾル計測装置は、さらに、前記第1のエタロンの光軸の傾き及び前記第2のエタロンの光軸の傾きからなる群から選択される少なくとも1つを調整する軸調整装置を備え、前記制御部は、前記軸調整装置を制御することにより、前記少なくとも1つの光路長を変化させてもよい。 Further, for example, the aerosol measuring device according to one aspect of the present disclosure further comprises at least one selected from the group consisting of the inclination of the optical axis of the first etalon and the inclination of the optical axis of the second etalon. A shaft adjusting device for adjusting is provided, and the control unit may change the at least one optical path length by controlling the shaft adjusting device.
 これにより、光の入射方向に対してエタロンの光軸を傾けることにより、エタロンの光路長を容易に変化させることができる。 As a result, the optical path length of the etalon can be easily changed by tilting the optical axis of the etalon with respect to the incident direction of the light.
 また、例えば、前記第1の光は、パルス光であり、前記受光器は、前記パルス光が前記光源から出射されてから、前記パルス光の時間幅より長い所定期間が終了するまで、前記ミー散乱光の受光を停止し、前記所定期間が終了した後に、前記ミー散乱光を受光してもよい。 Further, for example, the first light is pulsed light, and the receiver receives the Mie from the time when the pulsed light is emitted from the light source until the end of a predetermined period longer than the time width of the pulsed light. The Mie scattered light may be received after the reception of the scattered light is stopped and the predetermined period is completed.
 これにより、反射光によるエアロゾルの誤検知及び受光器の飽和による故障などを抑制することができる。 As a result, it is possible to suppress false detection of aerosol due to reflected light and failure due to saturation of the receiver.
 また、例えば、前記第2の光は、前記第2のエタロンの光軸に対して斜めの方向から前記第2のエタロンに入射してもよい。 Further, for example, the second light may enter the second etalon from an oblique direction with respect to the optical axis of the second etalon.
 これにより、散乱光である前記第2の光の入射角を調整することにより、光路長を変化させることができる。 Thereby, the optical path length can be changed by adjusting the incident angle of the second light which is scattered light.
 また、例えば、前記光源は、レーザ素子又は発光ダイオード(LED:Light Emitting Diode)であってもよい。 Further, for example, the light source may be a laser element or a light emitting diode (LED: Light Emitting Diode).
 これにより、エタロンによって強度が減衰したとしても、十分な強度の出射光をエアロゾルに向けて出射させることができる。 As a result, even if the intensity is attenuated by etalon, sufficient intensity of emitted light can be emitted toward the aerosol.
 また、例えば、本開示の一態様に係るエアロゾル計測装置は、さらに、前記第2の光を集光して、前記第2のエタロンに入射させる集光部を備えてもよい。 Further, for example, the aerosol measuring device according to one aspect of the present disclosure may further include a condensing unit that condenses the second light and causes it to be incident on the second etalon.
 これにより、エタロン内での干渉効率を高めることができる。また、光の受光感度を高めることができるので、エアロゾルの計測精度を高めることができる。 This makes it possible to increase the interference efficiency within the etalon. Moreover, since the light receiving sensitivity can be increased, the measurement accuracy of the aerosol can be improved.
 また、例えば、本開示の一態様に係るエアロゾル計測方法は、光源から出射された第1の光を第1のエタロンに入射させることと、前記第1のエタロンから出射された光を、大気中に含まれるエアロゾルに照射することと、前記エアロゾルで散乱された第2の光を第2のエタロンに入射させることと、前記第1のエタロンにおける前記第1の光の光路長及び前記第2のエタロンにおける前記第2の光の光路長からなる群から選択される少なくとも1つの光路長を変化させることと、を含む。 Further, for example, in the aerosol measurement method according to one aspect of the present disclosure, the first light emitted from the light source is incident on the first etalon, and the light emitted from the first etalon is brought into the atmosphere. To irradiate the aerosol contained in the above, to make the second light scattered by the aerosol incident on the second etalon, and to make the optical path length of the first light in the first etalon and the second light. Includes changing at least one optical path length selected from the group consisting of said second light path lengths in etalon.
 これにより、上述したエアロゾル計測装置と同様に、エアロゾルを簡単かつ精度良く計測することができる。 As a result, the aerosol can be measured easily and accurately in the same manner as the aerosol measuring device described above.
 本開示において、回路、ユニット、装置、部材又は部の全部又は一部、又はブロック図の機能ブロックの全部又は一部は、半導体装置、半導体集積回路(IC)、又はLSI(Large Scale Integration)を含む一つ又は複数の電子回路によって実行されてもよい。LSI又はICは、一つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、一つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、若しくはULSI(Ultra Large Scale Integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、又はLSI内部の接合関係の再構成又はLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。 In the present disclosure, all or part of a circuit, unit, device, member or part, or all or part of a functional block in a block diagram, is a semiconductor device, a semiconductor integrated circuit (IC), or an LSI (Large Scale Integration). It may be executed by one or more electronic circuits including. The LSI or IC may be integrated on one chip, or may be configured by combining a plurality of chips. For example, functional blocks other than the storage element may be integrated on one chip. Here, it is called LSI or IC, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). Field Programmable Gate Array (FPGA), which is programmed after the manufacture of the LSI, or reconfigurable logistic device, which can reconfigure the junction relationship inside the LSI or set up the circuit partition inside the LSI, can also be used for the same purpose.
 さらに、回路、ユニット、装置、部材又は部の全部又は一部の機能又は操作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは一つ又は複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システム又は装置は、ソフトウェアが記録されている一つ又は複数の非一時的記録媒体、処理装置(processor)、及び必要とされるハードウェアデバイス、例えばインタフェース、を備えていてもよい。 Furthermore, all or part of the functions or operations of circuits, units, devices, members or parts can be executed by software processing. In this case, the software is recorded on one or more ROMs, optical discs, non-temporary recording media such as hard disk drives, and when the software is executed by a processor, the functions identified by the software It is executed by a processor and peripheral devices. The system or device may include one or more non-temporary recording media on which the software is recorded, a processor, and the required hardware device, such as an interface.
 以下では、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, the embodiment will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that all of the embodiments described below show comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps, the order of steps, etc. shown in the following embodiments are examples, and are not intended to limit the present disclosure. Further, among the components in the following embodiments, the components not described in the independent claims will be described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 In addition, each figure is a schematic view and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
 また、本明細書において、平行又は垂直などの要素間の関係性を示す用語、及び、円柱又は角柱などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。 Further, in the present specification, terms indicating relationships between elements such as parallel or vertical, terms indicating the shape of elements such as cylinders or prisms, and numerical ranges are not expressions expressing only strict meanings. , Is an expression meaning that a substantially equivalent range, for example, a difference of about several percent is included.
 (実施の形態1)
 [1.構成]
 まず、実施の形態1に係るエアロゾル計測装置の概要について、図1を用いて説明する。図1は、本実施の形態に係るエアロゾル計測装置1の構成を示す図である。
(Embodiment 1)
[1. Constitution]
First, an outline of the aerosol measuring device according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of an aerosol measuring device 1 according to the present embodiment.
 図1に示されるように、本実施の形態に係るエアロゾル計測装置1は、大気中に出射光L2を出射し、大気中に存在する散乱体90が出射光L2を散乱させることで発生する散乱光L3を取得し、取得した散乱光L3を処理することで、散乱体90に含まれるエアロゾルの有無及び濃度を計測する。散乱体90は、エアロゾル計測装置1による計測の対象空間中に存在する。 As shown in FIG. 1, the aerosol measuring device 1 according to the present embodiment emits the emitted light L2 into the atmosphere, and the scattering body 90 existing in the atmosphere scatters the emitted light L2 to generate scattering. By acquiring the light L3 and processing the acquired scattered light L3, the presence / absence and concentration of the aerosol contained in the scatterer 90 are measured. The scatterer 90 exists in the target space for measurement by the aerosol measuring device 1.
 対象空間は、例えば、住居、オフィス、介護施設又は病院などの建物の一部屋である。対象空間は、例えば、壁、窓、ドア、床及び天井などで仕切られた空間であり、閉じられた空間であるが、これに限らない。対象空間は、屋外の開放された空間であってもよい。また、対象空間は、バス又は飛行機などの移動体の内部空間であってもよい。 The target space is, for example, a room in a building such as a residence, office, long-term care facility, or hospital. The target space is, for example, a space partitioned by walls, windows, doors, floors, ceilings, etc., and is a closed space, but is not limited to this. The target space may be an outdoor open space. Further, the target space may be the internal space of a moving body such as a bus or an airplane.
 散乱体90は、計測対象物であるエアロゾル、機械加工による粉塵、粗大粒子、及び、空気を構成する分子を含む。エアロゾルは、具体的には、対象空間内を浮遊している塵埃、PM2.5などの浮遊粒子状物質、生物系粒子、又は、微小水滴などである。生物系粒子には、空中に浮遊するカビ若しくはダニ、又は花粉なども含まれる。また、微小水滴には、咳又はくしゃみなどの人体から動的に発生する物質が含まれる。 The scatterer 90 includes an aerosol to be measured, machined dust, coarse particles, and molecules constituting air. Specifically, the aerosol is dust floating in the target space, suspended particulate matter such as PM2.5, biological particles, or minute water droplets. Biological particles also include molds or mites floating in the air, pollen, and the like. In addition, minute water droplets include substances dynamically generated from the human body such as coughing or sneezing.
 計測対象物であるエアロゾルは、空気を構成する分子に比べて十分に大きい。本実施の形態では、エアロゾルの粒径が出射光L2の波長以上であるので、エアロゾルは、出射光L2を散乱させることでミー散乱光を発生させる。空気を構成する分子は、出射光L2の波長よりも十分に小さいので、出射光L2を散乱させることでレイリー散乱光を発生させる。したがって、エアロゾル計測装置1が取得する散乱光L3には、ミー散乱光とレイリー散乱光とが含まれる。ここでのミー散乱光は、ミー散乱による後方散乱光である。本実施の形態に係るエアロゾル計測装置1は、散乱光L3からミー散乱光を抽出し、抽出したミー散乱光に基づいてエアロゾルの有無及び濃度を計測する。 Aerosol, which is the object to be measured, is sufficiently large compared to the molecules that make up air. In the present embodiment, since the particle size of the aerosol is equal to or larger than the wavelength of the emitted light L2, the aerosol scatters the emitted light L2 to generate Mie scattered light. Since the molecules constituting the air are sufficiently smaller than the wavelength of the emitted light L2, Rayleigh scattered light is generated by scattering the emitted light L2. Therefore, the scattered light L3 acquired by the aerosol measuring device 1 includes Mie scattered light and Rayleigh scattered light. The Mie scattered light here is backscattered light due to Mie scattering. The aerosol measuring device 1 according to the present embodiment extracts Mie scattered light from the scattered light L3, and measures the presence / absence and concentration of the aerosol based on the extracted Mie scattered light.
 本実施の形態に係るエアロゾル計測装置1は、対象空間内の異なる方向に向けて出射光L2を出射する。出射光L2の出射方向は、例えば、MEMS(Micro-Electro-Mechanical Systems)ミラー(図示せず)などによって変更される。あるいは、エアロゾル計測装置1全体の向きを変更することで、出射光L2の出射方向が変更されてもよい。エアロゾル計測装置1は、対象空間内を出射光L2で走査することにより、対象空間内のエアロゾルの分布を作成することができる。 The aerosol measuring device 1 according to the present embodiment emits emitted light L2 in different directions in the target space. The emission direction of the emitted light L2 is changed by, for example, a MEMS (Micro-Electro-Mechanical Systems) mirror (not shown). Alternatively, the emission direction of the emitted light L2 may be changed by changing the direction of the entire aerosol measuring device 1. The aerosol measuring device 1 can create an aerosol distribution in the target space by scanning the target space with the emitted light L2.
 図1に示されるように、エアロゾル計測装置1は、エタロン10及び15と、光源20と、ミラー22と、集光部30と、集光レンズ40と、受光器50と、分析部60と、制御部70と、ヒーター80とを備える。なお、集光部30の一例が集光レンズ30aである。以下では、エアロゾル計測装置1が備える各構成要素について説明する。 As shown in FIG. 1, the aerosol measuring device 1 includes an etalon 10 and 15, a light source 20, a mirror 22, a condensing unit 30, a condensing lens 40, a receiver 50, an analysis unit 60, and the like. It includes a control unit 70 and a heater 80. An example of the condensing unit 30 is a condensing lens 30a. Hereinafter, each component included in the aerosol measuring device 1 will be described.
 エタロン10は、入射する光を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光として出射する第1のエタロンである。複数本のピークを有する光は、マルチ光とも呼称される。本実施の形態では、エタロン10は、単一のエタロンである。つまり、エタロン10は、一体的に構成された1つの部材である。エタロン10の形状は、例えば、円柱体又は角柱体などである。 Etalon 10 is a first etalon that interferes with incident light internally and emits as light having a plurality of peaks separated from each other at equal frequency intervals. Light having a plurality of peaks is also called multi-light. In this embodiment, the etalon 10 is a single etalon. That is, the etalon 10 is one member integrally configured. The shape of the etalon 10 is, for example, a cylinder or a prism.
 図1に示されるように、エタロン10は、透光部11と、2つの多層膜12及び13とを有する。透光部11は、例えば石英又は水晶などの透明な材料を用いて形成されている。透光部11は、2つの多層膜12及び13に挟まれており、2つの多層膜12及び13の各々に接触している。2つの多層膜12及び13はそれぞれ、複数の誘電体膜の積層構造を有する誘電体多層膜である。例えば、2つの多層膜12及び13はそれぞれ、屈折率が低い誘電体膜と屈折率が高い誘電体膜とを交互に積層されることで形成されている。誘電体膜としては、例えば、チタン酸化膜、ハフニウム酸化膜、シリコン酸化膜などが用いられる。なお、透光部11は、空気層であってもよく、2つの多層膜12及び13は、一定距離を保つように枠体などによって固定されていてもよい。 As shown in FIG. 1, the etalon 10 has a translucent portion 11 and two multilayer films 12 and 13. The translucent portion 11 is formed by using a transparent material such as quartz or quartz. The translucent portion 11 is sandwiched between the two multilayer films 12 and 13, and is in contact with each of the two multilayer films 12 and 13. The two multilayer films 12 and 13 are dielectric multilayer films having a laminated structure of a plurality of dielectric films, respectively. For example, the two multilayer films 12 and 13 are each formed by alternately laminating a dielectric film having a low refractive index and a dielectric film having a high refractive index. As the dielectric film, for example, a titanium oxide film, a hafnium oxide film, a silicon oxide film, or the like is used. The light transmitting portion 11 may be an air layer, and the two multilayer films 12 and 13 may be fixed by a frame or the like so as to maintain a constant distance.
 エタロン10には、光源20から出射された出射光L1が入射する。エタロン10は、出射光L1を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光である出射光L2として出射する。出射光L2は、マルチレーザ光である。本実施の形態では、出射光L1は、エタロン10の多層膜12から入射し、多層膜13から出射される。多層膜12の、透光部11と接する面と反対側の面は、出射光L1が入射する入射面である。多層膜13の、透光部11と接する面と反対側の面は、出射光L2が出射される出射面である。 The emitted light L1 emitted from the light source 20 is incident on the etalon 10. The etalon 10 internally interferes with the emitted light L1 and emits as emitted light L2 which is light having a plurality of peaks separated from each other at equal frequency intervals. The emitted light L2 is a multi-laser light. In the present embodiment, the emitted light L1 is incident on the multilayer film 12 of the etalon 10 and emitted from the multilayer film 13. The surface of the multilayer film 12 opposite to the surface in contact with the translucent portion 11 is an incident surface on which the emitted light L1 is incident. The surface of the multilayer film 13 opposite to the surface in contact with the translucent portion 11 is an exit surface from which the emitted light L2 is emitted.
 エタロン15は、散乱光L3を内部で干渉させて、散乱光L3に含まれるミー散乱光L4を通過させる第2のエタロンの一例である。エタロン15は、エタロン10と同様に、入射する光を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光として出射する。エタロン15とエタロン10とは、同じ光学特性を有する。つまり、エタロン10及び15の各々に同じ光を入射した場合に、各々から出射される光の周波数間隔が同じになる。本実施の形態では、エタロン15は、単一のエタロンである。つまり、エタロン15は、一体的に構成された1つの部材である。エタロン15の形状は、例えば、円柱体又は角柱体などである。 The etalon 15 is an example of a second etalon in which the scattered light L3 is internally interfered with and the Mie scattered light L4 contained in the scattered light L3 is passed through. Like the etalon 10, the etalon 15 internally interferes with the incident light and emits the light as light having a plurality of peaks separated from each other at equal frequency intervals. Etalon 15 and Etalon 10 have the same optical properties. That is, when the same light is incident on each of the etalons 10 and 15, the frequency intervals of the light emitted from each are the same. In this embodiment, the etalon 15 is a single etalon. That is, the etalon 15 is one member integrally configured. The shape of the etalon 15 is, for example, a cylinder or a prism.
 図1に示されるように、エタロン15は、透光部16と、2つの多層膜17及び18を有する。透光部16、多層膜17及び18はそれぞれ、エタロン10の透光部11、多層膜12及び13に対応しており、同様の構成を有する。 As shown in FIG. 1, the etalon 15 has a translucent portion 16 and two multilayer films 17 and 18. The translucent portions 16 and the multilayer films 17 and 18 correspond to the translucent portions 11 and the multilayer films 12 and 13 of the etalon 10, respectively, and have the same configuration.
 エタロン15には、集光レンズ30aによって集光された散乱光L3が入射する。本実施の形態では、散乱光L3は、エタロン15の多層膜17から入射し、散乱光L3の一部であるミー散乱光L4が、多層膜18から出射される。多層膜17の、透光部16と接する面と反対側の面は、散乱光L3が入射する入射面である。多層膜18の、透光部16と接する面と反対側の面は、ミー散乱光L4が出射される出射面である。 The scattered light L3 condensed by the condenser lens 30a is incident on the etalon 15. In the present embodiment, the scattered light L3 is incident from the multilayer film 17 of the etalon 15, and the Mie scattered light L4, which is a part of the scattered light L3, is emitted from the multilayer film 18. The surface of the multilayer film 17 opposite to the surface in contact with the translucent portion 16 is an incident surface on which scattered light L3 is incident. The surface of the multilayer film 18 opposite to the surface in contact with the light transmitting portion 16 is an exit surface from which Mie scattered light L4 is emitted.
 散乱光L3には、互いに等しい周波数間隔で離れた複数本のピークを有する光が含まれるので、エタロン15を通過する際に、それぞれの光が干渉を起こす。本実施の形態では、エタロン15の厚みが調整されており、散乱光L3に含まれるミー散乱光L4を通過させ、レイリー散乱光の通過を抑制する。これにより、散乱光L3からレイリー散乱光を適切に除去することができるので、エアロゾルに起因するミー散乱光L4を受光器50に受光させることができる。 Since the scattered light L3 includes light having a plurality of peaks separated from each other at equal frequency intervals, each light causes interference when passing through the etalon 15. In the present embodiment, the thickness of the etalon 15 is adjusted so that the Mie scattered light L4 contained in the scattered light L3 is passed and the Rayleigh scattered light is suppressed from passing. As a result, the Rayleigh scattered light can be appropriately removed from the scattered light L3, so that the Mie scattered light L4 caused by the aerosol can be received by the receiver 50.
 本実施の形態では、エタロン10とエタロン15とは、間を空けて配置されている。具体的には、エタロン10は、光源20から出射された出射光L1の光路上に位置している。より具体的には、エタロン10は、ミラー22と、エアロゾル計測装置1の外郭筐体に設けられた開口との間に位置している。当該開口は、エタロン10から出射される出射光L2が通過するために設けられている。 In the present embodiment, the etalon 10 and the etalon 15 are arranged with a gap between them. Specifically, the etalon 10 is located on the optical path of the emitted light L1 emitted from the light source 20. More specifically, the etalon 10 is located between the mirror 22 and the opening provided in the outer housing of the aerosol measuring device 1. The opening is provided for the emission light L2 emitted from the etalon 10 to pass through.
 エタロン15は、散乱体90から発生する散乱光L3の光路上に位置している。具体的には、エタロン15は、集光レンズ30aと集光レンズ40との間に位置している。 Etalon 15 is located on the optical path of the scattered light L3 generated from the scattering body 90. Specifically, the etalon 15 is located between the condenser lens 30a and the condenser lens 40.
 光源20は、エタロン10を介して、出射光L2を大気中に出射する。具体的には、光源20は、出射光L1を出射する。出射光L1は、例えばパルス光であるが、連続光であってもよい。出射光L1は、特定の波長帯域にピークを有する単色光であってもよく、ブロードな波長帯域の成分を含む光であってもよい。ピークの帯域幅は、例えば、10pmから10nmの範囲である。出射光L1は、例えば、紫外光、青色光又は赤外光などである。出射光L1は、ミラー22で反射された後、エタロン10に入射する。エタロン10に入射した出射光L1をエタロン10の内部で干渉させることにより生じた、互いに等しい周波数間隔で離れた複数のピークを有する干渉光は、出射光L2として大気中に出射される。 The light source 20 emits the emitted light L2 into the atmosphere via the etalon 10. Specifically, the light source 20 emits the emitted light L1. The emitted light L1 is, for example, pulsed light, but may be continuous light. The emitted light L1 may be monochromatic light having a peak in a specific wavelength band, or light containing a component in a broad wavelength band. The peak bandwidth is, for example, in the range of 10 pm to 10 nm. The emitted light L1 is, for example, ultraviolet light, blue light, infrared light, or the like. The emitted light L1 is reflected by the mirror 22 and then enters the etalon 10. Interference light having a plurality of peaks separated from each other at equal frequency intervals generated by interfering the emitted light L1 incident on the etalon 10 inside the etalon 10 is emitted into the atmosphere as the emitted light L2.
 光源20は、例えば、パルスレーザ光を出射光L1として出射する半導体レーザ素子である。出射光L1のビームモードは、例えばマルチモードであるが、シングルモードであってもよい。一例として、光源20は、405nmの近傍にピークを有するレーザ光を出射光L1として出射する。あるいは、光源20は、発光ダイオード(LED:Light Emitting Diode)であってもよい。また、光源20は、ハロゲンランプなどの放電ランプであってもよい。 The light source 20 is, for example, a semiconductor laser element that emits pulsed laser light as emitted light L1. The beam mode of the emitted light L1 is, for example, a multi-mode, but may be a single mode. As an example, the light source 20 emits a laser beam having a peak in the vicinity of 405 nm as an emitted light L1. Alternatively, the light source 20 may be a light emitting diode (LED: Light Emitting Diode). Further, the light source 20 may be a discharge lamp such as a halogen lamp.
 ミラー22は、出射光L1を反射する。出射光L1に対してミラー22を適切な角度で配置することにより、出射光L1の進路を所望の方向に曲げることができる。本実施の形態では、ミラー22は、出射光L1を反射してエタロン10に入射させる。なお、エアロゾル計測装置1は、ミラー22を備えなくてもよい。 The mirror 22 reflects the emitted light L1. By arranging the mirror 22 at an appropriate angle with respect to the emitted light L1, the course of the emitted light L1 can be bent in a desired direction. In the present embodiment, the mirror 22 reflects the emitted light L1 and causes it to enter the etalon 10. The aerosol measuring device 1 does not have to include the mirror 22.
 集光部30は、大気中に含まれる散乱体90が出射光L2を散乱させることで発生する散乱光L3を集光する部材である。集光部30は、散乱体90とエタロン15との間に配置される。集光部30の一例として、例えば、図1に示される凸状の集光レンズ30a、又は、少なくとも1つの反射鏡などがある。例えば、集光レンズ30aで集光された光は、コリメートレンズを含むレンズ群により、平行光に変換して出射される。よって、集光レンズ30aによって集光された散乱光L3は、エタロン15に入射される。また、集光部30には、コリメートレンズ又はピンホールなどの光学素子が含まれる。散乱光L3の信号強度が強い場合は、特に、集光部30が配置されていなくてもよい。つまり、エアロゾル計測装置1は、集光部30を備えなくてもよい。 The light collecting unit 30 is a member that collects the scattered light L3 generated by the scattering body 90 contained in the atmosphere scattering the emitted light L2. The light collecting unit 30 is arranged between the scatterer 90 and the etalon 15. As an example of the condensing unit 30, there is, for example, the convex condensing lens 30a shown in FIG. 1, or at least one reflecting mirror. For example, the light collected by the condenser lens 30a is converted into parallel light and emitted by a lens group including a collimating lens. Therefore, the scattered light L3 collected by the condenser lens 30a is incident on the etalon 15. Further, the condensing unit 30 includes an optical element such as a collimating lens or a pinhole. When the signal intensity of the scattered light L3 is strong, the light collecting unit 30 may not be arranged. That is, the aerosol measuring device 1 does not have to include the condensing unit 30.
 集光レンズ40は、集光レンズ30aによって集光された散乱光L3のうち、エタロン15を通過したミー散乱光L4を集光する。集光レンズ40は、例えば凸レンズである。集光レンズ40は、受光器50の受光面にミー散乱光L4を集光する。 The condenser lens 40 collects the Mie scattered light L4 that has passed through the etalon 15 among the scattered light L3 condensed by the condenser lens 30a. The condenser lens 40 is, for example, a convex lens. The condenser lens 40 concentrates the Mie scattered light L4 on the light receiving surface of the receiver 50.
 受光器50は、集光レンズ30aによって集光された散乱光L3のうち、エタロン15を通過したミー散乱光L4を受光し、受光強度に応じた信号を出力する。受光強度は、ミー散乱光L4の強度であり、例えば、受光器50が出力する信号の信号レベルで表される。 The light receiver 50 receives the Mie scattered light L4 that has passed through the etalon 15 among the scattered light L3 collected by the condenser lens 30a, and outputs a signal according to the light receiving intensity. The light receiving intensity is the intensity of the Mie scattered light L4, and is represented by, for example, the signal level of the signal output by the light receiver 50.
 受光器50は、光電変換を行う素子であり、例えば、PMT(Photomultiplier Tube)である。あるいは、受光器50は、PMTとフォトンカウンタとを有してもよい。また、受光器50は、アバランシェフォトダイオードであってもよい。 The light receiver 50 is an element that performs photoelectric conversion, for example, a PMT (Photomultiplier Tube). Alternatively, the receiver 50 may have a PMT and a photon counter. Further, the receiver 50 may be an avalanche photodiode.
 分析部60は、受光器50から出力された信号を分析することで、散乱体90に含まれるエアロゾルを分析する。例えば、分析部60は、信号の信号レベルに基づいてエアロゾルの有無及び濃度を決定する。具体的には、分析部60は、信号レベルとエアロゾルの濃度とを対応付けた対応情報を参照することで、信号レベルに対応するエアロゾルの濃度を決定する。対応情報は、例えば、分析部60が備えるメモリ(図示せず)に予め記憶されている。 The analysis unit 60 analyzes the aerosol contained in the scatterer 90 by analyzing the signal output from the receiver 50. For example, the analysis unit 60 determines the presence / absence and concentration of aerosol based on the signal level of the signal. Specifically, the analysis unit 60 determines the concentration of the aerosol corresponding to the signal level by referring to the correspondence information in which the signal level and the concentration of the aerosol are associated with each other. Correspondence information is stored in advance in, for example, a memory (not shown) included in the analysis unit 60.
 また、分析部60は、出射光L2が出射されてからミー散乱光L4を受光するまでに要する時間に基づいて、TOF(Time Of Flight)方式によってエアロゾルまでの距離を算出する。分析部60は、算出した距離と出射光L2を出射した方向とに基づいて、対象空間内のエアロゾルの位置を特定する。出射光L2の出射方向を変更しながらエアロゾルの位置の特定を繰り返すことで、分析部60は、対象空間内でのエアロゾルの分布を作成する。 Further, the analysis unit 60 calculates the distance to the aerosol by the TOF (Time Of Flight) method based on the time required from the emission of the emitted light L2 to the reception of the Mie scattered light L4. The analysis unit 60 identifies the position of the aerosol in the target space based on the calculated distance and the direction in which the emitted light L2 is emitted. By repeating the identification of the position of the aerosol while changing the emission direction of the emitted light L2, the analysis unit 60 creates the distribution of the aerosol in the target space.
 分析部60は、複数の回路部品を含む1つ又は複数の電子回路で構成されている。1つ又は複数の電子回路はそれぞれ、汎用的な回路でもよく、専用の回路でもよい。つまり、分析部60が実行する機能は、電子回路などのハードウェアで実現される。あるいは、分析部60は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現されてもよい。分析部60が実行する機能は、プロセッサで実行されるソフトウェアで実現されてもよい。 The analysis unit 60 is composed of one or a plurality of electronic circuits including a plurality of circuit components. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit. That is, the function executed by the analysis unit 60 is realized by hardware such as an electronic circuit. Alternatively, the analysis unit 60 may be realized by a non-volatile memory in which the program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor in which the program is executed, or the like. The function executed by the analysis unit 60 may be realized by software executed by the processor.
 制御部70は、エタロン10における出射光L1の光路長及びエタロン15における散乱光L3の光路長からなる群から選択される少なくとも1つの光路長を変化させる。本実施の形態では、制御部70は、エタロン15における散乱光L3の光路長を変化させる。具体的には、制御部70は、ヒーター80を制御することにより、エタロン15における散乱光L3の光路長を変化させる。 The control unit 70 changes at least one optical path length selected from the group consisting of the optical path length of the emitted light L1 in the etalon 10 and the optical path length of the scattered light L3 in the etalon 15. In the present embodiment, the control unit 70 changes the optical path length of the scattered light L3 in the etalon 15. Specifically, the control unit 70 changes the optical path length of the scattered light L3 in the etalon 15 by controlling the heater 80.
 制御部70は、複数の回路部品を含む1つ又は複数の電子回路で構成されている。1つ又は複数の電子回路はそれぞれ、汎用的な回路でもよく、専用の回路でもよい。つまり、制御部70が実行する機能は、電子回路などのハードウェアで実現される。制御部70は、例えば、マイクロコントローラであってもよい。具体的には、制御部70は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現されてもよい。制御部70が実行する機能は、プロセッサで実行されるソフトウェアで実現されてもよい。制御部70と分析部60とは、メモリなどのハードウェア資源を共用してもよい。 The control unit 70 is composed of one or a plurality of electronic circuits including a plurality of circuit components. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit. That is, the function executed by the control unit 70 is realized by hardware such as an electronic circuit. The control unit 70 may be, for example, a microcontroller. Specifically, the control unit 70 is realized by a non-volatile memory in which the program is stored, a volatile memory which is a temporary storage area for executing the program, an input / output port, a processor for executing the program, and the like. May be good. The function executed by the control unit 70 may be realized by software executed by the processor. The control unit 70 and the analysis unit 60 may share hardware resources such as memory.
 ヒーター80は、エタロン10及び15の少なくとも一方の温度を調整する温度調整装置の一例である。本実施の形態では、ヒーター80は、エタロン15の温度を調整する。エタロン15は、温度が変化することにより熱膨張又は熱収縮する。これにより、エタロン15を通過する散乱光L3の光路長が変化する。光路長を変化させる目的及び具体的な処理の詳細については、後で説明する。 The heater 80 is an example of a temperature adjusting device that adjusts the temperature of at least one of the etalons 10 and 15. In this embodiment, the heater 80 adjusts the temperature of the etalon 15. The etalon 15 thermally expands or contracts as the temperature changes. As a result, the optical path length of the scattered light L3 passing through the etalon 15 changes. The purpose of changing the optical path length and the details of the specific processing will be described later.
 エアロゾル計測装置1が備える各構成要素は、例えば、図示しない筐体の内部に収容されている。筐体は、エアロゾル計測装置1の外郭筐体であり、遮光性を有する。筐体には、出射光L2及び散乱光L3を通過させるための開口が設けられている。開口は、出射光L2と散乱光L3との各々に対応させて1つずつ設けられていてもよい。集光レンズ30aは、当該開口に設けられていてもよい。 Each component included in the aerosol measuring device 1 is housed inside a housing (not shown), for example. The housing is an outer housing of the aerosol measuring device 1 and has a light-shielding property. The housing is provided with an opening for passing the emitted light L2 and the scattered light L3. One aperture may be provided corresponding to each of the emitted light L2 and the scattered light L3. The condenser lens 30a may be provided in the aperture.
 [2.動作]
 次に、エアロゾル計測装置1の動作について、図2を用いて説明する。図2は、本実施の形態に係るエアロゾル計測装置1の動作を示すフローチャートである。
[2. motion]
Next, the operation of the aerosol measuring device 1 will be described with reference to FIG. FIG. 2 is a flowchart showing the operation of the aerosol measuring device 1 according to the present embodiment.
 図2に示されるように、まず、制御部70がヒーター80を制御することで、光路長を調整する(S10)。次に、光源20が出射光L1を出射する(S12)。出射光L1は、エタロン10を通過することによって、互いに等しい周波数間隔で離れた複数本のピークを有する光であるマルチ光に変換される。つまり、エタロン10は、入射する光を、内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光として出射する(S14)。マルチ光である出射光L2は、大気中に出射されて散乱体90によって散乱される。 As shown in FIG. 2, first, the control unit 70 controls the heater 80 to adjust the optical path length (S10). Next, the light source 20 emits the emitted light L1 (S12). By passing through the etalon 10, the emitted light L1 is converted into multi-light, which is light having a plurality of peaks separated from each other at equal frequency intervals. That is, the etalon 10 internally interferes with the incident light and emits it as light having a plurality of peaks separated from each other at equal frequency intervals (S14). The emitted light L2, which is multi-light, is emitted into the atmosphere and scattered by the scatterer 90.
 次に、集光レンズ30aは、散乱体90から発生する散乱光L3を集光する(S16)。集光レンズ30aによって集光された散乱光L3は、エタロン15を通過することによって、ミー散乱光L4が抽出される。つまり、集光部によって集光された散乱光をエタロン15の内部で干渉させて、エタロン15を通過させる。(S18)。言い換えると、エタロン15は、散乱光L3のうち、レイリー散乱光を実質的に除去し、ミー散乱光L4のみを通過させる。 Next, the condenser lens 30a collects the scattered light L3 generated from the scatterer 90 (S16). The scattered light L3 collected by the condenser lens 30a passes through the etalon 15 to extract the Mie scattered light L4. That is, the scattered light collected by the condensing unit interferes with the inside of the etalon 15 and passes through the etalon 15. (S18). In other words, the etalon 15 substantially removes the Rayleigh scattered light among the scattered light L3 and allows only the Mie scattered light L4 to pass through.
 次に、受光器50は、ミー散乱光L4を受光し、受光強度に応じた信号を出力する(S20)。 Next, the light receiver 50 receives the Mie scattered light L4 and outputs a signal according to the light receiving intensity (S20).
 分析部60は、受光器50から出力された信号を分析することで、散乱体90に含まれるエアロゾルを分析する(S22)。 The analysis unit 60 analyzes the aerosol contained in the scatterer 90 by analyzing the signal output from the receiver 50 (S22).
 エアロゾル計測装置1は、以上のステップS12からステップS22までの処理を、出射光L2の出射方向を変えながら繰り返し行う。例えば、対象空間内の所定の方向に向かって出射光L2を出射し、散乱光L3が取得できた場合に、散乱光L3の発生源となった散乱体90に含まれるエアロゾルの位置及び濃度を特定する。これにより、エアロゾル計測装置1は、例えば、対象空間内のエアロゾルの位置及び濃度を示す分布図を生成することができる。なお、エアロゾル計測装置1は、エアロゾルの位置のみを示す分布図を生成してもよい。 The aerosol measuring device 1 repeats the above processes from step S12 to step S22 while changing the emission direction of the emission light L2. For example, when the emitted light L2 is emitted in a predetermined direction in the target space and the scattered light L3 can be acquired, the position and concentration of the aerosol contained in the scattering body 90 that is the source of the scattered light L3 can be determined. Identify. As a result, the aerosol measuring device 1 can generate, for example, a distribution map showing the position and concentration of the aerosol in the target space. The aerosol measuring device 1 may generate a distribution map showing only the position of the aerosol.
 なお、図2では、最初に光路長の調整を行う例を示しているが、エアロゾルの計測を行いながら繰り返し光路長の調整を行ってもよい。具体的には後述するが、制御部70は、エタロン10又は15の光路長を所定の範囲内で周期的に変化させてもよい。光路長を周期的に変化させながら、出射光L2の出射及びミー散乱光L4の受光が行われてもよい。 Although FIG. 2 shows an example in which the optical path length is adjusted first, the optical path length may be adjusted repeatedly while measuring the aerosol. Specifically, as will be described later, the control unit 70 may periodically change the optical path length of the etalon 10 or 15 within a predetermined range. The emitted light L2 may be emitted and the Mie scattered light L4 may be received while periodically changing the optical path length.
 [3.エタロンの機能]
 続いて、エタロン10及び15の具体的な機能について説明する。
[3. Function of Etalon]
Subsequently, the specific functions of the etalons 10 and 15 will be described.
 上述したように、エタロン10は、光源20から出射されたレーザ光である出射光L1を内部で干渉させて、互いに等しい周波数間隔で離れた複数本のピークを有する光からなるマルチレーザ光である出射光L2として出射する。以下ではまず、マルチレーザ光について図3を用いて説明する。 As described above, the etalon 10 is a multi-laser light composed of light having a plurality of peaks separated from each other at equal frequency intervals by internally interfering with the emitted light L1 which is a laser light emitted from the light source 20. It is emitted as emitted light L2. In the following, first, the multi-laser light will be described with reference to FIG.
 図3は、本実施の形態に係るエアロゾル計測装置1が出射するマルチレーザ光のスペクトルの一例を示す図である。図3の部分(a)及び(b)の各々において横軸は周波数を表し、縦軸は信号強度を表している。 FIG. 3 is a diagram showing an example of the spectrum of the multi-laser light emitted by the aerosol measuring device 1 according to the present embodiment. In each of the parts (a) and (b) of FIG. 3, the horizontal axis represents the frequency and the vertical axis represents the signal strength.
 図3の部分(a)は、エタロン10を通過した後のマルチレーザ光である出射光L2のスペクトルを示している。スペクトルに含まれる複数のピークがそれぞれ、出射光L2に含まれる複数本のピークに対応している。複数本のピークの周波数間隔LW2が互いに等しく、例えば3GHzである。ここでは、複数本のピークの信号強度が互いに等しい例を示しているが、互いに異なっていてもよい。出射光L2の中心波長λは、例えば405nmである。 Part (a) of FIG. 3 shows the spectrum of the emitted light L2, which is the multi-laser light after passing through the etalon 10. Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the emitted light L2. The frequency intervals LW2 of the plurality of peaks are equal to each other, for example, 3 GHz. Here, an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other. The center wavelength λ of the emitted light L2 is, for example, 405 nm.
 図3の部分(b)は、図3の部分(a)の拡大図であり、スペクトルの1つのピーク、すなわち、出射光L2に含まれる1つの光のみを拡大して示している。1つの光の半値全幅LW1は、例えば360MHzである。LW1は、LW2の1/20以上1/5以下であるが、1/8以上1/10以下であってもよい。 Part (b) of FIG. 3 is an enlarged view of part (a) of FIG. 3, and shows one peak of the spectrum, that is, only one light contained in the emitted light L2 in an enlarged manner. The full width at half maximum LW1 of one light is, for example, 360 MHz. LW1 is 1/20 or more and 1/5 or less of LW2, but may be 1/8 or more and 1/10 or less.
 本実施の形態では、出射光L1がエタロン10を通過することで、エタロン10内で干渉されて、出射光L2として出射される。エタロン10は、入射する光と、エタロン10内で反射を繰り返す光との干渉を利用する。入射する光の位相と、エタロン10内の反射を繰り返す光の位相とが一致した場合、光を強め合う干渉が起こり、エタロン10内で光が増強されて透過する。エタロン10の多層膜13は、光を透過させたり、反射したりすることができる。多層膜13の透過率は、例えば75%であるが、これに限らない。 In the present embodiment, when the emitted light L1 passes through the etalon 10, it is interfered with in the etalon 10 and emitted as the emitted light L2. The etalon 10 utilizes the interference between the incident light and the light that is repeatedly reflected in the etalon 10. When the phase of the incident light and the phase of the light repeatedly reflected in the etalon 10 match, interference that strengthens the light occurs, and the light is enhanced and transmitted in the etalon 10. The multilayer film 13 of the etalon 10 can transmit or reflect light. The transmittance of the multilayer film 13 is, for example, 75%, but the transmittance is not limited to this.
 ここで、図4及び図5はそれぞれ、本実施の形態に係るエアロゾル計測装置1のエタロン10を通過する光を説明するための図である。具体的には、図4は、第0の透過光及び第1の透過光を模式的に表している。図5は、第0の透過光及び第2の透過光を模式的に表している。なお、エタロン15を通過する光についても同様である。 Here, FIGS. 4 and 5 are diagrams for explaining the light passing through the etalon 10 of the aerosol measuring device 1 according to the present embodiment, respectively. Specifically, FIG. 4 schematically shows the 0th transmitted light and the 1st transmitted light. FIG. 5 schematically represents the 0th transmitted light and the 2nd transmitted light. The same applies to the light passing through the etalon 15.
 エタロン10は、入射する光の一部をそのまま透過させる。図4及び図5に示されるように、エタロン10の多層膜12及び13で反射されずにそのまま透過する光が第0の透過光である。 Etalon 10 allows a part of the incident light to pass through as it is. As shown in FIGS. 4 and 5, the light transmitted as it is without being reflected by the multilayer films 12 and 13 of the etalon 10 is the 0th transmitted light.
 第1の透過光は、図4に示されるように、入射した光が多層膜13で1回反射された後、多層膜12で1回反射された光である。第0の透過光と第1の透過光との位相が一致することによって干渉が起こり、第1の干渉フリンジに対応する光が出射される。干渉フリンジについては、図7及び図8を用いて後で説明する。 As shown in FIG. 4, the first transmitted light is light that is reflected once by the multilayer film 12 after the incident light is reflected once by the multilayer film 13. Interference occurs when the phases of the 0th transmitted light and the 1st transmitted light match, and the light corresponding to the first interference fringe is emitted. Interfering fringes will be described later with reference to FIGS. 7 and 8.
 第2の透過光は、図5に示されるように、入射した光が多層膜13及び多層膜12でそれぞれ2回ずつ反射された光である。第0の透過光と第2の透過光との位相が一致することによって干渉が起こり、第2の干渉フリンジに対応する光が出射される。 As shown in FIG. 5, the second transmitted light is light in which the incident light is reflected twice by the multilayer film 13 and the multilayer film 12, respectively. Interference occurs when the phases of the 0th transmitted light and the 2nd transmitted light match, and the light corresponding to the second interference fringe is emitted.
 入射する光の位相と、反射を繰り返す光の位相とが一致しない場合、光入射側に反射され、エタロン10を通過する光が弱くなる。この結果、透過光は、周期的なスペクトルを有する。つまり、エタロン10は、出射光L1が入射された場合に、等しい周波数間隔LW2を有する出射光L2を出射することができる。 If the phase of the incident light and the phase of the light that repeats reflection do not match, the light that is reflected on the light incident side and passes through the etalon 10 becomes weak. As a result, the transmitted light has a periodic spectrum. That is, the etalon 10 can emit the emitted light L2 having the same frequency interval LW2 when the emitted light L1 is incident.
 なお、図4及び図5では、光が反射される様子を分かりやすくするため、光の経路を斜めで表しているが、エタロン10に対して光が正面から入射する場合も同様である。ここでは、エタロン10に光が正面から入射する場合、すなわち、エタロン10に対する光の入射角が0°の場合について説明する。エタロン10に対して光が斜めに入射した場合のエタロン10の透過率の周波数特性については、後で説明する。 Note that, in FIGS. 4 and 5, the path of the light is shown diagonally in order to make it easy to understand how the light is reflected, but the same applies when the light is incident on the etalon 10 from the front. Here, the case where the light is incident on the etalon 10 from the front, that is, the case where the incident angle of the light with respect to the etalon 10 is 0 ° will be described. The frequency characteristics of the transmittance of the etalon 10 when light is obliquely incident on the etalon 10 will be described later.
 周波数間隔LW2を実現するためのエタロン10の長さΔxは、以下の式(1)に基づいて定められる。なお、エタロン10の長さΔxは、図4及び図5に示されるように、多層膜12と多層膜13との距離、すなわち、透光部11の厚さである。 The length Δx of the etalon 10 for realizing the frequency interval LW2 is determined based on the following equation (1). The length Δx of the etalon 10 is the distance between the multilayer film 12 and the multilayer film 13, that is, the thickness of the translucent portion 11, as shown in FIGS. 4 and 5.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、nは、真空中の屈折率であり、例えば1.0である。nは、エタロン10の透光部11の屈折率であり、石英の場合1.47である。cは、光速であり、3×10m/sである。LW2=3GHzである場合、上記式(1)より、エタロンの長さΔxが34mmになる。また、エタロン10の長さΔxは、製造上、80mm程度が限界である。このため、LW2の下限値は、1.3GHz程度になる。 In the formula (1), n 0 is the refractive index in vacuum, for example 1.0. n is the refractive index of the translucent portion 11 of the etalon 10, which is 1.47 in the case of quartz. c is the speed of light, which is 3 × 10 8 m / s. When LW2 = 3 GHz, the length Δx of the etalon is 34 mm from the above formula (1). Further, the length Δx of the etalon 10 is limited to about 80 mm in manufacturing. Therefore, the lower limit of LW2 is about 1.3 GHz.
 エタロン10によって、ファブリペロー干渉を起こす場合の光路差dxは、以下の式(2)で表される。 The optical path difference dx when Fabry-Perot interference is caused by Etalon 10 is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 例えば、Δx=34mmの場合、光路差dxは100mmになる。 For example, when Δx = 34 mm, the optical path difference dx is 100 mm.
 次に、図3に示される出射光L2を散乱体90が散乱させることで発生する散乱光L3について、図6を用いて説明する。 Next, the scattered light L3 generated by the scattering body 90 scattering the emitted light L2 shown in FIG. 3 will be described with reference to FIG.
 図6は、本実施の形態に係るエアロゾル計測装置1が出射したマルチレーザ光を散乱させることで発生する散乱光L3のスペクトルの一例を示す図である。図6の部分(a)及び(b)の各々において、横軸は周波数を表し、縦軸は信号強度を表している。 FIG. 6 is a diagram showing an example of the spectrum of scattered light L3 generated by scattering the multi-laser light emitted by the aerosol measuring device 1 according to the present embodiment. In each of the parts (a) and (b) of FIG. 6, the horizontal axis represents the frequency and the vertical axis represents the signal strength.
 図6の部分(a)は、散乱光L3のスペクトルを示している。散乱光L3は、出射光L2と同様に、互いに等しい周波数間隔MW2で離れた複数本のピークを有する光からなる。スペクトルに含まれる複数のピークがそれぞれ、出射光L2に含まれる複数本のピークに対応している。散乱光L3の周波数間隔MW2は、出射光L2の周波数間隔LW2に等しい。ここでは、複数本のピークの信号強度が互いに等しい例を示しているが、互いに異なっていてもよい。 Part (a) of FIG. 6 shows the spectrum of scattered light L3. The scattered light L3, like the emitted light L2, is composed of light having a plurality of peaks separated from each other at a frequency interval MW2 equal to each other. Each of the plurality of peaks included in the spectrum corresponds to the plurality of peaks included in the emitted light L2. The frequency interval MW2 of the scattered light L3 is equal to the frequency interval LW2 of the emitted light L2. Here, an example in which the signal intensities of a plurality of peaks are equal to each other is shown, but they may be different from each other.
 図6の部分(b)は、図6の部分(a)の拡大図であり、スペクトルの1つのピーク、すなわち、散乱光L3に含まれる1つの光のみを拡大して示している。 Part (b) of FIG. 6 is an enlarged view of part (a) of FIG. 6, and shows one peak of the spectrum, that is, only one light included in the scattered light L3 in an enlarged manner.
 上述したように、散乱光L3は、ミー散乱光とレイリー散乱光とを含んでいる。ミー散乱光のスペクトルは、散乱前の出射光L2のスペクトルと実質的に同じである。一方で、レイリー散乱光は、大気を構成する分子の熱運動によって周波数幅が広がる。また、レイリー散乱光の強度は、通常、ミー散乱光の強度よりも低い。 As described above, the scattered light L3 includes Mie scattered light and Rayleigh scattered light. The spectrum of Mie scattered light is substantially the same as the spectrum of emitted light L2 before scattering. On the other hand, the frequency width of Rayleigh scattered light is widened by the thermal motion of the molecules that make up the atmosphere. Also, the intensity of Rayleigh scattered light is usually lower than the intensity of Mie scattered light.
 このため、図6の部分(b)に示されるように、散乱光L3のスペクトルは、図3に示される出射光L2のスペクトルと比較して、ピークの裾野が広がった形状を有する。中心の高いピークがミー散乱光に相当し、裾野部分がレイリー散乱光に相当する。なお、図6の部分(b)では、大気を構成する分子によるレイリー散乱光の信号強度と、エアロゾルによるミー散乱光の信号強度とを3:1としている。なお、ここでの信号強度は、ピークの面積で表される。また、ミー散乱光を表すピークの半値全幅MW1は、出射光L2の半値全幅LW1に等しい。 Therefore, as shown in the part (b) of FIG. 6, the spectrum of the scattered light L3 has a shape in which the base of the peak is widened as compared with the spectrum of the emitted light L2 shown in FIG. The high peak in the center corresponds to Mie scattered light, and the base part corresponds to Rayleigh scattered light. In the part (b) of FIG. 6, the signal intensity of Rayleigh scattered light by the molecules constituting the atmosphere and the signal intensity of Mie scattered light by the aerosol are set to 3: 1. The signal strength here is represented by the area of the peak. Further, the full width at half maximum MW1 of the peak representing the Mie scattered light is equal to the full width at half maximum LW1 of the emitted light L2.
 レイリー散乱光を表す裾野部分の半値全幅RWは、一般的な実測によれば、3.4GHzから3.9GHz程度であることが知られている。一例として、レイリー散乱光の半値全幅RWは、3.6GHz(Δλ=1.9pm)とすることができる。 It is known that the full width at half maximum RW of the foot portion representing the Rayleigh scattered light is about 3.4 GHz to 3.9 GHz according to a general actual measurement. As an example, the full width at half maximum RW of Rayleigh scattered light can be 3.6 GHz (Δλ = 1.9 pm).
 なお、Δλは、以下の式(3)に基づいて算出される。 Note that Δλ is calculated based on the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)において、Δf=RWである。cは、光速であり、3×10m/sである。λは、中心波長であり、ここでは405nmである。 In the formula (3), Δf = RW. c is the speed of light, which is 3 × 10 8 m / s. λ is the central wavelength, which is 405 nm here.
 本実施の形態では、エタロン15に散乱光L3を通過させることによって、3GHzの周波数間隔で現れる複数本のピークを有する光、すなわち、ミー散乱光を透過させ、他の周波数成分の光、すなわち、レイリー散乱光を除去することができる。 In the present embodiment, by passing the scattered light L3 through the etalon 15, light having a plurality of peaks appearing at a frequency interval of 3 GHz, that is, Me scattered light is transmitted, and light of another frequency component, that is, Rayleigh scattered light can be removed.
 図7は、エアロゾルによるミー散乱光と大気を構成する分子によるレイリー散乱光とを含む散乱光を、マイケルソン干渉計で干渉させた場合のインターフェログラムの計算結果を表す図である。図7において、横軸は干渉を起こす光路差dxを表し、縦軸は干渉光の強度を表している。図8は、図7の破線で囲まれた領域VIIIを拡大した図である。 FIG. 7 is a diagram showing the calculation result of the interferogram when the scattered light including the Mie scattered light by the aerosol and the Rayleigh scattered light by the molecules constituting the atmosphere are interfered with by the Michelson interferometer. In FIG. 7, the horizontal axis represents the optical path difference dx that causes interference, and the vertical axis represents the intensity of the interference light. FIG. 8 is an enlarged view of the region VIII surrounded by the broken line in FIG. 7.
 図7及び図8に示されるように、光路差dxがΔxの整数倍になる度に、干渉フリンジが現れる。dx=0の干渉フリンジを第0の干渉フリンジと定義し、dx=n×Δxの干渉フリンジを第nの干渉フリンジと定義する。nは自然数である。図8は、第0の干渉フリンジ、第1の干渉フリンジ、第2の干渉フリンジを表している。第1の干渉フリンジは、図4に示される第0の透過光と第1の透過光との干渉によって生じる光である。第2の干渉フリンジは、図5に示される第0の透過光と第2の透過光との干渉によって生じる光である。 As shown in FIGS. 7 and 8, an interference fringe appears every time the optical path difference dx becomes an integral multiple of Δx. The interference fringe of dx = 0 is defined as the 0th interference fringe, and the interference fringe of dx = n × Δx is defined as the nth interference fringe. n is a natural number. FIG. 8 shows the 0th interference fringe, the 1st interference fringe, and the 2nd interference fringe. The first interference fringe is the light generated by the interference between the 0th transmitted light and the 1st transmitted light shown in FIG. The second interference fringe is the light generated by the interference between the 0th transmitted light and the second transmitted light shown in FIG.
 受光器50では、第0の干渉フリンジから第nの干渉フリンジまでを合わせた干渉光がミー散乱光L4として受光される。本実施の形態では、エタロン15の長さΔxを調整することにより、大気散乱に起因するレイリー散乱光に基づく干渉フリンジを除去することができる。レイリー散乱光を除去するのに適した長さΔxの決定方法について説明する。 In the receiver 50, the interference light including the 0th interference fringe to the nth interference fringe is received as Mie scattered light L4. In the present embodiment, by adjusting the length Δx of the etalon 15, it is possible to remove the interference fringes based on the Rayleigh scattered light caused by atmospheric scattering. A method for determining a length Δx suitable for removing Rayleigh scattered light will be described.
 図9は、エアロゾルによる散乱がなく、大気散乱だけを考慮した場合における、マイケルソン干渉計による干渉フリンジの、出射光L2の周波数間隔に対する依存性を説明するための図である。図9の部分(a)から(l)ではそれぞれ、横軸がdxを表し、縦軸が信号強度を表している。図9の部分(a)から(l)はそれぞれ、出射光L2の周波数間隔LW2が2.4GHz、3.0GHz、3.6GHz、3.7GHz、3.8GHz、3.9GHz、4GHz、5GHz、6GHz、10GHz、15GHz、30GHzの場合のインターフェログラムの計算結果を表している。 FIG. 9 is a diagram for explaining the dependence of the interference fringe by the Michelson interferometer on the frequency interval of the emitted light L2 when there is no scattering by the aerosol and only the atmospheric scattering is considered. In the parts (a) to (l) of FIG. 9, the horizontal axis represents dx and the vertical axis represents the signal strength. In the parts (a) to (l) of FIG. 9, the frequency intervals LW2 of the emitted light L2 are 2.4 GHz, 3.0 GHz, 3.6 GHz, 3.7 GHz, 3.8 GHz, 3.9 GHz, 4 GHz, 5 GHz, respectively. It shows the calculation result of the interferogram in the case of 6 GHz, 10 GHz, 15 GHz, and 30 GHz.
 図9に示されるように、周波数間隔LW2が大きくなるにつれて、出現する干渉フリンジの個数が増加し、かつ、出現する干渉フリンジの信号強度が大きくなっている。例えば、周波数間隔LW2が2.4GHzの場合は、実質的に第0の干渉フリンジのみが出現しており、第1以上の干渉フリンジが出現していない。周波数間隔LW2が3.0GHzから4GHzの範囲では、第0の干渉フリンジと第1の干渉フリンジとが出現しており、第2以上の干渉フリンジが出現していない。周波数間隔LW2が5GHzの場合には、第0の干渉フリンジ及び第1の干渉フリンジに加えて、第2の干渉フリンジが出現している。図9では、第1の干渉フリンジ以上が現れている範囲を破線の枠で表している。 As shown in FIG. 9, as the frequency interval LW2 increases, the number of appearing interference fringes increases, and the signal strength of the appearing interference fringes increases. For example, when the frequency interval LW2 is 2.4 GHz, substantially only the 0th interference fringe appears, and the first or more interference fringes do not appear. In the frequency interval LW2 in the range of 3.0 GHz to 4 GHz, the 0th interference fringe and the 1st interference fringe appear, and the second and higher interference fringes do not appear. When the frequency interval LW2 is 5 GHz, a second interference fringe appears in addition to the 0th interference fringe and the first interference fringe. In FIG. 9, the range in which the first interference fringe and above appear is represented by a broken line frame.
 大気散乱だけを考慮に入れた場合に第2以上の干渉フリンジが現れているということは、レイリー散乱光のみによる干渉が起きていることを意味する。すなわち、エタロン15にレイリー散乱光を入射させた場合に、レイリー散乱光が透過することを意味する。出射光L2の周波数間隔LW2は3.9GHz以下であれば、第1の干渉フリンジが小さくなるので、レイリー散乱光の透過が抑制される。 The appearance of the second or higher interference fringes when only atmospheric scattering is taken into consideration means that interference is occurring only by Rayleigh scattered light. That is, it means that the Rayleigh scattered light is transmitted when the Rayleigh scattered light is incident on the etalon 15. If the frequency interval LW2 of the emitted light L2 is 3.9 GHz or less, the first interference fringe becomes small, so that the transmission of Rayleigh scattered light is suppressed.
 すなわち、出射光L2の周波数間隔LW2が3.9GHzの場合の第1の干渉フリンジの大きさは、周波数間隔LW2の第1の干渉フリンジの大きさの50%以下になっている。このため、第1の干渉フリンジが小さくなっているので、レイリー散乱光がエタロン15を透過するのを抑制することができる。 That is, the magnitude of the first interference fringe when the frequency interval LW2 of the emitted light L2 is 3.9 GHz is 50% or less of the magnitude of the first interference fringe of the frequency interval LW2. Therefore, since the first interference fringe is small, it is possible to suppress the Rayleigh scattered light from passing through the etalon 15.
 以上のことから、出射光L2の周波数間隔LW2は3.9GHz以下であることで、散乱光L3からレイリー散乱光を効率良く除去することができる。出射光L2の周波数間隔LW2が3.9GHzである場合、式(1)により、石英で作られた透光部16を含むエタロン15の長さΔxは、約26mmとなる。つまり、長さΔxが26mm以上のエタロン15を用いることで、レイリー散乱光を効率良く除去することができ、エアロゾルの計測精度を高めることができる。 From the above, when the frequency interval LW2 of the emitted light L2 is 3.9 GHz or less, Rayleigh scattered light can be efficiently removed from the scattered light L3. When the frequency interval LW2 of the emitted light L2 is 3.9 GHz, the length Δx of the etalon 15 including the translucent portion 16 made of quartz is about 26 mm according to the equation (1). That is, by using the etalon 15 having a length Δx of 26 mm or more, Rayleigh scattered light can be efficiently removed, and the measurement accuracy of the aerosol can be improved.
 [4.2つのエタロンの特性差に対する光路長の調整]
 上述したように、本実施の形態に係るエアロゾル計測装置1は、2つのエタロン10及び15を備える。このため、出射光L1の経路と散乱光L3の経路とを容易に分離することができる。また、エアロゾル計測装置1内での各素子の配置及び光の経路の設計の自由度を高めることができる。
[4. Adjustment of optical path length for the characteristic difference between two etalons]
As described above, the aerosol measuring device 1 according to the present embodiment includes two etalons 10 and 15. Therefore, the path of the emitted light L1 and the path of the scattered light L3 can be easily separated. In addition, it is possible to increase the degree of freedom in designing the arrangement of each element and the light path in the aerosol measuring device 1.
 エタロン10及び15としては、互いに同じ光学特性を有するエタロンが用いられる。しかしながら、エタロンの製造ばらつきによって、エタロン10及び15の光学特性が完全に同一にすることが困難である。具体的には、エタロン10の長さとエタロン15の長さとが異なる場合が起こりうる。例えば、製造ばらつきによって、エタロン10の長さとエタロン15の長さとには、約10μm異なりうる。この場合、エタロン10を通過する光の周波数特性と、エタロン15を通過する光の周波数特性とが一致しない。 As the etalons 10 and 15, etalons having the same optical characteristics as each other are used. However, it is difficult to make the optical characteristics of the etalons 10 and 15 completely the same due to the variation in the production of the etalons. Specifically, the length of the etalon 10 and the length of the etalon 15 may be different. For example, the length of the etalon 10 and the length of the etalon 15 may differ by about 10 μm due to manufacturing variations. In this case, the frequency characteristics of the light passing through the etalon 10 and the frequency characteristics of the light passing through the etalon 15 do not match.
 エタロン10又は15の透過率、及び、エタロン10又は15を通過した複数本のピークを有する光の周波数間隔FSR(Free Spectral Range)は、以下の式(4)及び式(5)で表される。 The transmittance of the etalon 10 or 15 and the frequency interval FSR (Free Spectral Range) of the light having a plurality of peaks that have passed through the etalon 10 or 15 are represented by the following equations (4) and (5). ..
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)において、Rは、エタロン10又は15の端面の反射率である。Aは、エタロン10又は15による損失である。nは、エタロン10又は15の透光部11又は16の屈折率である。Δxは、エタロン10又は15の長さである。λは、エタロン10又は15に入射する出射光L1又は散乱光L3の中心周波数である。cは、光速であり、3×10m/sである。θは、エタロン10又は15に対する出射光L1又は散乱光L3の入射角である。φは、エタロン10又は15の透光部11又は16に対する出射光L1又は散乱光L3の入射角である。θとφとは、sinθ=nsinφの関係を有する。なお、周波数間隔FSRは、図3に示される周波数間隔LW2又は図6に示される周波数間隔MW2と同じである。 In formula (4), R is the reflectance of the end face of Etalon 10 or 15. A is the loss due to Etalon 10 or 15. n is the refractive index of the translucent portion 11 or 16 of the etalon 10 or 15. Δx is the length of etalon 10 or 15. λ is the center frequency of the emitted light L1 or the scattered light L3 incident on the etalon 10 or 15. c is the speed of light, which is 3 × 10 8 m / s. θ is the incident angle of the emitted light L1 or the scattered light L3 with respect to the etalon 10 or 15. φ is the incident angle of the emitted light L1 or the scattered light L3 with respect to the translucent portion 11 or 16 of the etalon 10 or 15. θ and φ have a relationship of sinθ = nsinφ. The frequency interval FSR is the same as the frequency interval LW2 shown in FIG. 3 or the frequency interval MW2 shown in FIG.
 エタロン10又は15の反射率Rは、例えば70%以上95%以下であり、一例として、74%である。このとき、ピークの半値全幅LW1又はMW1に対する周波数間隔FSRの比率、すなわち、FSR/LW1又はFSR/MW1は、約10である。反射率Rが大きくなった場合、ピークの半値全幅LW1又はMW1が小さくなる。このため、複数本のピークを有する光、具体的には、出射光L2又はミー散乱光L4の全強度が低下する。また、反射率Rが小さくなった場合、ピークの半値全幅LW1又はMW1が大きくなる。このため、レイリー散乱光の分離能力が低下し、エアロゾルの検出精度が低下する。 The reflectance R of etalon 10 or 15 is, for example, 70% or more and 95% or less, and as an example, 74%. At this time, the ratio of the frequency interval FSR to the full width at half maximum LW1 or MW1 of the peak, that is, FSR / LW1 or FSR / MW1 is about 10. When the reflectance R becomes large, the full width at half maximum LW1 or MW1 of the peak becomes small. Therefore, the total intensity of the light having a plurality of peaks, specifically, the emitted light L2 or the Mie scattered light L4 is reduced. Further, when the reflectance R becomes small, the half-value full width at half maximum LW1 or MW1 of the peak becomes large. Therefore, the separation ability of Rayleigh scattered light is lowered, and the detection accuracy of the aerosol is lowered.
 ここで、2つのエタロン10及び15の長さΔxの差による透過率の周波数特性の違いについて、図10を用いて説明する。 Here, the difference in the frequency characteristics of the transmittance due to the difference in length Δx between the two etalons 10 and 15 will be described with reference to FIG.
 図10は、光路長が異なる2つのエタロンの透過率の周波数特性を示す図である。図10の部分(a)は、エタロンの長さΔxが34.01mmの場合を表している。図10の部分(b)は、エタロンの長さΔxが34mmの場合を表している。図10の部分(a)と部分(b)とを比較して明らかなように、透過率のピークの位置が大きくずれていることが分かる。なお、周波数間隔FSRは、実質的に同じである。 FIG. 10 is a diagram showing the frequency characteristics of the transmittances of two etalons having different optical path lengths. Part (a) of FIG. 10 represents a case where the length Δx of the etalon is 34.01 mm. Part (b) of FIG. 10 represents a case where the length Δx of the etalon is 34 mm. As is clear from a comparison between the portion (a) and the portion (b) of FIG. 10, it can be seen that the positions of the peaks of the transmittance are significantly deviated. The frequency interval FSR is substantially the same.
 本実施の形態に係るエアロゾル計測装置1では、制御部70がエタロン10又は15における光路長を調整することで、エタロン10の透過率のピークの位置とエタロン15の透過率のピークの位置とを同調させる。これにより、ミー散乱光L4の受光強度が高められるので、エアロゾルの検出精度が高まる。なお、同調とは、エタロン10の透過率のピークの周波数位置と、エタロン15の透過率のピークの周波数位置とを実質的に等しくすることである。具体的には、制御部70がエタロン10又は15の光路長を調整することにより、エタロン10における光路長とエタロン15における光路長とを同じにする。 In the aerosol measuring device 1 according to the present embodiment, the control unit 70 adjusts the optical path length of the etalon 10 or 15 to determine the position of the peak of the transmittance of the etalon 10 and the position of the peak of the transmittance of the etalon 15. Synchronize. As a result, the light receiving intensity of the Mie scattered light L4 is increased, so that the aerosol detection accuracy is improved. Note that tuning is to make the frequency position of the transmittance peak of Etalon 10 substantially equal to the frequency position of the transmittance peak of Etalon 15. Specifically, the control unit 70 adjusts the optical path length of the etalon 10 or 15, so that the optical path length of the etalon 10 and the optical path length of the etalon 15 are the same.
 図11は、本実施の形態に係るエアロゾル計測装置1によるエタロン15における光路長の変化例を示す図である。図11の部分(a)は、エタロン15の加熱前又は冷却後を表している。図11の部分(b)は、エタロン15の加熱後又は冷却前を表している。 FIG. 11 is a diagram showing an example of a change in the optical path length in the etalon 15 by the aerosol measuring device 1 according to the present embodiment. Part (a) of FIG. 11 represents the etalon 15 before heating or after cooling. Part (b) of FIG. 11 represents the etalon 15 after heating or before cooling.
 図11に示されるように、エタロン15には、主に透光部16の側面を部分的に又は全面的に接触して覆うヒーター80が取り付けられている。ヒーター80は、例えば、シート状のシリコンラバーヒーターである。なお、ヒーター80は、電熱線であってもよい。ヒーター80は、制御部70によって加熱及びその停止、並びに、加熱の目標温度及び温度上昇の割合などが制御される。 As shown in FIG. 11, the etalon 15 is mainly equipped with a heater 80 that partially or wholly contacts and covers the side surface of the translucent portion 16. The heater 80 is, for example, a sheet-shaped silicon rubber heater. The heater 80 may be a heating wire. The heater 80 is heated and stopped by the control unit 70, and the target temperature for heating and the rate of temperature rise are controlled.
 ヒーター80とエタロン15との間には、温度センサ71が設けられている。温度センサ71は、例えばサーミスタ又は熱電対などであるが、これに限らない。温度センサ71は、エタロン15の温度を測定し、測定結果を制御部70に出力する。制御部70は、温度センサ71による測定結果に基づいてヒーター80を制御する。温度センサ71は、例えば、エタロン15の表面温度を測定するが、エタロン15の内部の温度を測定してもよい。 A temperature sensor 71 is provided between the heater 80 and the etalon 15. The temperature sensor 71 is, for example, a thermistor or a thermocouple, but is not limited to this. The temperature sensor 71 measures the temperature of the etalon 15 and outputs the measurement result to the control unit 70. The control unit 70 controls the heater 80 based on the measurement result by the temperature sensor 71. The temperature sensor 71 measures, for example, the surface temperature of the etalon 15, but may also measure the temperature inside the etalon 15.
 図11に示されるように、ヒーター80がエタロン15を加熱することにより、エタロン15の長さΔxが変化する。例えば、図11の部分(a)では、エタロン15の長さΔxがΔx1である場合を示している。エタロン15を加熱することにより、石英を用いて形成された透光部16が熱膨張する。これにより、図11の部分(b)に示されるように、エタロン15の長さΔxが、Δx1よりも長いΔx2になる。よって、エタロン15に対して入射する散乱光L3の光路長が長くなる。 As shown in FIG. 11, when the heater 80 heats the etalon 15, the length Δx of the etalon 15 changes. For example, the portion (a) of FIG. 11 shows a case where the length Δx of the etalon 15 is Δx1. By heating the etalon 15, the translucent portion 16 formed of quartz is thermally expanded. As a result, as shown in the portion (b) of FIG. 11, the length Δx of the etalon 15 becomes Δx2, which is longer than Δx1. Therefore, the optical path length of the scattered light L3 incident on the etalon 15 becomes long.
 一方、エタロン15を冷却した場合、透光部16が収縮する。これにより、エタロン15の長さΔxが短くなる。このように、制御部70は、ヒーター80を制御することで、エタロン15を加熱又は冷却し、エタロン15の光学長を変化させることができる。 On the other hand, when the etalon 15 is cooled, the translucent portion 16 contracts. As a result, the length Δx of the etalon 15 is shortened. In this way, the control unit 70 can heat or cool the etalon 15 and change the optical length of the etalon 15 by controlling the heater 80.
 本実施の形態では、制御部70は、エタロン15における散乱光L3の光路長を所定の範囲内で周期的に変化させる。具体的には、制御部70は、エタロン15の温度を所定の範囲内で周期的に変化させることで、光路長を周期的に変化させる。 In the present embodiment, the control unit 70 periodically changes the optical path length of the scattered light L3 in the etalon 15 within a predetermined range. Specifically, the control unit 70 periodically changes the temperature of the etalon 15 within a predetermined range to periodically change the optical path length.
 図12は、エタロンの温度差と出射光の強度との関係を示す図である。図12において、横軸がエタロン10とエタロン15との温度差を表し、縦軸が出射光の強度を表している。 FIG. 12 is a diagram showing the relationship between the temperature difference of etalon and the intensity of emitted light. In FIG. 12, the horizontal axis represents the temperature difference between the etalon 10 and the etalon 15, and the vertical axis represents the intensity of the emitted light.
 図12に示されるように、温度差が5℃以上7℃以下の範囲において、出射光の強度のピークが現れている。強度のピークは、エタロン10のピークの位置とエタロン15のピークの位置とが同調した場合に現れる。図12に示される例では、温度差が約5.8℃の場合に、出射光の強度が最大になっている。例えば、制御部70は、温度差を5℃以上7℃以下の範囲で周期的に変化させる。これにより、エタロン15における光路長も周期的に変化する。周期的な変化の範囲内に、エタロン10のピークの位置とエタロン15のピークの位置とが同調するタイミングが含まれるので、充分な強度のミー散乱光L4が受光器50によって受光される。 As shown in FIG. 12, the peak of the intensity of the emitted light appears in the range where the temperature difference is 5 ° C. or higher and 7 ° C. or lower. The intensity peak appears when the position of the peak of Etalon 10 and the position of the peak of Etalon 15 are synchronized. In the example shown in FIG. 12, the intensity of the emitted light is maximized when the temperature difference is about 5.8 ° C. For example, the control unit 70 periodically changes the temperature difference in the range of 5 ° C. or higher and 7 ° C. or lower. As a result, the optical path length in the etalon 15 also changes periodically. Since the timing at which the peak position of the etalon 10 and the peak position of the etalon 15 are synchronized is included in the range of the periodic change, the Mie scattered light L4 having sufficient intensity is received by the receiver 50.
 なお、エタロン10における光路長とエタロン15における光路長との差は、製造ばらつきだけでなく、動作時にも発生しうる。例えば、エタロン10は、光源20に近いため、光源20の発する熱による影響を受けて、動作中にはエタロン15よりも熱膨張されやすい。本実施の形態に係るエアロゾル計測装置1によれば、エタロン10の長さが変化したとしても、エタロン15の温度を変化させることで、エタロン10のピークの位置とエタロン15のピークの位置とを同調させることができる。したがって、動作ばらつきによる検出精度の低下を抑制することができる。 Note that the difference between the optical path length of the Etalon 10 and the optical path length of the Etalon 15 can occur not only during manufacturing variations but also during operation. For example, since the etalon 10 is close to the light source 20, it is affected by the heat generated by the light source 20 and is more likely to be thermally expanded during operation than the etalon 15. According to the aerosol measuring device 1 according to the present embodiment, even if the length of the etalon 10 changes, the position of the peak of the etalon 10 and the position of the peak of the etalon 15 can be changed by changing the temperature of the etalon 15. Can be synchronized. Therefore, it is possible to suppress a decrease in detection accuracy due to operation variation.
 (実施の形態2)
 続いて、実施の形態2について説明する。
(Embodiment 2)
Subsequently, the second embodiment will be described.
 実施の形態2では、エタロン10又は15における光路長を変化させる手段が実施の形態1とは相違している。具体的には、実施の形態2では、エタロン10又は15の光軸の傾きを調整する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 In the second embodiment, the means for changing the optical path length in the etalon 10 or 15 is different from that of the first embodiment. Specifically, in the second embodiment, the inclination of the optical axis of the etalon 10 or 15 is adjusted. In the following, the differences from the first embodiment will be mainly described, and the common points will be omitted or simplified.
 図13は、本実施の形態に係るエアロゾル計測装置101の構成を示す図である。図13に示されるように、エアロゾル計測装置101は、実施の形態1に係るエアロゾル計測装置1と比較して、制御部70及びヒーター80の代わりに、制御部170及び軸調整装置180を備える点が相違する。 FIG. 13 is a diagram showing the configuration of the aerosol measuring device 101 according to the present embodiment. As shown in FIG. 13, the aerosol measuring device 101 includes a control unit 170 and a shaft adjusting device 180 instead of the control unit 70 and the heater 80, as compared with the aerosol measuring device 1 according to the first embodiment. Is different.
 制御部170は、エタロン10における出射光L1の光路長及びエタロン15における散乱光L3の光路長からなる群から選択される少なくとも一方の光路長を変化させる。本実施の形態では、制御部170は、エタロンにおける散乱光L3の光路長を変化させる。具体的には、制御部170は、軸調整装置180を制御することにより、エタロン15における散乱光L3の光路長を変化させる。制御部170は、例えばマイクロコントローラである。 The control unit 170 changes at least one optical path length selected from the group consisting of the optical path length of the emitted light L1 in the etalon 10 and the optical path length of the scattered light L3 in the etalon 15. In the present embodiment, the control unit 170 changes the optical path length of the scattered light L3 in the etalon. Specifically, the control unit 170 changes the optical path length of the scattered light L3 in the etalon 15 by controlling the axis adjusting device 180. The control unit 170 is, for example, a microcontroller.
 軸調整装置180は、エタロン10及び15の少なくとも一方の光軸の傾きを調整する。本実施の形態では、軸調整装置180は、エタロン15の光軸の傾きを調整する。エタロン15の光軸の傾きが変更されることで、エタロン15を通過する散乱光L3の光路長が変化する。 The axis adjusting device 180 adjusts the inclination of at least one of the optical axes of the etalons 10 and 15. In the present embodiment, the axis adjusting device 180 adjusts the inclination of the optical axis of the etalon 15. By changing the inclination of the optical axis of the etalon 15, the optical path length of the scattered light L3 passing through the etalon 15 changes.
 軸調整装置180は、例えば、エタロン15を支持する支持部と、当該支持部を回動させるステッピングモータとを備える。ステッピングモータは、例えば、エタロン15の光軸に平行で、かつ、光軸を含む面内で支持部を回動させる。これにより、エタロン15の光軸を傾けることができる。なお、軸調整装置180は、ステッピングモータの代わりにアクチュエータを備えてもよく、特に限定されない。ここで、エタロンの光軸とは、エタロンの多層膜面に垂直な軸を意味する。 The shaft adjusting device 180 includes, for example, a support portion that supports the etalon 15 and a stepping motor that rotates the support portion. The stepping motor, for example, rotates the support portion in parallel with the optical axis of the etalon 15 and in a plane including the optical axis. As a result, the optical axis of the etalon 15 can be tilted. The shaft adjusting device 180 may include an actuator instead of the stepping motor, and is not particularly limited. Here, the optical axis of etalon means an axis perpendicular to the multilayer film surface of etalon.
 図14は、本実施の形態に係るエアロゾル計測装置101によるエタロン15における散乱光L3の光路長の変化例を示す図である。図14の部分(a)は、エタロン15の光軸Pが散乱光L3の入射方向に一致する場合、すなわち、散乱光L3の入射角θが0°である場合を示している。図14の部分(b)は、エタロン15の光軸Pが散乱光L3の入射方向に対して、角度αで傾いている場合、すなわち、散乱光L3の入射角θがαである場合を示している。 FIG. 14 is a diagram showing an example of a change in the optical path length of the scattered light L3 in the etalon 15 by the aerosol measuring device 101 according to the present embodiment. Part (a) of FIG. 14 shows a case where the optical axis P of the etalon 15 coincides with the incident direction of the scattered light L3, that is, a case where the incident angle θ of the scattered light L3 is 0 °. Part (b) of FIG. 14 shows a case where the optical axis P of the etalon 15 is inclined at an angle α with respect to the incident direction of the scattered light L3, that is, a case where the incident angle θ of the scattered light L3 is α. ing.
 図14に示されるように、軸調整装置180がエタロン15の光軸Pを傾けることにより、エタロン15に入射する散乱光L3の入射角が変化する。入射角が変化することで、散乱光L3の進行方向が屈折によって変化するので、散乱光L3が透光部16内を通過する距離が変化する。例えば、図14の部分(a)では、エタロン15に対して散乱光L3が正面から入射している。軸調整装置180がエタロン15の光軸Pを傾けることにより、図14の部分(b)に示されるように、エタロン15の透光部16を通過する散乱光L3の光路長が長くなる。なお、図14の部分(b)では、透光部16と多層膜17及び18の各々との界面における散乱光L3の屈折による進行方向の変更の図示が省略されている。 As shown in FIG. 14, when the axis adjusting device 180 tilts the optical axis P of the etalon 15, the incident angle of the scattered light L3 incident on the etalon 15 changes. Since the traveling direction of the scattered light L3 changes due to the refraction due to the change in the incident angle, the distance through which the scattered light L3 passes through the light transmitting portion 16 changes. For example, in the part (a) of FIG. 14, scattered light L3 is incident on the etalon 15 from the front. When the axis adjusting device 180 tilts the optical axis P of the etalon 15, the optical path length of the scattered light L3 passing through the translucent portion 16 of the etalon 15 becomes long as shown in the portion (b) of FIG. In the part (b) of FIG. 14, the change in the traveling direction due to the refraction of the scattered light L3 at the interface between the translucent portion 16 and each of the multilayer films 17 and 18 is omitted.
 一方、光軸Pの傾きを小さくすることで、エタロン15における散乱光L3の光路長は短くなる。このように、制御部170は、軸調整装置180を制御することで、エタロン15の光軸Pの傾きを変化させ、エタロン15における散乱光L3の光路長を変化させることができる。 On the other hand, by reducing the inclination of the optical axis P, the optical path length of the scattered light L3 in the etalon 15 becomes shorter. In this way, the control unit 170 can change the inclination of the optical axis P of the etalon 15 and change the optical path length of the scattered light L3 in the etalon 15 by controlling the axis adjusting device 180.
 本実施の形態では、制御部170は、エタロン15における散乱光L3の光路長を所定の範囲内で周期的に変化させる。具体的には、制御部170は、エタロン15の光軸Pの傾きを所定の範囲内で周期的に変化させることで、光路長を周期的に変化させる。 In the present embodiment, the control unit 170 periodically changes the optical path length of the scattered light L3 in the etalon 15 within a predetermined range. Specifically, the control unit 170 periodically changes the optical path length by periodically changing the inclination of the optical axis P of the etalon 15 within a predetermined range.
 図15は、エタロン15の光軸Pの傾きを出射光の強度との関係を示す図である。図15において、横軸がエタロン15の光軸Pの傾きの角度を表し、縦軸が出射光の強度を表している。 FIG. 15 is a diagram showing the relationship between the inclination of the optical axis P of the etalon 15 and the intensity of the emitted light. In FIG. 15, the horizontal axis represents the angle of inclination of the optical axis P of the etalon 15, and the vertical axis represents the intensity of the emitted light.
 図15に示されるように、光軸Pの角度αが0.125°以上0.175°以下の範囲において、出射光の強度のピークが現れている。図15に示される例では、光軸Pの角度αが約0.144°の場合に、出射光の強度が最大になっている。例えば、制御部170は、角度αを0.125°以上0.175°以下の範囲で周期的に変化させる。これにより、エタロン15における散乱光L3の光路長も周期的に変化する。周期的な変化の範囲内に、エタロン10のピークの位置とエタロン15のピークの位置とが同調するタイミングが含まれるので、充分な強度のミー散乱光L4が受光器50によって受光される。 As shown in FIG. 15, the peak of the intensity of the emitted light appears in the range where the angle α of the optical axis P is 0.125 ° or more and 0.175 ° or less. In the example shown in FIG. 15, the intensity of the emitted light is maximized when the angle α of the optical axis P is about 0.144 °. For example, the control unit 170 periodically changes the angle α in the range of 0.125 ° or more and 0.175 ° or less. As a result, the optical path length of the scattered light L3 in the etalon 15 also changes periodically. Since the timing at which the peak position of the etalon 10 and the peak position of the etalon 15 are synchronized is included in the range of the periodic change, the Mie scattered light L4 having sufficient intensity is received by the receiver 50.
 なお、制御部170は、エタロン10又は15の光軸Pの傾きの調整に加えて、実施の形態1と同様に、エタロン10又は15の温度を調整してもよい。すなわち、エアロゾル計測装置101は、ヒーター80を備えてもよい。 Note that the control unit 170 may adjust the temperature of the etalon 10 or 15 in the same manner as in the first embodiment, in addition to adjusting the inclination of the optical axis P of the etalon 10 or 15. That is, the aerosol measuring device 101 may include a heater 80.
 (実施の形態3)
 続いて、実施の形態3について説明する。
(Embodiment 3)
Subsequently, the third embodiment will be described.
 実施の形態1及び2では、出射光L1のエタロン10に対する入射面と散乱光L3のエタロン15に対する入射面とが互いに反対側に位置している。これに対して、本変形例では、出射光L1のエタロン10に対する入射面と散乱光L3のエタロン15に対する入射面とが同じ側に位置している。以下では、実施の形態1又は2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 In the first and second embodiments, the incident surface of the emitted light L1 with respect to the etalon 10 and the incident surface of the scattered light L3 with respect to the etalon 15 are located on opposite sides of each other. On the other hand, in this modification, the incident surface of the emitted light L1 with respect to the etalon 10 and the incident surface of the scattered light L3 with respect to the etalon 15 are located on the same side. In the following, the differences from the first or second embodiment will be mainly described, and the common points will be omitted or simplified.
 図16は、本実施の形態に係るエアロゾル計測装置201の構成を示す図である。図16に示されるように、エアロゾル計測装置201は、図1に示されるエアロゾル計測装置1と比較して、ミラー22の代わりに、ミラー32、34及び36を備える。また、光源20、集光レンズ40、受光器50及び分析部60の配置が実施の形態1とは相違している。 FIG. 16 is a diagram showing the configuration of the aerosol measuring device 201 according to the present embodiment. As shown in FIG. 16, the aerosol measuring device 201 includes mirrors 32, 34 and 36 instead of the mirror 22 as compared with the aerosol measuring device 1 shown in FIG. Further, the arrangement of the light source 20, the condenser lens 40, the receiver 50, and the analysis unit 60 is different from that of the first embodiment.
 図16に示されるように、ミラー32及び34は、集光レンズ30aによって集光された散乱光L3を反射する。散乱光L3に対してミラー32及び34を適切な角度で配置することにより、散乱光L3の進路を所望の方向に曲げることができる。本実施の形態では、ミラー32及び34は、散乱光L3を反射してエタロン15に入射させる。 As shown in FIG. 16, the mirrors 32 and 34 reflect the scattered light L3 condensed by the condenser lens 30a. By arranging the mirrors 32 and 34 at an appropriate angle with respect to the scattered light L3, the course of the scattered light L3 can be bent in a desired direction. In the present embodiment, the mirrors 32 and 34 reflect the scattered light L3 and make it incident on the etalon 15.
 ミラー36は、エタロン15を通過したミー散乱光L4を反射する。ミー散乱光L4に対してミラー36を適切な角度で配置することにより、ミー散乱光L4の進路を所望の方向に曲げることができる。本実施の形態では、ミー散乱光L4を反射して集光レンズ40を介して受光器50に入射させる。 The mirror 36 reflects the Mie scattered light L4 that has passed through the etalon 15. By arranging the mirror 36 at an appropriate angle with respect to the Mie scattered light L4, the course of the Mie scattered light L4 can be bent in a desired direction. In the present embodiment, the Mie scattered light L4 is reflected and incident on the receiver 50 via the condenser lens 40.
 これにより、図16に示されるように、光源20と受光器50とを離して配置することができる。具体的には、光源20から出射された出射光L1のうち、エタロン10で反射された反射光が受光器50に入射しにくくすることができる。反射光は、エアロゾルの誤検知の要因になる。また、反射光は、散乱光に比べて強度が強いので、受光器50が検出できる限界強度を超えて受光器50の故障の要因にもなりうる。このため、本実施の形態によれば、反射光によるエアロゾルの誤検知及び受光器50の故障などを抑制することができる。 As a result, as shown in FIG. 16, the light source 20 and the receiver 50 can be arranged apart from each other. Specifically, of the emitted light L1 emitted from the light source 20, the reflected light reflected by the etalon 10 can be made difficult to enter the receiver 50. The reflected light causes false detection of aerosol. Further, since the reflected light has a higher intensity than the scattered light, the intensity exceeds the limit intensity that can be detected by the receiver 50 and may cause a failure of the receiver 50. Therefore, according to the present embodiment, it is possible to suppress erroneous detection of aerosol due to reflected light and failure of the receiver 50.
 また、本実施の形態では、ミラー34によって反射された散乱光L3は、エタロン15に対して斜めに入射する。散乱光L3の入射角θは、例えば5°以下である。これにより、散乱光L3がエタロン15内を通過する際に、ファブリペロー干渉を起こす光路差dxは、以下の式(6)で表される。 Further, in the present embodiment, the scattered light L3 reflected by the mirror 34 is obliquely incident on the etalon 15. The incident angle θ of the scattered light L3 is, for example, 5 ° or less. As a result, the optical path difference dx that causes Fabry-Perot interference when the scattered light L3 passes through the etalon 15 is represented by the following equation (6).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 このとき、θ=0の場合からの変化量Δdxは、式(7)で表される。 At this time, the amount of change Δdx from the case of θ = 0 is expressed by the equation (7).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 光路差の変化量Δdxが、光源20が出射する光の波長λの整数倍になるように調整することで、干渉フリンジ内の波長による干渉の明点に調整することができる。 By adjusting the amount of change Δdx of the optical path difference to be an integral multiple of the wavelength λ of the light emitted by the light source 20, it is possible to adjust to the bright point of interference due to the wavelength in the interference fringe.
 (実施の形態4)
 続いて、実施の形態4について説明する。
(Embodiment 4)
Subsequently, the fourth embodiment will be described.
 実施の形態4では、受光器50が、所定期間に入射する光を遮断する機能を有する。以下では、実施の形態1、2又は3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。 In the fourth embodiment, the receiver 50 has a function of blocking light incident on the predetermined period. In the following, the differences from the first, second, and third embodiments will be mainly described, and the common points will be omitted or simplified.
 図17は、本実施の形態に係るエアロゾル計測装置301の構成を示す図である。図17に示されるように、エアロゾル計測装置301は、図1に示されるエアロゾル計測装置1と比較して、新たに遮光部351を備える。 FIG. 17 is a diagram showing the configuration of the aerosol measuring device 301 according to the present embodiment. As shown in FIG. 17, the aerosol measuring device 301 is newly provided with a light-shielding portion 351 as compared with the aerosol measuring device 1 shown in FIG.
 遮光部351は、光源20が出射する出射光L1を遮断する。遮光部351は、例えば、可動式の遮光シャッターである。図17の白抜きの両矢印で示されるように、遮光部351は、受光器50の受光面を覆う位置と覆わない位置との間で移動可能である。図17の破線で示される位置が、受光面を覆う位置であり、遮光部351が受光面を覆うことで、受光器50への光の入射を遮断することができる。また、遮光部351が受光面を覆わない場合には、受光器50に光を入射させることができる。遮光部351の位置は、受光器50によって制御される。 The light-shielding unit 351 blocks the emitted light L1 emitted by the light source 20. The light-shielding unit 351 is, for example, a movable light-shielding shutter. As shown by the white double-headed arrow in FIG. 17, the light-shielding portion 351 is movable between a position that covers the light-receiving surface of the receiver 50 and a position that does not cover the light-receiving surface. The position shown by the broken line in FIG. 17 is the position that covers the light receiving surface, and the light shielding portion 351 covers the light receiving surface, so that the light incident on the light receiving device 50 can be blocked. Further, when the light shielding portion 351 does not cover the light receiving surface, light can be incident on the light receiving receiver 50. The position of the light-shielding portion 351 is controlled by the receiver 50.
 図18は、本実施の形態に係るエアロゾル計測装置301の遮光部351の動作を説明するための図である。図18の部分(a)では、横軸が時間を表し、縦軸が出射光L1の強度を表している。図18の部分(b)では、横軸が時間を表し、縦軸が受光器50による受光強度を表している。 FIG. 18 is a diagram for explaining the operation of the light-shielding portion 351 of the aerosol measuring device 301 according to the present embodiment. In the part (a) of FIG. 18, the horizontal axis represents time and the vertical axis represents the intensity of the emitted light L1. In the part (b) of FIG. 18, the horizontal axis represents time and the vertical axis represents the light receiving intensity by the light receiver 50.
 図18の部分(a)に示されるように、光源20は、パルス状の出射光L1を出射する。出射光L1の時間幅tpは、例えば10ナノ秒である。例えば、光源20は、時間幅tpのパルス状の出射光L1を定期的に出射する。出射光L1の出射間隔、すなわち、パルスの時間間隔は、特に限定されないが、例えば、エアロゾルを検出可能な最大距離の2倍を光が進むのに要する時間より長い。 As shown in the part (a) of FIG. 18, the light source 20 emits the pulsed emitted light L1. The time width tp of the emitted light L1 is, for example, 10 nanoseconds. For example, the light source 20 periodically emits a pulsed emitted light L1 having a time width of tp. The emission interval of the emitted light L1, that is, the time interval of the pulse is not particularly limited, but is longer than, for example, the time required for the light to travel twice the maximum distance at which the aerosol can be detected.
 出射光L1がエタロン10に入射した場合、図17に示されるように、一部の光は、エタロン10を透過せずに、入射側に反射光L5として反射される。このときの反射光L5が受光器50によって受光された場合に、図18の部分(b)に示されるように、反射光L5の強度に応じた信号が出力される。 When the emitted light L1 is incident on the etalon 10, as shown in FIG. 17, some of the light is reflected as reflected light L5 on the incident side without passing through the etalon 10. When the reflected light L5 at this time is received by the light receiver 50, a signal corresponding to the intensity of the reflected light L5 is output as shown in the portion (b) of FIG.
 エタロン10と受光器50との距離は、散乱体90と受光器50との距離よりも十分に短いため、エタロン10による反射光L5は、出射光L1が出射されてからミー散乱光L4が受光されるまでの期間内に受光器50に受光される。 Since the distance between the etalon 10 and the receiver 50 is sufficiently shorter than the distance between the scatterer 90 and the receiver 50, the reflected light L5 by the etalon 10 receives the Mie scattered light L4 after the emitted light L1 is emitted. The light is received by the light receiver 50 within the period until the light is received.
 このため、本実施の形態では、受光器50は、遮光部351を制御することで、出射光L1が出射されてから所定の期間tmの受光を遮断する。期間tmは、パルス状の出射光L1の時間幅tpより長い期間である。例えば、期間tmは、10.1ナノ秒である。期間tmの開始時点は、例えば、出射光L1の出射と同時である。 Therefore, in the present embodiment, the receiver 50 blocks the light reception for a predetermined period tm after the emitted light L1 is emitted by controlling the light-shielding unit 351. The period tm is a period longer than the time width tp of the pulsed emitted light L1. For example, the period tm is 10.1 nanoseconds. The start time of the period tm is, for example, the same as the emission of the emitted light L1.
 以上のように、本実施の形態に係るエアロゾル計測装置301によれば、反射光によるエアロゾルの誤検知及び受光器50の飽和による故障などを抑制することができる。 As described above, according to the aerosol measuring device 301 according to the present embodiment, it is possible to suppress erroneous detection of aerosol due to reflected light and failure due to saturation of the receiver 50.
 なお、本実施の形態では、受光器50に入射する光を物理的に遮断する例を説明したが、これに限らない。例えば、受光器50から出力される信号のうち、反射光に相当する信号を分析部60が無視、すなわち、エアロゾルの分析に用いなくてもよい。あるいは、受光器50は、期間tmの間は信号を出力しなくてもよい。つまり、エアロゾル計測装置301は、受光器50に入射する光を信号処理的に遮断してもよい。 In the present embodiment, an example of physically blocking the light incident on the receiver 50 has been described, but the present invention is not limited to this. For example, among the signals output from the receiver 50, the signal corresponding to the reflected light may be ignored by the analysis unit 60, that is, it may not be used for aerosol analysis. Alternatively, the receiver 50 does not have to output a signal during the period tm. That is, the aerosol measuring device 301 may block the light incident on the receiver 50 in a signal processing manner.
 (他の実施の形態)
 以上、1つ又は複数の態様に係るエアロゾル計測装置及びエアロゾル計測方法について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
Although the aerosol measuring device and the aerosol measuring method according to one or more embodiments have been described above based on the embodiments, the present disclosure is not limited to these embodiments. As long as the gist of the present disclosure is not deviated, various modifications that can be conceived by those skilled in the art are applied to the present embodiment, and a form constructed by combining components in different embodiments is also included in the scope of the present disclosure. Is done.
 例えば、上記の実施の形態では、エタロン15における散乱光L3の光路長を変化させる例を説明したが、エタロン10における出射光L1の光路長を変化させてもよい。エタロン10及び15の各々における光路長を変化させてもよい。 For example, in the above embodiment, the optical path length of the scattered light L3 in the etalon 15 has been described, but the optical path length of the emitted light L1 in the etalon 10 may be changed. The optical path length in each of the etalons 10 and 15 may be changed.
 具体的には、上記の実施の形態で示したように、エタロン10における出射光L1の光路長を固定した状態で、エタロンにおける散乱光L3の光路長を一方向に変化させてもよく、周期的に変化させてもよい。なお、一方向とは、光路長を増やす方向、及び、光路長を減らす方向のいずれか一方である。 Specifically, as shown in the above embodiment, the optical path length of the scattered light L3 in the etalon may be changed in one direction while the optical path length of the emitted light L1 in the etalon 10 is fixed. May be changed. The one direction is either a direction of increasing the optical path length or a direction of decreasing the optical path length.
 あるいは、エタロン10における出射光L1の光路長を一方向に変化させながら、エタロン15における散乱光L3の光路長を一方向に変化させてもよく、周期的に変化させてもよい。この場合において、エタロン15における散乱光L3の光路長が固定であってもよい。 Alternatively, the optical path length of the scattered light L3 in the etalon 15 may be changed in one direction while the optical path length of the emitted light L1 in the etalon 10 may be changed in one direction, or may be changed periodically. In this case, the optical path length of the scattered light L3 in the etalon 15 may be fixed.
 また、エタロン10における出射光L1の光路長を周期的に変化させながら、エタロン15における散乱光L3の光路長を一方向に変化させてもよく、周期的に変化させてもよい。この場合において、エタロン15における散乱光L3の光路長が固定であってもよい。 Further, the optical path length of the scattered light L3 in the etalon 15 may be changed in one direction while the optical path length of the emitted light L1 in the etalon 10 may be changed periodically, or may be changed periodically. In this case, the optical path length of the scattered light L3 in the etalon 15 may be fixed.
 また、例えば、エアロゾル計測装置1は、エタロン10又は15の圧力を調整する圧力調整装置を備えてもよい。この場合、制御部70は、圧力調整装置を制御する。例えば、圧力調整装置は、エタロン10又は15に対して加圧することで、エタロン10又は15の透光部11又は16を押し縮めて、長さΔxを短くすることができる。これにより、エタロン10又は15を通過する出射光L1又は散乱光L3の光路長が短くなる。また、例えば、圧力調整装置は、エタロン10又は15に対して減圧することで、エタロン10又は15の透光部11又は16を引き伸ばして、長さΔxを長くすることができる。これにより、エタロン10又は15を通過する出射光L1又は散乱光L3の光路長が長くなる。なお、透光部11又は16が空気層である場合、圧力の調整による長さΔxを容易に変化させることができ、光路長を容易に変化させることができる。 Further, for example, the aerosol measuring device 1 may include a pressure adjusting device for adjusting the pressure of the etalon 10 or 15. In this case, the control unit 70 controls the pressure adjusting device. For example, the pressure adjusting device can compress the translucent portion 11 or 16 of the etalon 10 or 15 by pressurizing the etalon 10 or 15, and shorten the length Δx. As a result, the optical path length of the emitted light L1 or the scattered light L3 passing through the etalon 10 or 15 is shortened. Further, for example, the pressure adjusting device can extend the translucent portion 11 or 16 of the etalon 10 or 15 by reducing the pressure with respect to the etalon 10 or 15, and increase the length Δx. As a result, the optical path length of the emitted light L1 or the scattered light L3 passing through the etalon 10 or 15 becomes long. When the light transmitting portion 11 or 16 is an air layer, the length Δx can be easily changed by adjusting the pressure, and the optical path length can be easily changed.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、エアロゾル計測装置が備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。また、エアロゾル計測装置は、単一の装置として実現されてもよい。 Further, in the above embodiment, another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. Further, the distribution of the components of the aerosol measuring device to a plurality of devices is an example. For example, the components of one device may be included in another device. Further, the aerosol measuring device may be realized as a single device.
 例えば、上記実施の形態において説明した処理は、単一の装置またはシステムを用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 For example, the processing described in the above embodiment may be realized by centralized processing using a single device or system, or may be realized by distributed processing using a plurality of devices. .. Further, the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
 また、上記実施の形態において、分析部、制御部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, all or a part of the components such as the analysis unit and the control unit may be configured by dedicated hardware, or by executing a software program suitable for each component. It may be realized. Even if each component is realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
 また、分析部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 Further, a component such as an analysis unit may be composed of one or a plurality of electronic circuits. The one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)などが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。 The one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), or the like. The IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration). Further, FPGA (Field Programmable Gate Array) programmed after manufacturing the LSI can also be used for the same purpose.
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Further, the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program. Alternatively, it may be realized by a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored. Further, it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
 また、上記の各実施の形態は、特許請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Further, in each of the above embodiments, various changes, replacements, additions, omissions, etc. can be made within the scope of claims or the equivalent scope thereof.
 本開示は、エアロゾルを簡単かつ精度良く計測することができるエアロゾル計測装置などとして利用でき、例えば、屋内での有害な微粒子の計測及び屋外での気象観測などに利用することができる。 The present disclosure can be used as an aerosol measuring device or the like capable of easily and accurately measuring an aerosol, and can be used, for example, for measuring harmful fine particles indoors and observing weather outdoors.
1、101、201、301 エアロゾル計測装置
10、15 エタロン
11、16 透光部
12、13、17、18 多層膜
20 光源
22、32、34、36 ミラー
30 集光部
30a、40 集光レンズ
50 受光器
60 分析部
70、170 制御部
71 温度センサ
80 ヒーター
90 散乱体
180 軸調整装置
351 遮光部
L1、L2 出射光
L3 散乱光
L4 ミー散乱光
L5 反射光
1, 101, 201, 301 Aerosol measuring device 10, 15 Etalon 11, 16 Translucent part 12, 13, 17, 18 Multilayer film 20 Light source 22, 32, 34, 36 Mirror 30 Condensing part 30a, 40 Condensing lens 50 Receiver 60 Analytical unit 70, 170 Control unit 71 Temperature sensor 80 Heater 90 Scatterer 180 Axis adjuster 351 Shading unit L1, L2 Emission light L3 Scattered light L4 Me scattered light L5 Reflected light

Claims (13)

  1.  大気中に含まれるエアロゾルを計測するためのエアロゾル計測装置であって、
     光源と、
     前記光源から出射された第1の光が通過する第1のエタロンと、
     前記エアロゾルで散乱された第2の光が通過する第2のエタロンと、
     前記第1のエタロンにおける前記第1の光の光路長及び前記第2のエタロンにおける前記第2の光の光路長からなる群から選択される少なくとも1つの光路長を変化させる制御部と、を備える、
     エアロゾル計測装置。
    An aerosol measuring device for measuring aerosols contained in the atmosphere.
    Light source and
    A first etalon through which the first light emitted from the light source passes, and
    A second etalon through which the second light scattered by the aerosol passes, and
    A control unit for changing at least one optical path length selected from the group consisting of the optical path length of the first light in the first etalon and the optical path length of the second light in the second etalon is provided. ,
    Aerosol measuring device.
  2.  前記第1のエタロンは、前記第1の光を内部で干渉させることにより生じた、互いに等しい周波数間隔で離れた複数本のピークを有する干渉光を前記エアロゾルに照射し、
     前記第2のエタロンは、前記第2の光を内部で干渉させることによりミー散乱光を出射する、
     請求項1に記載のエアロゾル計測装置。
    The first etalon irradiates the aerosol with interference light having a plurality of peaks separated from each other at equal frequency intervals, which is generated by internally interfering the first light.
    The second etalon emits Mie scattered light by internally interfering with the second light.
    The aerosol measuring device according to claim 1.
  3.  前記ミー散乱光を受光する受光器をさらに備える、
     請求項2に記載のエアロゾル計測装置。
    Further comprising a receiver for receiving the Mie scattered light.
    The aerosol measuring device according to claim 2.
  4.  前記制御部は、前記第2のエタロンにおける前記第2の光の光路長を変化させる、
     請求項1から3のいずれか1項に記載のエアロゾル計測装置。
    The control unit changes the optical path length of the second light in the second etalon.
    The aerosol measuring device according to any one of claims 1 to 3.
  5.  前記制御部は、前記少なくとも1つの光路長を所定の範囲内で周期的に変化させる、
     請求項1から3のいずれか1項に記載のエアロゾル計測装置。
    The control unit periodically changes the at least one optical path length within a predetermined range.
    The aerosol measuring device according to any one of claims 1 to 3.
  6.  前記周波数間隔は、3.9GHz以下である、
     請求項2または3に記載のエアロゾル計測装置。
    The frequency interval is 3.9 GHz or less.
    The aerosol measuring device according to claim 2 or 3.
  7.  さらに、前記第1のエタロンの温度及び前記第2のエタロンの温度からなる群から選択される少なくとも1つを調整する温度調整装置を備え、
     前記制御部は、前記温度調整装置を制御することにより、前記少なくとも1つの光路長を変化させる、
     請求項1から6のいずれか1項に記載のエアロゾル計測装置。
    Further, a temperature adjusting device for adjusting at least one selected from the group consisting of the temperature of the first etalon and the temperature of the second etalon is provided.
    The control unit changes the at least one optical path length by controlling the temperature adjusting device.
    The aerosol measuring device according to any one of claims 1 to 6.
  8.  さらに、前記第1のエタロンの光軸の傾き及び前記第2のエタロンの光軸の傾きからなる群から選択される少なくとも1つを調整する軸調整装置を備え、
     前記制御部は、前記軸調整装置を制御することにより、前記少なくとも1つの光路長を変化させる、
     請求項1から7のいずれか1項に記載のエアロゾル計測装置。
    Further, an axis adjusting device for adjusting at least one selected from the group consisting of the inclination of the optical axis of the first etalon and the inclination of the optical axis of the second etalon is provided.
    The control unit changes the at least one optical path length by controlling the axis adjusting device.
    The aerosol measuring device according to any one of claims 1 to 7.
  9.  前記第1の光は、パルス光であり、
     前記受光器は、
      前記パルス光が前記光源から出射されてから、前記パルス光の時間幅より長い所定期間が終了するまで、前記ミー散乱光の受光を停止し、
      前記所定期間が終了した後に、前記ミー散乱光を受光する、
     請求項3に記載のエアロゾル計測装置。
    The first light is pulsed light.
    The receiver is
    After the pulsed light is emitted from the light source, the reception of the Mie scattered light is stopped until a predetermined period longer than the time width of the pulsed light ends.
    After the predetermined period is completed, the Mie scattered light is received.
    The aerosol measuring device according to claim 3.
  10.  前記第2の光は、前記第2のエタロンの光軸に対して斜めの方向から前記第2のエタロンに入射する、
     請求項1から9のいずれか1項に記載のエアロゾル計測装置。
    The second light enters the second etalon from an oblique direction with respect to the optical axis of the second etalon.
    The aerosol measuring device according to any one of claims 1 to 9.
  11.  前記光源は、レーザ素子又は発光ダイオードである、
     請求項1から10のいずれか1項に記載のエアロゾル計測装置。
    The light source is a laser element or a light emitting diode.
    The aerosol measuring device according to any one of claims 1 to 10.
  12.  さらに、前記第2の光を集光して、前記第2のエタロンに入射させる集光部を備える、
     請求項1から11のいずれか1項に記載のエアロゾル計測装置。
    Further, it includes a condensing unit that condenses the second light and causes it to enter the second etalon.
    The aerosol measuring device according to any one of claims 1 to 11.
  13.  光源から出射された第1の光を第1のエタロンに入射させることと、
     前記第1のエタロンから出射された光を、大気中に含まれるエアロゾルに照射することと、
     前記エアロゾルで散乱された第2の光を第2のエタロンに入射させることと、
     前記第1のエタロンにおける前記第1の光の光路長及び前記第2のエタロンにおける前記第2の光の光路長からなる群から選択される少なくとも1つの光路長を変化させることと、を含む
     エアロゾル計測方法。
    Making the first light emitted from the light source incident on the first etalon,
    Irradiating the aerosol contained in the atmosphere with the light emitted from the first etalon, and
    Injecting the second light scattered by the aerosol into the second etalon,
    An aerosol comprising varying at least one optical path length selected from the group consisting of the optical path length of the first light in the first etalon and the optical path length of the second light in the second etalon. Measurement method.
PCT/JP2020/018755 2019-05-31 2020-05-11 Aerosol measurement device and aerosol measurement method WO2020241212A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522168A JP7426612B2 (en) 2019-05-31 2020-05-11 Aerosol measuring device and aerosol measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102261 2019-05-31
JP2019-102261 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241212A1 true WO2020241212A1 (en) 2020-12-03

Family

ID=73554033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018755 WO2020241212A1 (en) 2019-05-31 2020-05-11 Aerosol measurement device and aerosol measurement method

Country Status (2)

Country Link
JP (1) JP7426612B2 (en)
WO (1) WO2020241212A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073127A1 (en) * 2002-02-21 2003-09-04 Eko Instruments Trading Co., Ltd. Meteorological observation lider system
JP2016142738A (en) * 2015-02-04 2016-08-08 アクセトリス アクチエンゲゼルシャフトAxetris AG Optical measurement system and gas detection method
WO2016208013A1 (en) * 2015-06-24 2016-12-29 国立研究開発法人国立環境研究所 Lidar system and measurement method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073127A1 (en) * 2002-02-21 2003-09-04 Eko Instruments Trading Co., Ltd. Meteorological observation lider system
JP2016142738A (en) * 2015-02-04 2016-08-08 アクセトリス アクチエンゲゼルシャフトAxetris AG Optical measurement system and gas detection method
WO2016208013A1 (en) * 2015-06-24 2016-12-29 国立研究開発法人国立環境研究所 Lidar system and measurement method

Also Published As

Publication number Publication date
JP7426612B2 (en) 2024-02-02
JPWO2020241212A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
KR102356454B1 (en) Dual coupler device, spectroscope including the dual coupler device, and non-invasive biometric sensor including the spectroscope
US9631976B2 (en) Miniature spectrometer and apparatus employing same
CN107192349B (en) Optical detection device
JP5424143B2 (en) Reflection distribution curve modeling method, thickness measurement method using the same, and thickness measurement reflectometer
WO2020202887A1 (en) Aerosol measurement device and aerosol measurement method
JP6380662B2 (en) Fourier transform spectrophotometer
WO2020250651A1 (en) Aerosol measurement device and aerosol measurement method
JP7411935B2 (en) Scatterer measurement method and scatterer measurement device
JP2001296180A (en) Spectral image acquiring apparatus
JP6782470B2 (en) Measuring device and measuring method
US20050122529A1 (en) Measurement system of three-dimensional shape of transparent thin film using acousto-optic tunable filter
WO2020241212A1 (en) Aerosol measurement device and aerosol measurement method
JP6725988B2 (en) Thickness measuring device and thickness measuring method
US8675194B2 (en) Apparatus for measuring the retroreflectance of materials
JP7382629B2 (en) Optical measurement device and wavelength calibration method
JP2022012708A (en) Aerosol measurement device and aerosol measurement method
JP2011047693A (en) Optical unit
WO2021024698A1 (en) Aerosol measurement device
JP7482416B2 (en) Aerosol measurement equipment
US10240981B2 (en) Optical spectrometer configuration including spatially variable filter (SVF)
KR20140014466A (en) Apparatus for measuring a thickness using digital light processing and method using the same
EP4067843A1 (en) Film thickness measuring device and film thickness measuring method
JP2021121787A (en) Scattering body measurement device and scattering body measurement method
KR101326204B1 (en) Device and method for measuring thickness of thin film
WO2007108060A1 (en) Interference measurement method and interference measurement instrument employing it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812795

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20812795

Country of ref document: EP

Kind code of ref document: A1