WO2020250330A1 - Aquatic animal cultivation assisting system, lift device, feeding device, aquatic animal cultivation method, and aquatic animal cultivation assisting program - Google Patents

Aquatic animal cultivation assisting system, lift device, feeding device, aquatic animal cultivation method, and aquatic animal cultivation assisting program Download PDF

Info

Publication number
WO2020250330A1
WO2020250330A1 PCT/JP2019/023213 JP2019023213W WO2020250330A1 WO 2020250330 A1 WO2020250330 A1 WO 2020250330A1 JP 2019023213 W JP2019023213 W JP 2019023213W WO 2020250330 A1 WO2020250330 A1 WO 2020250330A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
aquatic animal
shrimp
aquatic
unit
Prior art date
Application number
PCT/JP2019/023213
Other languages
French (fr)
Japanese (ja)
Inventor
謙 藤原
Original Assignee
ウミトロン ピーティーイー エルティーディー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウミトロン ピーティーイー エルティーディー filed Critical ウミトロン ピーティーイー エルティーディー
Priority to PCT/JP2019/023213 priority Critical patent/WO2020250330A1/en
Priority to JP2020504254A priority patent/JP6695585B1/en
Priority to CN201980095858.1A priority patent/CN113795145B/en
Priority to BR112021024618A priority patent/BR112021024618A2/en
Priority to MX2021015233A priority patent/MX2021015233A/en
Publication of WO2020250330A1 publication Critical patent/WO2020250330A1/en
Priority to ECSENADI202188851A priority patent/ECSP21088851A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • A01K61/50Culture of aquatic animals of shellfish
    • A01K61/59Culture of aquatic animals of shellfish of crustaceans, e.g. lobsters or shrimps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Definitions

  • the present invention relates to an aquatic animal aquaculture support system, an elevating device, a feeding device, an aquatic animal aquaculture method, and an aquatic animal aquaculture support program that can acquire information on aquatic animals in aquaculture ponds.
  • Patent Document 1 discloses a configuration of a feeding device that feeds by mixing feed into a water supply route to an aquaculture aquarium.
  • sampling using a collector such as a colander may be performed. Sampling is performed, for example, by placing a colander in a farm pond and then pulling it up to investigate the number and condition of aquatic animals remaining in the colander.
  • the aquatic animal culture support system of the first invention is a photographed image acquisition unit that acquires a photographed image which is a still image or a moving image obtained by photographing a collector raised from an aquatic animal farming pond with a camera. And an image analysis unit that analyzes the captured image acquired by the captured image acquisition unit, and an aquatic animal information acquisition unit that acquires aquatic animal information about aquatic animals in the farming pond based on the analysis results of the image analysis unit. It is an aquatic animal farming support system.
  • the image analysis unit detects an area including an object in the captured image and is based on the information stored in advance. , It is an aquatic animal farming support system that determines whether or not the detected area contains aquatic animals.
  • the aquatic animal information includes information on the number of aquatic animals, information on the weight of aquatic animals, and the size of aquatic animals.
  • An aquatic animal farming support system that includes at least one of information about, at least one of aquatic animal intestinal color and size, information about aquatic animal feed digestibility, and information about aquatic animal abnormalities.
  • the aquatic animal aquaculture support system of the fourth invention further provides an elevating device for raising the aquatic animal from the aquaculture pond after lowering the collector and immersing it in the aquaculture pond for any of the first to third inventions. It is an aquatic animal farming support system.
  • the photographed image acquisition unit was photographed at a timing corresponding to the timing when the collector was lifted from the aquaculture pond by the elevating device.
  • This is an aquatic animal farming support system that acquires captured images.
  • the aquatic animal aquaculture support system of the sixth invention is an aquatic animal aquaculture support system in which the elevating device raises and lowers the collector according to a predetermined schedule for the fourth or fifth invention.
  • the aquatic animal aquaculture support system of the seventh invention further includes a weight information acquisition unit that acquires weight information regarding the weight of the collector raised from the aquaculture pond for any of the first to sixth inventions.
  • the aquatic animal information acquisition unit acquires aquatic animal information regarding the amount of aquatic animals in the aquaculture pond obtained based on the image analysis result of the image analysis unit and the weight information acquired by the weight information acquisition unit. It is an aquatic animal farming support system.
  • the aquatic animal aquaculture support system of the eighth invention is an aquatic animal aquaculture support system in which a pattern that can be photographed by a camera is attached to the collector for any of the inventions 1 to 7. Is.
  • the collector immersed in the aquaculture pond is photographed by a camera above the water surface of the aquaculture pond.
  • An image acquisition unit during immersion that acquires an image during immersion
  • a position information acquisition unit that acquires position information regarding the position of the sampler in the vertical direction
  • an image during immersion acquired by an image acquisition unit during immersion.
  • This is an aquatic animal aquaculture support system further including a turbidity detection unit that detects the turbidity of the aquaculture pond based on the position information acquired by the position information acquisition unit.
  • the aquatic animal aquaculture support system of the tenth invention further includes an environmental sensor for acquiring environmental measurement values related to the environment of the fishpond for any of the inventions 1 to 9, and the environmental sensor collects the aquatic animal. It is an aquatic animal aquaculture support system attached to a collector or a member attached to the collector so that it can be immersed in a fishpond together with the vessel.
  • the aquatic animal information acquisition unit obtained the aquatic animal in the aquaculture pond based on the environmental measurement value acquired by the environmental sensor for the tenth invention. It is an aquatic animal aquaculture support system that acquires aquatic animal information on the amount of animals.
  • the aquatic animal aquaculture support system of the twelfth invention further includes a feeding device for supplying aquaculture pond for any of the first to eleventh inventions, and the aquatic animal information acquisition unit Based on the feeding timing of the feed by the feeding device and the shooting timing of the captured image analyzed by the image analysis unit, information on excess or deficiency of feeding amount, information on at least one of the color and size of the intestines of aquatic animals, and feed. It is an aquatic animal aquaculture support system that acquires aquatic animal information including at least one of the information on the digestibility of aquatic animals.
  • the aquatic animal farming support system of the thirteenth invention was acquired by the aquatic animal information acquisition department and the feeding device that supplies feed to the aquaculture pond for any of the first to eleventh inventions. It further includes a feeding condition setting unit that sets feeding conditions related to the supply of feed by the feeding device based on aquatic animal information, and the feeding device supplies feed based on the feeding conditions set by the feeding condition setting unit.
  • This is an aquatic animal farming support system.
  • feed can be supplied under feeding conditions according to the condition of aquatic animals in the aquaculture pond.
  • the feeding condition includes at least one of the condition relating to the feed supply timing and the condition relating to the feed supply amount. It is an aquatic animal farming support system.
  • the feed timing or feed amount can be set according to the condition of the aquatic animals in the aquaculture pond.
  • the aquatic animal aquaculture support system of the fifteenth invention further includes a reference value storage unit for storing a predetermined reference value regarding the growth of aquatic animals for the thirteenth or fourteenth invention.
  • the aquatic animal farming support system sets the feeding conditions based on the comparison result between the reference value stored in the reference value storage unit and the aquatic animal information acquired by the aquatic animal information acquisition unit. Is.
  • feed can be supplied under feeding conditions according to the growth state of aquatic animals in the aquaculture pond.
  • the aquatic animal aquaculture support system of the sixteenth invention further includes a feed tank for storing the feed fed by the feeding device for any of the twelfth to fifteenth inventions, and the camera An aquatic animal farming support system located under or inside a feed tank.
  • the influence of the shooting environment such as weather and lighting on the shot image can be reduced, and a more accurate analysis result of the shot image can be obtained.
  • the aquatic animal information acquisition unit determines the amount of feed supplied to the aquaculture pond and image analysis.
  • This is an aquatic animal aquaculture support system that acquires aquatic animal information based on the analysis results of the department.
  • the aquatic animal information acquired by the aquatic animal information acquisition department is used for the aquatic animal growth days information and the aquatic animal growth days information for any of the first to seventeenth inventions.
  • the current aquatic animal pond This is an aquatic animal farming support system that determines the growth status of aquatic animals.
  • the elevating device of the nineteenth invention is an elevating device used in the above-mentioned aquatic animal aquaculture support system, and elevates and lowers a holding member for holding a collector and a collector held by the holding member. It is an elevating device including an elevating mechanism for the purpose and a drive unit for driving the elevating mechanism.
  • the collector can be easily moved up and down by the lifting device.
  • the feeding device of the present invention is a feeding device used in the above-mentioned aquatic animal aquaculture support system, and includes a feed tank for storing feed and a measuring unit for measuring feed taken out from the feed tank.
  • a feeding device including a supply unit that supplies feed measured by the measuring unit to the aquaculture pond.
  • feed can be easily supplied to the aquaculture pond by the feeding device.
  • Aquatic animals including a second step of image analysis of the image and a third step of acquiring aquatic animal information about the aquatic animals in the aquaculture pond based on the image analysis result of the captured image obtained by the second step. It is an animal farming method.
  • aquatic animal aquaculture support system elevating device, feeding device, aquatic animal aquaculture method, and aquatic animal aquaculture support program according to the present invention, information on aquatic animals in the aquatic pond can be easily obtained.
  • FIG. 1 Schematic diagram of the shrimp farming support system according to the first embodiment of the present invention
  • Block diagram of the shrimp farming support system The first figure which shows the operation at the time of sampling of the elevating device of the shrimp culture support system
  • the second figure which shows the operation at the time of sampling of the elevating device of the shrimp culture support system
  • Diagram showing an example of shrimp sampled by the shrimp farming support system Diagram showing the colander used in the shrimp farming support system
  • Diagram showing an example of captured images handled by the shrimp farming support system Flow chart showing the overall flow of operations performed by the shrimp farming support system Flow chart explaining the feeding performed by the shrimp farming support system Flow chart explaining sampling performed by the shrimp farming support system Flow chart explaining the shrimp information analysis processing performed by the shrimp farming support system Flow chart explaining the reflection processing performed by the shrimp farming support system Flow chart explaining the turbidity detection process performed by the shrimp farming support system
  • the figure which shows the operation at the time of sampling of the lifting device The figure explaining the lifting device which concerns on one modification of Embodiment 4.
  • Aquatic animals refer to animals that live in water, such as crustaceans, shellfish, and fish.
  • Shrimp refers to so-called crustaceans belonging to the suborder Kuruma prawns of the order Decapoda, but is not limited to this.
  • the following embodiments relate to, for example, a shrimp farming support system used in the farming of whiteleg shrimp and the like, but the shrimp to be cultivated is not limited to this.
  • other aquatic animals may be targeted for aquaculture.
  • Aquaculture pond is an area filled with water (whether freshwater, seawater, or brackish water) for cultivating aquatic animals.
  • the environment of the aquaculture pond may differ depending on the type of aquatic animal to be cultivated.
  • the aquaculture pond may be artificially created or naturally formed.
  • the aquaculture pond may be a large aquarium for aquaculture filled with water, whether outdoors or indoors. A section composed of a part of an area with water may be called a fishpond.
  • a collector is an instrument used to sample aquatic animals in aquaculture ponds when aquatic animals are being cultivated.
  • a colander can be used.
  • the colander may have a reticulated portion or a perforated portion, and may be configured to allow a liquid to pass through and leave a solid substance inside when it is pulled out of water.
  • the net-like portion may be made of cloth. That is, in the following embodiments, those configured so that aquatic animals such as shrimp and other solids to be cultivated can be scooped out from the aquaculture pond can be widely used.
  • a container such as a bucket made of a member that hardly allows liquid to permeate may be used.
  • the captured image is, for example, a still image or a moving image captured by a camera, but is not limited to this.
  • it may be a still image extracted from a moving image taken by a camera.
  • the reference values for the growth of aquatic animals such as shrimp are, for example, for shrimp, DOC (Day of Culture; number of days of growth after putting juvenile shrimp in aquaculture pond) and standard ABW (Average Body Weight; average of shrimp). It means a value associated with (weight).
  • the reference value may be summarized in a table, or may be a growth curve represented by, for example, a mathematical formula.
  • the growth days information is, for example, DOC, the number of days passed after hatching, and the like.
  • the information on the growing environment is, for example, information obtained by an environmental sensor or information on the weather (specifically, for example, temperature, wind speed, weather, precipitation, solar radiation, etc.).
  • the environment of the culture pond is a concept that includes, for example, water temperature, oxygen, ammonia, nitrate, nitrite, carbon dioxide concentration, and other matters related to water quality, but is not limited to this.
  • Information acquisition means accepting information input from input devices such as keyboards, mice, and touch panels, receiving information transmitted from other devices via wired or wireless communication lines, optical disks, magnetic disks, and semiconductors. It is a concept including obtaining information by accepting information read from a recording medium such as a memory.
  • To output information means to display on a display, project using a projector, print with a printer, output sound, transmit to an external device, store in a recording medium, process to another processing device or other program. It is a concept that includes delivery of results. Specifically, for example, it includes enabling the display of information on a web page, transmitting it as an e-mail, and outputting information for printing.
  • the aquatic animal aquaculture support system analyzes the captured image obtained by photographing the collector raised from the aquatic animal farming pond with a camera, and based on the image analysis result of the captured image.
  • the aquatic animal information includes, for example, information on the amount of aquatic animals, information on abnormalities in aquatic animals, information on the appetite of aquatic animals (for example, information on the speed of feed consumption, information on excess or deficiency of feed amount, etc.). It contains.
  • the aquatic animal farming support system is a shrimp farming support system used for shrimp farming.
  • the shrimp farming support system 1 analyzes the photographed image obtained by photographing the zaru 20 raised from the shrimp farming pond with the camera 30, and based on the image analysis result of the photographed image, provides aquatic animal information.
  • Shrimp information includes, for example, information on the amount of shrimp (for example, information on the amount of shrimp, information on the number of shrimp, information on the weight of shrimp, information on the size of shrimp, etc.), information on abnormalities in shrimp, or information on shrimp.
  • Information on the appetite of shrimp for example, information on the speed of food consumption, information on excess or deficiency of feed, information on at least one of the color and size of the shrimp intestine, information on the digestibility of feed (feed), etc. It contains.
  • the shrimp farming support system 1 may have an elevating device 40 that lowers the colander 20 and soaks it in the pond, and then raises the colander 20 from the pond.
  • the image analysis of the photographed image taken at the timing corresponding to the timing when the Zaru 20 is raised from the aquaculture pond may be performed.
  • the shrimp farming support system 1 may have a feeding device for supplying feed to the fishpond.
  • shrimp information may be acquired based on the feed supply timing and the capture timing of the captured image, or the feeding device may set conditions related to feed supply based on the acquired shrimp information. ..
  • the shrimp farming support system 1 including the information processing device 100 will be described.
  • FIG. 1 is a schematic view of the shrimp farming support system 1 according to the first embodiment of the present invention.
  • reference numeral S is the cultivated shrimp
  • reference numeral FF is the feed to be supplied
  • reference numeral FR is the residual feed (feed that has been supplied but remains in the water without being eaten by the shrimp).
  • the shrimp farming support system 1 includes an information processing device 100 and a user terminal device 910 on the remote side (so-called ASP side) and a local side (shrimp farm side). It is equipped with each device.
  • a colander 20, a camera 30, an elevating device 40, a feeding device 60, an aeration device 70, an environment sensor 81, a weight sensor 83, and the like are provided on the local side.
  • the information processing device 100, the user terminal device 910, the lifting device 40 on the local side, and the like can communicate with each other via a network such as the Internet.
  • the elevating device 40, the feeding device 60, and the aeration device 70 are each connected to a network such as the Internet, but the present invention is not limited to this.
  • a network such as the Internet
  • the lifting device 40 may be connected to the network
  • the feeding device 60 and the aeration device 70 may be connected to the lifting device 40.
  • a server device may be provided on the local side, and another local device may be connected to the server device.
  • the information processing device 100 and the user terminal device 910 may be provided as one of the devices on the local side, and each device does not distinguish between the local side and the remote side, and the shrimp as described below. It suffices if they are connected to each other so that the operation of the aquaculture support system 1 can be performed.
  • a tablet-type information terminal device is shown as a user terminal device 910, but the user terminal device 910 is not limited to this, and for example, a mobile phone such as a so-called smartphone is used. It may be an information terminal device, a personal computer (PC) such as a laptop computer, or a device other than these.
  • PC personal computer
  • a user (user) of the shrimp farming support system 1 can use the shrimp farming support system 1 by using the user terminal device 910.
  • the user terminal device 910 is, for example, a general tablet-type information terminal device, and has a display device provided with a touch panel.
  • the user terminal device 910 is realized from a storage unit, an MPU, a memory, etc. in which various information and programs are stored, and is a processing unit that performs various processes by executing the program, the user terminal device 910.
  • the web browser function can be made to function, or the information transmission / reception function such as e-mail can be made to function.
  • the user of the user terminal device 910 can browse the information received from another device connected to the network, or cause the user terminal device 910 to transmit the information to the other device. can do.
  • FIG. 2 is a block diagram of the shrimp farming support system 1.
  • the elevating device 40 has the following components, and the colander 20 can be lowered from a predetermined standby position and immersed in a fishpond, or the colander 20 immersed in a fishpond can be lifted from the pond. ..
  • the elevating device 40 includes an elevating mechanism 41, a hanging string (an example of a holding member) 43, a drive unit (an example of a drive unit) 45, a control unit 47, and the like.
  • the control unit 47 has a communication unit 49. Further, a camera 30, an environment sensor 81, and a weight sensor 83 are attached to the elevating device 40.
  • the elevating device 40 is suspended from, for example, a structure located above the aquaculture pond via a weight sensor 83.
  • the structure may be the ceiling of a building built so as to surround the fishpond (in the case of indoor aquaculture), the beam of Yakura built in the fishpond (in the case of outdoor aquaculture), and aquaculture. It may be a beam-shaped member located above the pond.
  • the hanging string 43 holds the colander 20.
  • the hanging string 43 is, for example, a linear member that suspends the colander 20 from the elevating mechanism 41.
  • the colander 20 is suspended from the elevating mechanism 41 by, for example, a hanging string 43.
  • the elevating mechanism 41 is, for example, a reel capable of winding and feeding the hanging string 43.
  • the elevating device 40 for example, rotates the reel of the elevating mechanism 41 by a drive unit 45 which is an electric motor to wind up and unwind the hanging string 43 to move the colander 20 up and down.
  • the control unit 47 can usually be realized from an MPU, a memory, or the like.
  • the processing procedure of the control unit 47 is usually realized by software, and the software is recorded on a recording medium such as ROM. However, it may be realized by hardware (dedicated circuit).
  • the control unit 47 controls the operation of the drive unit 45 and the like. That is, the colander 20 moves up and down according to the control of the control unit 47.
  • the elevating device 40 is configured to lower the colander 20 and soak it in the pond, and then raise the colander 20 from the pond. In the present embodiment, the elevating device 40 raises and lowers 20 according to a predetermined schedule. In the present embodiment, the elevating device 40 is configured to raise and lower the colander 20 in response to a command transmitted from the information processing device 100 on a predetermined schedule.
  • the control unit 47 or the like may be configured to autonomously raise or lower the Zaru 20 according to the schedule information stored in the storage unit provided in the elevating device 40.
  • the communication unit 49 connects the elevating device 40 to the network and controls it so that it can communicate with other devices connected to the network.
  • the communication unit 49 may be configured to perform wireless communication using, for example, wireless LAN or data communication of a mobile phone, or may be configured to perform various types of wired communication.
  • the environment sensor 81 is attached to, for example, a member attached to the colander 20. Specifically, the environment sensor 81 is attached to the hanging string 43 near the colander 20. That is, the environment sensor 81 is attached so as to be immersed in the aquaculture pond together with the colander 20. The environment sensor 81 may be attached to the colander 20.
  • the environment sensor 81 acquires environmental measurement values related to the environment of the aquaculture pond.
  • the environmental measurement value may be the value itself measured by the environment sensor 81, or is acquired by the environment sensor 81 using a predetermined calculation formula or a predetermined table based on the measurement result regarding the environment of the aquaculture pond. It may be a value obtained.
  • the environmental sensor 81 includes, for example, a temperature sensor that outputs water temperature or temperature as an environmental measurement value, a dissolved oxygen sensor (DO sensor) that outputs dissolved oxygen in the culture pond as an environmental measurement value, and hydrogen in the water of the culture pond.
  • a pH sensor that outputs the ion concentration as an environmental measurement value is provided.
  • the environment sensor 81 may include a sensor that outputs environmental measurement values related to the environment of the aquaculture pond other than these. Further, among the above, some of the above may not be provided as the environment sensor 81.
  • the environmental sensor 81 is immersed in the fishpond when the colander 20 is immersed in the fishpond, and can output each environmental measurement value for the fishpond.
  • the environment sensor 81 is also pulled up from the pond. That is, since the environment sensor 81 is immersed in the aquaculture pond only at the time of measurement according to the timing of raising and lowering the colander 20, it is possible to prevent the environment sensor 81 from becoming dirty (adhesion of algae, etc.).
  • the weight sensor 83 can output weight information regarding the weight of the colander 20 raised from the aquaculture pond. For example, the weight sensor 83 obtains the increase in the measured value of the weight after being soaked in the fishpond from the measured value of the weight before being soaked in the fishpond as the weight information of the solid matter such as shrimp remaining in the colander 20. be able to.
  • the weight sensor 83 may not be provided, and the weight information is not limited to the above.
  • the control unit 47 may detect the magnitude of the load applied to the drive unit 45 when raising the colander 20, and may use it as weight information. In this case, the control unit 47 may calculate the weight information regarding the weight of the colander 20 based on the magnitude of the load applied to the drive unit 45.
  • control unit 47 acquires the environmental measurement value output from the environment sensor 81, the weight information output from the weight sensor 83, and the like.
  • the control unit 47 can transmit the acquired information or the like to the information processing device 100 or the like.
  • control unit 47 can detect the position information indicating the vertical position of the colander 20.
  • the position information can be detected based on, for example, the amount of rotation (the amount of feeding and winding of the hanging string 43) obtained from the elevating mechanism 41, the drive unit 45, and the like.
  • the control unit 47 can transmit the detected position information to the information processing device 100.
  • FIG. 3 is a first diagram showing the operation of the lifting device 40 of the shrimp farming support system 1 at the time of sampling.
  • FIG. 4 is a second diagram showing the operation of the lifting device 40 of the shrimp farming support system 1 at the time of sampling.
  • the hanging string 43 is extended from the elevating mechanism 41 to lower the colander 20 from the standby position on the water.
  • Zaru 20 is immersed in a fishpond.
  • the environment sensor 81 is also immersed in the aquaculture pond. As a result, the environment sensor 81 can obtain environmental measurement values related to the environment of the aquaculture pond.
  • the hanging string 43 is wound up by the elevating mechanism 41 to pull the colander 20 onto the water and raise it to a predetermined standby position. Then, in that state, a photographed image can be obtained by photographing the colander 20 with the camera 30. It is preferable that the distance between the camera 30 and the predetermined standby position is constant, but the distance is not limited to this. Further, when a moving image is obtained as a captured image, or when a plurality of still images are obtained in one sampling, the shooting may be performed while the Zaru 20 is raised. In such a case, the standby position for the Zaru 20 may not be determined.
  • the work remaining in the colander 20 is returned to the aquaculture pond.
  • This work may be performed by an operator, but it may be automatically performed by providing a mechanism for lowering the colander 20 again and shaking it or turning the colander 20 upside down.
  • the feeding device 60 has the following components and automatically supplies feed to the aquaculture pond.
  • the feeding device 60 includes a feed tank 61, a measuring unit (an example of a measuring unit) 63, a spraying mechanism (an example of a supply unit) 65, a driving unit 66, a control unit 67, and a feeding condition storage unit 68. doing.
  • the control unit 67 has a communication unit 69.
  • the feeding device 60 is arranged above the aquaculture pond, for example, and a predetermined amount of feed (schematically indicated by a black circle (reference numeral FF) in the figure) is sprayed from the feeding device 60 to the aquaculture pond at each feeding timing. can do.
  • the feed tank 61 stores the feed fed by the feeding device 60.
  • the measuring unit 63 is a scale for measuring the feed taken out from the feed tank 61.
  • the measuring unit 63 can measure a predetermined amount of feed and take it out from the feed tank 61 according to the control by the control unit 67.
  • the spraying mechanism 65 supplies the feed weighed by the measuring unit 63 and taken out from the feed tank 61 to the aquaculture pond.
  • the spraying mechanism 65 has, for example, a rotatable arm member.
  • the feeding device 60 is configured so that the feed can be evenly distributed to the aquaculture pond by, for example, sprinkling the feed from the arm member while rotating the arm member of the spraying mechanism 65 by the drive unit 66 which is an electric motor. ing.
  • the supply unit for supplying feed to the aquaculture pond is not limited to such a spraying mechanism 65, and known means can be widely used.
  • the feeding condition storage unit 68 stores information on feeding conditions (hereinafter, this information itself may also be simply referred to as feeding conditions).
  • the feeding conditions include at least one of a condition relating to the timing of feeding and a condition relating to the amount of feed supplied.
  • the feeding condition includes, for example, both a condition relating to the feed timing and a condition relating to the feed supply amount.
  • the feeding condition storage unit 68 is preferably a non-volatile recording medium, but can also be realized by a volatile recording medium.
  • the feeding condition transmitted from the feeding condition setting unit in the information processing apparatus 100 is stored (set) in the feeding condition storage unit 68.
  • the process of storing the feeding conditions in the feeding condition storage unit 68 does not matter.
  • the feeding condition may be stored in the feeding condition storage unit 68 via the recording medium, and the feeding condition transmitted via the communication line or the like may be stored in the feeding condition storage unit 68.
  • the feeding condition input via the input device may be stored in the feeding condition storage unit 68.
  • the control unit 67 can usually be realized from an MPU, a memory, or the like.
  • the processing procedure of the control unit 67 is usually realized by software, and the software is recorded on a recording medium such as ROM. However, it may be realized by hardware (dedicated circuit).
  • the control unit 67 supplies feed to the aquaculture pond based on the feeding conditions stored in the feeding condition storage unit 68.
  • the communication unit 69 connects the feeding device 60 to the network and controls so that communication with other devices connected to the network can be performed.
  • the communication unit 69 may be configured to perform wireless communication using, for example, wireless LAN or data communication of a mobile phone, or may be configured to perform various types of wired communication.
  • control unit 67 records the feeding information (log; for example, information such as the feeding time and the feeding amount) when the feeding is actually performed.
  • the control unit 67 can transmit the recorded feeding information and the like to the information processing device 100 and the like.
  • the aeration device 70 has the following components, and performs an operation (aeration) to increase the dissolved oxygen in the aquaculture pond.
  • the aeration device 70 includes, for example, an impeller that hits the water surface of the aquaculture pond, a drive unit 76 that is an electric motor that rotates the impeller, and a control unit 77 that controls the operation of the drive unit 76.
  • the control unit 77 has a communication unit 79.
  • the control unit 77 can usually be realized from an MPU, a memory, or the like.
  • the processing procedure of the control unit 77 is usually realized by software, and the software is recorded on a recording medium such as ROM. However, it may be realized by hardware (dedicated circuit).
  • the control unit 77 operates the drive unit 76 to execute aeration, or stops the drive unit 76 to stop the aeration.
  • the communication unit 79 connects the aeration device 70 to the network and controls the aeration device 70 so that it can communicate with other devices connected to the network.
  • the communication unit 79 may be configured to perform wireless communication using, for example, wireless LAN or data communication of a mobile phone, or may be configured to perform various types of wired communication.
  • the aeration device 70 is not limited to the one having an impeller as described above.
  • the dissolved oxygen may be increased by blowing a gas containing oxygen into the aquaculture pond by a pump or the like, or the dissolved oxygen may be increased by replacing a part of the water in the aquaculture pond. May be.
  • the information processing device 100 includes a storage unit 110, a processing unit 150, an information output unit 170, a communication unit 190, and the like.
  • the information processing device 100 is, for example, a server device.
  • the storage unit 110 includes a photographed image storage unit 111, a weight information storage unit 113, an environmental measurement value storage unit 115, a feeding information storage unit 116, a reference value storage unit 117, and a shrimp information storage unit (an example of an aquatic animal information storage unit) 119.
  • a non-volatile recording medium is suitable for the storage unit 110, but a volatile recording medium can also be used.
  • Information acquired by each part of the processing unit 150 as described later is stored in each part of the storage unit 110, but the process of storing the information or the like in each part of the storage unit 110 is not limited to this. ..
  • information or the like may be stored in the storage unit 110 via a recording medium, or information or the like transmitted via a communication line or the like may be stored in the storage unit 110.
  • information or the like input via the input device may be stored in the storage unit 110.
  • the captured image storage unit 111 stores the captured image acquired by the captured image acquisition unit 151, that is, the captured image captured by the camera 30, as will be described later.
  • the photographed image is stored in association with the photographed information such as the date and time when the photograph was taken and the identifier that identifies the aquaculture pond. It should be noted that such shooting information may be recorded as metadata of a shot image such as a so-called Exif.
  • the captured image storage unit 111 may also store the immersion image acquired by the immersion image acquisition unit 153 as described later.
  • the weight information storage unit 113 stores the weight information acquired by the weight information acquisition unit 152, that is, the weight information transmitted from the elevating device 40, as described later.
  • the environmental measurement value storage unit 115 stores the environmental measurement value transmitted from the elevating device 40.
  • the environmental measurement value is stored in association with information such as the measured date and time and an identifier that identifies the aquaculture pond.
  • the environment measurement value storage unit 115 may store information about the turbidity detected by the turbidity detection unit 156 as described later.
  • the feeding information storage unit 116 stores the feeding information transmitted from the feeding device 60.
  • the reference value storage unit 117 stores a predetermined reference value regarding the growth of shrimp.
  • the shrimp information storage unit 119 stores the shrimp information acquired by the shrimp information acquisition unit 157 as described later.
  • the shrimp information is stored in association with, for example, information on the number of days of shrimp growth and information on the growth environment.
  • the shrimp information is, for example, information on the amount of shrimp (for example, information on the amount of shrimp, information on the number of shrimp, information on the weight of shrimp, information on the size of shrimp, etc.).
  • Information on shrimp abnormalities, and information on shrimp appetite eg, information on the speed of food consumption, information on excess or deficiency of feed, information on at least one of the color and size of the shrimp intestine, and food digestion. It contains at least one (such as information about the rate).
  • the shrimp information is not limited to this, and may include information other than these.
  • the processing unit 150 includes a photographed image acquisition unit 151, a weight information acquisition unit 152, an immersion image acquisition unit 153, a position information acquisition unit 154, an image analysis unit 155, a turbidity detection unit 156, and a shrimp information acquisition unit (aquatic animal information acquisition). (Example) 157, feeding condition setting unit 158 is provided.
  • the processing unit 150 controls the operation of the information processing device 100, and performs processing in cooperation with the local lifting device 40, the feeding device 60, the aeration device 70, and the like. Cooperation with the device on the local side can be performed by sending a command to each device or receiving information from each device.
  • the processing unit 150 can usually be realized from an MPU, a memory, or the like.
  • the processing procedure of the processing unit 150 is usually realized by software, and the software is recorded on a recording medium such as ROM. However, it may be realized by hardware (dedicated circuit).
  • the photographed image acquisition unit 151 acquires a photographed image obtained by photographing the colander 20 raised from the shrimp farming pond with the camera 30.
  • the captured image acquisition unit 151 acquires, for example, a captured image captured at a timing corresponding to the timing when the Zaru 20 is raised from the aquaculture pond by the elevating device 40.
  • the captured image is transmitted to the information processing device 100.
  • the captured image acquisition unit 151 receives the transmitted captured image.
  • the weight information acquisition unit 152 acquires weight information regarding the weight of the colander 20 raised from the aquaculture pond.
  • the immersion image acquisition unit 153 acquires the immersion image.
  • the image during immersion is an image obtained by taking a picture of the Zaru 20 immersed in the fishpond with a camera 30 above the water surface of the fishpond, as will be described later.
  • the immersion image is transmitted from, for example, the elevating device 40.
  • the immersion image acquisition unit 153 receives the transmitted immersion image.
  • the position information acquisition unit 154 acquires the position information regarding the positions of the Zaru 20 in the vertical direction.
  • the position information acquisition unit 154 acquires the position information transmitted from the elevating device 40.
  • the image analysis unit 155 analyzes the photographed image stored in the photographed image storage unit 111, that is, the photographed image acquired by the photographed image acquisition unit 151.
  • the image analysis unit 155 detects, for example, a region containing an object in the captured image, determines whether or not the detected region contains shrimp, and determines whether or not the detected region contains shrimp, based on the information stored in advance. Based on the result, various items are detected in the captured image.
  • the captured image for example, the number of shrimp individuals, the size of shrimp, the color of shrimp, the presence or absence of residual food, the amount of residual food, and the like are detected.
  • image analysis can be performed by, for example, a method using a machine learning algorithm or an analysis method such as pattern matching.
  • the image analysis unit 155 can perform image analysis as follows. That is, in advance, one or more contour information of shrimp (an example of pattern information), information about Zaru 20 (for example, information about ground color, pattern color, pattern size (interval, etc.), etc.), and residual information. Information about the food (for example, the color in the sampled state) and the like are stored in advance. Then, the image analysis unit 155 detects a region containing an object other than the colander from the captured image. The outline of the object in the detection area is extracted. The image analysis unit 155 compares the extracted contour with the contour information prepared in advance, and if the similarity is higher than a predetermined value, determines that the shrimp is in the detection region.
  • contour information of shrimp an example of pattern information
  • information about Zaru 20 for example, information about ground color, pattern color, pattern size (interval, etc.), etc.
  • residual information Information about the food (for example, the color in the sampled state) and the like are stored in advance.
  • the image analysis unit 155 detects
  • the image analysis unit 155 determines that the shrimp is in the detection area. Further, the image analysis unit 155 determines the interval in the image of the pattern of the colander 20 (the pattern of the colander 20 will be described later). Further, the image analysis unit 155 acquires the color of the region determined to be shrimp. Further, the image analysis unit 155 determines a region in the colander 20 that includes the color of the residual food. The image analysis unit 155 can detect the number of shrimp individuals based on the number of regions in which the shrimp is determined to be captured.
  • the image analysis unit 155 determines the size of the shrimp based on the size in the image of the object determined to be the shrimp, the spacing in the image of the pattern of the colander 20, and the information about the spacing of the actual pattern. Can detect the image. Further, the image analysis unit 155 can detect the color of the shrimp based on the color of the region determined to be the shrimp. In addition, the image analysis unit 155 can detect the presence or absence of residual food and the amount thereof depending on the presence or absence of the region containing the color of the residual food and its size in the colander 20. It is preferable that a plurality of types of shrimp contour information having different postures and sizes are stored.
  • the contour information of the shrimp having the site where the malformation or the lesion has occurred is also stored.
  • the image analysis unit 155 may use template information or the like indicating a part of the shrimp as pattern information instead of the contour information of the shrimp.
  • a learning device that takes a photographed image as an input and outputs the number of shrimp individuals, the size of the shrimp, the color of the shrimp, the presence or absence of residual food, the amount of residual food, and the like is constructed by a machine learning algorithm. For example, two or more sets of information regarding the photographed image and information on the number of shrimp individuals, the size of the shrimp, the color of the shrimp, the presence or absence of residual food, the amount of residual food, etc. are acquired, and the acquired two sets are obtained.
  • the above information is given to a module for configuring a learning device for machine learning, the learning device is configured, and the information is stored in the storage unit 110.
  • the machine learning algorithm may be, for example, deep learning, random forest, SVR, or the like.
  • various modules such as a TensorFlow module, fastext, tiny_svm, various random Forest functions, and the like can be used.
  • the learner can also be called a classifier.
  • such a machine learning algorithm may be partially used, such as when determining whether or not the region containing an object in a captured image is a region containing shrimp. For example, when determining whether or not a shrimp is contained in a region, a learning device that inputs an image of the region containing an object in the captured image and outputs information indicating whether or not the region is a shrimp. Is constructed by a machine learning algorithm. For example, two or more sets of information of an image of an area and information on whether or not the area contains shrimp are acquired, and the acquired two or more sets of information constitute a machine learning learner.
  • the learning device may be provided to the module for storage, and may be stored in the storage unit 110. In this case, the image analysis unit 155 can determine whether or not the detected region contains shrimp based on the learner (an example of information stored in advance).
  • the turbidity detection unit 156 detects the turbidity of the aquaculture pond based on the immersion image acquired by the immersion image acquisition unit 153. In the present embodiment, the turbidity detection unit 156 further detects the turbidity based on the position information acquired by the position information acquisition unit 154. Specifically, for example, the turbidity detection unit 156 determines whether or not the colander 20 satisfies a predetermined visibility condition in the immersion image.
  • a threshold value such as a brightness difference between the shadow of 20 colanders in water and other regions may be defined, but the visual condition is not limited to this.
  • the turbidity detection unit 156 acquires the water depth of the colander 20 when the visible condition is no longer satisfied for the colander 20 based on the position information detected by the position information acquisition unit 154. Then, the turbidity corresponding to the water depth is detected based on the information stored in advance in which the water depth and the turbidity are associated with each other. The deeper the water depth of the Zaru 20 when the visibility condition is no longer satisfied, the lower the turbidity (clearer).
  • the turbidity detection unit 156 may have a colander 20 at a predetermined position (for example, a predetermined descent position where the colander 20 is lowered at the time of sampling).
  • a predetermined position for example, a predetermined descent position where the colander 20 is lowered at the time of sampling.
  • the brightness of 20 portions of the colander in the image during immersion may be detected, and the turbidity may be detected based on the detected value.
  • information for associating the brightness and turbidity of the 20 parts of the colander may be stored in advance.
  • the turbidity detection unit 156 can obtain the turbidity corresponding to the brightness of the 20 parts of the colander in the image during immersion based on the stored information. That is, the higher the brightness, the lower the turbidity (clearer).
  • the shrimp information acquisition unit 157 acquires shrimp information regarding shrimp in the aquaculture pond based on the analysis result of the image analysis unit 155.
  • the shrimp information acquisition unit 157 may acquire the analysis result of the image analysis unit 155 as it is as shrimp information, or acquire the information obtained by further performing calculation or other statistical processing based on the analysis result as shrimp information. You may. A specific example of acquiring shrimp information will be described below.
  • the shrimp information of the entire aquaculture pond may be appropriately converted and obtained in consideration of the area and volume of the aquaculture pond. The conversion may not be performed.
  • the shrimp information acquisition unit 157 is based on the shrimp information (past shrimp information) acquired so far and the shrimp information (current shrimp information) acquired this time.
  • the growth state of the shrimp in the aquaculture pond may be determined.
  • a shrimp growth abnormality such as a low shrimp growth rate from the time when the past shrimp information is acquired to the time when the shrimp information is acquired this time may be determined, and that fact may be acquired as the shrimp information.
  • the shrimp information acquisition unit 157 may acquire shrimp information based on, for example, the image analysis result of the image analysis unit 155 and the weight information acquired by the weight information acquisition unit 152. That is, for example, the shrimp information acquisition unit 157 can obtain the number of sampled shrimp individuals (number of animals), the amount of feed left uneaten by the shrimp (residual feed amount), and the like as the analysis result of the image analysis. .. Then, the shrimp information acquisition unit 157 makes a calculation based on the information and the weight information, that is, the weight of the solid matter taken out from the aquaculture pond by sampling, or uses a predetermined table or the like. The ABW (average weight) of shrimp can be calculated. Moreover, since the ABW of the shrimp can be acquired, the shrimp information acquisition unit 157 can determine the biomass of the shrimp in the aquaculture pond.
  • the shrimp information acquisition unit 157 may acquire the shrimp information obtained based on the environmental measurement value measured by the environment sensor 81, for example. That is, when dissolved oxygen is obtained as an environmental measurement value, the shrimp information acquisition unit 157 calculates based on the rate of decrease in dissolved oxygen (the amount of decrease in dissolved oxygen in a predetermined period) and the number of individuals.
  • the growth state (size, ABW, etc.) of shrimp can be determined by using a predetermined table or the like. This is because as the shrimp grows, the amount of oxygen consumed increases and the rate of decrease in dissolved oxygen increases.
  • the biomass of shrimp in the aquaculture pond may be determined based on the rate of decrease in dissolved oxygen.
  • the shrimp information acquisition unit 157 may acquire the shrimp information by using the same type of shrimp information obtained by a plurality of methods. For example, the shrimp information acquisition unit 157 obtains the shrimp ABW acquired based on the image analysis result and the weight information and the shrimp ABW acquired based on the rate of decrease in dissolved oxygen and the number of individuals, and averages both of them. You may try to acquire the ABW of the shrimp by doing so.
  • the shrimp information acquisition unit 157 provides information on excess or deficiency of the feed amount based on, for example, the feed supply timing (feeding timing) by the feeding device 60 and the shooting timing of the captured image analyzed by the image analysis unit 155.
  • Shrimp information including information on shrimp intestinal color, size, and feed digestibility may be obtained.
  • the shrimp information acquisition unit 157 may acquire shrimp information based on, for example, the amount of feed supplied to the aquaculture pond and the analysis result of the image analysis unit 155. For example, even if the amount of residual feed detected for the captured image is the same, the longer the interval from the feed supply timing to the capture timing of the captured image, the higher the possibility that the feed amount is excessive.
  • the elevating device 40 raises and lowers the Zaru 20 according to the feeding timing, so that a photographed image of the photographing timing according to the feeding timing can be obtained. This makes it possible to easily and accurately adjust the feeding amount as described later.
  • the shrimp information acquisition unit 157 may, for example, determine whether or not there is a shrimp corresponding to a predetermined abnormality pattern based on the analysis result of the image analysis unit 155, and acquire information on the abnormality of the shrimp. Good. For example, as a result of image analysis, the shrimp information acquisition unit 157 shows signs of illness such as an enlarged specific organ, a different swimming behavior or posture from the average shrimp, or having a malformation. It is determined whether or not there is a shrimp (abnormal shrimp) corresponding to the predetermined abnormal pattern shown. Such a determination may be made, for example, based on the result of the shrimp information acquisition unit 157 performing image analysis using the pattern information related to the abnormality stored in advance by the image analysis unit 155.
  • the shrimp information acquisition unit 157 and the image analysis unit 155 use the machine learning algorithm as described above to input a photographed image or an image of a region containing shrimp and output an abnormal pattern as an output. It may be done using a vessel. Then, when there is a shrimp corresponding to the abnormal pattern, the shrimp information acquisition unit 157 acquires, for example, information that the abnormal shrimp exists in the fishpond as shrimp information. When the number or abundance ratio of abnormal shrimp exceeds a predetermined threshold value, the shrimp information acquisition unit 157 may acquire information indicating the existence of abnormal shrimp as shrimp information.
  • FIG. 5 is a diagram showing an example of shrimp sampled by the shrimp farming support system 1.
  • FIG. 5 shows a part of a photographed image of the sampled shrimp. Further specific examples of the anomaly pattern include, for example, the following.
  • FIG. 5 it is a good health condition that the size of the biliary pancreatic duct under the shrimp head (the part indicated by the reference numeral S01) is large and the peripheral part is white like the shrimp indicated by the reference numeral S2. Is shown.
  • the shrimp intestine (the part indicated by the symbol S02) is black, it can be said that the digestion of the food is not completed. It can be said that the thicker the black intestine, the more food it consumes.
  • FIG. 5 it can be seen that both the shrimp represented by the symbol S1 and the shrimp represented by the symbol S2 are ingesting a large amount of food and are being digested. Therefore, it is possible to calculate the digestibility of food by image analysis of the intestinal condition of shrimp.
  • the low transparency of the shrimp's body and the reddish tail of the shrimp indicate that the health condition is deteriorating.
  • the feeding condition setting unit 158 sets the feeding conditions related to the supply of feed by the feeding device 60 based on the shrimp information acquired by the shrimp information acquisition unit 157. More specifically, for example, the feeding condition setting unit 158 feeds the feeding condition based on the comparison result between the reference value stored in the reference value storage unit 117 and the shrimp information acquired by the shrimp information acquisition unit 157. To set. For example, the feeding condition setting unit 158 compares the current shrimp ABW based on the acquired shrimp information with the ABW corresponding to the current DOC obtained using the reference value, and compares the shrimp growth status in the aquaculture pond. However, it determines whether it is faster or slower than the general shrimp indicated by the reference value. Then, based on the determination result, it is possible to determine whether to increase or decrease the feeding amount, and to reset the feeding conditions.
  • the feeding conditions include a condition related to the feed supply timing and a condition related to the feed supply amount.
  • the conditions regarding the feed timing when the feed amount is increased, for example, the next feed supply timing can be advanced or the number of feeds per predetermined period can be increased.
  • the condition regarding the feed supply amount when the feed amount is increased, for example, the feed amount at one feeding opportunity can be increased. If the amount of feed is to be reduced, the reverse of these settings may be set.
  • the information output unit 170 outputs information by, for example, transmitting information stored in the storage unit 110 to an external device. In the present embodiment, as will be described later, when there is information to be notified to a user such as a worker, the information output unit 170 notifies the user by transmitting the information to the user terminal device 910, for example. can do.
  • the information output unit 170 may perform notification in other output modes (paper printing, display on a display, transmission of e-mail, etc.) as described above.
  • the communication unit 190 connects the information processing device 100 to the network and controls the information processing device 100 so that it can communicate with other devices connected to the network. As a result, the information processing device 100 can send and receive information to and from the user terminal device 910 and the local device, for example.
  • shrimp information when the above information is summarized, for example, the following can be obtained as shrimp information. That is, as a result of image analysis, information such as shrimp size (size), number of shrimp individuals, shrimp weight, shrimp image and shrimp shape, color, etc., number of dead shrimp (number of dead shrimp), malformation It is possible to obtain the number of shrimp having. Further, the environmental measurement value such as dissolved oxygen may be acquired as one of the shrimp information. In addition, by further processing information based on the results of image analysis and environmental measurement values, more accurate shrimp weight and shrimp size can be obtained, shrimp diseases can be detected, and shrimp appetite can be obtained. Can be evaluated. In addition, by evaluating the appetite of shrimp, it is possible to detect a decrease in health condition when there is less appetite than usual.
  • the shrimp information is not limited to this, and other information may be requested, or the above-mentioned information that is not acquired may be included.
  • the following information can be used when acquiring such shrimp information. That is, information such as the number of growing days (DOC), the type of shrimp, the number of juvenile shrimp introduced, the amount of feed, the weather history, the water temperature history, the dissolved oxygen history, the water quality history, and the turbidity history can be used. By accurately acquiring this information and using it for acquiring the shrimp information, more accurate shrimp information can be acquired.
  • the information that can be used when acquiring the shrimp information the information input by the worker or the like may be used. Further, the output result of the environment sensor 81 or the like may be used for the water temperature history, the dissolved oxygen history, the water quality history, and the like.
  • the result of image analysis of the captured image and the information transmitted from the feeding device 60 and the elevating device 40 may be used.
  • FIG. 6 is a diagram showing the Zaru 20 used in the shrimp farming support system 1.
  • FIG. 7 is a diagram schematically showing an example of a part of a photographed image handled by the shrimp farming support system 1.
  • the colander 20 has a flat substantially disc-like shape in the present embodiment.
  • the shape of the colander 20 is shown in a simplified manner in other figures.
  • the Zaru 20 has a pattern (reference numeral M) that can be photographed by the camera 30.
  • a pattern for example, a grid-like pattern having a predetermined interval (for example, 10 mm or the like) is attached.
  • the size of the shrimp can be measured more accurately. That is, as shown in FIG. 7, the grid spacing that can be grasped by analyzing the captured image is a known predetermined value. Therefore, the image analysis unit 155 can detect the actual size of the shrimp with high accuracy by detecting the size of the shrimp in the captured image as a ratio with the interval of the grid. Further, since the upper surface of the Zaru 20 has a pattern, the camera 30 can be easily calibrated before sampling, and a photographed image can be photographed under accurate photographing conditions.
  • FIG. 8 is a diagram schematically showing another example of a part of the photographed image handled by the shrimp farming support system 1.
  • the pattern is not limited to the above-mentioned grid pattern, and various patterns are used.
  • a checkerboard pattern of a predetermined size may be attached to the colander 20.
  • a part of the colors of the grid pattern may be different colors.
  • it may be a pattern of a predetermined size (polka dot pattern, star pattern, hatching of a predetermined interval or line width, etc.) or a pattern.
  • the above-mentioned effect can be obtained by adding a pattern to the colander 20 so that the scale can be grasped when the image taken by the camera 30 is analyzed, or by making the pattern suitable for calibrating the camera 30. Can be obtained.
  • a monocular digital still camera or the like can be used in the present embodiment.
  • the colander 20 in the present embodiment has a pattern that serves as a reference for size detection, it is possible to accurately detect the size of the shrimp even when a monocular camera is used. ing. Even when the colander 20 is not patterned, for example, by using a compound-eye camera (stereo camera) as the camera 30, the size of the shrimp can be detected with higher accuracy based on the captured image. ..
  • FIG. 9 is a diagram showing an example of a photographed image handled by the shrimp farming support system 1.
  • FIG. 9 As indicated by the reference numeral S, two shrimp are included as a result of sampling.
  • residual food is included in the upper part of FIG. 9, as indicated by the symbol SR.
  • the shrimp information acquisition unit 157 can acquire information such as the size and color of the shrimp as shrimp information of the shrimp in the aquaculture pond.
  • shrimp information such as the number of shrimp in the aquaculture pond and the amount of biomass can be obtained by performing calculations and statistical processing based on the number and size of the acquired shrimp.
  • FIG. 10 is a flowchart showing the overall flow of operations performed by the shrimp farming support system 1.
  • the worker can receive shrimp farming support by performing the following operations.
  • the following processing is performed by the information processing device 100 (or its processing unit 120) or another device that operates in response to a command from the information processing device 100, but is not limited thereto.
  • Step S11 First, the information processing device 100 determines whether or not it has accepted the input of information by the user or has received the information transmitted from another device. If the input is accepted or the information is received, the process proceeds to step S12, and if not, the process returns to step S11.
  • Step S12 The information processing device 100 stores the input-accepted information and the received information in the storage unit 110.
  • the information processing device 100 acquires feeding conditions.
  • the feeding condition may be acquired from the feeding device 60, or the feeding condition set by the feeding condition setting unit 158 may be acquired inside the information processing device 100.
  • Step S14 The information processing device 100 determines whether or not the feeding timing has arrived. If the feeding timing has arrived, the process proceeds to step S15, and if not, the process proceeds to step S16.
  • Step S15 The information processing device 100 and the feeding device 60 feed.
  • Step S16 The information processing device 100 and the elevating device 40 perform sampling.
  • Step S17 The information processing device 100 performs shrimp information analysis processing. As a result, shrimp information can be obtained.
  • Step S18 The information processing device 100 performs reflection processing based on the shrimp information. When the process is completed, the process returns to step S11.
  • FIG. 11 is a flowchart illustrating feeding performed by the shrimp farming support system 1.
  • Feeding is executed by, for example, the feeding device 60 (more specifically, the control unit 67 of the feeding device 60) when a command to execute feeding is transmitted from the information processing device 100 to the feeding device 60. Will be done. It should be noted that the feeding device 60 executes feeding when it is determined that a predetermined feeding timing has arrived based on the set feeding conditions (feeding conditions stored in the feeding condition storage unit 68). May be good.
  • Step S31 The feeding device 60 acquires the feeding conditions stored in the feeding condition storage unit 68.
  • Step S32 The feeding device 60 measures the feed to be supplied based on the conditions related to the feeding amount defined in the feeding conditions by using the measuring unit 63. As a result, the supplied feed is taken out from the feed tank 61.
  • Step S33 The feeding device 60 drives the driving unit 66 to spray the extracted feed to the aquaculture pond by the spraying mechanism 65.
  • Step S34 The feeding device 60 records feeding information.
  • the control unit 67 transmits the feeding information to the information processing device 100.
  • the information processing device 100 receives the feeding information and stores it in the feeding information storage unit 116.
  • step S34 feeding is completed and the process returns to FIG.
  • FIG. 12 is a flowchart illustrating sampling performed by the shrimp farming support system 1.
  • Sampling is performed by, for example, the lifting device 40 (more specifically, the control unit 47 of the lifting device 40) when a command to execute sampling is transmitted from the information processing device 100 to the lifting device 40. Will be done.
  • the information processing apparatus 100 issues a command to execute sampling according to a predetermined schedule. More specifically, the information processing apparatus 100 issues a command to execute sampling when a predetermined time elapses (an example of a predetermined schedule) after feeding is performed according to the schedule determined by the feeding conditions. It is configured as follows.
  • the command to execute sampling is not limited to this.
  • the information processing apparatus 100 may be configured to issue the command according to predetermined schedule information regardless of whether or not feeding has been performed.
  • the elevating device 40 may execute sampling when it is determined that a predetermined execution timing has arrived based on the set predetermined schedule information.
  • Step S111 When sampling is started, the elevating device 40 first calibrates the camera 30 with the colander 20 in a predetermined standby position. In the calibration, the camera 30 adjusts the setting of the camera 30 so that the shooting conditions such as the exposure state become a predetermined degree while shooting the colander 20. Note that calibration does not have to be performed.
  • the elevating device 40 drives the drive unit 45 to rotate the elevating mechanism 41, and lowers the colander 20 to a predetermined descent position.
  • the predetermined descent position is set to, for example, a position where the colander 20 and the environment sensor 81 are immersed in the aquaculture pond.
  • Step S113 The elevating device 40 acquires the environmental measurement value output from the environment sensor 81.
  • the environmental measurement value is transmitted to the information processing device 100 and stored in the environmental measurement value storage unit 115.
  • Step S114 The elevating device 40 determines whether or not to start raising the colander 20. For example, it can be determined that the raising of the Zaru 20 is started when a predetermined time elapses after the completion of step S112, but the present invention is not limited to this. If it is determined that the raising of the colander 20 is to be started, the process proceeds to step S115, and step S114 is repeated until then.
  • Step S115 The elevating device 40 drives the drive unit 45 to rotate the elevating mechanism 41, and raises the colander 20 to a predetermined standby position.
  • Step S116 The lifting device 40 acquires the weight information output from the weight sensor 83.
  • the weight information is transmitted to the information processing device 100 and stored in the weight information storage unit 113.
  • Step S117 The elevating device 40 causes the camera 30 to take a picture of the colander 20.
  • the captured image obtained thereby is transmitted to the information processing device 100.
  • Step S118 In the information processing device 100, the captured image acquisition unit 151 stores the captured image transmitted from the elevating device 40 in the captured image storage unit 111.
  • Step S119 The elevating device 40 performs a return operation for removing the contents of the colander 20.
  • the return operation may not be performed.
  • the worker may remove the contents of Zaru 20.
  • step S119 sampling is completed and the process returns to the process shown in FIG.
  • FIG. 13 is a flowchart illustrating the shrimp information analysis process performed by the shrimp farming support system 1.
  • the shrimp information analysis process is executed in the information processing device 100, for example, when sampling is executed and the captured image is stored in the captured image storage unit 111.
  • the information processing apparatus 100 may execute the shrimp information analysis process, for example, periodically according to a predetermined schedule.
  • Step S131 When the shrimp information analysis process is started, the image analysis unit 155 reads the photographed image stored in the photographed image storage unit 111 to be processed. For example, the captured image stored after the time when the shrimp information analysis process was executed last time is read.
  • Step S132 The image analysis unit 155 performs image analysis on the read captured image.
  • Image analysis is performed, for example, as described above.
  • analysis results such as the size and number of shrimp, the color and size of the intestine of shrimp, and the amount of residual food can be obtained.
  • the shrimp information acquisition unit 157 acquires shrimp information based on the image analysis result and the stored information.
  • the acquisition of shrimp information is performed, for example, as described above.
  • shrimp information such as shrimp population, shrimp weight, shrimp size, shrimp abnormality information, food digestibility, and shrimp appetite information is acquired.
  • the shrimp information acquisition unit 157 stores the acquired shrimp information in the shrimp information storage unit 119.
  • step S134 the shrimp information analysis process is completed, and the process returns to the process shown in FIG.
  • FIG. 14 is a flowchart illustrating the reflection process performed by the shrimp farming support system 1.
  • the reflection process is executed in the information processing device 100, for example, when the shrimp information analysis process is completed and the acquired shrimp information is stored in the shrimp information storage unit 119.
  • the information processing apparatus 100 may execute the reflection process, for example, periodically according to a predetermined schedule.
  • Step S151 The processing unit 150 reads the shrimp information from the shrimp information storage unit 119.
  • Step S152 The processing unit 150 determines whether or not the predetermined notification condition is satisfied based on the read shrimp information and the like. If it is determined that the notification condition is satisfied, the process proceeds to step S153, and if not, the process proceeds to step S154.
  • various notification conditions can be set. For example, when there is information indicating that the shrimp in the aquaculture pond is abnormal as the shrimp information, it may be determined that the notification condition is satisfied. Further, when the appetite of the shrimp is low, it may be determined that the notification condition is satisfied. For example, the appetite of shrimp when the amount of residual food is more than the specified amount or when it is judged from the color and size of the intestine of the shrimp that the food remains undigested after a predetermined time has passed after feeding. Can be judged to be low. Further, when the environmental measurement value exceeds a predetermined threshold value, it may be determined that the notification condition is satisfied. That is, for example, it is preferable to set the notification conditions so that it is judged that the notification conditions are met when the environment of the aquaculture pond is deteriorated or there is a possibility that there is a problem with the growth of shrimp.
  • Step S153 The processing unit 150 causes the information output unit 170 to execute the notification. For example, by notifying the user of the reason for conforming to the notification conditions, it is possible to notify the user to that effect and prompt the user to take action.
  • the notification method may be appropriately set as described above.
  • step S152 it is determined that the notification condition is always satisfied, and in step S153, notification items related to the shrimp information at that time (for example, shrimp growth status, environment state of the aquaculture pond, etc.) are always notified to the user. You may do so.
  • Step S154 The processing unit 150 determines whether or not the feeding amount is excessive. For example, when the amount of residual food is equal to or greater than the specified amount after a predetermined time has passed after feeding, or when it is judged from the color and size of the intestine of the shrimp that the food remains undigested, the amount of feed is increased. It should be judged that it is excessive. If it is determined that the feeding amount is excessive, the process proceeds to step S155, and if not, the process proceeds to step S156.
  • the feeding condition setting unit 158 changes the feeding condition so as to reduce the feeding amount.
  • the changed feeding condition is transmitted to the feeding device 60 and stored in the feeding condition storage unit 68.
  • the feeding amount at one time may be reduced by a predetermined amount or a predetermined ratio, or the feeding timing interval may be delayed by a predetermined time.
  • the feeding conditions By changing the feeding conditions by a predetermined degree, it is possible to prevent a sudden change in the feeding amount from occurring.
  • the process proceeds to step S156.
  • Step S156 The processing unit 150 determines whether or not the feeding amount is insufficient. For example, when the amount of residual food is less than the specified amount after a predetermined time has passed after feeding, or when it is judged that the food has been digested based on the color and size of the intestine of the shrimp, the amount of feed is insufficient. It should be judged that it is doing. If it is determined that the amount of feed is insufficient, the process proceeds to step S157, and if not, the process proceeds to step S158.
  • the feeding condition setting unit 158 changes the feeding condition so as to increase the feeding amount.
  • the changed feeding condition is transmitted to the feeding device 60 and stored in the feeding condition storage unit 68.
  • the feeding amount at one time may be increased by a predetermined amount or a predetermined ratio, or the feeding timing interval may be shortened by a predetermined time.
  • the feeding conditions By changing the feeding conditions by a predetermined degree, it is possible to prevent a sudden change in the feeding amount from occurring.
  • the process proceeds to step S158.
  • Step S158 The processing unit 150 determines whether or not the oxygen concentration, that is, the dissolved oxygen is lower than the first oxygen threshold.
  • the first oxygen threshold is preferably set slightly higher than the minimum value of dissolved oxygen required for the healthy growth of a predetermined biomass of shrimp.
  • Step S159 The information processing device 100 transmits a command to the aeration device 70, and causes the aeration device 70 to execute aeration. As a result, it is possible to prevent the state in which the dissolved oxygen in the aquaculture pond is insufficient from continuing. The process proceeds to step S160.
  • Step S160 The processing unit 150 determines whether or not the oxygen concentration, that is, the dissolved oxygen is higher than the second oxygen threshold.
  • the second oxygen threshold is a value higher than the first oxygen threshold.
  • Step S161 The information processing device 100 transmits a command to the aeration device 70, and causes the aeration device 70 to stop the aeration. As a result, it is possible to maintain a state in which dissolved oxygen is surely secured, prevent unnecessary aeration from being performed, and promote energy saving.
  • the shrimp farming support system 1 automatically performs sampling to acquire shrimp information. Therefore, the shrimp information in the aquaculture pond can be easily obtained.
  • the shrimp information is acquired by performing image analysis based on the captured image, or is acquired based on the result of image analysis and other information. Therefore, more accurate shrimp information can be obtained.
  • reflection processing is executed according to the acquired shrimp information. Since the feeding conditions are changed by the reflection process and the subsequent feeding is performed based on the changed feeding conditions, appropriate feeding can be performed according to the growth situation of the shrimp. Therefore, the aquaculture pond can be maintained in a good environment, and the shrimp can be sufficiently fed.
  • the biomass is calculated based on the feed amount under the assumption that a predetermined ratio of the biomass of the shrimp is an appropriate feed amount. That is, the reference value of ABW corresponding to DOC is calculated. Then, the required feeding amount is calculated with respect to the reference value of ABW (for example, it may be calculated using a predetermined table). Then, the amount of food supplied to the colander 20 is calculated based on the ratio of the area ratio of the entire fishpond to the colander and the amount of food supplied to the entire pond.
  • the amount of residual food in the entire pond is calculated based on the ratio of the amount of residual food on the colander 20 to the amount of food supplied on the colander 20 and the amount of food supplied to the entire pond. Then, the amount of food consumed by the entire pond is given by subtracting the amount of residual food from the amount of food dropped, and the number of shrimp can be estimated based on the amount of food consumed by the entire pond. it can. Then, since the reference value of the ABW of the shrimp is given, the biomass of the shrimp can be calculated by multiplying the number of individuals of the shrimp by the ABW.
  • highly accurate shrimp biomass can be obtained based on the result of actual sampling.
  • the amount of feed to the shrimp is determined by dividing the amount of feed per day, which has been determined in advance, by the number of times of feed per day, but the amount of feed per time is determined by utilizing the shrimp farming support system 1. It is possible to automatically optimize the amount of feed for each. For example, when the Nth feeding is performed, the colander is automatically lifted xx minutes after feeding and xx + m minutes later, the presence or absence of residual feeding is determined from the captured image, and the preset next feeding amount is adjusted. Specifically, for example, if there is no residual food after xx minutes, or if it is judged from the color and size of the shrimp intestine that the food has already been digested, the N + 1th feeding amount is set to the Nth feeding amount.
  • the daily feeding amount can be adjusted by changing the feeding interval instead of adjusting the feeding amount at one time.
  • the camera 30 may be used to detect the turbidity of the aquaculture pond.
  • FIG. 15 is a flowchart illustrating the turbidity detection process performed by the shrimp farming support system 1.
  • a command to execute sampling is transmitted from the information processing device 100 to the elevating device 40, a command is issued to perform the turbidity detection process algae accordingly. It may be.
  • Step S191 When the turbidity detection process is started, the elevating device 40 first calibrates the camera 30 with the colander 20 in a predetermined standby position.
  • Step S192 The elevating device 40 drives the drive unit 45 to rotate the elevating mechanism 41, and gradually lowers the colander 20.
  • the elevating device 40 detects the water surface position of the aquaculture pond.
  • Various methods can be used to detect the water surface position. For example, the detection may be based on a change in the measured value of the weight sensor 83, or the water surface position may be detected by using another sensor. Further, the water surface position may be detected based on the information input from the user. The water surface position serves as a reference for the water depth used when measuring turbidity.
  • Step S194 The immersion image acquisition unit 153 acquires the immersion image of the colander 20 that has begun to be immersed in the aquaculture pond.
  • Step S195 The turbidity detection unit 156 determines whether or not the colander 20 satisfies a predetermined visibility condition based on the image during immersion. When it is determined that the visibility condition is satisfied, the process returns to step S193. If not, the process proceeds to step S196.
  • Step S196 The position information acquisition unit 154 acquires the vertical position of the colander 20. That is, the water depth of the colander 20 when the visible condition is no longer satisfied is detected.
  • the turbidity detection unit 156 acquires the turbidity based on the value of the water depth of the colander 20 when the visible condition is no longer satisfied. For example, it has information in which the water depth and the turbidity are associated in advance, and the turbidity corresponding to the water depth can be detected based on the information and the water depth.
  • the processing in this embodiment may be realized by software. Then, this software may be distributed by software download or the like. Further, this software may be recorded on a recording medium such as a CD-ROM and disseminated.
  • the software that realizes the information processing device 100 in the present embodiment is the following program. That is, this program uses a computer to acquire a photographed image obtained by photographing a shrimp raised from a shrimp farm with a camera, and a photographed image acquired by the photographed image acquisition unit.
  • This is a shrimp farming support program for operating as a shrimp information acquisition unit that acquires shrimp information about shrimp in a farming pond based on the image analysis unit to be analyzed and the analysis results of the image analysis unit.
  • the information processing device 100, the feeding device 60, and the elevating device 240 having the same internal configuration as that of the first embodiment are used.
  • the present embodiment is different from the first embodiment in that the elevating device 240 is provided inside the feed tank 61 of the feeding device 60.
  • FIG. 16 is a diagram showing the configuration of the elevating device 240 according to the second embodiment.
  • the camera 30 is arranged inside the feed tank 61 so that it can be photographed downward.
  • a hole (not shown) is formed in the lower part of the feed tank 61 so that the camera 30 can take a picture of the Zaru 20.
  • the photographed image taken by the camera 30 is less likely to be affected by wind and snow or the influence of sunlight. Therefore, highly accurate shrimp information can be obtained regardless of outdoor environmental factors.
  • the camera 30 may be configured to be located inside the feed tank 61.
  • the information processing device 100, the feeding device 60, and the elevating device 340 having the same internal configuration as that of the first embodiment are used.
  • the present embodiment is different from the first embodiment in that the elevating device 340 is provided under the feed tank 61 of the feeding device 60.
  • FIG. 17 is a diagram showing the configuration of the elevating device 340 according to the third embodiment.
  • the camera 30 is arranged below the feed tank 61 so that it can be photographed downward.
  • the camera 30 is arranged behind the feed tank 61.
  • the camera 30 can be attached to the Yakura for installing the feed tank 61.
  • the photographed image taken by the camera 30 is less susceptible to the influence of wind and snow or the influence of sunlight. Therefore, highly accurate shrimp information can be obtained regardless of outdoor environmental factors.
  • the camera 30 may be configured to be located below the feed tank 61.
  • the camera 30 may be installed under the sunshade Yakura installed on the aquaculture pond so that the same effect can be obtained.
  • an elevating device 440 is used, which is different from the first embodiment in the method of raising and lowering the 20.
  • FIG. 18 is a diagram showing the configuration of the elevating device 440 according to the fourth embodiment.
  • FIG. 18 shows a state in which sampling is performed by the elevating device 440 and the colander 20 and the environment sensor 81 are immersed in the aquaculture pond.
  • the elevating device 440 has an arm-shaped elevating mechanism 441 and a drive unit 445.
  • the drive unit 445 is configured so that the elevating mechanism 441 is supported with respect to the foundation 442 at its root and the elevating mechanism 441 can be rotated with respect to the foundation 442.
  • the drive unit 445 is composed of, for example, an electric motor, gears, and the like, but is not limited thereto.
  • a hanging string 43 for holding the colander 20 is attached to the tip of the elevating mechanism 441.
  • the hanging string 43 is provided with, for example, an environment sensor 81 and a weight sensor 83.
  • the weight sensor 83 can obtain the weight information of the colander 20. It should be noted that the weight information of the colander 20 may be obtained based on the magnitude of the stress generated in the elevating mechanism 441 and the magnitude of the load of the drive unit 445.
  • the camera 30 is attached, for example, near the tip of the elevating mechanism 441 so as to be able to shoot downward toward the colander 20.
  • FIG. 19 is a diagram showing the operation of the elevating device 440 at the time of sampling.
  • FIG. 19 shows a state in which the Zaru 20 immersed in the fishpond is pulled up from the fishpond as shown in FIG. That is, from the state shown in FIG. 18, the colander 20 can be pulled up to the standby position by driving the drive unit 445 and rotating the elevating mechanism 441 upward with respect to the foundation 442. In this state, by photographing the Zaru 20 with the camera 30 and obtaining a photographed image, the shrimp information can be easily acquired as in the above-described first embodiment.
  • FIG. 20 is a diagram illustrating an elevating device 440 according to a modification of the fourth embodiment.
  • the positional relationship between the camera 30 and the feed tank 61 of the feeding device 60 may be adopted so that the camera 30 is hidden behind. By doing so, it is possible to acquire highly accurate shrimp information regardless of outdoor environmental factors.
  • the worker may feed.
  • the worker by notifying the worker of the feeding conditions, the worker can easily know the amount of feed to be supplied and the feeding timing. Further, it is preferable that the operator operates the user terminal device 910 to input information so that the amount of feed actually supplied to the information processing device 100 and the feeding timing are recorded.
  • the worker may raise and lower the colander.
  • the raised colander 20 is automatically photographed by the camera 30.
  • the camera 30 takes a picture of the Zaru 20 by himself, and the worker operates the user terminal device 910 or the like to transmit the photographed image to the information processing device 100. You may try to do it.
  • the work by the worker intervenes, or the work by the worker and the processing performed by the information processing device are performed in parallel. It may be.
  • the information processing device may accept the input of information performed by the worker who has confirmed the captured image, and the shrimp information acquisition unit may acquire the shrimp information based on the received information.
  • the worker who sees the photographed image may input the residual food amount, and the shrimp information acquisition unit may acquire the shrimp information based on the residual food amount input by the worker.
  • information such as the presence / absence of an abnormality related to the sampled shrimp is input by the operator who has seen the captured image, and the information regarding the presence / absence of the input abnormality is acquired by the shrimp information acquisition unit as shrimp information. May be good.
  • the information processing device transmits the captured image and the analysis result of the captured image to the terminal device operated by the operator, and then the information transmitted from the terminal device operated by the worker is transmitted to the information processing device. Should be received.
  • the result of image analysis of the captured image by the image analysis unit is transmitted to the worker as a provisional one, and the worker confirms whether or not the transmitted information is appropriate. You may do so.
  • the shrimp information acquisition unit may acquire the shrimp information based on the image analysis result of the captured image confirmed to be appropriate by the operator.
  • the operator identifies the area of the object included in the captured image and annotates the attributes of the area (whether it is shrimp or residual food, etc.), and the result is Image analysis or the like may be performed based on the above. Even when the work by the worker intervenes or the work by the worker and the processing performed by the information processing device are performed in parallel in this way, the shrimp information is appropriately acquired based on the captured image. be able to.
  • a container such as a bucket or a tray may be used as a collector.
  • a sampling device such as a bucket that can sample the water of the aquaculture pond, it is possible to take a picture of aquatic animals such as shrimp while they are in the water. You can shoot without the shrimp and the like going wild. In addition, it is possible to acquire a photographed image showing the behavior in water and obtain shrimp information.
  • a camera that captures a moving image may be used to obtain shrimp information by analyzing a moving image as a captured image. For example, shrimp may be detected in a moving image for a predetermined time, and the activity of the shrimp may be obtained as shrimp information by using the amount of movement of the shrimp or the like.
  • FIG. 21 is an overview view of the computer system 800 according to the above embodiment.
  • FIG. 22 is a block diagram of the computer system 800.
  • the computer system 800 includes a computer 801 including a CD-ROM drive, a keyboard 802, a mouse 803, and a monitor 804.
  • the computer 801 is connected to the MPU 8013, the bus 8014 connected to the CD-ROM drive 8012, the ROM 8015 for storing programs such as the bootup program, and the MPU 8013. It includes a RAM 8016 for temporarily storing program instructions and providing a temporary storage space, and a hard disk 8017 for storing application programs, system programs, and data.
  • the computer 801 may further include a network card that provides a connection to the LAN.
  • the program for causing the computer system 800 to execute the functions of the information processing apparatus and the like according to the above-described embodiment may be stored in the CD-ROM 8101, inserted into the CD-ROM drive 8012, and further transferred to the hard disk 8017.
  • the program may be transmitted to the computer 801 via a network (not shown) and stored on the hard disk 8017.
  • the program is loaded into RAM 8016 at run time.
  • the program may be loaded directly from the CD-ROM 8101 or the network.
  • the program does not necessarily include an operating system (OS) that causes the computer 801 to execute the functions of the information processing apparatus and the like according to the above-described embodiment, or a third-party program and the like.
  • the program need only include a portion of the instruction that calls the appropriate function (module) in a controlled manner to obtain the desired result. It is well known how the computer system 800 works, and detailed description thereof will be omitted.
  • processing performed by hardware for example, processing performed by a modem or interface card in the transmission step (only performed by hardware). Processing that is not done) is not included.
  • the number of computers that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • the two or more communication means existing in one device may be physically realized by one medium.
  • each process may be realized by centralized processing by a single device (system), or by distributed processing by a plurality of devices. (In this case, it is possible to grasp the entire system composed of a plurality of devices that perform distributed processing as one "device").
  • An embodiment may be configured by appropriately combining the above-mentioned plurality of embodiments.
  • the configuration itself is not limited to the above-described embodiment, and each component of the above-described embodiment may be appropriately replaced or combined with the component of another embodiment.
  • some components and functions may be omitted from the above-described embodiments.
  • aquatic animals having the same configuration as that of the above embodiment and targeting other aquatic animals such as other crustacean animals different from shrimp, shellfish, and fish belonging to fish.
  • An aquaculture support system may be configured.
  • the aquatic animal aquaculture support system according to the present invention has an effect that information on aquatic animals such as shrimp in the aquatic pond can be easily obtained, and is useful as an aquatic animal aquaculture support system or the like. is there.

Abstract

[Problem] To provide an aquatic animal cultivation assisting system capable of easily acquiring information relating to an aquatic animal such as shrimp in an aquaculture pond. [Solution] An aquatic animal cultivation assisting system 1 is provided with: a captured image acquisition unit 151 for acquiring a captured image acquired by imaging a collector 20 taken from an aquaculture pond for an aquatic animal using a camera 30; an image analysis unit 155 for analyzing the captured image acquired by the captured image acquisition unit 151; and an aquatic animal information acquisition unit 157 for acquiring aquatic animal information relating to an aquatic animal in the aquaculture pond on the basis of the analysis result from the image analysis unit 155.

Description

水棲動物養殖支援システム、昇降装置、給餌装置、水棲動物の養殖方法、及び水棲動物養殖支援プログラムAquatic animal farming support system, lifting device, feeding device, aquatic animal farming method, and aquatic animal farming support program
 本発明は、養殖池中の水棲動物に関する情報を取得できる水棲動物養殖支援システム、昇降装置、給餌装置、水棲動物の養殖方法、及び水棲動物養殖支援プログラムに関するものである。 The present invention relates to an aquatic animal aquaculture support system, an elevating device, a feeding device, an aquatic animal aquaculture method, and an aquatic animal aquaculture support program that can acquire information on aquatic animals in aquaculture ponds.
 従来、エビなどの水棲動物を養殖池で養殖する方法や、養殖に用いられる給餌装置などが、種々提案されている。例えば、下記特許文献1には、養殖水槽への送水経路に飼料を混入させて給餌する給餌装置の構成が開示されている。 Conventionally, various methods for cultivating aquatic animals such as shrimp in aquaculture ponds and feeding devices used for aquaculture have been proposed. For example, Patent Document 1 below discloses a configuration of a feeding device that feeds by mixing feed into a water supply route to an aquaculture aquarium.
 ところで、水棲動物を養殖する場合には、養殖池中で成育する水棲動物の状態などの情報を適宜取得し、それに応じて養殖に関する条件を適切に調整する必要がある。具体的には、例えば、給餌量を正確に決定する必要がある。給餌量が不足していると、水棲動物の成長率が低下する。他方、給餌量が過剰であると、養殖池の水質が悪化して疾病リスクが大きくなり、水棲動物の致死率が増加する。給餌量を決定するのに際しては、養殖池中の水棲動物の生物量を把握する必要がある。しかしながら、一般的に、養殖池の透明度は低いため、水棲動物の生物量を把握するのは困難である。 By the way, when cultivating aquatic animals, it is necessary to appropriately acquire information such as the state of aquatic animals growing in the aquaculture pond and appropriately adjust the conditions for aquaculture accordingly. Specifically, for example, it is necessary to accurately determine the amount of feed. Insufficient feeding reduces the growth rate of aquatic animals. On the other hand, if the amount of feed is excessive, the water quality of the pond deteriorates, the risk of disease increases, and the mortality rate of aquatic animals increases. When determining the amount of feed, it is necessary to understand the biomass of aquatic animals in the aquaculture pond. However, it is generally difficult to ascertain the biomass of aquatic animals due to the low transparency of the pond.
 生物量など、養殖池中の水棲動物に関する情報を把握するために、ざる等の採取器を用いたサンプリングが行われることがある。サンプリングは、例えば、養殖池中にざるを入れた後にそのざるを引き上げて、ざるに残った水棲動物の数や状態を調査することにより行われる。 In order to grasp information about aquatic animals in the aquaculture pond, such as biomass, sampling using a collector such as a colander may be performed. Sampling is performed, for example, by placing a colander in a farm pond and then pulling it up to investigate the number and condition of aquatic animals remaining in the colander.
特開2018-108075号公報JP-A-2018-108075
 しかしながら、このようなサンプリングには手間がかかる。 However, such sampling takes time and effort.
 すなわち、従来、水棲動物の養殖を行う場合において、養殖池中の水棲動物に関する情報を取得するのが困難である。 That is, conventionally, when aquatic animals are cultivated, it is difficult to obtain information on aquatic animals in the aquaculture pond.
 本第一の発明の水棲動物養殖支援システムは、水棲動物の養殖池から上げられた採取器をカメラで撮影することにより得られた静止画又は動画像である撮影画像を取得する撮影画像取得部と、撮影画像取得部により取得された撮影画像を解析する画像解析部と、画像解析部の解析結果に基づいて、養殖池中の水棲動物に関する水棲動物情報を取得する水棲動物情報取得部とを備える、水棲動物養殖支援システムである。 The aquatic animal culture support system of the first invention is a photographed image acquisition unit that acquires a photographed image which is a still image or a moving image obtained by photographing a collector raised from an aquatic animal farming pond with a camera. And an image analysis unit that analyzes the captured image acquired by the captured image acquisition unit, and an aquatic animal information acquisition unit that acquires aquatic animal information about aquatic animals in the farming pond based on the analysis results of the image analysis unit. It is an aquatic animal farming support system.
 かかる構成により、養殖池中の水棲動物に関する情報を容易に取得することができる。 With such a configuration, information on aquatic animals in the aquaculture pond can be easily obtained.
 また、本第二の発明の水棲動物養殖支援システムは、第一の発明に対して、画像解析部は、撮影画像内の物体が含まれる領域を検出し、予め記憶されている情報に基づいて、検出した領域に水棲動物が含まれるか否かを判定する、水棲動物養殖支援システムである。 Further, in the aquatic animal aquaculture support system of the second invention, with respect to the first invention, the image analysis unit detects an area including an object in the captured image and is based on the information stored in advance. , It is an aquatic animal farming support system that determines whether or not the detected area contains aquatic animals.
 かかる構成により、撮影画像内に含まれる水棲動物について高精度に判定することができる。 With such a configuration, it is possible to determine with high accuracy the aquatic animals contained in the captured image.
 また、本第三の発明の水棲動物養殖支援システムは、第一又は二の発明に対して、水棲動物情報は、水棲動物の個体数に関する情報、水棲動物の重量に関する情報、水棲動物の大きさに関する情報、水棲動物の腸の色及び大きさの少なくとも一方に関する情報、水棲動物の飼料の消化率に関する情報、及び水棲動物の異常に関する情報の少なくとも1つを含む、水棲動物養殖支援システムである。 Further, in the aquatic animal cultivation support system of the third invention, with respect to the first or second invention, the aquatic animal information includes information on the number of aquatic animals, information on the weight of aquatic animals, and the size of aquatic animals. An aquatic animal farming support system that includes at least one of information about, at least one of aquatic animal intestinal color and size, information about aquatic animal feed digestibility, and information about aquatic animal abnormalities.
 かかる構成により、養殖池中の水棲動物の個体数、重量、大きさ、異常、食欲に関する情報の少なくとも1つを容易に取得することができる。 With such a configuration, at least one of information on the number, weight, size, abnormality, and appetite of aquatic animals in the aquaculture pond can be easily obtained.
 また、本第四の発明の水棲動物養殖支援システムは、第一から三のいずれかの発明に対して、採取器を下げて養殖池に漬けた後に採取器を養殖池から上げる昇降装置をさらに備える、水棲動物養殖支援システムである。 Further, the aquatic animal aquaculture support system of the fourth invention further provides an elevating device for raising the aquatic animal from the aquaculture pond after lowering the collector and immersing it in the aquaculture pond for any of the first to third inventions. It is an aquatic animal farming support system.
 かかる構成により、採取器の上げ下げに関する動作も含めて養殖池中の水棲動物に関する情報をさらに容易に取得することができる。 With such a configuration, it is possible to more easily obtain information on aquatic animals in the aquaculture pond, including operations related to raising and lowering the collector.
 また、本第五の発明の水棲動物養殖支援システムは、第四の発明に対して、撮影画像取得部は、昇降装置により採取器が養殖池から上げられたタイミングに対応するタイミングで撮影された撮影画像を取得する、水棲動物養殖支援システムである。 Further, in the aquatic animal aquaculture support system of the fifth invention, in contrast to the fourth invention, the photographed image acquisition unit was photographed at a timing corresponding to the timing when the collector was lifted from the aquaculture pond by the elevating device. This is an aquatic animal farming support system that acquires captured images.
 かかる構成により、採取器の上げ下げに応じて自動的に養殖池中の水棲動物に関する情報を取得することができる。 With this configuration, it is possible to automatically acquire information on aquatic animals in the aquaculture pond according to the raising and lowering of the collector.
 また、本第六の発明の水棲動物養殖支援システムは、第四又は五の発明に対して、昇降装置は、所定のスケジュールに従って採取器の上げ下げを行う、水棲動物養殖支援システムである。 Further, the aquatic animal aquaculture support system of the sixth invention is an aquatic animal aquaculture support system in which the elevating device raises and lowers the collector according to a predetermined schedule for the fourth or fifth invention.
 かかる構成により、自動的に採取器の上げ下げを行って水棲動物に関する情報を取得することができる。 With this configuration, it is possible to automatically raise and lower the collector to obtain information on aquatic animals.
 また、本第七の発明の水棲動物養殖支援システムは、第一から六のいずれかの発明に対して、養殖池から上げられた採取器の重量に関する重量情報を取得する重量情報取得部をさらに備え、水棲動物情報取得部は、画像解析部の画像解析結果と重量情報取得部により取得された重量情報とに基づいて求めた養殖池中の水棲動物の生物量に関する水棲動物情報を取得する、水棲動物養殖支援システムである。 In addition, the aquatic animal aquaculture support system of the seventh invention further includes a weight information acquisition unit that acquires weight information regarding the weight of the collector raised from the aquaculture pond for any of the first to sixth inventions. In preparation, the aquatic animal information acquisition unit acquires aquatic animal information regarding the amount of aquatic animals in the aquaculture pond obtained based on the image analysis result of the image analysis unit and the weight information acquired by the weight information acquisition unit. It is an aquatic animal farming support system.
 かかる構成により、養殖池中の水棲動物に関する高精度な情報を取得することができる。 With this configuration, it is possible to obtain highly accurate information on aquatic animals in the aquaculture pond.
 また、本第八の発明の水棲動物養殖支援システムは、第一から七のいずれかの発明に対して、採取器には、カメラにより撮影可能な模様が付されている、水棲動物養殖支援システムである。 Further, the aquatic animal aquaculture support system of the eighth invention is an aquatic animal aquaculture support system in which a pattern that can be photographed by a camera is attached to the collector for any of the inventions 1 to 7. Is.
 かかる構成により、養殖池中の水棲動物に関する高精度な情報を取得することができる。 With this configuration, it is possible to obtain highly accurate information on aquatic animals in the aquaculture pond.
 また、本第九の発明の水棲動物養殖支援システムは、第一から八のいずれかの発明に対して、養殖池に漬けられている採取器を養殖池の水面よりも上にあるカメラで撮影することにより得られた浸漬中画像を取得する浸漬中画像取得部と、上下方向における採取器の位置に関する位置情報を取得する位置情報取得部と、浸漬中画像取得部により取得された浸漬中画像と、位置情報取得部により取得された位置情報とに基づいて、養殖池の濁度を検出する濁度検出部とをさらに備える、水棲動物養殖支援システムである。 Further, in the aquatic animal aquaculture support system of the ninth invention, for any of the first to eighth inventions, the collector immersed in the aquaculture pond is photographed by a camera above the water surface of the aquaculture pond. An image acquisition unit during immersion that acquires an image during immersion, a position information acquisition unit that acquires position information regarding the position of the sampler in the vertical direction, and an image during immersion acquired by an image acquisition unit during immersion. This is an aquatic animal aquaculture support system further including a turbidity detection unit that detects the turbidity of the aquaculture pond based on the position information acquired by the position information acquisition unit.
 かかる構成により、養殖池の濁度を容易に検出することができる。 With such a configuration, the turbidity of the aquaculture pond can be easily detected.
 また、本第十の発明の水棲動物養殖支援システムは、第一から九のいずれかの発明に対して、養殖池の環境に関する環境計測値を取得する環境センサをさらに備え、環境センサは、採取器と共に養殖池に浸漬可能となるように、採取器又は採取器に取り付けられている部材に取り付けられている、水棲動物養殖支援システムである。 Further, the aquatic animal aquaculture support system of the tenth invention further includes an environmental sensor for acquiring environmental measurement values related to the environment of the fishpond for any of the inventions 1 to 9, and the environmental sensor collects the aquatic animal. It is an aquatic animal aquaculture support system attached to a collector or a member attached to the collector so that it can be immersed in a fishpond together with the vessel.
 かかる構成により、採取器を養殖池に漬けるのに伴って養殖池の環境に関する環境計測値を容易に得ることができる。 With such a configuration, it is possible to easily obtain environmental measurement values related to the environment of the aquaculture pond as the collector is immersed in the aquaculture pond.
 また、本第十一の発明の水棲動物養殖支援システムは、第十の発明に対して、水棲動物情報取得部は、環境センサにより取得された環境計測値に基づいて求めた養殖池中の水棲動物の生物量に関する水棲動物情報を取得する、水棲動物養殖支援システムである。 Further, in the aquatic animal aquaculture support system of the eleventh invention, the aquatic animal information acquisition unit obtained the aquatic animal in the aquaculture pond based on the environmental measurement value acquired by the environmental sensor for the tenth invention. It is an aquatic animal aquaculture support system that acquires aquatic animal information on the amount of animals.
 かかる構成により、養殖池中の水棲動物に関する高精度な情報を取得することができる。 With this configuration, it is possible to obtain highly accurate information on aquatic animals in the aquaculture pond.
 また、本第十二の発明の水棲動物養殖支援システムは、第一から十一のいずれかの発明に対して、養殖池に飼料を供給する給餌装置をさらに備え、水棲動物情報取得部は、給餌装置による飼料の供給タイミングと、画像解析部で解析した撮影画像の撮影タイミングとに基づいて、給餌量の過不足に関する情報、水棲動物の腸の色及び大きさの少なくとも一方に関する情報、及び飼料の消化率に関する情報の少なくとも1つを含む水棲動物情報を取得する、水棲動物養殖支援システムである。 Further, the aquatic animal aquaculture support system of the twelfth invention further includes a feeding device for supplying aquaculture pond for any of the first to eleventh inventions, and the aquatic animal information acquisition unit Based on the feeding timing of the feed by the feeding device and the shooting timing of the captured image analyzed by the image analysis unit, information on excess or deficiency of feeding amount, information on at least one of the color and size of the intestines of aquatic animals, and feed. It is an aquatic animal aquaculture support system that acquires aquatic animal information including at least one of the information on the digestibility of aquatic animals.
 かかる構成により、養殖池中の水棲動物に対する給餌量の過不足に関する情報、水棲動物の腸の色及び大きさの少なくとも一方に関する情報、及び飼料の消化率に関する情報の少なくとも1つを取得することができる。 With this configuration, it is possible to obtain at least one of information on excess or deficiency of feed for aquatic animals in aquaculture ponds, information on at least one of the intestinal color and size of aquatic animals, and information on feed digestibility. it can.
 また、本第十三の発明の水棲動物養殖支援システムは、第一から十一のいずれかの発明に対して、養殖池に飼料を供給する給餌装置と、水棲動物情報取得部により取得された水棲動物情報に基づいて、給餌装置による飼料の供給に関する給餌条件を設定する給餌条件設定部とをさらに備え、給餌装置は、給餌条件設定部により設定された給餌条件に基づいて、飼料の供給を行う、水棲動物養殖支援システムである。 In addition, the aquatic animal farming support system of the thirteenth invention was acquired by the aquatic animal information acquisition department and the feeding device that supplies feed to the aquaculture pond for any of the first to eleventh inventions. It further includes a feeding condition setting unit that sets feeding conditions related to the supply of feed by the feeding device based on aquatic animal information, and the feeding device supplies feed based on the feeding conditions set by the feeding condition setting unit. This is an aquatic animal farming support system.
 かかる構成により、養殖池中の水棲動物の状態に応じた給餌条件で飼料を供給することができる。 With such a configuration, feed can be supplied under feeding conditions according to the condition of aquatic animals in the aquaculture pond.
 また、本第十四の発明の水棲動物養殖支援システムは、第十三の発明に対して、給餌条件は、飼料の供給タイミングに関する条件と、飼料の供給量に関する条件との少なくとも一方を含む、水棲動物養殖支援システムである。 Further, in the aquatic animal aquaculture support system of the fourteenth invention, with respect to the thirteenth invention, the feeding condition includes at least one of the condition relating to the feed supply timing and the condition relating to the feed supply amount. It is an aquatic animal farming support system.
 かかる構成により、養殖池中の水棲動物の状態に応じて飼料の供給タイミング又は供給量を設定することができる。 With this configuration, the feed timing or feed amount can be set according to the condition of the aquatic animals in the aquaculture pond.
 また、本第十五の発明の水棲動物養殖支援システムは、第十三又は十四の発明に対して、水棲動物の成長に関する所定の参照値が格納されている参照値格納部をさらに備え、給餌条件設定部は、参照値格納部に格納されている参照値と、水棲動物情報取得部により取得された水棲動物情報との比較結果に基づいて、給餌条件を設定する、水棲動物養殖支援システムである。 Further, the aquatic animal aquaculture support system of the fifteenth invention further includes a reference value storage unit for storing a predetermined reference value regarding the growth of aquatic animals for the thirteenth or fourteenth invention. The aquatic animal farming support system sets the feeding conditions based on the comparison result between the reference value stored in the reference value storage unit and the aquatic animal information acquired by the aquatic animal information acquisition unit. Is.
 かかる構成により、養殖池中の水棲動物の成育状態に応じた給餌条件で飼料を供給することができる。 With such a configuration, feed can be supplied under feeding conditions according to the growth state of aquatic animals in the aquaculture pond.
 また、本第十六の発明の水棲動物養殖支援システムは、第十二から十五のいずれかの発明に対して、給餌装置により給餌される飼料が貯蔵される飼料タンクをさらに備え、カメラは飼料タンクの下又は内部に配置されている、水棲動物養殖支援システムである。 Further, the aquatic animal aquaculture support system of the sixteenth invention further includes a feed tank for storing the feed fed by the feeding device for any of the twelfth to fifteenth inventions, and the camera An aquatic animal farming support system located under or inside a feed tank.
 かかる構成により、天候や照明等の撮影環境が撮影画像に及ぼす影響を小さくして、より正確な撮影画像の解析結果を得ることができる。 With such a configuration, the influence of the shooting environment such as weather and lighting on the shot image can be reduced, and a more accurate analysis result of the shot image can be obtained.
 また、本第十七の発明の水棲動物養殖支援システムは、第一から十六のいずれかの発明に対して、水棲動物情報取得部は、養殖池に供給された飼料の量と、画像解析部の解析結果とに基づいて、水棲動物情報を取得する、水棲動物養殖支援システムである。 Further, in the aquatic animal aquaculture support system of the seventeenth invention, for any of the inventions 1 to 16, the aquatic animal information acquisition unit determines the amount of feed supplied to the aquaculture pond and image analysis. This is an aquatic animal aquaculture support system that acquires aquatic animal information based on the analysis results of the department.
 かかる構成により、養殖池中の水棲動物に関する高精度な情報を取得することができる。 With this configuration, it is possible to obtain highly accurate information on aquatic animals in the aquaculture pond.
 また、本第十八の発明の水棲動物養殖支援システムは、第一から十七のいずれかの発明に対して、水棲動物情報取得部が取得した水棲動物情報が、水棲動物の成育日数情報及び成育環境に関する情報に対応付けて格納される水棲動物情報格納部と、水棲動物情報格納部に格納された、過去の水棲動物情報と現在の水棲動物情報とに基づいて、現在の養殖池中の水棲動物の成育状態に関する判定を行う、水棲動物養殖支援システムである。 Further, in the aquatic animal cultivation support system of the eighteenth invention, the aquatic animal information acquired by the aquatic animal information acquisition department is used for the aquatic animal growth days information and the aquatic animal growth days information for any of the first to seventeenth inventions. Based on the aquatic animal information storage unit stored in association with the information related to the growing environment and the past aquatic animal information and the current aquatic animal information stored in the aquatic animal information storage unit, the current aquatic animal pond This is an aquatic animal farming support system that determines the growth status of aquatic animals.
 かかる構成により、養殖池中の水棲動物の成育状態に関して適切に判定を行うことができる。 With such a configuration, it is possible to appropriately judge the growth state of aquatic animals in the aquaculture pond.
 また、本第十九の発明の昇降装置は、上記の水棲動物養殖支援システムにおいて用いられる昇降装置であって、採取器を保持する保持部材と、保持部材により保持されている採取器を昇降させるための昇降機構と、昇降機構を駆動する駆動ユニットとを備える、昇降装置である。 Further, the elevating device of the nineteenth invention is an elevating device used in the above-mentioned aquatic animal aquaculture support system, and elevates and lowers a holding member for holding a collector and a collector held by the holding member. It is an elevating device including an elevating mechanism for the purpose and a drive unit for driving the elevating mechanism.
 かかる構成により、昇降装置により、採取器を容易に昇降させることができる。 With such a configuration, the collector can be easily moved up and down by the lifting device.
 また、本第二十の発明の給餌装置は、上記の水棲動物養殖支援システムにおいて用いられる給餌装置であって、飼料を貯蔵する飼料タンクと、飼料タンクから取り出された飼料を計量する計量ユニットと、計量ユニットにより計量された飼料を養殖池に供給する供給ユニットとを備える、給餌装置である。 Further, the feeding device of the present invention is a feeding device used in the above-mentioned aquatic animal aquaculture support system, and includes a feed tank for storing feed and a measuring unit for measuring feed taken out from the feed tank. , A feeding device including a supply unit that supplies feed measured by the measuring unit to the aquaculture pond.
 かかる構成により、給餌装置により、容易に、養殖池に飼料を供給することができる。 With such a configuration, feed can be easily supplied to the aquaculture pond by the feeding device.
 また、本第二十一の発明の水棲動物の養殖方法は、水棲動物の養殖池から上げられた採取器を上方からカメラで撮影する第1のステップと、第1のステップにより得られた撮影画像を画像解析する第2のステップと、第2のステップにより得られた撮影画像の画像解析結果に基づいて養殖池中の水棲動物に関する水棲動物情報を取得する第3のステップとを含む、水棲動物の養殖方法である。 Further, in the aquatic animal farming method of the 21st invention, the first step of photographing the aquatic animal raised from the aquatic animal farming pond with a camera from above, and the photographing obtained by the first step. Aquatic animals, including a second step of image analysis of the image and a third step of acquiring aquatic animal information about the aquatic animals in the aquaculture pond based on the image analysis result of the captured image obtained by the second step. It is an animal farming method.
 かかる方法により、養殖池中の水棲動物に関する情報を容易に取得することができる。 By this method, information on aquatic animals in the aquaculture pond can be easily obtained.
 本発明による水棲動物養殖支援システム、昇降装置、給餌装置、水棲動物の養殖方法、及び水棲動物養殖支援プログラムによれば、養殖池中の水棲動物に関する情報を容易に取得することができる。 According to the aquatic animal aquaculture support system, elevating device, feeding device, aquatic animal aquaculture method, and aquatic animal aquaculture support program according to the present invention, information on aquatic animals in the aquatic pond can be easily obtained.
本発明の実施の形態1におけるエビ養殖支援システムの概要図Schematic diagram of the shrimp farming support system according to the first embodiment of the present invention 同エビ養殖支援システムのブロック図Block diagram of the shrimp farming support system 同エビ養殖支援システムの昇降装置のサンプリング時の動作を示す第1の図The first figure which shows the operation at the time of sampling of the elevating device of the shrimp culture support system 同エビ養殖支援システムの昇降装置のサンプリング時の動作を示す第2の図The second figure which shows the operation at the time of sampling of the elevating device of the shrimp culture support system 同エビ養殖支援システムでサンプリングされたエビの一例を示す図Diagram showing an example of shrimp sampled by the shrimp farming support system 同エビ養殖支援システムで用いられるざるを示す図Diagram showing the colander used in the shrimp farming support system 同エビ養殖支援システムで取り扱われる撮影画像の一部の一例を模式的に示す図A diagram schematically showing an example of a part of the photographed image handled by the shrimp farming support system. 同エビ養殖支援システムで取り扱われる撮影画像の一部の別の例を模式的に示す図A diagram schematically showing another example of some of the captured images handled by the shrimp farming support system. 同エビ養殖支援システムで取り扱われる撮影画像の一例を示す図Diagram showing an example of captured images handled by the shrimp farming support system 同エビ養殖支援システムで行われる動作の全体の流れを示すフローチャートFlow chart showing the overall flow of operations performed by the shrimp farming support system 同エビ養殖支援システムで行われる給餌について説明するフローチャートFlow chart explaining the feeding performed by the shrimp farming support system 同エビ養殖支援システムで行われるサンプリングについて説明するフローチャートFlow chart explaining sampling performed by the shrimp farming support system 同エビ養殖支援システムで行われるエビ情報解析処理について説明するフローチャートFlow chart explaining the shrimp information analysis processing performed by the shrimp farming support system 同エビ養殖支援システムで行われる反映処理について説明するフローチャートFlow chart explaining the reflection processing performed by the shrimp farming support system 同エビ養殖支援システムで行われる濁度検出処理について説明するフローチャートFlow chart explaining the turbidity detection process performed by the shrimp farming support system 実施の形態2に係る昇降装置の構成を示す図The figure which shows the structure of the lifting device which concerns on Embodiment 2. 実施の形態3に係る昇降装置の構成を示す図The figure which shows the structure of the lifting device which concerns on Embodiment 3. 実施の形態4に係る昇降装置の構成を示す図The figure which shows the structure of the lifting device which concerns on Embodiment 4. 同昇降装置のサンプリング時の動作を示す図The figure which shows the operation at the time of sampling of the lifting device 実施の形態4の一変形例に係る昇降装置について説明する図The figure explaining the lifting device which concerns on one modification of Embodiment 4. 上記実施の形態におけるコンピュータシステムの概観図Overview of the computer system according to the above embodiment 同コンピュータシステムのブロック図Block diagram of the computer system
 以下、水棲動物養殖支援システム等の実施形態について図面を参照して説明する。なお、実施の形態において同じ符号を付した構成要素は同様の動作を行うので、再度の説明を省略する場合がある。 Hereinafter, embodiments of the aquatic animal farming support system and the like will be described with reference to the drawings. In the embodiment, the components with the same reference numerals perform the same operation, and thus the description may be omitted again.
 なお、以下の説明において用いる用語は、次のように定義される。なお、これらの用語の語義は、これに限定されるものではなく、以下の説明において示されるものも含む。 The terms used in the following explanation are defined as follows. The meanings of these terms are not limited to these, and include those shown in the following description.
 水棲動物とは、例えば、甲殻類、貝類、魚類など、水中に生息する動物をいう。エビとは、いわゆる甲殻類のうち、エビ目のクルマエビ亜目に属するものをいうが、これに限られるものではない。以下の実施の形態は、例えば、バナメイエビ等の養殖において用いられるエビ養殖支援システムに関するものであるが、養殖の対象となるエビはこれに限られない。また、他の水棲動物を養殖対象としてもよい。 Aquatic animals refer to animals that live in water, such as crustaceans, shellfish, and fish. Shrimp refers to so-called crustaceans belonging to the suborder Kuruma prawns of the order Decapoda, but is not limited to this. The following embodiments relate to, for example, a shrimp farming support system used in the farming of whiteleg shrimp and the like, but the shrimp to be cultivated is not limited to this. In addition, other aquatic animals may be targeted for aquaculture.
 養殖池とは、水棲動物の養殖を行うための水(淡水、海水、汽水を問わない)が張られている領域をいう。養殖池の環境は、養殖対象となる水棲動物の種類等によって異なる環境であってもよい。養殖池は、人工的に作成されたものであってもよいし、天然に形成されているものであってもよい。養殖池は、屋外、屋内を問わず、養殖用の大きな水槽に水が張られたものであってもよい。水がある領域の一部を区切ることにより構成された一区画を養殖池と呼んでもよい。 Aquaculture pond is an area filled with water (whether freshwater, seawater, or brackish water) for cultivating aquatic animals. The environment of the aquaculture pond may differ depending on the type of aquatic animal to be cultivated. The aquaculture pond may be artificially created or naturally formed. The aquaculture pond may be a large aquarium for aquaculture filled with water, whether outdoors or indoors. A section composed of a part of an area with water may be called a fishpond.
 採取器とは、水棲動物の養殖時において、養殖池中の水棲動物等をサンプリングする際に用いられる器具である。採取器として、例えば、ざるを用いることができる。ざるは、網状部又は多孔部を有するものであって、水中から引き上げたときに液体を通過させて固形物を内部に残すように構成されていればよい。ここで、網状部が布地により構成されているものであってもよい。すなわち、以下の実施の形態において、ざるとして、養殖池中からエビ等の養殖対象の水棲動物やその他の固形物をすくって取り出せるように構成されているものを広く用いることができる。また、採取器として、液体をほとんど透過させない部材で構成されているバケツ等の容器を用いてもよい。 A collector is an instrument used to sample aquatic animals in aquaculture ponds when aquatic animals are being cultivated. As the collector, for example, a colander can be used. The colander may have a reticulated portion or a perforated portion, and may be configured to allow a liquid to pass through and leave a solid substance inside when it is pulled out of water. Here, the net-like portion may be made of cloth. That is, in the following embodiments, those configured so that aquatic animals such as shrimp and other solids to be cultivated can be scooped out from the aquaculture pond can be widely used. Further, as the sampling device, a container such as a bucket made of a member that hardly allows liquid to permeate may be used.
 撮影画像とは、例えば、カメラにより撮影された静止画又は動画像であるが、これに限られない。例えば、カメラにより撮影された動画像から抽出された静止画などであってもよい。 The captured image is, for example, a still image or a moving image captured by a camera, but is not limited to this. For example, it may be a still image extracted from a moving image taken by a camera.
 エビ等の水棲動物の成長に関する参照値とは、例えば、エビについて、DOC(Day of Culture;養殖池に稚エビを入れてからの成育日数)と標準的なABW(Average Body Weight;エビの平均体重)とを対応付けた値をいう。参照値は、テーブルにまとめられていてもよいし、例えば数式などによって表される成長曲線であってもよい。 The reference values for the growth of aquatic animals such as shrimp are, for example, for shrimp, DOC (Day of Culture; number of days of growth after putting juvenile shrimp in aquaculture pond) and standard ABW (Average Body Weight; average of shrimp). It means a value associated with (weight). The reference value may be summarized in a table, or may be a growth curve represented by, for example, a mathematical formula.
 成育日数情報とは、例えば、DOCや、ふ化後に経過した日数などである。 The growth days information is, for example, DOC, the number of days passed after hatching, and the like.
 成育環境に関する情報とは、例えば、環境センサによって得られた情報や、天気に関する情報(具体的には、例えば、気温、風速、天候、降水量、日射量など)である。 The information on the growing environment is, for example, information obtained by an environmental sensor or information on the weather (specifically, for example, temperature, wind speed, weather, precipitation, solar radiation, etc.).
 養殖池の環境とは、例えば、水温や、酸素、アンモニア、硝酸塩、亜硝酸塩、二酸化炭素の濃度や、その他の水質に関する事項などを含む概念であるが、これに限られるものではない。 The environment of the culture pond is a concept that includes, for example, water temperature, oxygen, ammonia, nitrate, nitrite, carbon dioxide concentration, and other matters related to water quality, but is not limited to this.
 情報の取得とは、キーボードやマウス、タッチパネルなどの入力デバイスから入力された情報の受け付け、他の装置等から有線もしくは無線の通信回線を介して送信された情報の受信、光ディスクや磁気ディスク、半導体メモリなどの記録媒体から読み出された情報の受け付けなどにより情報を得ることを含む概念である。 Information acquisition means accepting information input from input devices such as keyboards, mice, and touch panels, receiving information transmitted from other devices via wired or wireless communication lines, optical disks, magnetic disks, and semiconductors. It is a concept including obtaining information by accepting information read from a recording medium such as a memory.
 情報を出力するとは、ディスプレイへの表示、プロジェクタを用いた投影、プリンタでの印字、音出力、外部の装置への送信、記録媒体への蓄積、他の処理装置や他のプログラムなどへの処理結果の引渡しなどを含む概念である。具体的には、例えば、情報のウェブページへの表示を可能とすることや、電子メール等として送信することや、印刷するための情報を出力することなどを含む。 To output information means to display on a display, project using a projector, print with a printer, output sound, transmit to an external device, store in a recording medium, process to another processing device or other program. It is a concept that includes delivery of results. Specifically, for example, it includes enabling the display of information on a web page, transmitting it as an e-mail, and outputting information for printing.
 (実施の形態1) (Embodiment 1)
 本実施の形態において、水棲動物養殖支援システムは、水棲動物の養殖池から上げられた採取器をカメラで撮影することにより得られた撮影画像を画像解析し、撮影画像の画像解析結果に基づいて養殖池中の水棲動物に関する水棲動物情報を取得する。水棲動物情報は、例えば、水棲動物の生物量に関する情報、水棲動物の異常に関する情報、又は水棲動物の食欲に関する情報(例えば、飼料を消費する速さや、給餌量の過不足に関する情報など)等を含んでいるものである。例えば、水棲動物養殖支援システムは、エビの養殖に用いられるエビ養殖支援システムである。エビ養殖支援システム1は、エビの養殖池から上げられたざる20をカメラ30で撮影することにより得られた撮影画像を画像解析し、撮影画像の画像解析結果に基づいて、水棲動物情報として、養殖池中のエビに関するエビ情報を取得する。エビ情報は、例えば、エビの生物量に関する情報(例えば、エビの生物量、エビの個体数に関する情報、エビの重量に関する情報、エビの大きさに関する情報など)、エビの異常に関する情報、又はエビの食欲に関する情報(例えば、飼料を消費する速さや、給餌量の過不足に関する情報や、エビの腸の色及び大きさの少なくとも一方に関する情報、飼料(餌)の消化率に関する情報など)等を含んでいるものである。 In the present embodiment, the aquatic animal aquaculture support system analyzes the captured image obtained by photographing the collector raised from the aquatic animal farming pond with a camera, and based on the image analysis result of the captured image. Acquire aquatic animal information on aquatic animals in aquaculture ponds. The aquatic animal information includes, for example, information on the amount of aquatic animals, information on abnormalities in aquatic animals, information on the appetite of aquatic animals (for example, information on the speed of feed consumption, information on excess or deficiency of feed amount, etc.). It contains. For example, the aquatic animal farming support system is a shrimp farming support system used for shrimp farming. The shrimp farming support system 1 analyzes the photographed image obtained by photographing the zaru 20 raised from the shrimp farming pond with the camera 30, and based on the image analysis result of the photographed image, provides aquatic animal information. Obtain shrimp information about shrimp in aquaculture ponds. Shrimp information includes, for example, information on the amount of shrimp (for example, information on the amount of shrimp, information on the number of shrimp, information on the weight of shrimp, information on the size of shrimp, etc.), information on abnormalities in shrimp, or information on shrimp. Information on the appetite of shrimp (for example, information on the speed of food consumption, information on excess or deficiency of feed, information on at least one of the color and size of the shrimp intestine, information on the digestibility of feed (feed), etc.) It contains.
 なお、例えば、以下のようにしてもよい。すなわち、エビ情報の取得に際しては、画像解析結果のほか、種々の情報を用いることができる。また、本実施の形態において、エビ養殖支援システム1は、ざる20を下げて養殖池に漬けた後に当該ざる20を養殖池から上げる昇降装置40を有していてもよい。この場合、例えば、ざる20が養殖池から上げられたタイミングに対応するタイミングで撮影された撮影画像の画像解析を行うようにしてもよい。また、本実施の形態において、エビ養殖支援システム1は、養殖池に飼料を供給する給餌装置を有していてもよい。この場合、例えば、飼料の供給タイミングと撮影画像の撮影タイミングとに基づいてエビ情報を取得したり、取得されたエビ情報に基づいて給餌装置が飼料の供給に関する条件を設定したりしてもよい。 Note that, for example, the following may be performed. That is, when acquiring the shrimp information, various information can be used in addition to the image analysis result. Further, in the present embodiment, the shrimp farming support system 1 may have an elevating device 40 that lowers the colander 20 and soaks it in the pond, and then raises the colander 20 from the pond. In this case, for example, the image analysis of the photographed image taken at the timing corresponding to the timing when the Zaru 20 is raised from the aquaculture pond may be performed. Further, in the present embodiment, the shrimp farming support system 1 may have a feeding device for supplying feed to the fishpond. In this case, for example, shrimp information may be acquired based on the feed supply timing and the capture timing of the captured image, or the feeding device may set conditions related to feed supply based on the acquired shrimp information. ..
 本実施の形態において、情報処理装置100を含むエビ養殖支援システム1について説明する。 In the present embodiment, the shrimp farming support system 1 including the information processing device 100 will be described.
 図1は、本発明の実施の形態1におけるエビ養殖支援システム1の概要図である。 FIG. 1 is a schematic view of the shrimp farming support system 1 according to the first embodiment of the present invention.
 なお、以下の図において、符号Sは養殖されているエビを、符号FFは供給される飼料を、符号FRは残餌(供給されたが、エビに食べられずに水中に残っている飼料)を、それぞれ模式的に示している。 In the figure below, reference numeral S is the cultivated shrimp, reference numeral FF is the feed to be supplied, and reference numeral FR is the residual feed (feed that has been supplied but remains in the water without being eaten by the shrimp). Are schematically shown.
 図1に示されるように、本実施の形態において、エビ養殖支援システム1は、リモート側(いわゆるASP側)の情報処理装置100及び利用者端末装置910と、ローカル側(エビ養殖場側)の各装置とを備えている。ローカル側には、例えば、ざる20、カメラ30、昇降装置40、給餌装置60、エアレーション装置70、環境センサ81、及び重量センサ83などが設けられている。情報処理装置100と、利用者端末装置910と、ローカル側の昇降装置40等とは、例えばインターネットなどのネットワークを介して互いに通信可能である。 As shown in FIG. 1, in the present embodiment, the shrimp farming support system 1 includes an information processing device 100 and a user terminal device 910 on the remote side (so-called ASP side) and a local side (shrimp farm side). It is equipped with each device. On the local side, for example, a colander 20, a camera 30, an elevating device 40, a feeding device 60, an aeration device 70, an environment sensor 81, a weight sensor 83, and the like are provided. The information processing device 100, the user terminal device 910, the lifting device 40 on the local side, and the like can communicate with each other via a network such as the Internet.
 なお、本実施の形態において、昇降装置40と、給餌装置60と、エアレーション装置70とは、それぞれがインターネットなどのネットワークに接続されているが、これに限られるものではない。例えば、昇降装置40のみがネットワークに接続されており、給餌装置60及びエアレーション装置70は昇降装置40に接続されていてもよい。また、ローカル側にサーバ装置が設けられており、そのサーバ装置に他のローカル側の装置が接続されていてもよい。また、情報処理装置100や利用者端末装置910がローカル側の装置の1つとして設けられていてもよいし、各装置が、ローカル側とリモート側との区別なく、以下に説明するようなエビ養殖支援システム1の動作を行うことができるように互いに接続されていればよい。 In the present embodiment, the elevating device 40, the feeding device 60, and the aeration device 70 are each connected to a network such as the Internet, but the present invention is not limited to this. For example, only the lifting device 40 may be connected to the network, and the feeding device 60 and the aeration device 70 may be connected to the lifting device 40. Further, a server device may be provided on the local side, and another local device may be connected to the server device. Further, the information processing device 100 and the user terminal device 910 may be provided as one of the devices on the local side, and each device does not distinguish between the local side and the remote side, and the shrimp as described below. It suffices if they are connected to each other so that the operation of the aquaculture support system 1 can be performed.
 なお、図1においては、例えば、タブレット型の情報端末装置が利用者端末装置910として示されているが、利用者端末装置910として用いられるのはこれに限られず、例えば、いわゆるスマートフォンなどの携帯情報端末装置や、ラップトップコンピュータなどのパーソナルコンピュータ(PC)などであってもよいし、これら以外の装置であってもよい。エビ養殖支援システム1のユーザ(利用者)は、利用者端末装置910を利用して、エビ養殖支援システム1を利用することができる。 In FIG. 1, for example, a tablet-type information terminal device is shown as a user terminal device 910, but the user terminal device 910 is not limited to this, and for example, a mobile phone such as a so-called smartphone is used. It may be an information terminal device, a personal computer (PC) such as a laptop computer, or a device other than these. A user (user) of the shrimp farming support system 1 can use the shrimp farming support system 1 by using the user terminal device 910.
 利用者端末装置910は、例えば一般的なタブレット型の情報端末装置であり、タッチパネルを備えたディスプレイデバイスを有している。利用者端末装置910は、種々の情報やプログラム等が記憶されている格納部、MPUやメモリ等から実現されており、プログラムを実行することで種々の処理を行う処理部、利用者端末装置910をネットワークに接続し、ネットワークに接続されている他の装置との間での通信を行えるように制御する通信部などを有している。 The user terminal device 910 is, for example, a general tablet-type information terminal device, and has a display device provided with a touch panel. The user terminal device 910 is realized from a storage unit, an MPU, a memory, etc. in which various information and programs are stored, and is a processing unit that performs various processes by executing the program, the user terminal device 910. Has a communication unit and the like that are connected to the network and controlled so that communication with other devices connected to the network can be performed.
 利用者端末装置910においては、処理部がプログラムを実行することにより、例えばウェブブラウザ機能を機能させたり、電子メール等の情報の送受信機能を機能させたりすることができる。このような機能により、利用者端末装置910のユーザは、ネットワークに接続されている他の装置から受信した情報を閲覧したり、利用者端末装置910に他の装置に向けて情報を送信させたりすることができる。 In the user terminal device 910, by executing the program by the processing unit, for example, the web browser function can be made to function, or the information transmission / reception function such as e-mail can be made to function. With such a function, the user of the user terminal device 910 can browse the information received from another device connected to the network, or cause the user terminal device 910 to transmit the information to the other device. can do.
 図2は、同エビ養殖支援システム1のブロック図である。 FIG. 2 is a block diagram of the shrimp farming support system 1.
 まず、ローカル側の各装置の概略構成について、図1及び図2を参照して説明する。 First, the schematic configuration of each device on the local side will be described with reference to FIGS. 1 and 2.
 昇降装置40は、以下のような構成要素を有しており、ざる20を所定の待機位置から下げて養殖池に漬けたり、養殖池に漬けたざる20を養殖池から上げたりすることができる。 The elevating device 40 has the following components, and the colander 20 can be lowered from a predetermined standby position and immersed in a fishpond, or the colander 20 immersed in a fishpond can be lifted from the pond. ..
 昇降装置40は、昇降機構41、吊紐(保持部材の一例)43、駆動部(駆動ユニットの一例)45、制御部47等を有する。制御部47は、通信部49を有する。また、昇降装置40には、カメラ30と、環境センサ81と、重量センサ83とが取り付けられている。 The elevating device 40 includes an elevating mechanism 41, a hanging string (an example of a holding member) 43, a drive unit (an example of a drive unit) 45, a control unit 47, and the like. The control unit 47 has a communication unit 49. Further, a camera 30, an environment sensor 81, and a weight sensor 83 are attached to the elevating device 40.
 本実施の形態において、昇降装置40は、例えば、養殖池の上方に位置する構造物に、重量センサ83を介して吊り下げられている。ここで構造物とは、養殖池を囲むように建てられた建物の天井であってもよいし(屋内養殖の場合)、養殖池に建てられた矢倉の梁など(屋外養殖の場合)、養殖池の上方に位置する梁状部材であってもよい。 In the present embodiment, the elevating device 40 is suspended from, for example, a structure located above the aquaculture pond via a weight sensor 83. Here, the structure may be the ceiling of a building built so as to surround the fishpond (in the case of indoor aquaculture), the beam of Yakura built in the fishpond (in the case of outdoor aquaculture), and aquaculture. It may be a beam-shaped member located above the pond.
 吊紐43は、ざる20を保持する。吊紐43は、例えば、ざる20を昇降機構41から吊り下げる線状部材である。換言すると、ざる20は、例えば、吊紐43によって、昇降機構41から吊り下げられている。 The hanging string 43 holds the colander 20. The hanging string 43 is, for example, a linear member that suspends the colander 20 from the elevating mechanism 41. In other words, the colander 20 is suspended from the elevating mechanism 41 by, for example, a hanging string 43.
 昇降機構41は、例えば、吊紐43を巻き取ったり繰り出したりすることができるリールである。昇降装置40は、例えば電動機である駆動部45によって昇降機構41のリールを回転させることで、吊紐43を巻き取ったり繰り出したりして、ざる20を上下させる。 The elevating mechanism 41 is, for example, a reel capable of winding and feeding the hanging string 43. The elevating device 40, for example, rotates the reel of the elevating mechanism 41 by a drive unit 45 which is an electric motor to wind up and unwind the hanging string 43 to move the colander 20 up and down.
 制御部47は、通常、MPUやメモリ等から実現され得る。制御部47の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で実現してもよい。本実施の形態において、制御部47は、駆動部45を動作させる制御などを行う。すなわち、制御部47の制御に応じて、ざる20が上下する。 The control unit 47 can usually be realized from an MPU, a memory, or the like. The processing procedure of the control unit 47 is usually realized by software, and the software is recorded on a recording medium such as ROM. However, it may be realized by hardware (dedicated circuit). In the present embodiment, the control unit 47 controls the operation of the drive unit 45 and the like. That is, the colander 20 moves up and down according to the control of the control unit 47.
 本実施の形態において、昇降装置40は、ざる20を下げて養殖池に漬けた後にざる20を養殖池から上げるように構成されている。なお、本実施の形態において、昇降装置40は、所定のスケジュールに従ってざる20の上げ下げを行う。本実施の形態において、昇降装置40は、所定のスケジュールで情報処理装置100から送信される指令に応じて、ざる20の上げ下げを実行するように構成されている。なお、制御部47などが、昇降装置40内に設けられている格納部に格納されたスケジュール情報に従って、自律的にざる20の上げ下げを行うように構成されていてもよい。 In the present embodiment, the elevating device 40 is configured to lower the colander 20 and soak it in the pond, and then raise the colander 20 from the pond. In the present embodiment, the elevating device 40 raises and lowers 20 according to a predetermined schedule. In the present embodiment, the elevating device 40 is configured to raise and lower the colander 20 in response to a command transmitted from the information processing device 100 on a predetermined schedule. The control unit 47 or the like may be configured to autonomously raise or lower the Zaru 20 according to the schedule information stored in the storage unit provided in the elevating device 40.
 通信部49は、昇降装置40をネットワークに接続し、ネットワークに接続されている他の装置との間での通信を行えるように制御する。通信部49は、例えば無線LANや携帯電話のデータ通信などを利用して無線通信を行うように構成されていてもよいし、各種の有線による通信を行うように構成されていてもよい。 The communication unit 49 connects the elevating device 40 to the network and controls it so that it can communicate with other devices connected to the network. The communication unit 49 may be configured to perform wireless communication using, for example, wireless LAN or data communication of a mobile phone, or may be configured to perform various types of wired communication.
 環境センサ81は、本実施の形態においては、例えば、ざる20に取り付けられている部材に取り付けられている。具体的には、環境センサ81は、吊紐43の、ざる20の近くに取り付けられている。すなわち、環境センサ81は、ざる20と共に養殖池に浸漬可能となるように取り付けられている。環境センサ81は、ざる20に取り付けられていてもよい。 In the present embodiment, the environment sensor 81 is attached to, for example, a member attached to the colander 20. Specifically, the environment sensor 81 is attached to the hanging string 43 near the colander 20. That is, the environment sensor 81 is attached so as to be immersed in the aquaculture pond together with the colander 20. The environment sensor 81 may be attached to the colander 20.
 環境センサ81は、養殖池の環境に関する環境計測値を取得する。環境計測値は、環境センサ81により計測された値そのものであってもよいし、環境センサ81が、養殖池の環境に関して計測した結果に基づいて、所定の計算式や所定のテーブルを用いて取得した値であってもよい。環境センサ81としては、例えば、水温又は気温を環境計測値として出力する温度センサと、養殖池中の溶存酸素を環境計測値として出力する溶存酸素センサ(DOセンサ)と、養殖池の水の水素イオン濃度を環境計測値として出力するpHセンサとが設けられている。なお、環境センサ81に、これら以外の養殖池の環境に関する環境計測値を出力するセンサが含まれていてもよい。また、上述のうち環境センサ81として設けられていないものがあってもよい。 The environment sensor 81 acquires environmental measurement values related to the environment of the aquaculture pond. The environmental measurement value may be the value itself measured by the environment sensor 81, or is acquired by the environment sensor 81 using a predetermined calculation formula or a predetermined table based on the measurement result regarding the environment of the aquaculture pond. It may be a value obtained. The environmental sensor 81 includes, for example, a temperature sensor that outputs water temperature or temperature as an environmental measurement value, a dissolved oxygen sensor (DO sensor) that outputs dissolved oxygen in the culture pond as an environmental measurement value, and hydrogen in the water of the culture pond. A pH sensor that outputs the ion concentration as an environmental measurement value is provided. The environment sensor 81 may include a sensor that outputs environmental measurement values related to the environment of the aquaculture pond other than these. Further, among the above, some of the above may not be provided as the environment sensor 81.
 環境センサ81は、ざる20が養殖池に漬けられたときに養殖池に浸漬され、養殖池についての各環境計測値を出力することができる。ざる20が養殖池から引き上げられると、環境センサ81も養殖池から引き上げられる。すなわち、環境センサ81は、ざる20の上げ下げのタイミングに応じて、計測時にのみ養殖池に浸漬されるので、環境センサ81が汚れること(藻類の付着など)を防止することができる。 The environmental sensor 81 is immersed in the fishpond when the colander 20 is immersed in the fishpond, and can output each environmental measurement value for the fishpond. When the colander 20 is pulled up from the pond, the environment sensor 81 is also pulled up from the pond. That is, since the environment sensor 81 is immersed in the aquaculture pond only at the time of measurement according to the timing of raising and lowering the colander 20, it is possible to prevent the environment sensor 81 from becoming dirty (adhesion of algae, etc.).
 ここで、重量センサ83は、養殖池から上げられたざる20の重量に関する重量情報を出力することができる。例えば、重量センサ83は、養殖池に漬ける前の重量の計測値から、養殖池に漬けた後の重量の計測値の増加分を、ざる20に残ったエビ等の固形物の重量情報として得ることができる。 Here, the weight sensor 83 can output weight information regarding the weight of the colander 20 raised from the aquaculture pond. For example, the weight sensor 83 obtains the increase in the measured value of the weight after being soaked in the fishpond from the measured value of the weight before being soaked in the fishpond as the weight information of the solid matter such as shrimp remaining in the colander 20. be able to.
 なお、重量センサ83は設けられていなくてもよいし、重量情報は上述のものに限られない。例えば、ざる20を上昇させるときに駆動部45にかかる負荷の大きさを制御部47で検出し、それを重量情報として用いるようにしてもよい。この場合、駆動部45にかかる負荷の大きさに基づいて、ざる20の重量に関する重量情報を制御部47が算出するようにしてもよい。 The weight sensor 83 may not be provided, and the weight information is not limited to the above. For example, the control unit 47 may detect the magnitude of the load applied to the drive unit 45 when raising the colander 20, and may use it as weight information. In this case, the control unit 47 may calculate the weight information regarding the weight of the colander 20 based on the magnitude of the load applied to the drive unit 45.
 本実施の形態において、制御部47は、環境センサ81から出力された環境計測値や重量センサ83から出力された重量情報などを取得する。制御部47は、取得した情報等を、情報処理装置100等に送信することができる。 In the present embodiment, the control unit 47 acquires the environmental measurement value output from the environment sensor 81, the weight information output from the weight sensor 83, and the like. The control unit 47 can transmit the acquired information or the like to the information processing device 100 or the like.
 また、本実施の形態において、制御部47は、ざる20の上下方向の位置を示す位置情報を検出することができる。位置情報は、例えば、昇降機構41や駆動部45などから得られる回転量(吊紐43の繰り出し量、巻き取り量)に基づいて検出することができる。制御部47は、検出した位置情報を情報処理装置100に送信することができる。 Further, in the present embodiment, the control unit 47 can detect the position information indicating the vertical position of the colander 20. The position information can be detected based on, for example, the amount of rotation (the amount of feeding and winding of the hanging string 43) obtained from the elevating mechanism 41, the drive unit 45, and the like. The control unit 47 can transmit the detected position information to the information processing device 100.
 図3は、同エビ養殖支援システム1の昇降装置40のサンプリング時の動作を示す第1の図である。図4は、同エビ養殖支援システム1の昇降装置40のサンプリング時の動作を示す第2の図である。 FIG. 3 is a first diagram showing the operation of the lifting device 40 of the shrimp farming support system 1 at the time of sampling. FIG. 4 is a second diagram showing the operation of the lifting device 40 of the shrimp farming support system 1 at the time of sampling.
 上述のように、本実施の形態において昇降装置40を用いたサンプリングを行うときには、図3に示されるように、昇降機構41から吊紐43を繰り出すことで、ざる20を水上の待機位置から下げ、ざる20を養殖池に浸漬させる。このとき、環境センサ81も養殖池に浸漬させる。これにより、環境センサ81により養殖池の環境に関する環境測定値が得られる。 As described above, when sampling using the elevating device 40 in the present embodiment, as shown in FIG. 3, the hanging string 43 is extended from the elevating mechanism 41 to lower the colander 20 from the standby position on the water. , Zaru 20 is immersed in a fishpond. At this time, the environment sensor 81 is also immersed in the aquaculture pond. As a result, the environment sensor 81 can obtain environmental measurement values related to the environment of the aquaculture pond.
 その後、図4に示されるように、昇降機構41で吊紐43を巻き取ることで、ざる20を水上に引き上げ、所定の待機位置まで上昇させる。そして、その状態で、カメラ30でざる20を撮影することにより、撮影画像を得ることができる。なお、カメラ30と所定の待機位置との距離は、一定になるようにするのが好ましいが、これに限られるものではない。また、撮影画像として動画像を得る場合や1回のサンプリングにおいて複数の静止画を得る場合などにおいて、ざる20を上昇させている最中に撮影が行われるようにしてもよい。このような場合、ざる20についての待機位置が定められていなくてもよい。 After that, as shown in FIG. 4, the hanging string 43 is wound up by the elevating mechanism 41 to pull the colander 20 onto the water and raise it to a predetermined standby position. Then, in that state, a photographed image can be obtained by photographing the colander 20 with the camera 30. It is preferable that the distance between the camera 30 and the predetermined standby position is constant, but the distance is not limited to this. Further, when a moving image is obtained as a captured image, or when a plurality of still images are obtained in one sampling, the shooting may be performed while the Zaru 20 is raised. In such a case, the standby position for the Zaru 20 may not be determined.
 なお、サンプリング後の撮影が終了した後は、ざる20に残ったものを再び養殖池に戻す作業が行われるのが好ましい。この作業は、作業者が行ってもよいが、ざる20を再び下げて揺すったりざる20を逆さに返したりする機構を設けることで、自動的に行われるようにしてもよい。 After the shooting after sampling is completed, it is preferable that the work remaining in the colander 20 is returned to the aquaculture pond. This work may be performed by an operator, but it may be automatically performed by providing a mechanism for lowering the colander 20 again and shaking it or turning the colander 20 upside down.
 図1及び図2に戻って、給餌装置60は、以下のような構成要素を有しており、養殖池に自動的に飼料を供給する。 Returning to FIGS. 1 and 2, the feeding device 60 has the following components and automatically supplies feed to the aquaculture pond.
 給餌装置60は、飼料タンク61と、計量部(計量ユニットの一例)63と、散布機構(供給ユニットの一例)65と、駆動部66と、制御部67と、給餌条件格納部68とを有している。制御部67は、通信部69を有する。給餌装置60は、例えば、養殖池の上方に配置されており、給餌タイミング毎に、給餌装置60から所定の給餌量の飼料(図において模式的に黒丸(符号FF)で示す)を養殖池に散布することができる。 The feeding device 60 includes a feed tank 61, a measuring unit (an example of a measuring unit) 63, a spraying mechanism (an example of a supply unit) 65, a driving unit 66, a control unit 67, and a feeding condition storage unit 68. doing. The control unit 67 has a communication unit 69. The feeding device 60 is arranged above the aquaculture pond, for example, and a predetermined amount of feed (schematically indicated by a black circle (reference numeral FF) in the figure) is sprayed from the feeding device 60 to the aquaculture pond at each feeding timing. can do.
 飼料タンク61には、給餌装置60により給餌される飼料が貯蔵される。 The feed tank 61 stores the feed fed by the feeding device 60.
 計量部63は、飼料タンク61から取り出された飼料を計量する秤である。計量部63は、制御部67による制御に応じて、所定の量の飼料を計量して飼料タンク61から取り出すことができる。 The measuring unit 63 is a scale for measuring the feed taken out from the feed tank 61. The measuring unit 63 can measure a predetermined amount of feed and take it out from the feed tank 61 according to the control by the control unit 67.
 散布機構65は、計量部63により計量されて飼料タンク61から取り出された飼料を養殖池に供給する。散布機構65は、例えば、回転可能なアーム部材を有している。給餌装置60は、例えば、電動機である駆動部66によって散布機構65のアーム部材を回転させながら、そのアーム部材から飼料を振りまくことで、養殖池にまんべんなく飼料を散布することができるように構成されている。なお、飼料を養殖池に供給する供給ユニットとして、このような散布機構65に限られず、公知である手段を広く用いることができる。 The spraying mechanism 65 supplies the feed weighed by the measuring unit 63 and taken out from the feed tank 61 to the aquaculture pond. The spraying mechanism 65 has, for example, a rotatable arm member. The feeding device 60 is configured so that the feed can be evenly distributed to the aquaculture pond by, for example, sprinkling the feed from the arm member while rotating the arm member of the spraying mechanism 65 by the drive unit 66 which is an electric motor. ing. The supply unit for supplying feed to the aquaculture pond is not limited to such a spraying mechanism 65, and known means can be widely used.
 給餌条件格納部68には、給餌条件に関する情報(以下、単にこの情報そのものも給餌条件ということある)が格納されている。給餌条件は、飼料の供給タイミングに関する条件と、飼料の供給量に関する条件との少なくとも一方を含む。本実施の形態において、給餌条件は、例えば、飼料の供給タイミングに関する条件と、飼料の供給量に関する条件との両方を含んでいる。 The feeding condition storage unit 68 stores information on feeding conditions (hereinafter, this information itself may also be simply referred to as feeding conditions). The feeding conditions include at least one of a condition relating to the timing of feeding and a condition relating to the amount of feed supplied. In the present embodiment, the feeding condition includes, for example, both a condition relating to the feed timing and a condition relating to the feed supply amount.
 給餌条件格納部68は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能である。本実施の形態においては、後述のようにして、情報処理装置100において給餌条件設定部から送信された給餌条件が給餌条件格納部68に格納される(設定される)。なお、給餌条件格納部68に給餌条件が記憶される過程は問わない。例えば、記録媒体を介して給餌条件が給餌条件格納部68で記憶されるようになってもよく、通信回線等を介して送信された給餌条件が給餌条件格納部68で記憶されるようになってもよく、あるいは、入力デバイスを介して入力された給餌条件が給餌条件格納部68で記憶されるようになってもよい。 The feeding condition storage unit 68 is preferably a non-volatile recording medium, but can also be realized by a volatile recording medium. In the present embodiment, as described later, the feeding condition transmitted from the feeding condition setting unit in the information processing apparatus 100 is stored (set) in the feeding condition storage unit 68. The process of storing the feeding conditions in the feeding condition storage unit 68 does not matter. For example, the feeding condition may be stored in the feeding condition storage unit 68 via the recording medium, and the feeding condition transmitted via the communication line or the like may be stored in the feeding condition storage unit 68. Alternatively, the feeding condition input via the input device may be stored in the feeding condition storage unit 68.
 制御部67は、通常、MPUやメモリ等から実現され得る。制御部67の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で実現してもよい。制御部67は、給餌条件格納部68に格納された給餌条件に基づいて、養殖池に飼料を供給する。 The control unit 67 can usually be realized from an MPU, a memory, or the like. The processing procedure of the control unit 67 is usually realized by software, and the software is recorded on a recording medium such as ROM. However, it may be realized by hardware (dedicated circuit). The control unit 67 supplies feed to the aquaculture pond based on the feeding conditions stored in the feeding condition storage unit 68.
 通信部69は、給餌装置60をネットワークに接続し、ネットワークに接続されている他の装置との間での通信を行えるように制御する。通信部69は、例えば無線LANや携帯電話のデータ通信などを利用して無線通信を行うように構成されていてもよいし、各種の有線による通信を行うように構成されていてもよい。 The communication unit 69 connects the feeding device 60 to the network and controls so that communication with other devices connected to the network can be performed. The communication unit 69 may be configured to perform wireless communication using, for example, wireless LAN or data communication of a mobile phone, or may be configured to perform various types of wired communication.
 本実施の形態において、制御部67は、実際に給餌を行ったとき、その給餌情報(ログ;例えば、給餌を行った時刻や給餌量等の情報が含まれる)を記録する。制御部67は、記録した給餌情報等を、情報処理装置100等に送信することができる。 In the present embodiment, the control unit 67 records the feeding information (log; for example, information such as the feeding time and the feeding amount) when the feeding is actually performed. The control unit 67 can transmit the recorded feeding information and the like to the information processing device 100 and the like.
 エアレーション装置70は、以下のような構成要素を有しており、養殖池の溶存酸素を増加させる動作(エアレーション)を行う。 The aeration device 70 has the following components, and performs an operation (aeration) to increase the dissolved oxygen in the aquaculture pond.
 エアレーション装置70は、例えば、養殖池の水面を叩く羽根車と、羽根車を回転させる電動機である駆動部76と、駆動部76の動作を制御する制御部77等を有する。制御部77は、通信部79を有する。エアレーション装置70は、エアレーションを実行することで、回転する羽根車により養殖池に気泡を生じさせて、養殖池の溶存酸素を増加させる。 The aeration device 70 includes, for example, an impeller that hits the water surface of the aquaculture pond, a drive unit 76 that is an electric motor that rotates the impeller, and a control unit 77 that controls the operation of the drive unit 76. The control unit 77 has a communication unit 79. By executing aeration, the aeration device 70 causes bubbles to be generated in the pond by the rotating impeller, and increases the dissolved oxygen in the pond.
 制御部77は、通常、MPUやメモリ等から実現され得る。制御部77の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で実現してもよい。制御部77は、情報処理装置100から送信された指令に基づいて、駆動部76を動作させてエアレーションを実行したり、駆動部76を停止させてエアレーションを停止したりする。 The control unit 77 can usually be realized from an MPU, a memory, or the like. The processing procedure of the control unit 77 is usually realized by software, and the software is recorded on a recording medium such as ROM. However, it may be realized by hardware (dedicated circuit). Based on the command transmitted from the information processing device 100, the control unit 77 operates the drive unit 76 to execute aeration, or stops the drive unit 76 to stop the aeration.
 通信部79は、エアレーション装置70をネットワークに接続し、ネットワークに接続されている他の装置との間での通信を行えるように制御する。通信部79は、例えば無線LANや携帯電話のデータ通信などを利用して無線通信を行うように構成されていてもよいし、各種の有線による通信を行うように構成されていてもよい。 The communication unit 79 connects the aeration device 70 to the network and controls the aeration device 70 so that it can communicate with other devices connected to the network. The communication unit 79 may be configured to perform wireless communication using, for example, wireless LAN or data communication of a mobile phone, or may be configured to perform various types of wired communication.
 なお、エアレーション装置70としては、上述のような羽根車を有するものに限られない。例えば、酸素を含む気体をポンプ等により養殖池中に吹出することで溶存酸素を増加させるものであってもよいし、養殖池の水の一部を入れ替えることにより溶存酸素を増加させるものであってもよい。 The aeration device 70 is not limited to the one having an impeller as described above. For example, the dissolved oxygen may be increased by blowing a gas containing oxygen into the aquaculture pond by a pump or the like, or the dissolved oxygen may be increased by replacing a part of the water in the aquaculture pond. May be.
 図2に示されるように、情報処理装置100は、格納部110、処理部150、情報出力部170、及び通信部190などを備える。情報処理装置100は、例えば、サーバ装置である。 As shown in FIG. 2, the information processing device 100 includes a storage unit 110, a processing unit 150, an information output unit 170, a communication unit 190, and the like. The information processing device 100 is, for example, a server device.
 格納部110は、撮影画像格納部111、重量情報格納部113、環境計測値格納部115、給餌情報格納部116、参照値格納部117、エビ情報格納部(水棲動物情報格納部の一例)119を備える。格納部110は、不揮発性の記録媒体が好適であるが、揮発性の記録媒体でも実現可能である。格納部110の各部には、例えば後述のような処理部150の各部によって取得された情報などがそれぞれ格納されるが、格納部110の各部に情報等が記憶される過程はこれに限られない。例えば、記録媒体を介して情報等が格納部110で記憶されるようになってもよく、通信回線等を介して送信された情報等が格納部110で記憶されるようになってもよく、あるいは、入力デバイスを介して入力された情報等が格納部110で記憶されるようになってもよい。 The storage unit 110 includes a photographed image storage unit 111, a weight information storage unit 113, an environmental measurement value storage unit 115, a feeding information storage unit 116, a reference value storage unit 117, and a shrimp information storage unit (an example of an aquatic animal information storage unit) 119. To be equipped with. A non-volatile recording medium is suitable for the storage unit 110, but a volatile recording medium can also be used. Information acquired by each part of the processing unit 150 as described later is stored in each part of the storage unit 110, but the process of storing the information or the like in each part of the storage unit 110 is not limited to this. .. For example, information or the like may be stored in the storage unit 110 via a recording medium, or information or the like transmitted via a communication line or the like may be stored in the storage unit 110. Alternatively, the information or the like input via the input device may be stored in the storage unit 110.
 撮影画像格納部111には、後述のように撮影画像取得部151で取得された撮影画像、すなわちカメラ30で撮影された撮影画像が格納される。撮影画像は、例えば、撮影された日時等や養殖池を特定する識別子などの撮影情報と対応付けられて格納される。なお、このような撮影情報は、いわゆるExif等の撮影画像のメタデータとして記録されていてもよい。 The captured image storage unit 111 stores the captured image acquired by the captured image acquisition unit 151, that is, the captured image captured by the camera 30, as will be described later. The photographed image is stored in association with the photographed information such as the date and time when the photograph was taken and the identifier that identifies the aquaculture pond. It should be noted that such shooting information may be recorded as metadata of a shot image such as a so-called Exif.
 なお、例えば、撮影画像格納部111には、後述のように浸漬中画像取得部153で取得された浸漬中画像も格納されるようにしてもよい。 Note that, for example, the captured image storage unit 111 may also store the immersion image acquired by the immersion image acquisition unit 153 as described later.
 重量情報格納部113には、後述のように重量情報取得部152で取得された重量情報、すなわち昇降装置40から送信された重量情報が格納される。 The weight information storage unit 113 stores the weight information acquired by the weight information acquisition unit 152, that is, the weight information transmitted from the elevating device 40, as described later.
 環境計測値格納部115には、昇降装置40から送信された環境計測値が格納される。環境計測値は、例えば、計測された日時等や養殖池を特定する識別子などの情報に対応付けられて格納される。 The environmental measurement value storage unit 115 stores the environmental measurement value transmitted from the elevating device 40. The environmental measurement value is stored in association with information such as the measured date and time and an identifier that identifies the aquaculture pond.
 なお、環境計測値格納部115には、後述のように濁度検出部156で検出された濁度についての情報が格納されるようにしてもよい。 Note that the environment measurement value storage unit 115 may store information about the turbidity detected by the turbidity detection unit 156 as described later.
 給餌情報格納部116には、給餌装置60から送信された給餌情報が格納される。 The feeding information storage unit 116 stores the feeding information transmitted from the feeding device 60.
 参照値格納部117には、エビの成長に関する所定の参照値が格納されている。 The reference value storage unit 117 stores a predetermined reference value regarding the growth of shrimp.
 エビ情報格納部119には、後述のようにエビ情報取得部157が取得したエビ情報が格納される。エビ情報は、例えば、エビの成育日数情報及び成育環境に関する情報に対応付けて格納される。なお、本実施の形態において、エビ情報とは、例えば、エビの生物量に関する情報(例えば、エビの生物量、エビの個体数に関する情報、エビの重量に関する情報、エビの大きさに関する情報など)、エビの異常に関する情報、及びエビの食欲に関する情報(例えば、飼料を消費する速さや、給餌量の過不足に関する情報や、エビの腸の色及び大きさの少なくとも一方に関する情報や、餌の消化率に関する情報など)の少なくとも1つを含むものである。エビ情報はこれに限られず、これら以外の情報を含んでいてもよい。 The shrimp information storage unit 119 stores the shrimp information acquired by the shrimp information acquisition unit 157 as described later. The shrimp information is stored in association with, for example, information on the number of days of shrimp growth and information on the growth environment. In the present embodiment, the shrimp information is, for example, information on the amount of shrimp (for example, information on the amount of shrimp, information on the number of shrimp, information on the weight of shrimp, information on the size of shrimp, etc.). , Information on shrimp abnormalities, and information on shrimp appetite (eg, information on the speed of food consumption, information on excess or deficiency of feed, information on at least one of the color and size of the shrimp intestine, and food digestion. It contains at least one (such as information about the rate). The shrimp information is not limited to this, and may include information other than these.
 処理部150は、撮影画像取得部151、重量情報取得部152、浸漬中画像取得部153、位置情報取得部154、画像解析部155、濁度検出部156、エビ情報取得部(水棲動物情報取得部の一例)157、給餌条件設定部158を備える。 The processing unit 150 includes a photographed image acquisition unit 151, a weight information acquisition unit 152, an immersion image acquisition unit 153, a position information acquisition unit 154, an image analysis unit 155, a turbidity detection unit 156, and a shrimp information acquisition unit (aquatic animal information acquisition). (Example) 157, feeding condition setting unit 158 is provided.
 処理部150は、上述の各部が行う処理のほか、情報処理装置100の動作を制御したり、ローカル側の昇降装置40、給餌装置60、及びエアレーション装置70等と連携した処理などを行う。ローカル側の装置との連携は、各装置に指令を送信したり各装置からの情報を受信したりすることなどにより行うことができる。 In addition to the processing performed by each of the above-mentioned units, the processing unit 150 controls the operation of the information processing device 100, and performs processing in cooperation with the local lifting device 40, the feeding device 60, the aeration device 70, and the like. Cooperation with the device on the local side can be performed by sending a command to each device or receiving information from each device.
 処理部150は、通常、MPUやメモリ等から実現され得る。処理部150の処理手順は、通常、ソフトウェアで実現され、当該ソフトウェアはROM等の記録媒体に記録されている。但し、ハードウェア(専用回路)で実現してもよい。 The processing unit 150 can usually be realized from an MPU, a memory, or the like. The processing procedure of the processing unit 150 is usually realized by software, and the software is recorded on a recording medium such as ROM. However, it may be realized by hardware (dedicated circuit).
 撮影画像取得部151は、エビの養殖池から上げられたざる20をカメラ30で撮影することにより得られた撮影画像を取得する。撮影画像取得部151は、例えば、昇降装置40によりざる20が養殖池から上げられたタイミングに対応するタイミングで撮影された撮影画像を取得する。換言すると、本実施の形態において、昇降装置40の動作に応じて撮影画像が撮影されると、その撮影画像が情報処理装置100に送信される。撮影画像取得部151は、送信された撮影画像を受信する。 The photographed image acquisition unit 151 acquires a photographed image obtained by photographing the colander 20 raised from the shrimp farming pond with the camera 30. The captured image acquisition unit 151 acquires, for example, a captured image captured at a timing corresponding to the timing when the Zaru 20 is raised from the aquaculture pond by the elevating device 40. In other words, in the present embodiment, when a captured image is captured according to the operation of the elevating device 40, the captured image is transmitted to the information processing device 100. The captured image acquisition unit 151 receives the transmitted captured image.
 重量情報取得部152は、養殖池から上げられたざる20の重量に関する重量情報を取得する。 The weight information acquisition unit 152 acquires weight information regarding the weight of the colander 20 raised from the aquaculture pond.
 浸漬中画像取得部153は、浸漬中画像を取得する。浸漬中画像は、後述のように、養殖池に漬けられているざる20を養殖池の水面よりも上にあるカメラ30で撮影することにより得られた画像である。浸漬中画像は、例えば、昇降装置40から送信される。浸漬中画像取得部153は、送信された浸漬中画像を受信する。 The immersion image acquisition unit 153 acquires the immersion image. The image during immersion is an image obtained by taking a picture of the Zaru 20 immersed in the fishpond with a camera 30 above the water surface of the fishpond, as will be described later. The immersion image is transmitted from, for example, the elevating device 40. The immersion image acquisition unit 153 receives the transmitted immersion image.
 位置情報取得部154は、上下方向におけるざる20の位置に関する位置情報を取得する。本実施の形態において、例えば、位置情報取得部154は、昇降装置40から送信された位置情報を取得する。 The position information acquisition unit 154 acquires the position information regarding the positions of the Zaru 20 in the vertical direction. In the present embodiment, for example, the position information acquisition unit 154 acquires the position information transmitted from the elevating device 40.
 画像解析部155は、撮影画像格納部111に格納されている撮影画像、すなわち撮影画像取得部151により取得された撮影画像を解析する。画像解析部155は、例えば、撮影画像内の物体が含まれる領域を検出し、予め記憶されている情報に基づいて、検出した領域にエビが含まれているか否かを判定すると共に、その判定結果に基づいて、撮影画像について種々の事項の検出を行う。撮影画像の解析により、例えば、エビの個体数や、エビの大きさ、エビの色、残餌の有無、残餌の量などが検出される。 The image analysis unit 155 analyzes the photographed image stored in the photographed image storage unit 111, that is, the photographed image acquired by the photographed image acquisition unit 151. The image analysis unit 155 detects, for example, a region containing an object in the captured image, determines whether or not the detected region contains shrimp, and determines whether or not the detected region contains shrimp, based on the information stored in advance. Based on the result, various items are detected in the captured image. By analyzing the captured image, for example, the number of shrimp individuals, the size of shrimp, the color of shrimp, the presence or absence of residual food, the amount of residual food, and the like are detected.
 なお、画像解析は、例えば、機械学習のアルゴリズムを用いた手法や、パターンマッチングなどの解析手法により行うことができる。 Note that image analysis can be performed by, for example, a method using a machine learning algorithm or an analysis method such as pattern matching.
 具体的には、例えば、画像解析部155は、画像解析を次のように行うことができる。すなわち、予め、エビの一以上の輪郭情報(パターン情報の一例)や、ざる20についての情報(例えば、地の色、模様の色、模様の大きさ(間隔等)に関する情報など)や、残餌についての情報(例えば、サンプリングされた状態における色等)などを予め記憶しておく。そして、画像解析部155は、撮影画像からざる以外の物体が含まれている領域を検出する。当該検出領域内の物体の輪郭を抽出する。画像解析部155は、抽出した輪郭と予め用意された輪郭情報とを比較し、類似度が所定値よりも高い場合には、当該検出領域にあるものがエビであると判定する。換言すると、画像解析部155は、当該検出領域と予め用意された輪郭情報に対応するとが対応する場合には、当該検出領域にあるものがエビであると判定する。また、画像解析部155は、ざる20の模様の画像内における間隔を判定する(ざる20の模様については、後述する)。また、画像解析部155は、エビであると判定した領域の色を取得する。また、画像解析部155は、ざる20内において残餌の色が含まれる領域を判定する。画像解析部155は、エビが写っていると判定した領域の数により、エビの個体数を検出できる。また、画像解析部155は、エビであると判定された物体の画像内における大きさと、ざる20の模様の画像内における間隔と、実際の模様の間隔についての情報とに基づいて、エビの大きさを検出できる。また、画像解析部155は、エビであると判定した領域の色に基づいて、エビの色を検出できる。また、画像解析部155は、ざる20内において残餌の色が含まれる領域の有無やその大きさによって、残餌の有無やその量を検出できる。なお、エビの輪郭情報として、姿勢や大きさが異なる複数種類のものが記憶されているのが好ましい。また、奇形や病変が発生した部位を有するエビの輪郭情報も合わせて記憶されているのが好ましい。なお、画像解析部155は、エビの輪郭情報に代えて、エビの一部を示すテンプレート情報等をパターン情報として用いるようにしてもよい。 Specifically, for example, the image analysis unit 155 can perform image analysis as follows. That is, in advance, one or more contour information of shrimp (an example of pattern information), information about Zaru 20 (for example, information about ground color, pattern color, pattern size (interval, etc.), etc.), and residual information. Information about the food (for example, the color in the sampled state) and the like are stored in advance. Then, the image analysis unit 155 detects a region containing an object other than the colander from the captured image. The outline of the object in the detection area is extracted. The image analysis unit 155 compares the extracted contour with the contour information prepared in advance, and if the similarity is higher than a predetermined value, determines that the shrimp is in the detection region. In other words, when the detection area corresponds to the contour information prepared in advance, the image analysis unit 155 determines that the shrimp is in the detection area. Further, the image analysis unit 155 determines the interval in the image of the pattern of the colander 20 (the pattern of the colander 20 will be described later). Further, the image analysis unit 155 acquires the color of the region determined to be shrimp. Further, the image analysis unit 155 determines a region in the colander 20 that includes the color of the residual food. The image analysis unit 155 can detect the number of shrimp individuals based on the number of regions in which the shrimp is determined to be captured. Further, the image analysis unit 155 determines the size of the shrimp based on the size in the image of the object determined to be the shrimp, the spacing in the image of the pattern of the colander 20, and the information about the spacing of the actual pattern. Can detect the image. Further, the image analysis unit 155 can detect the color of the shrimp based on the color of the region determined to be the shrimp. In addition, the image analysis unit 155 can detect the presence or absence of residual food and the amount thereof depending on the presence or absence of the region containing the color of the residual food and its size in the colander 20. It is preferable that a plurality of types of shrimp contour information having different postures and sizes are stored. In addition, it is preferable that the contour information of the shrimp having the site where the malformation or the lesion has occurred is also stored. The image analysis unit 155 may use template information or the like indicating a part of the shrimp as pattern information instead of the contour information of the shrimp.
 他方、機械学習のアルゴリズムの利用については、例えば次のようにすることができる。すなわち、撮影画像を入力とし、エビの個体数や、エビの大きさ、エビの色、残餌の有無、残餌の量などを出力とする学習器を、機械学習のアルゴリズムにより構成する。例えば、撮影画像と、エビの個体数や、エビの大きさ、エビの色、残餌の有無、残餌の量などに関する情報との組の情報を2以上、取得し、当該取得した2組以上の情報を、機械学習の学習器を構成するためのモジュールに与え、学習器を構成し、格納部110に蓄積する。なお、機械学習のアルゴリズムは、例えば、深層学習、ランダムフォレスト、SVR等、問わない。また、機械学習のモジュールは、例えば、TensorFlowのモジュール、fasttext、tiny_svm、各種のrandomForest関数等、種々のものを用いることができる。なお、学習器は分類器ということもできる。 On the other hand, regarding the use of machine learning algorithms, for example, the following can be done. That is, a learning device that takes a photographed image as an input and outputs the number of shrimp individuals, the size of the shrimp, the color of the shrimp, the presence or absence of residual food, the amount of residual food, and the like is constructed by a machine learning algorithm. For example, two or more sets of information regarding the photographed image and information on the number of shrimp individuals, the size of the shrimp, the color of the shrimp, the presence or absence of residual food, the amount of residual food, etc. are acquired, and the acquired two sets are obtained. The above information is given to a module for configuring a learning device for machine learning, the learning device is configured, and the information is stored in the storage unit 110. The machine learning algorithm may be, for example, deep learning, random forest, SVR, or the like. Further, as the machine learning module, various modules such as a TensorFlow module, fastext, tiny_svm, various random Forest functions, and the like can be used. The learner can also be called a classifier.
 なお、このような機械学習のアルゴリズムは、撮影画像中の物体が含まれている領域がエビを含む領域であるかどうかを判定する場合など、部分的に用いられてもよい。例えば、領域にエビが含まれているかどうかを判定する場合には、撮影画像中の物体が含まれている領域の画像を入力として、エビであるか否かを示す情報を出力とする学習器を、機械学習のアルゴリズムにより構成する。例えば、領域の画像と、エビが含まれている領域であるかどうかに関する情報との組の情報を2以上、取得し、当該取得した2組以上の情報を、機械学習の学習器を構成するためのモジュールに与え、学習器を構成し、格納部110に蓄積するようにすればよい。この場合、画像解析部155は、学習器(予め記憶されている情報の一例)に基づいて、検出した領域にエビが含まれているか否かを判定することができる。 Note that such a machine learning algorithm may be partially used, such as when determining whether or not the region containing an object in a captured image is a region containing shrimp. For example, when determining whether or not a shrimp is contained in a region, a learning device that inputs an image of the region containing an object in the captured image and outputs information indicating whether or not the region is a shrimp. Is constructed by a machine learning algorithm. For example, two or more sets of information of an image of an area and information on whether or not the area contains shrimp are acquired, and the acquired two or more sets of information constitute a machine learning learner. The learning device may be provided to the module for storage, and may be stored in the storage unit 110. In this case, the image analysis unit 155 can determine whether or not the detected region contains shrimp based on the learner (an example of information stored in advance).
 濁度検出部156は、浸漬中画像取得部153により取得された浸漬中画像に基づいて、養殖池の濁度を検出する。本実施の形態においては、濁度検出部156は、さらに、位置情報取得部154により取得された位置情報に基づいて、濁度の検出を行う。具体的には、例えば、濁度検出部156は、浸漬中画像において、ざる20が所定の可視条件を満たすか否かを判断する。可視条件として、例えば、水中のざる20の影とそれ以外の領域との明度差等の閾値が定められていればよいが、これに限られるものではない。濁度検出部156は、位置情報取得部154で検出された位置情報に基づいて、ざる20について可視条件が満たされなくなった時のざる20の水深を取得する。そして、予め記憶されている、水深と濁度とが対応付けられている情報に基づいて、水深に対応する濁度を検出する。可視条件が満たされなくなった時のざる20の水深が深いほど濁度が低くなる(澄んでいる)。 The turbidity detection unit 156 detects the turbidity of the aquaculture pond based on the immersion image acquired by the immersion image acquisition unit 153. In the present embodiment, the turbidity detection unit 156 further detects the turbidity based on the position information acquired by the position information acquisition unit 154. Specifically, for example, the turbidity detection unit 156 determines whether or not the colander 20 satisfies a predetermined visibility condition in the immersion image. As the visual condition, for example, a threshold value such as a brightness difference between the shadow of 20 colanders in water and other regions may be defined, but the visual condition is not limited to this. The turbidity detection unit 156 acquires the water depth of the colander 20 when the visible condition is no longer satisfied for the colander 20 based on the position information detected by the position information acquisition unit 154. Then, the turbidity corresponding to the water depth is detected based on the information stored in advance in which the water depth and the turbidity are associated with each other. The deeper the water depth of the Zaru 20 when the visibility condition is no longer satisfied, the lower the turbidity (clearer).
 なお、このような検出方法に限られず、例えば、濁度検出部156は、所定の位置(例えば、サンプリング時にざる20が降ろされる所定の降下位置であってもよい)にざる20がある場合における浸漬中画像について、当該浸漬中画像におけるざる20部分の明度を検出し、検出した値に基づいて濁度を検出してもよい。この場合、例えば、ざる20部分の明度と濁度とを対応付ける情報が予め記憶されていればよい。濁度検出部156は、当該記憶されている情報に基づいて、浸漬中画像におけるざる20部分の明度に対応する濁度を求めることができる。すなわち、明度が高いほど、濁度が低くなる(澄んでいる)。 The method is not limited to such a detection method. For example, the turbidity detection unit 156 may have a colander 20 at a predetermined position (for example, a predetermined descent position where the colander 20 is lowered at the time of sampling). With respect to the image during immersion, the brightness of 20 portions of the colander in the image during immersion may be detected, and the turbidity may be detected based on the detected value. In this case, for example, information for associating the brightness and turbidity of the 20 parts of the colander may be stored in advance. The turbidity detection unit 156 can obtain the turbidity corresponding to the brightness of the 20 parts of the colander in the image during immersion based on the stored information. That is, the higher the brightness, the lower the turbidity (clearer).
 エビ情報取得部157は、画像解析部155の解析結果に基づいて、養殖池中のエビに関するエビ情報を取得する。エビ情報取得部157は、画像解析部155の解析結果をそのままエビ情報として取得してもよいし、解析結果に基づいてさらに計算やその他統計処理等を行うことにより求めた情報をエビ情報として取得してもよい。以下、エビ情報の取得の具体例について説明する。なお、サンプリングにより得られた撮影画像に基づいてエビ情報を求める際、養殖池の面積や体積などを考慮して適宜養殖池の全体のエビ情報を換算して求めるようにしてもよいし、かかる換算を行わないようにしてもよい。 The shrimp information acquisition unit 157 acquires shrimp information regarding shrimp in the aquaculture pond based on the analysis result of the image analysis unit 155. The shrimp information acquisition unit 157 may acquire the analysis result of the image analysis unit 155 as it is as shrimp information, or acquire the information obtained by further performing calculation or other statistical processing based on the analysis result as shrimp information. You may. A specific example of acquiring shrimp information will be described below. When obtaining shrimp information based on the photographed image obtained by sampling, the shrimp information of the entire aquaculture pond may be appropriately converted and obtained in consideration of the area and volume of the aquaculture pond. The conversion may not be performed.
 なお、エビ情報取得部157は、エビ情報の取得にあたり、これまでに取得されたエビ情報(過去のエビ情報)と、今回取得されたエビ情報(現在のエビ情報)とに基づいて、現在の養殖池中のエビについての生育状態について判定するようにしてもよい。例えば、過去のエビ情報の取得時から今回エビ情報の取得時までエビの成育速度が低いなど、エビの成育異常について判定し、その旨をエビ情報として取得するようにしてもよい。 In acquiring the shrimp information, the shrimp information acquisition unit 157 is based on the shrimp information (past shrimp information) acquired so far and the shrimp information (current shrimp information) acquired this time. The growth state of the shrimp in the aquaculture pond may be determined. For example, a shrimp growth abnormality such as a low shrimp growth rate from the time when the past shrimp information is acquired to the time when the shrimp information is acquired this time may be determined, and that fact may be acquired as the shrimp information.
 エビ情報取得部157は、例えば、画像解析部155の画像解析結果と重量情報取得部152により取得された重量情報とに基づいて、エビ情報を取得してもよい。すなわち、例えば、エビ情報取得部157は、画像解析の解析結果として、サンプリングされたエビの個体数(匹数)、エビが食べ残している飼料の量(残餌量)等を得ることができる。そうすると、エビ情報取得部157は、それらの情報と、重量情報すなわちサンプリングにより養殖池より取り出された固形物の重量とに基づいて、算出を行ったり所定のテーブル等を用いたりすることなどによって、エビのABW(平均体重)を求めることができる。また、エビのABWを取得することができるので、エビ情報取得部157は、養殖池中のエビの生物量を求めることができる。 The shrimp information acquisition unit 157 may acquire shrimp information based on, for example, the image analysis result of the image analysis unit 155 and the weight information acquired by the weight information acquisition unit 152. That is, for example, the shrimp information acquisition unit 157 can obtain the number of sampled shrimp individuals (number of animals), the amount of feed left uneaten by the shrimp (residual feed amount), and the like as the analysis result of the image analysis. .. Then, the shrimp information acquisition unit 157 makes a calculation based on the information and the weight information, that is, the weight of the solid matter taken out from the aquaculture pond by sampling, or uses a predetermined table or the like. The ABW (average weight) of shrimp can be calculated. Moreover, since the ABW of the shrimp can be acquired, the shrimp information acquisition unit 157 can determine the biomass of the shrimp in the aquaculture pond.
 また、エビ情報取得部157は、例えば、環境センサ81により計測された環境計測値に基づいて求めたエビ情報を取得してもよい。すなわち、環境計測値として溶存酸素が得られている場合、エビ情報取得部157は、溶存酸素の低下率(所定の期間における溶存酸素の低下量)と個体数とに基づいて、算出を行ったり所定のテーブル等を用いたりすることなどによって、エビの成育状態(大きさやABW等)を求めることができる。エビが成育するのに伴い、酸素の消費量が多くなり、溶存酸素の低下率が高くなるためである。また、溶存酸素の低下率に基づいて、養殖池中のエビの生物量を求めるようにしてもよい。 Further, the shrimp information acquisition unit 157 may acquire the shrimp information obtained based on the environmental measurement value measured by the environment sensor 81, for example. That is, when dissolved oxygen is obtained as an environmental measurement value, the shrimp information acquisition unit 157 calculates based on the rate of decrease in dissolved oxygen (the amount of decrease in dissolved oxygen in a predetermined period) and the number of individuals. The growth state (size, ABW, etc.) of shrimp can be determined by using a predetermined table or the like. This is because as the shrimp grows, the amount of oxygen consumed increases and the rate of decrease in dissolved oxygen increases. In addition, the biomass of shrimp in the aquaculture pond may be determined based on the rate of decrease in dissolved oxygen.
 なお、エビ情報取得部157は、複数の方法で求めた同種のエビ情報を用いて、エビ情報を取得するようにしてもよい。例えば、エビ情報取得部157が、画像解析結果及び重量情報に基づいて取得したエビのABWと、溶存酸素の低下率と個体数とに基づいて取得したエビのABWとを求めて、両者を平均することなどにより、エビのABWを取得するようにしてもよい。 The shrimp information acquisition unit 157 may acquire the shrimp information by using the same type of shrimp information obtained by a plurality of methods. For example, the shrimp information acquisition unit 157 obtains the shrimp ABW acquired based on the image analysis result and the weight information and the shrimp ABW acquired based on the rate of decrease in dissolved oxygen and the number of individuals, and averages both of them. You may try to acquire the ABW of the shrimp by doing so.
 また、エビ情報取得部157は、例えば、給餌装置60による飼料の供給タイミング(給餌タイミング)と、画像解析部155で解析した撮影画像の撮影タイミングとに基づいて、給餌量の過不足に関する情報や、エビの腸の色、大きさ、餌の消化率に関する情報を含むエビ情報を取得してもよい。また、エビ情報取得部157は、例えば、養殖池に供給された飼料の量と、画像解析部155の解析結果とに基づいて、エビ情報を取得してもよい。例えば、撮影画像について検出された残餌量が同量である場合であっても、飼料の供給タイミングからその撮影画像の撮影タイミングまでの間隔が長いほど、給餌量が過剰である可能性が高いものとして、給餌量に関する判断を行うことができる。したがって、給餌量の過不足に関する情報を的確に行うことができる。なお、本実施の形態においては、給餌タイミングに応じて、昇降装置40がざる20の上げ下げを行い、給餌タイミングに応じた撮影タイミングの撮影画像が得られるように構成されている。これにより、後述のような給餌量の調整を容易にかつ的確に行うことができる。 Further, the shrimp information acquisition unit 157 provides information on excess or deficiency of the feed amount based on, for example, the feed supply timing (feeding timing) by the feeding device 60 and the shooting timing of the captured image analyzed by the image analysis unit 155. , Shrimp information including information on shrimp intestinal color, size, and feed digestibility may be obtained. Further, the shrimp information acquisition unit 157 may acquire shrimp information based on, for example, the amount of feed supplied to the aquaculture pond and the analysis result of the image analysis unit 155. For example, even if the amount of residual feed detected for the captured image is the same, the longer the interval from the feed supply timing to the capture timing of the captured image, the higher the possibility that the feed amount is excessive. As a matter of fact, it is possible to make a judgment regarding the amount of feed. Therefore, it is possible to accurately provide information on the excess or deficiency of the amount of feed. In the present embodiment, the elevating device 40 raises and lowers the Zaru 20 according to the feeding timing, so that a photographed image of the photographing timing according to the feeding timing can be obtained. This makes it possible to easily and accurately adjust the feeding amount as described later.
 また、エビ情報取得部157は、例えば、画像解析部155の解析結果に基づいて、所定の異常パターンに該当するエビがいるか否かを判別し、エビの異常に関する情報を取得するようにしてもよい。例えば、エビ情報取得部157は、画像解析の結果、特定の臓器が肥大化しているとか、遊泳行動や姿勢が平均的なエビとは異なっているとか、奇形を有するとかなど、疾病の兆候を示す所定の異常パターンに該当するエビ(異常なエビ)があるか否かを判断する。このような判断は、例えば、エビ情報取得部157が、画像解析部155が予め記憶されている当該異常に関するパターン情報を用いて画像解析を行った結果に基づいて行うようにしてもよい。また、エビ情報取得部157や画像解析部155が、上述のような機械学習のアルゴリズムを利用して、撮影画像又はエビが含まれる領域の画像を入力とし異常パターンを出力として予め構成された学習器を用いて行うようにしてもよい。そして、エビ情報取得部157は、異常パターンに該当するエビがある場合には、例えば、当該養殖池において異常なエビが存在する旨の情報をエビ情報として取得する。なお、異常なエビの数や存在割合が所定の閾値を超えた場合などに、エビ情報取得部157が、異常なエビが存在する旨の情報をエビ情報として取得するようにしてもよい。 Further, the shrimp information acquisition unit 157 may, for example, determine whether or not there is a shrimp corresponding to a predetermined abnormality pattern based on the analysis result of the image analysis unit 155, and acquire information on the abnormality of the shrimp. Good. For example, as a result of image analysis, the shrimp information acquisition unit 157 shows signs of illness such as an enlarged specific organ, a different swimming behavior or posture from the average shrimp, or having a malformation. It is determined whether or not there is a shrimp (abnormal shrimp) corresponding to the predetermined abnormal pattern shown. Such a determination may be made, for example, based on the result of the shrimp information acquisition unit 157 performing image analysis using the pattern information related to the abnormality stored in advance by the image analysis unit 155. Further, the shrimp information acquisition unit 157 and the image analysis unit 155 use the machine learning algorithm as described above to input a photographed image or an image of a region containing shrimp and output an abnormal pattern as an output. It may be done using a vessel. Then, when there is a shrimp corresponding to the abnormal pattern, the shrimp information acquisition unit 157 acquires, for example, information that the abnormal shrimp exists in the fishpond as shrimp information. When the number or abundance ratio of abnormal shrimp exceeds a predetermined threshold value, the shrimp information acquisition unit 157 may acquire information indicating the existence of abnormal shrimp as shrimp information.
 図5は、同エビ養殖支援システム1でサンプリングされたエビの一例を示す図である。 FIG. 5 is a diagram showing an example of shrimp sampled by the shrimp farming support system 1.
 図5においては、サンプリングされたエビを撮影した撮影画像の一部が示されている。異常パターンの更なる具体例としては、例えば、以下のようなものが挙げられる。 FIG. 5 shows a part of a photographed image of the sampled shrimp. Further specific examples of the anomaly pattern include, for example, the following.
 例えば、図5において、符号S2で示されるエビのように、エビ頭部下の胆膵管(符号S01で示す部位)の大きさが大きくその周辺部位が白いことは、良好な健康状態であることを示している。 For example, in FIG. 5, it is a good health condition that the size of the biliary pancreatic duct under the shrimp head (the part indicated by the reference numeral S01) is large and the peripheral part is white like the shrimp indicated by the reference numeral S2. Is shown.
 また、エビの腸(符号S02で示す部位)が黒色であるときは、餌の消化が完了していないといえる。黒色の腸が太いほど、多くの餌を摂取しているといえる。図5においては、符号S1で示されるエビも符号S2で示されるエビも、多くの餌を摂取し、かつ、消化中であることが見て取れる。そのため、エビの腸の状態を画像解析することで、餌の消化率を算出することが可能である。 If the shrimp intestine (the part indicated by the symbol S02) is black, it can be said that the digestion of the food is not completed. It can be said that the thicker the black intestine, the more food it consumes. In FIG. 5, it can be seen that both the shrimp represented by the symbol S1 and the shrimp represented by the symbol S2 are ingesting a large amount of food and are being digested. Therefore, it is possible to calculate the digestibility of food by image analysis of the intestinal condition of shrimp.
 また、エビの体の透明度が低かったり、エビの尾が赤みがかっていることは、健康状態が悪化していることを表している。 In addition, the low transparency of the shrimp's body and the reddish tail of the shrimp indicate that the health condition is deteriorating.
 給餌条件設定部158は、エビ情報取得部157により取得されたエビ情報に基づいて、給餌装置60による飼料の供給に関する給餌条件を設定する。より具体的には、例えば、給餌条件設定部158は、参照値格納部117に格納されている参照値と、エビ情報取得部157により取得されたエビ情報との比較結果に基づいて、給餌条件を設定する。例えば、給餌条件設定部158は、取得されたエビ情報に基づく現在のエビのABWと、参照値を用いて求めた現在のDOCに対応するABWとを比較し、養殖池中のエビの成育状況が、参照値で示される一般的なエビよりも速いか遅いかを判別する。そして、その判別結果に基づいて、給餌量を増加させるか減少させるかを決定し、給餌条件を設定し直すことができる。 The feeding condition setting unit 158 sets the feeding conditions related to the supply of feed by the feeding device 60 based on the shrimp information acquired by the shrimp information acquisition unit 157. More specifically, for example, the feeding condition setting unit 158 feeds the feeding condition based on the comparison result between the reference value stored in the reference value storage unit 117 and the shrimp information acquired by the shrimp information acquisition unit 157. To set. For example, the feeding condition setting unit 158 compares the current shrimp ABW based on the acquired shrimp information with the ABW corresponding to the current DOC obtained using the reference value, and compares the shrimp growth status in the aquaculture pond. However, it determines whether it is faster or slower than the general shrimp indicated by the reference value. Then, based on the determination result, it is possible to determine whether to increase or decrease the feeding amount, and to reset the feeding conditions.
 ここで給餌条件としては、飼料の供給タイミングに関する条件と、飼料の供給量に関する条件とがある。飼料の供給タイミングに関する条件について、給餌量を増加させる場合には、例えば、次回の飼料の供給タイミングを早めたり、所定期間当たりの給餌回数を増加させたりすることができる。飼料の供給量に関する条件について、給餌量を増加させる場合には、例えば、1回の給餌機会における給餌量を増加させることができる。なお、給餌量を減少させる場合には、これらの逆に設定するようにすればよい。 Here, the feeding conditions include a condition related to the feed supply timing and a condition related to the feed supply amount. Regarding the conditions regarding the feed timing, when the feed amount is increased, for example, the next feed supply timing can be advanced or the number of feeds per predetermined period can be increased. Regarding the condition regarding the feed supply amount, when the feed amount is increased, for example, the feed amount at one feeding opportunity can be increased. If the amount of feed is to be reduced, the reverse of these settings may be set.
 情報出力部170は、例えば、外部の装置に対して格納部110に格納されている情報を送信するなどして、情報を出力する。本実施の形態において、情報出力部170は、後述のように、作業者等のユーザに報知すべき情報があるとき、例えば、その情報を利用者端末装置910に送信することにより、ユーザに報知することができる。なお、情報出力部170は、上述したような他の出力態様(用紙の印刷、ディスプレイへの表示、電子メールなどの送信など)で報知を行うようにしてもよい。 The information output unit 170 outputs information by, for example, transmitting information stored in the storage unit 110 to an external device. In the present embodiment, as will be described later, when there is information to be notified to a user such as a worker, the information output unit 170 notifies the user by transmitting the information to the user terminal device 910, for example. can do. The information output unit 170 may perform notification in other output modes (paper printing, display on a display, transmission of e-mail, etc.) as described above.
 通信部190は、情報処理装置100をネットワークに接続し、ネットワークに接続されている他の装置との間での通信を行えるように制御する。これにより、情報処理装置100は、例えば利用者端末装置910やローカル側の装置との間で情報の送受信を行うことができる。 The communication unit 190 connects the information processing device 100 to the network and controls the information processing device 100 so that it can communicate with other devices connected to the network. As a result, the information processing device 100 can send and receive information to and from the user terminal device 910 and the local device, for example.
 なお、本実施の形態において、上述の情報をまとめると、エビ情報として、例えば次のようなものを取得することができる。すなわち、画像解析の結果として、エビの大きさ(サイズ)、エビの個体数、エビの重量、エビの画像やエビの形、色、などの情報、死んだエビの数(斃死数)、奇形を有するエビの数などを取得することができる。また、溶存酸素などの環境計測値をエビ情報の1つとして取得するようにしてもよい。また、画像解析の結果や環境計測値に基づいてさらに情報処理を行うことにより、より高精度なエビの重量、エビの大きさを取得したり、エビの病気の検出を行ったり、エビの食欲についての評価を行ったりすることができる。また、エビの食欲を評価することで、通常時よりも食欲がない場合の健康状態の低下を検出することができる。なお、エビ情報としてはこれに限られず、他の情報を求めるようにしてもよいし、上述の情報のうち取得しないものが含まれていてもよい。 In the present embodiment, when the above information is summarized, for example, the following can be obtained as shrimp information. That is, as a result of image analysis, information such as shrimp size (size), number of shrimp individuals, shrimp weight, shrimp image and shrimp shape, color, etc., number of dead shrimp (number of dead shrimp), malformation It is possible to obtain the number of shrimp having. Further, the environmental measurement value such as dissolved oxygen may be acquired as one of the shrimp information. In addition, by further processing information based on the results of image analysis and environmental measurement values, more accurate shrimp weight and shrimp size can be obtained, shrimp diseases can be detected, and shrimp appetite can be obtained. Can be evaluated. In addition, by evaluating the appetite of shrimp, it is possible to detect a decrease in health condition when there is less appetite than usual. The shrimp information is not limited to this, and other information may be requested, or the above-mentioned information that is not acquired may be included.
 また、これらのエビ情報の取得に際し、用いることができる情報としては、以下のようなものが挙げられる。すなわち、生育日数(DOC)、エビの種類、投入した稚エビ数、給餌量、天候履歴、水温履歴、溶存酸素履歴、水質履歴、及び濁度履歴等の情報を用いることができる。これらの情報を正確に取得してエビ情報の取得に用いることにより、より正確なエビ情報を取得することができる。なお、エビ情報の取得に際し用いることができる情報として、作業者等が入力したものを用いるようにしてもよい。また、水温履歴や、溶存酸素履歴や、水質履歴などについては、環境センサ81等の出力結果を用いるようにしてもよい。また、そのほか、撮影画像についての画像解析の結果や、給餌装置60や昇降装置40から送信された情報を用いるようにしてもよい。 In addition, the following information can be used when acquiring such shrimp information. That is, information such as the number of growing days (DOC), the type of shrimp, the number of juvenile shrimp introduced, the amount of feed, the weather history, the water temperature history, the dissolved oxygen history, the water quality history, and the turbidity history can be used. By accurately acquiring this information and using it for acquiring the shrimp information, more accurate shrimp information can be acquired. As the information that can be used when acquiring the shrimp information, the information input by the worker or the like may be used. Further, the output result of the environment sensor 81 or the like may be used for the water temperature history, the dissolved oxygen history, the water quality history, and the like. In addition, the result of image analysis of the captured image and the information transmitted from the feeding device 60 and the elevating device 40 may be used.
 図6は、同エビ養殖支援システム1で用いられるざる20を示す図である。図7は、同エビ養殖支援システム1で取り扱われる撮影画像の一部の一例を模式的に示す図である。 FIG. 6 is a diagram showing the Zaru 20 used in the shrimp farming support system 1. FIG. 7 is a diagram schematically showing an example of a part of a photographed image handled by the shrimp farming support system 1.
 図6に示されるように、ざる20は、本実施の形態において、平たい略円板状の形状を有している。なお、本実施の形態において、他の図においては、ざる20の形状は簡略化されて示されている。 As shown in FIG. 6, the colander 20 has a flat substantially disc-like shape in the present embodiment. In addition, in this embodiment, the shape of the colander 20 is shown in a simplified manner in other figures.
 ざる20には、カメラ30により撮影可能な模様(符号M)が付されている。模様としては、例えば、所定の間隔(例えば、10ミリメートルなど)を有する格子状の模様が付されている。 The Zaru 20 has a pattern (reference numeral M) that can be photographed by the camera 30. As the pattern, for example, a grid-like pattern having a predetermined interval (for example, 10 mm or the like) is attached.
 このような模様が付されているざる20を用いることにより、エビのサイズ測定をより正確に行うことができる。すなわち、図7に示されるように、撮影画像を解析することにより把握できる格子の間隔は既知の所定値である。そのため、画像解析部155が、同撮影画像にあるエビの大きさを、格子の間隔との比率として検出することにより、実際のエビの大きさを高精度に検出することができる。また、ざる20の上面に模様が付されているため、サンプリング前に、カメラ30のキャリブレーションを容易に行い、的確な撮影条件で撮影画像を撮影することができる。 By using the Zaru 20 with such a pattern, the size of the shrimp can be measured more accurately. That is, as shown in FIG. 7, the grid spacing that can be grasped by analyzing the captured image is a known predetermined value. Therefore, the image analysis unit 155 can detect the actual size of the shrimp with high accuracy by detecting the size of the shrimp in the captured image as a ratio with the interval of the grid. Further, since the upper surface of the Zaru 20 has a pattern, the camera 30 can be easily calibrated before sampling, and a photographed image can be photographed under accurate photographing conditions.
 図8は、同エビ養殖支援システム1で取り扱われる撮影画像の一部の別の例を模式的に示す図である。 FIG. 8 is a diagram schematically showing another example of a part of the photographed image handled by the shrimp farming support system 1.
 なお、模様は上述のような格子状のものに限られず、種々のものが用いられる。例えば、図8に撮影画像の一部の例として示されるように、所定の大きさの市松模様をざる20に付すようにしてもよい。また、格子状の模様の一部の色を異なる色にしてもよい。また、所定の大きさのパターン(水玉模様、星形模様、所定の間隔や線幅のハッチングなど)や図柄であってもよい。要するに、カメラ30で撮影された画像を解析したときにそのスケールを把握できるような模様をざる20に付したり、カメラ30のキャリブレーションを行うのに適した模様にすることにより、上述の効果を得ることができる。 The pattern is not limited to the above-mentioned grid pattern, and various patterns are used. For example, as shown in FIG. 8 as an example of a part of the captured image, a checkerboard pattern of a predetermined size may be attached to the colander 20. Further, a part of the colors of the grid pattern may be different colors. Further, it may be a pattern of a predetermined size (polka dot pattern, star pattern, hatching of a predetermined interval or line width, etc.) or a pattern. In short, the above-mentioned effect can be obtained by adding a pattern to the colander 20 so that the scale can be grasped when the image taken by the camera 30 is analyzed, or by making the pattern suitable for calibrating the camera 30. Can be obtained.
 カメラ30は、本実施の形態においては、例えば単眼のデジタルスチルカメラなどを用いることができる。上述のように本実施の形態においてはざる20にサイズ検出の参照となる模様が付されているため、単眼のカメラを用いる場合においても、的確にエビの大きさを検出することが可能となっている。なお、ざる20に模様が付されていない場合においても、例えばカメラ30として複眼のカメラ(ステレオカメラ)を用いることにより、撮影画像に基づいてエビの大きさをより高精度に検出することができる。 As the camera 30, for example, a monocular digital still camera or the like can be used in the present embodiment. As described above, since the colander 20 in the present embodiment has a pattern that serves as a reference for size detection, it is possible to accurately detect the size of the shrimp even when a monocular camera is used. ing. Even when the colander 20 is not patterned, for example, by using a compound-eye camera (stereo camera) as the camera 30, the size of the shrimp can be detected with higher accuracy based on the captured image. ..
 図9は、同エビ養殖支援システム1で取り扱われる撮影画像の一例を示す図である。 FIG. 9 is a diagram showing an example of a photographed image handled by the shrimp farming support system 1.
 図9において、符号Sで示されるように、サンプリングの結果として2匹のエビが含まれる。また、図9において上部のほうに符号SRで示されるように、残餌が含まれる。このような撮影画像について、画像解析部155による画像解析が行われることにより、サンプリングにより引き上げられたエビの個体数や、大きさ、色などの情報が解析結果として得られる。エビ情報取得部157は、このようなエビの大きさや色などの情報を養殖池のエビのエビ情報として取得することができる。また、取得されたエビの個体数や、大きさ等に基づいて、計算や統計処理などを行うことにより、養殖池のエビの個体数や、生物量などのエビ情報を取得することができる。 In FIG. 9, as indicated by the reference numeral S, two shrimp are included as a result of sampling. In addition, residual food is included in the upper part of FIG. 9, as indicated by the symbol SR. By performing image analysis on such a captured image by the image analysis unit 155, information such as the number, size, and color of the shrimp pulled up by sampling can be obtained as the analysis result. The shrimp information acquisition unit 157 can acquire information such as the size and color of the shrimp as shrimp information of the shrimp in the aquaculture pond. In addition, shrimp information such as the number of shrimp in the aquaculture pond and the amount of biomass can be obtained by performing calculations and statistical processing based on the number and size of the acquired shrimp.
 図10は、同エビ養殖支援システム1で行われる動作の全体の流れを示すフローチャートである。 FIG. 10 is a flowchart showing the overall flow of operations performed by the shrimp farming support system 1.
 図10に示されるように、エビ養殖支援システム1では、以下のような動作が行われることにより、作業者はエビの養殖支援を受けることができる。以下の処理は、情報処理装置100(又はその処理部120)や、情報処理装置100からの指令に応じて動作するその他の装置により行われるが、これに限られるものではない。 As shown in FIG. 10, in the shrimp farming support system 1, the worker can receive shrimp farming support by performing the following operations. The following processing is performed by the information processing device 100 (or its processing unit 120) or another device that operates in response to a command from the information processing device 100, but is not limited thereto.
 (ステップS11)まず、情報処理装置100は、ユーザによる情報の入力を受け付けたり、他の装置から送信された情報を受信したりしたか否かを判断する。入力を受け付けたり情報を受信した場合にはステップS12に進み、そうでない場合にはステップS11に戻る。 (Step S11) First, the information processing device 100 determines whether or not it has accepted the input of information by the user or has received the information transmitted from another device. If the input is accepted or the information is received, the process proceeds to step S12, and if not, the process returns to step S11.
 (ステップS12)情報処理装置100は、入力を受け付けた情報や受信した情報を、格納部110に格納する。 (Step S12) The information processing device 100 stores the input-accepted information and the received information in the storage unit 110.
 (ステップS13)情報処理装置100は、給餌条件を取得する。給餌条件は、給餌装置60から取得してもよいし、給餌条件設定部158で設定した給餌条件を情報処理装置100の内部で取得するようにしてもよい。 (Step S13) The information processing device 100 acquires feeding conditions. The feeding condition may be acquired from the feeding device 60, or the feeding condition set by the feeding condition setting unit 158 may be acquired inside the information processing device 100.
 (ステップS14)情報処理装置100は、給餌タイミングが到来したか否かを判断する。給餌タイミングが到来している場合にはステップS15に進み、そうでない場合にはステップS16に進む。 (Step S14) The information processing device 100 determines whether or not the feeding timing has arrived. If the feeding timing has arrived, the process proceeds to step S15, and if not, the process proceeds to step S16.
 (ステップS15)情報処理装置100及び給餌装置60は、給餌を行う。 (Step S15) The information processing device 100 and the feeding device 60 feed.
 (ステップS16)情報処理装置100及び昇降装置40は、サンプリングを行う。 (Step S16) The information processing device 100 and the elevating device 40 perform sampling.
 (ステップS17)情報処理装置100は、エビ情報解析処理を行う。これにより、エビ情報が得られる。 (Step S17) The information processing device 100 performs shrimp information analysis processing. As a result, shrimp information can be obtained.
 (ステップS18)情報処理装置100は、エビ情報に基づいて、反映処理を行う。処理が終了すると、ステップS11に戻る。 (Step S18) The information processing device 100 performs reflection processing based on the shrimp information. When the process is completed, the process returns to step S11.
 なお、養殖が終了すると、このような動作を終了すればよい。 In addition, when the aquaculture is completed, such an operation may be terminated.
 図11は、同エビ養殖支援システム1で行われる給餌について説明するフローチャートである。 FIG. 11 is a flowchart illustrating feeding performed by the shrimp farming support system 1.
 給餌は、例えば、情報処理装置100から給餌を実行する旨の指令が給餌装置60に対して送信されたときに、給餌装置60(より具体的には、給餌装置60の制御部67)により実行される。なお、給餌装置60が、設定されている給餌条件(給餌条件格納部68に格納されている給餌条件)に基づいて、所定の給餌タイミングが到来したと判断したときに給餌を実行するようにしてもよい。 Feeding is executed by, for example, the feeding device 60 (more specifically, the control unit 67 of the feeding device 60) when a command to execute feeding is transmitted from the information processing device 100 to the feeding device 60. Will be done. It should be noted that the feeding device 60 executes feeding when it is determined that a predetermined feeding timing has arrived based on the set feeding conditions (feeding conditions stored in the feeding condition storage unit 68). May be good.
 (ステップS31)給餌装置60は、給餌条件格納部68に格納されている給餌条件を取得する。 (Step S31) The feeding device 60 acquires the feeding conditions stored in the feeding condition storage unit 68.
 (ステップS32)給餌装置60は、計量部63を用いて、給餌条件において定められている給餌量に関する条件に基づいて、供給する飼料を計量する。これにより、供給される飼料が飼料タンク61から取り出される。 (Step S32) The feeding device 60 measures the feed to be supplied based on the conditions related to the feeding amount defined in the feeding conditions by using the measuring unit 63. As a result, the supplied feed is taken out from the feed tank 61.
 (ステップS33)給餌装置60は、駆動部66を駆動させて、散布機構65により、取り出された飼料を養殖池に散布する。 (Step S33) The feeding device 60 drives the driving unit 66 to spray the extracted feed to the aquaculture pond by the spraying mechanism 65.
 (ステップS34)給餌装置60は、給餌情報を記録する。制御部67は、給餌情報を、情報処理装置100に送信する。情報処理装置100は、給餌情報を受信して、給餌情報格納部116に格納する。 (Step S34) The feeding device 60 records feeding information. The control unit 67 transmits the feeding information to the information processing device 100. The information processing device 100 receives the feeding information and stores it in the feeding information storage unit 116.
 ステップS34が終了すると、給餌が終了し、図10の処理に戻る。 When step S34 is completed, feeding is completed and the process returns to FIG.
 図12は、同エビ養殖支援システム1で行われるサンプリングについて説明するフローチャートである。 FIG. 12 is a flowchart illustrating sampling performed by the shrimp farming support system 1.
 サンプリングは、例えば、情報処理装置100からサンプリングを実行する旨の指令が昇降装置40に対して送信されたときに、昇降装置40(より具体的には、昇降装置40の制御部47)により実行される。本実施の形態において、情報処理装置100は、所定のスケジュールに従って、サンプリングを実行する旨の指令を行う。より具体的には、情報処理装置100は、給餌条件で定められたスケジュールに従って給餌が行われてから所定時間が経過したとき(所定のスケジュールの一例)に、サンプリングを実行する旨の指令を行うように構成されている。 Sampling is performed by, for example, the lifting device 40 (more specifically, the control unit 47 of the lifting device 40) when a command to execute sampling is transmitted from the information processing device 100 to the lifting device 40. Will be done. In the present embodiment, the information processing apparatus 100 issues a command to execute sampling according to a predetermined schedule. More specifically, the information processing apparatus 100 issues a command to execute sampling when a predetermined time elapses (an example of a predetermined schedule) after feeding is performed according to the schedule determined by the feeding conditions. It is configured as follows.
 なお、サンプリングを実行する旨の指令はこれに限られない。例えば、情報処理装置100は、給餌が行われたか否かにかかわらず、所定のスケジュール情報に従って当該指令を行うように構成されていてもよい。また、昇降装置40が、設定されている所定のスケジュール情報に基づいて、所定の実行タイミングが到来したと判断したときにサンプリングを実行するようにしてもよい。 The command to execute sampling is not limited to this. For example, the information processing apparatus 100 may be configured to issue the command according to predetermined schedule information regardless of whether or not feeding has been performed. Further, the elevating device 40 may execute sampling when it is determined that a predetermined execution timing has arrived based on the set predetermined schedule information.
 (ステップS111)サンプリングが開始されると、まず、昇降装置40は、ざる20が所定の待機位置にある状態で、カメラ30のキャリブレーションを行う。キャリブレーションでは、カメラ30が、ざる20を撮影しながら、露出状態等の撮影条件が所定の程度になるようにカメラ30の設定を調整する。なお、キャリブレーションは行われなくてもよい。 (Step S111) When sampling is started, the elevating device 40 first calibrates the camera 30 with the colander 20 in a predetermined standby position. In the calibration, the camera 30 adjusts the setting of the camera 30 so that the shooting conditions such as the exposure state become a predetermined degree while shooting the colander 20. Note that calibration does not have to be performed.
 (ステップS112)昇降装置40は、駆動部45を駆動させて昇降機構41を回転させ、ざる20を所定の降下位置まで降下させる。所定の降下位置は、例えば、ざる20と環境センサ81とが養殖池に浸漬される位置に設定されている。 (Step S112) The elevating device 40 drives the drive unit 45 to rotate the elevating mechanism 41, and lowers the colander 20 to a predetermined descent position. The predetermined descent position is set to, for example, a position where the colander 20 and the environment sensor 81 are immersed in the aquaculture pond.
 (ステップS113)昇降装置40は、環境センサ81から出力される環境計測値を取得する。環境計測値は情報処理装置100に送信され、環境計測値格納部115に格納される。 (Step S113) The elevating device 40 acquires the environmental measurement value output from the environment sensor 81. The environmental measurement value is transmitted to the information processing device 100 and stored in the environmental measurement value storage unit 115.
 (ステップS114)昇降装置40は、ざる20の引き上げを開始するか否かを判断する。例えば、ステップS112が完了してから所定時間が経過したときに、ざる20の引き上げを開始すると判断することができるが、これに限られるものではない。ざる20の引き上げを開始すると判断するとステップS115に進み、それまではステップS114を繰り返す。 (Step S114) The elevating device 40 determines whether or not to start raising the colander 20. For example, it can be determined that the raising of the Zaru 20 is started when a predetermined time elapses after the completion of step S112, but the present invention is not limited to this. If it is determined that the raising of the colander 20 is to be started, the process proceeds to step S115, and step S114 is repeated until then.
 (ステップS115)昇降装置40は、駆動部45を駆動させて昇降機構41を回転させ、ざる20を所定の待機位置まで上昇させる。 (Step S115) The elevating device 40 drives the drive unit 45 to rotate the elevating mechanism 41, and raises the colander 20 to a predetermined standby position.
 (ステップS116)昇降装置40は、重量センサ83から出力される重量情報を取得する。重量情報は情報処理装置100に送信され、重量情報格納部113に格納される。 (Step S116) The lifting device 40 acquires the weight information output from the weight sensor 83. The weight information is transmitted to the information processing device 100 and stored in the weight information storage unit 113.
 (ステップS117)昇降装置40は、カメラ30に、ざる20を撮影させる。これにより得られた撮影画像は情報処理装置100に送信される。 (Step S117) The elevating device 40 causes the camera 30 to take a picture of the colander 20. The captured image obtained thereby is transmitted to the information processing device 100.
 (ステップS118)情報処理装置100において、撮影画像取得部151は、昇降装置40から送信された撮影画像を撮影画像格納部111に格納する。 (Step S118) In the information processing device 100, the captured image acquisition unit 151 stores the captured image transmitted from the elevating device 40 in the captured image storage unit 111.
 (ステップS119)昇降装置40は、ざる20の内容物を取り除く復帰動作を行う。なお、復帰動作は行われなくてもよい。例えば作業者がざる20の内容物を取り除くようにしてもよい。 (Step S119) The elevating device 40 performs a return operation for removing the contents of the colander 20. The return operation may not be performed. For example, the worker may remove the contents of Zaru 20.
 ステップS119が終了すると、サンプリングが終了し、図10の処理に戻る。 When step S119 is completed, sampling is completed and the process returns to the process shown in FIG.
 図13は、同エビ養殖支援システム1で行われるエビ情報解析処理について説明するフローチャートである。 FIG. 13 is a flowchart illustrating the shrimp information analysis process performed by the shrimp farming support system 1.
 エビ情報解析処理は、例えば、サンプリングが実行されて撮影画像が撮影画像格納部111に格納されたときに、情報処理装置100において実行される。なお、情報処理装置100は、所定のスケジュールに従って、例えば定期的に、エビ情報解析処理を実行するようにしてもよい。 The shrimp information analysis process is executed in the information processing device 100, for example, when sampling is executed and the captured image is stored in the captured image storage unit 111. The information processing apparatus 100 may execute the shrimp information analysis process, for example, periodically according to a predetermined schedule.
 (ステップS131)エビ情報解析処理が開始されると、画像解析部155は、撮影画像格納部111に格納されている撮影画像のうち、処理対象のものを読み込む。例えば、前回エビ情報解析処理が実行された時より後に格納された撮影画像を読み込む。 (Step S131) When the shrimp information analysis process is started, the image analysis unit 155 reads the photographed image stored in the photographed image storage unit 111 to be processed. For example, the captured image stored after the time when the shrimp information analysis process was executed last time is read.
 (ステップS132)画像解析部155は、読み込んだ撮影画像について画像解析を行う。画像解析は、例えば上述のようにして行われる。これにより、エビの大きさや個体数、エビの腸の色や大きさ、残餌量などの解析結果が得られる。 (Step S132) The image analysis unit 155 performs image analysis on the read captured image. Image analysis is performed, for example, as described above. As a result, analysis results such as the size and number of shrimp, the color and size of the intestine of shrimp, and the amount of residual food can be obtained.
 (ステップS133)エビ情報取得部157は、画像解析結果と、格納されている情報とに基づいて、エビ情報を取得する。エビ情報の取得は、例えば上述のようにして行われる。これにより、例えば、エビの個体数、エビの重量、エビの大きさ、エビの異常に関する情報、餌の消化率、及びエビの食欲に関する情報などのエビ情報が取得される。 (Step S133) The shrimp information acquisition unit 157 acquires shrimp information based on the image analysis result and the stored information. The acquisition of shrimp information is performed, for example, as described above. As a result, for example, shrimp information such as shrimp population, shrimp weight, shrimp size, shrimp abnormality information, food digestibility, and shrimp appetite information is acquired.
 (ステップS134)エビ情報取得部157は、取得したエビ情報を、エビ情報格納部119に格納する。 (Step S134) The shrimp information acquisition unit 157 stores the acquired shrimp information in the shrimp information storage unit 119.
 ステップS134が終了すると、エビ情報解析処理が終了し、図10の処理に戻る。 When step S134 is completed, the shrimp information analysis process is completed, and the process returns to the process shown in FIG.
 図14は、同エビ養殖支援システム1で行われる反映処理について説明するフローチャートである。 FIG. 14 is a flowchart illustrating the reflection process performed by the shrimp farming support system 1.
 反映処理は、例えば、エビ情報解析処理が終了し、取得されたエビ情報がエビ情報格納部119に格納されたときに、情報処理装置100において実行される。なお、情報処理装置100は、所定のスケジュールに従って、例えば定期的に、反映処理を実行するようにしてもよい。 The reflection process is executed in the information processing device 100, for example, when the shrimp information analysis process is completed and the acquired shrimp information is stored in the shrimp information storage unit 119. The information processing apparatus 100 may execute the reflection process, for example, periodically according to a predetermined schedule.
 (ステップS151)処理部150は、エビ情報格納部119から、エビ情報を読み込む。 (Step S151) The processing unit 150 reads the shrimp information from the shrimp information storage unit 119.
 (ステップS152)処理部150は、読み出したエビ情報等に基づいて、所定の報知条件に適合するか否かを判断する。報知条件に適合すると判断した場合は、ステップS153に進み、そうでない場合は、ステップS154に進む。 (Step S152) The processing unit 150 determines whether or not the predetermined notification condition is satisfied based on the read shrimp information and the like. If it is determined that the notification condition is satisfied, the process proceeds to step S153, and if not, the process proceeds to step S154.
 ここで、報知条件としては、種々のものを設定することができる。例えば、エビ情報として、養殖池のエビが異常であることを示す情報があるとき、報知条件に適合すると判断するようにしてもよい。また、エビの食欲が低いとき、報知条件に適合すると判断するようにしてもよい。例えば、給餌後所定時間経過後において、残餌量が所定量以上である場合やエビの腸の色や大きさから餌が消化されずに残っていると判断される場合などに、エビの食欲が低いと判断することができる。また、環境計測値が所定の閾値を超えているとき、報知条件に適合すると判断するようにしてもよい。すなわち、例えば、養殖池の環境が悪化していたり、エビの成育に関して問題がある可能性がある場合には報知条件に適合すると判断されるように、報知条件を設定することが好ましい。 Here, various notification conditions can be set. For example, when there is information indicating that the shrimp in the aquaculture pond is abnormal as the shrimp information, it may be determined that the notification condition is satisfied. Further, when the appetite of the shrimp is low, it may be determined that the notification condition is satisfied. For example, the appetite of shrimp when the amount of residual food is more than the specified amount or when it is judged from the color and size of the intestine of the shrimp that the food remains undigested after a predetermined time has passed after feeding. Can be judged to be low. Further, when the environmental measurement value exceeds a predetermined threshold value, it may be determined that the notification condition is satisfied. That is, for example, it is preferable to set the notification conditions so that it is judged that the notification conditions are met when the environment of the aquaculture pond is deteriorated or there is a possibility that there is a problem with the growth of shrimp.
 (ステップS153)処理部150は、情報出力部170に、報知を実行させる。例えば、報知条件に適合した理由をユーザに報知することにより、ユーザにその旨を知らせ、対応を促すことができる。なお、報知方法としては、上述のように、適宜設定すればよい。なお、ステップS152において常に報知条件を満たすと判断するようにし、ステップS153において常にそのときのエビ情報に関する報知項目(例えば、エビの成育状況や、養殖池の環境状態など)がユーザに報知されるようにしてもよい。 (Step S153) The processing unit 150 causes the information output unit 170 to execute the notification. For example, by notifying the user of the reason for conforming to the notification conditions, it is possible to notify the user to that effect and prompt the user to take action. The notification method may be appropriately set as described above. In step S152, it is determined that the notification condition is always satisfied, and in step S153, notification items related to the shrimp information at that time (for example, shrimp growth status, environment state of the aquaculture pond, etc.) are always notified to the user. You may do so.
 (ステップS154)処理部150は、給餌量が過剰であるか否かを判断する。例えば、給餌後所定時間経過後において、残餌量が所定量以上である場合やエビの腸の色や大きさから餌が消化されずに残っていると判断される場合などに、給餌量が過剰であると判断されるようにすればよい。給餌量が過剰であると判断した場合は、ステップS155に進み、そうでない場合は、ステップS156に進む。 (Step S154) The processing unit 150 determines whether or not the feeding amount is excessive. For example, when the amount of residual food is equal to or greater than the specified amount after a predetermined time has passed after feeding, or when it is judged from the color and size of the intestine of the shrimp that the food remains undigested, the amount of feed is increased. It should be judged that it is excessive. If it is determined that the feeding amount is excessive, the process proceeds to step S155, and if not, the process proceeds to step S156.
 (ステップS155)給餌条件設定部158は、給餌量を減少させるように給餌条件を変更する。変更後の給餌条件が給餌装置60に送信され、給餌条件格納部68に格納される。例えば、所定量又は所定割合だけ1回の給餌量を減少させたり、所定時間だけ給餌タイミングの間隔を遅れさせたりしてもよい。所定の程度だけ給餌条件を変更することにより、給餌量に関する急激な変化が発生するのを防止することができる。ステップS156に進む。 (Step S155) The feeding condition setting unit 158 changes the feeding condition so as to reduce the feeding amount. The changed feeding condition is transmitted to the feeding device 60 and stored in the feeding condition storage unit 68. For example, the feeding amount at one time may be reduced by a predetermined amount or a predetermined ratio, or the feeding timing interval may be delayed by a predetermined time. By changing the feeding conditions by a predetermined degree, it is possible to prevent a sudden change in the feeding amount from occurring. The process proceeds to step S156.
 (ステップS156)処理部150は、給餌量が不足しているか否かを判断する。例えば、例えば、給餌後所定時間経過後において、残餌量が所定量未満である場合やエビの腸の色や大きさから餌が消化されていると判断される場合などに、給餌量が不足していると判断されるようにすればよい。給餌量が不足していると判断した場合は、ステップS157に進み、そうでない場合は、ステップS158に進む。 (Step S156) The processing unit 150 determines whether or not the feeding amount is insufficient. For example, when the amount of residual food is less than the specified amount after a predetermined time has passed after feeding, or when it is judged that the food has been digested based on the color and size of the intestine of the shrimp, the amount of feed is insufficient. It should be judged that it is doing. If it is determined that the amount of feed is insufficient, the process proceeds to step S157, and if not, the process proceeds to step S158.
 (ステップS157)給餌条件設定部158は、給餌量を増加させるように給餌条件を変更する。変更後の給餌条件が給餌装置60に送信され、給餌条件格納部68に格納される。例えば、所定量又は所定割合だけ1回の給餌量を増加させたり、所定時間だけ給餌タイミングの間隔を短くしたりしてもよい。所定の程度だけ給餌条件を変更することにより、給餌量に関する急激な変化が発生するのを防止することができる。ステップS158に進む。 (Step S157) The feeding condition setting unit 158 changes the feeding condition so as to increase the feeding amount. The changed feeding condition is transmitted to the feeding device 60 and stored in the feeding condition storage unit 68. For example, the feeding amount at one time may be increased by a predetermined amount or a predetermined ratio, or the feeding timing interval may be shortened by a predetermined time. By changing the feeding conditions by a predetermined degree, it is possible to prevent a sudden change in the feeding amount from occurring. The process proceeds to step S158.
 (ステップS158)処理部150は、酸素濃度すなわち溶存酸素が第1酸素閾値より低いか否かを判断する。第1酸素閾値は、所定の生物量のエビが健全に成育するのに必要な溶存酸素の最低値よりも若干高く設定されていることが好ましい。酸素濃度が第1酸素閾値よりも低いと判断したとき、ステップS159に進み、そうでなければ、ステップS160に進む。 (Step S158) The processing unit 150 determines whether or not the oxygen concentration, that is, the dissolved oxygen is lower than the first oxygen threshold. The first oxygen threshold is preferably set slightly higher than the minimum value of dissolved oxygen required for the healthy growth of a predetermined biomass of shrimp. When it is determined that the oxygen concentration is lower than the first oxygen threshold, the process proceeds to step S159, and if not, the process proceeds to step S160.
 (ステップS159)情報処理装置100は、エアレーション装置70に指令を送信し、エアレーション装置70にエアレーションを実行させる。これにより、養殖池の溶存酸素が不足する状態が継続することを防止することができる。ステップS160に進む。 (Step S159) The information processing device 100 transmits a command to the aeration device 70, and causes the aeration device 70 to execute aeration. As a result, it is possible to prevent the state in which the dissolved oxygen in the aquaculture pond is insufficient from continuing. The process proceeds to step S160.
 (ステップS160)処理部150は、酸素濃度すなわち溶存酸素が第2酸素閾値より高いか否かを判断する。第2酸素閾値は、第1酸素閾値よりも高い値である。酸素濃度が第2酸素閾値よりも高いと判断したとき、ステップS161に進み、そうでなければ、反映処理を終了する。 (Step S160) The processing unit 150 determines whether or not the oxygen concentration, that is, the dissolved oxygen is higher than the second oxygen threshold. The second oxygen threshold is a value higher than the first oxygen threshold. When it is determined that the oxygen concentration is higher than the second oxygen threshold value, the process proceeds to step S161, and if not, the reflection process ends.
 (ステップS161)情報処理装置100は、エアレーション装置70に指令を送信し、エアレーション装置70にエアレーションを停止させる。これにより、確実に溶存酸素が確保されている状況を維持することができ、かつ、不要なエアレーションが行われることを防止し、省エネルギ化を進めることができる。 (Step S161) The information processing device 100 transmits a command to the aeration device 70, and causes the aeration device 70 to stop the aeration. As a result, it is possible to maintain a state in which dissolved oxygen is surely secured, prevent unnecessary aeration from being performed, and promote energy saving.
 このように、実施の形態1では、エビ養殖支援システム1により自動的にサンプリングを行ってエビ情報が取得される。したがって、養殖池中のエビ情報を容易に取得することができる。エビ情報は、撮影画像に基づいて画像解析を行うことで取得されたり、画像解析の結果とその他の情報に基づいて取得されたりする。したがって、より高精度なエビ情報を取得することができる。 As described above, in the first embodiment, the shrimp farming support system 1 automatically performs sampling to acquire shrimp information. Therefore, the shrimp information in the aquaculture pond can be easily obtained. The shrimp information is acquired by performing image analysis based on the captured image, or is acquired based on the result of image analysis and other information. Therefore, more accurate shrimp information can be obtained.
 また、エビ養殖支援システム1では、取得されたエビ情報に応じて、反映処理が実行される。反映処理により給餌条件が変更されて、変更後の給餌条件に基づいてその後の給餌が行われるので、エビの成育状況に応じて適切な給餌を行うことができる。したがって、養殖池を良好な環境に維持することができ、かつ、エビに十分な給餌を行うことができる。 In addition, in the shrimp farming support system 1, reflection processing is executed according to the acquired shrimp information. Since the feeding conditions are changed by the reflection process and the subsequent feeding is performed based on the changed feeding conditions, appropriate feeding can be performed according to the growth situation of the shrimp. Therefore, the aquaculture pond can be maintained in a good environment, and the shrimp can be sufficiently fed.
 従来、給餌量の設定にあたっては、一例として、以下のような手法が用いられていた。すなわち、まず、エビの生物量の所定の割合が適切な給餌量であるという仮定の下で、給餌量に基づいて生物量を算出する。すなわち、DOCに対応するABWの参照値を算出する。そして、ABWの参照値に対して、必要な給餌量を算出する(例えば、所定のテーブルを用いて算出するなどしてもよい)。そして、養殖池全体とざるとの面積比と、池全体への餌の供給量との比に基づいて、ざる20上への餌の供給量を算出する。そして、ざる20上の残餌量とざる20上の餌の供給量との比と、池全体への餌の供給量とに基づいて、池全体の残餌量を算出する。そうすると、池全体の餌の摂餌量は、餌の投下量から餌の残餌量を減算して与えられ、池全体の餌の摂餌量に基づいて、エビの個体数を推定することができる。そうすると、エビのABWの参照値が与えられていることから、エビの個体数にABWを乗ずることで、エビの生物量を算出することができる。 Conventionally, the following method has been used as an example when setting the feeding amount. That is, first, the biomass is calculated based on the feed amount under the assumption that a predetermined ratio of the biomass of the shrimp is an appropriate feed amount. That is, the reference value of ABW corresponding to DOC is calculated. Then, the required feeding amount is calculated with respect to the reference value of ABW (for example, it may be calculated using a predetermined table). Then, the amount of food supplied to the colander 20 is calculated based on the ratio of the area ratio of the entire fishpond to the colander and the amount of food supplied to the entire pond. Then, the amount of residual food in the entire pond is calculated based on the ratio of the amount of residual food on the colander 20 to the amount of food supplied on the colander 20 and the amount of food supplied to the entire pond. Then, the amount of food consumed by the entire pond is given by subtracting the amount of residual food from the amount of food dropped, and the number of shrimp can be estimated based on the amount of food consumed by the entire pond. it can. Then, since the reference value of the ABW of the shrimp is given, the biomass of the shrimp can be calculated by multiplying the number of individuals of the shrimp by the ABW.
 これに対し、本実施の形態では、実際にサンプリングした結果に基づいて、高精度なエビの生物量を得ることができる。 On the other hand, in the present embodiment, highly accurate shrimp biomass can be obtained based on the result of actual sampling.
 なお、エビへの給餌量は予め決定していた1日の給餌量を1日の給餌回数で除して1回の給餌量が決められるが、エビ養殖支援システム1を活用して、1回ごとの給餌量を自動最適化することが可能である。例えば、N回目の給餌を行った際に給餌xx分後とxx+m分後に自動でざるを持ち上げ、撮影した画像から残餌の有無を判定し、予め設定していた次回の給餌量を調整する。具体的には、例えば、xx分後にすでに残餌が無い場合や、エビの腸の色や大きさから餌がすでに消化されていると判断される場合は、N+1回目の給餌量をN回目の給餌量に対して+Y%とする。xx分後には残餌があるがxx+m分後に残餌がない場合や、エビの腸の色や大きさから餌がすでに消化されていると判断される場合には、給餌量の調整量を0%とする(給餌量を変化させない)。xx+m分後にまだ残餌がある場合や、エビの腸の色や大きさから餌が消化されずに残っていると判断される場合には、-Y%とする。これと同様に、一回の給餌量を調整する代わりに給餌間隔を変更することで一日の給餌量を調整することもできる。このような形で1日の給餌量が最適化されるように調整することで、過給餌を0に近い状態を実現し、水質管理に役立てる他、自動給餌機での1日の給餌量=池全体のエビの摂餌量とすることで正確な生物量の計測にも活用することができる。 The amount of feed to the shrimp is determined by dividing the amount of feed per day, which has been determined in advance, by the number of times of feed per day, but the amount of feed per time is determined by utilizing the shrimp farming support system 1. It is possible to automatically optimize the amount of feed for each. For example, when the Nth feeding is performed, the colander is automatically lifted xx minutes after feeding and xx + m minutes later, the presence or absence of residual feeding is determined from the captured image, and the preset next feeding amount is adjusted. Specifically, for example, if there is no residual food after xx minutes, or if it is judged from the color and size of the shrimp intestine that the food has already been digested, the N + 1th feeding amount is set to the Nth feeding amount. + Y% with respect to the amount of feed. If there is residual food after xx minutes but no residual food after xx + m, or if it is judged from the color and size of the shrimp intestine that the food has already been digested, adjust the amount of feed to 0. % (Does not change the amount of feed). If there is still food left after xx + m, or if it is judged from the color and size of the shrimp intestine that the food remains undigested, it is set to -Y%. Similarly, the daily feeding amount can be adjusted by changing the feeding interval instead of adjusting the feeding amount at one time. By adjusting the daily feeding amount in this way so that it is optimized, the superfeeding can be achieved in a state close to 0, which is useful for water quality management, and the daily feeding amount with the automatic feeder = By using the amount of shrimp fed in the entire pond, it can be used for accurate measurement of biological quantity.
 ここで、本実施の形態においては、カメラ30を用いて、養殖池の濁度を検出することができるようにしてもよい。 Here, in the present embodiment, the camera 30 may be used to detect the turbidity of the aquaculture pond.
 図15は、同エビ養殖支援システム1で行われる濁度検出処理について説明するフローチャートである。 FIG. 15 is a flowchart illustrating the turbidity detection process performed by the shrimp farming support system 1.
 濁度検出処理は、例えば、情報処理装置100からサンプリングを実行する旨の指令が昇降装置40に対して送信されたときに、それに合わせて濁度検出処理藻も行うように指令が出されるようにしてもよい。 In the turbidity detection process, for example, when a command to execute sampling is transmitted from the information processing device 100 to the elevating device 40, a command is issued to perform the turbidity detection process algae accordingly. It may be.
 (ステップS191)濁度検出処理が開始されると、まず、昇降装置40は、ざる20が所定の待機位置にある状態で、カメラ30のキャリブレーションを行う。 (Step S191) When the turbidity detection process is started, the elevating device 40 first calibrates the camera 30 with the colander 20 in a predetermined standby position.
 (ステップS192)昇降装置40は、駆動部45を駆動させて昇降機構41を回転させ、ざる20を徐々に降下させる。 (Step S192) The elevating device 40 drives the drive unit 45 to rotate the elevating mechanism 41, and gradually lowers the colander 20.
 (ステップS193)また、昇降装置40は、養殖池の水面位置を検出する。水面位置の検出には、種々の方法を用いることができる。例えば、重量センサ83の計測値の変化に基づいて検出したり、別のセンサを用いて水面位置を検出したりしてもよい。また、ユーザから入力された情報に基づいて水面位置を検出してもよい。水面位置は、濁度を測定する際に用いられる水深の基準となる。 (Step S193) Further, the elevating device 40 detects the water surface position of the aquaculture pond. Various methods can be used to detect the water surface position. For example, the detection may be based on a change in the measured value of the weight sensor 83, or the water surface position may be detected by using another sensor. Further, the water surface position may be detected based on the information input from the user. The water surface position serves as a reference for the water depth used when measuring turbidity.
 (ステップS194)浸漬中画像取得部153は、養殖池に浸かり始めたざる20の浸漬中画像を取得する。 (Step S194) The immersion image acquisition unit 153 acquires the immersion image of the colander 20 that has begun to be immersed in the aquaculture pond.
 (ステップS195)濁度検出部156は、浸漬中画像に基づいて、ざる20が所定の可視条件を満たすか否かを判断する。可視条件を満たすと判断されたとき、ステップS193に戻る。そうでないとき、ステップS196に進む。 (Step S195) The turbidity detection unit 156 determines whether or not the colander 20 satisfies a predetermined visibility condition based on the image during immersion. When it is determined that the visibility condition is satisfied, the process returns to step S193. If not, the process proceeds to step S196.
 (ステップS196)位置情報取得部154は、ざる20の上下方向の位置を取得する。すなわち、ざる20について可視条件が満たされなくなった時のざる20の水深が検出される。 (Step S196) The position information acquisition unit 154 acquires the vertical position of the colander 20. That is, the water depth of the colander 20 when the visible condition is no longer satisfied is detected.
 (ステップS197)濁度検出部156は、可視条件が満たされなくなった時のざる20の水深の値に基づいて、濁度を取得する。例えば、予め水深と濁度とが対応付けられた情報を有しており、その情報と水深とに基づいて、水深に対応する濁度を検出することができる。 (Step S197) The turbidity detection unit 156 acquires the turbidity based on the value of the water depth of the colander 20 when the visible condition is no longer satisfied. For example, it has information in which the water depth and the turbidity are associated in advance, and the turbidity corresponding to the water depth can be detected based on the information and the water depth.
 なお、本実施の形態における処理は、ソフトウェアで実現してもよい。そして、このソフトウェアをソフトウェアダウンロード等により配布してもよい。また、このソフトウェアをCD-ROMなどの記録媒体に記録して流布してもよい。なお、本実施の形態における情報処理装置100を実現するソフトウェアは、以下のようなプログラムである。つまり、このプログラムは、コンピュータを、エビの養殖池から上げられたざるをカメラで撮影することにより得られた撮影画像を取得する撮影画像取得部と、撮影画像取得部により取得された撮影画像を解析する画像解析部と、画像解析部の解析結果に基づいて、養殖池中のエビに関するエビ情報を取得するエビ情報取得部として動作させるための、エビ養殖支援プログラムである。 Note that the processing in this embodiment may be realized by software. Then, this software may be distributed by software download or the like. Further, this software may be recorded on a recording medium such as a CD-ROM and disseminated. The software that realizes the information processing device 100 in the present embodiment is the following program. That is, this program uses a computer to acquire a photographed image obtained by photographing a shrimp raised from a shrimp farm with a camera, and a photographed image acquired by the photographed image acquisition unit. This is a shrimp farming support program for operating as a shrimp information acquisition unit that acquires shrimp information about shrimp in a farming pond based on the image analysis unit to be analyzed and the analysis results of the image analysis unit.
 (実施の形態2) (Embodiment 2)
 実施の形態2の概要を、上述の実施の形態1とは異なる部分について説明する。実施の形態2では、実施の形態1と同様の内部構成を有する情報処理装置100、給餌装置60、及び昇降装置240が用いられる。本実施の形態では、昇降装置240が給餌装置60の飼料タンク61の内部に設けられている点が実施の形態1とは異なっている。 The outline of the second embodiment will be described with respect to the parts different from the first embodiment described above. In the second embodiment, the information processing device 100, the feeding device 60, and the elevating device 240 having the same internal configuration as that of the first embodiment are used. The present embodiment is different from the first embodiment in that the elevating device 240 is provided inside the feed tank 61 of the feeding device 60.
 図16は、実施の形態2に係る昇降装置240の構成を示す図である。 FIG. 16 is a diagram showing the configuration of the elevating device 240 according to the second embodiment.
 すなわち、実施の形態2において、カメラ30は、飼料タンク61の内部に、下向きに撮影可能に配置されている。飼料タンク61の下部には、カメラ30がざる20を撮影可能となるように、穴部(図示せず)が形成されている。 That is, in the second embodiment, the camera 30 is arranged inside the feed tank 61 so that it can be photographed downward. A hole (not shown) is formed in the lower part of the feed tank 61 so that the camera 30 can take a picture of the Zaru 20.
 実施の形態2においては、このように、カメラ30が飼料タンク61の内部にあるため、カメラ30により撮影される撮影画像が、風雪の影響又は日照の影響を受けにくくなる。したがって、屋外の環境要因にかかわらず、高精度のエビ情報を取得することができる。 In the second embodiment, since the camera 30 is inside the feed tank 61 in this way, the photographed image taken by the camera 30 is less likely to be affected by wind and snow or the influence of sunlight. Therefore, highly accurate shrimp information can be obtained regardless of outdoor environmental factors.
 なお、カメラ30のみが飼料タンク61の内部に位置するように構成されていてもよい。 Note that only the camera 30 may be configured to be located inside the feed tank 61.
 (実施の形態3) (Embodiment 3)
 実施の形態3の概要を、上述の実施の形態1とは異なる部分について説明する。実施の形態3では、実施の形態1と同様の内部構成を有する情報処理装置100、給餌装置60、及び昇降装置340が用いられる。本実施の形態では、昇降装置340が給餌装置60の飼料タンク61の下に設けられている点が実施の形態1とは異なっている。 The outline of the third embodiment will be described with respect to the parts different from the first embodiment described above. In the third embodiment, the information processing device 100, the feeding device 60, and the elevating device 340 having the same internal configuration as that of the first embodiment are used. The present embodiment is different from the first embodiment in that the elevating device 340 is provided under the feed tank 61 of the feeding device 60.
 図17は、実施の形態3に係る昇降装置340の構成を示す図である。 FIG. 17 is a diagram showing the configuration of the elevating device 340 according to the third embodiment.
 すなわち、実施の形態3において、カメラ30は、飼料タンク61の下方に、下向きに撮影可能に配置されている。換言すると、カメラ30は、飼料タンク61の陰になる位置に配置されている。例えば、飼料タンク61を設置するための矢倉に、カメラ30を取り付けるようにすることができる。 That is, in the third embodiment, the camera 30 is arranged below the feed tank 61 so that it can be photographed downward. In other words, the camera 30 is arranged behind the feed tank 61. For example, the camera 30 can be attached to the Yakura for installing the feed tank 61.
 実施の形態3においては、このように、カメラ30が飼料タンク61の下にあるため、カメラ30により撮影される撮影画像が、風雪の影響又は日照の影響を受けにくくなる。したがって、屋外の環境要因にかかわらず、高精度のエビ情報を取得することができる。 In the third embodiment, since the camera 30 is under the feed tank 61 in this way, the photographed image taken by the camera 30 is less susceptible to the influence of wind and snow or the influence of sunlight. Therefore, highly accurate shrimp information can be obtained regardless of outdoor environmental factors.
 なお、カメラ30のみが飼料タンク61の下方に位置するように構成されていてもよい。 Note that only the camera 30 may be configured to be located below the feed tank 61.
 また、カメラ30を、養殖池上に設置した日除け矢倉の下に設置して、同様の効果が得られるようにしてもよい。 Alternatively, the camera 30 may be installed under the sunshade Yakura installed on the aquaculture pond so that the same effect can be obtained.
 (実施の形態4) (Embodiment 4)
 実施の形態4の概要を、上述の実施の形態1とは異なる部分について説明する。実施の形態4では、実施の形態1とはざる20の上げ下げを行う方法が異なる昇降装置440が用いられる。 The outline of the fourth embodiment will be described with respect to the parts different from the first embodiment described above. In the fourth embodiment, an elevating device 440 is used, which is different from the first embodiment in the method of raising and lowering the 20.
 図18は、実施の形態4に係る昇降装置440の構成を示す図である。 FIG. 18 is a diagram showing the configuration of the elevating device 440 according to the fourth embodiment.
 図18において、昇降装置440によりサンプリングが行われている状態であって、ざる20及び環境センサ81が養殖池に浸漬されている状態が示されている。 FIG. 18 shows a state in which sampling is performed by the elevating device 440 and the colander 20 and the environment sensor 81 are immersed in the aquaculture pond.
 本実施の形態において、昇降装置440は、アーム状の昇降機構441と、駆動部445とを有している。駆動部445は、昇降機構441をその根本部で基礎442に対して支持すると共に、昇降機構441を基礎442に対して回動させることができるように構成されている。駆動部445は、例えば電動機や歯車等で構成されているが、これに限られるものではない。 In the present embodiment, the elevating device 440 has an arm-shaped elevating mechanism 441 and a drive unit 445. The drive unit 445 is configured so that the elevating mechanism 441 is supported with respect to the foundation 442 at its root and the elevating mechanism 441 can be rotated with respect to the foundation 442. The drive unit 445 is composed of, for example, an electric motor, gears, and the like, but is not limited thereto.
 昇降機構441の先端部には、ざる20を保持する吊紐43が取り付けられている。吊紐43には、例えば、環境センサ81と、重量センサ83とが設けられている。重量センサ83により、ざる20の重量情報が得られるようになっている。なお、昇降機構441に生じる応力の大きさや駆動部445の負荷の大きさに基づいてざる20の重量情報を得るようにしてもよい。 A hanging string 43 for holding the colander 20 is attached to the tip of the elevating mechanism 441. The hanging string 43 is provided with, for example, an environment sensor 81 and a weight sensor 83. The weight sensor 83 can obtain the weight information of the colander 20. It should be noted that the weight information of the colander 20 may be obtained based on the magnitude of the stress generated in the elevating mechanism 441 and the magnitude of the load of the drive unit 445.
 本実施の形態において、カメラ30は、例えば、昇降機構441の先端部の近くに、ざる20に向けて下向きに撮影可能に取り付けられている。 In the present embodiment, the camera 30 is attached, for example, near the tip of the elevating mechanism 441 so as to be able to shoot downward toward the colander 20.
 図19は、同昇降装置440のサンプリング時の動作を示す図である。 FIG. 19 is a diagram showing the operation of the elevating device 440 at the time of sampling.
 図19においては、図18に示されるように養殖池に浸漬されているざる20を養殖池から引き上げた状態が示されている。すなわち、図18に示される状態から、駆動部445を駆動させて、昇降機構441を基礎442に対して上方に回転させることで、ざる20を待機位置まで引き上げることができる。この状態で、カメラ30によりざる20を撮影して撮影画像を得ることにより、上述の実施の形態1と同様に、エビ情報を容易に取得することができる。 FIG. 19 shows a state in which the Zaru 20 immersed in the fishpond is pulled up from the fishpond as shown in FIG. That is, from the state shown in FIG. 18, the colander 20 can be pulled up to the standby position by driving the drive unit 445 and rotating the elevating mechanism 441 upward with respect to the foundation 442. In this state, by photographing the Zaru 20 with the camera 30 and obtaining a photographed image, the shrimp information can be easily acquired as in the above-described first embodiment.
 このようないわゆるロボットアーム状の昇降装置440を用いることによっても、ざる20の上げ下げを実行させ、サンプリングを容易に行うことができるようになる。そのほか、本実施の形態においても、上述の実施の形態1と同様の効果を得ることができる。 By using such a so-called robot arm-shaped lifting device 440, it becomes possible to raise and lower the Zaru 20 and easily perform sampling. In addition, the same effect as that of the above-described first embodiment can be obtained in the present embodiment as well.
 図20は、実施の形態4の一変形例に係る昇降装置440について説明する図である。 FIG. 20 is a diagram illustrating an elevating device 440 according to a modification of the fourth embodiment.
 図20に示されるように、実施の形態4において、カメラ30が陰に隠れるような、カメラ30と給餌装置60の飼料タンク61との位置関係を採用するようにしてもよい。このようにすることによって、屋外の環境要因にかかわらず、高精度のエビ情報を取得することができる。 As shown in FIG. 20, in the fourth embodiment, the positional relationship between the camera 30 and the feed tank 61 of the feeding device 60 may be adopted so that the camera 30 is hidden behind. By doing so, it is possible to acquire highly accurate shrimp information regardless of outdoor environmental factors.
 (その他) (Other)
 作業者が給餌してもよい。この場合、給餌条件を作業者に通知することにより、作業者が、供給する飼料の量や給餌タイミングを容易に知ることができる。また、作業者が利用者端末装置910を操作して情報を入力することなどにより、情報処理装置100に実際に供給された飼料の量や給餌タイミングが記録されるようにすることが好ましい。 The worker may feed. In this case, by notifying the worker of the feeding conditions, the worker can easily know the amount of feed to be supplied and the feeding timing. Further, it is preferable that the operator operates the user terminal device 910 to input information so that the amount of feed actually supplied to the information processing device 100 and the feeding timing are recorded.
 また、作業者がざるを昇降させたりしてもよい。この場合、引き上げたざる20が自動的にカメラ30で撮影されるようにすることが好ましいが、これに限られるものではない。例えば、作業者がざる20を引き上げた後にそのざる20をカメラ30で自ら撮影し、撮影により得られた撮影画像を、作業者が利用者端末装置910等を操作して情報処理装置100に送信するようにしてもよい。 Also, the worker may raise and lower the colander. In this case, it is preferable, but not limited to, the raised colander 20 is automatically photographed by the camera 30. For example, after the worker pulls up the Zaru 20, the camera 30 takes a picture of the Zaru 20 by himself, and the worker operates the user terminal device 910 or the like to transmit the photographed image to the information processing device 100. You may try to do it.
 撮影画像の画像解析からエビ情報の取得が行われるまでの間に、作業者による作業が介在していたり、作業者による作業と情報処理装置により行われる処理とが並行して行われたりするようにしてもよい。例えば、撮影画像を確認した作業者が行う情報の入力を情報処理装置が受け付けて、受け付けられた情報に基づいてエビ情報取得部がエビ情報を取得するようにしてもよい。具体的には、例えば、撮影画像を見た作業者が残餌量を入力し、作業者が入力した残餌量に基づいてエビ情報取得部がエビ情報を取得するようにしてもよい。また、例えば、サンプリングされたエビに関する異常の有無等の情報を、撮影画像を見た作業者が入力し、入力された異常の有無に関する情報をエビ情報取得部がエビ情報として取得するようにしてもよい。この場合、例えば、情報処理装置から作業者が操作する端末装置に対して、撮影画像や撮影画像の解析結果が送信され、その後、作業者が操作する端末装置から送信された情報を情報処理装置が受信するようにすればよい。また、画像解析部が撮影画像の画像解析を行った結果が暫定的なものとして作業者に対して送信されるようにし、送信された情報が適切であるか否かが作業者によって確認されるようにしてもよい。この場合、作業者により適切であることが確認された撮影画像の画像解析結果をに基づいて、エビ情報取得部がエビ情報の取得を行うようにしてもよい。また、例えば、作業者が、撮影画像中に含まれる物体の領域の特定や、その領域の属性(エビであるか、残餌であるか、など)についてのアノテーションを行ったりして、その結果に基づいて画像解析等が行われるようにしてもよい。このように作業者による作業が介在していたり、作業者による作業と情報処理装置により行われる処理とが並行して行われたりする場合においても、撮影画像に基づいてエビ情報を適切に取得することができる。 Between the image analysis of the captured image and the acquisition of shrimp information, the work by the worker intervenes, or the work by the worker and the processing performed by the information processing device are performed in parallel. It may be. For example, the information processing device may accept the input of information performed by the worker who has confirmed the captured image, and the shrimp information acquisition unit may acquire the shrimp information based on the received information. Specifically, for example, the worker who sees the photographed image may input the residual food amount, and the shrimp information acquisition unit may acquire the shrimp information based on the residual food amount input by the worker. Further, for example, information such as the presence / absence of an abnormality related to the sampled shrimp is input by the operator who has seen the captured image, and the information regarding the presence / absence of the input abnormality is acquired by the shrimp information acquisition unit as shrimp information. May be good. In this case, for example, the information processing device transmits the captured image and the analysis result of the captured image to the terminal device operated by the operator, and then the information transmitted from the terminal device operated by the worker is transmitted to the information processing device. Should be received. In addition, the result of image analysis of the captured image by the image analysis unit is transmitted to the worker as a provisional one, and the worker confirms whether or not the transmitted information is appropriate. You may do so. In this case, the shrimp information acquisition unit may acquire the shrimp information based on the image analysis result of the captured image confirmed to be appropriate by the operator. In addition, for example, the operator identifies the area of the object included in the captured image and annotates the attributes of the area (whether it is shrimp or residual food, etc.), and the result is Image analysis or the like may be performed based on the above. Even when the work by the worker intervenes or the work by the worker and the processing performed by the information processing device are performed in parallel in this way, the shrimp information is appropriately acquired based on the captured image. be able to.
 ざるに代えて、例えばバケツやトレイなどの容器を採取器として用いるようにしてもよい。例えばバケツなどのように養殖池の水ごとサンプリングを行うことができる採取器を用いることにより、エビ等の水棲動物が水の中に居る状態のままで撮影することができる。エビ等が暴れないようにして撮影を行うことができる。また、水中における振る舞いを示す撮影画像を取得し、エビ情報を得ることができる。 Instead of a colander, a container such as a bucket or a tray may be used as a collector. For example, by using a sampling device such as a bucket that can sample the water of the aquaculture pond, it is possible to take a picture of aquatic animals such as shrimp while they are in the water. You can shoot without the shrimp and the like going wild. In addition, it is possible to acquire a photographed image showing the behavior in water and obtain shrimp information.
 カメラ30として、動画を撮影するカメラを用いて、撮影画像としての動画像を解析することによりエビ情報を求めるようにしてもよい。例えば、所定時間の動画像についてエビの検出を行い、そのエビの移動量等を用いて、エビの活性度をエビ情報として得るようにしてもよい。 As the camera 30, a camera that captures a moving image may be used to obtain shrimp information by analyzing a moving image as a captured image. For example, shrimp may be detected in a moving image for a predetermined time, and the activity of the shrimp may be obtained as shrimp information by using the amount of movement of the shrimp or the like.
 図21は、上記実施の形態におけるコンピュータシステム800の概観図である。図22は、同コンピュータシステム800のブロック図である。 FIG. 21 is an overview view of the computer system 800 according to the above embodiment. FIG. 22 is a block diagram of the computer system 800.
 これらの図においては、本明細書で述べたプログラムを実行して、上述した実施の形態の情報処理装置100等を実現するコンピュータの構成が示されている。上述の実施の形態は、コンピュータハードウェア及びその上で実行されるコンピュータプログラムで実現されうる。 In these figures, the configuration of a computer that executes the program described in the present specification to realize the information processing apparatus 100 and the like according to the above-described embodiment is shown. The above-described embodiment can be realized by computer hardware and a computer program executed on the computer hardware.
 コンピュータシステム800は、CD-ROMドライブを含むコンピュータ801と、キーボード802と、マウス803と、モニタ804とを含む。 The computer system 800 includes a computer 801 including a CD-ROM drive, a keyboard 802, a mouse 803, and a monitor 804.
 コンピュータ801は、CD-ROMドライブ8012に加えて、MPU8013と、CD-ROMドライブ8012等に接続されたバス8014と、ブートアッププログラム等のプログラムを記憶するためのROM8015と、MPU8013に接続され、アプリケーションプログラムの命令を一時的に記憶するとともに一時記憶空間を提供するためのRAM8016と、アプリケーションプログラム、システムプログラム、及びデータを記憶するためのハードディスク8017とを含む。ここでは、図示しないが、コンピュータ801は、さらに、LANへの接続を提供するネットワークカードを含んでもよい。 In addition to the CD-ROM drive 8012, the computer 801 is connected to the MPU 8013, the bus 8014 connected to the CD-ROM drive 8012, the ROM 8015 for storing programs such as the bootup program, and the MPU 8013. It includes a RAM 8016 for temporarily storing program instructions and providing a temporary storage space, and a hard disk 8017 for storing application programs, system programs, and data. Although not shown here, the computer 801 may further include a network card that provides a connection to the LAN.
 コンピュータシステム800に、上述した実施の形態の情報処理装置等の機能を実行させるプログラムは、CD-ROM8101に記憶されて、CD-ROMドライブ8012に挿入され、さらにハードディスク8017に転送されてもよい。これに代えて、プログラムは、図示しないネットワークを介してコンピュータ801に送信され、ハードディスク8017に記憶されてもよい。プログラムは実行の際にRAM8016にロードされる。プログラムは、CD-ROM8101またはネットワークから直接、ロードされてもよい。 The program for causing the computer system 800 to execute the functions of the information processing apparatus and the like according to the above-described embodiment may be stored in the CD-ROM 8101, inserted into the CD-ROM drive 8012, and further transferred to the hard disk 8017. Alternatively, the program may be transmitted to the computer 801 via a network (not shown) and stored on the hard disk 8017. The program is loaded into RAM 8016 at run time. The program may be loaded directly from the CD-ROM 8101 or the network.
 プログラムは、コンピュータ801に、上述した実施の形態の情報処理装置等の機能を実行させるオペレーティングシステム(OS)、またはサードパーティープログラム等は、必ずしも含まなくてもよい。プログラムは、制御された態様で適切な機能(モジュール)を呼び出し、所望の結果が得られるようにする命令の部分のみを含んでいればよい。コンピュータシステム800がどのように動作するかは周知であり、詳細な説明は省略する。 The program does not necessarily include an operating system (OS) that causes the computer 801 to execute the functions of the information processing apparatus and the like according to the above-described embodiment, or a third-party program and the like. The program need only include a portion of the instruction that calls the appropriate function (module) in a controlled manner to obtain the desired result. It is well known how the computer system 800 works, and detailed description thereof will be omitted.
 なお、上記プログラムにおいて、情報を送信する送信ステップや、情報を受信する受信ステップなどでは、ハードウェアによって行われる処理、例えば、送信ステップにおけるモデムやインターフェースカードなどで行われる処理(ハードウェアでしか行われない処理)は含まれない。 In the above program, in the transmission step of transmitting information and the receiving step of receiving information, processing performed by hardware, for example, processing performed by a modem or interface card in the transmission step (only performed by hardware). Processing that is not done) is not included.
 また、上記プログラムを実行するコンピュータは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、あるいは分散処理を行ってもよい。 Further, the number of computers that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
 また、上記各実施の形態において、一の装置に存在する2以上の通信手段は、物理的に一の媒体で実現されてもよいことはいうまでもない。 Further, in each of the above embodiments, it goes without saying that the two or more communication means existing in one device may be physically realized by one medium.
 また、上記各実施の形態において、各処理(各機能)は、単一の装置(システム)によって集中処理されることによって実現されてもよく、あるいは、複数の装置によって分散処理されることによって実現されてもよい(この場合、分散処理を行う複数の装置により構成されるシステム全体を1つの「装置」として把握することが可能である)。 Further, in each of the above-described embodiments, each process (each function) may be realized by centralized processing by a single device (system), or by distributed processing by a plurality of devices. (In this case, it is possible to grasp the entire system composed of a plurality of devices that perform distributed processing as one "device").
 本発明は、以上の実施の形態に限定されることなく、種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。 It goes without saying that the present invention is not limited to the above embodiments, and various modifications can be made, and these are also included in the scope of the present invention.
 上述の複数の実施の形態を適宜組み合わせた実施の形態を構成してもよい。例えば、上述の実施の形態の構成そのものに限られず、上述の実施の形態のそれぞれの構成要素について、適宜、他の実施の形態の構成要素と置換したり組み合わせたりしてもよい。また、上述の実施の形態のうち、一部の構成要素や機能が省略されていてもよい。 An embodiment may be configured by appropriately combining the above-mentioned plurality of embodiments. For example, the configuration itself is not limited to the above-described embodiment, and each component of the above-described embodiment may be appropriately replaced or combined with the component of another embodiment. In addition, some components and functions may be omitted from the above-described embodiments.
 また、以上の実施の形態に係る構成と同様の構成を有し、エビとは異なる他の甲殻類の動物や、貝類、魚類に属する動物など、他の水棲動物を養殖の対象とする水棲動物養殖支援システムを構成してもよい。 In addition, aquatic animals having the same configuration as that of the above embodiment and targeting other aquatic animals such as other crustacean animals different from shrimp, shellfish, and fish belonging to fish. An aquaculture support system may be configured.
 以上のように、本発明にかかる水棲動物養殖支援システムは、養殖池中のエビ等の水棲動物に関する情報を容易に取得することができるという効果を有し、水棲動物養殖支援システム等として有用である。 As described above, the aquatic animal aquaculture support system according to the present invention has an effect that information on aquatic animals such as shrimp in the aquatic pond can be easily obtained, and is useful as an aquatic animal aquaculture support system or the like. is there.
 1 エビ養殖支援システム(水棲動物養殖支援システムの一例)
 20 ざる(採取器の一例)
 30 カメラ
 40,240,340,440 昇降装置
 41,441 昇降機構
 43 吊紐(保持部材の一例)
 45 駆動部(駆動ユニットの一例)
 47 制御部
 49 通信部
 60 給餌装置
 61 飼料タンク
 63 計量部(計量ユニットの一例)
 65 散布機構(供給ユニットの一例)
 66 駆動部
 67 制御部
 69 通信部
 68 給餌条件格納部
 70 エアレーション装置
 76 駆動部
 77 制御部
 79 通信部
 81 環境センサ
 83 重量センサ
 100 情報処理装置
 110 格納部
 111 撮影画像格納部
 113 重量情報格納部
 115 環境計測値格納部
 117 参照値格納部
 119 エビ情報格納部(水棲動物情報格納部の一例)
 150 処理部
 151 撮影画像取得部
 152 重量情報取得部
 153 浸漬中画像取得部
 154 位置情報取得部
 155 画像解析部
 156 濁度検出部
 157 エビ情報取得部(水棲動物情報取得部の一例)
 158 給餌条件設定部
 170 情報出力部
 190 通信部
1 Shrimp farming support system (an example of aquatic animal farming support system)
20 Zaru (an example of a collector)
30 Camera 40, 240, 340, 440 Lifting device 41,441 Lifting mechanism 43 Hanging string (an example of holding member)
45 Drive unit (example of drive unit)
47 Control unit 49 Communication unit 60 Feeding device 61 Feed tank 63 Measuring unit (an example of measuring unit)
65 Spraying mechanism (an example of supply unit)
66 Drive unit 67 Control unit 69 Communication unit 68 Feeding condition storage unit 70 Aeration device 76 Drive unit 77 Control unit 79 Communication unit 81 Environment sensor 83 Weight sensor 100 Information processing device 110 Storage unit 111 Photographed image storage unit 113 Weight information storage unit 115 Environment measurement value storage unit 117 Reference value storage unit 119 Shrimp information storage unit (an example of aquatic animal information storage unit)
150 Processing unit 151 Captured image acquisition unit 152 Weight information acquisition unit 153 Immersion image acquisition unit 154 Position information acquisition unit 155 Image analysis unit 156 Turbidity detection unit 157 Shrimp information acquisition unit (example of aquatic animal information acquisition unit)
158 Feeding condition setting unit 170 Information output unit 190 Communication unit

Claims (22)

  1. 水棲動物の養殖池から上げられた採取器をカメラで撮影することにより得られた静止画又は動画像である撮影画像を取得する撮影画像取得部と、
    前記撮影画像取得部により取得された撮影画像を解析する画像解析部と、
    前記画像解析部の解析結果に基づいて、前記養殖池中の水棲動物に関する水棲動物情報を取得する水棲動物情報取得部とを備える、水棲動物養殖支援システム。
    A photographed image acquisition unit that acquires a photographed image that is a still image or a moving image obtained by photographing a collector raised from an aquatic animal farming pond with a camera.
    An image analysis unit that analyzes the captured image acquired by the captured image acquisition unit, and
    An aquatic animal farming support system including an aquatic animal information acquisition unit that acquires aquatic animal information regarding aquatic animals in the aquatic pond based on the analysis result of the image analysis unit.
  2. 前記画像解析部は、前記撮影画像内の物体が含まれる領域を検出し、予め記憶されている情報に基づいて、検出した領域に水棲動物が含まれるか否かを判定する、請求項1に記載の水棲動物養殖支援システム。 The image analysis unit detects a region including an object in the captured image, and determines whether or not the detected region contains aquatic animals based on the information stored in advance. The described aquatic animal farming support system.
  3. 前記水棲動物情報は、前記養殖池中の水棲動物の個体数に関する情報、水棲動物の重量に関する情報、水棲動物の大きさに関する情報、水棲動物の腸の色及び大きさの少なくとも一方に関する情報、水棲動物の飼料の消化率に関する情報、及び水棲動物の異常に関する情報の少なくとも1つを含む、請求項1又は2に記載の水棲動物養殖支援システム。 The aquatic animal information includes information on the number of aquatic animals in the aquatic pond, information on the weight of aquatic animals, information on the size of aquatic animals, information on at least one of the intestinal color and size of aquatic animals, and aquatic animals. The aquatic animal farming support system according to claim 1 or 2, which comprises at least one of information on the digestibility of animal feed and information on aquatic animal abnormalities.
  4. 前記採取器を下げて前記養殖池に漬けた後に前記採取器を前記養殖池から上げる昇降装置をさらに備える、請求項1から3のいずれかに記載の水棲動物養殖支援システム。 The aquatic animal aquaculture support system according to any one of claims 1 to 3, further comprising an elevating device for raising the collector from the pond after lowering the collector and immersing it in the pond.
  5. 前記撮影画像取得部は、前記昇降装置により前記採取器が前記養殖池から上げられたタイミングに対応するタイミングで撮影された撮影画像を取得する、請求項4に記載の水棲動物養殖支援システム。 The aquatic animal farming support system according to claim 4, wherein the photographed image acquisition unit acquires a photographed image taken at a timing corresponding to the timing when the collector is raised from the fishpond by the elevating device.
  6. 前記昇降装置は、所定のスケジュールに従って前記採取器の上げ下げを行う、請求項4又は5に記載の水棲動物養殖支援システム。 The aquatic animal aquaculture support system according to claim 4 or 5, wherein the elevating device raises and lowers the collector according to a predetermined schedule.
  7. 前記養殖池から上げられた前記採取器の重量に関する重量情報を取得する重量情報取得部をさらに備え、
    前記水棲動物情報取得部は、前記画像解析部の画像解析結果と前記重量情報取得部により取得された重量情報とに基づいて求めた前記養殖池中の水棲動物の生物量に関する前記水棲動物情報を取得する、請求項1から6のいずれかに記載の水棲動物養殖支援システム。
    Further provided with a weight information acquisition unit for acquiring weight information regarding the weight of the collector raised from the fishpond.
    The aquatic animal information acquisition unit obtains the aquatic animal information regarding the biological amount of the aquatic animals in the aquatic pond obtained based on the image analysis result of the image analysis unit and the weight information acquired by the weight information acquisition unit. The aquatic animal farming support system according to any one of claims 1 to 6 to be acquired.
  8. 前記採取器には、前記カメラにより撮影可能な模様が付されている、請求項1から7のいずれかに記載の水棲動物養殖支援システム。 The aquatic animal farming support system according to any one of claims 1 to 7, wherein the collector is provided with a pattern that can be photographed by the camera.
  9. 前記養殖池に漬けられている前記採取器を前記養殖池の水面よりも上にあるカメラで撮影することにより得られた浸漬中画像を取得する浸漬中画像取得部と、
    前記浸漬中画像取得部により取得された浸漬中画像に基づいて、前記養殖池の濁度を検出する濁度検出部とをさらに備える、請求項1から8のいずれかに記載の水棲動物養殖支援システム。
    An immersion image acquisition unit that acquires an immersion image obtained by photographing the collector immersed in the culture pond with a camera above the water surface of the culture pond.
    The aquatic animal farming support according to any one of claims 1 to 8, further comprising a turbidity detection unit that detects the turbidity of the fishpond based on the immersion image acquired by the immersion image acquisition unit. system.
  10. 養殖池の環境に関する環境計測値を取得する環境センサをさらに備え、
    前記環境センサは、前記採取器と共に前記養殖池に浸漬可能となるように、前記採取器又は前記採取器に取り付けられている部材に取り付けられている、請求項1から9のいずれかに記載の水棲動物養殖支援システム。
    Further equipped with an environment sensor that acquires environmental measurements related to the environment of the aquaculture pond,
    The environmental sensor according to any one of claims 1 to 9, wherein the environment sensor is attached to the collector or a member attached to the collector so that the environment sensor can be immersed in the aquaculture pond together with the collector. Aquatic animal farming support system.
  11. 前記水棲動物情報取得部は、前記環境センサにより取得された環境計測値に基づいて求めた前記養殖池中の水棲動物の生物量に関する前記水棲動物情報を取得する、請求項10に記載の水棲動物養殖支援システム。 The aquatic animal according to claim 10, wherein the aquatic animal information acquisition unit acquires the aquatic animal information regarding the biological amount of the aquatic animal in the aquaculture pond obtained based on the environmental measurement value acquired by the environmental sensor. Aquaculture support system.
  12. 前記養殖池に飼料を供給する給餌装置をさらに備え、
    前記水棲動物情報取得部は、前記給餌装置による飼料の供給タイミングと、前記画像解析部で解析した撮影画像の撮影タイミングとに基づいて、給餌量の過不足に関する情報、水棲動物の腸の色及び大きさの少なくとも一方に関する情報、及び飼料の消化率に関する情報の少なくとも1つを含む前記水棲動物情報を取得する、請求項1から11のいずれかに記載の水棲動物養殖支援システム。
    Further equipped with a feeding device for supplying feed to the pond,
    Based on the feed supply timing by the feeding device and the shooting timing of the captured image analyzed by the image analysis unit, the aquatic animal information acquisition unit provides information on excess or deficiency of the feeding amount, the color of the intestine of the aquatic animal, and The aquatic animal farming support system according to any one of claims 1 to 11, which acquires the aquatic animal information including at least one of the information regarding at least one of the sizes and the information regarding the digestibility of the feed.
  13. 前記養殖池に飼料を供給する給餌装置と、
    前記水棲動物情報取得部により取得された水棲動物情報に基づいて、前記給餌装置による飼料の供給に関する給餌条件を設定する給餌条件設定部とをさらに備え、
    前記給餌装置は、前記給餌条件設定部により設定された給餌条件に基づいて、飼料の供給を行う、請求項1から11のいずれかに記載の水棲動物養殖支援システム。
    A feeding device that supplies feed to the pond,
    Based on the aquatic animal information acquired by the aquatic animal information acquisition unit, the feeding condition setting unit for setting the feeding conditions related to the feed supply by the feeding device is further provided.
    The aquatic animal farming support system according to any one of claims 1 to 11, wherein the feeding device supplies feed based on the feeding conditions set by the feeding condition setting unit.
  14. 前記給餌条件は、飼料の供給タイミングに関する条件と、飼料の供給量に関する条件との少なくとも一方を含む、請求項13に記載の水棲動物養殖支援システム。 The aquatic animal aquaculture support system according to claim 13, wherein the feeding condition includes at least one of a condition relating to a feed supply timing and a condition relating to a feed supply amount.
  15. 水棲動物の成長に関する所定の参照値が格納されている参照値格納部をさらに備え、
    前記給餌条件設定部は、前記参照値格納部に格納されている参照値と、前記水棲動物情報取得部により取得された水棲動物情報との比較結果に基づいて、前記給餌条件を設定する、請求項13又は14に記載の水棲動物養殖支援システム。
    It also has a reference value storage unit that stores a predetermined reference value for the growth of aquatic animals.
    The feeding condition setting unit sets the feeding condition based on the comparison result between the reference value stored in the reference value storage unit and the aquatic animal information acquired by the aquatic animal information acquisition unit. Item 3. The aquatic animal farming support system according to Item 13 or 14.
  16. 前記給餌装置により給餌される飼料が貯蔵される飼料タンクをさらに備え、
    前記カメラは前記飼料タンクの下又は内部に配置されている、請求項12から15のいずれかに記載の水棲動物養殖支援システム。
    Further provided with a feed tank for storing the feed fed by the feeding device,
    The aquatic animal farming support system according to any one of claims 12 to 15, wherein the camera is arranged under or inside the feed tank.
  17. 前記水棲動物情報取得部は、前記養殖池に供給された飼料の量と、前記画像解析部の解析結果とに基づいて、前記水棲動物情報を取得する、請求項1から16のいずれかに記載の水棲動物養殖支援システム。 The aquatic animal information acquisition unit acquires the aquatic animal information based on the amount of feed supplied to the aquaculture pond and the analysis result of the image analysis unit, according to any one of claims 1 to 16. Aquatic animal aquaculture support system.
  18. 前記水棲動物情報取得部が取得した前記水棲動物情報が、前記水棲動物の成育日数情報及び成育環境に関する情報に対応付けて格納される水棲動物情報格納部と、
    前記水棲動物情報格納部に格納された、過去の水棲動物情報と現在の水棲動物情報とに基づいて、現在の前記養殖池中の水棲動物の成育状態に関する判定を行う、請求項1から17のいずれかに記載の水棲動物養殖支援システム。
    An aquatic animal information storage unit in which the aquatic animal information acquired by the aquatic animal information acquisition unit is stored in association with information on the number of days of growth of the aquatic animal and information on the growth environment.
    Claims 1 to 17 for determining the current growth state of aquatic animals in the aquatic pond based on the past aquatic animal information and the current aquatic animal information stored in the aquatic animal information storage unit. The aquatic animal farming support system described in either.
  19. 請求項4から6のいずれかに記載の水棲動物養殖支援システムにおいて用いられる昇降装置であって、
    前記採取器を保持する保持部材と、
    前記保持部材により保持されている採取器を昇降させるための昇降機構と、
    前記昇降機構を駆動する駆動ユニットとを備える、昇降装置。
    An elevating device used in the aquatic animal farming support system according to any one of claims 4 to 6.
    A holding member that holds the collector and
    An elevating mechanism for elevating and lowering the sampler held by the holding member,
    An elevating device including a drive unit for driving the elevating mechanism.
  20. 請求項12から16のいずれかに記載の水棲動物養殖支援システムにおいて用いられる給餌装置であって、
    飼料を貯蔵する飼料タンクと、
    前記飼料タンクから取り出された飼料を計量する計量ユニットと、
    前記計量ユニットにより計量された飼料を前記養殖池に供給する供給ユニットとを備える、給餌装置。
    A feeding device used in the aquatic animal aquaculture support system according to any one of claims 12 to 16.
    A feed tank for storing feed and
    A measuring unit that measures the feed taken out from the feed tank and
    A feeding device including a supply unit that supplies feed measured by the measuring unit to the pond.
  21. 水棲動物の養殖池から上げられた採取器を上方からカメラで撮影する第1のステップと、
    前記第1のステップにより得られた撮影画像を画像解析する第2のステップと、
    前記第2のステップにより得られた前記撮影画像の画像解析結果に基づいて前記養殖池中の水棲動物に関する水棲動物情報を取得する第3のステップとを含む、水棲動物の養殖方法。
    The first step of taking a picture of the collector raised from the aquatic animal pond from above with a camera,
    A second step of image analysis of the captured image obtained by the first step, and
    A method for cultivating aquatic animals, which comprises a third step of acquiring aquatic animal information regarding the aquatic animals in the aquatic pond based on the image analysis result of the photographed image obtained in the second step.
  22. コンピュータを、
    水棲動物の養殖池から上げられた採取器をカメラで撮影することにより得られた撮影画像を取得する撮影画像取得部と、
    前記撮影画像取得部により取得された撮影画像を解析する画像解析部と、
    前記画像解析部の解析結果に基づいて、前記養殖池中の水棲動物に関する水棲動物情報を取得する水棲動物情報取得部として動作させるための、水棲動物養殖支援プログラム。
    Computer,
    A photographed image acquisition unit that acquires a photographed image obtained by photographing a collector raised from an aquatic animal pond with a camera, and
    An image analysis unit that analyzes the captured image acquired by the captured image acquisition unit, and
    An aquatic animal farming support program for operating as an aquatic animal information acquisition unit that acquires aquatic animal information regarding aquatic animals in the aquatic pond based on the analysis result of the image analysis unit.
PCT/JP2019/023213 2019-06-12 2019-06-12 Aquatic animal cultivation assisting system, lift device, feeding device, aquatic animal cultivation method, and aquatic animal cultivation assisting program WO2020250330A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2019/023213 WO2020250330A1 (en) 2019-06-12 2019-06-12 Aquatic animal cultivation assisting system, lift device, feeding device, aquatic animal cultivation method, and aquatic animal cultivation assisting program
JP2020504254A JP6695585B1 (en) 2019-06-12 2019-06-12 Aquaculture support system, lifting device, feeding device, aquaculture method, and aquaculture support program
CN201980095858.1A CN113795145B (en) 2019-06-12 2019-06-12 Aquatic animal cultivation support system, lifting device, bait feeding device, aquatic animal cultivation method, and aquatic animal cultivation support medium
BR112021024618A BR112021024618A2 (en) 2019-06-12 2019-06-12 Aquatic animal culture support system, lifting apparatus, feeding apparatus, aquatic animal culture method, and aquatic animal culture support program
MX2021015233A MX2021015233A (en) 2019-06-12 2019-06-12 Aquatic animal cultivation assisting system, lift device, feeding device, aquatic animal cultivation method, and aquatic animal cultivation assisting program.
ECSENADI202188851A ECSP21088851A (en) 2019-06-12 2021-12-09 AQUATIC ANIMAL CULTURE SUPPORT SYSTEM, LIFTING APPARATUS, FEEDING APPARATUS, AQUATIC ANIMAL CULTURE METHOD AND AQUATIC ANIMAL CULTURE SUPPORT PROGRAM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/023213 WO2020250330A1 (en) 2019-06-12 2019-06-12 Aquatic animal cultivation assisting system, lift device, feeding device, aquatic animal cultivation method, and aquatic animal cultivation assisting program

Publications (1)

Publication Number Publication Date
WO2020250330A1 true WO2020250330A1 (en) 2020-12-17

Family

ID=70682349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023213 WO2020250330A1 (en) 2019-06-12 2019-06-12 Aquatic animal cultivation assisting system, lift device, feeding device, aquatic animal cultivation method, and aquatic animal cultivation assisting program

Country Status (6)

Country Link
JP (1) JP6695585B1 (en)
CN (1) CN113795145B (en)
BR (1) BR112021024618A2 (en)
EC (1) ECSP21088851A (en)
MX (1) MX2021015233A (en)
WO (1) WO2020250330A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112997937A (en) * 2021-02-20 2021-06-22 东营市阔海水产科技有限公司 Prawn feeding table observation equipment
US11399520B2 (en) * 2019-08-12 2022-08-02 National Sun Yat-Sen University System and method for smart aquaculture
US11864537B2 (en) 2021-03-07 2024-01-09 ReelData Inc. AI based feeding system and method for land-based fish farms

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650196B (en) * 2020-04-13 2021-08-06 浙江大学 Sick shrimp red body disease detection device based on machine vision technique
CN112400771A (en) * 2020-11-25 2021-02-26 李明雄 Aquaculture that can retrieve unnecessary fodder is with throwing material device
CN112450146A (en) * 2020-11-26 2021-03-09 澜途集思生态科技集团有限公司 Control system suitable for aquaculture
WO2022123732A1 (en) * 2020-12-10 2022-06-16 ウミトロン ピーティーイー エルティーディー Processing device, information collection device, information processing method, and program
CN112806295B (en) * 2020-12-28 2022-11-04 重庆市农业科学院 Intelligent feeding method
KR102617185B1 (en) * 2022-05-26 2023-12-28 (주)스페이스빌더스 Smart farm management System using GIS
CN115624008B (en) * 2022-07-08 2023-09-05 珠海科艺普检测科技有限公司 Intelligent detection method for fries of largemouth black weever based on biological information technology
CN115669587A (en) * 2022-12-30 2023-02-03 正大农业科学研究有限公司 Cultivation material platform
CN116051971B (en) * 2023-04-03 2023-07-25 南昌市农业科学院 Method, device and system for controlling copulation environment of fancy carp
CN117256545B (en) * 2023-11-21 2024-02-02 安徽农业大学 Intelligent feeding monitoring device and monitoring system thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621410B2 (en) * 1979-09-27 1987-01-13 Hitachi Chemical Co Ltd
JPH0130448B2 (en) * 1979-09-18 1989-06-20 Zeni Lite Buoy Co Ltd
US20060124071A1 (en) * 2002-08-19 2006-06-15 Watermark Seafoods Pty Ltd System for harvesting crustaceans
US20130174792A1 (en) * 2011-12-21 2013-07-11 Juliette DELABBIO Method and system for enhancing growth and survivability of aquatic organisms
JP2016202094A (en) * 2015-04-23 2016-12-08 有限会社Ykテクノリサーチ Automated mass production device of shell-fish software shell
WO2019097928A1 (en) * 2017-11-20 2019-05-23 味の素株式会社 Structure for measurement, and measurement system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO320012B1 (en) * 2003-02-28 2005-10-10 Praktisk Teknologi As System for disposal and storage of benthic organisms, in an aquatic environment and procedures for handling containers for storage of such organisms
JP2005073637A (en) * 2003-09-02 2005-03-24 Kazutoshi Ozaki Undersea net basket device for fishing and undersea net basket fishing method using the same
JP3621410B1 (en) * 2004-07-12 2005-02-16 鐵夫 中島 Trap
CN101170682B (en) * 2007-11-12 2010-09-01 中国水产科学研究院黄海水产研究所 Remote monitoring system for deep water mesh box
TWI364255B (en) * 2009-08-20 2012-05-21 Nat Univ Chin Yi Technology Energy supplying device of a marine animal tracer
US8736679B2 (en) * 2011-02-02 2014-05-27 The Boeing Company Avionic display testing system
TWM447085U (en) * 2012-07-06 2013-02-21 Tou C Ware Inc Aquarium breeding system with real time monitoring function
CN103168731A (en) * 2013-04-02 2013-06-26 中国水产科学研究院淡水渔业研究中心 Multi-water-depth and multi-angle underwater fish camera system
WO2018042651A1 (en) * 2016-09-05 2018-03-08 謙 藤原 Feeding system and feeding method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0130448B2 (en) * 1979-09-18 1989-06-20 Zeni Lite Buoy Co Ltd
JPS621410B2 (en) * 1979-09-27 1987-01-13 Hitachi Chemical Co Ltd
US20060124071A1 (en) * 2002-08-19 2006-06-15 Watermark Seafoods Pty Ltd System for harvesting crustaceans
US20130174792A1 (en) * 2011-12-21 2013-07-11 Juliette DELABBIO Method and system for enhancing growth and survivability of aquatic organisms
JP2016202094A (en) * 2015-04-23 2016-12-08 有限会社Ykテクノリサーチ Automated mass production device of shell-fish software shell
WO2019097928A1 (en) * 2017-11-20 2019-05-23 味の素株式会社 Structure for measurement, and measurement system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11399520B2 (en) * 2019-08-12 2022-08-02 National Sun Yat-Sen University System and method for smart aquaculture
CN112997937A (en) * 2021-02-20 2021-06-22 东营市阔海水产科技有限公司 Prawn feeding table observation equipment
US11864537B2 (en) 2021-03-07 2024-01-09 ReelData Inc. AI based feeding system and method for land-based fish farms

Also Published As

Publication number Publication date
BR112021024618A2 (en) 2022-01-18
MX2021015233A (en) 2022-01-18
CN113795145A (en) 2021-12-14
JPWO2020250330A1 (en) 2021-09-13
JP6695585B1 (en) 2020-05-20
CN113795145B (en) 2023-10-20
ECSP21088851A (en) 2022-01-31

Similar Documents

Publication Publication Date Title
WO2020250330A1 (en) Aquatic animal cultivation assisting system, lift device, feeding device, aquatic animal cultivation method, and aquatic animal cultivation assisting program
JP6842100B1 (en) Aquatic animal detection device, information processing device, terminal device, aquatic animal detection system, aquatic animal detection method, and aquatic animal detection program
JP6628379B2 (en) Automatic feeding support device, automatic feeding support method, and program
JP3493029B2 (en) Feeding equipment for cultured species
KR101814288B1 (en) A Feeding System for Fish Farm using 3Dimension analyzer
CN203492583U (en) Video monitoring device for preventing eutrophication of culture water for Litopenaeus Vannamei
CA2699372A1 (en) Aquacultural remote control system
JP2000201568A (en) Automatic feeding system for aquatic organism
KR20060029661A (en) Control system and method of sound feeding apparatus for ocean farm
CN107242176A (en) A kind of cage culture system
CN114467824A (en) Intelligent bait casting boat
WO2018058827A1 (en) Fish-plant symbiotic system
CN110176014A (en) A kind of Hehua fish rice field ecology cultivation information processing method and system
CN110865163A (en) Device and method for monitoring fish behavior activity and acquiring fish characteristic information in water
CN109006652B (en) Tilapia seed production and seedling raising system and method based on Internet of things
KR20160141247A (en) An analysis system for activity coefficient of feed based sound wave analysis using a habitude for paralichthys olivaceus
CN208187400U (en) A kind of long measuring device of Fish based on machine vision
CN211048177U (en) Intelligent breeding system
CN202697473U (en) Intelligent fish disease remote diagnosis system
CN104969885B (en) A kind of marine cage fish culture system and method
WO2023287524A1 (en) Camera calibration for feeding behavior monitoring
WO2022123732A1 (en) Processing device, information collection device, information processing method, and program
CN114020074A (en) Intelligent unmanned culture system and method for culture pond
CN203455736U (en) Monitoring system for aquiculture
KR101822735B1 (en) Measuring device and method for biofloc

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504254

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932450

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021024618

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021024618

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211206

122 Ep: pct application non-entry in european phase

Ref document number: 19932450

Country of ref document: EP

Kind code of ref document: A1