JP2000201568A - Automatic feeding system for aquatic organism - Google Patents

Automatic feeding system for aquatic organism

Info

Publication number
JP2000201568A
JP2000201568A JP11009740A JP974099A JP2000201568A JP 2000201568 A JP2000201568 A JP 2000201568A JP 11009740 A JP11009740 A JP 11009740A JP 974099 A JP974099 A JP 974099A JP 2000201568 A JP2000201568 A JP 2000201568A
Authority
JP
Japan
Prior art keywords
feeding
pattern
aquatic organisms
standard
aquatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11009740A
Other languages
Japanese (ja)
Other versions
JP3462412B2 (en
Inventor
Naoki Haramai
直樹 原間井
Ichiro Enbutsu
伊智朗 圓佛
Kenichi Soma
憲一 相馬
Bunji Yoshitomi
吉富  文司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Society for Techno Innovation of Agriculture Forestry and Fisheries
Nissui Corp
Original Assignee
Hitachi Ltd
Nippon Suisan Kaisha Ltd
Society for Techno Innovation of Agriculture Forestry and Fisheries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Suisan Kaisha Ltd, Society for Techno Innovation of Agriculture Forestry and Fisheries filed Critical Hitachi Ltd
Priority to JP00974099A priority Critical patent/JP3462412B2/en
Publication of JP2000201568A publication Critical patent/JP2000201568A/en
Application granted granted Critical
Publication of JP3462412B2 publication Critical patent/JP3462412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Farming Of Fish And Shellfish (AREA)
  • Image Processing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic feeding system for aquatic organisms designed to put feeding levels closer to the actual feed intake demand for aquatic, organisms to raise feeding efficiency and contribute to preventing environmental water from contamination as well. SOLUTION: This automatic feeding system for aquatic organisms works as follows: a database 60 prepares in advance a standard feeding pattern varying stepwise according to the feed intake process for aquatic organism colonies for each aquatic organismic species and raising environmental condition; an ITV camera 40 photographs the activities of aquatic organismic colonies raised, and the resultant pictures thus taken are subjected to image processing by a relevant image processing means 502 to effect numeric conversion; a pattern read-out means reads out the standard feeding pattern meeting the raising environmental conditions from the database; a correction means 70 corrects the standard feeding pattern based on the image-processed data with further subdivided time unit compared to the respective steps of the standard feeding pattern, and a feeding control means 501 executes a feeding control based on the resultant feeding pattern thus corrected.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水棲生物の自動給
餌装置に係わり、特に、飼育(養殖)される水棲生物群
の摂餌行動(摂餌活動)を画像処理により計測,解析し
て、水棲生物の摂餌要求量に応じて適正な給餌量を制御
する水棲生物用自動給餌装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic feeding apparatus for aquatic organisms, and in particular, measures and analyzes the feeding behavior (feeding activity) of a group of aquatic organisms bred (cultured) by image processing. The present invention relates to an automatic feeding device for aquatic organisms, which controls an appropriate feeding amount according to a feeding requirement of an aquatic organism.

【0002】[0002]

【従来の技術】一般に、水棲生物に対する適正給餌量
は、対象水棲生物群の重量に対する割合で決定される。
この適正給餌量を単位時間に与えれば、対象水棲生物は
順調に生育する。
2. Description of the Related Art Generally, an appropriate amount of food for aquatic organisms is determined by a ratio to the weight of a target aquatic organism group.
If this proper amount of feed is given per unit time, the target aquatic organisms will grow smoothly.

【0003】ところで、水棲生物に対する給餌は、従来
は一般に人が行っており、対象水棲生物の成長状況によ
って、1日当りの適正給餌回数及び1回当りの適正給餌
量を給餌者が判断している。この場合、給餌者が判断材
料として用いる最大要素は、対象水棲生物の水中挙動、
つまり活動量(摂餌行動量)である。
[0003] By the way, feeding of aquatic organisms has conventionally been generally performed by humans, and the feeder judges the appropriate number of times of feeding per day and the appropriate amount of feeding per one according to the growth state of the target aquatic organism. . In this case, the largest factors that feeders use as judgment materials are the underwater behavior of the target aquatic organism,
That is, the activity amount (feeding amount).

【0004】例えば、主要養殖魚であるマダイなどの場
合、給餌初期の対象魚の餌要求の度合が高い場合、水面
付近で非常に活発で激しい波が立つ。摂餌中期から終期
にかけては、餌要求の度合が低下するにつれて、水面下
に移動し、給餌をしても、摂餌せず、活動量が低下す
る。
[0004] For example, in the case of red sea bream, which is a main cultured fish, when the target fish demands a high level of food at the beginning of feeding, very active and intense waves stand near the water surface. From the middle to the end of feeding, as the degree of demand for food decreases, the animal moves below the water surface and, even when fed, does not eat and the amount of activity decreases.

【0005】給餌者は、対象魚群の成長状況や摂餌行動
を観察しながら、給餌を行う。給餌の基本は、対象魚群
中の個体に満遍なく給餌し、かつ摂餌率を限りなく10
0パーセントに近づけることである。しかし、現実に
は、魚群中の全ての個体に万遍なく給餌し、しかも摂餌
量を100パーセントに近づけることは非常に困難であ
る。
The feeder feeds the fish while observing the growth status and feeding behavior of the school of fish. The basics of feeding are to feed the individuals in the target fish school evenly, and to limit the feeding rate to 10
That is, approaching 0%. However, in reality, it is very difficult to feed all the individuals in a school of fish evenly and to achieve a food intake close to 100%.

【0006】原因として、給餌者の熟練度、時間的拘束
があげられる。給餌者は季節、気温、水温さらに天候も
配慮して給餌する必要がある。また、近年、養殖業の隆
盛に伴い、その養殖規模が徐々に大きくなっており、給
餌者が対象水棲生物に割ける時間がかなり制約されてい
る。
[0006] Causes include the skill of the feeder and time constraints. Feeders need to consider the season, temperature, water temperature and weather. In recent years, the scale of aquaculture has been gradually increased with the rise of the aquaculture industry, and the time available for feeders to devote to the target aquatic organisms has been considerably restricted.

【0007】この問題を解決するために、自動給餌器が
市販されているが、現在市場に見られる自動給餌器の大
部分は、タイマーにより一定間隔で一定量の餌を給餌す
るタイプ(特開昭63−98334号公報)であり、対
象水棲生物の飼料要求性を充分に考慮しているものでは
なかった。そのため、それを用いた場合の摂餌率は、熟
練者の場合よりかなり落ちると言われている。
In order to solve this problem, automatic feeders are commercially available, but most of the automatic feeders currently on the market are of a type in which a fixed amount of food is fed at a fixed interval by a timer (Japanese Patent Laid-Open Publication No. H11-163873). No. 63-98334), and the feed requirements of the target aquatic organisms were not sufficiently considered. Therefore, it is said that the feeding rate when using it is considerably lower than that for the skilled person.

【0008】もう一つの原因として、摂餌中の水中の対
象水棲生物の挙動が充分に把握できないことにある。対
象水棲生物の挙動を正確に観察できるのは、水面付近だ
けであり、水深方向の挙動は極めて観察しがたい。
[0008] Another cause is that the behavior of the target aquatic organism in the water during feeding cannot be sufficiently grasped. The behavior of the target aquatic organism can be accurately observed only near the water surface, and the behavior in the depth direction is extremely difficult to observe.

【0009】これらの問題を解決するために、特開平9
−262040号公報に記載されるように水面付近の水
棲生物群の摂餌中の行動を撮像したり或いは水棲生物群
の水深方向の分布と摂餌行動(活動量或いは行動量)を
撮像して画像処理により数値化し、この数値化された画
像処理データにより段階的に給餌量を制御する方法が検
討されている。また、この自動給餌装置では、季節,気
圧,溶存酸素濃度等の飼育環境が摂餌行動に影響を及ぼ
すことから、これらの飼育環境を計測して給餌量を補正
している。
In order to solve these problems, Japanese Patent Application Laid-Open No.
As described in JP-A-262040, the behavior of the aquatic organisms near the water surface during feeding is imaged, or the distribution of the aquatic organisms in the depth direction and the feeding behavior (the amount of activity or the amount of activity) is imaged. A method of digitizing by image processing and controlling the amount of feed in stages based on the digitized image processing data is being studied. Also, in this automatic feeding device, the feeding environment is corrected by the feeding environment because the feeding environment such as the season, the atmospheric pressure, and the dissolved oxygen concentration affects the feeding behavior.

【0010】[0010]

【発明が解決しようとする課題】上記した特開平9−2
62040号公報に記載の自動給餌技術は、飼育環境条
件に応じて制御すべき給餌量を補正しているため、今ま
での自動給餌装置よりも給餌量を水棲生物の摂餌要求量
に近づけることができるが、次のような改善すべき点が
あった。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-open No. Hei 9-2
In the automatic feeding technique described in Japanese Patent No. 62040, since the feeding amount to be controlled is corrected according to the breeding environment conditions, the feeding amount is made closer to the required feeding amount of aquatic organisms than the conventional automatic feeding device. However, there were the following points to be improved.

【0011】すなわち、上記の従来技術では、給餌量を
時間の経過とともに段階的に分けて(例えば、摂餌初
期,摂餌中期,摂餌終期)制御し、また、飼育環境条件
(例えば季節,気圧,水温や溶存酸素等)に応じて制御
すべき給餌量を一律に補正している。しかし、実際には
摂餌過程の各段階の中でも、水棲生物は例外的な行動を
起こすことがある。例えば、摂餌初期は、摂餌意欲が活
発とされているが、その初期段階でも一時的に魚が警戒
のために上層にいっては中層に戻る行動を繰り返して摂
餌量が低下したり、飼育環境条件だけでは説明しきれな
い日毎の摂餌活動のばらつきに等により水棲生物の実際
の餌要求量と給餌量とが一致しないこともあった。
That is, according to the above-mentioned prior art, the amount of feed is controlled stepwise (eg, at the beginning of feeding, at the middle of feeding, at the end of feeding) over time, and the feeding environment conditions (eg, season, The feed amount to be controlled is uniformly corrected according to the atmospheric pressure, water temperature, dissolved oxygen, etc.). In practice, however, aquatic organisms can behave exceptionally during each stage of the feeding process. For example, in the early stage of feeding, motivation to eat is active, but even in the initial stage, the fish temporarily go back to the upper layer for alert and return to the middle layer, and the amount of food consumption decreases. In some cases, the actual food demand and feeding amount of aquatic organisms did not match due to variations in daily feeding activities that could not be explained solely by breeding environmental conditions.

【0012】本発明は以上の点に鑑みてなされ、その目
的は、自動給餌装置による給餌量を実際の水棲生物の摂
餌要求量に今までよりも近づけて、給餌効率を高め、し
かも環境水の汚染防止に貢献することができる自動給餌
装置を提供することにある。
The present invention has been made in view of the above points, and an object of the present invention is to increase the feeding efficiency by making the feeding amount of an automatic feeding device closer to the actual feeding demand of aquatic organisms, and to improve the feeding efficiency of environmental water. It is an object of the present invention to provide an automatic feeding device that can contribute to the prevention of food pollution.

【0013】[0013]

【課題を解決するための手段】本発明は、上記目的を達
成するために、基本的には、次のような課題解決手段を
提案する。
In order to achieve the above object, the present invention basically proposes the following means for solving the problems.

【0014】すなわち、水棲生物群を飼育する飼育手段
と、前記水棲生物群の摂餌過程に応じて段階的に変化す
る標準給餌パターンを少なくとも飼育環境条件ごとに予
め準備したデータベースと、前記水棲生物群の活動状態
を撮影する撮像手段と、この映像を画像処理して数値化
する画像処理手段と、前記データベースから飼育環境条
件に合った標準給餌パターンを読み出す手段と、読み出
した前記標準給餌パターンを該標準給餌パターンの各段
階よりも細分化した時間単位で前記数値化した画像処理
データに基づき補正する補正手段と、この補正された給
餌パターンに基づいて給餌制御を実行する給餌制御手段
と、を備えたことを特徴とする。
[0014] That is, a breeding means for breeding the aquatic organism group, a database prepared in advance at least for each breeding environment condition, a standard feeding pattern that changes stepwise according to the feeding process of the aquatic organism group, Imaging means for photographing the activity state of the group, image processing means for image-processing this image and digitizing it, means for reading a standard feeding pattern suitable for breeding environment conditions from the database, and reading the read standard feeding pattern. Correction means for correcting based on the quantified image processing data in units of time subdivided from each stage of the standard feeding pattern, and feeding control means for executing feeding control based on the corrected feeding pattern, It is characterized by having.

【0015】このように構成すれば、時々刻々と変化す
る実際の摂餌過程に合うように各段階ごとの標準給餌パ
ターンを細かく補正していくので、水棲生物の実際の摂
餌活動に適合させた緻密な給餌制御を可能にする。
With this configuration, the standard feeding pattern for each stage is finely corrected so as to match the actual feeding process that changes every moment, so that it is adapted to the actual feeding activity of the aquatic organism. Enables precise feeding control.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態を図面を
参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本実施形態の一例に係る水棲生物
用自動給餌装置を示す全体構成図である。ここでは、水
棲生物がマダイやハマチなどの養殖魚の場合を示す。
FIG. 1 is an overall configuration diagram showing an automatic feeding apparatus for aquatic organisms according to an example of the present embodiment. Here, the case where the aquatic organism is a cultured fish such as red sea bream or yellowtail is shown.

【0018】魚10は、屋内外を問わない飼育手段20
(養殖水槽または海洋いけす)で飼育されている。飼育
手段20内の水中30において、ITVカメラ(工業用
テレビカメラ)40にて魚の活動状態(摂餌活動量)を
撮影し、撮像信号40Sが制御装置50の画像処理手段
502に出力される。
[0018] The fish 10 can be raised indoors or outdoors.
(Cultured aquarium or marine fish). In the underwater 30 in the breeding means 20, the activity state (feeding activity) of the fish is photographed by the ITV camera (industrial television camera) 40, and an image signal 40S is output to the image processing means 502 of the control device 50.

【0019】制御装置50は小型コンピュータにより構
成され、給餌制御手段501,画像処理手段502,給
餌パターン読み出し手段503,給餌パターン補正手段
(給餌量・給餌速度補正手段)70を備えている。
The control device 50 is constituted by a small computer and includes a feed control means 501, an image processing means 502, a feed pattern reading means 503, and a feed pattern correction means (feed amount / feed speed correction means) 70.

【0020】画像処理手段502は、ITVカメラ40
から得られた映像(撮像信号40S)を画像処理して水
棲生物群の活動状態(行動)を画像処理して数値化す
る。ここでは、魚群10の水深位置分布状態が数値化さ
れている。
The image processing means 502 includes the ITV camera 40
The image (imaging signal 40S) obtained from is subjected to image processing, and the activity state (behavior) of the aquatic organisms is image-processed and digitized. Here, the water depth position distribution state of the fish school 10 is quantified.

【0021】データベース60は、水棲生物群の摂餌過
程に応じて段階的(例えば、摂餌初期段階,摂餌中期段
階,摂餌終期段階)に変化する標準給餌パターンを、水
棲生物の種類及び飼育環境条件ごとに予め準備(記憶)
している。ここで、飼育環境条件とは、例えば、季節,
気圧,水温,溶存酸素等であり、種類に応じて検出セン
サにより制御装置50に入力されたり、オペレータを介
して入力される。
The database 60 stores a standard feeding pattern that changes stepwise (for example, an early stage of feeding, a middle stage of feeding, and a last stage of feeding) in accordance with the feeding process of the aquatic organism group. Prepare in advance for each breeding environment condition (memory)
are doing. Here, the breeding environment conditions are, for example, season,
Pressure, water temperature, dissolved oxygen, and the like are input to the control device 50 by a detection sensor or input via an operator according to the type.

【0022】給餌パターン読み出し手段503は、デー
タベース60から水棲生物群及び飼育環境条件に合った
標準給餌パターンを読み出す。
The feeding pattern reading means 503 reads a standard feeding pattern from the database 60 that is suitable for the aquatic organism group and the breeding environment conditions.

【0023】給餌制御手段501は、上記の標準給餌パ
ターンによって定義される給餌量及び給餌時間を画像処
理データに基づき算出し(この算出は補正手段70から
の補正を伴う)、この算出した制御信号50Sに基づき
給餌装置80を介して給餌制御(給餌量・給餌時間制
御)を実行する。
The feeding control means 501 calculates a feeding amount and a feeding time defined by the standard feeding pattern based on the image processing data (this calculation is accompanied by a correction from the correcting means 70), and the calculated control signal Feeding control (feeding amount / feeding time control) is executed via the feeding device 80 based on 50S.

【0024】補正手段70は、画像処理手段502から
の画像処理データにより、種々の画像解析、例えば摂餌
段階(例えば摂餌初期,摂餌中期,摂餌終期)の判定,
魚群10の水深位置分布状態等の解析(水棲生物群の活
動量分析)、それに基づき所定の補正式〔後述の数1式
のΔk(t)を求める式〕から給餌補正量や摂餌段階の
切り替わりタイミングの補正量を求め、この補正信号7
0Sを給餌制御手段501に送る。給餌制御手段501
は、この補正信号70Sを入力して、前記した標準給餌
パターンによって定義される給餌量及び給餌時間に補正
量を加味して、給餌制御を実行する。換言すれば、給餌
制御手段501は、補正された給餌パターンに基づいて
給餌制御を実行する。
The correction means 70 performs various image analysis based on the image processing data from the image processing means 502, for example, determination of a feeding stage (for example, an initial stage of feeding, a middle period of feeding, and an end stage of feeding),
Analysis of the water depth distribution state of the school of fish 10 (analysis of the activity of the aquatic organisms), and based on the analysis, a predetermined correction formula [formula for calculating Δk (t) of the following formula 1] is used to determine the feeding correction amount and the feeding stage The amount of correction of the switching timing is obtained, and this correction signal 7
0S is sent to the feed control means 501. Feeding control means 501
Inputs the correction signal 70S and executes the feeding control in consideration of the correction amount to the feeding amount and the feeding time defined by the standard feeding pattern described above. In other words, the feed control unit 501 executes the feed control based on the corrected feeding pattern.

【0025】補正手段70は、このようにして、データ
ベース60から読み出した標準給餌パターンを画像処理
データに基づき補正するものである。ここで重要な点
は、補正手段70は、標準給餌パターンを補正する場合
に該標準給餌パターンの各段階(例えば、摂餌初期段
階,摂餌中期段階,摂餌終期段階)よりも細分化した微
少時間単位で前記数値化した画像処理データに基づき補
正するということである。
The correcting means 70 corrects the standard feeding pattern read from the database 60 based on the image processing data. The important point here is that the correction means 70 is more subdivided than each stage of the standard feeding pattern (for example, the initial feeding stage, the middle feeding stage, and the final feeding stage) when correcting the standard feeding pattern. That is, the correction is performed based on the numerically processed image processing data in a minute time unit.

【0026】給餌装置80は、例えば、餌タンク90の
底面に餌供給口を設け、さらにこの底面に沿って回転す
る餌供給孔付きの回転円板を設け、この回転円板の一回
転につき上記の餌供給孔が餌タンク90底面の餌供給口
に一致して餌タンク90から餌11を供給するようにし
た装置で、この回転円板速度を変えることで給餌速度
(単位時間あたりの給餌回数ひいては給餌量)が変化し
て給餌量制御が可能になる。その意味で、ここでは、給
餌量と給餌速度とは表裏一体の関係にある。
The feeding device 80 is provided with, for example, a feed supply port on the bottom surface of the feed tank 90, and further provided with a rotating disk with a feed supply hole rotating along the bottom surface. This feeder feeds the feed 11 from the feed tank 90 so that the feed feed hole of the feed tank 90 matches the feed feed port on the bottom of the feed tank 90. By changing the rotating disk speed, the feed speed (feed count per unit time) Thus, the amount of feed can be changed to control the amount of feed. In that sense, here, the feed amount and the feed speed are in a two-sided relationship.

【0027】給餌装置80では、給餌制御手段501で
求められた給餌量(給餌速度)に応じて、餌11を餌タ
ンク90から給餌管100を通して飼育手段20中の魚
10に供給する。
In the feeding device 80, the feed 11 is supplied from the feed tank 90 to the fish 10 in the breeding means 20 in accordance with the feed amount (feed speed) determined by the feed control means 501.

【0028】次に、上記した自動給餌装置の各構成要素
について詳細を説明する。
Next, each component of the above automatic feeding device will be described in detail.

【0029】飼育手段20は、屋内外を問わない飼育水
槽あるいは生け簀である。飼育水槽の形状は、例えば、
直方形あるいは円柱形で、アクリル製やコンクリート製
があり、大小様々である。生け簀の形状は、直方形で魚
10より小さなメッシュの網製や鋼製で、容積は300
3などがある。
[0029] The breeding means 20 is a breeding aquarium or a cage, whether indoors or outdoors. The shape of the breeding aquarium, for example,
It is rectangular or cylindrical, made of acrylic or concrete, and varies in size. The shape of the cage is rectangular and is made of mesh or steel with a mesh smaller than that of the fish 10 and has a volume of 300.
m 3, and the like.

【0030】ここで、自動給餌制御装置50(給餌制御
手段501,画像処理手段502,給餌パターン読み出
し手段503,補正手段70)の機能を図2〜図8を用
いて詳述する。
Here, the functions of the automatic feeding control device 50 (feeding control means 501, image processing means 502, feeding pattern reading means 503, correction means 70) will be described in detail with reference to FIGS.

【0031】まず、制御装置50における画像処理手段
501が、ITVカメラ40で得られた撮像信号40S
から画像処理する範囲を決め、その後、図2のフローチ
ャートに示すように、水深位置定義工程51,画像処理
工程52を実行する。
First, the image processing means 501 in the control device 50 determines whether the image signal 40S obtained by the ITV camera 40 is
Then, a water depth position defining step 51 and an image processing step 52 are executed as shown in the flowchart of FIG.

【0032】水深位置定義工程51では、魚群の行動を
撮像した画面を水深方向に複数層に分けて、これらの各
層を水深位置として定義する。具体的には、撮影された
画面上の撮像領域を水深方向に複数に分割し、例えば、
図3に示すように10分割し、上から1,2番目を上
層、3〜5番目を中層、6〜10番目を低層と3つに水
深位置を定義する。水深位置の定義は、任意に設定して
も良い。
In the water depth position definition step 51, the screen image of the behavior of the school of fish is divided into a plurality of layers in the water depth direction, and these layers are defined as water depth positions. Specifically, the imaging area on the captured screen is divided into a plurality in the depth direction, for example,
As shown in FIG. 3, the water depth position is divided into three, and the first and second from the top are defined as the upper layer, the third to fifth are the middle layers, and the sixth to tenth are defined as the low layers. The definition of the water depth position may be set arbitrarily.

【0033】画像処理工程52では、水深位置定義工程
51で定義された水深位置(上層,中層,低層)ごとの
魚群の行動を画像処理して数値化する。例えば、魚10
の映像は、水中を照明手段で照射して撮影した場合、背
景が明るく、魚が暗く撮影されるから、暗い部分(魚を
表す)を「1」,明るい部分(背景)を「0」として2
値化することができ、その2値化の画素数に基づき、上
層,中層,低層(下層)の魚群の活動量(分布状態)を
算出することが可能になる。このような、活動量の数値
化処理自体は、特開平9−262040号公報にその詳
細が記載されている。
In the image processing step 52, the behavior of the school of fish at each water depth position (upper, middle, low) defined in the water depth definition step 51 is image-processed and quantified. For example, fish 10
When the underwater is photographed by illuminating the underwater with lighting means, the background is bright and the fish is photographed dark, so the dark part (representing the fish) is set to “1” and the bright part (background) is set to “0”. 2
The activity amount (distribution state) of the upper, middle, and lower (lower) fish schools can be calculated based on the binarized number of pixels. The details of the activity amount quantification process itself are described in Japanese Patent Application Laid-Open No. 9-262040.

【0034】給餌パターン読み出し手段503で実行さ
れる給餌パターン読み取り工程53では、魚種や飼育条
件ごとに予め準備した給餌パターンデータベース60よ
り条件にあった標準給餌パターンを読み取る。
In the feeding pattern reading step 53 executed by the feeding pattern reading means 503, a standard feeding pattern satisfying the conditions is read from the feeding pattern database 60 prepared in advance for each fish species and breeding condition.

【0035】給餌制御手段501は、画像処理工程52
で求めた各層の魚分布量を示す画素数と、給餌パターン
読み取り工程で決定した標準給餌パターンを基に魚群の
摂餌活動量を予測し、また給餌量補正手段70より補正
信号70Sを受け取り、給餌量を決定する。画像処理工
程52で求めた魚分布量を示す画素数は給餌量補正手段
70に送られ、補正手段70によって画像解析されるこ
とで補正信号70Sが出力される。
The feeding control means 501 includes an image processing step 52.
Predict the feeding activity of the school of fish based on the number of pixels indicating the fish distribution amount of each layer determined in the above and the standard feeding pattern determined in the feeding pattern reading step, and also receive a correction signal 70S from the feeding amount correction means 70, Determine the amount of feeding. The number of pixels indicating the fish distribution amount obtained in the image processing step 52 is sent to the feed amount correction means 70, and the correction means 70 analyzes the image to output a correction signal 70S.

【0036】給餌制御手段501が実行する給餌速度工
程54では、画像処理工程52で求めた画像処理値と、
給餌パターン読取工程53で決められた給餌パターン
と、補正手段70からの給餌補正量に関する信号70S
から適正な給餌量(給餌速度)及び時間を求め、給餌装
置80に給餌制御信号50Sを出力する。
In the feeding speed step 54 executed by the feeding control means 501, the image processing value obtained in the image processing step 52
A signal 70S regarding the feed pattern determined in the feed pattern reading step 53 and the feed correction amount from the correction means 70
The appropriate feeding amount (feeding speed) and time are determined from the above, and a feeding control signal 50S is output to the feeding device 80.

【0037】標準給餌パターンの一例を図4に示す。図
4では、横軸に時間を縦軸に給餌量を示す。例えば、魚
の摂餌活動が活発な初期段階には多量投餌し、中期、終
期の段階にかけて給餌量を減少させる餌要求行動追従型
方式(図4a)、あるいは初期段階に給餌量を抑えてお
き摂餌意欲を高めた上で、中期に多量投餌し、終期に少
量させる摂餌意欲喚起型方式がある(図4b)。飼育環
境条件が魚10にとって適正であれば、餌要求行動追従
型方式で給餌する。水温が低く、摂餌意欲は不活発な場
合には、摂餌意欲喚起型方式で給餌をし、途中摂餌しな
い様であれば給餌を中止する。これらの標準給餌パター
ンは、給餌パターンデータベース60に収められてい
る。
FIG. 4 shows an example of the standard feeding pattern. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates feed amount. For example, a large amount of feed is fed in the early stage when fish feeding activity is active, and the bait demand-following type in which the amount of feed is reduced in the middle and late stages (FIG. 4a), or the amount of feed is suppressed in the initial stage. There is a motivation-feeding type in which a large amount of food is fed during the middle period and a small amount is fed at the end period after the desire to eat is increased (FIG. 4b). If the breeding environment conditions are appropriate for the fish 10, feeding is performed in a bait request behavior tracking type. If the water temperature is low and the willingness to eat is inactive, feed is provided in a motivating manner, and if the feeding is not to be stopped halfway, the feeding is stopped. These standard feeding patterns are stored in the feeding pattern database 60.

【0038】次に補正手段70で実行される工程のフロ
ーチャートを図5を用いて説明する。
Next, a flowchart of the steps executed by the correction means 70 will be described with reference to FIG.

【0039】補正手段70は、まず、給餌制御手段50
1から補正指令信号70S´を受け取ると、以下に述べ
るタイミング補正工程71,給餌補正工程72,タイミ
ング工程73を実行する。
The correction means 70 is first provided with the feed control means 50
When receiving the correction command signal 70S 'from Step 1, a timing correction step 71, a feed correction step 72, and a timing step 73 described below are executed.

【0040】タイミング補正工程71では、画像処理手
段501からの画像処理データ(摂餌活動時の魚群の水
深分布データ)より、現在の摂餌段階を判定する。摂餌
段階の判定について図6を用いて説明する。
In the timing correction step 71, the current feeding stage is determined based on the image processing data (water depth distribution data of the school of fish during the feeding activity) from the image processing means 501. The determination of the feeding stage will be described with reference to FIG.

【0041】図6において、横軸は摂餌活動時における
時間軸を示し、縦軸は魚群の量を示す画素数(例えば、
2値の画素のうち黒を表す画素数)であり、この画素数
に関するデータは、上層の画素数と中層の画素数と低層
の画素数に分けて表示される。
In FIG. 6, the horizontal axis represents the time axis during feeding activity, and the vertical axis represents the number of pixels indicating the amount of fish school (for example,
Of the binary pixels), and the data on the number of pixels is displayed separately for the number of pixels in the upper layer, the number of pixels in the middle layer, and the number of pixels in the lower layer.

【0042】摂餌初期は、魚群の摂餌行動は活発なので
上層に多く存在する。摂餌が進むにつれ、摂餌意欲は低
下しはじめ、やがて広がりをもって遊泳するようにな
る。
In the early stage of feeding, the school of fish is active in the feeding behavior, so that it is present in the upper layer. As the feeding progresses, the willingness to eat begins to decrease, and eventually the swim starts to spread.

【0043】つまり、 摂餌初期:上層の画素数≧中層の画素数、かつ上層の画
素数≧低層の画素数 摂餌中期:中層の画素数≧上層の画素数≧低層の画素数 摂餌終期:低層の画素数≧上層の画素数 の3つに摂餌段階(給餌段階)を設定し、上記の画素数
の大小関係により摂餌段階を判定する。なお、上記のよ
うな上層の画素数,中層の画素数,低層の画素数は、魚
の例外的な行動パターンにより一時的に摂餌初期であっ
ても中層と上層の画素数の大小関係が逆転したり、摂餌
中期,摂餌終期でも同様の逆転現象が生じることもある
ので、そのような時に誤った判定がなされないように、
上記の水深分布データを何回かサンプリングして、その
累積値或いは平均値或いは頻度から上記の判定条件を適
用するのが望ましく、本実施例では、そのようにしてい
る。
That is, the initial stage of feeding: the number of pixels in the upper layer ≧ the number of pixels in the middle layer, and the number of pixels in the upper layer ≧ the number of pixels in the lower layer.The middle stage of feeding: the number of pixels in the middle layer ≧ the number of pixels in the upper layer ≧ the number of pixels in the lower layer. The number of pixels in the lower layer ≧ the number of pixels in the upper layer sets the feeding stage (feeding stage), and the feeding stage is determined based on the magnitude relationship of the number of pixels. Note that the number of pixels in the upper layer, the number of pixels in the middle layer, and the number of pixels in the lower layer as described above are reversed due to the exceptional behavioral pattern of the fish, even if the feeding is temporarily in the initial stage. The same reversal phenomenon may occur in the middle stage of feeding and the end of feeding, so in order to avoid erroneous judgment at such times,
It is desirable to sample the water depth distribution data several times and apply the above-described determination condition based on the accumulated value, average value, or frequency. In the present embodiment, this is done.

【0044】この摂餌段階の判定により、摂餌段階の切
り替りのタイミング(すなわち、給餌時間)を補正す
る。
Based on the determination of the feeding stage, the timing of switching the feeding stage (ie, feeding time) is corrected.

【0045】次に給餌補正工程72を実行する。図7に
給餌補正工程72の詳細を示す。
Next, a feed correction step 72 is executed. FIG. 7 shows the details of the feed correction step 72.

【0046】給餌補正工程72では、まず、摂餌段階判
定工程72−1で、現在の摂餌段階を判定する。ここ
で、複数層(例えば、上層,中層,下層)に分けた各層
の画像処理データを「画像処理データの種類」として定
義すると、次の工程72−2では、給餌量補正のために
用いる上記画像処理データ(魚群水深位置分布を示す画
素数)の種類を摂餌過程の段階ごとに切り替えてその画
素数の増減を算出して、補正量決定工程72−3を実行
する。
In the feeding correction step 72, first, a current feeding step is determined in a feeding step determination step 72-1. Here, if the image processing data of each layer divided into a plurality of layers (for example, upper layer, middle layer, and lower layer) is defined as “type of image processing data”, in the next step 72-2, the above-mentioned data used for correcting the feed amount is described. The type of the image processing data (the number of pixels indicating the fish school water depth position distribution) is switched for each stage of the feeding process, and the increase or decrease of the number of pixels is calculated, and the correction amount determination step 72-3 is executed.

【0047】すなわち、現在の摂餌過程が初期段階と判
定されれば、工程72−2で上層の画像処理データ(上
層の魚群を示す画素数;いわゆる上層の画素数)の増減
を求め、次の補正量決定工程72−3にて、画素の増減
に対応した給餌補正量を求める。この場合、給餌量と給
餌速度を別々に制御して、給餌量のほかに給餌速度の補
正量についても求めてもよい。摂餌中期、摂餌終期につ
いても同様で、中期では中層の画像処理データを補正用
データとして採用して中層の画素数(中層の魚群を示す
画素数)の増減を求め、終期では低層の画像処理データ
を補正データとして採用して低層の画素数(低層の魚群
を示す画素数)の増減を求め、これらの画素数の増減か
ら給餌量(給餌速度)の補正量Δk(t)を求める。
That is, if the current feeding process is determined to be the initial stage, the increase or decrease of the upper image processing data (the number of pixels indicating the upper fish school; the so-called upper pixel) is determined in step 72-2. In the correction amount determination step 72-3, a feed correction amount corresponding to the increase / decrease of pixels is obtained. In this case, the feed amount and the feed speed may be separately controlled, and the correction amount of the feed speed may be obtained in addition to the feed amount. The same applies to the middle stage of feeding and the end of feeding. In the middle period, the image processing data of the middle layer is used as correction data to determine the increase or decrease in the number of pixels in the middle layer (the number of pixels indicating the middle fish group). By using the processing data as correction data, the increase / decrease in the number of pixels in the low layer (the number of pixels indicating the low-level fish school) is determined, and the correction amount Δk (t) of the feed amount (feed rate) is determined from the increase / decrease in the number of pixels.

【0048】給餌制御手段501は、この補正量Δk
(t)と標準給餌パターンで定義される給餌量(給餌パ
ターン値)KP(t)とから補正後の給餌量(補正後の
給餌パターン値)KH(t)を算出するもので、この給
餌量KP(t)の算出式と補正量Δk(t)の算出式を
数1に示す。なお、求めた補正量は、給餌パターンデー
タベース60に保存される。
The feed control means 501 calculates the correction amount Δk
The corrected feeding amount (corrected feeding pattern value) KH (t) is calculated from (t) and the feeding amount (feeding pattern value) KP (t) defined by the standard feeding pattern. The equation for calculating KP (t) and the equation for calculating the correction amount Δk (t) are shown in Equation 1. Note that the obtained correction amount is stored in the feeding pattern database 60.

【0049】[0049]

【数1】KH(t)=KP(t)+Δk(t) ゆえに、Δk(t)=E(t)×I(t) KH(t):補正後の給餌量 KP(t):給餌パターン値 Δk(t):補正量 E(t):給餌段階 I(t):画素増減数 リミッタ工程73では、摂餌段階の切り替りタイミング
までの時間のリミッタとして機能する。各摂餌段階が所
定時間を越える場合は、給餌速度を制御し次の摂餌段階
に移動する。終期においては、給餌を終了する。また、
給餌全体の時間が、所定の時間になった場合も給餌を終
了する。給餌速度や摂餌段階の切り替りのタイミングま
での時間に制限を用いることで、無駄な投餌と時間を節
約できる。
KH (t) = KP (t) + Δk (t) Therefore, Δk (t) = E (t) × I (t) KH (t): Feeding amount after correction KP (t): Feeding pattern Value Δk (t): Correction amount E (t): Feeding stage I (t): Pixel increase / decrease number In the limiter step 73, it functions as a limiter for the time until the switching timing of the feeding stage. If each feeding stage exceeds a predetermined time, the feeding speed is controlled and the process moves to the next feeding stage. At the end, feeding is terminated. Also,
Feeding is also terminated when the entire feeding time reaches a predetermined time. By using restrictions on the feeding speed and the time until the timing of switching the feeding stage, wasteful feeding and time can be saved.

【0050】なお、数1式からも明らかなように、補正
要素には給餌段階E(t)が含まれるが、本発明ではこ
れが重要な要素であり、特に、読み出した標準給餌パタ
ーンの各段階よりも細分化した時間単位で上記数1に基
づく給餌補正を実行することが重要である。
As is apparent from the equation (1), the correction factor includes the feeding stage E (t), which is an important factor in the present invention, and in particular, each stage of the read standard feeding pattern. It is important to execute the feed correction based on the above equation 1 in more detailed time units.

【0051】本実施例によって補正した給餌量の経時変
化を図8に示す。図8の上図は摂餌過程の各段階におけ
る上層,中層,低層の画像処理データ(上層,中層,低
層の魚群分布状態を示す画素数)であり、下図が給餌量
の制御状態を示す。
FIG. 8 shows the change over time in the feed amount corrected according to the present embodiment. The upper part of FIG. 8 shows image processing data (the number of pixels indicating the distribution state of the upper, middle, and lower part fish schools) at each stage of the feeding process, and the lower part shows the control state of the amount of feed.

【0052】図8からも明らかなように、本実施例では
時々刻々と変化する実際の摂餌過程に合うように各段階
ごとの標準給餌パターンを各段階の中で細かく補正して
いくので、水棲生物の実際の摂餌活動に適合させた緻密
な給餌制御を可能にする。例えば、初期時において摂餌
活動は非常に活発なので、予め決めた標準給餌パターン
より大目に投餌する。摂餌行動が徐々に低下するに従
い、給餌量も給餌パターンにあわせながら補正してい
く。それによって、魚群の活動状態(画素数)の増減に
近似した給餌パターンを確保することで、最終的には無
駄のない給餌を実現できる。
As is clear from FIG. 8, in this embodiment, the standard feeding pattern for each stage is finely corrected in each stage so as to match the actual feeding process which changes every moment. Enables precise feeding control adapted to the actual feeding activity of aquatic organisms. For example, since the feeding activity is very active at the initial stage, the feeding is larger than the predetermined standard feeding pattern. As the feeding behavior gradually decreases, the amount of feeding is also corrected in accordance with the feeding pattern. Thus, by ensuring a feeding pattern similar to the increase or decrease in the activity state (the number of pixels) of the school of fish, it is possible to finally achieve lean feeding.

【0053】本実施例によれば、飼育環境条件のほか
に、魚の日々の予測できない活動(飼育環境条件では計
りきれない活動)も加味して自動給餌を可能にするの
で、今まで以上に的確な給餌保証を実現することができ
る。
According to the present embodiment, in addition to the breeding environment conditions, the automatic feeding is enabled by taking into account the daily unpredictable activities of the fish (the activities which cannot be measured under the breeding environment conditions), so that the feeding is more accurate than ever. Feeding guarantee can be realized.

【0054】[0054]

【発明の効果】本発明によれば、水棲生物群及び群中の
各個体が餌を要求する度合(餌要求性)及びそれにより
誘発される摂餌行動さらに餌要求性の低下による摂餌行
動の変化を画像処理で定量化するが、予め決められた摂
餌段階毎の給餌パターンを水棲生物の行動量によって各
段階の中で細分化(微細化)補正するので、常に適正量
の餌を給餌し、摂餌率を向上し、給餌に係わるコストを
低減し、給餌作業を効率化しさらに環境水の汚染を防止
することができる。
According to the present invention, the aquatic organism group and the degree to which each individual in the group requires food (feeding requirement), the feeding behavior induced thereby, and the feeding behavior due to a decrease in food requirement. Although the change in the amount of food is quantified by image processing, the feeding pattern for each predetermined feeding stage is subdivided (refined) in each stage according to the amount of action of the aquatic organisms, so that an appropriate amount of food is always Feeding, improving the feeding rate, reducing the cost of feeding, streamlining the feeding operation, and preventing environmental water pollution.

【0055】また、水棲生物の摂餌活動の変化に応じて
供給量と継続時間を自動制御するので、給餌作業による
人的負担を軽減し、給餌作業が効率化される。
Further, since the supply amount and the duration are automatically controlled in accordance with the change in the feeding activity of the aquatic organisms, the human burden of the feeding operation is reduced, and the feeding operation is made more efficient.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る全体構成を示す図。FIG. 1 is a diagram showing an overall configuration according to an embodiment of the present invention.

【図2】給餌制御の動作を示すフローチャート。FIG. 2 is a flowchart showing an operation of feeding control.

【図3】水深位置定義工程を示す説明図。FIG. 3 is an explanatory view showing a water depth position defining step.

【図4】給餌パターンの例を示す図。FIG. 4 is a diagram showing an example of a feeding pattern.

【図5】摂餌段階の給餌補正の動作を示すフローチャー
ト。
FIG. 5 is a flowchart showing an operation of feeding correction in a feeding stage.

【図6】摂餌段階の判定原理を示す説明図。FIG. 6 is an explanatory diagram showing a principle of determining a feeding stage.

【図7】給餌量の補正工程を示すフローチャート。FIG. 7 is a flowchart showing a feed amount correction step.

【図8】給餌パターンの補正後の状態を示すタイムチャ
ート。
FIG. 8 is a time chart showing a state after a feeding pattern is corrected.

【符号の説明】[Explanation of symbols]

10…魚、11…餌、20…飼育手段、30…水中、4
0…撮像手段(ITVカメラ)、50…自動給餌制御装
置、501…給餌制御手段、502…画像処理手段、5
03…給餌パターン読み出し手段、60…データベー
ス、70…給餌量制御手段、80…給餌手段、90…給
餌タンク。
10 fish, 11 food, 20 breeding means, 30 underwater, 4
0: imaging means (ITV camera), 50: automatic feeding control device, 501: feeding control means, 502: image processing means, 5
03: feeding pattern reading means, 60: database, 70: feeding amount control means, 80: feeding means, 90: feeding tank.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 原間井 直樹 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 圓佛 伊智朗 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 相馬 憲一 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 吉富 文司 東京都八王子市北野町559番地の6 日本 水産株式会社中央研究所内 Fターム(参考) 2B104 CF01 CF17 5B057 AA15 DA07 DB02 DB08 DC04 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Naoki Haramai 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd.Hitachi Research Laboratory Co., Ltd. 7-1-1, Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Kenichi Soma 7-1-1, Omika-cho, Hitachi City, Ibaraki Pref. Hitachi, Ltd. Hitachi Research Laboratory, Ltd. (72) Inventor Bunji Yoshitomi Tokyo 559-6 Kitano-cho, Hachioji-shi, Japan F-term in Central Research Institute of Fisheries Co., Ltd. F-term (reference) 2B104 CF01 CF17 5B057 AA15 DA07 DB02 DB08 DC04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 水棲生物群を飼育する飼育手段と、 前記水棲生物群の摂餌過程に応じて段階的に変化する標
準給餌パターンを少なくとも飼育環境条件ごとに予め準
備したデータベースと、 前記水棲生物群の活動状態を撮影する撮像手段と、 この映像を画像処理して数値化する画像処理手段と、 前記データベースから飼育環境条件に合った標準給餌パ
ターンを読み出す手段と、 読み出した前記標準給餌パターンを該標準給餌パターン
の各段階よりも細分化した時間単位で前記数値化した画
像処理データに基づき補正する補正手段と、 この補正された給餌パターンに基づいて給餌制御を実行
する給餌制御手段と、を備えたことを特徴とする水棲生
物用自動給餌装置。
1. A breeding means for breeding a group of aquatic organisms, a database in which a standard feeding pattern that changes stepwise according to a feeding process of the group of aquatic organisms is prepared in advance at least for each breeding environment condition, Imaging means for photographing the activity state of the group; image processing means for image-processing this video to digitize it; means for reading a standard feeding pattern suitable for breeding environment conditions from the database; and reading the read standard feeding pattern. Correction means for correcting based on the quantified image processing data in units of time subdivided from each stage of the standard feeding pattern, and feeding control means for executing feeding control based on the corrected feeding pattern. An automatic feeding device for aquatic organisms, comprising:
【請求項2】 前記データベースは、水棲生物の種類と
飼育環境条件ごとの標準給餌パターンを予め準備してい
る請求項1記載の水棲生物用自動給餌装置。
2. The automatic feeding apparatus for aquatic organisms according to claim 1, wherein the database prepares a standard feeding pattern for each type of aquatic organisms and breeding environmental conditions in advance.
【請求項3】 前記補正手段は、前記標準給餌パターン
で定義されている給餌量または給餌速度を補正する請求
項1又は2記載の水棲生物用自動給餌装置。
3. The automatic feeding apparatus for aquatic organisms according to claim 1, wherein the correction means corrects a feeding amount or a feeding speed defined by the standard feeding pattern.
【請求項4】 前記補正手段は、前記水棲生物群の水深
位置分布の画像処理データに基づき前記標準給餌パター
ンで定義された摂餌段階の切り替えのタイミングを補正
するように設定されている請求項1ないし3のいずれか
1項記載の水棲生物用自動給餌装置。
4. The apparatus according to claim 1, wherein the correction unit is configured to correct a timing of switching a feeding stage defined by the standard feeding pattern based on image processing data of a water depth position distribution of the aquatic organisms. The automatic feeding device for aquatic organisms according to any one of claims 1 to 3.
【請求項5】 前記水棲生物群の行動を撮像する画面を
水深方向に複数層に分けて各層ごとの水棲生物群の行動
を画像処理して数値化し、この各層を画像処理データの
種類として定義すると、前記補正手段は、補正のために
用いる前記数値化された画像処理データの種類を摂餌過
程の段階ごとに切り替えるように設定されている請求項
1ないし4のいずれか1項記載の水棲生物用自動給餌装
置。
5. A screen for imaging the behavior of the aquatic organisms is divided into a plurality of layers in the depth direction, and the behavior of the aquatic organisms for each layer is image-processed and quantified, and each layer is defined as a type of image processing data. The aquatic according to any one of claims 1 to 4, wherein the correction unit is configured to switch the type of the digitized image processing data used for the correction for each stage of the feeding process. Automatic feeding device for living things.
【請求項6】 給餌量または給餌速度または摂餌段階の
切り替わりタイミングまでの時間のリミッタ手段を備え
ている請求項1ないし5のいずれか1項記載の水棲生物
用自動給餌装置。
6. The automatic feeding apparatus for aquatic organisms according to claim 1, further comprising limiter means for determining a feeding amount, a feeding speed, or a time until a switching timing of a feeding stage.
JP00974099A 1999-01-18 1999-01-18 Automatic feeding device for aquatic organisms Expired - Fee Related JP3462412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00974099A JP3462412B2 (en) 1999-01-18 1999-01-18 Automatic feeding device for aquatic organisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00974099A JP3462412B2 (en) 1999-01-18 1999-01-18 Automatic feeding device for aquatic organisms

Publications (2)

Publication Number Publication Date
JP2000201568A true JP2000201568A (en) 2000-07-25
JP3462412B2 JP3462412B2 (en) 2003-11-05

Family

ID=11728721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00974099A Expired - Fee Related JP3462412B2 (en) 1999-01-18 1999-01-18 Automatic feeding device for aquatic organisms

Country Status (1)

Country Link
JP (1) JP3462412B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008733A1 (en) * 2007-07-09 2009-01-15 Feed Control Norway As Means and method for average weight determination and appetite feeding
JP2009207397A (en) * 2008-03-03 2009-09-17 Kiyoshi Kato Automatically feeding device for fish
CN103444613A (en) * 2013-08-29 2013-12-18 北京农业信息技术研究中心 Feeding control system and method for fish culture
CN103782944A (en) * 2013-11-28 2014-05-14 青岛蓝图文化传播有限公司市南分公司 Aquaculture feeding system
CN104642235A (en) * 2015-02-13 2015-05-27 通威股份有限公司 Culturing system for carrying out fodder feeding according to turbidity of water body
CN104872038A (en) * 2015-05-27 2015-09-02 何小平 Environment-friendly efficient bait feeder
CN106719130A (en) * 2016-11-25 2017-05-31 淮阴师范学院 It is a kind of to build the method that temperature and intensity of illumination influence model for ussuriensis prelarva viability
WO2018042651A1 (en) * 2016-09-05 2018-03-08 謙 藤原 Feeding system and feeding method
KR20180080731A (en) * 2017-01-04 2018-07-13 주식회사 네오엔비즈 Control device of autimatic feeding level method thereof
CN109757419A (en) * 2019-02-15 2019-05-17 玉林师范学院 A kind of intelligent feeding system and method based on fish meal consumption
JP2019104419A (en) * 2017-12-13 2019-06-27 三井E&S造船株式会社 Offshore wind farm
WO2019168108A1 (en) * 2018-03-02 2019-09-06 ウミトロン ピーティーイー エルティーディー Automatic feeding assistance device, automatic feeding assistance method, and recording medium
CN110574724A (en) * 2019-10-11 2019-12-17 北京嘎子科技有限公司 uniform feeding method and system for high-density culture
CN110583550A (en) * 2019-09-20 2019-12-20 重庆工商大学 Accurate feeding system and device are bred to fish shrimp sea cucumber based on target detection and tracking
JP2020078278A (en) * 2018-11-14 2020-05-28 株式会社 アイエスイー Automatic feeding method and automatic feeding system of farmed fish
KR102185637B1 (en) * 2020-04-17 2020-12-02 주식회사 홀그린 The feeding apparatus for smart fish farm and controlling method of thereof
JP7011099B1 (en) 2021-06-18 2022-01-26 日鉄エンジニアリング株式会社 Feeding methods, feeding systems, and programs
CN114208746A (en) * 2021-12-29 2022-03-22 大连海洋大学 Penaeus japonicus feeding method and system
CN114419432A (en) * 2021-12-23 2022-04-29 中国农业大学 Fish shoal feeding intensity assessment method and device
KR20220063065A (en) * 2020-11-09 2022-05-17 (주)빌리언이십일 System and Method for Controlling of Intelligent Fish Feeder
KR20220089395A (en) * 2020-12-21 2022-06-28 한국해양과학기술원 An optimal automatic feeding system and method at aquaculture fish farm using multiple underwater sensors
CN115067257A (en) * 2022-07-26 2022-09-20 金华市水产技术推广站(金华市水生动物疫病防控中心) Bait casting method and system capable of accurately controlling feeding amount
CN115362969A (en) * 2021-05-21 2022-11-22 生丰水产股份有限公司 Culture system and culture method thereof
KR102496109B1 (en) * 2022-02-25 2023-02-06 한서대학교 산학협력단 Shrimp farm
CN114419432B (en) * 2021-12-23 2024-04-30 中国农业大学 Fish group ingestion intensity assessment method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103809627A (en) * 2013-12-02 2014-05-21 青岛蓝图文化传播有限公司市南分公司 Aquaculture method
KR102099447B1 (en) * 2019-03-05 2020-04-09 블루오션영어조합법인 Contral apparatus and method for feeding hatychery fish
WO2024069898A1 (en) * 2022-09-29 2024-04-04 三菱電機株式会社 Action determination device, action determination method, and action determination program

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008733A1 (en) * 2007-07-09 2009-01-15 Feed Control Norway As Means and method for average weight determination and appetite feeding
JP2009207397A (en) * 2008-03-03 2009-09-17 Kiyoshi Kato Automatically feeding device for fish
CN103444613A (en) * 2013-08-29 2013-12-18 北京农业信息技术研究中心 Feeding control system and method for fish culture
CN103782944A (en) * 2013-11-28 2014-05-14 青岛蓝图文化传播有限公司市南分公司 Aquaculture feeding system
CN104642235A (en) * 2015-02-13 2015-05-27 通威股份有限公司 Culturing system for carrying out fodder feeding according to turbidity of water body
CN104872038A (en) * 2015-05-27 2015-09-02 何小平 Environment-friendly efficient bait feeder
CN109640641A (en) * 2016-09-05 2019-04-16 渔觅创新私人有限公司 Feeding system and bait-throwing method
WO2018042651A1 (en) * 2016-09-05 2018-03-08 謙 藤原 Feeding system and feeding method
JPWO2018042651A1 (en) * 2016-09-05 2018-08-30 ウミトロン ピーティーイー エルティーディー Feeding system and feeding method
CN106719130A (en) * 2016-11-25 2017-05-31 淮阴师范学院 It is a kind of to build the method that temperature and intensity of illumination influence model for ussuriensis prelarva viability
KR20180080731A (en) * 2017-01-04 2018-07-13 주식회사 네오엔비즈 Control device of autimatic feeding level method thereof
KR101923804B1 (en) * 2017-01-04 2019-02-28 주식회사 네오엔비즈 Control device of autimatic feeding level method thereof
JP7027654B2 (en) 2017-12-13 2022-03-02 三井E&S造船株式会社 Offshore wind farm
JP2019104419A (en) * 2017-12-13 2019-06-27 三井E&S造船株式会社 Offshore wind farm
WO2019168108A1 (en) * 2018-03-02 2019-09-06 ウミトロン ピーティーイー エルティーディー Automatic feeding assistance device, automatic feeding assistance method, and recording medium
JP2019153302A (en) * 2018-03-02 2019-09-12 ウミトロン ピーティーイー エルティーディー Automatic feeding support device, automatic feeding support method, and program
JP2020078278A (en) * 2018-11-14 2020-05-28 株式会社 アイエスイー Automatic feeding method and automatic feeding system of farmed fish
CN109757419A (en) * 2019-02-15 2019-05-17 玉林师范学院 A kind of intelligent feeding system and method based on fish meal consumption
CN109757419B (en) * 2019-02-15 2023-12-22 玉林师范学院 Intelligent feeding system and method based on fish feed consumption
CN110583550B (en) * 2019-09-20 2021-11-09 重庆工商大学 Accurate feeding system and device are bred to fish shrimp sea cucumber based on target detection and tracking
CN110583550A (en) * 2019-09-20 2019-12-20 重庆工商大学 Accurate feeding system and device are bred to fish shrimp sea cucumber based on target detection and tracking
CN110574724A (en) * 2019-10-11 2019-12-17 北京嘎子科技有限公司 uniform feeding method and system for high-density culture
KR102185637B1 (en) * 2020-04-17 2020-12-02 주식회사 홀그린 The feeding apparatus for smart fish farm and controlling method of thereof
KR102570791B1 (en) * 2020-11-09 2023-08-25 (주)빌리언이십일 System and Method for Controlling of Intelligent Fish Feeder
KR20220063065A (en) * 2020-11-09 2022-05-17 (주)빌리언이십일 System and Method for Controlling of Intelligent Fish Feeder
KR102543563B1 (en) * 2020-12-21 2023-06-15 한국해양과학기술원 An optimal automatic feeding system and method at aquaculture fish farm using multiple underwater sensors
KR20220089395A (en) * 2020-12-21 2022-06-28 한국해양과학기술원 An optimal automatic feeding system and method at aquaculture fish farm using multiple underwater sensors
CN115362969A (en) * 2021-05-21 2022-11-22 生丰水产股份有限公司 Culture system and culture method thereof
JP7011099B1 (en) 2021-06-18 2022-01-26 日鉄エンジニアリング株式会社 Feeding methods, feeding systems, and programs
WO2022265063A1 (en) * 2021-06-18 2022-12-22 日鉄エンジニアリング株式会社 Feeding method, feeding system, and program
JP2023000709A (en) * 2021-06-18 2023-01-04 日鉄エンジニアリング株式会社 Feeding method, feeding system and program
CN114419432B (en) * 2021-12-23 2024-04-30 中国农业大学 Fish group ingestion intensity assessment method and device
CN114419432A (en) * 2021-12-23 2022-04-29 中国农业大学 Fish shoal feeding intensity assessment method and device
CN114208746B (en) * 2021-12-29 2023-01-31 大连海洋大学 Penaeus japonicus feeding method and system
CN114208746A (en) * 2021-12-29 2022-03-22 大连海洋大学 Penaeus japonicus feeding method and system
KR102496109B1 (en) * 2022-02-25 2023-02-06 한서대학교 산학협력단 Shrimp farm
CN115067257B (en) * 2022-07-26 2023-05-26 金华市水产技术推广站(金华市水生动物疫病防控中心) Feeding method and system capable of accurately controlling feeding quantity
CN115067257A (en) * 2022-07-26 2022-09-20 金华市水产技术推广站(金华市水生动物疫病防控中心) Bait casting method and system capable of accurately controlling feeding amount

Also Published As

Publication number Publication date
JP3462412B2 (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP3462412B2 (en) Automatic feeding device for aquatic organisms
JP3101938B2 (en) Automatic feeding device and method for aquatic organisms
CN109717120B (en) Fish culture monitoring feeding system and method based on Internet of things
JP6695585B1 (en) Aquaculture support system, lifting device, feeding device, aquaculture method, and aquaculture support program
JP6739049B2 (en) Automatic feeding method for farmed fish and automatic feeding system
CN115067243B (en) Fishery monitoring and analyzing method, system and storage medium based on Internet of things technology
CN110637764B (en) Method for accurately determining feeding amount for river crab culture
CN111372060A (en) Intelligent bait casting method and system and inspection vision device
CN114089663B (en) Intelligent feeding control system and control method
CN107730495A (en) A kind of fish pond anoxic detection method based on background modeling
JP7077496B1 (en) Feeding system, feeding method, and sound determination model
JPH0785080B2 (en) Fish condition monitor
CN211048177U (en) Intelligent breeding system
CN115669584B (en) Parent breeding method for portunus trituberculatus based on aggressive traits
CN115486391B (en) Precise feeding and breeding method for pearl gentian garrupa
CN114020074B (en) Intelligent unmanned culture system and method for culture pond
CN114557308A (en) Accurate feeding system and method applied to circulating water aquaculture
KR20170109254A (en) Measuring device and method for biofloc
CN113854222B (en) Intelligent feeding control method
Lai et al. Thermal plasticity in the burst swimming of Bufo bankorensis larvae
CN109992024A (en) Intelligent aquaculture system
CN103039392A (en) Living body continuous measurement method of morphological traits of cold water roes or fry
CN116616238B (en) Vision-based self-adaptive feeding method for prawns
WO2023235077A1 (en) Adaptive feeding of aquatic organisms in an aquaculture environment
WO2023027647A1 (en) System and process in monitoring aquatic animals' growth and health status

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees