WO2020248864A1 - Passivator, passivation method therefor and method for preparing semiconductor film - Google Patents

Passivator, passivation method therefor and method for preparing semiconductor film Download PDF

Info

Publication number
WO2020248864A1
WO2020248864A1 PCT/CN2020/093814 CN2020093814W WO2020248864A1 WO 2020248864 A1 WO2020248864 A1 WO 2020248864A1 CN 2020093814 W CN2020093814 W CN 2020093814W WO 2020248864 A1 WO2020248864 A1 WO 2020248864A1
Authority
WO
WIPO (PCT)
Prior art keywords
methylimidazole
bis
acid
salt
bromide
Prior art date
Application number
PCT/CN2020/093814
Other languages
French (fr)
Chinese (zh)
Inventor
颜步一
姚冀众
Original Assignee
杭州纤纳光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州纤纳光电科技有限公司 filed Critical 杭州纤纳光电科技有限公司
Publication of WO2020248864A1 publication Critical patent/WO2020248864A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/865Intermediate layers comprising a mixture of materials of the adjoining active layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices

Definitions

  • perovskite solar cells are more susceptible to moisture, oxygen, temperature, light and other factors, and perovskite solar cells are prone to ion migration under light, especially the migration of halogen ions. This phenomenon leads to the hysteresis effect of the battery and the deterioration of the device performance.
  • the surface of the perovskite active layer, the surface of the transport layer, and the perovskite grain boundary are precisely the places most prone to degradation or ion migration.
  • the perovskite material is essentially a mixed organic-inorganic ionic crystal, including organic cation A, metal cation B and halogen anion X.
  • organic cation A organic cation A
  • metal cation B organic cation B
  • halogen anion X organic cation A
  • To inhibit ion movement it is not possible to simply inhibit only one ion , And the movement of these three ions needs to be suppressed at the same time.
  • the organic cation A has the ability to give a proton, so it can be regarded as a Lewis acid.
  • the metal cation B has a similar ability and is also a Lewis acid.
  • the halogen ion X is in this system. Treat as Lewis base.
  • the process of organic cation A or metal cation B giving protons, or halogen ion X giving electrons is the beginning of ion migration. Therefore, in order to inhibit ion migration, it is necessary to prevent the three ions in the perovskite material from giving protons or Electronic process.
  • the interface material may also catalyze the above process.
  • the interface material has basic centers (such as inorganic metal oxides, such as ZnO, NiO, etc.), the exposed basic centers will accelerate the process of giving protons by the acid groups of the perovskite (such as the A group). This induces ion migration.
  • the technical problem to be solved by the present invention is to provide a passivation agent and its passivation method and a method for preparing a semiconductor thin film.
  • the semiconductor thin film is further post-treated, and the semiconductor thin film is prepared through solution post-treatment or chemical vapor deposition post-treatment or
  • the post-treatment method of vacuum evaporation adds some passivating agent to the semiconductor film and deposits between the semiconductor film and the interface material in contact with it.
  • the present invention is realized by providing a passivation agent, which is deposited between the semiconductor film and the interface material in contact with it, and/or added to the raw material for preparing the semiconductor film.
  • the molecule has the characteristics of both Lewis acid and Lewis base, that is, it has both electron-rich groups to donate electrons and electron acceptor sites.
  • the molecules with electron-rich groups to donate electrons usually contain N, P
  • the electron acceptor site is generally a metal cation with an empty orbital or an electron-poor group.
  • the present invention is achieved in this way and also provides a passivation method, which deposits the passivation agent as described above between the semiconductor film and the interface material in contact with it, and/or adds it to the raw material for preparing the semiconductor film.
  • Step 1 Add the passivation agent AD as described above to the solvent S and stir to obtain the passivation agent solution AD-S;
  • Step 2 Evenly coat the passivation agent solution AD-S on the surface of the prepared perovskite film layer;
  • Step 3 the substrate coated with the passivator solution AD-S is dried, and after drying, a passivation layer is obtained on the perovskite film layer;
  • the solvent S in step 1 includes amide solvents, sulfone/sulfoxide solvents, ester solvents, hydrocarbon solvents, halogenated hydrocarbon solvents, alcohol solvents, ketone solvents, ether solvents, aromatics At least one of hydrocarbon solvents.
  • Step I Add the passivation agent AD as described above to the solvent S and stir to obtain the passivation agent solution AD-S;
  • Step III Then, the substrate coated with the passivator solution AD-S is dried, and after drying, a passivation layer is obtained on the hole transport layer or the electron transport layer.
  • Step 2 The perovskite precursor solution AD-PS is subjected to the preparation of the conventional perovskite film layer to obtain the perovskite film layer containing the passivator.
  • Example 2 is a comparison curve of the open circuit voltage change of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius;
  • Figure 3 is a comparison curve of short-circuit current changes between the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius;
  • Figure 4 is a comparison curve of the fill factor changes of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius;
  • Figure 5 is a comparison curve of the efficiency change of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous heating at 85 degrees Celsius;
  • Figure 6 shows the open circuit voltage change of the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous exposure to simulated standard sunlight intensity (1 sun) Situation comparison curve;
  • Figure 7 shows the short-circuit current change of the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous exposure to simulated standard sunlight intensity (1 sun) Situation comparison curve;
  • Figure 8 shows the change of the fill factor of the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous irradiation of simulated standard sunlight intensity (1 sun) Situation comparison curve;
  • Figure 9 shows the open circuit efficiency change of the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous irradiation of simulated standard sunlight intensity (1 sun) Situation comparison curve;
  • FIG. 10 is a current-voltage comparison diagram of the perovskite solar cell prepared in Example 12 (with passivation agent added) and the perovskite solar cell without passivation agent.
  • the passivation agent is deposited between the semiconductor film and the interface material in contact with it, and/or is added to the raw material for preparing the semiconductor film.
  • the passivating agent is imidazole salt ionic liquid, pyridine salt ionic liquid, quaternary ammonium salt ionic liquid, quaternary phosphonium salt ionic liquid, pyrrolidine salt ionic liquid, piperidine salt ionic liquid, functionalized ionic liquid
  • At least one of the ferrocene-based organic compounds, or at least one of the metal phthalocyanine compounds, or at least one of the metal acetylacetonate compounds, or at least one of the organometallic compounds One is either at least one of halogen bond compounds or at least one of organoborides.
  • the imidazole ionic liquid includes 1-hexyl-2,3-dimethylimidazolium hexafluorophosphate (1-hexyl-2,3-dimethylimidazolium hexafluorophosphate), 1-hexadecyl-2,3-dimethylimidazolium hexafluorophosphate (1-hexadecyl-2,3-dimethylimidazolium hexafluorophosphate), 1-hexyl-2,3-dimethylimidazolium tetrafluoroborate (1-hexyl-2,3-dimethylimidazolium tetrafluoroborate), 1-hexyl-2,3-dimethylimidazolium bromide (1-hexyl-2,3-dimethylimidazolium bromide), 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl) imide salt (1-
  • the quaternary ammonium salt ionic liquid includes tributylmethylammonium bis(trifluoromethanesulfonyl)imide salt (Tributylmethylammonium bis(trifluoromethyl sulfonyl)imide), tributylmethylammonium chloride chloride), N-methoxyethyl-N-methyldiethylammonium tetrafluoroborate (N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate).
  • Tributylmethylammonium bis(trifluoromethyl sulfonyl)imide Tributylmethylammonium bis(trifluoromethyl sulfonyl)imide
  • tributylmethylammonium chloride chloride Tributylmethylammonium bis(trifluoromethyl sulfonyl)imide
  • the quaternary phosphonium salt ionic liquid tributylhexylphosphonium bis(trifluoromethanesulfonyl)imide Tributylhexylphosphonium) bis(trifluoromethyl sulfonyl)imide), tributylhexylphosphonium bromide Bromide), tetrabutylphosphonium bis(trifluoromethanesulfonyl) imide salt (Tetrabutylphosphonium bis(trifluoromethyl sulfonyl)imide), Tetrabutylphosphonium bromide (Tetrabutylphosphonium bromide), tributyl ethyl phosphine bis (trifluoromethanesulfonyl) imide salt (Ethyltributylphosphonium bis(trifluoromethyl sulfonyl)imide), tributylethyl phosphonium bromide (Eth
  • the pyrrolidine salt ionic liquid includes N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide salt (N-butyl-N-methylpyrrolidinium) bis(trifluoromethyl sulfonyl)imide), N-butyl-N-methylpyrrolidinium bromide (N-butyl-N-methylpyrrolidinium bromide).
  • the piperidine salt ionic liquid includes N-butyl-N-methylpiperidine bis(trifluoromethanesulfonyl) imide salt (1-Butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide), N-butyl-N-methylpiperidinium bromide (1-Butyl-1-methylpiperidinium Bromide).
  • the functionalized ionic liquid includes guanidine hydrochloride, guanidine carbonate, and tetramethylguanidine lactate.
  • lactate tetramethylguanidine trifluoromethanesulfonate (tetramethylguanidine trifluoromethanesulfonate), tetramethylguanidine hydrogen sulfate hydrogensulfate), tetramethylguanidine hydrochloride (tetramethylguanidine chloride), 1-carboxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt (1-carboxyethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide), 1-carboxyethyl-3-methylimidazolium nitrate (1-carboxyethyl-3-methylimidazolium nitrate), 1-carboxyethyl-3-methylimidazolium hydrogensulfate
  • the ferrocene organics include 1,1'-bis(dicyclohexylphosphine)-ferrocene, ferrocene acetic acid, N,N-dimethyl ferrocene methylamine, acetyl ferrocene, two Ferrocene carboxylic acid, 6-(ferrocenyl) hexyl mercaptan, 1,1′-bis(dichlorophosphorus) ferrocene, 1,1′-bis(diisopropylphosphine) ferrocene, 1, 1'-bis(diphenylphosphine)ferrocene, (S)-(-)-N,N-dimethyl-1-ferrocenylethylamine, 1,1'-bis(di-tert-butyl Phosphino)ferrocene, 1,1'-ferrocene dicarboxylic acid, (S)-(+)-N,N-dimethyl-1-(2-biphenylpho
  • the metal phthalocyanine compound includes copper (II) phthalocyanine, iron (II) phthalocyanine, lead phthalocyanine (II), aluminum phthalocyanine, cobalt phthalocyanine (II), dilithium phthalocyanine, and dichlorophthalocyanine Tin (IV), zinc phthalocyanine, copper perfluorophthalocyanine.
  • the metal acetylacetonate includes zirconium acetylacetonate, iron acetylacetonate, zinc acetylacetonate, copper acetylacetonate, nickel acetylacetonate, cobalt acetylacetonate, hafnium acetylacetonate, aluminum acetylacetonate, and rhodium acetylacetonate bis(ethylene) (I), rhodium dicarbonyl acetylacetonate, vanadium acetylacetonate, cadmium acetylacetonate, calcium acetylacetonate, vanadyl acetylacetonate, molybdenum acetylacetonate, iridium dicarbonyl acetylacetonate (I), bis(hexafluoroacetylacetone) copper ( II) Hydrate, tin acetylacetonate, bis
  • the halogen bond compound includes 4-iodonitrobenzene, 1-fluoro-3-iodo-5-nitrobenzene, 2-nitro-3,5-difluoroiodobenzene, 4-bromo-2-fluorobenzonitrile , 4-Bromo-2,3,5,6-tetrafluorobenzoic acid, 4-bromo-2,3-difluorobenzonitrile, 4 4'-dibromooctafluorobiphenyl.
  • the organic borides include tetrabutylammonium borohydride, 3-nitrophenylboronic acid, trimethyl borate, 3-thiopheneboronic acid, 3-furanboronic acid, 4-formylphenylboronic acid, 3-aminophenylboronic acid, 4- Mercaptophenylboronic acid, 4-(bromomethyl)phenylboronic acid, 4-methoxyphenylboronic acid, 3-methoxyphenylboronic acid, 5-aldehyde-2-methoxyphenylboronic acid, 5-formaldehyde furan -2-boronic acid, 2-fluoro-5-bromopyridine-3-boronic acid, 2-fluoropyridine-3-boronic acid, 2,5-dichloropyridine-4-boronic acid, benzothiophene-2-boronic acid, 3-quinone Phosphoboronic acid, thiophene-2-boronic acid pinacol ester, 4-aminophenylboronic acid pinacol ester, 3-
  • the invention also discloses a passivation method, which deposits the passivation agent as described above between the semiconductor film and the interface material in contact with it, and/or adds it to the raw material for preparing the semiconductor film.
  • Step 1 Add the passivator AD as described above to the solvent S and stir to obtain the passivator solution AD-S, wherein the mass volume ratio of the passivator AD to the solvent S is 0.1 mg/mL to 100 mg/mL.
  • Step 2 Evenly coat the passivator solution AD-S on the surface of the prepared perovskite film layer.
  • the solvent S is N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), ⁇ -butyrolactone (GBL), At least one of 1,8-diiodooctane (DIO), N-cyclohexyl-2-pyrrolidone (CHP), chlorobenzene (CB), and toluene.
  • DIO 1,8-diiodooctane
  • CHP N-cyclohexyl-2-pyrrolidone
  • CB chlorobenzene
  • the present invention also discloses another method for preparing a semiconductor film, which is characterized in that the semiconductor film to be prepared is a perovskite film of a perovskite solar cell, which comprises the following steps:
  • Step I Add the passivator AD as described above to the solvent S and stir to obtain the passivator solution AD-S, wherein the mass volume ratio of the passivator AD to the solvent S is 0.1 mg/mL-100 mg/mL.
  • the invention also discloses another method for preparing a semiconductor thin film, including the following steps:
  • Step 1 Add the passivation agent AD as described above to the precursor solution PS (including the one-step perovskite precursor solution or the two-step precursor solution) for preparing the perovskite thin film layer to obtain Perovskite precursor solution AD-PS containing passivator AD.
  • Step 2 The perovskite precursor solution AD-PS is subjected to the preparation of the conventional perovskite film layer to obtain the perovskite film layer containing the passivator.
  • step 1 the ratio of adding the passivation agent AD to the precursor solution PS for preparing the perovskite film is: the molar ratio of the passivation agent AD to the total halogen of the precursor solution PS is 1:100,000 ⁇ 1:1.
  • Embodiment 1 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM layer with a thickness of 10 nm is obtained by the slit coating method.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by using an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 2 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM layer with a thickness of 10 nm is obtained by the slit coating method.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 3 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electrode layer Al is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 4 of a method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • PS1 is the DMF solution of lead iodide with a molar concentration of 1.2 mol/L, the molar ratio of the passivation agent to the total halogen in the solution PS1 is 1:2000, and the mixture is uniformly mixed to obtain the precursor solution PS1-AD.
  • PS2 is a mixed isopropanol of MAI, FAI and CsI Solution to obtain a CsFAMAPbI 3 perovskite film layer with a thickness of 400 nm.
  • Embodiment 5 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • a CuSCN hole transport layer was prepared on AZO, using a bar coating method, with a thickness of 75nm.
  • An electrode layer Cu is prepared on the electron transport layer, and a sputtering method is used to obtain an electrode layer with a thickness of 300 nm. Continue and finally prepare perovskite solar cells.
  • Embodiment 6 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • passivating agent A 1-dodecyl-3-methylimidazole tetrafluoroborate
  • passivating agent B 1-octyl-3-methylimidazole tetrafluoroborate
  • the acid salt was added to the one-step perovskite precursor solution PS containing PbI 2 , FAI and CsI at a concentration of 1.2 mol/L at the same time.
  • the total molar amount of passivator A and passivator B was equal to the total amount of halogen in the solution PS.
  • the molar ratio of the amount is 1:500, and the mixture is evenly mixed to obtain the solution PS-AD12.
  • a hole transport layer Spiro-OMeTAD was prepared on the perovskite film layer, and a hole transport layer with a thickness of 100 nm was obtained by the slit coating method.
  • Au and Ag electrode layers are prepared on the hole transport layer, and an electrode layer of Au with a thickness of 20 nm and Ag with a thickness of 150 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 8 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 9 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 10 of a method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 11 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 12 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electron transport layer PCBM is prepared on the perovskite film layer, and a slit coating method is used to obtain a PCBM electron transport layer with a thickness of 10 nm.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 13 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 14 of the method for preparing a perovskite-layer solar cell of the present invention includes the following steps: (1) The ITO transparent conductive glass is cleaned, and the surface is plasma-treated for use.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 15 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • An electron transport layer PCBM is prepared on the perovskite film layer, and a slit coating method is adopted to obtain a PCBM electron transport layer with a thickness of 10 nm.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
  • Embodiment 18 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • Embodiment 19 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
  • An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
  • An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method.
  • the comparison of the open circuit voltage change of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius It can be seen from the figure that the open circuit voltage of the perovskite solar cell with passivation agent does not decay under 1000 hours of continuous heating, while the open circuit voltage of the perovskite solar cell without passivator decays after 500 hours. More than 10%.
  • the perovskite solar cell with passivating agent has excellent open circuit voltage performance under continuous heating at 85 degrees Celsius.
  • the comparison of the fill factor changes of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius It can be seen from the figure that the fill factor of the perovskite solar cell with passivation agent attenuates less than 15% under 1000 hours of continuous heating, while the fill factor of the perovskite solar cell without passivator attenuates after 500 hours Just over 30%.
  • the perovskite solar cell with passivating agent has excellent fill factor performance under continuous heating at 85 degrees Celsius.
  • the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent are simulated under continuous irradiation of standard sunlight intensity (1 sun) Comparison of open circuit voltage changes. It can be seen from the figure that the open circuit voltage of the perovskite solar cell with passivation agent does not decay under 1000 hours of continuous irradiation, while the open circuit voltage of the perovskite solar cell without passivation agent decays after 500 hours. More than 5%.
  • the perovskite solar cell with passivation agent has excellent open circuit voltage performance under the condition of simulating standard sunlight intensity (1 sun).
  • the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent are simulated under continuous irradiation of standard sunlight intensity (1 sun) Comparison of short-circuit current changes. It can be seen from the figure that the short-circuit current of the perovskite solar cell with passivating agent decays less than 10% under 1000 hours of continuous heating, while the voltage of the perovskite solar cell without passivator decays after 500 hours. More than 30%.
  • the perovskite solar cell with passivating agent has excellent short-circuit current performance under the simulating standard sunlight intensity (1 sun) continuous irradiation.
  • the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent are simulated under continuous irradiation of standard sunlight intensity (1 sun) Comparison of changes in fill factor. It can be seen from the figure that the fill factor of the perovskite solar cell with passivator attenuates less than 10% under 1000 hours of continuous heating, while the fill factor of the perovskite solar cell without passivator attenuates after 500 hours Just over 30%.
  • the perovskite solar cell with passivating agent has excellent fill factor performance under the condition of simulating standard sunlight intensity (1 sun).
  • the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent are simulated under continuous irradiation of standard sunlight intensity (1 sun) Comparison of efficiency changes. It can be seen from the figure that the fill factor of the perovskite solar cell with passivator attenuates less than 10% under 1000 hours of continuous heating, while the fill factor of the perovskite solar cell without passivator attenuates after 500 hours Just over 50%.
  • the perovskite solar cell with passivating agent has excellent efficiency performance under the condition of simulating standard sunlight intensity (1 sun) continuous irradiation.
  • the current-voltage comparison diagram of the perovskite solar cell prepared in Example 12 (with passivation agent added) and the perovskite solar cell without passivation agent. It can be seen from the figure that the current-voltage comprehensive performance of the perovskite solar cell has been improved after the passivation agent is added.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed are a passivator, and a method for preparing a semiconductor film using the passivator. The passivator is at least one of an imidazolium salt ionic liquid, a pyridinium salt ionic liquid, a quaternary ammonium salt ionic liquid, a pyrrolidinium salt ionic liquid, a piperidinium salt ionic liquid, a functionalized ionic liquid, a ferrocene organic substance, a metal phthalocyanine compound, a metal acetylacetone compound, an organic metal, a halogen bond compound and an organic boride. Depositing the passivator between a semiconductor film and an interface material in contact therewith, and/or adding the passivator to raw materials for preparing the semiconductor film provides a uniform and stable reaction environment for the passivator and the semiconductor film material, so that the crystal growth of the semiconductor film can be controlled during the preparation process thereof, thereby greatly improving the stability of the semiconductor film.

Description

一种钝化剂及其钝化方法和制备半导体薄膜的方法Passivation agent and its passivation method and method for preparing semiconductor film 技术领域Technical field
本发明属于半导体制备技术领域,特别涉及一种钝化剂及其钝化方法和制备半导体薄膜的方法。 The invention belongs to the technical field of semiconductor preparation, and particularly relates to a passivation agent and a passivation method thereof and a method for preparing a semiconductor film.
背景技术Background technique
近年来,一种钙钛矿太阳能电池受到广泛关注。钙钛矿为ABX 3型的立方八面体结构,如图1所示,这种钙钛矿太阳能电池以有机金属卤化物为光吸收层。此种材料制备的薄膜太阳能电池工艺简便、生产成本低、稳定且转化率高。自2009年至今,光电转换效率从3.8%提升至22%以上,已高于现有的商业化的晶硅太阳能电池且具有较大的成本优势。 In recent years, a perovskite solar cell has received widespread attention. The perovskite has an ABX 3 type cubic octahedron structure. As shown in Figure 1, this perovskite solar cell uses organic metal halide as the light absorption layer. The thin-film solar cell prepared by the material has simple process, low production cost, stability and high conversion rate. Since 2009, the photoelectric conversion efficiency has increased from 3.8% to more than 22%, which is higher than the existing commercial crystalline silicon solar cells and has a greater cost advantage.
与其他传统太阳能电池相比,钙钛矿太阳能电池更容易受到水分、氧气、温度、光照等因素的影响,而且钙钛矿太阳能电池在光照下容易产生离子迁移现象,特别是卤素离子的迁移,此现象导致电池的磁滞效应以及器件性能的恶化。其中,钙钛矿活性层表面、传输层表面、以及钙钛矿晶界恰恰是最容易发生降解或发生离子迁移等不良现象的地方。Compared with other traditional solar cells, perovskite solar cells are more susceptible to moisture, oxygen, temperature, light and other factors, and perovskite solar cells are prone to ion migration under light, especially the migration of halogen ions. This phenomenon leads to the hysteresis effect of the battery and the deterioration of the device performance. Among them, the surface of the perovskite active layer, the surface of the transport layer, and the perovskite grain boundary are precisely the places most prone to degradation or ion migration.
钙钛矿太阳能电池的不稳定性主要来源于钙钛矿材料内部的离子迁移、界面不匹配诱导的离子迁移,以及金属电极扩散后与钙钛矿中的迁移离子反应造成的钙钛矿材料的退化。因此抑制钙钛矿材料内部以及钙钛矿材料与其界面层之间的表面的离子迁移成为提高钙钛矿材料稳定性的一个关键的手段。The instability of perovskite solar cells mainly comes from the ion migration inside the perovskite material, the ion migration induced by the interface mismatch, and the perovskite material caused by the reaction of the metal electrode with the migration ions in the perovskite after diffusion. Degenerate. Therefore, inhibiting ion migration within the perovskite material and on the surface between the perovskite material and its interface layer has become a key means to improve the stability of the perovskite material.
如图1所示,钙钛矿材料本质上是一个有机无机混合的离子晶体,包括了有机阳离子A、金属阳离子B和卤素阴离子X,要抑制离子移动,并不能简单地只抑制某一种离子,而需要对这三种离子的移动同时进行抑制。As shown in Figure 1, the perovskite material is essentially a mixed organic-inorganic ionic crystal, including organic cation A, metal cation B and halogen anion X. To inhibit ion movement, it is not possible to simply inhibit only one ion , And the movement of these three ions needs to be suppressed at the same time.
在上述三种离子移动的过程中,有机阳离子A拥有给出一个质子的能力,因此可以看作是路易斯酸,金属阳离子B也有类似能力,也是路易斯酸,而卤素离子X则在这一体系中作为路易斯碱对待。有机阳离子A或金属阳离子B给出质子,亦或卤素离子X给出电子的过程就是离子迁移的开端,因此为了抑制离子迁移,就必须阻碍钙钛矿材料内三种离子之间给出质子或电子的过程。In the process of the movement of the above three ions, the organic cation A has the ability to give a proton, so it can be regarded as a Lewis acid. The metal cation B has a similar ability and is also a Lewis acid. The halogen ion X is in this system. Treat as Lewis base. The process of organic cation A or metal cation B giving protons, or halogen ion X giving electrons is the beginning of ion migration. Therefore, in order to inhibit ion migration, it is necessary to prevent the three ions in the perovskite material from giving protons or Electronic process.
另一方面,除了在钙钛矿材料内部这种潜在的离子移动的风险,当钙钛矿材料的表面同其它材料形成界面时,界面材料也有可能催化上述过程。尤其当界面材料具有碱性中心时(比如无机金属氧化物,如ZnO,NiO等),其暴露的碱性中心会加速钙钛矿的酸性基团(如A基团)给出质子的过程,从而诱导离子迁移。On the other hand, in addition to the potential risk of ion migration inside the perovskite material, when the surface of the perovskite material forms an interface with other materials, the interface material may also catalyze the above process. Especially when the interface material has basic centers (such as inorganic metal oxides, such as ZnO, NiO, etc.), the exposed basic centers will accelerate the process of giving protons by the acid groups of the perovskite (such as the A group). This induces ion migration.
从上述角度来看,抑制离子迁移就必须平衡钙钛矿材料内以及钙钛矿材料与其界面环境中的酸碱体系,我们称之为钝化平衡过程。要实现这一过程就必须在:1)钙钛矿材料内,和/或2)钙钛矿界面引入一个恰当的平衡的酸碱体系。From the above point of view, to inhibit ion migration, it is necessary to balance the acid-base system in the perovskite material and the perovskite material and its interface environment, which we call the passivation balance process. To achieve this process, it is necessary to: 1) the perovskite material, and/or 2) introduce a properly balanced acid-base system into the perovskite interface.
技术问题technical problem
本发明所要解决的技术问题在于,提供一种钝化剂其钝化方法和制备半导体薄膜的方法,对半导体薄膜进行进一步后处理,在制备半导体薄膜之后通过溶液后处理或化学气相沉积后处理或真空蒸镀后处理的方法向半导体薄膜中添加一些钝化剂,沉积在半导体薄膜与其接触的界面材料之间。The technical problem to be solved by the present invention is to provide a passivation agent and its passivation method and a method for preparing a semiconductor thin film. The semiconductor thin film is further post-treated, and the semiconductor thin film is prepared through solution post-treatment or chemical vapor deposition post-treatment or The post-treatment method of vacuum evaporation adds some passivating agent to the semiconductor film and deposits between the semiconductor film and the interface material in contact with it.
为了实现这一目的,我们寻找了一系列同时具备路易斯酸特性和路易斯碱特性的材料,把他们作为钝化材料,把其加入到钙钛矿材料中和/或沉积在钙钛矿材料与其界面材料之间,极大地改善了制备后的钙钛矿太阳能电池的稳定性。In order to achieve this goal, we have searched for a series of materials with both Lewis acid properties and Lewis base properties. They are used as passivation materials and added to the perovskite material and/or deposited on the perovskite material and its interface. Among the materials, the stability of the prepared perovskite solar cell is greatly improved.
技术解决方案Technical solutions
本发明是这样实现的,提供一种钝化剂,所述钝化剂沉积在半导体薄膜与其接触的界面材料之间,和/或加入到制备半导体薄膜的原材料中,在该钝化剂材料的分子中同时具备路易斯酸和路易斯碱的特征,即同时具有富电子基团去提供电子以及电子受体位点,其中,所述具有富电子基团去提供电子的分子常见的为含N、P、O、S中任意一种的化合物分子,所述电子受体位点一般是具有空轨道的金属阳离子或者贫电子基团。The present invention is realized by providing a passivation agent, which is deposited between the semiconductor film and the interface material in contact with it, and/or added to the raw material for preparing the semiconductor film. The molecule has the characteristics of both Lewis acid and Lewis base, that is, it has both electron-rich groups to donate electrons and electron acceptor sites. Among them, the molecules with electron-rich groups to donate electrons usually contain N, P For compound molecules of any one of, O, and S, the electron acceptor site is generally a metal cation with an empty orbital or an electron-poor group.
具体地,所述钝化剂为咪唑盐类离子液体、吡啶盐类离子液体、季铵盐类离子液体、季鏻盐类离子液体、吡咯烷盐类离子液体、哌啶盐类离子液体、功能化离子液体中的至少一种,或者为二茂铁类有机物中的至少一种,或者为金属酞菁化合物中的至少一种,或者为金属乙酰丙酮化合物中的至少一种,或者为有机金属中的至少一种,或者为卤键化合物中的至少一种,或者为有机硼化物中的至少一种。Specifically, the passivating agent is imidazole salt ionic liquid, pyridine salt ionic liquid, quaternary ammonium salt ionic liquid, quaternary phosphonium salt ionic liquid, pyrrolidine salt ionic liquid, piperidine salt ionic liquid, functional At least one of the ionic liquids, or at least one of the ferrocene organics, or at least one of the metal phthalocyanine compounds, or at least one of the metal acetylacetone compounds, or organic metal At least one of them is either at least one of halogen bond compounds or at least one of organoborides.
本发明是这样实现的,还提供一种钝化方法,将如前所述钝化剂沉积在半导体薄膜与其接触的界面材料之间,和/或加入到制备半导体薄膜的原材料中。The present invention is achieved in this way and also provides a passivation method, which deposits the passivation agent as described above between the semiconductor film and the interface material in contact with it, and/or adds it to the raw material for preparing the semiconductor film.
本发明是这样实现的,还提供一种制备半导体薄膜的方法,所述要制备的半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,其包括以下步骤:The present invention is realized in this way, and also provides a method for preparing a semiconductor thin film. The semiconductor thin film to be prepared is a perovskite thin film of a perovskite solar cell, which includes the following steps:
步骤1、将如前所述的钝化剂AD加入到溶剂S中搅拌得到钝化剂溶液AD-S;Step 1. Add the passivation agent AD as described above to the solvent S and stir to obtain the passivation agent solution AD-S;
步骤2、将钝化剂溶液AD-S均匀地涂敷在已经制备好的钙钛矿薄膜层表面上;Step 2. Evenly coat the passivation agent solution AD-S on the surface of the prepared perovskite film layer;
步骤3、然后对涂覆有钝化剂溶液AD-S的基片进行干燥,干燥后在钙钛矿薄膜层上就得到了一层钝化剂层;Step 3. Then the substrate coated with the passivator solution AD-S is dried, and after drying, a passivation layer is obtained on the perovskite film layer;
其中,步骤1中的所述溶剂S包括酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类溶剂、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的至少一种。Wherein, the solvent S in step 1 includes amide solvents, sulfone/sulfoxide solvents, ester solvents, hydrocarbon solvents, halogenated hydrocarbon solvents, alcohol solvents, ketone solvents, ether solvents, aromatics At least one of hydrocarbon solvents.
本发明是这样实现的,还提供一种制备半导体薄膜的方法,所述要制备的半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,其包括以下步骤:The present invention is realized in this way, and also provides a method for preparing a semiconductor thin film. The semiconductor thin film to be prepared is a perovskite thin film of a perovskite solar cell, which includes the following steps:
步骤I、将如前所述的钝化剂AD加入到溶剂S中搅拌得到钝化剂溶液AD-S;Step I: Add the passivation agent AD as described above to the solvent S and stir to obtain the passivation agent solution AD-S;
步骤II、将钝化剂溶液AD-S均匀地涂敷在已经制备好的空穴传输层或电子传输层表面上;Step II, uniformly coat the passivator solution AD-S on the surface of the hole transport layer or electron transport layer that has been prepared;
步骤III、然后对涂覆有钝化剂溶液AD-S的基片进行干燥,干燥后在空穴传输层或电子传输层上就得到了一层钝化剂层。Step III: Then, the substrate coated with the passivator solution AD-S is dried, and after drying, a passivation layer is obtained on the hole transport layer or the electron transport layer.
本发明是这样实现的,还提供一种制备半导体薄膜的方法,所述要制备的半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,其包括以下步骤:The present invention is realized in this way, and also provides a method for preparing a semiconductor thin film. The semiconductor thin film to be prepared is a perovskite thin film of a perovskite solar cell, which includes the following steps:
步骤一、将如前所述的钝化剂AD加入到制备钙钛矿薄膜层的前驱体溶液PS中,得到含有钝化剂AD的钙钛矿前驱体溶液AD-PS;Step 1. Add the passivation agent AD as described above to the precursor solution PS for preparing the perovskite film layer to obtain the perovskite precursor solution AD-PS containing the passivator AD;
步骤二、将钙钛矿前驱体溶液AD-PS进行常规的钙钛矿薄膜层的制备,得到含有钝化剂的钙钛矿薄膜层。Step 2: The perovskite precursor solution AD-PS is subjected to the preparation of the conventional perovskite film layer to obtain the perovskite film layer containing the passivator.
有益效果Beneficial effect
与现有技术相比,本发明的钝化剂其钝化方法和制备半导体薄膜的方法,将所述钝化剂沉积在半导体薄膜与其接触的界面材料之间,和/或加入到制备半导体薄膜的原材料中,为钝化剂与半导体薄膜材料提供了一个均匀稳定的反应环境,可在制备过程中控制半导体薄膜的晶体生长,提高半导体成膜质量及均匀性和重复性。本发明的方法应用于钙钛矿太阳能电池制备技术领域,极大地改善了钙钛矿太阳能电池的稳定性。Compared with the prior art, the passivation method of the passivation agent of the present invention and the method for preparing a semiconductor film, the passivation agent is deposited between the semiconductor film and the interface material in contact with it, and/or added to the preparation of the semiconductor film Among the raw materials, it provides a uniform and stable reaction environment for the passivator and the semiconductor film material, which can control the crystal growth of the semiconductor film during the preparation process, and improve the quality, uniformity and repeatability of the semiconductor film formation. The method of the invention is applied to the technical field of perovskite solar cell preparation and greatly improves the stability of the perovskite solar cell.
附图说明Description of the drawings
图1为现有技术钙钛矿薄膜中分子结构示意图;Figure 1 is a schematic diagram of the molecular structure in a perovskite film in the prior art;
图2为实施例3制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下开路电压变化情况的对比曲线;2 is a comparison curve of the open circuit voltage change of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius;
图3为实施例3制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下短路电流变化情况的对比曲线;Figure 3 is a comparison curve of short-circuit current changes between the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius;
图4为实施例3制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下填充因子变化情况的对比曲线;Figure 4 is a comparison curve of the fill factor changes of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius;
图5为实施例3制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下效率变化情况的对比曲线;Figure 5 is a comparison curve of the efficiency change of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous heating at 85 degrees Celsius;
图6为实施例5制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下开路电压变化情况的对比曲线;Figure 6 shows the open circuit voltage change of the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous exposure to simulated standard sunlight intensity (1 sun) Situation comparison curve;
图7为实施例5制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下短路电流变化情况的对比曲线;Figure 7 shows the short-circuit current change of the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous exposure to simulated standard sunlight intensity (1 sun) Situation comparison curve;
图8为实施例5制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下填充因子变化情况的对比曲线;Figure 8 shows the change of the fill factor of the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous irradiation of simulated standard sunlight intensity (1 sun) Situation comparison curve;
图9为实施例5制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下开路效率变化情况的对比曲线;Figure 9 shows the open circuit efficiency change of the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent under the condition of continuous irradiation of simulated standard sunlight intensity (1 sun) Situation comparison curve;
图10为实施例12制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池的电流-电压对比图。FIG. 10 is a current-voltage comparison diagram of the perovskite solar cell prepared in Example 12 (with passivation agent added) and the perovskite solar cell without passivation agent.
本发明的最佳实施方式The best mode of the invention
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the technical problems, technical solutions and beneficial effects to be solved by the present invention clearer, the following further describes the present invention in detail with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention.
请参照图2所示,本发明钝化剂的较佳实施例,所述钝化剂沉积在半导体薄膜与其接触的界面材料之间,和/或加入到制备半导体薄膜的原材料中。所述钝化剂为咪唑盐类离子液体、吡啶盐类离子液体、季铵盐类离子液体、季鏻盐类离子液体、吡咯烷盐类离子液体、哌啶盐类离子液体、功能化离子液体中的至少一种,或者为二茂铁类有机物中的至少一种,或者为金属酞菁化合物中的至少一种,或者为金属乙酰丙酮化合物中的至少一种,或者为有机金属中的至少一种,或者为卤键化合物中的至少一种,或者为有机硼化物中的至少一种。Please refer to FIG. 2 for a preferred embodiment of the passivation agent of the present invention. The passivation agent is deposited between the semiconductor film and the interface material in contact with it, and/or is added to the raw material for preparing the semiconductor film. The passivating agent is imidazole salt ionic liquid, pyridine salt ionic liquid, quaternary ammonium salt ionic liquid, quaternary phosphonium salt ionic liquid, pyrrolidine salt ionic liquid, piperidine salt ionic liquid, functionalized ionic liquid At least one of the ferrocene-based organic compounds, or at least one of the metal phthalocyanine compounds, or at least one of the metal acetylacetonate compounds, or at least one of the organometallic compounds One is either at least one of halogen bond compounds or at least one of organoborides.
所述咪唑类离子液体包括1-己基-2,3-二甲基咪唑六氟磷酸盐(1-hexyl-2,3-dimethylimidazolium hexafluorophosphate)、1-十六基-2,3-二甲基咪唑六氟磷酸盐(1-hexadecyl-2,3-dimethylimidazolium hexafluorophosphate)、1-己基-2,3-二甲基咪唑四氟硼酸盐(1-hexyl-2,3-dimethylimidazolium tetrafluoroborate)、1-己基-2,3-二甲基咪唑溴盐(1-hexyl-2,3-dimethylimidazolium bromide)、1-丁基-2,3-二甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)amine)、1-丁基-2,3-二甲基咪唑四氟硼酸盐(1-butyl-2,3-dimethylimidazolium tetrafluoroborate)、1-丁基-2,3-二甲基咪唑氯盐(1-butyl-2,3-dimethylimidazolium chloride)、1-十六基-3-甲基咪唑溴盐(1-hexadecyl-3-methylimidazolium bromide)、1-十六基-3-甲基咪唑氯盐(1-hexadecyl-3-methylimidazolium chloride)、1-十四基-3-甲基咪唑溴盐(1-tetradecyl-3-methylimidazolium bromide)、1-十四基-3-甲基咪唑氯盐(1-tetradecyl-3-methylimidazolium chloride)、1-十二基-3-甲基咪唑六氟磷酸盐(1-dodecyl-3-methylimidazolium hexafluorophosphate)、1-十二基-3-甲基咪唑四氟硼酸盐(1-dodecylimidazolium tetrafluoroborate)、1-十二基-3-甲基咪唑溴盐(1-dodecyl-3-methylimidazolium bromide)、1-十二基-3-甲基咪唑氯盐(1-dodecyl-3-methylimidazolium chloride)、1-癸基-3-甲基咪唑六氟磷酸盐(1-decyl-3-methylimidazolium hexfluorophosphate)、1-癸基-3-甲基咪唑四氟硼酸盐(1-decyl-3-methylimidazolium tetrafluoroborate)、1-癸基-3-甲基咪唑溴盐(1-decyl-3-methylimidazolium bromide)、1-癸基-3-甲基咪唑氯盐(1-decyl-3-methylimidazolium chloride)、1-辛基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)、1-辛基-3-甲基咪唑六氟磷酸盐(1-octyl-3-methylimidazolium hexafluorophosphate)、1-辛基-3-甲基咪唑四氟硼酸盐(1-octyl-3-methylimidazolium tetrafluoroborate)、1-辛基-3-甲基咪唑溴盐(1-octyl-3-methylimidazolium brimide)、1-辛基-3-甲基咪唑氯盐(1-octyl-3-methylimidazolium chloride)、1-己基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-hexyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide)、1-己基-3-甲基咪唑六氟磷酸盐(1-hexyl-3-methylimidazolium hexafluorophosphate)、1-己基-3-甲基咪唑四氟硼酸盐(1-hexyl-3-methylimidazolium tetrafluoroborate)、1-己基-3-甲基咪唑溴盐(1-hexyl-3-methylimidazolium brimide)、1-己基-3-甲基咪唑氯盐(1-hexyl-3-methylimidazolium chloride)、1-戊基-3-甲基咪唑六氟磷酸盐(1-pentyl-3-methylimidazolium hexafluorophosphate)、1-戊基-3-甲基咪唑四氟硼酸盐(1-pentyl-3-methylimidazolium tetrafluoroborate)、1-戊基-3-甲基咪唑溴盐(1-pentyl-3-methylimidazolium bromide)、1-戊基-3-甲基咪唑氯盐(1-pentyl-3-methylimidazolium chloride)、1-丙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-Propyl-3-MethyliMidazoliuM bis(trifluoroMethylsulfonyl)imide)、1-丙基-3-甲基咪唑六氟磷酸盐(1-propyl-3-methyl imidazolium hexafluorophosphate)、1-丁基-3-甲基咪唑醋酸盐(1-butyl-3-methylimidazolium acetate)、1-丁基-3-甲基咪唑对甲基苯磺酸盐(1-butyl-3-methylimidazolium tosylate)、1-丁基-3-甲基咪唑硫氰酸盐(1-butyl-3-methylimidazolium thiocyanate)、1-丁基-3-甲基咪唑三氟乙酸盐(1-butyl-3-methylimidazolium trifluoroacetate)、1-丁基-3-甲基咪唑三氟甲烷磺酸盐(1-butyl-3-methylimidazolium trifluoromethansulfonate)、1-丁基-3-甲基咪唑二腈胺盐(1-butyl-3-methylimidazolium dicyanamide)、1-丁基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-butyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide)、1-丁基-3-甲基咪唑高氯酸盐(1-butyl-3-methylimidazolium perchlorate)、1-丁基-3-甲基咪唑磷酸二氢盐(1-butyl-3-methylimidazolium dihydrogen phosphate)、1-丁基-3-甲基咪唑硫酸氢盐(1-butyl-3-methylimidazolium hydrogen sulfate)、1-丁基-3-甲基咪唑硝酸盐(1-butyl-3-methylimidazolium nitrate)、1-丁基-3-甲基咪唑六氟磷酸盐(1-butyl-3-methylimidazolium hexafluorophosphate)、1-丁基-3-甲基咪唑四氟硼酸盐(1-butyl-3-methylimidazolium tetrafluoroborate)、1-丁基-3-甲基咪唑碘盐(1-butyl-3-methylimidazolium iodide)、1-丁基-3-甲基咪唑氯盐(1-butyl-3-methylimidazolium chloride)、1-丁基-3-甲基咪唑溴盐(1-butyl-3-methylimidazolium bromide)、1-丙基-3-甲基咪唑碘盐(1-propyl-3-methylimidazolium iodide)、1-丙基-3-甲基咪唑四氟硼酸盐(1-propyl-3-methylimidazolium tetrafluoroborate)、1-丙基-3-甲基咪唑溴盐(1-propyl-3-methylimidazolium bromide)、1-丙基-3-甲基咪唑氯盐(1-propyl-3-methylimidazolium chloride)、1-乙基-3-甲基咪唑醋酸盐(1-Ethyl-3-methylimidazolium acetate)、1-乙基-3-甲基咪唑对甲基苯磺酸盐(1-Ethyl-3-methylimidazolium tosylate)、1-乙基-3-甲基咪唑硫氰酸盐(1-Ethyl-3-methylimidazolium thiocyanate)、1-乙基-3-甲基咪唑三氟乙酸盐(1-Ethyl-3-methylimidazolium trifluoroacetate)、1-乙基-3-甲基咪唑三氟甲烷磺酸盐(1-Ethyl-3-methylimidazolium trifluoromethanesulfonate)、1-乙基-3-甲基咪唑二腈胺盐(1-Ethyl-3-methylimidazolium dicyanamide)、1-乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)、1-乙基-3-甲基咪唑高氯酸盐(1-Ethyl-3-methyl-1H-imidazolium perchlorate)、1-乙基-3-甲基咪唑硫酸氢盐(1-Ethyl-3-methylimidazolium hydrogen sulfate)、1-乙基-3-甲基咪唑硝酸盐(1-Ethyl-3-methylimidazolium nitrate)、1-乙基-3-甲基咪唑六氟磷酸盐(1-ethyl-3-methylimidazolium hexafluorophosphate)、1-乙基-3-甲基咪唑碘盐(1-ethyl-3-methylimidazolium iodine)、1-乙基-3-甲基咪唑溴盐(1-ethyl-3-methylimidazolium bromide)、1-乙基-3-甲基咪唑氯盐(1-ethyl-3-methylimidazolium chloride)、1-乙基-3-甲基咪唑四氟硼酸盐(1-ethyl-3-methylimidazolium tetrafluoroborate)。The imidazole ionic liquid includes 1-hexyl-2,3-dimethylimidazolium hexafluorophosphate (1-hexyl-2,3-dimethylimidazolium hexafluorophosphate), 1-hexadecyl-2,3-dimethylimidazolium hexafluorophosphate (1-hexadecyl-2,3-dimethylimidazolium hexafluorophosphate), 1-hexyl-2,3-dimethylimidazolium tetrafluoroborate (1-hexyl-2,3-dimethylimidazolium tetrafluoroborate), 1-hexyl-2,3-dimethylimidazolium bromide (1-hexyl-2,3-dimethylimidazolium bromide), 1-butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl) imide salt (1-butyl-2,3-dimethylimidazolium) bis(trifluoromethylsulfonyl)amine), 1-butyl-2,3-dimethylimidazolium tetrafluoroborate), 1-butyl-2,3-dimethylimidazolium chloride salt (1-butyl-2,3-dimethylimidazolium chloride), 1-hexadecyl-3-methylimidazolium bromide (1-hexadecyl-3-methylimidazolium bromide), 1-hexadecyl-3-methylimidazolium chloride (1-hexadecyl-3-methylimidazolium chloride) , 1-tetradecyl-3-methylimidazolium bromide (1-tetradecyl-3-methylimidazolium bromide), 1-tetradecyl-3-methylimidazolium chloride (1-tetradecyl-3-methylimidazolium chloride), 1 -Dodecyl-3-methylimidazolium hexafluorophosphate (1-dodecyl-3-methylimidazolium hexafluorophosphate), 1-dodecyl-3-methylimidazolium tetrafluoroborate (1-dodecylimidazolium tetrafluoroborate), 1- 1-dodecyl-3-methylimidazolium bromide, 1-dodecyl-3-methylimidazolium chloride, 1-decyl -3-methylimidazolium hexafluorophosphate (1-decyl-3-methylimidazolium hexfluorophosphate), 1-decyl-3-methylimidazolium tetrafluoroborate (1-decyl-3-methylimidazolium tetrafluoroborate), 1-decyl 1-decyl-3-methylimidazolium bromide, 1-decyl-3-methylimidazolium chloride, 1-octyl-3-methylimidazolium bromide Methylimidazole bis(trifluoromethanesulfonyl)imide salt (1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-octyl-3-methylimidazolium hexafluorophosphate (1-octyl-3-methylimidazolium hexafluorophosphate), 1-octyl-3-methylimidazolium tetrafluoroborate (1-octyl-3-methylimidazolium tetrafluoroborate), 1-octyl-3-methylimidazolium bromide (1-octyl-3-methylimidazolium brimide), 1-octyl-3-methylimidazolium chloride (1-octyl-3-methylimidazolium chloride), 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt (1-hexyl -3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide), 1-hexyl-3-methylimidazolium hexafluorophosphate (1-hexyl-3-methylimidazolium hexafluorophosphate), 1-hexyl-3-methylimidazolium tetrafluoroborate (1-hexyl-3-methylimidazolium tetrafluoroborate), 1-hexyl-3-methylimidazolium bromide (1-hexyl-3-methylimidazolium brimide), 1-hexyl-3-methylimidazolium chloride, 1-pentyl-3-methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium chloride, 1-pentyl-3-methylimidazolium hexafluorophosphate, 1-pentyl-3-methylimidazolium tetrafluoroborate (1-pentyl-3-methylimidazolium tetrafluoroborate), 1-pentyl-3-methylimidazolium bromide, 1 -Pentyl-3-methylimidazolium chloride (1-pentyl-3-methylimidazolium chloride), 1-propyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt (1-Propyl-3- MethyliMidazoliuM bis(trifluoroMethylsulfonyl)imide), 1-propyl-3-methylimidazole hexafluorophosphate (1-propyl-3-methyl imidazolium hexafluorophosphate), 1-butyl-3-methylimidazolium acetate (1-butyl-3-methylimidazolium acetate), 1-butyl-3-methylimidazolium tosylate (1-butyl-3-methylimidazolium tosylate), 1-butyl-3-methylimidazolium tosylate (1-butyl- 3-methylimidazolium thiocyanate), 1-butyl-3-methylimidazolium trifluoroacetate (1-butyl-3-methylimidazolium trifluoroacetate), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (1 -butyl-3-methylimidazolium trifluoromethansulfonate), 1-butyl-3-methylimidazolium dicyanamide), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt (1-butyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide), 1-butyl-3-methylimidazolium perchlorate perchlorate), 1-butyl-3-methylimidazolium dihydrogen phosphate, 1-butyl-3-methylimidazolium dihydrogen phosphate (1-butyl-3-methylimidazolium dihydrogen phosphate) hydrogen sulfate), 1-butyl-3-methylimidazolium nitrate, 1-butyl-3-methylimidazolium hexafluorophosphate ), 1-butyl-3-methylimidazolium tetrafluoroborate (1-butyl-3-methylimidazolium tetrafluoroborate), 1-butyl-3-methylimidazolium iodide (1-butyl-3-methylimidazolium iodide) , 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-propane 3-methylimidazolium iodide (1-propyl-3-methylimidazolium iodide), 1-propyl-3-methylimidazolium tetrafluoroborate, 1-propyl -3-methylimidazolium bromide (1-propyl-3-methylimidazolium bromide), 1-propyl-3-methylimidazolium chloride, 1-ethyl-3-methyl 1-Ethyl-3-methylimidazolium acetate, 1-Ethyl-3-methylimidazolium tosylate, 1-Ethyl-3-methylimidazolium tosylate, 1-Ethyl-3-methylimidazolium tosylate -Methylimidazole thiocyanate (1-Ethyl-3-methylimidazolium thiocyanate), 1-Ethyl-3-methylimidazolium trifluoroacetate (1-Ethyl-3-methylimidazolium trifluoroacetate), 1-ethyl- 3-Methylimidazolium trifluoromethanesulfonate (1-Ethyl-3-methylimidazolium trifluoromethanesulfonate) , 1-Ethyl-3-methylimidazolium dicyanamide (1-Ethyl-3-methylimidazolium dicyanamide), 1-ethyl-3-methylimidazolium dicyanamide, 1-ethyl-3-methylimidazolium dicyanamide (1- Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-Ethyl-3-methyl-1H-imidazolium perchlorate perchlorate), 1-Ethyl-3-methylimidazolium hydrogen sulfate (1-Ethyl-3-methylimidazolium hydrogen sulfate), 1-Ethyl-3-methylimidazolium nitrate (1-Ethyl-3-methylimidazolium nitrate) , 1-ethyl-3-methylimidazolium hexafluorophosphate (1-ethyl-3-methylimidazolium hexafluorophosphate), 1-ethyl-3-methylimidazolium iodine, 1 -Ethyl-3-methylimidazolium bromide (1-ethyl-3-methylimidazolium bromide), 1-ethyl-3-methylimidazolium chloride, 1-ethyl- 3-methylimidazolium tetrafluoroborate (1-ethyl-3-methylimidazolium tetrafluoroborate).
所述吡啶盐类离子液体包括N-辛基吡啶溴盐(N-octyl pyridinium bromide)、N-己基吡啶双(三氟甲烷磺酰)亚胺盐(N-hexyl pyridinium bis(trifluoromethyl sulfonyl)imide)、N-己基吡啶六氟磷酸盐(N-hexyl pyridinium hexafluorophosphate)、N-己基吡啶四氟硼酸盐(N-hexyl pyridinium tetrafluoroborate)、N-己基吡啶溴盐(N-hexyl pyridinium bromide)、N-丁基吡啶双(三氟甲烷磺酰)亚胺盐(N-butyl pyridinium bis(trifluoromethyl sulfonyl)imide)、N-丁基吡啶六氟磷酸盐(N-butyl pyridinium hexafluorophosphate)、N-丁基吡啶四氟硼酸盐(N-butyl pyridinium tetrafluoroborate)、N-丁基吡啶溴盐(N-butyl pyridinium bromide)、N-乙基吡啶双(三氟甲烷磺酰)亚胺盐(N-ethyl pyridinium bis(trifluoromethyl sulfonyl)imide)、N-乙基吡啶六氟磷酸盐(N-ethylpyridinium hexafluorophosphate)、N-乙基吡啶四氟硼酸盐(N-ethylpyridinium tetrafluoroborate)、N-乙基吡啶溴盐(N-ethylpyridinium bromide)。The pyridine salt ionic liquid includes N-octyl pyridine bromide (N-octyl pyridinium bromide), N-hexyl pyridinium bis(trifluoromethyl sulfonyl)imide), N-hexyl pyridinium hexafluorophosphate, N-hexyl pyridinium hexafluorophosphate (N-hexyl pyridinium tetrafluoroborate), N-hexyl pyridinium bromide, N-butyl pyridinium bis(trifluoromethanesulfonyl) imide salt (N-butyl pyridinium bis(trifluoromethyl sulfonyl)imide), N-butyl pyridinium hexafluorophosphate, N-butyl pyridinium hexafluorophosphate pyridinium tetrafluoroborate), N-butyl pyridinium bromide, N-ethylpyridinium bis(trifluoromethanesulfonyl) imide salt (N-ethyl pyridinium bis(trifluoromethyl sulfonyl)imide), N-ethylpyridinium hexafluorophosphate, N-ethylpyridinium tetrafluoroborate tetrafluoroborate), N-ethylpyridinium bromide.
所述季铵盐类离子液体包括三丁基甲基铵双(三氟甲烷磺酰)亚胺盐(Tributylmethylammonium bis(trifluoromethyl sulfonyl)imide)、三丁基甲基氯化铵(Tributylmethylammonium chloride)、N-甲氧基乙基-N-甲基二乙基铵四氟硼酸盐(N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate)。The quaternary ammonium salt ionic liquid includes tributylmethylammonium bis(trifluoromethanesulfonyl)imide salt (Tributylmethylammonium bis(trifluoromethyl sulfonyl)imide), tributylmethylammonium chloride chloride), N-methoxyethyl-N-methyldiethylammonium tetrafluoroborate (N,N-Diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate).
所述季鏻盐类离子液体三丁基己基膦双(三氟甲烷磺酰)亚胺盐(Tributylhexylphosphonium bis(trifluoromethyl sulfonyl)imide)、三丁基己基溴化膦(Tributylhexylphosphonium Bromide)、四丁基膦双(三氟甲烷磺酰)亚胺盐(Tetrabutylphosphonium bis(trifluoromethyl sulfonyl)imide)、四丁基溴化膦(Tetrabutylphosphonium bromide)、三丁基乙基膦双(三氟甲烷磺酰)亚胺盐(Ethyltributylphosphonium bis(trifluoromethyl sulfonyl)imide)、三丁基乙基溴化膦(Ethyltributylphosphonium bromide)。The quaternary phosphonium salt ionic liquid tributylhexylphosphonium bis(trifluoromethanesulfonyl)imide (Tributylhexylphosphonium) bis(trifluoromethyl sulfonyl)imide), tributylhexylphosphonium bromide Bromide), tetrabutylphosphonium bis(trifluoromethanesulfonyl) imide salt (Tetrabutylphosphonium bis(trifluoromethyl sulfonyl)imide), Tetrabutylphosphonium bromide (Tetrabutylphosphonium bromide), tributyl ethyl phosphine bis (trifluoromethanesulfonyl) imide salt (Ethyltributylphosphonium bis(trifluoromethyl sulfonyl)imide), tributylethyl phosphonium bromide (Ethyltributylphosphonium bromide).
所述吡咯烷盐类离子液体包括N-丁基-N-甲基吡咯烷双(三氟甲烷磺酰)亚胺盐(N-butyl-N-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide)、N-丁基-N-甲基吡咯烷溴盐(N-butyl-N-methylpyrrolidinium bromide)。The pyrrolidine salt ionic liquid includes N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide salt (N-butyl-N-methylpyrrolidinium) bis(trifluoromethyl sulfonyl)imide), N-butyl-N-methylpyrrolidinium bromide (N-butyl-N-methylpyrrolidinium bromide).
所述哌啶盐类离子液体包括N-丁基-N-甲基哌啶双(三氟甲烷磺酰)亚胺盐(1-Butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide)、N-丁基-N-甲基哌啶溴盐(1-Butyl-1-methylpiperidinium Bromide)。The piperidine salt ionic liquid includes N-butyl-N-methylpiperidine bis(trifluoromethanesulfonyl) imide salt (1-Butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide), N-butyl-N-methylpiperidinium bromide (1-Butyl-1-methylpiperidinium Bromide).
所述功能化离子液体包括盐酸胍(guanidine hydrochloride)、碳酸胍(guanidine carbonate)、四甲基胍乳酸盐(tetramethylguanidine lactate)、四甲基胍三氟甲烷磺酸盐(tetramethylguanidine trifluoromethanesulfonate)、四甲基胍硫酸氢盐(tetramethylguanidine hydrogensulfate)、四甲基胍盐酸盐(tetramethylguanidine chloride)、1-羧乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-carboxyethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide)、1-羧乙基-3-甲基咪唑硝酸盐(1-carboxyethyl-3-methylimidazolium nitrate)、1-羧乙基-3-甲基咪唑硫酸氢盐(1-carboxyethyl-3-methylimidazolium hydrogensulfate)、1-羧乙基-3-甲基咪唑溴盐(1-carboxyethyl-3-methylimidazolium bromide)、1-羧乙基-3-甲基咪唑氯盐(1-carboxyethyl-3-methylimidazolium chloride)、1-羧甲基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-carboxymethyl-3-methylimidazolium bis(trifluoromethylsulfonate)imine)、1-羧甲基-3-甲基咪唑硝酸盐(1-carboxymethyl-3-methylimidazolium nitrate)、1-羧甲基-3-甲基咪唑硫酸氢盐(1-carboxymethyl-3-methylimidazolium hydrogensulfate)、1-羧甲基-3-甲基咪唑溴盐(1-carboxymethyl-3-methylimidazolium bromide)、1-羧甲基-3-甲基咪唑氯盐(1-carboxymethyl-3-methylimidazolium chloride)、1-乙酸乙酯基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-((ethoxycarbonyl)methyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)、1-乙酸乙酯基-3-甲基咪唑六氟磷酸盐(1-((ethoxycarbonyl)methyl)-3-methylimidazolium hexafluorophosphate)、1-乙酸乙酯基-3-甲基咪唑四氟硼酸盐(1-((ethoxycarbonyl)methyl)-3-methylimidazolium tetrafluoroborate)、1-乙酸乙酯基-3-甲基咪唑溴盐(1-((ethoxycarbonyl)methyl)-3-methylimidazolium bromide)、1-乙酸乙酯基-3-甲基咪唑氯盐(1-((ethoxycarbonyl)methyl)-3-methylimidazolium chloride)、1-苄基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-Benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)、1-苄基-3-甲基咪唑六氟磷酸盐(1-Benzyl-3-methylimidazolium hexafluorophosphate)、1-苄基-3-甲基咪唑四氟硼酸盐(1-Benzyl-3-methylimidazolium tetrafluoroborate)、1-苄基-3-甲基咪唑溴盐(1-Benzyl-3-methylimidazolium bromide)、1-苄基-3-甲基咪唑氯盐(1-Benzyl-3-methylimidazolium chloride)、1-乙基乙基醚-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-Ethoxyethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)、1-乙基乙基醚-3-甲基咪唑六氟磷酸盐(1-Ethoxyethyl-3-methylimidazolium hexafluorophosphate)、1-乙基乙基醚-3-甲基咪唑四氟硼酸盐(1-Ethoxyethyl-3-methylimidazolium tetrafluoroborate)、1-乙基乙基醚-3-甲基咪唑溴盐(1-Ethoxyethyl-3-methylimidazolium bromide)、1-乙基甲基醚-3-甲基咪唑六氟磷酸盐(1-Methoxyethyl-3-methylimidazolium hexafluorophosphate)、1-乙基甲基醚-3-甲基咪唑四氟硼酸盐(1-Methoxyethyl-3-methylimidazolium tetrafluoroborate)、1-乙基甲基醚-3-甲基咪唑溴盐(1-Methoxyethyl-3-methylimidazolium bromide)、1-乙烯基-3-丁基咪唑双三氟甲烷磺酰亚胺盐(1-vinyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide)、1-乙烯基-3-丁基咪唑六氟磷酸盐(1-vinyl-3-butylimidazolium hexafluorophosphate)、1-乙烯基-3-丁基咪唑四氟硼酸盐(1-vinyl-3-butylimidazolium tetrafluoroborate)、1-乙烯基-3-丁基咪唑溴盐(1-vinyl-3-butylimidazolium bromide)、1-乙烯基-3-乙基咪唑双三氟甲烷磺酰亚胺盐(1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide)、1-乙烯基-3-乙基咪唑六氟磷酸盐(1-vinyl-3-ethylimidazolium hexafluorophosphate)、1-乙烯基-3-乙基咪唑四氟硼酸盐(1-vinyl-3-ethylimidazolium tetrafluoroborate)、1-乙烯基-3-乙基咪唑溴盐(1-vinyl-3-ethylimidazolium bromide)、1-乙烯基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-vinyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)、1-乙烯基-3-甲基咪唑碘盐(1-vinyl-3-methylimidazolium iodide)、1-烯丙基-3-丁基咪唑双(三氟甲烷磺酰)亚胺盐(1-allyl-3-butyl imidazolium bis(trifluoromethylsulfonyl)imide)、1-烯丙基-3-丁基咪唑六氟磷酸盐(1-allyl-3-butyl imidazolium hexafluorophosphate)、1-烯丙基-3-丁基咪唑四氟硼酸盐(1-allyl-3-butyl imidazolium tetrafluoroborate)、1-烯丙基-3-丁基咪唑溴盐(1-allyl-3-butyl imidazolium bromide)、1-烯丙基-3-乙基咪唑双(三氟甲烷磺酰)亚胺盐(1-allyl-3-ethyl imidazolium bis(trifluoromethylsulfonyl)imide)、1-烯丙基-3-乙基咪唑六氟磷酸盐(1-allyl-3-ethyl imidazolium hexafluorophosphate)、1-烯丙基-3-乙基咪唑四氟硼酸盐(1-allyl-3-ethyl imidazolium tetrafluoroborate)、1-烯丙基-3-乙基咪唑溴盐(1-allyl-3-ethyl imidazolium bromide)、1-烯丙基-3-乙基咪唑氯盐(1-allyl-3-ethyl imidazolium chloride)、1-烯丙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-allyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide)、1-烯丙基-3-甲基咪唑六氟磷酸盐(1-allyl-3-methyl imidazolium hexafluorophosphate)、1-烯丙基-3-甲基咪唑四氟硼酸盐(1-allyl-3-methyl imidazolium tetrafluoroborate)、1-烯丙基-3-甲基咪唑溴盐(1-allyl-3-methyl imidazolium bromide)、1-烯丙基-3-甲基咪唑氯盐(1-allyl-3-methyl imidazolium chloride)、1-腈丙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-cyanopropyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide)、1-腈丙基-3-甲基咪唑硝酸盐(1-cyanopropyl-3-methyl imidazolium nitrate)、1-腈丙基-3-甲基咪唑六氟磷酸盐(1-cyanopropyl-3-methyl imidazolium hexafluorophosphate)、1-腈丙基-3-甲基咪唑四氟硼酸盐(1-cyanopropyl-3-methyl imidazolium tetrafluoroborate)、1-腈丙基-3-甲基咪唑氯盐(1-cyanopropyl-3-methyl imidazolium chloride)、1,2-二甲基-3-羟乙基咪唑对甲基苯磺酸盐(1,2-dimethyl-3-hydroxyethyl imidazolium tosylate)、1,2-二甲基-3-羟乙基咪唑双(三氟甲烷磺酰)亚胺盐(1,2-dimethyl-3-hydroxyethyl imidazolium bis(trifluoromethylsulfonyl)imide)、1,2-二甲基-3-羟乙基咪唑六氟磷酸盐(1,2-dimethyl-3-hydroxyethyl imidazolium hexafluorophosphate)、1,2-二甲基-3-羟乙基咪唑四氟硼酸盐(1,2-dimethyl-3-hydroxyethyl imidazolium tetrafluoroborate)、1-羟乙基-2,3-二甲基咪唑氯盐(1-hydroxyethyl-2,3-dimethyl imidazolium chloride)、1-羟乙基-3-甲基咪唑硫酸氢盐(1-hydroxyethyl-3-methyl imidazolium thiocyanate)、1-羟乙基-3-甲基咪唑对甲基苯磺酸盐(1-hydroxyethyl-3-methyl imidazolium tosylate)、1-羟乙基-3-甲基咪唑二腈胺盐(1-hydroxyethyl-3-methyl imidazolium dicyanamide)、1-羟乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-hydroxyethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide)、1-羟乙基-3-甲基咪唑高氯酸盐(1-hydroxyethyl-3-methyl imidazolium perchlorate)、1-羟乙基-3-甲基咪唑硝酸盐(1-hydroxyethyl-3-methyl imidazolium nitrate)、1-羟乙基-3-甲基咪唑六氟磷酸盐(1-hydroyethyl-3-methylimidazolium hexafluorophosphate)、1-羟乙基-3-甲基咪唑四氟硼酸盐(1-hydroxyethyl-3-methylimidazolium tetrafluoroborate)、1-羟乙基-3-甲基咪唑氯盐(1-hydroxyethyl-3-methylimidazolium chloride)、三甲基羟乙基铵双(三氟甲烷磺酰)亚胺盐(2-hydroxyethyl trimethylammonium bis(trifluoromethylsulfonyl)imine)、三甲基羟乙基铵六氟磷酸盐(2-hydroxyethyl trimethylammonium hexafluorophosphate)、三甲基羟乙基铵四氟硼酸盐(2-hydroxyethyl trimethylammonium tetrafluoroborate)、三甲基羟乙基铵氯盐(2-hydroxy-N,N,N- trimethyl ethylanammonium chloride)、N-磺酸丁基吡啶对甲苯磺酸盐(N-butylsulfonate pyridinium tosylate)、N-磺酸丁基吡啶三氟甲磺酸盐(N-butylsulfonate pyridinium trifluoromethanesulfonate)、N-磺酸丁基吡啶硫酸氢盐(N-butylsulfonic pyridinium hydrogensulfate)、磺酸丁基吡啶内酯(pyridinium butylsulfonate)、N-磺酸丙基吡啶对甲苯磺酸盐(N-propylsulfonate pyridinium tosylate)、N-磺酸丙基吡啶三氟甲磺酸盐(N-propylsulfonate pyridinium trifluoromethanesulfonate)、N-丙基磺酸吡啶硫酸氢盐(N-propylsulfonate pyridinium hydrogensulfate)、磺酸丙基吡啶内酯(pyridinium propylsulfonate)、1-丁基磺酸-3-甲基咪唑三氟乙酸盐(1-butylsulfonate-3-methylimidazolium trifluoroacetate)、1-丁基磺酸-3-甲基咪唑三氟甲烷磺酸盐(1-butylsulfonate-3-methylimidazolium trifluoromethanesulfonate)、1-丁基磺酸-3-甲基咪唑硫酸氢盐(1-butylsulfonate-3-methylimidazolium bisulfate)、1-丁基磺酸-3-甲基咪唑磷酸二氢盐(1-butylsulfonate-3-methylimidazolium dihydrogen phosphate)、1-丁基磺酸-3-甲基咪唑氯盐(1-butylsulfonate-3-methylimidazolium chloride)、1-磺酸丁基-3-甲基咪唑内盐(1-butylsulfonate-3-methylimidazolium)、1-丙基磺酸-3-甲基咪唑三氟乙酸盐(1-propylsulfonate-3-methylimidazolium trifluoroacetate)、1-丙基磺酸-3-甲基咪唑三氟甲烷磺酸盐(1-propylsulfonate-3-methylimidazolium trifluoromethanesulfonate)、1-丙基磺酸-3-甲基咪唑硫酸氢盐(1-propylsulfonate-3-methylimidazolium hydrogensulfate)、1-丙基磺酸-3-甲基咪唑磷酸二氢盐(1-propylsulfonate-3-methylimidazolium dihydrogen phosphate)、1-丙基磺酸-3-甲基咪唑氯盐(1-propylsulfonate-3-methylimidazolium chloride)、1-磺酸丙基-3-甲基咪唑内盐(1-propylsulfonate -3-methylimidazolium)、1-胺丙基-3-甲基咪唑硝酸盐(1-aminopropyl-3-methylimidazolium nitrate)、1-胺丙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-aminopropylimidazolium bis(trifluoromethylsulfonyl)imine)、1-胺丙基-3-甲基咪唑六氟磷酸盐(1-aminopropylimidazolium hexafluorophosphate)、1-胺丙基-3-甲基咪唑四氟硼酸盐(1-aminopropyl-3-methylimidazolium tetrafluoroborate)、1-胺丙基-3-甲基咪唑溴盐(1-aminopropyl-3-methylimidazolium bromide)、1-胺乙基-3-甲基咪唑硝酸盐(1-aminoethyl-3-methylimidazolium nitrate)、1-胺乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐(1-(2-aminoethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide)、1-胺乙基-3-甲基咪唑六氟磷酸盐(1-aminoethyl-3-methylimidazolium hexafluorophosphate)、1-胺乙基-3-甲基咪唑四氟硼酸盐(1-aminoethyl-3-methylimidazolium tetrafluoroborate)、1-胺乙基-3-甲基咪唑溴盐(1-aminoethyl-3- methylimidazolium bromide)。The functionalized ionic liquid includes guanidine hydrochloride, guanidine carbonate, and tetramethylguanidine lactate. lactate), tetramethylguanidine trifluoromethanesulfonate (tetramethylguanidine trifluoromethanesulfonate), tetramethylguanidine hydrogen sulfate hydrogensulfate), tetramethylguanidine hydrochloride (tetramethylguanidine chloride), 1-carboxyethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt (1-carboxyethyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide), 1-carboxyethyl-3-methylimidazolium nitrate (1-carboxyethyl-3-methylimidazolium nitrate), 1-carboxyethyl-3-methylimidazolium hydrogensulfate (1-carboxyethyl-3-methylimidazolium hydrogensulfate), 1-carboxyethyl-3-methylimidazolium bromide (1-carboxyethyl-3-methylimidazolium bromide) ), 1-carboxyethyl-3-methylimidazolium chloride (1-carboxyethyl-3-methylimidazolium chloride), 1-carboxymethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt (1 -carboxymethyl-3-methylimidazolium bis(trifluoromethylsulfonate)imine), 1-carboxymethyl-3-methylimidazolium nitrate (1-carboxymethyl-3-methylimidazolium nitrate), 1-carboxymethyl-3-methylimidazolium hydrogensulfate (1-carboxymethyl-3-methylimidazolium hydrogensulfate), 1-carboxymethyl-3-methylimidazolium bromide ), 1-carboxymethyl-3-methylimidazolium chloride (1-carboxymethyl-3-methylimidazolium chloride), 1-ethyl acetate-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt ( 1-((ethoxycarbonyl)methyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-((ethoxycarbonyl)methyl)-3-methylimidazolium hexafluorophosphate), 1-((ethoxycarbonyl)methyl)-3-methylimidazolium tetrafluoroborate), 1-((ethoxycarbonyl)methyl)-3-methylimidazolium bromide), 1-((ethoxycarbonyl)methyl)-3-methylimidazolium chloride, 1-benzyl-3-methylimidazole bis(trifluoromethanesulfonyl ) Imine salt (1-Benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-Benzyl-3-methylimidazolium hexafluorophosphate (1-Benzyl-3-methylimidazolium hexafluorophosphate), 1-Benzyl-3-methylimidazolium tetrafluoroborate (1-Benzyl-3-methylimidazolium tetrafluoroborate), 1-Benzyl-3-methylimidazolium bromide (1-Benzyl-3-methylimidazolium bromide), 1-Benzyl-3-methylimidazolium chloride (1-Benzyl-3-methylimidazolium chloride), 1-ethyl ethyl ether-3-methylimidazole bis (trifluoromethanesulfonyl) imide salt (1-Ethoxyethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-Ethoxyethyl-3-methylimidazolium hexafluorophosphate), 1-Ethoxyethyl-3-methylimidazolium tetrafluoroborate (1-Ethoxyethyl-3-methylimidazolium tetrafluoroborate), 1-Ethoxyethyl-3-methylimidazolium bromide (1-Ethoxyethyl-3-methylimidazolium bromide), 1-Ethyl methyl ether-3-methylimidazolium hexafluorophosphate (1-Methoxyethyl-3-methylimidazolium hexafluorophosphate), 1-Ethyl methyl ether-3-methylimidazolium hexafluorophosphate ( 1-Methoxyethyl-3-methylimidazolium tetrafluoroborate), 1-ethyl methyl ether-3-methylimidazolium bromide (1-Methoxyethyl-3-methylimidazolium bromide), 1-vinyl-3-butylimidazolium bistrifluoromethane Sulfonimide salt (1-vinyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide), 1-vinyl-3-butylimidazolium hexafluorophosphate (1-vinyl-3-butylimidazolium hexafluorophosphate), 1-vinyl-3-butylimidazolium tetrafluoroborate (1-vinyl-3-butylimidazolium tetrafluoroborate), 1-vinyl-3-butylimidazolium bromide (1-vinyl-3-butylimidazolium bromide), 1-vinyl-3-ethylimidazolium bistrifluoromethanesulfonimide salt (1-vinyl-3-ethylimidazolium bis(trifluoromethylsulfonyl)imide), 1-vinyl-3-ethylimidazolium hexafluorophosphate (1-vinyl-3-ethylimidazolium hexafluorophosphate), 1-vinyl-3-ethylimidazolium tetrafluoroborate (1-vinyl-3-ethylimidazolium tetrafluoroborate), 1-vinyl-3-ethylimidazolium bromide (1-vinyl-3-ethylimidazolium bromide), 1-vinyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt (1-vinyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-vinyl-3-methylimidazolium iodide), 1-allyl-3-butyl imidazolium bis(trifluoromethanesulfonyl) imide salt (1-allyl-3-butyl imidazolium) bis(trifluoromethylsulfonyl)imide), 1-allyl-3-butyl imidazole hexafluorophosphate imidazolium hexafluorophosphate), 1-allyl-3-butyl imidazole tetrafluoroborate (1-allyl-3-butyl imidazolium tetrafluoroborate), 1-allyl-3-butyl imidazole bromide (1-allyl-3-butyl imidazolium bromide), 1-allyl-3-ethylimidazole bis(trifluoromethanesulfonyl) imide salt (1-allyl-3-ethyl imidazolium bis(trifluoromethylsulfonyl)imide), 1-allyl-3-ethylimidazole hexafluorophosphate (1-allyl-3-ethyl imidazolium hexafluorophosphate), 1-allyl-3-ethyl imidazole tetrafluoroborate (1-allyl-3-ethyl imidazolium tetrafluoroborate), 1-allyl-3-ethyl imidazole bromide (1-allyl-3-ethyl imidazolium bromide), 1-allyl-3-ethyl imidazole chloride salt (1-allyl-3-ethyl imidazolium chloride), 1-allyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt (1-allyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide), 1-allyl-3-methyl hexafluorophosphate (1-allyl-3-methyl imidazolium hexafluorophosphate), 1-allyl-3-methyl imidazole tetrafluoroborate (1-allyl-3-methyl imidazolium tetrafluoroborate), 1-allyl-3-methyl imidazole bromide (1-allyl-3-methyl imidazolium bromide), 1-allyl-3-methyl imidazole chloride salt (1-allyl-3-methyl imidazolium chloride), 1-cyanopropyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt (1-cyanopropyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide), 1-cyanopropyl-3-methylimidazole nitrate (1-cyanopropyl-3-methyl imidazolium nitrate), 1-cyanopropyl-3-methyl hexafluorophosphate (1-cyanopropyl-3-methyl imidazolium hexafluorophosphate), 1-cyanopropyl-3-methyl tetrafluoroborate (1-cyanopropyl-3-methyl imidazolium tetrafluoroborate), 1-cyanopropyl-3-methylimidazole chloride salt (1-cyanopropyl-3-methyl imidazolium chloride), 1,2-dimethyl-3-hydroxyethyl imidazole p-toluenesulfonate (1,2-dimethyl-3-hydroxyethyl imidazolium tosylate), 1,2-dimethyl-3-hydroxyethyl imidazole bis(trifluoromethanesulfonyl) imide salt (1,2-dimethyl-3-hydroxyethyl imidazolium bis(trifluoromethylsulfonyl)imide), 1,2-dimethyl-3-hydroxyethylimidazole hexafluorophosphate (1,2-dimethyl-3-hydroxyethyl imidazolium hexafluorophosphate), 1,2-dimethyl-3-hydroxyethyl imidazole tetrafluoroborate (1,2-dimethyl-3-hydroxyethyl imidazolium tetrafluoroborate), 1-hydroxyethyl-2,3-dimethylimidazole chloride salt (1-hydroxyethyl-2,3-dimethyl imidazolium chloride), 1-hydroxyethyl-3-methylimidazole bisulfate (1-hydroxyethyl-3-methyl imidazolium thiocyanate), 1-hydroxyethyl-3-methylimidazole p-toluenesulfonate (1-hydroxyethyl-3-methyl imidazolium tosylate), 1-hydroxyethyl-3-methylimidazolium tosylate (1-hydroxyethyl-3-methyl imidazolium dicyanamide), 1-hydroxyethyl-3-methylimidazole bis(trifluoromethanesulfonyl) imide salt (1-hydroxyethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide), 1-hydroxyethyl-3-methylimidazole perchlorate (1-hydroxyethyl-3-methyl imidazolium perchlorate), 1-hydroxyethyl-3-methylimidazole nitrate (1-hydroxyethyl-3-methyl imidazolium nitrate), 1-hydroxyethyl-3-methylimidazolium hexafluorophosphate (1-hydroyethyl-3-methylimidazolium hexafluorophosphate), 1-hydroxyethyl-3-methylimidazolium tetrafluoroborate (1-hydroxyethyl-3-methylimidazolium tetrafluoroborate), 1-hydroxyethyl-3-methylimidazolium chloride salt (1-hydroxyethyl-3-methylimidazolium chloride), trimethylhydroxyethylammonium bis(trifluoromethanesulfonyl)imide salt (2-hydroxyethyl trimethylammonium bis(trifluoromethylsulfonyl)imine), 2-hydroxyethyl trimethylammonium phosphate hexafluorophosphate), trimethylhydroxyethylammonium tetrafluoroborate (2-hydroxyethyl trimethylammonium tetrafluoroborate), trimethylhydroxyethylammonium chloride (2-hydroxy-N,N,N- trimethyl ethylanammonium chloride), N-butylsulfonate pyridinium tosylate, N-butylsulfonate trifluoromethanesulfonate pyridinium trifluoromethanesulfonate), N-butylsulfonic pyridinium hydrogensulfate, pyridinium butylsulfonate, N-propylsulfonate pyridinium tosylate), N-propylsulfonate trifluoromethanesulfonate pyridinium trifluoromethanesulfonate), N-propylsulfonate pyridinium hydrogensulfate, pyridinium propylsulfonate, 1-butanesulfonic acid-3-methylimidazole trifluoroacetic acid Salt (1-butylsulfonate-3-methylimidazolium trifluoroacetate), 1-butylsulfonate-3-methylimidazolium trifluoromethanesulfonate (1-butylsulfonate-3-methylimidazolium trifluoromethanesulfonate), 1-butylsulfonate-3-methylimidazolium hydrogen sulfate bisulfate), 1-butylsulfonate-3-methylimidazolium dihydrogen phosphate), 1-butylsulfonate-3-methylimidazolium chloride, 1-butylsulfonate-3-methylimidazolium ), 1-propylsulfonate-3-methylimidazolium trifluoroacetate, 1-propylsulfonate-3-methylimidazolium trifluoroacetate (1 -propylsulfonate-3-methylimidazolium trifluoromethanesulfonate), 1-propylsulfonate-3-methylimidazolium hydrogen sulfate (1-propylsulfonate-3-methylimidazolium hydrogensulfate), 1-propylsulfonate-3-methylimidazolium dihydrogen phosphate (1-propylsulfonate-3-methylimidazolium dihydrogen phosphate), 1-propylsulfonate-3-methylimidazolium chloride salt (1-propylsulfonate-3-methylimidazolium chloride), 1-propylsulfonate -3-methylimidazolium (1-propylsulfonate -3-methylimidazolium), 1-aminopropyl-3-methylimidazolium nitrate (1-aminopropyl-3-methylimidazolium nitrate) , 1-aminopropyl-3-methylimidazole bis(trifluoromethanesulfonyl) imide salt (1-aminopropylimidazolium bis(trifluoromethylsulfonyl)imine), 1-aminopropylimidazolium hexafluorophosphate (1-aminopropylimidazolium hexafluorophosphate), 1-aminopropyl-3-methylimidazolium tetrafluoroborate (1-aminopropyl-3-methylimidazolium tetrafluoroborate), 1-aminopropyl-3-methylimidazolium bromide (1-aminopropyl-3-methylimidazolium bromide), 1-aminoethyl-3-methylimidazolium nitrate (1-aminoethyl-3-methylimidazolium nitrate), 1-aminoethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide salt ( 1-(2-aminoethyl)-3-methylimidazolium bis(trifluoromethylsulfonyl)imide), 1-aminoethyl-3-methylimidazolium hexafluorophosphate (1-aminoethyl-3-methylimidazolium hexafluorophosphate), 1-aminoethyl-3-methylimidazolium tetrafluoroborate (1-aminoethyl-3-methylimidazolium tetrafluoroborate), 1-aminoethyl-3-methylimidazole bromide (1-aminoethyl-3- methylimidazolium bromide).
所述二茂铁类有机物包括1,1'-二(二环己基膦)-二茂铁、二茂铁基乙酸、N,N-二甲基二茂铁甲胺、乙酰基二茂铁、二茂铁甲酸、6-(二茂铁基)己硫醇、1,1′-双(二氯磷)二茂铁、1,1'-双(二异丙基膦)二茂铁、1,1'-双(二苯基膦)二茂铁、(S)-(-)-N,N-二甲基-1-二茂铁基乙胺、1,1'-双(二-叔丁基膦基)二茂铁、1,1'-二茂铁二甲酸、(S)-(+)-N,N-二甲基-1-(2-联苯膦基)二茂铁乙胺、(R)-(-)-N,N-二甲基-1-(2-联苯膦基)二茂铁乙胺、(R)-N,N-二甲基-1-[(S)-1',2-双(二苯基膦基)二茂铁基]乙胺、1,2,3,4,5-五苯基-1′-(二叔丁基膦)二茂铁、1,1'-双(二-叔丁基膦)二茂铁二氯合钯、(S)-1-(二苯基膦基)-2-[(S)-4-异丙基噁唑啉-2-基]二茂铁、1,1’-二乙酰基二茂铁、(R)-N-二苯基膦-N-甲基-(S)-2-(二苯基膦)二茂铁基乙胺、(S)-N,N-二甲基-1-[(R)-1',2-双(二苯基膦基)二茂铁基]乙胺、1,1′-双(二-环己基膦基)二茂铁二氯化钯、[1,1'-双(二苯基膦基)二茂铁]二氯化钯、[1,1′-双(二苯基膦)二茂铁]二氯化钴(II)、(S)-1-{(RP)-2-[二(2-呋喃基)膦基]二茂铁基}乙基二(3,5-二甲苯基)膦二茂铁甲酸、N-琥珀酰亚胺酯。The ferrocene organics include 1,1'-bis(dicyclohexylphosphine)-ferrocene, ferrocene acetic acid, N,N-dimethyl ferrocene methylamine, acetyl ferrocene, two Ferrocene carboxylic acid, 6-(ferrocenyl) hexyl mercaptan, 1,1′-bis(dichlorophosphorus) ferrocene, 1,1′-bis(diisopropylphosphine) ferrocene, 1, 1'-bis(diphenylphosphine)ferrocene, (S)-(-)-N,N-dimethyl-1-ferrocenylethylamine, 1,1'-bis(di-tert-butyl Phosphino)ferrocene, 1,1'-ferrocene dicarboxylic acid, (S)-(+)-N,N-dimethyl-1-(2-biphenylphosphino)ferrocene ethylamine , (R)-(-)-N,N-dimethyl-1-(2-biphenylphosphino)ferroceneethylamine, (R)-N,N-dimethyl-1-[(S )-1',2-bis(diphenylphosphino)ferrocenyl)ethylamine, 1,2,3,4,5-pentaphenyl-1'-(di-tert-butylphosphine)ferrocene , 1,1'-bis(di-tert-butylphosphine)ferrocene dichloropalladium, (S)-1-(diphenylphosphino)-2-[(S)-4-isopropyloxa Azolin-2-yl]ferrocene, 1,1'-diacetylferrocene, (R)-N-diphenylphosphine-N-methyl-(S)-2-(diphenylphosphine )Ferrocenyl ethylamine, (S)-N,N-dimethyl-1-[(R)-1',2-bis(diphenylphosphino)ferrocenyl]ethylamine, 1, 1′-bis(di-cyclohexylphosphino)ferrocene palladium dichloride, [1,1'-bis(diphenylphosphino)ferrocene]palladium dichloride, [1,1′-bis (Diphenylphosphine)ferrocene]cobalt(II) dichloride, (S)-1-{(RP)-2-[bis(2-furyl)phosphino]ferrocenyl}ethyl dichloride (3,5-Xylyl)phosphinoferrocenecarboxylic acid, N-succinimide ester.
所述金属酞菁化合物包括酞菁铜(II)、酞菁铁(II) 、酞菁铅(II)、酞菁氯化铝、酞菁钴(II)、酞菁二锂、二氯酞菁锡(IV)、酞菁锌、全氟酞菁铜。The metal phthalocyanine compound includes copper (II) phthalocyanine, iron (II) phthalocyanine, lead phthalocyanine (II), aluminum phthalocyanine, cobalt phthalocyanine (II), dilithium phthalocyanine, and dichlorophthalocyanine Tin (IV), zinc phthalocyanine, copper perfluorophthalocyanine.
所述金属乙酰丙酮化合物包括乙酰丙酮锆、乙酰丙酮铁、乙酰丙酮锌、乙酰丙酮铜、乙酰丙酮镍、乙酰丙酮钴、乙酰丙酮铪、乙酰丙酮铝、乙酰丙酮酰双(亚乙基)化铑(I)、二羰基乙酰丙酮铑、乙酰丙酮钒、乙酰丙酮镉、乙酰丙酮钙、乙酰丙酮氧钒、乙酰丙酮钼、二羰基乙酰丙酮铱(I)、双(六氟乙酰丙酮)合铜(II)水合物、乙酰丙酮化锡、双(2,4-戊烷二酮酸)二氯化锡(IV)、六氟乙酰丙酮钯(II)、乙酰丙酮铽(III)、乙酰丙酮铱(Ⅲ)、乙酰丙酮铂(II)、双(2,4-戊二酮)锰、三(2,4-戊二酮酸)铬(III)、二(乙酰丙酮)钯(II)、双(乙酰丙酮基)二异丙基钛酸酯、乙酰丙酮银、乙酰丙酮钇(III)、乙酰丙酮镧、乙酰丙酮镓(III)、乙酰丙酮钡、乙酰丙酮钌、乙酰丙酮镁、乙酰丙酮锰、乙酰丙酮(降冰片二烯)合铑、乙酰丙酮酸二(2-苯基吡啶)铱。The metal acetylacetonate includes zirconium acetylacetonate, iron acetylacetonate, zinc acetylacetonate, copper acetylacetonate, nickel acetylacetonate, cobalt acetylacetonate, hafnium acetylacetonate, aluminum acetylacetonate, and rhodium acetylacetonate bis(ethylene) (I), rhodium dicarbonyl acetylacetonate, vanadium acetylacetonate, cadmium acetylacetonate, calcium acetylacetonate, vanadyl acetylacetonate, molybdenum acetylacetonate, iridium dicarbonyl acetylacetonate (I), bis(hexafluoroacetylacetone) copper ( II) Hydrate, tin acetylacetonate, bis(2,4-pentanedionate) tin(IV) dichloride, palladium(II) hexafluoroacetylacetonate, terbium(III) acetylacetonate, iridium acetylacetonate( Ⅲ), acetylacetonate platinum (II), bis (2,4-pentanedione) manganese, tris (2,4-pentanedionate) chromium (III), bis (acetylacetonate) palladium (II), double ( Acetylacetonyl) diisopropyl titanate, silver acetylacetonate, yttrium (III) acetylacetonate, lanthanum acetylacetonate, gallium acetylacetonate (III), barium acetylacetonate, ruthenium acetylacetonate, magnesium acetylacetonate, manganese acetylacetonate, Acetylacetone (norbornadiene) rhodium, acetylacetonate bis(2-phenylpyridine)iridium.
所述有机金属包括二-μ-羟基-双[(N,N,N',N'-四甲基乙二胺)铜(II)]氯化物、溴三(三苯基膦)铜(I)、葡萄糖酸铜、酒石酸铜(II)水合物、柠檬酸铜、焦磷酸铜、乙酸铜、噻吩-2-甲酸亚铜、8-羟基喹啉铜盐、氯[1,3-双(2,6-二异丙苯基)咪唑-2-亚基]铜(I)、乙二胺四乙酸二钠铜、二甲基二硫代氨基甲酸铜(II)、双(2,2,6,6,-四甲基-3,5-庚二酮酸)铜、双(6,6,7,7,8,8,8,-七氟-2,2-二甲基-3,5-辛二酮酸)铜、铜(II)-TBTA络合物、1,5-环辛二烯(六氟-2,4-戊二酮)铜(I)、二甲基二硫代氨基甲酸铜、柠檬酸镁、二乙基二硫代氨基甲酸铁(III)、乙二胺四乙酸二钠钙安乃近(Na)、二胺四乙酸二钠锰盐异辛酸亚锡、三苯基氯化锡、二甲基二氯化锡、二甲基氧化锡、三甲基(4-吡啶基)锡、三甲基(2-吡啶基)锡、一氯二乙基铝、双(2-乙基己酸)羟基铝、苷氨酸铝、2-噻吩基溴化锌。The organic metal includes two-μ-hydroxy-bis[(N,N,N',N'-tetramethylethylenediamine) copper (II)] chloride, bromotris (triphenylphosphine) copper (I ), copper gluconate, copper tartrate (II) hydrate, copper citrate, copper pyrophosphate, copper acetate, copper thiophene-2-carboxylate, copper 8-hydroxyquinoline salt, chlorine [1,3-bis(2 ,6-Diisopropylphenyl)imidazole-2-ylidene) copper(I), disodium copper ethylenediaminetetraacetate, copper(II) dimethyldithiocarbamate, bis(2,2,6 ,6,-Tetramethyl-3,5-Heptanedioic Acid) Copper, Bis(6,6,7,7,8,8,8,-Heptafluoro-2,2-Dimethyl-3,5 -Octanedionate) copper, copper(II)-TBTA complex, 1,5-cyclooctadiene (hexafluoro-2,4-pentanedione) copper(I), dimethyldithioamino Copper formate, magnesium citrate, iron (III) diethyldithiocarbamate, disodium ethylenediaminetetraacetic acid calcium analgin (Na), disodium manganese diaminetetraacetic acid, stannous isooctanoate, triphenyl Base tin chloride, dimethyl tin dichloride, dimethyl tin oxide, trimethyl (4-pyridyl) tin, trimethyl (2-pyridyl) tin, monochlorodiethyl aluminum, bis( 2-ethylhexanoic acid) aluminum hydroxy, aluminum glycine, 2-thienyl zinc bromide.
所述卤键化合物包括4-碘硝基苯、1-氟-3-碘-5-硝基苯、2-硝基-3,5-二氟碘苯、4-溴-2-氟苯腈、4-溴-2,3,5,6-四氟苯甲酸、4-溴-2,3-二氟苯腈、4 4'-二溴八氟联苯。The halogen bond compound includes 4-iodonitrobenzene, 1-fluoro-3-iodo-5-nitrobenzene, 2-nitro-3,5-difluoroiodobenzene, 4-bromo-2-fluorobenzonitrile , 4-Bromo-2,3,5,6-tetrafluorobenzoic acid, 4-bromo-2,3-difluorobenzonitrile, 4 4'-dibromooctafluorobiphenyl.
所述有机硼化物包括四丁基硼氢化铵、3-硝基苯硼酸、硼酸三甲酯、3-噻吩硼酸、3-呋喃硼酸、4-甲酰苯硼酸、3-氨基苯硼酸、4-巯基苯硼酸、4-(溴甲基)苯硼酸、4-甲氧基苯基硼酸、3-甲氧基苯基硼酸、5-醛基-2-甲氧基苯硼酸、5-甲醛基呋喃-2-硼酸、2-氟-5-溴吡啶-3-硼酸、2-氟吡啶-3-硼酸、2,5-二氯吡啶-4-硼酸、苯并噻吩-2-硼酸、3-喹啉硼酸、噻吩-2-硼酸频哪醇酯、4-氨基苯硼酸频哪醇酯、3-乙氧羰基苯硼酸频哪醇酯、4-甲氧羰基苯硼酸频哪醇酯、3-甲氧基苯基硼酸、4-苯醚基苯硼酸、3,5-二甲基异噁唑-4-硼酸频哪醇酯、6-异丙氧基吡啶-3-硼酸频哪醇酯、3,6-二氢-2H-吡喃-4-硼酸频哪醇酯、嘧啶-5-硼酸、5-醛基-2-噻吩硼酸、4-氟-3-醛基苯硼酸、2-氰基苯基硼酸、1,3-丙二酯、3,5-二羧基苯基硼酸、(2,6-dimethylpyridin-4-yl)boronic acid  2-(甲氧基羰基)苯硼酸、苯硼酸、硼酸三乙酯、3-氟-4-醛基苯硼酸、4-羧基苯硼酸、四硼酸钠、4-氟苯硼酸、3-碘苯硼酸、2-氟苯硼酸、4-异丙氧基苯硼酸、4-乙烯基苯硼酸、4'-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)乙酰苯胺、3-溴苯硼酸、N-甲基二氨基乙醇酯、2,6-二氯吡啶-3-硼酸、硼酸三(4-氯苯)酯、三(2-氰乙基)硼酸酯、硼酸三乙醇胺酯、4,4,5,5-四甲基-2-[3-(三氟甲氧基)苯基]-1,3,2-二氧杂环戊硼烷、4-[3-(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)苯基]吗啉、4,4,5,5-四甲基-2-(2-硝基苯基)-1,3,2-二氧环戊硼烷、5-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)羟吲哚、1-(叔丁氧羰基)-4-(4,4,5,5-四甲基-1,3,2-二氧环戊硼烷-2-基)吡唑、4-甲基-2-(4,4,5,5-四甲基-1,3,2-二氧环戊硼烷-2-基)噻吩、2-硝基-4-(4,4,5,5-四甲基-1,3,2-二氧杂戊硼烷-2-基)苯胺、2-(4-甲氧基苄基)-4,4,5,5-四甲基-1,3,2-二氧环戊硼烷、3-甲基-2-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)噻吩、N,N-二乙基-4-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)苯胺、2-溴-3-(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)吡啶、2-氰基苯基硼酸1,3-丙二酯、2-氯-5-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)嘧啶。The organic borides include tetrabutylammonium borohydride, 3-nitrophenylboronic acid, trimethyl borate, 3-thiopheneboronic acid, 3-furanboronic acid, 4-formylphenylboronic acid, 3-aminophenylboronic acid, 4- Mercaptophenylboronic acid, 4-(bromomethyl)phenylboronic acid, 4-methoxyphenylboronic acid, 3-methoxyphenylboronic acid, 5-aldehyde-2-methoxyphenylboronic acid, 5-formaldehyde furan -2-boronic acid, 2-fluoro-5-bromopyridine-3-boronic acid, 2-fluoropyridine-3-boronic acid, 2,5-dichloropyridine-4-boronic acid, benzothiophene-2-boronic acid, 3-quinone Phosphoboronic acid, thiophene-2-boronic acid pinacol ester, 4-aminophenylboronic acid pinacol ester, 3-ethoxycarbonylphenylboronic acid pinacol ester, 4-methoxycarbonylphenylboronic acid pinacol ester, 3-methyl Oxyphenyl boronic acid, 4-phenylether phenyl boronic acid, 3,5-dimethylisoxazole-4-boronic acid pinacol ester, 6-isopropoxypyridine-3-boronic acid pinacol ester, 3 ,6-Dihydro-2H-pyran-4-boronic acid pinacol ester, pyrimidine-5-boronic acid, 5-aldehyde-2-thiophene boronic acid, 4-fluoro-3-aldehyde phenylboronic acid, 2-cyano Phenylboronic acid, 1,3-propane diester, 3,5-dicarboxyphenylboronic acid, (2,6-dimethylpyridin-4-yl)boronic acid 2-(Methoxycarbonyl)phenylboronic acid, phenylboronic acid, triethyl borate, 3-fluoro-4-aldehyde phenylboronic acid, 4-carboxyphenylboronic acid, sodium tetraborate, 4-fluorophenylboronic acid, 3-iodine Phenylboronic acid, 2-fluorophenylboronic acid, 4-isopropoxyphenylboronic acid, 4-vinylbenzeneboronic acid, 4'-(4,4,5,5-tetramethyl-1,3,2-dioxide Pentaborane-2-yl)acetanilide, 3-bromophenylboronic acid, N-methyldiaminoethanol ester, 2,6-dichloropyridine-3-boronic acid, tris(4-chlorophenyl) borate, tris( 2-cyanoethyl) borate, triethanolamine borate, 4,4,5,5-tetramethyl-2-[3-(trifluoromethoxy)phenyl]-1,3,2-di Oxalane, 4-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]morpholine, 4,4 ,5,5-Tetramethyl-2-(2-nitrophenyl)-1,3,2-dioxaborolane, 5-(4,4,5,5-tetramethyl-1, 3,2-Dioxaborolan-2-yl)oxindole, 1-(tert-butoxycarbonyl)-4-(4,4,5,5-tetramethyl-1,3,2- Dioxaborolan-2-yl)pyrazole, 4-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl )Thiophene, 2-nitro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline, 2-(4-methoxy Benzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborane, 3-methyl-2-(4,4,5,5-tetramethyl-1 ,3,2-Dioxaborane-2-yl)thiophene, N,N-diethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxane Pentaborane-2-yl)aniline, 2-bromo-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine, 2-cyano 1,3-propanediol phenylboronic acid, 2-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrimidine .
本发明还公开一种钝化方法,将如前所述钝化剂沉积在半导体薄膜与其接触的界面材料之间,和/或加入到制备半导体薄膜的原材料中。The invention also discloses a passivation method, which deposits the passivation agent as described above between the semiconductor film and the interface material in contact with it, and/or adds it to the raw material for preparing the semiconductor film.
本发明还公开一种制备半导体薄膜的方法,所述要制备的半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,其包括以下步骤:The invention also discloses a method for preparing a semiconductor thin film. The semiconductor thin film to be prepared is a perovskite thin film of a perovskite solar cell, which comprises the following steps:
步骤1、将如前所述的钝化剂AD加入到溶剂S中搅拌得到钝化剂溶液AD-S,其中钝化剂AD与溶剂S的质量体积比为0.1mg/mL~100mg/mL。Step 1. Add the passivator AD as described above to the solvent S and stir to obtain the passivator solution AD-S, wherein the mass volume ratio of the passivator AD to the solvent S is 0.1 mg/mL to 100 mg/mL.
步骤2、将钝化剂溶液AD-S均匀地涂敷在已经制备好的钙钛矿薄膜层表面上。Step 2. Evenly coat the passivator solution AD-S on the surface of the prepared perovskite film layer.
步骤3、然后对涂覆有钝化剂溶液AD-S的基片进行干燥,干燥条件为:60℃~200℃温度下,烘烤0.1分钟~100分钟,干燥后在钙钛矿薄膜层上就得到了一层钝化剂层。Step 3. Then dry the substrate coated with the passivator solution AD-S, and the drying conditions are: 60℃~200℃, baking for 0.1 minute to 100 minutes, and then on the perovskite film layer A passivator layer is obtained.
其中,步骤1中的所述溶剂S包括酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类溶剂、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的至少一种。Wherein, the solvent S in step 1 includes amide solvents, sulfone/sulfoxide solvents, ester solvents, hydrocarbon solvents, halogenated hydrocarbon solvents, alcohol solvents, ketone solvents, ether solvents, aromatics At least one of hydrocarbon solvents.
在步骤1中,所述溶剂S为N,N-二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、N-甲基吡咯烷酮(NMP)、γ-丁内酯(GBL)、1,8-二碘辛烷(DIO)、N-环己基-2-吡咯烷酮(CHP)、氯苯(CB)、甲苯中的至少一种。In step 1, the solvent S is N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), γ-butyrolactone (GBL), At least one of 1,8-diiodooctane (DIO), N-cyclohexyl-2-pyrrolidone (CHP), chlorobenzene (CB), and toluene.
本发明还公开另一种制备半导体薄膜的方法,其特征在于,所述要制备的半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,其包括以下步骤:The present invention also discloses another method for preparing a semiconductor film, which is characterized in that the semiconductor film to be prepared is a perovskite film of a perovskite solar cell, which comprises the following steps:
步骤I、将如前所述的钝化剂AD加入到溶剂S中搅拌得到钝化剂溶液AD-S,其中钝化剂AD与溶剂S的质量体积比为0.1mg/mL~100mg/mL。Step I: Add the passivator AD as described above to the solvent S and stir to obtain the passivator solution AD-S, wherein the mass volume ratio of the passivator AD to the solvent S is 0.1 mg/mL-100 mg/mL.
步骤II、将钝化剂溶液AD-S均匀地涂敷在已经制备好的空穴传输层或电子传输层表面上。Step II: uniformly coat the passivator solution AD-S on the surface of the hole transport layer or the electron transport layer that has been prepared.
步骤III、然后对涂覆有钝化剂溶液AD-S的基片进行干燥,干燥条件为:60℃~300℃温度下,烘烤0.1分钟~100分钟,干燥后在空穴传输层或电子传输层上就得到一层钝化剂层。Step III. Then dry the substrate coated with the passivator solution AD-S, and the drying conditions are: baking at a temperature of 60 ℃ ~ 300 ℃ for 0.1 minutes to 100 minutes, after drying, in the hole transport layer or electron A passivator layer is obtained on the transmission layer.
本发明还公开另一种制备半导体薄膜的方法,包括以下步骤:The invention also discloses another method for preparing a semiconductor thin film, including the following steps:
步骤一、将如前所述的钝化剂AD加入到制备钙钛矿薄膜层的前驱体溶液PS(包括一步法的钙钛矿前驱体溶液,或者两步法的前驱体溶液)中,得到含有钝化剂AD的钙钛矿前驱体溶液AD-PS。Step 1. Add the passivation agent AD as described above to the precursor solution PS (including the one-step perovskite precursor solution or the two-step precursor solution) for preparing the perovskite thin film layer to obtain Perovskite precursor solution AD-PS containing passivator AD.
步骤二、将钙钛矿前驱体溶液AD-PS进行常规的钙钛矿薄膜层的制备,得到含有钝化剂的钙钛矿薄膜层。Step 2: The perovskite precursor solution AD-PS is subjected to the preparation of the conventional perovskite film layer to obtain the perovskite film layer containing the passivator.
在步骤一中,将所述钝化剂AD加入到制备钙钛矿薄膜的前驱体溶液PS中的比例是:钝化剂AD与前驱体溶液PS的卤素总量的摩尔比例为1:100000~1:1。In step 1, the ratio of adding the passivation agent AD to the precursor solution PS for preparing the perovskite film is: the molar ratio of the passivation agent AD to the total halogen of the precursor solution PS is 1:100,000~ 1:1.
本发明的实施方式Embodiments of the invention
下面结合具体实施例来进一步说明本发明的方法。The method of the present invention will be further described below in conjunction with specific embodiments.
实施例1Example 1
本发明的一种钙钛矿层太阳能电池的制备方法的实施例1,包括如下步骤:Embodiment 1 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and treat the surface with plasma for use.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在空穴传输层材料表面上,然后在100度的条件下烘烤5分钟。(3) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1 mg/mL. The solution was evenly coated on the surface of the hole transport layer material, and then baked at 100 degrees for 5 minutes.
(4) 在涂有钝化剂的空穴传输层上制备钙钛矿层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare a perovskite layer on the hole transport layer coated with a passivator, and use a co-evaporation method to obtain a FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by using an evaporation method. Continue and finally prepare perovskite solar cells.
实施例2Example 2
本发明的一种钙钛矿层太阳能电池的制备方法的实施例2,包括如下步骤:Embodiment 2 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and treat the surface with plasma for use.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 在空穴传输层上制备钙钛矿层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (3) Prepare a perovskite layer on the hole transport layer, and use a co-evaporation method to obtain a FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(4) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在钙钛矿薄膜层上,然后在100度的条件下烘烤5分钟。(4) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1mg/mL. The solution was evenly coated on the perovskite film layer, and then baked at 100 degrees for 5 minutes.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例3Example 3
本发明的一种钙钛矿层太阳能电池的制备方法的实施例3,包括如下步骤:Embodiment 3 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备NiO空穴传输层,采用狭缝涂布法,厚度30nm。(2) NiO hole transport layer is prepared on ITO, using slit coating method, thickness 30nm.
(3) 将钝化剂——1-己基-2,3-二甲基咪唑四氟硼酸盐加入钙钛矿前驱体溶液PS中,钝化剂与溶液PS中的卤素总量的摩尔比例为1:1000,混合均匀。(3) Add passivating agent-1-hexyl-2,3-dimethylimidazole tetrafluoroborate to the perovskite precursor solution PS, the molar ratio of the passivation agent to the total halogen in the solution PS 1:1000, mix well.
(4) 在空穴传输层上用步骤(3)得到的溶液PS制备钙钛矿层,采用刮刀涂布法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿。 (4) Prepare a perovskite layer using the solution PS obtained in step (3) on the hole transport layer, and use a doctor blade coating method to obtain FAMACsPb(I X Br 1-X ) 3 perovskite with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层ZnO,采用喷涂法,得到厚度为100nm的ZnO层。(5) An electron transport layer ZnO is prepared on the perovskite film layer, and a ZnO layer with a thickness of 100 nm is obtained by spraying.
(6) 在电子传输层上制备电极层Al,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Al is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例4Example 4
本发明的一种钙钛矿层太阳能电池的制备方法的实施例4,包括如下步骤:Embodiment 4 of a method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将FTO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the FTO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在FTO上制备SnO电子传输层,采用真空蒸发法,厚度50nm。(2) Preparation of SnO electron transport layer on FTO, using vacuum evaporation method, thickness 50nm.
(3) 将钝化剂——1-丁基-3-甲基咪唑四氟硼酸盐加入两步法钙钛矿的前驱体溶液PS1中,PS1是碘化铅的DMF溶液,摩尔浓度1.2mol/L,钝化剂与溶液PS1中的卤素总量的摩尔比例为1:2000,混合均匀得到前驱体溶液PS1-AD。(3) Add the passivation agent—1-butyl-3-methylimidazole tetrafluoroborate to the precursor solution PS1 of the two-step perovskite. PS1 is the DMF solution of lead iodide with a molar concentration of 1.2 mol/L, the molar ratio of the passivation agent to the total halogen in the solution PS1 is 1:2000, and the mixture is uniformly mixed to obtain the precursor solution PS1-AD.
(4) 在电子传输层上制备钙钛矿层,采用喷墨打印法,同时在电子传输层上喷射前驱体溶液PS1-AD和前驱体溶液PS2,PS2是MAI、FAI和CsI的混合异丙醇溶液,得到厚度为400nm的CsFAMAPbI 3钙钛矿薄膜层。 (4) Prepare the perovskite layer on the electron transport layer, using inkjet printing method, and spray the precursor solution PS1-AD and the precursor solution PS2 on the electron transport layer at the same time. PS2 is a mixed isopropanol of MAI, FAI and CsI Solution to obtain a CsFAMAPbI 3 perovskite film layer with a thickness of 400 nm.
(5) 在钙钛矿薄膜层上制备空穴传输层C60,采用蒸镀法,得到厚度为50nm的C60层。(5) A hole transport layer C60 is prepared on the perovskite film layer, and a C60 layer with a thickness of 50 nm is obtained by an evaporation method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为150nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 150 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例5Example 5
本发明的一种钙钛矿层太阳能电池的制备方法的实施例5,包括如下步骤:Embodiment 5 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将AZO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the AZO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在AZO上制备CuSCN空穴传输层,采用棒涂法,厚度75nm。(2) A CuSCN hole transport layer was prepared on AZO, using a bar coating method, with a thickness of 75nm.
(3) 将钝化剂——1-丙基-3-甲基咪唑四氟硼酸盐加入钙钛矿前驱体溶液PS1中,PS1为碘化铅和溴化铅混合在DMF中的溶液,摩尔浓度0.9mol/L,钝化剂与溶液PS1中的卤素(碘和溴)总量的摩尔比例为1:5000,混合均匀得到前驱体溶液PS1-AD。(3) Add the passivation agent-1-propyl-3-methylimidazole tetrafluoroborate to the perovskite precursor solution PS1, which is a solution of lead iodide and lead bromide mixed in DMF, The molar concentration is 0.9 mol/L, the molar ratio of the passivating agent to the total amount of halogen (iodine and bromine) in the solution PS1 is 1:5000, and the mixture is evenly mixed to obtain the precursor solution PS1-AD.
(4) 在空穴传输层上制备钙钛矿层,采用涂布后处理的方法,先用喷涂法将前驱体溶液PS1-AD涂在空穴传输层上,再通过100度加热烘干后再向表面喷涂FAI和CsI混合的乙醇溶液,得到厚度为600nm的FACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite layer on the hole transport layer, adopt the method of coating post-treatment, first spray the precursor solution PS1-AD on the hole transport layer, and then heat and dry it at 100 degrees The ethanol solution mixed with FAI and CsI is sprayed on the surface to obtain a FACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 600 nm.
(5)在钙钛矿薄膜层上制备电子传输层SnO,采用原子层沉积法,得到厚度为10nm的致密的SnO电子传输层。(5) Prepare the electron transport layer SnO on the perovskite film layer, and use the atomic layer deposition method to obtain a dense SnO electron transport layer with a thickness of 10 nm.
(6)在电子传输层上制备电极层Cu,采用溅射法,得到厚度为300nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Cu is prepared on the electron transport layer, and a sputtering method is used to obtain an electrode layer with a thickness of 300 nm. Continue and finally prepare perovskite solar cells.
实施例6Example 6
本发明的一种钙钛矿层太阳能电池的制备方法的实施例6,包括如下步骤:Embodiment 6 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将BZO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the BZO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在BZO上制备TiO 2电子传输层,采用喷涂法,厚度120nm。 (2) Prepare a TiO 2 electron transport layer on BZO by spraying method with a thickness of 120nm.
(3) 将两种钝化剂,钝化剂A: 1-十二基-3-甲基咪唑四氟硼酸盐和钝化剂B:1-辛基-3-甲基咪唑四氟硼酸盐同时加入浓度为1.2mol/L的含有PbI 2,FAI,CsI的一步法钙钛矿前驱体溶液PS中,钝化剂A和钝化剂B的总摩尔量与溶液PS中的卤素总量的摩尔比例为1:500,混合均匀,得到溶液PS-AD12。 (3) Two passivating agents, passivating agent A: 1-dodecyl-3-methylimidazole tetrafluoroborate and passivating agent B: 1-octyl-3-methylimidazole tetrafluoroborate The acid salt was added to the one-step perovskite precursor solution PS containing PbI 2 , FAI and CsI at a concentration of 1.2 mol/L at the same time. The total molar amount of passivator A and passivator B was equal to the total amount of halogen in the solution PS. The molar ratio of the amount is 1:500, and the mixture is evenly mixed to obtain the solution PS-AD12.
(4) 在电子传输层上制备钙钛矿薄膜层,采用一步法涂布,将PS-AD12用狭缝涂布在电子传输上,经过真空加热处理和甲胺气体氛围处理,得到厚度为380nm的FAMACsPbI 3钙钛矿薄膜层。 (4) Prepare the perovskite thin film layer on the electron transport layer, adopt one-step coating method, coat PS-AD12 on the electron transport with slits, and undergo vacuum heating treatment and methylamine gas atmosphere treatment to obtain a thickness of 380nm The FAMACsPbI 3 perovskite film layer.
(5) 在钙钛矿薄膜层上制备空穴传输层Spiro-OMeTAD,采用狭缝涂布法,得到厚度为100nm的空穴传输层。(5) A hole transport layer Spiro-OMeTAD was prepared on the perovskite film layer, and a hole transport layer with a thickness of 100 nm was obtained by the slit coating method.
(6) 在空穴传输层上制备电极层Au和Ag,采用蒸镀法,得到厚度为20nm的Au和150nm的Ag电极层。继续并最终制备得到钙钛矿太阳能电池。(6) Au and Ag electrode layers are prepared on the hole transport layer, and an electrode layer of Au with a thickness of 20 nm and Ag with a thickness of 150 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例7Example 7
本发明的一种钙钛矿层太阳能电池的制备方法的实施例7,包括如下步骤:Embodiment 7 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and treat the surface with plasma for use.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在空穴传输层材料表面上,然后在100度的条件下烘烤5分钟。(3) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1 mg/mL. The solution was evenly coated on the surface of the hole transport layer material, and then baked at 100 degrees for 5 minutes.
(4) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite film layer on the hole transport layer, and adopt the co-evaporation method to obtain the FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例8Example 8
本发明的一种钙钛矿层太阳能电池的制备方法的实施例8,包括如下步骤:Embodiment 8 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and treat the surface with plasma for use.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂AD加入钙钛矿前驱体溶液PS中(包括一步法的钙钛矿前驱体溶液,或者两步法的前驱体溶液),钝化剂AD与钙钛矿前驱体溶液PS中的卤素总量的摩尔比例为1:100000~1:1。(3) Add passivation agent AD to the perovskite precursor solution PS (including one-step perovskite precursor solution or two-step precursor solution), passivator AD and perovskite precursor solution The molar ratio of the total amount of halogen in PS is 1:100000~1:1.
(4) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite film layer on the hole transport layer, and adopt the co-evaporation method to obtain the FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例9Example 9
本发明的一种钙钛矿层太阳能电池的制备方法的实施例9,包括如下步骤:Embodiment 9 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (3) Prepare a perovskite film layer on the hole transport layer, and use a co-evaporation method to obtain a FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(4) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在钙钛矿薄膜层上,然后在100度的条件下烘烤5分钟。(4) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1mg/mL. The solution was evenly coated on the perovskite film layer, and then baked at 100 degrees for 5 minutes.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例10Example 10
本发明的一种钙钛矿层太阳能电池的制备方法的实施例10,包括如下步骤:Embodiment 10 of a method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在空穴传输层材料表面上,然后在100度的条件下烘烤5分钟。(3) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1 mg/mL. The solution was evenly coated on the surface of the hole transport layer material, and then baked at 100 degrees for 5 minutes.
(4) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite film layer on the hole transport layer, and adopt the co-evaporation method to obtain the FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例11Example 11
本发明的一种钙钛矿层太阳能电池的制备方法的实施例11,包括如下步骤:Embodiment 11 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (3) Prepare a perovskite film layer on the hole transport layer, and use a co-evaporation method to obtain a FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(4) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在钙钛矿薄膜层上,然后在100度的条件下烘烤5分钟。(4) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1mg/mL. The solution was evenly coated on the perovskite film layer, and then baked at 100 degrees for 5 minutes.
(5) 在钙钛矿层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层(5) Prepare the electron transport layer PCBM on the perovskite layer, and use the slit coating method to obtain a PCBM electron transport layer with a thickness of 10 nm
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例12Example 12
本发明的一种钙钛矿层太阳能电池的制备方法的实施例12,包括如下步骤:Embodiment 12 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂AD加入钙钛矿前驱体溶液PS中(包括一步法的钙钛矿前驱体溶液,或者两步法的前驱体溶液),钝化剂AD与钙钛矿前驱体溶液PS中的卤素总量的摩尔比例为1:100000~1:1。(3) Add passivation agent AD to the perovskite precursor solution PS (including one-step perovskite precursor solution or two-step precursor solution), passivator AD and perovskite precursor solution The molar ratio of the total amount of halogen in PS is 1:100000~1:1.
(4) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite film layer on the hole transport layer, and adopt the co-evaporation method to obtain the FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5)在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a slit coating method is used to obtain a PCBM electron transport layer with a thickness of 10 nm.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例13Example 13
本发明的一种钙钛矿层太阳能电池的制备方法的实施例13,包括如下步骤:Embodiment 13 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在空穴传输层材料表面上,然后在100度的条件下烘烤5分钟。(3) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1 mg/mL. The solution was evenly coated on the surface of the hole transport layer material, and then baked at 100 degrees for 5 minutes.
(4) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite film layer on the hole transport layer, and adopt the co-evaporation method to obtain the FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例14Example 14
本发明的一种钙钛矿层太阳能电池的制备方法的实施例14,包括如下步骤:(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。Embodiment 14 of the method for preparing a perovskite-layer solar cell of the present invention includes the following steps: (1) The ITO transparent conductive glass is cleaned, and the surface is plasma-treated for use.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 在传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (3) Prepare a perovskite film layer on the transmission layer, and adopt a co-evaporation method to obtain a FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(4) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在钙钛矿薄膜层表面上,然后在100度的条件下烘烤5分钟。(4) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1mg/mL. The solution was evenly coated on the surface of the perovskite film layer, and then baked at 100 degrees for 5 minutes.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例15Example 15
本发明的一种钙钛矿层太阳能电池的制备方法的实施例15,包括如下步骤:Embodiment 15 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂AD加入钙钛矿前驱体溶液PS中(包括一步法的钙钛矿前驱体溶液,或者两步法的前驱体溶液),AD与溶液PS中的卤素总量的摩尔比例为1:100000~1:1。(3) Add the passivator AD to the perovskite precursor solution PS (including the one-step perovskite precursor solution or the two-step precursor solution), the moles of AD and the total halogen in the solution PS The ratio is 1:100000~1:1.
(4) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite film layer on the hole transport layer, and adopt the co-evaporation method to obtain the FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5)在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层(5) Prepare the electron transport layer PCBM on the perovskite film layer, and use the slit coating method to obtain a PCBM electron transport layer with a thickness of 10 nm
(6)在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例16Example 16
本发明的一种钙钛矿层太阳能电池的制备方法的实施例16,包括如下步骤:Embodiment 16 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在空穴传输层材料表面上,然后在100度的条件下烘烤5分钟。(3) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1 mg/mL. The solution was evenly coated on the surface of the hole transport layer material, and then baked at 100 degrees for 5 minutes.
(4) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite film layer on the hole transport layer, and adopt the co-evaporation method to obtain the FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例17Example 17
本发明的一种钙钛矿层太阳能电池的制备方法的实施例17,包括如下步骤:Embodiment 17 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (3) Prepare a perovskite film layer on the hole transport layer, and use a co-evaporation method to obtain a FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(4) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在钙钛矿薄膜层上,然后在100度的条件下烘烤5分钟。(4) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1mg/mL. The solution was evenly coated on the perovskite film layer, and then baked at 100 degrees for 5 minutes.
(5) 在该钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a slit coating method is adopted to obtain a PCBM electron transport layer with a thickness of 10 nm.
(6)在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例18Example 18
本发明的一种钙钛矿层太阳能电池的制备方法的实施例18,包括如下步骤:Embodiment 18 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂AD加入钙钛矿前驱体溶液PS中(包括一步法的钙钛矿前驱体溶液,或者两步法的前驱体溶液),钝化剂AD与钙钛矿前驱体溶液PS中的卤素总量的摩尔比例为1:100000~1:1。(3) Add passivation agent AD to the perovskite precursor solution PS (including one-step perovskite precursor solution or two-step precursor solution), passivator AD and perovskite precursor solution The molar ratio of the total amount of halogen in PS is 1:100000~1:1.
(4) 在空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare the perovskite film layer on the hole transport layer, and adopt the co-evaporation method to obtain the FAMACsPb(I X Br 1-X ) 3 perovskite film layer with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层(5) Prepare the electron transport layer PCBM on the perovskite film layer, and use the slit coating method to obtain a PCBM electron transport layer with a thickness of 10 nm
(6) 在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。继续并最终制备得到钙钛矿太阳能电池。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method. Continue and finally prepare perovskite solar cells.
实施例19Example 19
本发明的一种钙钛矿层太阳能电池的制备方法的实施例19,包括如下步骤:Embodiment 19 of the method for preparing a perovskite layer solar cell of the present invention includes the following steps:
(1) 将ITO透明导电玻璃清洗干净,等离子体处理表面后,备用。(1) Clean the ITO transparent conductive glass and prepare it for use after plasma treatment of the surface.
(2) 在ITO上制备CuI空穴传输层,采用狭缝涂布法,厚度30nm。(2) Prepare CuI hole transport layer on ITO, adopt slit coating method, thickness 30nm.
(3) 将钝化剂——1-辛基-3-甲基咪唑溴盐加入甲醇溶剂中制备成溶液,质量体积比为1mg/mL。将该溶液均匀地涂敷在空穴传输层材料上,然后在100度的条件下烘烤5分钟。(3) Add the passivating agent-1-octyl-3-methylimidazole bromide to methanol solvent to prepare a solution with a mass volume ratio of 1 mg/mL. The solution was evenly coated on the hole transport layer material, and then baked at 100 degrees for 5 minutes.
(4) 在该空穴传输层上制备钙钛矿薄膜层,采用共蒸法,得到厚度为500nm的FAMACsPb(I XBr 1-X) 3钙钛矿薄膜层。 (4) Prepare a perovskite thin film layer on the hole transport layer, and use a co-evaporation method to obtain a FAMACsPb(I X Br 1-X ) 3 perovskite thin film layer with a thickness of 500 nm.
(5) 在钙钛矿薄膜层上制备电子传输层PCBM,采用狭缝涂布法,得到厚度为10nm的PCBM电子传输层。(5) An electron transport layer PCBM is prepared on the perovskite film layer, and a PCBM electron transport layer with a thickness of 10 nm is obtained by the slit coating method.
(6)在电子传输层上制备电极层Ag,采用蒸镀法,得到厚度为200nm的电极层。(6) An electrode layer Ag is prepared on the electron transport layer, and an electrode layer with a thickness of 200 nm is obtained by an evaporation method.
然后再进行对比试验来说明本发明的技术效果。Then, a comparative test is performed to illustrate the technical effect of the present invention.
如图2所示,实施例3制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下开路电压变化情况的对比。从图中可见添加了钝化剂的钙钛矿太阳能电池的开路电压在1000个小时的持续加热下没有衰减,而未添加钝化剂的钙钛矿太阳能电池的开路电压在500小时后衰减就超过了10%。添加了钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下的开路电压性能较优异。As shown in Fig. 2, the comparison of the open circuit voltage change of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius. It can be seen from the figure that the open circuit voltage of the perovskite solar cell with passivation agent does not decay under 1000 hours of continuous heating, while the open circuit voltage of the perovskite solar cell without passivator decays after 500 hours. More than 10%. The perovskite solar cell with passivating agent has excellent open circuit voltage performance under continuous heating at 85 degrees Celsius.
如图3所示,实施例3制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下短路电流变化情况的对比。从图中可见添加了钝化剂的钙钛矿太阳能电池的短路电流在1000个小时的持续加热下衰减小于5%,而未添加钝化剂的钙钛矿太阳能电池电压在500小时后衰减就超过了20%。添加了钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下的短路电流性能较优异。As shown in Figure 3, the comparison of the short-circuit current changes of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius. It can be seen from the figure that the short-circuit current of the perovskite solar cell with passivation agent decays less than 5% under 1000 hours of continuous heating, while the voltage of the perovskite solar cell without passivator decays after 500 hours. More than 20%. The perovskite solar cell with passivating agent has excellent short-circuit current performance under continuous heating at 85 degrees Celsius.
如图4所示,实施例3制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下填充因子变化情况的对比。从图中可见添加了钝化剂的钙钛矿太阳能电池的填充因子在1000个小时的持续加热下衰减小于15%,而未添加钝化剂的钙钛矿太阳能电池填充因子在500小时后衰减就超过了30%。添加了钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下的填充因子性能较优异。As shown in Figure 4, the comparison of the fill factor changes of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent added under continuous heating at 85 degrees Celsius. It can be seen from the figure that the fill factor of the perovskite solar cell with passivation agent attenuates less than 15% under 1000 hours of continuous heating, while the fill factor of the perovskite solar cell without passivator attenuates after 500 hours Just over 30%. The perovskite solar cell with passivating agent has excellent fill factor performance under continuous heating at 85 degrees Celsius.
如图5所示,实施例3制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下效率变化情况的对比。从图中可见添加了钝化剂的钙钛矿太阳能电池的填充因子在1000个小时的持续加热下衰减小于10%,而未添加钝化剂的钙钛矿太阳能电池填充因子在500小时后衰减就超过了50%。添加了钝化剂的钙钛矿太阳能电池在85摄氏度持续加热情况下的效率性能较优异。As shown in Figure 5, the comparison of the efficiency change of the perovskite solar cell prepared in Example 3 (with passivation agent added) and the perovskite solar cell without passivation agent under continuous heating at 85 degrees Celsius. It can be seen from the figure that the fill factor of the perovskite solar cell with passivator attenuates less than 10% under 1000 hours of continuous heating, while the fill factor of the perovskite solar cell without passivator attenuates after 500 hours Just over 50%. The perovskite solar cell with passivation agent has excellent efficiency performance under the condition of continuous heating at 85 degrees Celsius.
如图6所示,实施例5制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下开路电压变化情况的对比。从图中可见添加了钝化剂的钙钛矿太阳能电池的开路电压在1000个小时的持续照射下没有衰减,而未添加钝化剂的钙钛矿太阳能电池的开路电压在500小时后衰减就超过了5%。添加了钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下的开路电压性能较优异。As shown in Figure 6, the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent are simulated under continuous irradiation of standard sunlight intensity (1 sun) Comparison of open circuit voltage changes. It can be seen from the figure that the open circuit voltage of the perovskite solar cell with passivation agent does not decay under 1000 hours of continuous irradiation, while the open circuit voltage of the perovskite solar cell without passivation agent decays after 500 hours. More than 5%. The perovskite solar cell with passivation agent has excellent open circuit voltage performance under the condition of simulating standard sunlight intensity (1 sun).
如图7所示,实施例5制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下短路电流变化情况的对比。从图中可见添加了钝化剂的钙钛矿太阳能电池的短路电流在1000个小时的持续加热下衰减小于10%,而未添加钝化剂的钙钛矿太阳能电池电压在500小时后衰减就超过了30%。添加了钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下的短路电流性能较优异。As shown in Figure 7, the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent are simulated under continuous irradiation of standard sunlight intensity (1 sun) Comparison of short-circuit current changes. It can be seen from the figure that the short-circuit current of the perovskite solar cell with passivating agent decays less than 10% under 1000 hours of continuous heating, while the voltage of the perovskite solar cell without passivator decays after 500 hours. More than 30%. The perovskite solar cell with passivating agent has excellent short-circuit current performance under the simulating standard sunlight intensity (1 sun) continuous irradiation.
如图8所示,实施例5制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下填充因子变化情况的对比。从图中可见添加了钝化剂的钙钛矿太阳能电池的填充因子在1000个小时的持续加热下衰减小于10%,而未添加钝化剂的钙钛矿太阳能电池填充因子在500小时后衰减就超过了30%。添加了钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下的填充因子性能较优异。As shown in Figure 8, the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent are simulated under continuous irradiation of standard sunlight intensity (1 sun) Comparison of changes in fill factor. It can be seen from the figure that the fill factor of the perovskite solar cell with passivator attenuates less than 10% under 1000 hours of continuous heating, while the fill factor of the perovskite solar cell without passivator attenuates after 500 hours Just over 30%. The perovskite solar cell with passivating agent has excellent fill factor performance under the condition of simulating standard sunlight intensity (1 sun).
如图9所示,实施例5制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下效率变化情况的对比。从图中可见添加了钝化剂的钙钛矿太阳能电池的填充因子在1000个小时的持续加热下衰减小于10%,而未添加钝化剂的钙钛矿太阳能电池填充因子在500小时后衰减就超过了50%。添加了钝化剂的钙钛矿太阳能电池在模拟标准太阳光强(1个太阳)持续照射情况下的效率性能较优异。As shown in Figure 9, the perovskite solar cell prepared in Example 5 (with passivation agent added) and the perovskite solar cell without passivation agent are simulated under continuous irradiation of standard sunlight intensity (1 sun) Comparison of efficiency changes. It can be seen from the figure that the fill factor of the perovskite solar cell with passivator attenuates less than 10% under 1000 hours of continuous heating, while the fill factor of the perovskite solar cell without passivator attenuates after 500 hours Just over 50%. The perovskite solar cell with passivating agent has excellent efficiency performance under the condition of simulating standard sunlight intensity (1 sun) continuous irradiation.
如图10所示,实施例12制备的钙钛矿太阳能电池(添加了钝化剂)和未添加钝化剂的钙钛矿太阳能电池的电流-电压对比图。由图可见,添加了钝化剂后钙钛矿太阳能电池的电流-电压综合性能得到了提高。As shown in FIG. 10, the current-voltage comparison diagram of the perovskite solar cell prepared in Example 12 (with passivation agent added) and the perovskite solar cell without passivation agent. It can be seen from the figure that the current-voltage comprehensive performance of the perovskite solar cell has been improved after the passivation agent is added.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modification, equivalent replacement and improvement made within the spirit and principle of the present invention shall be included in the protection of the present invention. Within range.
工业实用性Industrial applicability
在此处键入工业实用性描述段落。Type a paragraph describing industrial applicability here.
序列表自由内容Sequence Listing Free Content
在此处键入序列表自由内容描述段落。Type here the free content description paragraph of the sequence listing.

Claims (10)

  1. 一种钝化剂,其特征在于,所述钝化剂沉积在半导体薄膜与其接触的界面材料之间,和/或加入到制备半导体薄膜的原材料中,在该钝化剂材料的分子中同时具备富电子基团去提供电子以及电子受体位点,其中,所述具有富电子基团去提供电子的分子常见的为含N、P、O、S中任意一种的化合物分子,所述电子受体位点是具有空轨道的金属阳离子或者贫电子基团。 A passivation agent, characterized in that the passivation agent is deposited between the semiconductor film and the interface material in contact with it, and/or is added to the raw material for preparing the semiconductor film, and is contained in the molecules of the passivator material. The electron-rich group provides electrons and electron acceptor sites. The molecule with the electron-rich group provides electrons is usually a compound molecule containing any one of N, P, O, and S. The electron The acceptor site is a metal cation with an empty orbital or an electron-poor group.
  2. 如权利要求1所述的钝化剂,其特征在于,所述钝化剂为咪唑盐类离子液体、吡啶盐类离子液体、季铵盐类离子液体、季鏻盐类离子液体、吡咯烷盐类离子液体、哌啶盐类离子液体、功能化离子液体中的至少一种,或者为二茂铁类有机物中的至少一种,或者为金属酞菁化合物中的至少一种,或者为金属乙酰丙酮化合物中的至少一种,或者为有机金属中的至少一种,或者为卤键化合物中的至少一种,或者为有机硼化物中的至少一种。 The passivating agent of claim 1, wherein the passivating agent is imidazole salt ionic liquid, pyridine salt ionic liquid, quaternary ammonium salt ionic liquid, quaternary phosphonium salt ionic liquid, pyrrolidine salt At least one of ionic liquids, piperidine salt ionic liquids, and functionalized ionic liquids, or at least one of ferrocene organics, or at least one of metal phthalocyanine compounds, or metal acetyl At least one of the acetone compounds is either at least one of the organometallics, or at least one of the halogen bond compounds, or at least one of the organoborides.
  3. 如权利要求2所述的钝化剂,其特征在于,所述咪唑类离子液体包括1-己基-2,3-二甲基咪唑六氟磷酸盐、1-十六基-2,3-二甲基咪唑六氟磷酸盐、1-己基-2,3-二甲基咪唑四氟硼酸盐、1-己基-2,3-二甲基咪唑溴盐、1-丁基-2,3-二甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-丁基-2,3-二甲基咪唑四氟硼酸盐、1-丁基-2,3-二甲基咪唑氯盐、1-十六基-3-甲基咪唑溴盐、1-十六基-3-甲基咪唑氯盐、1-十四基-3-甲基咪唑溴盐、1-十四基-3-甲基咪唑氯盐、1-十二基-3-甲基咪唑六氟磷酸盐、1-十二基-3-甲基咪唑四氟硼酸盐、1-十二基-3-甲基咪唑溴盐、1-十二基-3-甲基咪唑氯盐、1-癸基-3-甲基咪唑六氟磷酸盐、1-癸基-3-甲基咪唑四氟硼酸盐、1-癸基-3-甲基咪唑溴盐、1-癸基-3-甲基咪唑氯盐、1-辛基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑四氟硼酸盐、1-辛基-3-甲基咪唑溴盐、1-辛基-3-甲基咪唑氯盐、1-己基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-己基-3-甲基咪唑六氟磷酸盐、1-己基-3-甲基咪唑四氟硼酸盐、1-己基-3-甲基咪唑溴盐、1-己基-3-甲基咪唑氯盐、1-戊基-3-甲基咪唑六氟磷酸盐、1-戊基-3-甲基咪唑四氟硼酸盐、1-戊基-3-甲基咪唑溴盐、1-戊基-3-甲基咪唑氯盐、1-丙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-丙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑醋酸盐、1-丁基-3-甲基咪唑对甲基苯磺酸盐、1-丁基-3-甲基咪唑硫氰酸盐、1-丁基-3-甲基咪唑三氟乙酸盐、1-丁基-3-甲基咪唑三氟甲烷磺酸盐、1-丁基-3-甲基咪唑二腈胺盐、1-丁基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-丁基-3-甲基咪唑高氯酸盐、1-丁基-3-甲基咪唑磷酸二氢盐、1-丁基-3-甲基咪唑硫酸氢盐、1-丁基-3-甲基咪唑硝酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑碘盐、1-丁基-3-甲基咪唑氯盐、1-丁基-3-甲基咪唑溴盐、1-丙基-3-甲基咪唑碘盐、1-丙基-3-甲基咪唑四氟硼酸盐、1-丙基-3-甲基咪唑溴盐、1-丙基-3-甲基咪唑氯盐、1-乙基-3-甲基咪唑醋酸盐、1-乙基-3-甲基咪唑对甲基苯磺酸盐、1-乙基-3-甲基咪唑硫氰酸盐、1-乙基-3-甲基咪唑三氟乙酸盐、1-乙基-3-甲基咪唑三氟甲烷磺酸盐、1-乙基-3-甲基咪唑二腈胺盐、1-乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-乙基-3-甲基咪唑高氯酸盐、1-乙基-3-甲基咪唑硫酸氢盐、1-乙基-3-甲基咪唑硝酸盐、1-乙基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑碘盐、1-乙基-3-甲基咪唑溴盐、1-乙基-3-甲基咪唑氯盐、1-乙基-3-甲基咪唑四氟硼酸盐; The passivating agent of claim 2, wherein the imidazole ionic liquid comprises 1-hexyl-2,3-dimethylimidazole hexafluorophosphate, 1-hexadecyl-2,3-di Methylimidazole hexafluorophosphate, 1-hexyl-2,3-dimethylimidazole tetrafluoroborate, 1-hexyl-2,3-dimethylimidazole bromide, 1-butyl-2,3- Dimethylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-butyl-2,3-dimethylimidazole tetrafluoroborate, 1-butyl-2,3-dimethylimidazole chloride salt , 1-hexadecyl-3-methylimidazole bromide, 1-hexadecyl-3-methylimidazole chloride, 1-tetradecyl-3-methylimidazole bromide, 1-tetradecyl-3 -Methylimidazole chloride, 1-dodecyl-3-methylimidazole hexafluorophosphate, 1-dodecyl-3-methylimidazole tetrafluoroborate, 1-dodecyl-3-methyl Imidazole bromide, 1-dodecyl-3-methylimidazole chloride, 1-decyl-3-methylimidazole hexafluorophosphate, 1-decyl-3-methylimidazole tetrafluoroborate, 1 -Decyl-3-methylimidazole bromide, 1-decyl-3-methylimidazole chloride, 1-octyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-octyl 3-methylimidazole hexafluorophosphate, 1-octyl-3-methylimidazole tetrafluoroborate, 1-octyl-3-methylimidazole bromide, 1-octyl-3-methyl Imidazole chloride salt, 1-hexyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-hexyl-3-methylimidazole hexafluorophosphate, 1-hexyl-3-methylimidazole tetrafluoro Borate, 1-hexyl-3-methylimidazole bromide, 1-hexyl-3-methylimidazole chloride, 1-pentyl-3-methylimidazole hexafluorophosphate, 1-pentyl-3- Methylimidazole tetrafluoroborate, 1-pentyl-3-methylimidazole bromide, 1-pentyl-3-methylimidazole chloride, 1-propyl-3-methylimidazole bis(trifluoromethane Sulfonyl) imide salt, 1-propyl-3-methylimidazole hexafluorophosphate, 1-butyl-3-methylimidazole acetate, 1-butyl-3-methylimidazole p-toluene Sulfonate, 1-butyl-3-methylimidazole thiocyanate, 1-butyl-3-methylimidazole trifluoroacetate, 1-butyl-3-methylimidazole trifluoromethanesulfonic acid Salt, 1-butyl-3-methylimidazole dinitrile salt, 1-butyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-butyl-3-methylimidazolium Chlorate, 1-butyl-3-methylimidazole dihydrogen phosphate, 1-butyl-3-methylimidazole hydrogen sulfate, 1-butyl-3-methylimidazole nitrate, 1-butyl -3-methylimidazole hexafluorophosphate, 1-butyl-3-methylimidazole tetrafluoroborate, 1-butyl-3-methylimidazole iodide salt, 1-butyl-3-methylimidazole Chlorine salt, 1-butyl-3-methylimidazole bromide, 1-propyl-3-methylimidazole iodide salt, 1-propyl-3-methylimidazole tetrafluoroborate, 1-propyl- 3-methylimidazole bromide, 1-propyl-3-methylimidazole chloride, 1-ethyl-3-methylimidazole acetate, 1-ethyl-3-methylimidazole p-toluenesulfonate Acid salt, 1-ethyl-3 -Methylimidazole thiocyanate, 1-ethyl-3-methylimidazole trifluoroacetate, 1-ethyl-3-methylimidazole trifluoromethanesulfonate, 1-ethyl-3-methyl Imidazole dinitrile amine salt, 1-ethyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-ethyl-3-methylimidazole perchlorate, 1-ethyl-3 -Methylimidazole hydrogensulfate, 1-ethyl-3-methylimidazole nitrate, 1-ethyl-3-methylimidazole hexafluorophosphate, 1-ethyl-3-methylimidazole iodide, 1 -Ethyl-3-methylimidazole bromide, 1-ethyl-3-methylimidazole chloride, 1-ethyl-3-methylimidazole tetrafluoroborate;
    所述吡啶盐类离子液体包括N-辛基吡啶溴盐、N-己基吡啶双(三氟甲烷磺酰)亚胺盐、N-己基吡啶六氟磷酸盐、N-己基吡啶四氟硼酸盐、N-己基吡啶溴盐、N-丁基吡啶双(三氟甲烷磺酰)亚胺盐、N-丁基吡啶六氟磷酸盐、N-丁基吡啶四氟硼酸盐、N-丁基吡啶溴盐、N-乙基吡啶双(三氟甲烷磺酰)亚胺盐、N-乙基吡啶六氟磷酸盐、N-乙基吡啶四氟硼酸盐、N-乙基吡啶溴盐;The pyridine salt ionic liquid includes N-octylpyridine bromide, N-hexylpyridine bis(trifluoromethanesulfonyl)imide salt, N-hexylpyridine hexafluorophosphate, and N-hexylpyridine tetrafluoroborate , N-hexylpyridine bromide, N-butylpyridine bis(trifluoromethanesulfonyl)imide salt, N-butylpyridine hexafluorophosphate, N-butylpyridine tetrafluoroborate, N-butyl Pyridine bromide, N-ethylpyridine bis(trifluoromethanesulfonyl)imide salt, N-ethylpyridine hexafluorophosphate, N-ethylpyridine tetrafluoroborate, N-ethylpyridine bromide;
    所述季铵盐类离子液体包括三丁基甲基铵双(三氟甲烷磺酰)亚胺盐、三丁基甲基氯化铵、N-甲氧基乙基-N-甲基二乙基铵四氟硼酸盐;The quaternary ammonium salt type ionic liquid includes tributylmethylammonium bis(trifluoromethanesulfonyl)imide salt, tributylmethylammonium chloride, N-methoxyethyl-N-methyldiethylammonium tetrafluoro Borate
    所述季鏻盐类离子液体三丁基己基膦双(三氟甲烷磺酰)亚胺盐、三丁基己基溴化膦、四丁基膦双(三氟甲烷磺酰)亚胺盐、四丁基溴化膦、三丁基乙基膦双(三氟甲烷磺酰)亚胺盐、三丁基乙基溴化膦;The quaternary phosphonium salt ionic liquid tributylhexylphosphine bis(trifluoromethanesulfonyl) imide salt, tributylhexyl phosphonium bromide, tetrabutylphosphine bis(trifluoromethanesulfonyl) imide salt, Butyl phosphine bromide, tributyl ethyl phosphine bis(trifluoromethanesulfonyl) imide salt, tributyl ethyl phosphine bromide;
    所述吡咯烷盐类离子液体包括N-丁基-N-甲基吡咯烷双(三氟甲烷磺酰)亚胺盐、N-丁基-N-甲基吡咯烷溴盐;The pyrrolidine salt ionic liquid includes N-butyl-N-methylpyrrolidine bis(trifluoromethanesulfonyl)imide salt and N-butyl-N-methylpyrrolidine bromide;
    所述哌啶盐类离子液体包括N-丁基-N-甲基哌啶双(三氟甲烷磺酰)亚胺盐、N-丁基-N-甲基哌啶溴盐;The piperidine salt ionic liquid includes N-butyl-N-methylpiperidine bis(trifluoromethanesulfonyl)imide salt and N-butyl-N-methylpiperidine bromide;
    所述功能化离子液体包括盐酸胍、碳酸胍、四甲基胍乳酸盐、四甲基胍三氟甲烷磺酸盐、四甲基胍硫酸氢盐、四甲基胍盐酸盐、1-羧乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-羧乙基-3-甲基咪唑硝酸盐、1-羧乙基-3-甲基咪唑硫酸氢盐、1-羧乙基-3-甲基咪唑溴盐、1-羧乙基-3-甲基咪唑氯盐、1-羧甲基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-羧甲基-3-甲基咪唑硝酸盐、1-羧甲基-3-甲基咪唑硫酸氢盐、1-羧甲基-3-甲基咪唑溴盐、1-羧甲基-3-甲基咪唑氯盐、1-乙酸乙酯基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-乙酸乙酯基-3-甲基咪唑六氟磷酸盐、1-乙酸乙酯基-3-甲基咪唑四氟硼酸盐、1-乙酸乙酯基-3-甲基咪唑溴盐、1-乙酸乙酯基-3-甲基咪唑氯盐、1-苄基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-苄基-3-甲基咪唑六氟磷酸盐、1-苄基-3-甲基咪唑四氟硼酸盐、1-苄基-3-甲基咪唑溴盐、1-苄基-3-甲基咪唑氯盐、1-乙基乙基醚-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-乙基乙基醚-3-甲基咪唑六氟磷酸盐、1-乙基乙基醚-3-甲基咪唑四氟硼酸盐、1-乙基乙基醚-3-甲基咪唑溴盐、1-乙基甲基醚-3-甲基咪唑六氟磷酸盐、1-乙基甲基醚-3-甲基咪唑四氟硼酸盐、1-乙基甲基醚-3-甲基咪唑溴盐、1-乙烯基-3-丁基咪唑双三氟甲烷磺酰亚胺盐、1-乙烯基-3-丁基咪唑六氟磷酸盐、1-乙烯基-3-丁基咪唑四氟硼酸盐、1-乙烯基-3-丁基咪唑溴盐、1-乙烯基-3-乙基咪唑双三氟甲烷磺酰亚胺盐、1-乙烯基-3-乙基咪唑六氟磷酸盐、1-乙烯基-3-乙基咪唑四氟硼酸盐、1-乙烯基-3-乙基咪唑溴盐、1-乙烯基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-乙烯基-3-甲基咪唑碘盐、1-烯丙基-3-丁基咪唑双(三氟甲烷磺酰)亚胺盐、1-烯丙基-3-丁基咪唑六氟磷酸盐、1-烯丙基-3-丁基咪唑四氟硼酸盐、1-烯丙基-3-丁基咪唑溴盐、1-烯丙基-3-乙基咪唑双(三氟甲烷磺酰)亚胺盐、1-烯丙基-3-乙基咪唑六氟磷酸盐、1-烯丙基-3-乙基咪唑四氟硼酸盐、1-烯丙基-3-乙基咪唑溴盐、1-烯丙基-3-乙基咪唑氯盐、1-烯丙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-烯丙基-3-甲基咪唑六氟磷酸盐、1-烯丙基-3-甲基咪唑四氟硼酸盐、1-烯丙基-3-甲基咪唑溴盐、1-烯丙基-3-甲基咪唑氯盐、1-腈丙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-腈丙基-3-甲基咪唑硝酸盐、1-腈丙基-3-甲基咪唑六氟磷酸盐、1-腈丙基-3-甲基咪唑四氟硼酸盐、1-腈丙基-3-甲基咪唑氯盐、1,2-二甲基-3-羟乙基咪唑对甲基苯磺酸盐、1,2-二甲基-3-羟乙基咪唑双(三氟甲烷磺酰)亚胺盐、1,2-二甲基-3-羟乙基咪唑六氟磷酸盐、1,2-二甲基-3-羟乙基咪唑四氟硼酸盐、1-羟乙基-2,3-二甲基咪唑氯盐、1-羟乙基-3-甲基咪唑硫酸氢盐、1-羟乙基-3-甲基咪唑对甲基苯磺酸盐、1-羟乙基-3-甲基咪唑二腈胺盐、1-羟乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-羟乙基-3-甲基咪唑高氯酸盐、1-羟乙基-3-甲基咪唑硝酸盐、1-羟乙基-3-甲基咪唑六氟磷酸盐、1-羟乙基-3-甲基咪唑四氟硼酸盐、1-羟乙基-3-甲基咪唑氯盐、三甲基羟乙基铵双(三氟甲烷磺酰)亚胺盐、三甲基羟乙基铵六氟磷酸盐、三甲基羟乙基铵四氟硼酸盐、三甲基羟乙基铵氯盐、N-磺酸丁基吡啶对甲苯磺酸盐、N-磺酸丁基吡啶三氟甲磺酸盐、N-磺酸丁基吡啶硫酸氢盐、磺酸丁基吡啶内酯、N-磺酸丙基吡啶对甲苯磺酸盐、N-磺酸丙基吡啶三氟甲磺酸盐、N-丙基磺酸吡啶硫酸氢盐、磺酸丙基吡啶内酯、1-丁基磺酸-3-甲基咪唑三氟乙酸盐、1-丁基磺酸-3-甲基咪唑三氟甲烷磺酸盐、1-丁基磺酸-3-甲基咪唑硫酸氢盐、1-丁基磺酸-3-甲基咪唑磷酸二氢盐、1-丁基磺酸-3-甲基咪唑氯盐、1-磺酸丁基-3-甲基咪唑内盐、1-丙基磺酸-3-甲基咪唑三氟乙酸盐、1-丙基磺酸-3-甲基咪唑三氟甲烷磺酸盐、1-丙基磺酸-3-甲基咪唑硫酸氢盐、1-丙基磺酸-3-甲基咪唑磷酸二氢盐、1-丙基磺酸-3-甲基咪唑氯盐、1-磺酸丙基-3-甲基咪唑内盐、1-胺丙基-3-甲基咪唑硝酸盐、1-胺丙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-胺丙基-3-甲基咪唑六氟磷酸盐、1-胺丙基-3-甲基咪唑四氟硼酸盐、1-胺丙基-3-甲基咪唑溴盐、1-胺乙基-3-甲基咪唑硝酸盐、1-胺乙基-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐、1-胺乙基-3-甲基咪唑六氟磷酸盐、1-胺乙基-3-甲基咪唑四氟硼酸盐、1-胺乙基-3-甲基咪唑溴盐;The functionalized ionic liquid includes guanidine hydrochloride, guanidine carbonate, tetramethylguanidine lactate, tetramethylguanidine trifluoromethanesulfonate, tetramethylguanidine bisulfate, tetramethylguanidine hydrochloride, 1- Carboxyethyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-carboxyethyl-3-methylimidazole nitrate, 1-carboxyethyl-3-methylimidazole hydrogensulfate, 1-carboxyethyl-3-methylimidazole bromide, 1-carboxyethyl-3-methylimidazole chloride salt, 1-carboxymethyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt , 1-carboxymethyl-3-methylimidazole nitrate, 1-carboxymethyl-3-methylimidazole hydrogensulfate, 1-carboxymethyl-3-methylimidazole bromide, 1-carboxymethyl- 3-Methylimidazole chloride salt, 1-ethylacetyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-ethylacetyl-3-methylimidazole hexafluorophosphate, 1 -Ethylacetate-3-methylimidazole tetrafluoroborate, 1-ethylacetyl-3-methylimidazole bromide, 1-ethylacetyl-3-methylimidazole chloride, 1-benzyl 3-methylimidazole bis(trifluoromethanesulfonyl) imide salt, 1-benzyl-3-methylimidazole hexafluorophosphate, 1-benzyl-3-methylimidazole tetrafluoroborate, 1-benzyl-3-methylimidazole bromide, 1-benzyl-3-methylimidazole chloride salt, 1-ethylethyl ether-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt , 1-ethyl ethyl ether-3-methylimidazole hexafluorophosphate, 1-ethyl ethyl ether-3-methylimidazole tetrafluoroborate, 1-ethyl ethyl ether-3-methyl Imidazole bromide, 1-ethyl methyl ether-3-methylimidazole hexafluorophosphate, 1-ethyl methyl ether-3-methylimidazole tetrafluoroborate, 1-ethyl methyl ether-3 -Methylimidazole bromide, 1-vinyl-3-butylimidazole bistrifluoromethanesulfonimide salt, 1-vinyl-3-butylimidazole hexafluorophosphate, 1-vinyl-3-butane Imidazole tetrafluoroborate, 1-vinyl-3-butylimidazole bromide, 1-vinyl-3-ethylimidazole bis(trifluoromethanesulfonimide), 1-vinyl-3-ethyl Imidazole hexafluorophosphate, 1-vinyl-3-ethylimidazole tetrafluoroborate, 1-vinyl-3-ethylimidazole bromide, 1-vinyl-3-methylimidazole bis(trifluoromethane) Sulfonyl)imide salt, 1-vinyl-3-methylimidazole iodide salt, 1-allyl-3-butylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-allyl-3 -Butylimidazole hexafluorophosphate, 1-allyl-3-butylimidazole tetrafluoroborate, 1-allyl-3-butylimidazole bromide, 1-allyl-3-ethyl Imidazole bis(trifluoromethanesulfonyl)imide salt, 1-allyl-3-ethylimidazole hexafluorophosphate, 1-allyl-3-ethylimidazole tetrafluoroborate, 1-allyl 3-ethylimidazole bromide, 1-allyl-3-ethylimidazole chloride, 1-allyl-3-methylimidazole bis(trifluoromethanesulfonyl) imide salt, 1-ene Propyl-3-methylimidazole hexafluorophosphate, 1-allyl-3-methylimidazole tetrafluoroborate, 1-allyl-3-methylimidazole bromide, 1-allyl- 3-A Imidazole chloride salt, 1-cyanopropyl-3-methylimidazole bis(trifluoromethanesulfonyl) imide salt, 1-cyanopropyl-3-methylimidazole nitrate, 1-cyanopropyl-3- Methylimidazole hexafluorophosphate, 1-cyanopropyl-3-methylimidazole tetrafluoroborate, 1-cyanopropyl-3-methylimidazole chloride, 1,2-dimethyl-3-hydroxy Ethylimidazole p-toluenesulfonate, 1,2-dimethyl-3-hydroxyethylimidazole bis(trifluoromethanesulfonyl)imide, 1,2-dimethyl-3-hydroxyethyl Imidazole hexafluorophosphate, 1,2-dimethyl-3-hydroxyethylimidazole tetrafluoroborate, 1-hydroxyethyl-2,3-dimethylimidazole chloride, 1-hydroxyethyl-3 -Methylimidazole bisulfate, 1-hydroxyethyl-3-methylimidazole p-toluenesulfonate, 1-hydroxyethyl-3-methylimidazole dinitrile amine salt, 1-hydroxyethyl-3 -Methylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-hydroxyethyl-3-methylimidazole perchlorate, 1-hydroxyethyl-3-methylimidazole nitrate, 1-hydroxyethyl 3-methylimidazole hexafluorophosphate, 1-hydroxyethyl-3-methylimidazole tetrafluoroborate, 1-hydroxyethyl-3-methylimidazole chloride, trimethylhydroxyethylammonium Bis(trifluoromethanesulfonyl)imide salt, trimethylhydroxyethylammonium hexafluorophosphate, trimethylhydroxyethylammonium tetrafluoroborate, trimethylhydroxyethylammonium chloride salt, N-sulfonic acid Acid butyl pyridine p-toluenesulfonate, N-sulfonic acid butyl pyridine triflate, N-sulfonic acid butyl pyridine hydrogen sulfate, sulfonic acid butyl pyridine lactone, N-sulfonic acid propyl pyridine P-toluenesulfonate, N-sulfonic acid propyl pyridine triflate, N-propyl sulfonic acid pyridine hydrogen sulfate, sulfonic acid propyl pyridine lactone, 1-butanesulfonic acid-3-methyl Imidazole trifluoroacetate, 1-butanesulfonic acid-3-methylimidazole trifluoromethanesulfonate, 1-butanesulfonic acid-3-methylimidazole hydrogensulfate, 1-butanesulfonic acid-3 -Methylimidazole dihydrogen phosphate, 1-butylsulfonic acid-3-methylimidazole chloride salt, 1-sulfonic acid butyl-3-methylimidazole inner salt, 1-propylsulfonic acid-3-methyl Imidazole trifluoroacetate, 1-propylsulfonic acid-3-methylimidazole trifluoromethanesulfonate, 1-propylsulfonic acid-3-methylimidazole hydrogensulfate, 1-propylsulfonic acid-3 -Methylimidazole dihydrogen phosphate, 1-propylsulfonic acid-3-methylimidazole chloride salt, 1-sulfonic acid propyl-3-methylimidazole inner salt, 1-aminopropyl-3-methylimidazole Nitrate, 1-aminopropyl-3-methylimidazole bis(trifluoromethanesulfonyl)imide salt, 1-aminopropyl-3-methylimidazole hexafluorophosphate, 1-aminopropyl-3- Methylimidazole tetrafluoroborate, 1-aminopropyl-3-methylimidazole bromide, 1-aminoethyl-3-methylimidazole nitrate, 1-aminoethyl-3-methylimidazole bis( Trifluoromethanesulfonyl) imide salt, 1-aminoethyl-3-methylimidazole hexafluorophosphate, 1-aminoethyl-3-methylimidazole tetrafluoroborate, 1-aminoethyl-3 -Methylimidazole bromide;
    所述二茂铁类有机物包括1,1'-二(二环己基膦)-二茂铁、二茂铁基乙酸、N,N-二甲基二茂铁甲胺、乙酰基二茂铁、二茂铁甲酸、6-(二茂铁基)己硫醇、1,1′-双(二氯磷)二茂铁、1,1'-双(二异丙基膦)二茂铁、1,1'-双(二苯基膦)二茂铁、(S)-(-)-N,N-二甲基-1-二茂铁基乙胺、1,1'-双(二-叔丁基膦基)二茂铁、1,1'-二茂铁二甲酸、(S)-(+)-N,N-二甲基-1-(2-联苯膦基)二茂铁乙胺、(R)-(-)-N,N-二甲基-1-(2-联苯膦基)二茂铁乙胺、(R)-N,N-二甲基-1-[(S)-1',2-双(二苯基膦基)二茂铁基]乙胺、1,2,3,4,5-五苯基-1′-(二叔丁基膦)二茂铁、1,1'-双(二-叔丁基膦)二茂铁二氯合钯、(S)-1-(二苯基膦基)-2-[(S)-4-异丙基噁唑啉-2-基]二茂铁、1,1’-二乙酰基二茂铁、(R)-N-二苯基膦-N-甲基-(S)-2-(二苯基膦)二茂铁基乙胺、(S)-N,N-二甲基-1-[(R)-1',2-双(二苯基膦基)二茂铁基]乙胺、1,1′-双(二-环己基膦基)二茂铁二氯化钯、[1,1'-双(二苯基膦基)二茂铁]二氯化钯、[1,1′-双(二苯基膦)二茂铁]二氯化钴(II)、(S)-1-{(RP)-2-[二(2-呋喃基)膦基]二茂铁基}乙基二(3,5-二甲苯基)膦二茂铁甲酸、N-琥珀酰亚胺酯;The ferrocene organics include 1,1'-bis(dicyclohexylphosphine)-ferrocene, ferrocene acetic acid, N,N-dimethyl ferrocene methylamine, acetyl ferrocene, two Ferrocene carboxylic acid, 6-(ferrocenyl) hexyl mercaptan, 1,1′-bis(dichlorophosphorus) ferrocene, 1,1′-bis(diisopropylphosphine) ferrocene, 1, 1'-bis(diphenylphosphine)ferrocene, (S)-(-)-N,N-dimethyl-1-ferrocenylethylamine, 1,1'-bis(di-tert-butyl Phosphino)ferrocene, 1,1'-ferrocene dicarboxylic acid, (S)-(+)-N,N-dimethyl-1-(2-biphenylphosphino)ferrocene ethylamine , (R)-(-)-N,N-dimethyl-1-(2-biphenylphosphino)ferroceneethylamine, (R)-N,N-dimethyl-1-[(S )-1',2-bis(diphenylphosphino)ferrocenyl)ethylamine, 1,2,3,4,5-pentaphenyl-1'-(di-tert-butylphosphine)ferrocene , 1,1'-bis(di-tert-butylphosphine)ferrocene dichloropalladium, (S)-1-(diphenylphosphino)-2-[(S)-4-isopropyloxa Azolin-2-yl]ferrocene, 1,1'-diacetylferrocene, (R)-N-diphenylphosphine-N-methyl-(S)-2-(diphenylphosphine )Ferrocenyl ethylamine, (S)-N,N-dimethyl-1-[(R)-1',2-bis(diphenylphosphino)ferrocenyl]ethylamine, 1, 1′-bis(di-cyclohexylphosphino)ferrocene palladium dichloride, [1,1'-bis(diphenylphosphino)ferrocene]palladium dichloride, [1,1′-bis (Diphenylphosphine)ferrocene]cobalt(II) dichloride, (S)-1-{(RP)-2-[bis(2-furyl)phosphino]ferrocenyl}ethyl dichloride (3,5-Xylyl)phosphinoferrocene carboxylic acid, N-succinimide ester;
    所述金属酞菁化合物包括酞菁铜(II)、酞菁铁(II) 、酞菁铅(II)、酞菁氯化铝、酞菁钴(II)、酞菁二锂、二氯酞菁锡(IV)、酞菁锌、全氟酞菁铜;The metal phthalocyanine compound includes copper (II) phthalocyanine, iron (II) phthalocyanine, lead phthalocyanine (II), aluminum phthalocyanine, cobalt phthalocyanine (II), dilithium phthalocyanine, and dichlorophthalocyanine Tin (IV), zinc phthalocyanine, copper perfluorophthalocyanine;
    所述金属乙酰丙酮化合物包括乙酰丙酮锆、乙酰丙酮铁、乙酰丙酮锌、乙酰丙酮铜、乙酰丙酮镍、乙酰丙酮钴、乙酰丙酮铪、乙酰丙酮铝、乙酰丙酮酰双(亚乙基)化铑(I)、二羰基乙酰丙酮铑、乙酰丙酮钒、乙酰丙酮镉、乙酰丙酮钙、乙酰丙酮氧钒、乙酰丙酮钼、二羰基乙酰丙酮铱(I)、双(六氟乙酰丙酮)合铜(II)水合物、乙酰丙酮化锡、双(2,4-戊烷二酮酸)二氯化锡(IV)、六氟乙酰丙酮钯(II)、乙酰丙酮铽(III)、乙酰丙酮铱(Ⅲ)、乙酰丙酮铂(II)、双(2,4-戊二酮)锰、三(2,4-戊二酮酸)铬(III)、二(乙酰丙酮)钯(II)、双(乙酰丙酮基)二异丙基钛酸酯、乙酰丙酮银、乙酰丙酮钇(III)、乙酰丙酮镧、乙酰丙酮镓(III)、乙酰丙酮钡、乙酰丙酮钌、乙酰丙酮镁、乙酰丙酮锰、乙酰丙酮(降冰片二烯)合铑、乙酰丙酮酸二(2-苯基吡啶)铱;The metal acetylacetonate includes zirconium acetylacetonate, iron acetylacetonate, zinc acetylacetonate, copper acetylacetonate, nickel acetylacetonate, cobalt acetylacetonate, hafnium acetylacetonate, aluminum acetylacetonate, and rhodium acetylacetonate bis(ethylene) (I), rhodium dicarbonyl acetylacetonate, vanadium acetylacetonate, cadmium acetylacetonate, calcium acetylacetonate, vanadyl acetylacetonate, molybdenum acetylacetonate, iridium dicarbonyl acetylacetonate (I), bis(hexafluoroacetylacetone) copper ( II) Hydrate, tin acetylacetonate, bis(2,4-pentanedionate) tin(IV) dichloride, palladium(II) hexafluoroacetylacetonate, terbium(III) acetylacetonate, iridium acetylacetonate( Ⅲ), acetylacetonate platinum (II), bis (2,4-pentanedione) manganese, tris (2,4-pentanedionate) chromium (III), bis (acetylacetonate) palladium (II), double ( Acetylacetonyl) diisopropyl titanate, silver acetylacetonate, yttrium (III) acetylacetonate, lanthanum acetylacetonate, gallium acetylacetonate (III), barium acetylacetonate, ruthenium acetylacetonate, magnesium acetylacetonate, manganese acetylacetonate, Acetylacetone (norbornadiene) rhodium, acetylacetonate bis(2-phenylpyridine)iridium;
    所述有机金属包括二-μ-羟基-双[(N,N,N',N'-四甲基乙二胺)铜(II)]氯化物、溴三(三苯基膦)铜(I)、葡萄糖酸铜、酒石酸铜(II)水合物、柠檬酸铜、焦磷酸铜、乙酸铜、噻吩-2-甲酸亚铜、8-羟基喹啉铜盐、氯[1,3-双(2,6-二异丙苯基)咪唑-2-亚基]铜(I)、乙二胺四乙酸二钠铜、二甲基二硫代氨基甲酸铜(II)、双(2,2,6,6,-四甲基-3,5-庚二酮酸)铜、双(6,6,7,7,8,8,8,-七氟-2,2-二甲基-3,5-辛二酮酸)铜、铜(II)-TBTA络合物、1,5-环辛二烯(六氟-2,4-戊二酮)铜(I)、二甲基二硫代氨基甲酸铜、柠檬酸镁、二乙基二硫代氨基甲酸铁(III)、乙二胺四乙酸二钠钙安乃近(Na)、二胺四乙酸二钠锰盐异辛酸亚锡、三苯基氯化锡、二甲基二氯化锡、二甲基氧化锡、三甲基(4-吡啶基)锡、三甲基(2-吡啶基)锡、一氯二乙基铝、双(2-乙基己酸)羟基铝、苷氨酸铝、2-噻吩基溴化锌;The organic metal includes two-μ-hydroxy-bis[(N,N,N',N'-tetramethylethylenediamine) copper (II)] chloride, bromotris (triphenylphosphine) copper (I ), copper gluconate, copper tartrate (II) hydrate, copper citrate, copper pyrophosphate, copper acetate, copper thiophene-2-carboxylate, copper 8-hydroxyquinoline salt, chlorine [1,3-bis(2 ,6-Diisopropylphenyl)imidazole-2-ylidene) copper(I), disodium copper ethylenediaminetetraacetate, copper(II) dimethyldithiocarbamate, bis(2,2,6 ,6,-Tetramethyl-3,5-Heptanedioic Acid) Copper, Bis(6,6,7,7,8,8,8,-Heptafluoro-2,2-Dimethyl-3,5 -Octanedionate) copper, copper(II)-TBTA complex, 1,5-cyclooctadiene (hexafluoro-2,4-pentanedione) copper(I), dimethyldithioamino Copper formate, magnesium citrate, iron (III) diethyldithiocarbamate, disodium ethylenediaminetetraacetic acid calcium analgin (Na), disodium manganese diaminetetraacetic acid, stannous isooctanoate, triphenyl Base tin chloride, dimethyl tin dichloride, dimethyl tin oxide, trimethyl (4-pyridyl) tin, trimethyl (2-pyridyl) tin, monochlorodiethyl aluminum, bis( 2-ethylhexanoic acid) aluminum hydroxy, aluminum glycine, 2-thienyl zinc bromide;
    所述卤键化合物包括4-碘硝基苯、1-氟-3-碘-5-硝基苯、2-硝基-3,5-二氟碘苯、4-溴-2-氟苯腈、4-溴-2,3,5,6-四氟苯甲酸、4-溴-2,3-二氟苯腈、4 4'-二溴八氟联苯;The halogen bond compound includes 4-iodonitrobenzene, 1-fluoro-3-iodo-5-nitrobenzene, 2-nitro-3,5-difluoroiodobenzene, 4-bromo-2-fluorobenzonitrile , 4-bromo-2,3,5,6-tetrafluorobenzoic acid, 4-bromo-2,3-difluorobenzonitrile, 4 4'-dibromooctafluorobiphenyl;
    所述有机硼化物包括四丁基硼氢化铵、3-硝基苯硼酸、硼酸三甲酯、3-噻吩硼酸、3-呋喃硼酸、4-甲酰苯硼酸、3-氨基苯硼酸、4-巯基苯硼酸、4-(溴甲基)苯硼酸、4-甲氧基苯基硼酸、3-甲氧基苯基硼酸、5-醛基-2-甲氧基苯硼酸、5-甲醛基呋喃-2-硼酸、2-氟-5-溴吡啶-3-硼酸、2-氟吡啶-3-硼酸、2,5-二氯吡啶-4-硼酸、苯并噻吩-2-硼酸、3-喹啉硼酸、噻吩-2-硼酸频哪醇酯、4-氨基苯硼酸频哪醇酯、3-乙氧羰基苯硼酸频哪醇酯、4-甲氧羰基苯硼酸频哪醇酯、3-甲氧基苯基硼酸、4-苯醚基苯硼酸、3,5-二甲基异噁唑-4-硼酸频哪醇酯、6-异丙氧基吡啶-3-硼酸频哪醇酯、3,6-二氢-2H-吡喃-4-硼酸频哪醇酯、嘧啶-5-硼酸、5-醛基-2-噻吩硼酸、4-氟-3-醛基苯硼酸、2-氰基苯基硼酸、1,3-丙二酯、3,5-二羧基苯基硼酸、2-(甲氧基羰基)苯硼酸、苯硼酸、硼酸三乙酯、3-氟-4-醛基苯硼酸、4-羧基苯硼酸、四硼酸钠、4-氟苯硼酸、3-碘苯硼酸、2-氟苯硼酸、4-异丙氧基苯硼酸、4-乙烯基苯硼酸、4'-(4,4,5,5-四甲基-1,3,2-二杂氧戊硼烷-2-基)乙酰苯胺、3-溴苯硼酸、N-甲基二氨基乙醇酯、2,6-二氯吡啶-3-硼酸、硼酸三(4-氯苯)酯、三(2-氰乙基)硼酸酯、硼酸三乙醇胺酯、4,4,5,5-四甲基-2-[3-(三氟甲氧基)苯基]-1,3,2-二氧杂环戊硼烷、4-[3-(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)苯基]吗啉、4,4,5,5-四甲基-2-(2-硝基苯基)-1,3,2-二氧环戊硼烷、5-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)羟吲哚、1-(叔丁氧羰基)-4-(4,4,5,5-四甲基-1,3,2-二氧环戊硼烷-2-基)吡唑、4-甲基-2-(4,4,5,5-四甲基-1,3,2-二氧环戊硼烷-2-基)噻吩、2-硝基-4-(4,4,5,5-四甲基-1,3,2-二氧杂戊硼烷-2-基)苯胺、2-(4-甲氧基苄基)-4,4,5,5-四甲基-1,3,2-二氧环戊硼烷、3-甲基-2-(4,4,5,5-四甲基-1,3,2-二氧杂硼烷-2-基)噻吩、N,N-二乙基-4-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)苯胺、2-溴-3-(4,4,5,5-四甲基-1,3,2-二氧硼戊环-2-基)吡啶、2-氰基苯基硼酸1,3-丙二酯、2-氯-5-(4,4,5,5-四甲基-1,3,2-二氧杂环戊硼烷-2-基)嘧啶。The organic borides include tetrabutylammonium borohydride, 3-nitrophenylboronic acid, trimethyl borate, 3-thiopheneboronic acid, 3-furanboronic acid, 4-formylphenylboronic acid, 3-aminophenylboronic acid, 4- Mercaptophenylboronic acid, 4-(bromomethyl)phenylboronic acid, 4-methoxyphenylboronic acid, 3-methoxyphenylboronic acid, 5-aldehyde-2-methoxyphenylboronic acid, 5-formaldehyde furan -2-boronic acid, 2-fluoro-5-bromopyridine-3-boronic acid, 2-fluoropyridine-3-boronic acid, 2,5-dichloropyridine-4-boronic acid, benzothiophene-2-boronic acid, 3-quinone Phosphoboronic acid, thiophene-2-boronic acid pinacol ester, 4-aminophenylboronic acid pinacol ester, 3-ethoxycarbonylphenylboronic acid pinacol ester, 4-methoxycarbonylphenylboronic acid pinacol ester, 3-methyl Oxyphenylboronic acid, 4-phenylether phenylboronic acid, 3,5-dimethylisoxazole-4-boronic acid pinacol ester, 6-isopropoxypyridine-3-boronic acid pinacol ester, 3 ,6-Dihydro-2H-pyran-4-boronic acid pinacol ester, pyrimidine-5-boronic acid, 5-aldehyde-2-thiophene boronic acid, 4-fluoro-3-aldehyde phenylboronic acid, 2-cyano Phenylboronic acid, 1,3-propane diester, 3,5-dicarboxyphenylboronic acid, 2-(methoxycarbonyl)phenylboronic acid, phenylboronic acid, triethyl borate, 3-fluoro-4-aldehyde benzene Boric acid, 4-carboxyphenylboronic acid, sodium tetraborate, 4-fluorophenylboronic acid, 3-iodophenylboronic acid, 2-fluorophenylboronic acid, 4-isopropoxyphenylboronic acid, 4-vinylphenylboronic acid, 4'-( 4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)acetanilide, 3-bromophenylboronic acid, N-methyldiaminoethanol ester, 2,6 -Dichloropyridine-3-boronic acid, tris(4-chlorophenyl) borate, tris(2-cyanoethyl) borate, triethanolamine borate, 4,4,5,5-tetramethyl-2- [3-(Trifluoromethoxy)phenyl]-1,3,2-dioxolane, 4-[3-(4,4,5,5-tetramethyl-1,3, 2-Dioxaborolan-2-yl)phenyl)morpholine, 4,4,5,5-tetramethyl-2-(2-nitrophenyl)-1,3,2-dioxane Pentaborane, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)oxindole, 1-(tert-butoxycarbonyl)- 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyrazole, 4-methyl-2-(4,4,5,5 -Tetramethyl-1,3,2-dioxaborolan-2-yl)thiophene, 2-nitro-4-(4,4,5,5-tetramethyl-1,3,2- Dioxaborolan-2-yl)aniline, 2-(4-methoxybenzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, 3-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophene, N,N-diethyl-4-(4 ,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)aniline, 2-bromo-3-(4,4,5,5-tetramethyl- 1,3,2-dioxaborolan-2-yl) Pyridine, 2-cyanophenyl boronic acid 1,3-propane diester, 2-chloro-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane- 2-yl)pyrimidine.
  4. 一种钝化方法,其特征在于,将如权利要求1或2或3所述钝化剂沉积在半导体薄膜与其接触的界面材料之间,和/或加入到制备半导体薄膜的原材料中。 A passivation method, characterized in that the passivating agent according to claim 1 or 2 or 3 is deposited between the semiconductor film and the interface material in contact with it, and/or added to the raw material for preparing the semiconductor film.
  5. 如权利要求4所述的钝化方法,其特征在于,所述半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,将所述钝化剂沉积在钙钛矿薄膜与其接触的界面材料之间,和/或加入到制备钙钛矿薄膜的原材料中。 The passivation method of claim 4, wherein the semiconductor film is a perovskite film of a perovskite solar cell, and the passivation agent is deposited between the perovskite film and the interface material in contact with it , And/or added to the raw materials for preparing perovskite films.
  6. 一种制备半导体薄膜的方法,其特征在于,所述要制备的半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,其包括以下步骤: A method for preparing a semiconductor thin film, characterized in that the semiconductor thin film to be prepared is a perovskite thin film of a perovskite solar cell, which comprises the following steps:
    步骤1、将如权利要求1或2或3所述的钝化剂AD加入到溶剂S中搅拌得到钝化剂溶液AD-S;Step 1. Add the passivator AD according to claim 1 or 2 or 3 into the solvent S and stir to obtain the passivator solution AD-S;
    步骤2、将钝化剂溶液AD-S均匀地涂敷在已经制备好的钙钛矿薄膜层表面上;Step 2. Evenly coat the passivation agent solution AD-S on the surface of the prepared perovskite film layer;
    步骤3、然后对涂覆有钝化剂溶液AD-S的基片进行干燥,干燥后在钙钛矿薄膜层上就得到了一层钝化剂层;Step 3. Then the substrate coated with the passivator solution AD-S is dried, and after drying, a passivation layer is obtained on the perovskite film layer;
    其中,步骤1中的所述溶剂S包括酰胺类溶剂、砜类/亚砜类溶剂、酯类溶剂、烃类溶剂、卤代烃类溶剂、醇类溶剂、酮类溶剂、醚类溶剂、芳香烃溶剂中的至少一种。Wherein, the solvent S in step 1 includes amide solvents, sulfone/sulfoxide solvents, ester solvents, hydrocarbon solvents, halogenated hydrocarbon solvents, alcohol solvents, ketone solvents, ether solvents, aromatics At least one of hydrocarbon solvents.
  7. 如权利要求6所述的制备钙钛矿太阳能电池的方法,其特征在于,在步骤1中,所述溶剂S为N,N-二甲基甲酰胺、二甲基亚砜、N-甲基吡咯烷酮、γ-丁内酯、1,8-二碘辛烷、N-环己基-2-吡咯烷酮、氯苯、甲苯中的至少一种。 The method for preparing a perovskite solar cell according to claim 6, wherein in step 1, the solvent S is N,N-dimethylformamide, dimethylsulfoxide, N-methyl At least one of pyrrolidone, γ-butyrolactone, 1,8-diiodooctane, N-cyclohexyl-2-pyrrolidone, chlorobenzene, and toluene.
  8. 一种制备半导体薄膜的方法,其特征在于,所述要制备的半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,其包括以下步骤: A method for preparing a semiconductor thin film, characterized in that the semiconductor thin film to be prepared is a perovskite thin film of a perovskite solar cell, which comprises the following steps:
    步骤I、将如权利要求1或2或3所述的钝化剂AD加入到溶剂S中搅拌得到钝化剂溶液AD-S;Step I. Add the passivator AD according to claim 1 or 2 or 3 into the solvent S and stir to obtain the passivator solution AD-S;
    步骤II、将钝化剂溶液AD-S均匀地涂敷在已经制备好的空穴传输层或电子传输层表面上;Step II, uniformly coat the passivator solution AD-S on the surface of the hole transport layer or electron transport layer that has been prepared;
    步骤III、然后对涂覆有钝化剂溶液AD-S的基片进行干燥,干燥后在空穴传输层或电子传输层上就得到了一层钝化剂层。Step III: Then, the substrate coated with the passivator solution AD-S is dried, and after drying, a passivation layer is obtained on the hole transport layer or the electron transport layer.
  9. 一种制备半导体薄膜的方法,其特征在于,所述要制备的半导体薄膜为钙钛矿太阳能电池的钙钛矿薄膜,其包括以下步骤: A method for preparing a semiconductor thin film, characterized in that the semiconductor thin film to be prepared is a perovskite thin film of a perovskite solar cell, which comprises the following steps:
    步骤一、将如权利要求1或2或3所述的钝化剂AD加入到制备钙钛矿薄膜层的前驱体溶液PS中,得到含有钝化剂AD的钙钛矿前驱体溶液AD-PS;Step 1. Add the passivator AD according to claim 1 or 2 or 3 into the precursor solution PS for preparing the perovskite film layer to obtain the perovskite precursor solution AD-PS containing the passivator AD ;
    步骤二、将钙钛矿前驱体溶液AD-PS进行常规的钙钛矿薄膜层的制备,得到含有钝化剂的钙钛矿薄膜层。Step 2: The perovskite precursor solution AD-PS is subjected to the preparation of the conventional perovskite film layer to obtain the perovskite film layer containing the passivator.
  10. 如权利要求9所述的制备钙钛矿太阳能电池的方法,其特征在于,在步骤一中,将所述钝化剂AD加入到制备钙钛矿薄膜的前驱体溶液PS中的比例是:钝化剂AD与前驱体溶液PS的卤素总量的摩尔比例为1:100000~1:1。 The method for preparing a perovskite solar cell according to claim 9, wherein in step 1, the ratio of adding the passivation agent AD to the precursor solution PS for preparing the perovskite film is: passivation The molar ratio of the chemical agent AD to the total halogen of the precursor solution PS is 1:100000~1:1.
PCT/CN2020/093814 2019-06-12 2020-06-01 Passivator, passivation method therefor and method for preparing semiconductor film WO2020248864A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910508161.4 2019-06-12
CN201910508161.4A CN112086564A (en) 2019-06-12 2019-06-12 Passivating agent and passivation method thereof and method for preparing semiconductor film

Publications (1)

Publication Number Publication Date
WO2020248864A1 true WO2020248864A1 (en) 2020-12-17

Family

ID=73734500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093814 WO2020248864A1 (en) 2019-06-12 2020-06-01 Passivator, passivation method therefor and method for preparing semiconductor film

Country Status (2)

Country Link
CN (1) CN112086564A (en)
WO (1) WO2020248864A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156414A (en) * 2021-11-30 2022-03-08 合肥工业大学 High-efficiency stable CsPbI3Preparation method of inorganic perovskite battery
CN114685373A (en) * 2022-03-23 2022-07-01 陕西师范大学 Histamine diiodide salt and preparation method thereof, and perovskite solar cell and preparation method thereof
CN115915883A (en) * 2023-02-28 2023-04-04 中国华能集团清洁能源技术研究院有限公司 Preparation method of perovskite solar cell
CN116731571A (en) * 2023-05-05 2023-09-12 上海三银涂料科技股份有限公司 Water-based rust-transferring primer for low-surface-treatment steel structure and preparation method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113193002A (en) * 2021-04-08 2021-07-30 电子科技大学 Perovskite/silicon laminated solar cell and preparation method thereof
CN113416213B (en) * 2021-06-22 2022-10-11 重庆大学 Application of organic phosphonium salt molecule in perovskite solar cell and preparation method of device thereof
CN113629197B (en) * 2021-06-23 2024-07-05 湖北大学 Perovskite layer, electron transport layer, preparation method of perovskite solar cell and solar cell
CN113903862B (en) * 2021-09-01 2023-08-08 苏州大学 SnO modified based on phenylboronic acid derivative 2 Perovskite solar cell preparation method
CN113881432B (en) * 2021-10-27 2023-06-06 河南科技大学 Ligand modified CsPbBr 3 Preparation method of quantum dot material
CN114042474B (en) * 2021-11-19 2023-07-14 万华化学集团股份有限公司 Functionalized ionic liquid catalyst, preparation method and application
CN115581079B (en) * 2022-11-03 2023-05-23 绍兴建元电力集团有限公司 Light absorption layer passivating agent and perovskite solar cell prepared from same
CN115843190A (en) * 2022-11-22 2023-03-24 嘉庚创新实验室 Additive and using method thereof
CN117286551A (en) * 2023-09-26 2023-12-26 凯米特新材料科技有限公司 Preparation method of antibacterial corrosion-resistant aluminum alloy profile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062983A (en) * 2013-12-17 2016-10-26 埃西斯创新有限公司 Photovoltaic device comprising a metal halide perovskite and a passivating agent
CN108232014A (en) * 2017-12-30 2018-06-29 杭州纤纳光电科技有限公司 A kind of perovskite thin film of Doped ions stabilizer and its preparation method and application
WO2018152494A1 (en) * 2017-02-17 2018-08-23 Nutech Ventures Passivation of defects in perovskite materials for improved solar cell efficiency and stability
CN109065723A (en) * 2018-07-13 2018-12-21 华中科技大学 A method of solar battery open-circuit voltage is promoted based on additive
CN109216555A (en) * 2018-08-27 2019-01-15 电子科技大学 Perovskite-type compounds layer and battery and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3079471C (en) * 2017-10-19 2020-12-08 The Governing Council Of The University Of Toronto Quasi two-dimensional layered perovskite material, related devices and methods for manufacturing the same
CN109742236A (en) * 2018-12-13 2019-05-10 东莞理工学院 A kind of perovskite solar battery of ionic liquid enhanced sensitivity and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062983A (en) * 2013-12-17 2016-10-26 埃西斯创新有限公司 Photovoltaic device comprising a metal halide perovskite and a passivating agent
WO2018152494A1 (en) * 2017-02-17 2018-08-23 Nutech Ventures Passivation of defects in perovskite materials for improved solar cell efficiency and stability
CN108232014A (en) * 2017-12-30 2018-06-29 杭州纤纳光电科技有限公司 A kind of perovskite thin film of Doped ions stabilizer and its preparation method and application
CN109065723A (en) * 2018-07-13 2018-12-21 华中科技大学 A method of solar battery open-circuit voltage is promoted based on additive
CN109216555A (en) * 2018-08-27 2019-01-15 电子科技大学 Perovskite-type compounds layer and battery and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156414A (en) * 2021-11-30 2022-03-08 合肥工业大学 High-efficiency stable CsPbI3Preparation method of inorganic perovskite battery
CN114156414B (en) * 2021-11-30 2024-05-31 合肥工业大学 CsPbI is stabilized to high efficiency3Preparation method of inorganic perovskite battery
CN114685373A (en) * 2022-03-23 2022-07-01 陕西师范大学 Histamine diiodide salt and preparation method thereof, and perovskite solar cell and preparation method thereof
CN114685373B (en) * 2022-03-23 2024-04-30 陕西师范大学 Histamine diiodide salt, preparation method thereof, perovskite solar cell and preparation method thereof
CN115915883A (en) * 2023-02-28 2023-04-04 中国华能集团清洁能源技术研究院有限公司 Preparation method of perovskite solar cell
CN116731571A (en) * 2023-05-05 2023-09-12 上海三银涂料科技股份有限公司 Water-based rust-transferring primer for low-surface-treatment steel structure and preparation method thereof

Also Published As

Publication number Publication date
CN112086564A (en) 2020-12-15

Similar Documents

Publication Publication Date Title
WO2020248864A1 (en) Passivator, passivation method therefor and method for preparing semiconductor film
Mathies et al. Inkjet-printed triple cation perovskite solar cells
CN111435705B (en) Repairing agent and repairing method thereof and method for preparing photoelectric film
Wang et al. Induced crystallization of perovskites by a perylene underlayer for high-performance solar cells
Bera et al. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: interface matters
Schloemer et al. The molybdenum oxide interface limits the high-temperature operational stability of unencapsulated perovskite solar cells
Shallcross et al. Determining band-edge energies and morphology-dependent stability of formamidinium lead perovskite films using spectroelectrochemistry and photoelectron spectroscopy
Ning et al. Gaining insight into the effect of organic interface layer on suppressing ion migration induced interfacial degradation in perovskite solar cells
Mahmud et al. Controlled nucleation assisted restricted volume solvent annealing for stable perovskite solar cells
EP1467386A2 (en) Photoelectric conversion device fabrication method, photoelectric conversion device
Wang et al. Multifunctional potassium hexafluorophosphate passivate interface defects for high efficiency perovskite solar cells
CN105161623B (en) A kind of perovskite solar cell and preparation method thereof
Mahmood et al. Low-temperature electrospray-processed SnO2 nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells
Kavan et al. Electron-selective layers for dye-sensitized solar cells based on TiO2 and SnO2
Cai et al. Mixed cations and mixed halide perovskite solar cell with lead thiocyanate additive for high efficiency and long-term moisture stability
Wang et al. Effects of organic cation additives on the fast growth of perovskite thin films for efficient planar heterojunction solar cells
Huang et al. Highly efficient and stable organic solar cell modules processed by blade coating with 5.6% module efficiency and active area of 216 cm2
Xiao et al. Effects of methylammonium acetate on the perovskite film quality for the perovskite solar cell
Manspeaker et al. Reliable annealing of CH3NH3PbI3 films deposited on ZnO
Wang et al. Improving the performance and reproducibility of inverted planar perovskite solar cells using tetraethyl orthosilicate as the antisolvent
Lee et al. Highly crystalline perovskite-based photovoltaics via two-dimensional liquid cage annealing strategy
AitDads et al. Structural, optical and electrical properties of planar mixed perovskite halides/Al-doped Zinc oxide solar cells
Hwang et al. The influence of DMSO and ether via fast-dipping treatment for a perovskite solar cell
Tan et al. Self-encapsulated semi-transparent perovskite solar cells with water-soaked stability and metal-free electrode
Li et al. Robust and recyclable substrate template with an ultrathin nanoporous counter electrode for organic-hole-conductor-free monolithic perovskite solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20823530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20823530

Country of ref document: EP

Kind code of ref document: A1