WO2020248781A1 - 一种离子液体催化制取糠醛的方法 - Google Patents
一种离子液体催化制取糠醛的方法 Download PDFInfo
- Publication number
- WO2020248781A1 WO2020248781A1 PCT/CN2020/091130 CN2020091130W WO2020248781A1 WO 2020248781 A1 WO2020248781 A1 WO 2020248781A1 CN 2020091130 W CN2020091130 W CN 2020091130W WO 2020248781 A1 WO2020248781 A1 WO 2020248781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ionic liquid
- reaction
- furfural
- water
- solvent
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0277—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
- B01J31/0278—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
- B01J31/0281—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
- B01J31/0284—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member of an aromatic ring, e.g. pyridinium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0277—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
- B01J31/0298—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature the ionic liquids being characterised by the counter-anions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/40—Radicals substituted by oxygen atoms
- C07D307/46—Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom
- C07D307/48—Furfural
Definitions
- the invention relates to the preparation field of furfural, in particular to a method for preparing furfural through ionic liquid catalysis.
- biomass can be used to produce a variety of fine chemicals or fuels, thereby reducing dependence on oil and coal resources, which is of great significance to China's energy security and environmental protection.
- biomass of which lignocellulosic biomass occupies a major position in distribution and reserves, and it is also the main object of current research.
- cellulose, hemicellulose, and lignin are the three main components of biomass, as well as the main components of plant cell walls.
- the binding between cellulose and hemicellulose or lignin molecules mainly depends on hydrogen bonds, and in addition to hydrogen bonds between hemicellulose and lignin, there are also chemical bonds.
- Furfural is a platform compound made from hemicellulose in lignocellulosic biomass carbohydrates. Furfural can further synthesize a series of chemicals or new liquid fuels. Therefore, furfural is an important bridge connecting biomass resources with chemicals and fuels.
- aprotic polar organic solvent single-phase reaction system such as N, N-dimethylacetamide, Dimethyl sulfoxide, ⁇ -valerolactone, etc.
- two-phase solvent system water-methyl isobutyl ketone, water-butanol
- the catalyst is another factor that needs to be paid attention to in the furfural preparation process.
- Homogeneous acids organic acids, inorganic acids, salts
- solid acids acid resins, molecular sieves, metal oxides, etc.
- acidic ionic liquids can all be used as catalysts for the production of furfural from carbohydrates, but these acidic catalysts all have certain deficiencies , Such as the recovery and corrosion of homogeneous acid and the deactivation of solid acid due to the accumulation of humin. Therefore, it is necessary to develop a more economical and environmentally friendly catalytic system, and ionic liquid as a catalyst has the advantages of good stability and low corrosion.
- the patent publication number CN107954954A discloses a method for preparing 5-hydroxymethyl furfural using chitosan as a raw material.
- the method uses chitosan as a raw material, a diacid ionic liquid as a catalyst, and water as a reaction solvent.
- the chitosan is degraded in the ethylene hydrothermal reactor to obtain 5-hydroxymethyl furfural.
- using water as the reaction solvent can easily lead to other side reactions, and may produce insoluble solid by-product humin, which reduces the yield of furfural.
- the metal ionic liquid heteropoly acid catalyst used in the polar reaction system is very easy to fall off metal ions, which causes the catalyst structure to collapse, which is not conducive to the catalytic reaction.
- the object of the present invention is to provide a method for efficiently preparing furfural using carbohydrates such as monosaccharides, disaccharides, polysaccharides or biomass rich in five-carbon sugar monomers under a simple and economical reaction system.
- a method for preparing furfural catalyzed by ionic liquid including:
- the amount of carbohydrates used in the present invention is calculated based on the number of moles of five-carbon sugar monomers.
- the carbohydrates are monosaccharides, disaccharides, polysaccharides or biomass rich in five-carbon sugar monomers.
- the monosaccharides are five-carbon sugars such as xylose and arabinose; the disaccharides, polysaccharides or biomass are xylan, softwood, hardwood or agricultural waste biomass and other five-carbon sugar-rich monomers Carbohydrates.
- the composite solvent is a composite solvent formed by mixing water and ketone organic solvent, wherein the volume ratio of water to ketone organic solvent is 1:1 to 1:9.
- the ketones are chain monoketones or cyclic monoketones.
- the ketones are one or more of acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclopentanone.
- ketone organic solvents are polar aprotic solvents, which can increase the dehydration speed of carbohydrates under acidic conditions, and at the same time hinder the progress of the decomposition reaction of furfural products, thereby increasing the sugar conversion rate And the selectivity of furfural.
- the carbohydrate is a monosaccharide
- the volume ratio of water to the ketone organic solvent in the complex solvent is 1:3 to 1:6
- the catalytic reaction temperature of the mixture is 120 to 180°C
- the catalytic reaction time is 60 ⁇ 240min.
- the carbohydrates are disaccharides, polysaccharides or biomass
- the volume ratio of water to ketone organic solvent in the composite solvent is 1:4 to 1:9
- the catalytic reaction temperature of the mixture is 160 to 200°C
- the catalytic reaction time is 180 ⁇ 300min.
- the acid bifunctional ionic liquid catalyst is composed of Lewis acidic metal halide anions and A compound composed of acidic imidazolium cations.
- the Pearson absolute electronegativity refers to the absolute electronegativity of the cation given by Pearson (Inorg. Chem., 1988, 27(4): 734-740. Table I). The higher the value, the stronger the acidity of the corresponding ion L, which can effectively catalyze the isomerization reaction of carbohydrates, thereby promoting the formation of furfural.
- the M is the fourth and fifth period trivalent transition metal cation and the IIIA metal cation.
- the metal halide anion is [CrCl 4] -, [FeCl 4] -, [AlCl 4] -, [GaCl 4] -, [InCl 4] - one or more.
- the acidic imidazolium cation is 1-ethyl-3-methylimidazole cation ([emim] + ) or 1-butyl-3-methylimidazole cation ([bmim] + ).
- said The acid bifunctional ionic liquid catalyst is [emim]Cl/CrCl 3 , [bmim]Cl/CrCl 3 , [emim]Cl/FeCl 3 , [bmim]Cl/FeCl 3 , [emim]Cl/AlCl 3 or [bmim] Cl/AlCl 3 .
- the present invention has the following advantages:
- the strong Lewis acidic component used in the present invention can further promote the conversion of biomass raw materials.
- the yield of furfural can reach 75.4%.
- the present invention uses a low boiling point two-phase solvent system composed of water and ketone solvents as the reaction solvent.
- the selected ketone solvent can be synthesized by bio-based chemicals and has good reproducibility, which makes the cost of the reaction solvent While reducing, environmental friendliness is improved.
- the ketone organic solvent can strengthen the protonation dehydration reaction of the reactant, thereby greatly increasing the conversion rate of the reactant by more than 4 times.
- the ketone organic solvent used in the present invention can effectively reduce the activation energy required for the conversion of carbohydrates into furfural, so that the entire reaction process can proceed quickly; at the same time, it increases the activation energy required for furfural degradation and effectively slows down side reactions This makes the entire reaction system more economical.
- reaction flask 100mmol xylose, 500mL water-butanone composite solvent, water-butanone volume ratio of 1:3, 50mmol catalyst [bmim]Cl/FeCl 3 was added to the reaction flask, mixed uniformly, and the catalytic reaction was carried out.
- the reaction conditions were: The reaction temperature is 140°C, the reaction time is 90 minutes, and the stirring rate is 600 rpm. After the reaction, it was cooled down to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 52.8%.
- reaction flask 100mmol xylose, 500mL water-butanone composite solvent, water-butanone volume ratio of 1:4, 50mmol catalyst [bmim]Cl/FeCl 3 was added to the reaction flask, mixed uniformly, and the catalytic reaction was carried out.
- the reaction conditions were: The reaction temperature is 140°C, the reaction time is 90 minutes, and the stirring rate is 600 rpm. After the reaction is completed, it is cooled to room temperature by air cooling, and the furfural content is determined by high performance liquid chromatography and the yield is calculated. The furfural yield can be obtained as 60.0%.
- the reaction conditions are: The reaction temperature is 140°C, the reaction time is 90 minutes, and the stirring rate is 600 rpm. After the reaction, it was cooled down to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 54.4%.
- reaction flask 100mmol xylose, 500mL water-butanone composite solvent, water-butanone volume ratio of 1:4, 50mmol catalyst [bmim]Cl/FeCl 3 was added to the reaction flask, mixed uniformly, and the catalytic reaction was carried out.
- the reaction conditions were: The reaction temperature is 120°C, the reaction time is 240 minutes, and the stirring rate is 600 rpm. After the reaction, it was cooled to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 50.4%.
- reaction flask 100mmol xylose, 500mL water-butanone composite solvent, water-butanone volume ratio of 1:4, 50mmol catalyst [bmim]Cl/FeCl 3 was added to the reaction flask, mixed uniformly, and the catalytic reaction was carried out.
- the reaction conditions were: The reaction temperature is 160°C, the reaction time is 120 minutes, and the stirring rate is 600 rpm. After the reaction, it was cooled to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 61.2%.
- reaction flask 100mmol xylose, 500mL water-butanone composite solvent, water-butanone volume ratio of 1:4, 50mmol catalyst [bmim]Cl/FeCl 3 was added to the reaction flask, mixed uniformly, and the catalytic reaction was carried out.
- the reaction conditions were: The reaction temperature is 180°C, the reaction time is 60 minutes, and the stirring rate is 600 rpm. After the reaction, it was cooled down to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 58.6%.
- reaction flask Add 100mmol xylose, 500mL water-acetone composite solvent, water-acetone volume ratio of 1:4, 50mmol catalyst [bmim]Cl/FeCl 3 into the reaction flask, mix evenly, and carry out the catalytic reaction.
- the reaction conditions are: reaction temperature 160°C, reaction time 90min, stirring rate 600 rpm. After the reaction, it was cooled down to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 54.8%.
- reaction flask Add 100mmol xylose, 500mL water-methyl isobutyl ketone composite solvent, the volume ratio of water-methyl isobutyl ketone is 1:4, 50mmol catalyst [bmim]Cl/FeCl 3 is added to the reaction flask, mix evenly, and catalyze
- the reaction conditions are: a reaction temperature of 160°C, a reaction time of 90 minutes, and a stirring rate of 600 revolutions per minute. After the reaction, it was cooled down to room temperature by air cooling, and the furfural content was measured by high performance liquid chromatography and the yield was calculated. The furfural yield was 65.0%.
- the xylose 100mmol, 500 mL of water - methyl ethyl ketone compound solvent, water - butanone volume ratio of 1: 4,50mmol Catalyst [bmim] Cl / CrCl 3 was added to the reaction flask, uniformly mixed, the catalytic reaction, the reaction conditions were: The reaction temperature is 140°C, the reaction time is 90 minutes, and the stirring rate is 600 rpm. After the reaction is completed, it is cooled to room temperature by air cooling, and the furfural content is determined by high performance liquid chromatography and the yield is calculated. The furfural yield can be obtained as 74.9%.
- reaction flask 100mmol xylose, 500mL water-butanone composite solvent, water-butanone volume ratio of 1:4, 50mmol catalyst [emim]Cl/FeCl 3 was added to the reaction flask, mixed uniformly, and the catalytic reaction was carried out.
- the reaction conditions were: The reaction temperature is 160°C, the reaction time is 90 minutes, and the stirring rate is 600 revolutions per minute. After the reaction, it was cooled to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 62.2%.
- reaction flask 100mmol xylose, 500mL water-butanone composite solvent, water-butanone volume ratio of 1:4, 50mmol catalyst [bmim]Cl/AlCl 3 was added to the reaction flask, mixed uniformly, and the catalytic reaction was carried out.
- the reaction conditions were: The reaction temperature is 140°C, the reaction time is 90 minutes, and the stirring rate is 600 rpm. After the reaction is completed, it is cooled to room temperature by air cooling, and the furfural content is determined by high performance liquid chromatography and the yield is calculated. The furfural yield can be obtained as 75.4%.
- reaction temperature 160°C
- reaction time 180min
- stirring rate 600 rpm
- reaction flask Add 15g hemlock, 500mL water-butanone composite solvent, water-butanone volume ratio of 1:4, 50mmol catalyst [bmim]Cl/FeCl 3 into the reaction flask, mix uniformly, and carry out the catalytic reaction.
- the reaction conditions are: The reaction temperature is 180°C, the reaction time is 240 minutes, and the stirring rate is 600 rpm. After the reaction, it was cooled to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 36.1%.
- the reaction conditions are: The reaction temperature is 200°C, the reaction time is 300 min, and the stirring rate is 600 rpm. After the reaction, it was cooled down to room temperature by air cooling, and the furfural content was determined by high performance liquid chromatography and the yield was calculated. The furfural yield was 55.1%.
- the reaction conditions are: The catalytic reaction temperature is 140°C, the catalytic reaction time is 90 minutes, and the stirring rate is 600 revolutions per minute. After the catalytic reaction is completed, it is cooled to room temperature by air cooling, and the furfural content is determined by high performance liquid chromatography and the yield is calculated. The furfural yield is 4.6%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Furan Compounds (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
一种离子液体催化制备糠醛的方法,将碳水化合物、复合溶剂和Lewis/ Brønsted酸双功能离子液体催化剂混合;混合物在120~200℃条件下,催化反应60~300min,合成糠醛。碳水化合物为富含五碳糖单体的单糖、双糖、多糖或生物质;复合溶剂为水和酮类有机溶剂组成的复合溶剂;Lewis/ Brønsted酸双功能离子液体催化剂为由显Lewis酸性的金属卤化物阴离子和显 Brønsted酸性的咪唑基阳离子组成的化合物。
Description
本发明涉及糠醛的制备领域,尤其是一种离子液体催化制取糠醛的方法。
生物质作为唯一可再生的碳基资源,可用于生产多种精细化学品或燃料,从而减少对石油和煤炭资源的依赖,这对中国的能源安全和环境保护具有重要的意义。生物质种类广泛,其中木质纤维素类生物质在分布和储量上均占据主要地位,也是目前研究的主要对象。
对于木质纤维素类生物质,纤维素、半纤维素和木质素是生物质的三大主要组分,也是植物细胞壁的主要组分。纤维素与半纤维素或木质素分子间的结合主要依赖于氢键,而半纤维素与木质素之间除氢键外,还存在着化学键的结合。
糠醛是一种可由木质纤维素类生物质碳水化合物中的半纤维素制取的平台化合物,通过糠醛可进一步合成一系列化学品或新型液体燃料。因此,糠醛是连接生物质资源和化学品、燃料的重要桥梁。
在生物质碳水化合物转化为糠醛过程中,采用水做溶剂具有较好的经济性和环保性,但水是一种强极性质子溶剂,很容易导致其他副反应的发生,并可能产生不溶性固体副产物humin,使糠醛产率降低。采用离子液体作为反应溶剂也可达到较高的糠醛产率,但是离子液体昂贵的价格、高粘度以及产物难以分离的缺点限制了它的规模化应用(Bioresource Technology,2016,202:181-191.)。
近年来,采用纯有机溶剂或水-有机溶剂组成的单相/两相溶剂体系越发受到重视,尤其是可再生有机溶剂的引入,更促进了绿色反应体系的发展(Green Chemistry,2014,16:2015-2026.RSC Advances,2015,5:84014-84021.)。有研究表明(Chemsuschem,2011,4:535-541.Green Chemistry,2016,18:2985-2994.),采用非质子极性有机溶剂单相反应体系(如N,N-二甲基乙酰胺、二甲基亚砜,γ-戊内酯等)和双相溶剂体系(水-甲基异丁基酮,水-丁醇),均能有效提高糠醛的产率。
除了反应介质,催化剂则是糠醛制取过程中另一个需要重点关注的因素。均相酸(有机酸,无机酸,盐)、固体酸(酸性树脂,分子筛,金属氧化物等)和酸性离子液体均可作为碳水化合物制取糠醛的催化剂,然而这些酸性催化剂均存在一定的不足,比如均相酸的回收和腐蚀问题和固体酸由于humin积聚造成的失活问题。因此,有必要开发更为经济和环境友好的催化体系,而离子液体作为催化剂具有良好的稳定性和低腐蚀性的优势。
专利公开号为CN107954954A公开了一种以壳聚糖为原料制备5-羟甲基糠醛的方法,该方法以壳聚糖为原料,双酸性离子液体作为催化剂,水作为反应溶剂,在聚四氟乙烯水热反应釜中降解壳聚糖,得到5-羟甲基糠醛。其中以水为反应溶剂,很容易导致其他副反应的发生,并可能产生不溶性固体副产物humin,使糠醛产率降低。而且其使用的金属离子液体杂多酸催化剂,在极性反应体系中,金属离子极易脱落,致使催化剂结构坍塌,不利于催化反应。
发明内容
本发明的目的在于提供一种利用富含五碳糖单体的单糖、双糖、多糖 或生物质等碳水化合物,在简单、经济的反应体系下,高效制备糠醛的方法。
一种离子液体催化制取糠醛的方法,包括:
将碳水化合物、复合溶剂和
酸双功能离子液体催化剂三者按投料比例为1mol:1~10L:0.1~1mol混合,得到混合物;混合物在120~200℃的条件下催化反应60~300min,催化反应结束后冷却至室温,即得到糠醛。
由于所述的碳水化合物的分子量差异大,为了计量方便,本发明关于碳水化合物的用量以五碳糖单体的摩尔数计算。
优选的,所述的碳水化合物为富含五碳糖单体的单糖、双糖、多糖或生物质。
进一步优选,所述的单糖为木糖、阿拉伯糖等五碳糖;所述的双糖、多糖或生物质为木聚糖、软木、硬木或农业废弃生物质等富含五碳糖单体的碳水化合物。
所述的复合溶剂为水和酮类有机溶剂混合形成的复合溶剂,其中水与酮类有机溶剂的体积比为1:1~1:9。
采用水和酮类有机溶剂配比的复合溶剂,不仅大幅降低了反应成本而且取得较好的糠醛制取效率,与现有技术所常用的离子液体溶剂或γ-戊内酯溶剂相比,成本降低5-10倍。
优选的,所述酮类为链状单酮或环状单酮。
进一步优选,所述的酮类为丙酮、丁酮、甲基异丁酮或环戊酮中的一种或多种。
在水和酮类有机溶剂的复合溶剂中,酮类有机溶剂为极性非质子溶剂,能够提高碳水化合物在酸性条件下的脱水速度,同时阻碍糠醛产物分解反应的进行,从而提高糖的转化率和生成糠醛的选择性。这些有利效应随有机溶剂在混合溶剂中比例的提高是逐渐减弱的,即酮类有机溶剂比例过高不利于反应进行,但是这种效应对单糖和聚糖及生物质有差异。
优选的,所述的碳水化合物为单糖,则复合溶剂中水与酮类有机溶剂的体积比为1:3~1:6;混合物的催化反应温度为120~180℃,催化反应时间为60~240min。
优选的,所述的碳水化合物为双糖、多糖或生物质,则复合溶剂中水 与酮类有机溶剂的体积比为1:4~1:9;混合物的催化反应温度为160~200℃,催化反应时间为180~300min。
所述的金属卤化物阴离子为具有强Lewis酸性的[MCl
4]
-,所述的M为Pearson绝对电负性大于35的三价金属阳离子。
所述的Pearson绝对电负性是指根据Pearson给出的阳离子的绝对电负性(Inorg.Chem.,1988,27(4):734-740.Table I)。其值越高代表对应离子的L酸酸性越强,能够有效催化碳水化合物的异构化反应,从而促进糠醛的生成。
优选的,所述的M为第四周期和第五周期三价过渡金属阳离子以及第IIIA金属阳离子。
优选的,所述的金属卤化物阴离子为[CrCl
4]
-、[FeCl
4]
-、[AlCl
4]
-、[GaCl
4]
-、[InCl
4]
-中的一种或多种。
优选的,所述的
酸双功能离子液体催化剂为[emim]Cl/CrCl
3、[bmim]Cl/CrCl
3、[emim]Cl/FeCl
3、[bmim]Cl/FeCl
3、[emim]Cl/AlCl
3或[bmim]Cl/AlCl
3。
在此反应条件下,糠醛的产率可达到75.4%。
与现有技术相比,本发明具有如下优点:
(1)在本发明所提供的反应体系的作用下,半纤维素更容易从纤维素、木质素中剥离并溶解,有效提高了原料转化效率与糠醛产率。
(2)多种类型的木质纤维素类生物质碳水化合物均适用本发明所提供的反应体系,以实现高产率制备糠醛的目的。
(3)与现有技术所常用的咪唑类、季铵盐类双酸性离子液体相比,本发明所使用强Lewis酸性组分能够进一步促进生物质原料的转化。
(4)在本发明所提供的反应体系的作用下,糠醛的产率可达到75.4%。
(5)本发明采用由水和酮类溶剂组成的低沸点双相溶剂体系作为反应溶剂,所选用的酮类溶剂可通过生物基化学品合成而具有较好的可再生性,使得反应溶剂成本降低的同时提高了环境友好性。
(6)与现有技术所常用的纯水溶剂相比,酮类有机溶剂能够强化反应物的质子化脱水反应,从而大幅提升反应物转化率,提升幅度可达4倍以上。
(7)与现有技术所常用的离子液体溶剂或γ-戊内酯溶剂相比,采用酮类有机溶剂大幅降低了反应成本,降幅达5-10倍。
(8)本发明采用的酮类有机溶剂能够有效降低碳水化合物转化为糠醛所需的活化能,使得整个反应过程得以快速进行;同时它提高了糠醛降解所需要的活化能,有效减缓了副反应的发生,这使得整个反应体系更具经济效益。
以下的实施例是对本发明的进一步说明,但不仅限于本发明所列出的具体实施例描述的实施方案。
实施例1
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:3,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度140℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为52.8%。
实施例2
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度140℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为60.0%。
实施例3
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:6,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度140℃,反应时间90min,搅拌速率600转/分钟。 反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为54.4%。
实施例4
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:9,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度140℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为37.2%。
实施例5
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度120℃,反应时间240min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为50.4%。
实施例6
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度160℃,反应时间120min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为61.2%。
实施例7
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度180℃,反应时间60min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为58.6%。
实施例8
将100mmol木糖、500mL水-丙酮复合溶剂,水-丙酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度160℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为54.8%。
实施例9
将100mmol木糖、500mL水-甲基异丁酮复合溶剂,水-甲基异丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度160℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为65.0%。
实施例10
将100mmol木糖、500mL水-环戊酮复合溶剂,水-环戊酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度160℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为50.1%。
实施例11
将300mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度150℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为55.0%。
实施例12
将500mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应, 反应条件为:反应温度150℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为53.7%。
实施例13
将50mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度150℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为57.3%。
实施例14
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/CrCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度140℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为74.9%。
实施例15
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[emim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度160℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为62.2%。
实施例16
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/AlCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度140℃,反应时间90min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为75.4%。
实施例17
将100mmol阿拉伯糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度160℃,反应时间180min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为50.7%。
实施例18
将15g木聚糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度160℃,反应时间180min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为51.2%。
实施例19
将15g铁杉、500mL水-丁酮复合溶剂,水-丁酮体积比为1:4,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度180℃,反应时间240min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为36.1%。
实施例20
将15g柳桉、500mL水-丁酮复合溶剂,水-丁酮体积比为1:6,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度200℃,反应时间240min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为42%。
实施例21
将15g玉米秸秆、500mL水-丁酮复合溶剂,水-丁酮体积比为1:9, 50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度200℃,反应时间300min,搅拌速率600转/分钟。反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为55.1%。
对比例1
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:0,50mmol催化剂[bmim]Cl/FeCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:催化反应温度140℃,催化反应时间90min,搅拌速率600转/分钟。催化催化反应结束后风冷降至室温,由高效液相色谱测定糠醛含量并计算产率,可得到糠醛的产率为4.6%。
对比例2
将100mmol木糖、500mL水-丁酮复合溶剂,水-丁酮体积比为1:0,50mmol催化剂[emim]Cl/CrCl
3加入到反应瓶中,均匀混合,进行催化反应,反应条件为:反应温度140℃,反应时间90min,搅拌速率600转/分钟。催化反应结束后风冷降至室温,由高效液相色谱测定木糖含量并计算木糖转化率,可得到木糖的转化率为18.8%。
Claims (10)
- 根据权利要求1所述的离子液体催化制取糠醛的方法,其特征在于,所述的碳水化合物包括富含五碳糖单体的单糖、双糖、多糖或生物质。
- 根据权利要求1所述的离子液体催化制取糠醛的方法,其特征在于,所述的复合溶剂为水和酮类有机溶剂混合形成的复合溶剂,水和酮类有机溶剂的体积比为1:1~1:9。
- 根据权利要求3所述的离子液体催化制取糠醛的方法,其特征在于,所述的酮类为链状单酮或环状单酮。
- 根据权利要求1或2所述的离子液体催化制取糠醛的方法,其特征在于,所述的碳水化合物为单糖,则复合溶剂中水与酮类有机溶剂的体积比为1:3~1:6,混合物的催化反应温度为120~180℃,催化反应时间为60~240min。
- 根据权利要求1或2所述的离子液体催化制取糠醛的方法,其特征在于,所述的碳水化合物为双糖、多糖或生物质,则复合溶剂中水与酮类有机溶剂的体积比为1:4~1:9,混合物的催化反应温度为160~200℃,催化反应时间为180~300min。
- 根据权利要求7所述的离子液体催化制取糠醛的方法,其特征在于,所述的金属卤化物阴离子为具有强Lewis酸性的[MCl 4]-;所述的M为第四周期和第五周期三价过渡金属阳离子以及第IIIA族金属阳离子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910514763.0 | 2019-06-14 | ||
CN201910514763.0A CN110256377B (zh) | 2019-06-14 | 2019-06-14 | 一种离子液体催化制取糠醛的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020248781A1 true WO2020248781A1 (zh) | 2020-12-17 |
Family
ID=67918320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/091130 WO2020248781A1 (zh) | 2019-06-14 | 2020-05-20 | 一种离子液体催化制取糠醛的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110256377B (zh) |
WO (1) | WO2020248781A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110256377B (zh) * | 2019-06-14 | 2021-11-09 | 浙江大学 | 一种离子液体催化制取糠醛的方法 |
CN111363594B (zh) * | 2020-03-12 | 2021-11-09 | 中国科学院广州能源研究所 | 一种生物质直接制备环状燃料中间体的方法 |
CN113333022A (zh) * | 2021-05-20 | 2021-09-03 | 济南大学 | 一种双功能固体酸催化剂的制备方法及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105238434A (zh) * | 2015-10-22 | 2016-01-13 | 昆明理工大学 | 利用磁性离子液体定向调控液相催化生物质热裂解的方法 |
CN105272950A (zh) * | 2015-10-20 | 2016-01-27 | 浙江大学 | 一种由碳水化合物制取5-羟甲基糠醛的方法 |
CN105924414A (zh) * | 2016-05-19 | 2016-09-07 | 浙江大学 | 一种由碳水化合物制取5-羟甲基糠醛的方法 |
CN110256377A (zh) * | 2019-06-14 | 2019-09-20 | 浙江大学 | 一种离子液体催化制取糠醛的方法 |
-
2019
- 2019-06-14 CN CN201910514763.0A patent/CN110256377B/zh active Active
-
2020
- 2020-05-20 WO PCT/CN2020/091130 patent/WO2020248781A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105272950A (zh) * | 2015-10-20 | 2016-01-27 | 浙江大学 | 一种由碳水化合物制取5-羟甲基糠醛的方法 |
CN105238434A (zh) * | 2015-10-22 | 2016-01-13 | 昆明理工大学 | 利用磁性离子液体定向调控液相催化生物质热裂解的方法 |
CN105924414A (zh) * | 2016-05-19 | 2016-09-07 | 浙江大学 | 一种由碳水化合物制取5-羟甲基糠醛的方法 |
CN110256377A (zh) * | 2019-06-14 | 2019-09-20 | 浙江大学 | 一种离子液体催化制取糠醛的方法 |
Non-Patent Citations (10)
Title |
---|
CHEN, JINGPING: "Catalytic Conversion of Hemicellulose-Pentose into Furfural by Ionic Liquid", SCIENCE-ENGINEERING (A), CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 6, 15 June 2017 (2017-06-15), ISSN: 1674-0246, DOI: 20200701163401X * |
CHEN, JINGPING: "Catalytic Conversion of Hemicellulose-Pentose into Furfural by Ionic Liquid", SCIENCE-ENGINEERING (A), CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 6, 15 June 2017 (2017-06-15), ISSN: 1674-0246, DOI: 20200701163411Y * |
LI, CHANGZHI ET AL.: "Direct Conversion of Glucose and Cellulose to 5-Hydroxymethylfurfural in Ionic Liquid under Microwave Irradiation", TETRAHEDRON LETTERS, vol. 50, no. 38,, 15 July 2009 (2009-07-15), XP026437331, ISSN: 0040-4039, DOI: 20200701171031A * |
MORAS, ANA RITA C. ET AL.: "A Green and Efficient Approach to Selective Conversion of Xylose and Biomass Hemicellulose into Furfural in Aqueous Media Using High-pressure CO2 as a Sustainable Catalyst", GREEN CHEM., vol. 18, no. 10, 25 February 2016 (2016-02-25), XP055764443, ISSN: 1463-9270, DOI: 20200701165127Y * |
WANG, SHURONG ET AL.: "Conversion of C5 Carbohydrates into Furfural Catalyzed by a Lewis Acidic Ionic Liquid in Renewable γ-Valerolactone", GREEN CHEM., vol. 19, no. 16, 18 July 2017 (2017-07-18), XP055764442, ISSN: 1463-9270, DOI: 20200701164009X * |
WANG, SHURONG ET AL.: "Conversion of C5 Carbohydrates into Furfural Catalyzed by a Lewis Acidic Ionic Liquid in Renewable γ-Valerolactone", GREEN CHEM., vol. 19, no. 16, 18 July 2017 (2017-07-18), XP055764442, ISSN: 1463-9270, DOI: 20200701164031Y * |
ZHAO, YUAN ET AL.: "Dehydration of Xylose to Furfural in Butanone Catalyzed by Brønsted‐Lewis Acidic Ionic Liquids", ENERGY SCIENCE & ENGINEERING, vol. 7, no. 5, 18 August 2019 (2019-08-18), XP055764440, ISSN: 2050-0505, DOI: 20200701161953PX * |
ZHAO, YUAN ET AL.: "Enhanced Furfural Production from Biomass and its Derived Carbohydrates in the Renewable Butanone–water Solvent System", SUSTAINABLE ENERGY FUELS, vol. 3, no. 11,, 12 September 2019 (2019-09-12), XP055764438, ISSN: 2398-4902, DOI: 20200701160025PX * |
ZHAO, YUAN ET AL.: "Experimental and Kinetic Study of Arabinose Conversion to Furfural in Renewable Butanone−Water Solvent Mixture Catalyzed by Lewis Acidic Ionic Liquid Catalyst", IND. ENG. CHEM. RES., vol. 58,, no. 36, 13 August 2019 (2019-08-13), XP055764435, ISSN: 1520-5045, DOI: 20200701155514PX * |
ZHOU, CUNSHAN ET AL.: "Properties and Catalytic Activity of Magnetic and Acidic Ionic Liquids:Experimental and Molecular Simulation", CARBOHYDRATE POLYMERS, vol. 105, 31 January 2014 (2014-01-31), XP028843803, ISSN: 0144-8617, DOI: 20200701165640A * |
Also Published As
Publication number | Publication date |
---|---|
CN110256377A (zh) | 2019-09-20 |
CN110256377B (zh) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ye et al. | Recent progress in furfural production from hemicellulose and its derivatives: Conversion mechanism, catalytic system, solvent selection | |
Hu et al. | Recent advance on the catalytic system for efficient production of biomass-derived 5-hydroxymethylfurfural | |
Wang et al. | Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran | |
WO2020248781A1 (zh) | 一种离子液体催化制取糠醛的方法 | |
Zhao et al. | A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion | |
Shen et al. | Eco-friendly method for efficient conversion of cellulose into levulinic acid in pure water with cellulase-mimetic solid acid catalyst | |
Ding et al. | Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst | |
Van de Vyver et al. | Recent advances in the catalytic conversion of cellulose | |
EP2303825B1 (en) | Chemical transformation of lignocellulosic biomass into fuels and chemicals | |
CN104072450B (zh) | 生物质原料制备5-羟甲基糠醛与糠醛的新方法 | |
Wang et al. | Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid | |
Xu et al. | Recent advances on solid acid catalyic systems for production of 5-Hydroxymethylfurfural from biomass derivatives | |
CN107501215B (zh) | 一种连续化制备5-羟甲基糠醛及其衍生物的方法和装置 | |
CN102911142B (zh) | 一种制备5-羟甲基糠醛的方法 | |
Nis et al. | Efficient direct conversion of lignocellulosic biomass into biobased platform chemicals in ionic liquid-water medium | |
CN112608289B (zh) | 一种有机溶剂-离子液体复合体系催化生物基果糖高效制取5-羟甲基糠醛的方法 | |
Li et al. | Phosphotungstic acid functionalized biochar for furfural production from corncob | |
CN105272950A (zh) | 一种由碳水化合物制取5-羟甲基糠醛的方法 | |
Zhou et al. | Efficient conversion of cellulose to methyl levulinate over heteropoly acid promoted by Sn-Beta zeolite | |
Kalane et al. | Synergistic effect of hetero-and homo-catalysts on the ‘green’synthesis of 5-hydroxymethylfurfural from chitosan biomass | |
CN106810431A (zh) | 铱配合物催化氢化5-羟甲基糠醛制1-羟基-2,5-己二酮的方法 | |
Zhao et al. | Enhancement of furfural formation from C5 carbohydrates by NaCl in a green reaction system of CO2–water–isopropanol | |
Wang et al. | Catalytic production of 5-hydroxymethylfurfural from lignocellulosic biomass: Recent advances, challenges and opportunities | |
CN104072335A (zh) | 一种纤维素催化转化制二元醇、六元醇和γ-戊内酯的方法 | |
Zuo et al. | The synthesis of potential biofuel 5-ethoxymethylfurfural: A review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20821901 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20821901 Country of ref document: EP Kind code of ref document: A1 |