WO2020248557A1 - 一种软体仿生足式机器人 - Google Patents

一种软体仿生足式机器人 Download PDF

Info

Publication number
WO2020248557A1
WO2020248557A1 PCT/CN2019/125876 CN2019125876W WO2020248557A1 WO 2020248557 A1 WO2020248557 A1 WO 2020248557A1 CN 2019125876 W CN2019125876 W CN 2019125876W WO 2020248557 A1 WO2020248557 A1 WO 2020248557A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
bending
torsion
contraction
software
Prior art date
Application number
PCT/CN2019/125876
Other languages
English (en)
French (fr)
Inventor
丁亮
高海波
牛丽周
苏杨
邓宗全
李楠
刘振
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Publication of WO2020248557A1 publication Critical patent/WO2020248557A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1085Programme-controlled manipulators characterised by positioning means for manipulator elements positioning by means of shape-memory materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J18/00Arms
    • B25J18/06Arms flexible
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1095Programme-controlled manipulators characterised by positioning means for manipulator elements chemically actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/14Programme-controlled manipulators characterised by positioning means for manipulator elements fluid
    • B25J9/142Programme-controlled manipulators characterised by positioning means for manipulator elements fluid comprising inflatable bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Definitions

  • the invention relates to the technical field of robots, in particular to a software bionic foot robot
  • the problem solved by the present invention is that in the existing software robots, it is difficult for the software manipulator to realize multi-posture compound movement, and it is inconvenient to move and operate under complicated working conditions.
  • the present invention provides a software bionic foot robot, including a plurality of software manipulator arms, the software manipulator arm is provided with a plurality of motion units, each of the motion units includes a torsion module, an extension module, and a contraction module.
  • the module and the bending module One or more of the module and the bending module; a combination of a plurality of the movement units realizes the movement of the soft manipulator in full posture.
  • the torsion module includes a first elastic base, a counterclockwise torsion driver, and a clockwise torsion driver.
  • the counterclockwise torsion driver is along the first
  • the central axis of an elastic base is symmetrically arranged in the first elastic base in a left-handed manner
  • the clockwise torsion driver is symmetrically arranged in the first elastic base in a right-handed manner along the central axis of the first elastic base in.
  • both the counterclockwise torsion driver and the clockwise torsion driver adopt one of shape memory alloy spring drive, linear drive, pneumatic drive or dielectric high elastic body drive.
  • the elongation module includes a second elastic base and an elongation driver; the elongation driver is a circular ring, and the elongation driver is evenly arranged in the direction of the generatrix of the second elastic base. In the second elastic matrix.
  • the extension driver adopts one of shape memory alloy spring drive and chemical reaction drive.
  • the contraction module includes a third elastic base, a contraction driver and a baffle; there are a plurality of the contraction drivers, and the contraction drivers are symmetrically arranged on the third elastic base along the central axis of the third elastic base.
  • the baffle is arranged in the third elastic base and connected to one end of the shrink driver.
  • the shrink drive adopts one of shape memory alloy spring drive and line drive.
  • the bending module includes a fourth elastic base and a bending driver; there are multiple bending drivers, and the bending drivers are evenly arranged on the fourth elastic base along the central axis of the fourth elastic base. , And the bending driver is parallel to the direction of the generatrix of the fourth elastic base.
  • the bending drive adopts one of shape memory alloy spring drive, line drive, pneumatic drive or dielectric high elastic body drive.
  • the adjacent motion units are integrally formed or detachably connected.
  • a hose is further provided inside the movement unit, and the inside of the hose is filled with solid particles; the inside of the hose is evacuated, and the solid particles contact and squeeze each other, which increases the rigidity of the soft manipulator .
  • the movement unit at the end of the soft manipulator arm is provided with a pneumatic suction cup, and the pneumatic suction cup is evenly arranged on the outer surface of the movement unit along the bus bar.
  • At least two of the soft manipulator arms are operating arms, and a sensor module group is provided on the operating arm, and the sensor module group includes:
  • An identification sensor which is used to detect basic attributes such as the shape and color of the target object
  • a distance sensor the position, angle and distance information of the target object of the distance sensor
  • the proximity sensor is used to detect the movement and position information of the target object
  • a pressure sensor which is used to detect information such as the magnitude and distribution of pressure when the target object is grasped
  • the slip sensor is used to detect the degree of slip when grasping the target object.
  • the mechanical arm includes two movement units, a torsion arm unit and a telescopic arm unit, respectively, the torsion arm unit and the telescopic arm unit are detachably connected by a connecting piece;
  • the torsion arm unit is provided with a torsion The module and the bending module realize torsion and bending;
  • the telescopic arm unit is provided with an extension module, a contraction module and a bending module, which respectively realize extension, contraction and bending.
  • the soft manipulator arm includes three movement units, which are arranged in sequence along the extension direction of the soft manipulator arm, namely a root movement unit, a middle movement unit, and an end movement unit;
  • the root movement unit is provided with a bending The module and the contraction module realize bending and contraction respectively;
  • the middle movement unit is provided with a bending module and a contraction module to realize bending and contraction respectively;
  • the end movement unit is provided with a bending module and a torsion module to realize bending and torsion respectively.
  • the soft manipulator includes three motion units, which are arranged in sequence along the extension direction of the manipulator, namely a root motion unit, a middle motion unit, and an end motion unit;
  • the root motion unit is provided with a bending module And a torsion module to realize bending and torsion respectively;
  • the middle movement unit is provided with a bending module and a contraction module to realize bending and contraction respectively;
  • the end movement unit is provided with a bending module and an extension module to realize bending and extension respectively.
  • the soft manipulator includes six motion units, which are arranged in sequence along the extension direction of the soft manipulator, and are respectively a first motion unit, a second motion unit, a third motion unit, a fourth motion unit, and a second motion unit.
  • Five movement units and a sixth movement unit the first movement unit includes a bending module and a contraction module, which realize bending and contraction respectively; the second movement unit includes a bending module and a torsion module which realize bending and twisting respectively;
  • the three motion units include a bending module and an elongation module, which realize bending and extension respectively;
  • the fourth motion unit includes a contraction module and a torsion module, which realize contraction and twisting respectively;
  • the fifth motion unit includes a contraction module and an extension module, which realize respectively Contraction and extension;
  • the sixth movement module includes an extension module and a torsion module, which realize extension and torsion respectively.
  • the software bionic foot robot can swim and crawl underwater and crawl on land or slopes through a soft manipulator composed of different motion units. So as to adapt to more complex environments and realize more abundant functions; 2.
  • the motion posture is no longer limited to a single bending, twisting, elongation and shortening.
  • the software manipulator can realize full posture motion, and its motion form is more complete; it adopts modules
  • the structure of the soft manipulator is designed with different modules, and the motion forms of extension, shortening, bending, and torsion are realized through different modules.
  • the modular segmented drive takes into account the completeness of the soft manipulator's movement and the convenience of control. The integration of too many drivers in the same software manipulator leads to problems such as too complex structure and too bulky.
  • Figure 1 is a schematic structural diagram of an embodiment of the present invention
  • Figure 2 is a partial exploded schematic diagram of Figure 1;
  • Figure 3 is a bottom schematic view of an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of an embodiment of a soft robotic arm
  • Fig. 5 is a schematic structural diagram of an embodiment of the torsion module
  • Fig. 6 is a schematic structural diagram of an embodiment of an extension module
  • FIG. 7 is a schematic structural diagram of an embodiment of the shrink module
  • Fig. 8 is a schematic structural diagram of an embodiment of a bending module.
  • 1-soft manipulator 2-flexible shell, 3-base, 4-flexible battery, 5-DSP control module, 6-wireless communication module, 7-built-in sensor module, 8-fastening module;
  • 11-Motion Unit 12-Connector, 13-Hose, 14-Pneumatic Suction Cup, 15-Sensor Module Group, 16-Torsion Module, 17-Elongation Module, 18-Contraction Module, 19-Bending Module, 81-Ball ;
  • 111-torsion arm unit 112-telescopic arm unit, 161-first elastic base, 162-clockwise twist drive, 163-counterclockwise twist drive, 171-second elastic base, 172-extension drive, 181-third Elastic base, 182-retracting driver, 183-baffle, 191-fourth elastic base, 192-bending driver.
  • a software bionic foot robot includes a plurality of software manipulator arms 1.
  • the software manipulator arm 1 is provided with a plurality of motion units 11, and each motion unit 11 includes a torsion module 16, an extension One or more of the module 17, the contraction module 18, and the bending module 19; a combination of multiple motion units 11 realizes the full posture motion of the soft manipulator 1.
  • the full posture motion means that the soft manipulator 1 is no longer restricted to a single realization of extension, contraction, bending, and torsion, but can realize different combinations of extension, contraction, bending, and torsion.
  • the present invention can not only realize the underwater swimming and crawling of the soft bionic foot robot and its crawling on land or slope through the soft manipulator 1 composed of different motion units 11, so as to adapt to a more complex environment and realize more abundant And the motion posture is no longer limited to a single bending, twisting, elongation and shortening.
  • the software manipulator 1 can achieve full posture motion, and its motion form is more complete; at the same time, the modular concept is used to design the software manipulator 1 Structure, through different modules to achieve extension, shortening, bending, torsion and other motion forms, modular segmented drive takes into account the completeness of the movement of the soft manipulator 1 and the convenience of control, avoiding the integration of the same soft manipulator 1 Too many drives lead to problems such as too complex structure and too bulky.
  • the torsion module 16 includes a first elastic base 161, a counterclockwise torsion driver 163, and a clockwise torsion driver 162.
  • 163 is symmetrically disposed in the first elastic base 161 in a left-handed manner along the central axis of the first elastic base 161
  • a clockwise twisting driver 162 is symmetrically disposed in the first elastic base in a right-handed manner along the central axis of the first elastic base 161 161 in.
  • the first elastic base 161 is made of an elastic material, which may be silica gel; the counterclockwise torsion driver 163 and the clockwise torsion driver 162 are driven by shape memory alloy springs, linear drives, pneumatic drives, or dielectric elastomer drives.
  • shape memory alloy springs linear drives, pneumatic drives, or dielectric elastomer drives.
  • the clockwise torsion driver 162 and the counterclockwise torsion driver 163 can be optionally driven by a shape memory alloy spring, and the shape memory alloy spring can be deformed after being energized, thereby driving.
  • the shape memory alloy spring When the counterclockwise twisting driver 163 is energized and heated, the shape memory alloy spring is energized and contracted. At this time, each section of the first elastic base 161 receives a counterclockwise torsion moment, so that the end of the first elastic base 161 rotates counterclockwise relative to the root. , So as to realize the counterclockwise twisting function of the twisting module 16; after the counterclockwise twisting driver 163 is stopped energizing, the shape memory alloy spring drives the first elastic base 161 to return to the initial state.
  • the shape memory alloy spring when the clockwise and counterclockwise twisting actuator 163 is energized and heated, the shape memory alloy spring is energized and contracted. At this time, each section of the first elastic base 161 receives a counterclockwise torsion moment, so that the end of the first elastic base 161 is relative to the root. The clockwise rotation occurs, thereby realizing the clockwise twisting function of the twisting module 16; after the clockwise twisting driver 162 is stopped energizing, the shape memory alloy spring drives the second elastic substrate to return to the initial state.
  • the extension module 17 includes a second elastic base 171 and an extension driver 172; the extension driver 172 is of a circular ring shape, and the extension driver 172 is evenly arranged along the direction of the generatrix of the second elastic base 171 In the second elastic matrix 171.
  • the second elastic base 171 is made of an incompressible material; the elongation actuator 172 is driven by a shape memory alloy spring or a chemical reaction.
  • the extension actuator 172 may be a shape memory alloy spring, and the shape memory alloy spring can be deformed after being energized to drive it.
  • the annular shape memory alloy spring When the extension actuator 172 is energized and heated, the annular shape memory alloy spring uniformly shrinks inward. Since the shape memory alloy spring is evenly distributed in the second elastic base 171, the second elastic base 171 is subjected to the radial direction of the shape memory alloy spring. The force shrinks inwardly. At the same time, since the second elastic base 171 is an incompressible material, it will extend along the axial direction, thereby realizing the elongation function of the elongation module 17. After the elongation driver 172 stops being energized, the shape The memory alloy spring drives the second elastic base 171 to return to the initial state.
  • the shrinking module 18 includes a third elastic base 181, a shrinking driver 182, and a baffle 183; there are multiple shrinking drivers 182, and the shrinking drivers 182 are symmetrically arranged along the central axis of the third elastic base 181 In the third elastic base 181; the blocking piece 183 is provided in the third elastic base 181 and is connected to one end of the contraction driver 182.
  • the third elastic base 181 is made of an elastic material, which may be silica gel; the baffle 183 is dish-shaped, which has the purpose of promoting the contraction module 18 to be uniformly stressed; the contraction driver 182 is driven by a shape memory alloy spring and is driven by a line.
  • the contraction actuator 182 can be driven by a shape memory alloy spring, and the shape memory alloy spring can be deformed after being energized to drive it.
  • the shape memory alloy spring is shortened, and the baffle 183 causes the third elastic base 181 to receive a uniform load and shrink along the central axis of the third elastic base 181, thereby realizing the shrinking function of the shrinking module 18.
  • the bending module 19 includes a fourth elastic base 191 and a bending driver 192; there are multiple bending drivers 192, and the bending drivers 192 are evenly arranged on the fourth elastic base 192 along the central axis of the fourth elastic base.
  • the bending driver 192 is parallel to the generatrix direction of the fourth elastic base 191.
  • the fourth elastic base 191 is made of elastic material, which may be silicone; the bending driver 192 adopts one of shape memory alloy spring drive, line drive, pneumatic drive or dielectric high elastic body drive; the bending drive 192 is optional Driven by a shape memory alloy spring, the shape memory alloy spring can deform after being energized to drive it.
  • the bus bars of the fourth elastic base 191 bend in four different directions.
  • the combination of different bending shape memory alloy springs can also be used to achieve bending in any direction, thereby realizing the bending function of the bending module 19.
  • adjacent moving units 11 are integrally formed or detachably connected. Therefore, when the adjacent motion units 11 are integrally formed, the integrity of the soft manipulator 1 is facilitated; when the adjacent motion units 11 are detachably connected, different segments can be selected and combined according to actual needs, which can adapt to different working conditions.
  • the movement unit 11 is also provided with a hose 13 inside, and the inside of the hose 13 is filled with solid particles; when the inside of the hose 13 is evacuated, the solid particles inside are contacted and squeezed, thereby realizing a soft robotic arm 1 Increase in rigidity.
  • the movement unit 11 at the end of the soft manipulator arm 1 is provided with pneumatic suction cups 14, and the pneumatic suction cups 14 are evenly arranged along the bus bar of the movement unit 11.
  • the soft robot arm 1 can be adsorbed to the target object.
  • At least two soft manipulators 1 are operating arms, and the operating arms are provided with a sensor module group 15, which includes: identification sensors for detecting basic attributes such as the shape and color of the target object; distance sensors, It is used to detect the position, angle and distance information of the target object; the proximity sensor is used to detect the movement and position information of the target object; the pressure sensor is used to detect the pressure size and distribution of the target object.
  • identification sensors for detecting basic attributes such as the shape and color of the target object
  • distance sensors It is used to detect the position, angle and distance information of the target object
  • the proximity sensor is used to detect the movement and position information of the target object
  • the pressure sensor is used to detect the pressure size and distribution of the target object.
  • the software bionic foot robot also includes a base 3, a flexible shell 2, a flexible battery 4, a micro camera 9, a built-in sensor module 7 and a control system.
  • the base 3 and the flexible shell 2 are detached and connected together, and the base 3 and the flexible shell 2
  • the inside constitutes an installation cavity;
  • the control system includes a DSP control module 5 and a wireless communication module 6.
  • the flexible battery 4, the built-in sensor module 7, the DSP control module 5, and the wireless communication module 6 are located in the installation cavity; the miniature camera is embedded in the flexible housing 2.
  • the DSP control module 5 is wirelessly connected to an independent upper computer module through the wireless communication module 6, and is responsible for remotely controlling the software bionic foot robot through the upper computer module.
  • the flexible battery 4 supplies power to the software bionic foot robot, and the micro camera 9 is responsible for image collection and real-time observation.
  • the built-in sensor module 7 mainly includes an ultrasonic sensor, a torque sensor, a speed and acceleration sensor, a temperature and humidity sensor, etc.
  • Ultrasonic sensors are used for the software bionic foot robot to navigate and avoid obstacles; the torque sensor is used to monitor the torque of the main force-bearing parts to provide safety warnings for the software bionic foot robot; the speed and acceleration sensors are used to detect the inside of the software bionic foot robot The speed and acceleration of the system; The temperature and humidity sensor is used to detect the temperature and humidity of the surrounding environment to ensure the safety of the working environment of the software bionic foot robot.
  • a fastening module 8 is arranged between the base 3 and the soft manipulator 1, and a spherical ball 81 is installed at the part in contact with the ground.
  • the soft manipulator 1 is symmetrical and evenly arranged along the central axis of the base 3.
  • the software bionic foot robot includes eight software manipulator arms 1, and each software manipulator arm 1 includes two motion units 11, namely a torsion arm unit 111 and a telescopic arm unit. 112, the torsion arm unit 111 and the telescopic arm unit 112 are detachably connected by the connecting piece 12; wherein the torsion arm unit 111 is provided with a torsion module 16 and a bending module 19 to realize twisting and bending; the telescopic arm unit 112 is provided with an extension module 17 , The shrinking module 18 and the bending module 19 respectively realize extension, contraction and bending.
  • the torsion arm unit 111 and the telescopic arm unit 112 are combined to form a soft manipulator 1, which can realize the twisting of the root and the extension, contraction and bending of the end.
  • the soft manipulator 1 has a conical shape as a whole.
  • the first elastic base 161 has a conical shape and a cylindrical through hole is left in the center.
  • the second elastic base 171 has a conical shape and a cylindrical through hole in the center;
  • the contraction module 18 the third elastic
  • the shape of the base body 181 is conical and a cylindrical through hole is left in the center, and the contraction driver 182 is provided with four;
  • the fourth elastic base body 191 is in a conical shape and a cylindrical through hole is left in the center, and the bending driver 192 There are four.
  • the connecting member 12 is a connecting ring, one end is connected to the torsion arm unit 111, and the other end is connected to the telescopic arm unit 112, so as to realize the detachable connection of the torsion arm unit 111 and the telescopic arm unit 112.
  • the torsion arm unit 111 and the telescopic arm unit 112 are also provided with a hose 13, which is respectively located in the through holes of the torsion module 16, the extension module 17, the contraction module 18 and the bending module 19, and the hose 13 is filled with There are solid particles; when the hose 13 is evacuated, the solid particles contact and squeeze each other, which promotes the rigidity of the torsion arm unit 111 and the telescopic arm unit 112 to increase.
  • a pneumatic suction cup 14 is arranged at the end of the telescopic arm unit 112, and the pneumatic suction cup 14 is evenly arranged along the bus bar of the telescopic arm unit 112.
  • the telescopic arm unit 112 can be adsorbed to the target object.
  • the eight soft manipulators 1 of the soft bionic foot robot are named according to their orientation.
  • the four on the left are: L1, L2, L3, and L4; the four on the right are: R1, R2, R3, R4, among them, L1 and R1 are operating arms, and the rest are moving arms.
  • the operating arm L1 (R1) first stretches forward and bypasses the target object.
  • the end sensor module detects the distance between the operating arm and the target object and feeds it back to the DSP control module 5, which controls the DSP module 5 Control the operating arm to move closer to the target object; simultaneously energize the bending drive 192 on the right side of the torsion arm unit 111 and the torsion arm unit 112 in the operating arm L1, and the bending drive 192 on the left side of the torsion arm unit 111 and the torsion arm unit 112 in the operating arm R1.
  • the DSP control module 5 outputs the PWM signal to control the change of the driver; first, move the arm L3 , R2 and R4 as a group, called the fixed group.
  • the torsion drives of the moving arms L3, R2 and R4 are energized and heated to make the soft manipulator arm 1 twist.
  • the pneumatic suction cup 14 is parallel to the ground, and the pneumatic suction cup 14 Ventilate it to adsorb to the ground to fix the position of the soft bionic foot robot; then the mobile arms L2, R3, and L4 are used as a group, which is called the mobile group.
  • the pneumatic suction cup 14 removes the air pressure, the fixed group is separated from the ground, the driver stops energizing, and the moving arm returns to its normal shape.
  • the fixed group and the mobile group are interchanged, and the two groups alternately swing to realize the movement of the soft bionic foot robot on a flat ground.
  • the pneumatic suction cups 14 of the moving arms L4 and R4 need to be ventilated to make L4 and R4 adsorb to the ground.
  • the internal hoses 13 of the two are pumped to increase their rigidity and support the tail;
  • the pneumatic suction cups 14 of the moving arms L3 and R3 are ventilated to make them adsorb on the inclined surface.
  • the clockwise twisting driver 162 in the moving arm L3 and the counterclockwise twisting driver 163 in the moving arm R3 are energized at the same time, and the opposite direction twists are generated to make the software
  • the bionic foot robot moves upward; then, the bending drive 192 on the right side of the telescopic arm unit 112 and the torsion arm unit 111 in the moving arm L4, the bending drive 192 on the left side of the telescopic arm unit 112 and the torsion arm unit 111 in the moving arm R4 are energized at the same time, so that L4 and R4 are bent inward, then the pneumatic suction cups 14 in L4 and R4 are ventilated, and the hose 13 is sucked to make it adsorb to the ground and play a supporting role; secondly, the pneumatic suction cups 14 of the moving arms L2 and R2 are ventilated to make them adsorb to the slope and remove Driven by the moving arms L3 and R3, the clockwise twisting driver 162 of
  • the soft bionic foot robot moves in the water, it remains horizontal. First, the moving arms L2 and R2 keep bending outward, and the remaining moving arms keep bending inward.
  • the software bionic foot robot moves forward, by changing the duty cycle of the PWM signal, the mobile arms L2 and R2 are prompted to bend inward quickly, and the remaining mobile arms rapidly swing outward, driving the software bionic foot robot to swing forward; The moving arm slowly returns to the initial state, forming a cycle.
  • the soft-bodied foot robot can move in a straight line underwater.
  • the software bionic foot robot can rotate in the water.
  • the bending drive 192 on the right side of the torsion arm unit 111 and the telescopic arm unit 112 in the moving arms L2 and L3, and the bending drive on the left side of the torsion arm unit 111 and the telescopic arm unit 112 in the moving arms R2 and R3 192 is energized at the same time to bend the mobile arm, and through the force of water on the soft manipulator 1, drive the soft bionic foot robot to rotate counterclockwise (clockwise) around the centroid main shaft.
  • the soft manipulator 1 is divided into two sections, but its structure is not limited to this.
  • the soft manipulator 1 changes the matching mode of different modules according to different working conditions, and can adopt a multi-stage structure.
  • the soft manipulator 1 can change the combination and collocation mode of each motion module according to needs, such as three sections, six sections, etc.
  • the soft manipulator 1 includes three movement units 11, which are sequentially arranged along the extension direction of the soft manipulator 1, which are a root movement unit, a middle movement unit, and an end movement unit; the root movement unit is provided with a bending module 19.
  • the end movement unit is equipped with a bending module 19 and a contraction module 18, which realize bending and contraction respectively;
  • the root movement unit is equipped with a bending module 19 and a torsion module 16, which realize bending and torsion respectively .
  • the soft manipulator 1 includes three movement units 11, which are sequentially arranged along the extension direction of the soft manipulator 1, which are a root movement unit, a middle movement unit, and an end movement unit; the root movement unit is provided with a bending module 19.
  • the torsion module 16 realizes bending and torsion respectively;
  • the end movement unit is equipped with a bending module 19 and a contraction module 18 to realize bending and contraction respectively;
  • the root movement unit is equipped with a bending module 19 and an extension module 17 to realize bending and extension respectively .
  • the soft bionic foot robot can survey narrow caves under the action of the soft manipulator arm.
  • the soft manipulator 1 includes six movement units 11, which are sequentially arranged along the extension direction of the soft manipulator 1, and are respectively a first movement unit, a second movement unit, a third movement unit, and a fourth movement unit.
  • the first movement unit includes a bending module 19 and a contraction module 18, which respectively realize bending and contraction;
  • the second movement unit includes a bending module 19 and a torsion module 16, which respectively realize bending and torsion;
  • third The movement unit includes a bending module 19 and an elongation module 17, which respectively realize bending and extension;
  • the fourth movement unit includes a contraction module 18 and a torsion module 16, which respectively realize contraction and twist;
  • the fifth movement unit includes a contraction module 18 and an extension module 17, respectively To achieve contraction and extension;
  • the sixth movement module includes an extension module 17 and a torsion module 16, which respectively implement extension and torsion.

Abstract

一种软体仿生足式机器人,包括多个软体机械臂(1),所述软体机械臂设有多个运动单元(11),每个所述运动单元包括扭转模块(16)、伸长模块(17)、收缩模块(18)和弯曲模块(19)中的一种或多种;多个所述运动单元组合,实现软体机械臂全姿态的运动。通过不同运动单元组成的软体机械臂,实现软体仿生足式机器人在水下的游动、爬行以及其在陆地或斜坡上的爬行,从而适应更加复杂的环境、实现更加丰富的功能;而且运动姿态不再局限于单一的弯曲、扭转、伸长和缩短,软体机械臂可以实现全姿态的运动,其运动形式更加完整。

Description

一种软体仿生足式机器人 技术领域
本发明涉及机器人技术领域,具体而言,涉及一种软体仿生足式机器人
背景技术
随着机器人产业的迅速发展,机器人技术已应用到各个领域,但是由于传统刚性机器人结构的限制,其在坎坷地形或陡峭地形中的行动十分受限。传统刚性机器人存在结构笨重、噪音较大、可靠性低、安全系数低、环境适应性差等不足,难以完全适应医疗康复、抢险救援、人机安全交互、复杂环境勘测等社会需求。软体机器人由于软体材料本身柔软性和可变形性,理论上具有无限多个自由度,近年来备受广大学者的瞩目。
但是,在现有软体机器人中,软体机械臂难以实现多姿态复合的运动,不便在复杂工况下进行移动和操作作业。
发明内容
本发明解决的问题是在现有软体机器人中,软体机械臂难以实现多姿态复合的运动,不便在复杂工况下进行移动和操作作业。
为解决上述问题,本发明提供一种软体仿生足式机器人,包括多个软体机械臂,所述软体机械臂设有多个运动单元,每个所述运动单元包括扭转模块、伸长模块、收缩模块和弯曲模块中的一种或多种;多个所述运动单元组合,实现软体机械臂全姿态的运动。
可选地,所述扭转模块包括第一弹性基体、逆时针扭转驱动器和顺时针扭转驱动器,所述逆时针扭转驱动器和顺时针扭转驱动器均设有多个,所述逆时针扭转驱动器沿着所述第一弹性基体的中心轴以左旋方式对称设置在所述第一弹性基体中,所述顺时针扭转驱动器沿着所述第一弹性基体的中心轴以右旋方式对称设置在所述第一弹性基体中。
可选地,所述逆时针扭转驱动器和所述顺时针扭转驱动器均采用形状记忆合金弹簧驱动、线驱动、气压驱动或者介电高弹性体驱动中的一种。
可选地,所述伸长模块包括第二弹性基体、伸长驱动器;所述伸长驱动器为圆环型,所述伸长驱动器沿着所述第二弹性基体的母线方向均匀布置在所述第二弹性基体中。
可选地,所述伸长驱动器采用形状记忆合金弹簧驱动、化学反应驱动中的一种。
可选地,所述收缩模块包括第三弹性基体、收缩驱动器和挡片;所述收缩驱动器设有多个,所述收缩驱动器沿着所述第三弹性基体的中心轴对称布置在第三弹性基体中;所述挡片设置在第三弹性基体中,并与所述收缩驱动器的一端连接。
可选地,所述收缩驱动器采用形状记忆合金弹簧驱动、线驱动中的一种。
可选地,所述弯曲模块包括第四弹性基体、弯曲驱动器;所述弯曲驱动器设有多个,所述弯曲驱动器沿着所述第四弹性基体的中心轴均匀布置在所述第四弹性基体中,且所述弯曲驱动器平行于第四弹性基体的母线方向。
可选地,所述弯曲驱动器采用形状记忆合金弹簧驱动、线驱动、气压驱动或者介电高弹性体驱动中的一种。
可选地,相邻所述运动单元一体成型或可拆卸连接。
可选地,所述运动单元内部还设有软管,所述软管内部填充有固体颗粒;所述软管内部被抽气,所述固体颗粒相互接触挤压,所述软体机械臂刚度增加。
可选地,所述软体机械臂端部的所述运动单元设有气动吸盘,所述气动吸盘沿所述运动单元的母线均匀布置于其外表面。
可选地,至少有两个所述软体机械臂为操作臂,所述操作臂上设有传感器模块组,所述传感器模块组包括:
识别传感器,所述识别传感器用于检测目标物体的形状、颜色等基本属性;
距离传感器,所述距离传感器目标物体的位置、角度和距离信息;
接近觉传感器,所述接近觉传感器用于检测目标物体的移动与位置信息;
压力传感器,所述压力传感器用于检测抓持目标物体时的压力大小、分布等信息;
滑觉传感器,所述滑觉传感器用于检测抓持目标物体时的滑移程度。
可选地,所述机械臂包括两个运动单元,分别为扭转臂单元和伸缩臂单元,所述扭转臂单元和所述伸缩臂单元通过连接件拆卸式连接;所述扭转臂 单元设有扭转模块和弯曲模块,实现扭转和弯曲;所述伸缩臂单元设有伸长模块、收缩模块和弯曲模块,分别实现伸长、收缩和弯曲。
可选地,所述软体机械臂包括三个运动单元,沿着所述软体机械臂延伸方向依次设置,分别为根部运动单元、中部运动单元、端部运动单元;所述根部运动单元设有弯曲模块和收缩模块,分别实现弯曲和收缩;所述中部运动单元设有弯曲模块和收缩模块,分别实现弯曲和收缩;所述端部运动单元设有弯曲模块和扭转模块,分别实现弯曲和扭转。
可选地,所述软体机械臂包括三个运动单元,沿着所述机械臂延伸方向依次设置,分别为根部运动单元、中部运动单元、端部运动单元;所述根部运动单元设有弯曲模块和扭转模块,分别实现弯曲和扭转;所述中部运动单元设有弯曲模块和收缩模块,分别实现弯曲和收缩;所述端部运动单元设有弯曲模块和伸长模块,分别实现弯曲和伸长。
可选地,所述软体机械臂包括六个运动单元,沿着所述软体机械臂延伸方向依次设置,分别为第一运动单元、第二运动单元、第三运动单元、第四运动单元、第五运动单元和第六运动单元;所述第一运动单元包括弯曲模块和收缩模块,分别实现弯曲和收缩;所述第二运动单元包括弯曲模块和扭转模块,分别实现弯曲和扭转;所述第三运动单元包括弯曲模块和伸长模块,分别实现弯曲和伸长;所述第四运动单元包括收缩模块和扭转模块,分别实现收缩和扭转;所述第五运动单元包括收缩模块和伸长模块,分别实现收缩和伸长;所述第六运动模块包括伸长模块和扭转模块,分别实现伸长和扭转。
相对于现有技术,本发明的有益效果是:1、可以通过不同运动单元组成的软体机械臂,实现软体仿生足式机器人在水下的游动、爬行以及其在陆地或斜坡上的爬行,从而适应更加复杂的环境、实现更加丰富的功能;2、运动姿态不再局限于单一的弯曲、扭转、伸长和缩短,软体机械臂可以实现全姿态的运动,其运动形式更加完整;采用模块化思想来设计软体机械臂的结构,通过不同的模块分别实现伸长、缩短、弯曲、扭转等运动形式,采用模块化分段驱动兼顾了软体机械臂运动的完整性和控制的方便性,避免了同一软体机械臂集成了过多驱动器导致结构过于复杂、体积过于庞大等问题。
附图说明
图1为本发明一种实施方式的结构示意图;
图2为图1的部分爆炸示意图;
图3为本发明一种实施方式的底部示意图;
图4为软体机械臂一种实施方式的结构示意图;
图5为扭转模块一种实施方式的结构示意图;
图6为伸长模块一种实施方式的结构示意图;
图7为收缩模块一种实施方式的结构示意图;
图8为弯曲模块一种实施方式的结构示意图。
附图标记说明:
1-软体机械臂、2-柔性外壳、3-基座、4-柔性电池、5-DSP控制模块、6-无线通信模块、7-内置传感模块、8-紧固模块;
11-运动单元、12-连接件、13-软管、14-气动吸盘、15-传感器模块组、16-扭转模块、17-伸长模块、18-收缩模块、19-弯曲模块、81-滚珠;
111-扭转臂单元、112-伸缩臂单元、161-第一弹性基体、162-顺时针扭转驱动器、163-逆时针扭转驱动器、171-第二弹性基体、172-伸长驱动器、181-第三弹性基体、182-收缩驱动器、183-挡片、191-第四弹性基体、192-弯曲驱动器。
具体实施方式
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
如图1-3所示,一种软体仿生足式机器人,包括多个软体机械臂1,所述软体机械臂1设有多个运动单元11,每个运动单元11包括扭转模块16、伸长模块17、收缩模块18和弯曲模块19中的一种或多种;多个运动单元11组合,实现软体机械臂1的全姿态运动。
全姿态运动是指:软体机械臂1不再拘泥于单一的实现伸长、缩短、弯曲、扭转,而是能够实现伸长、缩短、弯曲、扭转的不同组合。
本发明不仅能够通过不同运动单元11组成的软体机械臂1,实现软体仿生足式机器人在水下的游动、爬行以及其在陆地或斜坡上的爬行,从而适应更加复杂的环境、实现更加丰富的功能;而且运动姿态不再局限于单一的 弯曲、扭转、伸长和缩短,软体机械臂1可以实现全姿态的运动,其运动形式更加完整;同时采用模块化思想来设计软体机械臂1的结构,通过不同的模块分别实现伸长、缩短、弯曲、扭转等运动形式,采用模块化分段驱动兼顾了软体机械臂1运动的完整性和控制的方便性,避免了同一软体机械臂1集成了过多驱动器导致结构过于复杂、体积过于庞大等问题。
具体地,如图5所示,扭转模块16包括第一弹性基体161、逆时针扭转驱动器163和顺时针扭转驱动器162,逆时针扭转驱动器163和顺时针扭转驱动器162均设有多个,逆时针扭转驱动器163沿着第一弹性基体161的中心轴以左旋方式对称设置在第一弹性基体161中,顺时针扭转驱动器162沿着第一弹性基体161的中心轴以右旋方式对称设置在第一弹性基体161中。
其中,第一弹性基体161由弹性材料制成,可选为硅胶;逆时针扭转驱动器163和顺时针扭转驱动器162均采用形状记忆合金弹簧驱动、线驱动、气压驱动或者介电高弹性体驱动中的一种;顺时针扭转驱动器162和逆时针扭转驱动器163可选为形状记忆合金弹簧驱动,形状记忆合金弹簧通电后能够产生形变,从而进行驱动。
当逆时针扭转驱动器163通电加热时,形状记忆合金弹簧通电收缩,此时第一弹性基体161各截面受到逆时针方向的扭转力矩从而使第一弹性基体161的端部相对于根部发生逆时针转动,从而实现扭转模块16的逆时针扭转功能;停止对逆时针扭转驱动器163通电后,形状记忆合金弹簧带动第一弹性基体161复位到初始状态。
同理,当顺逆时针扭转驱动器163通电加热时,形状记忆合金弹簧通电收缩,此时第一弹性基体161各截面受到逆时针方向的扭转力矩从而使第一弹性基体161的端部相对于根部发生顺时针转动,从而实现扭转模块16的顺逆时针扭转功能;停止对顺时针扭转驱动器162通电后,形状记忆合金弹簧带动第二弹性基体复位到初始状态。
具体地,如图6所示,伸长模块17包括第二弹性基体171、伸长驱动器172;伸长驱动器172为圆环型,伸长驱动器172沿着第二弹性基体171的母线方向均匀布置在第二弹性基体171中。
其中,第二弹性基体171由不可压缩材料制成;伸长驱动器172采用形状记忆合金弹簧驱动、化学反应驱动中的一种。伸长驱动器172可选为形状记忆合金弹簧,形状记忆合金弹簧通电后能够产生形变,从而进行驱动。
当伸长驱动器172通电加热时,圆环状形状记忆合金弹簧向内均匀收缩,由于形状记忆合金弹簧均布于第二弹性基体171中,因此第二弹性基体171受到形状记忆合金弹簧的径向力从而向内收缩,同时,由于第二弹性基体171是不可压缩的材料,其会沿着轴线方向伸长,从而实现伸长模块17的伸长功能,停止对伸长驱动器172通电后,形状记忆合金弹簧带动所述第二弹性基体171复位到初始状态。
具体地,如图7所示,收缩模块18包括第三弹性基体181、收缩驱动器182和挡片183;收缩驱动器182设有多个,收缩驱动器182沿着第三弹性基体181的中心轴对称布置在第三弹性基体181中;挡片183设置在第三弹性基体181中,并与收缩驱动器182的一端连接。
其中,第三弹性基体181由弹性材料制成,可选为硅胶;挡片183为碟形,起到促使收缩模块18受力均匀的目的;收缩驱动器182采用形状记忆合金弹簧驱动、线驱动中的一种,收缩驱动器182可选为形状记忆合金弹簧驱动,形状记忆合金弹簧通电后能够产生形变,从而进行驱动。
当收缩驱动器182通电加热时,形状记忆合金弹簧缩短,挡片183促使第三弹性基体181受均布载荷并沿着第三弹性基体181的中心轴收缩,从而实现收缩模块18的收缩功能。
具体地,如图8所示,所述弯曲模块19包括第四弹性基体191、弯曲驱动器192;弯曲驱动器192设有多个,弯曲驱动器192沿着第四弹性基体的中心轴均匀布置在第四弹性基体191中,且弯曲驱动器192平行于第四弹性基体191的母线方向。
其中,第四弹性基体191由弹性材料制成,可选为硅胶;弯曲驱动器192采用形状记忆合金弹簧驱动、线驱动、气压驱动或者介电高弹性体驱动中的一种;弯曲驱动器192可选为形状记忆合金弹簧驱动,形状记忆合金弹簧通电后能够产生形变,从而进行驱动。
当弯曲驱动器192通电加热时,第四弹性基体191的母线分别向四个不 同方向弯曲,也可以通过不同弯曲形状记忆合金弹簧的组合实现向任意方向的弯曲,从而实现弯曲模块19的弯曲功能。
具体地,相邻运动单元11一体成型或可拆卸连接。由此,在相邻运动单元11一体成型时,便于软体机械臂1的整体性;在相邻运动单元11可拆卸连接时,能够根据实际需求选取不同段进行组合,能够适应不同的工况。
具体地,运动单元11内部还设有软管13,软管13内部填充有固体颗粒;当软管13内部被抽气时,其内部的固体颗粒相互接触挤压,由此,实现软体机械臂1刚性的增加。
具体地,软体机械臂1端部的运动单元11设有气动吸盘14,气动吸盘14沿运动单元11的母线均匀布置。由此,在气动吸盘14的作用下,能够实现软体机械臂1与目标物体的吸附。
具体地,至少有两个软体机械臂1为操作臂,操作臂上设有传感器模块组15,传感器模块组15包括:识别传感器,用于检测目标物体的形状、颜色等基本属性;距离传感器,用于检测目标物体的位置、角度和距离信息;接近觉传感器,用于检测目标物体的移动与位置信息;压力传感器,用于检测抓持目标物体时的压力大小、分布等信息。
软体仿生足式机器人还包括基座3、柔性外壳2、柔性电池4、微型摄像头9、内置传感模块7和控制系统,基座3和柔性外壳2拆卸连接在一起,基座3和柔性外壳2内部构成安装腔;控制系统包括DSP控制模块5和无线通信模块6。其中,柔性电池4、内置传感模块7、DSP控制模块5、无线通信模块6位于安装腔中;微型摄像头内嵌在柔性外壳2上。
DSP控制模块5通过无线通信模块6与独立的上位机模块无线连接,通过上位机模块负责在远端控制软体仿生足式机器人。
柔性电池4为软体仿生足式机器人供电,微型摄像头9负责图像采集与实时观察。内置传感模块7主要包括超声波传感器、力矩传感器、速度和加速度传感器、温湿度传感器等。
超声波传感器用于软体仿生足式机器人导航和回避障碍物;力矩传感器用于监测主要受力部位的力矩大小为软体仿生足式机器人提供安全警示;速度与加速度传感器用于检测软体仿生足式机器人内部系统的速度与加速度; 温湿度传感器用于检测周围环境的温度与湿度来保障软体仿生足式机器人工作环境的安全。
如图3所示,基座3与软体机械臂1之间布置有紧固模块8,其与地面接触部分安装球形滚珠81。软体机械臂1沿着基座3的中轴线左右对称并均匀设置。
一种实施方式中,如图1、4所示,软体仿生足式机器人包括八个软体机械臂1,每个软体机械臂1包括两个运动单元11,分别为扭转臂单元111和伸缩臂单元112,扭转臂单元111和伸缩臂单元112通过连接件12拆卸式连接;其中,扭转臂单元111设有扭转模块16和弯曲模块19,实现扭转和弯曲;伸缩臂单元112设有伸长模块17、收缩模块18和弯曲模块19,分别实现伸长、收缩和弯曲。由此,扭转臂单元111和伸缩臂单元112组合形成软体机械臂1,能够实现根部的扭转,以及端部的伸长、收缩和弯曲。
其中,软体机械臂1整体呈圆锥形,在扭转模块16中,第一弹性基体161形状为圆锥形并且中心留有圆柱形通孔。逆时针扭转驱动器163和顺时针扭转驱动器162均设有四根;在伸长模块17中,第二弹性基体171形状为圆锥形并且中心留有圆柱形通孔;在收缩模块18中,第三弹性基体181形状为圆锥形并且中心留有圆柱形通孔,收缩驱动器182设有四根;在弯曲模块19中,第四弹性基体191形状为圆锥形并且中心留有圆柱形通孔,弯曲驱动器192设有四根。
其中,连接件12为连接环,一端连接扭转臂单元111,另一端连接伸缩臂单元112,从而实现扭转臂单元111和伸缩臂单元112的可拆卸连接。
其中,扭转臂单元111和伸缩臂单元112内部还设有软管13,软管13分别位于扭转模块16、伸长模块17、收缩模块18和弯曲模块19的通孔中,软管13内部填充有固体颗粒;在软管13内部被抽气时,固体颗粒相互接触挤压,促使扭转臂单元111和伸缩臂单元112的刚度增加。伸缩臂单元112的端部布置有气动吸盘14,气动吸盘14沿伸缩臂单元112的母线均匀布置。由此,在启动吸盘的作用下,能够实现伸缩臂单元112与目标物体的吸附。
为了便于后续描述,将软体仿生足式机器人的八个软体机械臂1按照方位进行命名,其中左侧的四个分别为:L1、L2、L3、L4;右侧的四个分别 为:R1、R2、R3、R4,其中,L1和R1为操作臂,剩余的为移动臂。
软体仿生足式机器人在抓持过程中,操作臂L1(R1)首先向前伸展并绕过目标物体,端部传感器模块检测操作臂与目标物体的距离反馈给DSP控制模块5,通过控制DSP模块5控制操作臂向目标物体靠拢;对操作臂L1中扭转臂单元111和扭转臂单元112右边的弯曲驱动器192、对操作臂R1中扭转臂单元111和扭转臂单元112左边的弯曲驱动器192同时通电,使操作臂L1(R1)向内弯曲至包围目标物体;气动吸盘14通气使操作臂吸附于目标物体表面;对操作臂L1(R1)中上方的弯曲驱动器192通电,使操作臂向上弯曲,通过内置传感模块7检测操作臂的力矩,通过改变软管13中的固体颗粒的填充程度来调整操作臂刚度,通过端部传感模块检测操作臂与目标物体之间的压力分布与滑移程度等,改变气动吸盘14的气压大小,实现对目标物体的抓持。
软体仿生足式机器人在较为平坦的地面爬行时,需要通过移动臂L2~L4、R2~R4的组合运动实现,具体为,DSP控制模块5输出PWM信号控制驱动器的变化量;首先将移动臂L3、R2和R4作为一组,称其为固定组,移动臂L3、R2和R4的扭转驱动器通电加热,使软体机械臂1扭转;同时固定组中,气动吸盘14与地面平行,对气动吸盘14通气使其吸附于地面,使软体仿生足式机器人位置固定;随后将移动臂L2、R3和L4作为一组,称其为移动组,在移动组L2、R3、L4中,几者伸缩臂单元112中弯曲模块19上方的弯曲驱动器192以及几者扭转臂单元111中弯曲模块19下方的弯曲驱动器192同时通电,移动组上抬;再将伸长模块17的伸长驱动器172通电,移动组前伸;再在固定组L3、R2、R4中,对移动臂L3右边的弯曲驱动器192以及对移动臂R2、R4左边的弯曲驱动器192同时通电,固定组内弯,使软体仿生足式机器人整体相对地面向前移动。当软体仿生足式机器人完成移动,气动吸盘14撤去气压,固定组与地面脱离吸附,驱动器停止通电,移动臂恢复常态形状。固定组与移动组互换,两组交替进行摆动,实现软体仿生足式机器人在平坦地面的移动。
软体仿生足式机器人在大坡度斜面运动时,需要移动臂L4、R4的气动吸盘14通气使L4、R4吸附于地面,两者内部软管13抽气使其刚度增加, 在尾部起支撑作用;首先移动臂L3、R3的气动吸盘14通气使其吸附于斜面,移动臂L3中的顺时针扭转驱动器162与移动臂R3中的逆时针扭转驱动器163同时通电,并产生反方向的扭转,使软体仿生足式机器人上移;随后,移动臂L4中伸缩臂单元112和扭转臂单元111右边的弯曲驱动器192、移动臂R4中伸缩臂单元112和扭转臂单元111左边的弯曲驱动器192同时通电,使L4、R4内弯,随后L4、R4中的气动吸盘14通气、软管13抽气使其吸附于地面并起支撑作用;其次移动臂L2、R2的气动吸盘14通气使其吸附于斜面,撤去移动臂L3、R3的驱动,移动臂L2的顺时针扭转驱动器162与移动臂R2的逆时针扭转驱动器163同时通电,使软体仿生足式机器人上移,通过循环扭转使软体仿生足式机器人在大坡度斜面移动。利用平面和大坡度斜面移动的组合,软体仿生足式机器人能够实现在崎岖地形下的移动。
软体仿生足式机器人在水中运动时,其保持水平状态。首先移动臂L2、R2保持向外弯曲、其余移动臂保持向内弯曲。当软体仿生足式机器人向前移动时,通过改变PWM信号的占空比,促使移动臂L2、R2快速向内弯曲,其余移动臂快速向外甩动,带动软体仿生足式机器人向前摆动;移动臂缓慢回复初始状态,形成一个循环,通过移动臂的循环摆动,软体仿生足式机器人在水下能够直线前进。软体仿生足式机器人实现在水中转动,移动臂L2、L3中扭转臂单元111和伸缩臂单元112右边的弯曲驱动器192以及移动臂R2、R3中扭转臂单元111和伸缩臂单元112左边的弯曲驱动器192同时通电,使移动臂弯曲,通过水对软体机械臂1的作用力,带动软体仿生足式机器人绕形心主轴逆时针(顺时针)转动。
在本发明中,软体机械臂1被分为两段,但其结构不局限于此。软体机械臂1按照不同的工况改变不同模块的搭配方式,并且可以采用多段式结构。针对不同的工况,软体机械臂1可以根据需要改变各运动模块的组合搭配方式,例如三段、六段等。
一种实施方式中,软体机械臂1包括三个运动单元11,沿着软体机械臂1延伸方向依次设置,分别为根部运动单元、中部运动单元、端部运动单元;根部运动单元设有弯曲模块19、收缩模块18,分别实现弯曲和收缩; 端部运动单元设有弯曲模块19和收缩模块18,分别实现弯曲和收缩;根部运动单元设有弯曲模块19和扭转模块16,分别实现弯曲和扭转。由此,软体仿生足式机器人在该软体机械臂的作用下,能够在平坦地面快速移动。
一种实施方式中,软体机械臂1包括三个运动单元11,沿着软体机械臂1延伸方向依次设置,分别为根部运动单元、中部运动单元、端部运动单元;根部运动单元设有弯曲模块19、扭转模块16,分别实现弯曲和扭转;端部运动单元设有弯曲模块19和收缩模块18,分别实现弯曲和收缩;根部运动单元设有弯曲模块19和伸长模块17,分别实现弯曲和伸长。由此,软体仿生足式机器人在该软体机械臂的作用下,能够在狭窄洞穴勘测。
一种实施方式中,软体机械臂1包括六个运动单元11,沿着软体机械臂1延伸方向依次设置,分别为第一运动单元、第二运动单元、第三运动单元、第四运动单元、第五运动单元和第六运动单元;第一运动单元包括弯曲模块19和收缩模块18,分别实现弯曲和收缩;第二运动单元包括弯曲模块19和扭转模块16,分别实现弯曲和扭转;第三运动单元包括弯曲模块19和伸长模块17,分别实现弯曲和伸长;第四运动单元包括收缩模块18和扭转模块16,分别实现收缩和扭转;第五运动单元包括收缩模块18和伸长模块17,分别实现收缩和伸长;第六运动模块包括伸长模块17和扭转模块16,分别实现伸长和扭转。由此,软体仿生足式机器人在该软体机械臂的作用下,能够进行旋拧阀门、使用工具等复杂操作。
虽然本公开披露如上,但本公开的保护范围并非仅限于此。本领域技术人员在不脱离本公开的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。

Claims (17)

  1. 一种软体仿生足式机器人,其特征在于,包括多个软体机械臂(1),所述软体机械臂(1)设有多个运动单元(11),每个所述运动单元(11)包括扭转模块(16)、伸长模块(17)、收缩模块(18)和弯曲模块(19)中的一种或多种;多个所述运动单元(11)组合,实现软体机械臂(1)全姿态的运动。
  2. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述扭转模块(16)包括第一弹性基体(161)、逆时针扭转驱动器(163)和顺时针扭转驱动器(162),所述逆时针扭转驱动器(163)和顺时针扭转驱动器(162)均设有多个,所述逆时针扭转驱动器(163)沿着所述第一弹性基体(161)的中心轴以左旋方式对称设置在所述第一弹性基体(161)中,所述顺时针扭转驱动器(162)沿着所述第一弹性基体(161)的中心轴以右旋方式对称设置在所述第一弹性基体(161)中。
  3. 根据权利要求2所述的软体仿生足式机器人,其特征在于,所述逆时针扭转驱动器(163)和所述顺时针扭转驱动器(162)均采用形状记忆合金弹簧驱动、线驱动、气压驱动或者介电高弹性体驱动中的一种。
  4. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述伸长模块(17)包括第二弹性基体(171)、伸长驱动器(172);所述伸长驱动器(172)为圆环型,所述伸长驱动器(172)沿着所述第二弹性基体(171)的母线方向均匀布置在所述第二弹性基体(171)中。
  5. 根据权利要求4所述的软体仿生足式机器人,其特征在于,所述伸长驱动器(172)采用形状记忆合金弹簧驱动、化学反应驱动中的一种。
  6. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述收缩模块(18)包括第三弹性基体(181)、收缩驱动器(182)和挡片(183);所述收缩驱动器(182)设有多个,所述收缩驱动器(182)沿着所述第三弹性基体(181)的中心轴对称布置在第三弹性基体(181)中;所述挡片(183)设置在第三弹性基体(181)中,并与所述收缩驱动器(182)的一端连接。
  7. 根据权利要求6所述的软体仿生足式机器人,其特征在于,所述收缩驱动器(182)采用形状记忆合金弹簧驱动、线驱动中的一种。
  8. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述弯曲模块(19)包括第四弹性基体(191)、弯曲驱动器(192);所述弯曲驱动器(192)设有多个,所述弯曲驱动器(192)沿着所述第四弹性基体(191)的中心轴均匀布置在所述第四弹性基体(191)中,且所述弯曲驱动器(192)平行于第四弹性基体(191)的母线方向。
  9. 根据权利要求8所述的软体仿生足式机器人,其特征在于,所述弯曲驱动器(192)采用形状记忆合金弹簧驱动、线驱动、气压驱动或者介电高弹性体驱动中的一种。
  10. 根据权利要求1所述的软体仿生足式机器人,其特征在于,相邻所述运动单元(11)一体成型或可拆卸连接。
  11. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述运动单元(11)内部还设有软管(13),所述软管(13)内部填充有固体颗粒;所述软管(13)内部被抽气,所述固体颗粒相互接触挤压,所述软体机械臂(1)刚度增加。
  12. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述软体机械臂(1)端部的所述运动单元(11)设有气动吸盘(14),所述气动吸盘(14)沿所述运动单元(11)的母线均匀布置于其外表面。
  13. 根据权利要求1所述的软体仿生足式机器人,其特征在于,至少有两个所述软体机械臂(1)为操作臂,所述操作臂上设有传感器模块组(15),所述传感器模块组(15)包括:
    识别传感器,所述识别传感器用于检测目标物体的形状、颜色等基本属性;
    距离传感器,所述距离传感器目标物体的位置、角度和距离信息;
    接近觉传感器,所述接近觉传感器用于检测目标物体的移动与位置信息;
    压力传感器,所述压力传感器用于检测抓持目标物体时的压力大小、分布等信息;
    滑觉传感器,所述滑觉传感器用于检测抓持目标物体时的滑移程度。
  14. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述软体机械臂(1)包括两个运动单元(11),分别为扭转臂单元(111)和伸缩 臂单元(112),所述扭转臂单元(111)和所述伸缩臂单元(112)通过连接件(12)拆卸式连接;所述扭转臂单元(111)设有扭转模块(16)和弯曲模块(19),实现扭转和弯曲;所述伸缩臂单元(112)设有伸长模块(17)、收缩模块(18)和弯曲模块(19),分别实现伸长、收缩和弯曲。
  15. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述软体机械臂(1)包括三个运动单元(11),沿着所述机械臂延伸方向依次设置,分别为根部运动单元、中部运动单元、端部运动单元;所述根部运动单元设有弯曲模块(19)和收缩模块(18),分别实现弯曲和收缩;所述中部运动单元设有弯曲模块(19)和收缩模块(18),分别实现弯曲和收缩;所述端部运动单元设有弯曲模块(19)和扭转模块(16),分别实现弯曲和扭转。
  16. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述软体机械臂(1)包括三个运动单元(11),沿着所述软体机械臂(1)延伸方向依次设置,分别为根部运动单元、中部运动单元、端部运动单元;所述根部运动单元设有弯曲模块(19)和扭转模块(16),分别实现弯曲和扭转;所述中部运动单元设有弯曲模块(19)和收缩模块(18),分别实现弯曲和收缩;所述端部运动单元设有弯曲模块(19)和伸长模块(17),分别实现弯曲和伸长。
  17. 根据权利要求1所述的软体仿生足式机器人,其特征在于,所述软体机械臂(1)包括六个运动单元(11),沿着所述软体机械臂(1)延伸方向依次设置,分别为第一运动单元、第二运动单元、第三运动单元、第四运动单元、第五运动单元和第六运动单元;所述第一运动单元包括弯曲模块(19)和收缩模块(18),分别实现弯曲和收缩;所述第二运动单元包括弯曲模块(19)和扭转模块(16),分别实现弯曲和扭转;所述第三运动单元包括弯曲模块(19)和伸长模块(17),分别实现弯曲和伸长;所述第四运动单元包括收缩模块(18)和扭转模块(16),分别实现收缩和扭转;所述第五运动单元包括收缩模块(18)和伸长模块(17),分别实现收缩和伸长;所述第六运动模块包括伸长模块(17)和扭转模块(16),分别实现伸长和扭转。
PCT/CN2019/125876 2019-06-11 2019-12-17 一种软体仿生足式机器人 WO2020248557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910499228.2A CN110125924B (zh) 2019-06-11 2019-06-11 一种软体仿生足式机器人
CN201910499228.2 2019-06-11

Publications (1)

Publication Number Publication Date
WO2020248557A1 true WO2020248557A1 (zh) 2020-12-17

Family

ID=67580870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125876 WO2020248557A1 (zh) 2019-06-11 2019-12-17 一种软体仿生足式机器人

Country Status (3)

Country Link
US (1) US11377162B2 (zh)
CN (1) CN110125924B (zh)
WO (1) WO2020248557A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110125924B (zh) * 2019-06-11 2021-06-04 哈尔滨工业大学 一种软体仿生足式机器人
CN110480667A (zh) * 2019-09-06 2019-11-22 沈阳瑞晟智能装备有限公司 一种端拾器及机器人搬运系统
CN111331586B (zh) * 2019-12-26 2023-07-04 北京理工大学 一种流体控制的逻辑软体驱动器
CN111152209B (zh) * 2020-01-09 2022-07-19 吉林大学 线驱动仿生软体机械手
CN111300400B (zh) * 2020-03-09 2022-09-30 江西理工大学 气动软体驱动器及其组合结构和具有其的软体机器人
CN112198957B (zh) * 2020-08-28 2022-08-26 北京理工大学 一种远程交互系统及方法
CN112518726B (zh) * 2020-12-10 2023-12-19 中国科学院沈阳自动化研究所 一种多模块柔性水蛇机器人
CN113103219B (zh) * 2021-04-02 2023-03-14 清华大学 气动驱动器、机器人及机器人控制方法
CN113147943A (zh) * 2021-05-24 2021-07-23 河海大学 一种负压式仿生爬壁机器人
CN113459115B (zh) * 2021-05-26 2023-08-29 云南电网有限责任公司昆明供电局 一种电缆隧道巡检机器人和方法
CN113650690B (zh) * 2021-07-28 2022-11-11 之江实验室 一种仿果蝇幼虫软体机器人及其控制系统
CN113665769A (zh) * 2021-09-14 2021-11-19 西安工业大学 一种仿生水母机器人及其海洋探索应用方法
US20230127106A1 (en) * 2021-10-22 2023-04-27 Daniel Aukes Pinched tubes for reconfigurable robots
US11787069B2 (en) * 2021-11-01 2023-10-17 Oliver Crispin Robotics Limited Insertion tool with flexible spine
CN114475847B (zh) * 2022-01-21 2022-12-13 华北科技学院(中国煤矿安全技术培训中心) 一种能够自主爬行的软体机器人及其腿部执行件
CN114475976B (zh) * 2022-01-26 2022-12-13 江苏科技大学 一种智能化船用可移动救生装置
CN114604387B (zh) * 2022-03-11 2023-02-17 北京蕴超仿生智能科技发展有限公司 一种用于维持大型舰船船体外板清洁的仿生软体机器人
CN115158507B (zh) * 2022-06-17 2023-05-30 山西大学 一种基于折叠弹簧管软体机械臂的仿生四足移动机器人
WO2024000799A1 (zh) * 2022-06-30 2024-01-04 苏州热工研究院有限公司 一种具有柔性臂的柔性机器人
CN114940224B (zh) * 2022-06-30 2023-03-07 哈尔滨工业大学 一种基于形状可重构屈曲梁驱动的爬行机器人
CN115339538B (zh) * 2022-08-19 2023-05-23 华南理工大学 一种基于介电弹性体驱动的仿生蠕动机器人
CN116118899A (zh) * 2022-09-09 2023-05-16 大连理工大学 一种线驱动四足软体机器人
CN116588292B (zh) * 2023-05-23 2024-02-20 北京大学 一种水下作业机器人
CN116442207B (zh) * 2023-05-29 2023-10-03 清华大学 一种软体驱动单元及具有其的模块化软体机械臂
CN117593946A (zh) * 2024-01-16 2024-02-23 浙江大学 用于仿生学教育的模块化气动形变积木教具及仿生机器人

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150551A1 (en) * 2011-05-03 2012-11-08 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant'anna Robot having soft arms for locomotion and grip purposes
CN104858889A (zh) * 2014-07-12 2015-08-26 都瑛娜 一种液压(气动)控制的,可做弯曲、扭曲、伸长运动的,可用于数控软体机器人的关节机构
CN205572436U (zh) * 2016-02-02 2016-09-14 浙江工业大学 串并融合伪足软体机器人
CN205704258U (zh) * 2016-07-01 2016-11-23 北京软体机器人科技有限公司 一种软体四指机器人
CN108032307A (zh) * 2017-12-05 2018-05-15 长沙展朔轩兴信息科技有限公司 水母仿生机器人
CN207771832U (zh) * 2017-06-09 2018-08-28 中国科学技术大学 软体机械臂
CN108608408A (zh) * 2018-04-28 2018-10-02 南京理工大学 一种多自由度仿生水母机器人
CN109176589A (zh) * 2018-09-18 2019-01-11 广州大学 一种基于sma弹簧的软体机械手
CN110125924A (zh) * 2019-06-11 2019-08-16 哈尔滨工业大学 一种软体仿生足式机器人

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4202423A (en) * 1978-04-20 1980-05-13 Soto Jose M Land vehicle with articulated legs
FR2512410A1 (fr) * 1981-09-04 1983-03-11 Kroczynski Patrice Systeme de robots a pattes
US4738583A (en) * 1986-09-30 1988-04-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Space spider crane
GB8906541D0 (en) * 1989-03-21 1989-05-04 Portsmouth Tech Consult Robot devices
US5219410A (en) * 1989-10-20 1993-06-15 Commissariat A L'energie Atomique Device for transmitting movement between a solid and a member, in particular for a robot able to be moved on legs
IT1273858B (it) * 1994-12-22 1997-07-11 Giancarlo Zamagni Macchina per locomazione antropode su una superfcie
US5758734A (en) * 1996-01-19 1998-06-02 Korea Institute Of Science And Technology Foot system for jointed leg type walking robot
US5807011A (en) * 1996-10-07 1998-09-15 Korea Institute Of Science And Technology Foot system for jointed leg type walking robot
AU2001259610A1 (en) * 2000-05-09 2001-11-20 Hasbro, Inc. Self-stabilizing walking apparatus that is capable of being reprogrammed or puppeteered
IL138695A (en) * 2000-09-26 2004-08-31 Rafael Armament Dev Authority Unmanned mobile device
US6870343B2 (en) * 2001-03-30 2005-03-22 The University Of Michigan Integrated, proportionally controlled, and naturally compliant universal joint actuator with controllable stiffness
JP3731118B2 (ja) * 2002-02-18 2006-01-05 独立行政法人科学技術振興機構 二脚歩行式人型ロボット
US8657042B2 (en) * 2010-10-04 2014-02-25 China Industries Limited Walking machine
KR101298088B1 (ko) * 2011-11-17 2013-08-22 재단법인대구경북과학기술원 2자유도 피에조다리를 이용한 초소형 다족로봇
CN102837307A (zh) * 2012-09-13 2012-12-26 南京航空航天大学 基于多自由度柔性运动单元的水陆两栖蛇形机器人
US20150101322A1 (en) * 2013-10-14 2015-04-16 Brian Riskas System architecture for mobile hydraulic equipment
CN103753524B (zh) * 2013-12-16 2015-07-15 北京化工大学 一种仿章鱼触手适应性抓取软体机械手及其抓取方法
WO2017181975A1 (zh) * 2016-04-21 2017-10-26 孙天齐 六足通用步行机器人及其机身结构
CN106426268B (zh) * 2016-09-28 2018-12-07 中国科学院合肥物质科学研究院 一种仿章鱼触手弯曲和扭转的柔性关节
CN106904226B (zh) * 2017-03-10 2022-12-23 杭州宇树科技有限公司 一种电驱动四足机器人的腿部动力系统结构
CN107234627B (zh) * 2017-03-24 2020-04-14 北京航空航天大学 一种软体吸附缠绕抓持器
CN109249385B (zh) * 2018-10-09 2022-01-14 江西理工大学 一种基于颗粒阻塞的变刚度气动软体驱动器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012150551A1 (en) * 2011-05-03 2012-11-08 Scuola Superiore Di Studi Universitari E Di Perfezionamento Sant'anna Robot having soft arms for locomotion and grip purposes
CN104858889A (zh) * 2014-07-12 2015-08-26 都瑛娜 一种液压(气动)控制的,可做弯曲、扭曲、伸长运动的,可用于数控软体机器人的关节机构
CN205572436U (zh) * 2016-02-02 2016-09-14 浙江工业大学 串并融合伪足软体机器人
CN205704258U (zh) * 2016-07-01 2016-11-23 北京软体机器人科技有限公司 一种软体四指机器人
CN207771832U (zh) * 2017-06-09 2018-08-28 中国科学技术大学 软体机械臂
CN108032307A (zh) * 2017-12-05 2018-05-15 长沙展朔轩兴信息科技有限公司 水母仿生机器人
CN108608408A (zh) * 2018-04-28 2018-10-02 南京理工大学 一种多自由度仿生水母机器人
CN109176589A (zh) * 2018-09-18 2019-01-11 广州大学 一种基于sma弹簧的软体机械手
CN110125924A (zh) * 2019-06-11 2019-08-16 哈尔滨工业大学 一种软体仿生足式机器人

Also Published As

Publication number Publication date
CN110125924B (zh) 2021-06-04
US20200391814A1 (en) 2020-12-17
CN110125924A (zh) 2019-08-16
US11377162B2 (en) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2020248557A1 (zh) 一种软体仿生足式机器人
JP5249176B2 (ja) 液圧駆動のアクチュエータ、それを組み込んだ液圧駆動のアクチュエータユニット、およびそれらを組み上げた液圧駆動のロボット
AU2012251375B2 (en) Robot having soft arms for locomotion and grip purposes
JP5899660B2 (ja) アクチュエーター装置、多軸駆動装置、並びにロボット装置
Davey et al. Emulating self-reconfigurable robots-design of the SMORES system
JP5092128B2 (ja) ロボットハンドおよびギアシステム
US11426880B2 (en) Soft gripper with multizone control to allow individual joint articulation
CN102501246B (zh) 三驱动可扩展机械臂
CN105415394A (zh) 基于fpa驱动的多指灵巧手
CN108189019A (zh) 仿生轮足式气动软体行走机器人
CN104802180A (zh) 欠驱动拟人三指机械手
CN111546363A (zh) 多功能自适应可控粘附软体机械手
CN108724163B (zh) 一种气动肌肉驱动的七自由度仿人机械臂
CN113911223A (zh) 软体机器人及软体机器人的控制方法
CN206855476U (zh) 一种柔性三指构型机械手
CN215848227U (zh) 一种仿生软体手指、软体机械手及水下作业机器人
CN113199470B (zh) 一种抓取装置及软体机械臂的控制方法
Guan et al. Development of novel robots with modular methodology
CN112720558A (zh) 一种电机直驱的软指尖机器人灵巧手
CN110174071B (zh) 适用于非结构化环境的机器人网络结构及传感系统
CN113400294A (zh) 一种利用流体驱动的多自由度软体机械臂、软体机械臂系统
CN205325674U (zh) 仿生可攀爬和操作的机械臂
Bao et al. Flexible pneumatic robotic actuator FPA and its applications
CN208084337U (zh) 一种软体机器人
CN215848181U (zh) 一种环节单元组件及仿生机械臂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933174

Country of ref document: EP

Kind code of ref document: A1