WO2020248533A1 - 机车偏折测试方法、机车偏折测试装置 - Google Patents

机车偏折测试方法、机车偏折测试装置 Download PDF

Info

Publication number
WO2020248533A1
WO2020248533A1 PCT/CN2019/122422 CN2019122422W WO2020248533A1 WO 2020248533 A1 WO2020248533 A1 WO 2020248533A1 CN 2019122422 W CN2019122422 W CN 2019122422W WO 2020248533 A1 WO2020248533 A1 WO 2020248533A1
Authority
WO
WIPO (PCT)
Prior art keywords
locomotive
reference point
tested
point
distance
Prior art date
Application number
PCT/CN2019/122422
Other languages
English (en)
French (fr)
Inventor
齐红瑞
张江田
冯国江
安转青
Original Assignee
中车大同电力机车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车大同电力机车有限公司 filed Critical 中车大同电力机车有限公司
Priority to PL440698A priority Critical patent/PL440698A1/pl
Publication of WO2020248533A1 publication Critical patent/WO2020248533A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/08Railway vehicles

Definitions

  • the present disclosure relates to the technical field of safe operation of locomotives, and in particular to a deflection test method and a locomotive deflection test device.
  • the present disclosure provides a locomotive deflection test method and a locomotive deflection test device, thereby at least to some extent overcome the problems of difficulty in organization and implementation of the existing locomotive deflection test test.
  • a method for testing deflection of a locomotive including: connecting an auxiliary test locomotive on at least one side of the locomotive to be tested in a running direction; and two opposite bodies of the locomotive to be tested and the auxiliary test locomotive A reference point is determined on the first vehicle body surface in the surface, and the projection point of the reference point on the second vehicle body surface of the two vehicle body surfaces is determined as the first projection point; the locomotive to be tested and The auxiliary test locomotive performs a test run together to determine the projection point of the reference point on the second vehicle body surface as the second projection point; based on the offset of the first projection point and the second projection point Degree to determine the deflection resistance of the locomotive to be tested.
  • connecting the auxiliary test locomotive on at least one side of the running direction of the locomotive to be tested includes: connecting a first auxiliary test locomotive at the front end of the locomotive to be tested, and connecting a second auxiliary test locomotive at the back end.
  • the test locomotive the front end is the front end of the locomotive to be tested in the running direction; and a reference point is determined on the first body surface of the two opposite body surfaces of the test locomotive and the auxiliary test locomotive , And determine the projection point of the reference point on the second body surface of the two body surfaces as the first projection point, including: determining the front reference point on the front body surface of the locomotive to be tested, and the rear Determine the rear reference point on the vehicle body surface, and determine the first front projection point of the front reference point on the first auxiliary test locomotive, and the rear reference point on the first rear of the second auxiliary test locomotive Projection point; the said locomotive to be tested and the auxiliary test locomotive are jointly tested to determine the projection point of the reference point on the second vehicle body surface as the second projection point, including: The to-be-tested locomotive and the auxiliary test locomotive jointly conduct a test run to determine the second front projection point of the front reference point on the first auxiliary test locomotive, and the rear reference point on the second auxiliary test locomotive The second rear projection point; the determining the anti-deflection
  • the method further includes: during the trial operation, when the operating speed is lower than the first threshold, applying the test locomotive to the first auxiliary test locomotive The first force applies a second force to the second auxiliary test locomotive; wherein, the direction of the first force is the opposite direction of the running direction of the locomotive to be tested, and the second force and the The direction of the first force is opposite.
  • the first threshold value is 50km/h
  • the locomotive to be tested and the auxiliary test locomotive are connected by a coupler; during trial operation, the locomotive to be tested is subjected to the hook pressing force of the coupler; the locomotive to be tested is The auxiliary test locomotive performs a trial run in a fixed section.
  • the method before the trial operation, further includes: determining the number of the auxiliary test locomotives according to the length of the fixed section and the hooking force.
  • the determining the number of the auxiliary test locomotives according to the length of the fixed section and the size of the hook pressing force includes: if the length of the fixed section is in the first interval If the hook pressing force is not greater than the second threshold, it is determined that m auxiliary test locomotives are connected on both sides of the running direction of the locomotive to be tested; if the length of the fixed section is within the second interval, and If the hook pressing force is not greater than the third threshold, it is determined that n auxiliary test locomotives are connected on both sides of the running direction of the locomotive to be tested; wherein the minimum value of the second section is greater than the first section The maximum value of, the third threshold is greater than the second threshold, and the n>m.
  • the range of the first section is 1.5 km to 3 km.
  • the method further includes: determining a first reference point and a second reference point on the second vehicle body surface, setting a first distance sensor at the first reference point, and The second reference point is provided with a second distance sensor; the determining the projection point of the reference point on the second vehicle body surface includes: measuring the distance from the first reference point to the The first distance from the reference point, and the second distance from the second reference point to the reference point measured by the second distance sensor; according to the first distance, the second distance, and the first distance The third distance between the distance sensor and the second distance sensor determines the projection point of the reference point on the second vehicle body surface.
  • the determination of the first distance, the second distance, and the third distance between the first reference point and the second reference point includes: comparing the first reference point, the second reference point, and the reference point according to the first distance, the second distance, and the third distance.
  • the triangular structure composed of points is used to determine the projection point of the reference point on the second vehicle body surface by the law of cosines.
  • a deflection test device for a locomotive comprising:
  • the marker is set on the reference point on the first body surface of the first locomotive;
  • the first distance sensor is set on the first reference point on the second body surface of the second locomotive, and is used to detect the distance between the first reference point and the The first distance of the reference point;
  • a second distance sensor arranged on the second reference point on the second vehicle body surface, for detecting the second distance from the second reference point to the reference point;
  • computing equipment Communicatingly connected with the first distance sensor and the second distance sensor, and configured to determine the location according to the first distance, the second distance, and the third distance between the first reference point and the second reference point
  • the projection point of the reference point on the second vehicle body surface and based on the offset of the projection point during the trial operation of the first locomotive and the second locomotive, determine the first locomotive or the The anti-deflection performance of the second locomotive; wherein, the first locomotive and the second locomotive are connected in a trial operation direction, and the first body surface and the second body surface are the first locomotive and the The two opposite body surfaces of the second locomotive.
  • the first locomotive is a locomotive to be tested
  • the second locomotive is an auxiliary test locomotive.
  • the auxiliary test locomotive on at least one side of the running direction of the locomotive to be tested, determine a reference point on the first body surface of the two opposite body surfaces of the locomotive to be tested and the auxiliary test locomotive, and determine that the reference point is on the two body surfaces
  • the projection point on the second car body surface in is the first projection point.
  • the locomotive to be tested and the auxiliary test locomotive are tested together to determine the projection point of the reference point on the second car body surface, which is the second projection point , Determine the anti-deflection performance of the locomotive to be tested based on the degree of deviation between the first projection point and the second projection point.
  • the anti-deflection performance of the locomotive can be tested, with fewer parameters, and the test process is simple and convenient; on the other hand, through the reference point and projection
  • the point can determine the anti-deflection performance of the locomotive, the calculation process is simple, no complicated test organization process is needed, and it has a wide range of applicability.
  • Figure 1 shows a schematic diagram of a locomotive operation in the related art
  • Figure 2 shows a schematic diagram of a locomotive deflection in operation in the related art
  • Fig. 3 shows a flowchart of a method for testing deflection of a locomotive in this exemplary embodiment
  • Fig. 4 shows a schematic diagram of a deflection test model of a locomotive in this exemplary embodiment
  • Fig. 5 shows a sub-flow chart of a method for testing locomotive deflection in this exemplary embodiment
  • Fig. 6 shows a schematic diagram of a locomotive formation mode in this exemplary embodiment
  • FIG. 7 shows a schematic diagram of another locomotive formation mode in this exemplary embodiment
  • FIG. 8 shows a schematic diagram of the original position relationship between the first reference point, the second reference point, and the reference point in this exemplary embodiment
  • FIG. 9 shows a schematic diagram of the real-time positional relationship between the first reference point, the second reference point, and the reference point in this exemplary embodiment
  • Fig. 10 shows a schematic diagram of the structure of the deflection test device for a locomotive in this exemplary embodiment
  • FIG. 11 shows a schematic diagram of the connection relationship between the first distance sensor, the second distance sensor, and the computing device in this exemplary embodiment.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • the example embodiments can be implemented in various forms, and should not be construed as being limited to the examples set forth herein; on the contrary, the provision of these embodiments makes the present disclosure more comprehensive and complete, and fully conveys the concept of the example embodiments To those skilled in the art.
  • the described features, structures or characteristics may be combined in one or more embodiments in any suitable way.
  • railway heavy-duty locomotives have the characteristics of large axle load, high power, and high adhesion, usually in the form of multiple locomotives, as shown in Figure 1.
  • Long and large freight trains that tow high orders of weight.
  • the front and rear brakes of the train are not synchronized, and the inertia is large.
  • the coupler has to withstand greater longitudinal impulse or squeezing force, resulting in different degrees of deflection between the locomotives, as shown in Figure 2.
  • the exemplary embodiment of the present disclosure first provides a method for testing deflection of a locomotive.
  • the application scenario of the method of this embodiment may be: a new locomotive is tested for its anti-deflection performance before formal operation to ensure its safe operation; or Carry out random inspections for anti-deflection performance tests on locomotives that have been in operation, etc.
  • the locomotive deflection test method may include the following steps S310 to S340:
  • Step S310 Connect the auxiliary test locomotive on at least one side of the running direction of the locomotive to be tested.
  • the locomotive to be tested refers to the locomotive that needs to be tested
  • the auxiliary test locomotive refers to the companion test locomotive used to assist in testing the locomotive to be tested.
  • the test locomotive and the auxiliary test locomotive can be various types of locomotives, for example, passenger locomotives. , Freight locomotives, shunting locomotives, industrial and mining locomotives, or general-purpose locomotives, etc. The present disclosure does not specifically limit this.
  • an auxiliary test locomotive can be connected to at least one side of the running direction of the locomotive to be tested, that is, one can be connected to the front or rear end of the running direction of the locomotive to be tested Or multiple auxiliary test locomotives, or one or more auxiliary test locomotives can be connected to the front and back end of the running direction of the locomotive to be tested.
  • a variety of special connecting devices can be used to connect the locomotive to be tested with the auxiliary test locomotive, for example, using couplers and other connecting devices.
  • Step S320 Determine a reference point on the first body surface of the two opposite body surfaces of the locomotive to be tested and the auxiliary test locomotive, and determine the projection point of the reference point on the second body surface of the two body surfaces, which is The first projection point.
  • the first body surface refers to one of the two body surfaces of the locomotive to be tested and the auxiliary test locomotive
  • the second body surface refers to the other body surface that is different from the first body surface.
  • the No. 2 locomotive is the locomotive to be tested
  • the No. 1 locomotive is the auxiliary test locomotive.
  • the front end of the running direction is as shown in the figure.
  • the front end 410 of the No. 2 locomotive can be regarded as the first body surface
  • the rear end of the No. 1 locomotive 420 can be regarded as the second body surface.
  • the front end 410 of the No. 2 locomotive may also be the second body surface, and the rear end 420 of the No.
  • the reference point refers to a reference point determined on the first vehicle body surface for testing the degree of deflection of the vehicle body, and it can be located at any position on the first vehicle body surface.
  • the position of the reference point It may be the midpoint position of the horizontal position of the first vehicle body surface.
  • the reference point when the front end 410 of the No. 2 locomotive is the first vehicle body surface, the reference point may be the position where the front end point A of the No. 2 locomotive is located.
  • the projection point refers to the point where the reference point is projected on the second vehicle body surface, that is, in some cases, the projection point can also be considered as the vertical point from the reference point to the second vehicle body surface, and it is taken as the first projection point.
  • step S330 the locomotive to be tested and the auxiliary test locomotive are jointly tested, and the projection point of the reference point on the second body surface is determined as the second projection point.
  • Step S340 Determine the anti-deflection performance of the locomotive to be tested based on the degree of deviation between the first projection point and the second projection point.
  • the locomotive to be tested and the auxiliary test locomotive may be taken as a whole to make a test run in a fixed section for a test test.
  • this exemplary embodiment can determine the projection point of the reference point on the second body surface during the trial operation of the locomotive, that is, the second projection point.
  • the first projection point is the projection point when the locomotive is not deflected before the test run
  • the second projection point is the projection point when the locomotive deflection occurs after the test run.
  • the first projection point can also be the reference point on the second body surface at a certain time during the trial operation of the locomotive.
  • the second projection point can also be the projection point of the reference point on the second car body surface at another time during the trial operation of the locomotive.
  • the degree of offset between the first projection point and the second projection point can be obtained, and the degree of offset can reflect the test to be tested.
  • the degree of deflection of the locomotive body determines the deflection resistance of the locomotive to be tested.
  • a preset threshold can be set for it. When the deviation between the first projection point and the second projection point is less than the threshold, it means that the deflection amplitude of the locomotive under test is within the normal range. , That is, the locomotive to be tested can pass the test. On the contrary, the anti-deflection performance of the locomotive to be tested is weak and cannot ensure the safety of its normal operation.
  • the auxiliary test locomotive is connected to at least one side of the running direction of the locomotive to be tested, and one of the two opposite body surfaces of the locomotive to be tested and the auxiliary test locomotive is determined.
  • the reference point, and the projection point of the reference point on the second body surface of the two body surfaces is determined as the first projection point.
  • the locomotive to be tested and the auxiliary test locomotive are tested together to determine the reference point on the second
  • the projection point on the surface of the car body is the second projection point. Based on the degree of deviation between the first projection point and the second projection point, the deflection resistance of the locomotive to be tested is determined.
  • the anti-deflection performance of the locomotive can be tested, with fewer parameters, and the test process is simple and convenient; on the other hand, through the reference point and projection
  • the point can determine the anti-deflection performance of the locomotive, the calculation process is simple, no complicated test organization process is needed, and it has a wide range of applicability.
  • step S310 may include:
  • step S510 the first auxiliary test locomotive is connected to the front end of the locomotive to be tested, the second auxiliary test locomotive is connected to the back end, and the front end is the front end of the running direction of the locomotive to be tested;
  • step S320 may include:
  • Step S520 Determine the front reference point on the front body surface of the locomotive to be tested, the rear reference point on the rear body surface, and determine the first front projection point of the front reference point on the first auxiliary test locomotive, and the rear reference point at The first rear projection point on the second auxiliary test locomotive;
  • Step S330 may include:
  • step S530 the locomotive to be tested and the auxiliary test locomotive are jointly tested to determine the second front projection point of the front reference point on the first auxiliary test locomotive, and the rear reference point of the second rear projection point on the second auxiliary test locomotive;
  • Step S340 may include:
  • Step S540 Determine the anti-deflection performance of the locomotive to be tested based on the degree of deviation between the first front projection point and the second front projection point, and the degree of deviation between the first rear projection point and the second rear projection point.
  • the first auxiliary test locomotive can be connected to the front end of the locomotive to be tested, and the second auxiliary test locomotive is connected to the back end.
  • 1#, 2#, and 3# in Fig. 4 indicate No. 1, No. 2, and No. 3.
  • car 2 is the locomotive to be tested
  • car 1 and car 3 are auxiliary test locomotives.
  • the front reference point and the rear reference point can be determined at the front and rear ends of car 2 respectively, and Determine the first front projection point of the front reference point on the rear body surface of the No. 1 car and the first rear projection point of the rear reference point on the front body surface of the No.
  • the locomotive deflection test method may further include:
  • the direction of the first force is the opposite direction of the running direction of the locomotive to be tested, and the direction of the second force is opposite to the direction of the first force.
  • a running speed threshold can be set during the trial operation, that is, the first threshold, and the speed of the locomotive to be tested and the auxiliary test locomotive during operation can be set to not higher than 50km/h.
  • the locomotive to be tested and the first auxiliary test locomotive apply a first force, which may be regenerative braking, force
  • the direction is the opposite direction of the running direction of the test locomotive, and a second force is applied to the second auxiliary test locomotive, which can be traction push, and the direction of the force is the positive direction of the running direction of the test locomotive.
  • the locomotive to be tested can be subjected to the squeezing force given by the auxiliary test locomotives at both ends, thereby simulating the deflection resistance of the locomotive to be tested under the dynamic extrusion process. Fold performance.
  • This exemplary embodiment can enrich the test content and increase the validity of the test result.
  • the locomotive to be tested and the auxiliary test locomotive are connected by a coupler.
  • the locomotive to be tested will receive a certain degree of hooking force.
  • the locomotive to be tested and the auxiliary test locomotive can be carried out in a fixed section.
  • Trial run. Before trial run, the deflection test method of locomotive can also include:
  • the number of auxiliary test locomotives can be determined according to the length of the fixed section and the hook force of the trial run. For example, if the fixed section is longer and the hook force is larger, then More auxiliary locomotives are required, and on the contrary, fewer auxiliary locomotives can be used to simulate a more reasonable operation process.
  • the first case is that when the length of the fixed section is within the first interval and the hook pressing force is not greater than the second threshold (the second threshold is a force threshold), it is determined to be on both sides of the running direction of the locomotive to be tested All are connected with m auxiliary test locomotives. Specifically, m first auxiliary test locomotives can be connected at the front end, and m second auxiliary test locomotives can be connected at the back end.
  • the first interval may be a shorter length interval, for example, it may be a length interval less than 3km, such as [1.5km, 3km], or a length interval less than 4km, etc.
  • the second threshold may be a single first auxiliary Test the maximum regenerative braking force of the locomotive.
  • m stations can be a small number of auxiliary test locomotives.
  • a first auxiliary test locomotive can be connected to the front end of the locomotive to be tested, and a second auxiliary test locomotive is connected to the back end, as shown in Figure 6.
  • car 2 is the locomotive to be tested
  • car 1 is the first auxiliary test locomotive
  • car 3 is the second auxiliary test locomotive.
  • the second case is that when the length of the fixed section is within the second interval, and the hook pressing force is not greater than the third threshold (the third threshold is also a force threshold), it is determined that the two moving directions of the locomotive under test are Both sides are connected with n auxiliary test locomotives.
  • n first auxiliary test locomotives can be connected at the front end
  • n second auxiliary test locomotives can be connected at the back end.
  • the second section may be a length section of a longer road section, for example, a length section greater than 5 km
  • the third threshold may be the sum of the maximum regenerative braking forces of multiple locomotives.
  • n units can be a larger number of auxiliary test locomotives.
  • first auxiliary test locomotives can be connected to the front end of the locomotive to be tested, and three second auxiliary test locomotives can be connected to the back end, as shown in Figure 7.
  • 1#, 2#, 3#, 4#, 5#, 6#, 7# in Fig. 7 also represent No. 1, No. 2, No. 3, No. 4, No. 5, No. 6, and No. 7 respectively.
  • the direction indicated by the single arrow indicating the running direction F is the forward direction of the locomotive to be tested, that is, the arrow points to the front of the locomotive to be tested.
  • car No. 4 is the locomotive to be tested
  • cars 1, 2, and 3 are the first auxiliary test locomotive
  • cars 5, 6, and 7 are the second auxiliary test locomotive.
  • the third threshold may be the sum of the maximum regenerative braking force of the three first auxiliary test locomotives. Specifically, the third threshold may be set to 1500kN, 1200kN, 900kN, or 600kN. This exemplary embodiment can be based on the simulated hooking force requirements. To determine the size of the third threshold, it should be noted that the size of the third threshold can be set as required, and the present disclosure is not limited to the third threshold of the above four levels. In addition, the minimum value of the second interval is greater than the maximum value of the first interval, such as 5km>3km. The third threshold is greater than the second threshold.
  • the second threshold is the maximum regenerative braking force of a single test locomotive
  • the third threshold is the maximum regenerative braking force of the three test locomotives.
  • n>m for example, in the first case, m can be one auxiliary test locomotive, and in the second case, n can be three auxiliary test locomotives.
  • a test model of the locomotive to be tested is established for testing according to different test conditions. According to the test conditions, the composition of the locomotive to be tested and the auxiliary test locomotive can be reasonably adjusted, and the different test conditions of the locomotive to be tested can be obtained simply and accurately. Test results under.
  • the method for testing locomotive deflection may further include the following steps:
  • determining the projection point of the reference point on the second vehicle body surface may include:
  • the projection point of the reference point on the second vehicle body surface is determined.
  • the first reference point and the second reference point can be determined on the second body surface, as shown in Figure 4, at the rear end 420 of the No. 1 car,
  • the first reference point C and the second reference point B form a triangular structure with the reference point A, as shown in FIG. 8.
  • a first distance sensor may be set at the first reference point C to measure the real-time distance from the first reference point C to the reference point, that is, the first distance; and the second distance sensor may be set at the second reference point B.
  • the distance sensor is used to measure the real-time distance from the second reference point B to the reference point, that is, the second distance.
  • a fixing device can be set at the reference point A, and the fixing devices are respectively connected to the distance sensor, and the distance sensor and the data acquisition instrument are connected through a data cable.
  • the distance sensor can collect the dynamic change of the fixed device relative to the distance sensor. According to the relationship between the corners of the triangle, the second projection point can be determined to determine the deflection amplitude of the locomotive under test.
  • FIG. 8 shows the original positional relationship between the first reference point C, the second reference point B, and the reference point A.
  • A represents the original position of the reference point, that is, the original position of the fixing device
  • B and C represent the original position of the second reference point and the first reference point, that is, the original position of the distance sensor
  • D represents the projection of the reference point to the second body surface
  • the point position, that is, the first projection point can also be considered as the projection point of the fixing device on the connecting line of the two distance sensors
  • a and b respectively represent the original distance from the reference point to the first reference point and the second reference point
  • d represents The original distance from the first reference point C to the first projection point D
  • represents the angle of the angle with the first reference point C as the vertex in the triangular structure composed of the first reference point C, the second reference point B and the reference point A Original included angle.
  • Figure 9 shows the positional relationship between the first reference point, the second reference point and the reference point after the deflection of the locomotive to be tested.
  • A represents the original position of the reference point, that is, the original position of the fixing device, and A'represents the occurrence of the locomotive to be tested.
  • the position of the reference point after relative deflection, B and C represent the position of the second reference point and the position of the first reference point
  • D′ represents the second projection point of the reference point on the second body surface after the relative deflection of the locomotive to be tested
  • a'and b' respectively represent the distance from the reference point to the two reference points after the locomotive under test is relatively deflected
  • represents the angle of the angle with the first reference point C as the vertex in the triangular structure formed by the first reference point C, the second reference point B, and the reference point A′ after the locomotive is relatively deflected.
  • the locomotive to be tested deflection occurs relative to the auxiliary test locomotive, and the magnitude of the deflection is dynamic, so the position of the reference point relative to the first reference point and the second reference point is also A change has occurred.
  • the data acquisition instrument reads the dynamic change of the reference point relative to the reference point. According to the original distance, the first distance a'between the real-time position of the reference point and the first reference point and the second reference point can be calculated The second distance b'.
  • Two distance sensors can be installed on the same auxiliary locomotive, and the distance c between them remains unchanged.
  • the reference point and the reference point form a new triangle
  • the absolute value of the difference between the real-time distance d'and the original distance d is the magnitude of the deflection of the locomotive to be tested. It should be noted that in this exemplary embodiment, the deflection amplitude of the locomotive to be tested can also be determined by calculating the change in the distance between the projection point and the second reference point position.
  • the deflection amplitude of the vehicle body between the locomotive under test and the adjacent auxiliary test locomotive is not more than 150 mm as a quantitative standard. If the quantitative standard is not exceeded, the locomotive under test can be considered to pass the test.
  • the deflection angle of the coupler and the car body by installing a sensor at a position where the end of the locomotive is level with the coupler and a distance of 1 m.
  • the deflection resistance of the locomotive to be tested is determined by the deflection angle of the coupler. Taking a certain type of locomotive with a deflection amplitude of 150mm as an example, it corresponds to the deflection amplitude of the car body when the coupler of this type of locomotive deflection relative to the car body by 6 degrees, namely It can be considered that when the deflection angle of the coupler is less than 6 degrees, the anti-deflection performance of the locomotive to be tested is better and passes the test.
  • the exemplary embodiment of the present disclosure also provides a device for testing deflection of a locomotive, as shown in Figs. 10 and 11, the device may include:
  • the marker 30 is a reference point set on the first vehicle body surface of the first locomotive 10;
  • the first distance sensor 40 is arranged at a first reference point on the second vehicle body surface of the second locomotive 20, and is used to detect the first distance from the first reference point to the reference point;
  • the second distance sensor 50 is arranged on a second reference point on the second vehicle body surface, and is used to detect the second distance from the second reference point to the reference point;
  • the computing device 60 is in communication connection with the first distance sensor 40 and the second distance sensor 50, and is used to determine that the reference point is in the first distance, the second distance, and the third distance between the first reference point and the second reference point.
  • first locomotive 10 and the second locomotive 20 are connected according to the test operation direction, and the first body surface and the second body surface are two opposite body surfaces of the first locomotive 10 and the second locomotive 20.
  • the marker 30 may refer to a fixing device provided on a reference point on the first vehicle body surface of the first locomotive 10, which may be a flat structure or a three-dimensional structure, etc., and may be provided with fastening parts for passing through
  • the specific rope connection distance sensor can be rectangular, square, round or other irregular patterns, and its material can be metal, alloy, hard plate or other materials, which is not specifically limited in the present disclosure.
  • the first locomotive 10 may be a locomotive to be tested or an auxiliary test locomotive. For example, if the first locomotive 10 is a locomotive to be tested, the second locomotive 20 is an auxiliary test locomotive, and the marker can be set at a reference point on the first body surface of the locomotive to be tested.
  • the first distance sensor 40 and the second distance sensor 50 can be respectively arranged at the first reference point and the second reference point on the second body surface of the auxiliary test locomotive.
  • the first locomotive 10 is an auxiliary test locomotive
  • the second locomotive 20 is a locomotive to be tested
  • the marker can be set on the reference point on the first body surface of the auxiliary test locomotive
  • the first distance sensor 40 and the second distance sensor 50 The first reference point and the second reference point can be respectively set on the second vehicle body surface to be tested.
  • the locomotive deflection test device also includes a first distance sensor 40 for measuring the distance between the first reference point and the reference point, and a second distance sensor 50 for measuring the distance between the second reference point and the reference point, wherein the distance sensor is connected to the reference point.
  • the connection of the points can be fixedly connected by bonding, welding, bolting or other methods, which are not listed in this disclosure.
  • the first metal rope can be used to connect the reference point with the first reference point on the locomotive to be tested
  • the second metal rope can be used to connect the reference point and The second reference point on the locomotive to be tested
  • the material, size and connection method of the metal rope are not specifically limited in this disclosure.
  • area 430 shows a locomotive deflection test device in this exemplary embodiment, where point A is a marker of a reference point set on the first vehicle body surface of the first locomotive 10, A reference point position C is the installation position of the first distance sensor 40, and the second reference point position B is the installation position of the second distance sensor 50.
  • the specific structural relationship can be referred to as shown in FIGS. 8-9, where the first The distance is the distance from the first reference point to the reference point, the second distance is the distance from the second reference point to the reference point, and the third distance is the distance from the first reference point to the second reference point.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

一种机车偏折测试方法,属于机车安全运行技术领域,包括:在待测试机车沿运行方向上的至少一侧链接辅助测试机车(S310);在所述待测试机车和所述辅助测试机车相对的两个车身面中的第一车身面上确定一基准点,并确定所述基准点在所述两个车身面中的第二车身面上的投影点,为第一投影点(S320);将所述待测试机车和所述辅助测试机车共同进行试运行,确定所述基准点在所述第二车身面上的投影点,为第二投影点(S330);基于所述第一投影点和所述第二投影点的偏移程度;确定所述待测试机车的抗偏折性能(S340)。一种机车偏折测试装置,包括标识物(30)、第一距离传感器(40)、第二距离传感器(50)以及计算设备(60)。

Description

机车偏折测试方法、机车偏折测试装置
交叉引用
本公开要求于2019年6月12日提交的申请号为201910504992.4、名称为“机车偏折测试方法、机车偏折测试装置”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及机车安全运行技术领域,尤其涉及一种机车偏折测试方法、机车偏折测试装置。
背景技术
随着铁路运输的快速发展,机车在重载、高速、安全等方面的问题引起人们的格外关注。在相关技术中,对于新造机车,由于组织时间较长,组织难度较大,而且风险较大,往往难以直接在正线上组织测试试验。因此,如何采取安全、有效且便捷的方式对机车的抗偏折性能进行测试是相关技术亟待解决的问题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的相关技术的信息。
公开内容
本公开提供了一种机车偏折测试方法、机车偏折测试装置,进而至少在一定程度上克服现有机车偏折测试试验组织难度大、难以实施的问题。
本公开的其他特性和优点将通过下面的详细描述变得显然,或部分地通过本公开的实践而习得。
根据本公开的一个方面,提供机车偏折测试方法,包括:在待测试机车沿运行方向上的至少一侧连接辅助测试机车;在所述待测试机车和所述辅助测试机车相对的两个车身面中的第一车身面上确定一基准点,并确定所述基准点在所述两个车身面中的第二车身面上的投影点,为第一投影点;将所述待测试机车和所述辅助测试机车共同进行试运行,确定所述基准点在所述第二车身面上的投影点,为第二投影点;基于所述第一投影 点和所述第二投影点的偏移程度,确定所述待测试机车的抗偏折性能。
在本公开的一种示例性实施例中,所述在待测试机车运行方向的至少一侧连接辅助测试机车,包括:在待测试机车的前端连接第一辅助测试机车,后端连接第二辅助测试机车,所述前端为所述待测试机车在运行方向上的前端;所述在所述待测试机车和所述辅助测试机车相对的两个车身面中的第一车身面上确定一基准点,并确定所述基准点在所述两个车身面中的第二车身面上的投影点,为第一投影点,包括:在所述待测试机车的前端车身面上确定前基准点,后端车身面上确定后基准点,并确定所述前基准点在所述第一辅助测试机车上的第一前投影点,所述后基准点在所述第二辅助测试机车上的第一后投影点;所述将所述待测试机车和所述辅助测试机车共同进行试运行,确定所述基准点在所述第二车身面上的投影点,为第二投影点,包括:将所述待测试机车和所述辅助测试机车共同进行试运行,确定所述前基准点在所述第一辅助测试机车上的第二前投影点,所述后基准点在所述第二辅助机车上的第二后投影点;所述基于所述第一投影点和所述第二投影点的偏移程度,确定所述待测试机车的抗偏折性能,包括:基于所述第一前投影点和所述第二前投影点的偏移程度,以及所述第一后投影点和所述第二后投影点的偏移程度,确定所述待测试机车的抗偏折性能。
在本公开的一种示例性实施例中,所述方法还包括:在进行试运行的过程中,运行速度低于第一阈值时,对所述待测试机车以及所述第一辅助测试机车施加第一作用力,对所述第二辅助测试机车施加第二作用力;其中,所述第一作用力的方向为所述待测试机车运行方向的反方向,所述第二作用力与所述第一作用力的作用方向相反。
在本公开的一种示例性实施例中,所述第一阈值为50km/h
在本公开的一种示例性实施例中,所述待测试机车与辅助测试机车通过车钩连接;试运行中,所述待测试机车受到所述车钩的压钩力作用;所述待测试机车和所述辅助测试机车在固定区段进行试运行。
在本公开的一种示例性实施例中,在试运行之前,所述方法还包括:根据所述固定区段的长度及压钩力的大小,确定所述辅助测试机车的数量。
在本公开的一种示例性实施例中,所述根据所述固定区段的长度及压钩力的大小,确定所述辅助测试机车的数量,包括:如果固定区段的长度在第一区间内,且所述压钩力不大于第二阈值,则确定在所述待测试机车运行方向的两侧均连接m台所述辅助测试机车;如果固定区段的长度在第二区间内,且所述压钩力不大于第三阈值,则确定在所述待测试机车运行方向的两侧均连接n台所述辅助测试机车;其中,所述第二区间的最 小值大于所述第一区间的最大值,所述第三阈值大于所述第二阈值,所述n>m。
在本公开的一种示例性实施例中,所述第一区间的范围为1.5km~3km。
在本公开的一种示例性实施例中,所述方法还包括:在所述第二车身面确定第一参考点和第二参考点,在所述第一参考点设置第一距离传感器,在所述第二参考点设置第二距离传感器;所述确定所述基准点在所述第二车身面上的投影点,包括:通过所述第一距离传感器测量所述第一参考点到所述基准点的第一距离,以及通过所述第二距离传感器测量所述第二参考点到所述基准点的第二距离;根据所述第一距离,所述第二距离,以及所述第一距离传感器与所述第二距离传感器之间的第三距离,确定所述基准点在所述第二车身面上的投影点。
在本公开的一种示例性实施例中,所述根据所述第一距离,所述第二距离,以及所述第一参考点与所述第二参考点之间的第三距离,确定所述基准点在所述第二车身面上的投影点,包括:根据所述第一距离、所述第二距离以及所述第三距离,对所述第一参考点、第二参考点以及基准点组成的三角形结构,通过余弦定理确定所述基准点在所述第二车身面上的投影点。
根据本公开的一个方面,提供一种机车偏折测试装置,所述装置包括:
标识物,设置于第一机车的第一车身面上的基准点;第一距离传感器,设置于第二机车的第二车身面上的第一参考点,用于检测所述第一参考点到所述基准点的第一距离;第二距离传感器,设置于所述第二车身面上的第二参考点,用于检测所述第二参考点到所述基准点的第二距离;计算设备,与所述第一距离传感器和第二距离传感器通信连接,用于根据所述第一距离、第二距离以及所述第一参考点和所述第二参考点之间的第三距离确定所述基准点在所述第二车身面上的投影点,并基于在所述第一机车和所述第二机车进行试运行过程中所述投影点的偏移,确定所述第一机车或所述第二机车的抗偏折性能;其中,所述第一机车和所述第二机车按照试运行方向连接,所述第一车身面和所述第二车身面为所述第一机车和所述第二机车相对的两个车身面。
在本公开的一种示例性实施例中,所述第一机车为待测试机车,所述第二机车为辅助测试机车。
本公开的示例性实施例具有以下有益效果:
在待测试机车运行方向的至少一侧连接辅助测试机车,在待测试机车和辅助测试机车相对的两个车身面中的第一车身面上确定一基准点,并确定基准点在两个车身面中的第二车身面上的投影点,为第一投影点,将待测试机车和辅助测试机车共同进行试运行, 确定基准点在所述第二车身面上的投影点,为第二投影点,基于第一投影点和第二投影点的偏移程度,确定待测试机车的抗偏折性能。一方面,机车偏折测试过程中,通过确定基准点和投影点,可以实现对机车抗偏折性能的测试,获取参数较少,测试过程较为简洁、方便;另一方面,通过基准点和投影点可以确定机车的抗偏折性能,计算过程简单,无需复杂的试验组织过程,具有较为广泛的适用性。
应当理解的是,以上的一般描述和后文的细节述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出相关技术中的一种机车运行示意图;
图2示出相关技术中的一种机车运行中发生偏折的示意图;
图3示出本示例性实施例中一种机车偏折测试方法的流程图;
图4示出本示例性实施例中一种机车偏折测试模型的示意图;
图5示出本示例性实施例中一种机车偏折测试方法的子流程图;
图6示出本示例性实施例中一种机车编组方式的示意图;
图7示出本示例性实施例中另一种机车编组方式的示意图;
图8示出本示例性实施例中第一参考点、第二参考点与基准点的原始位置关系示意图;
图9示出本示例性实施例中第一参考点、第二参考点与基准点的实时位置关系示意图;
图10示出本示例性实施例中机车偏折测试装置的结构示意图;
图11示出本示例性实施例中第一距离传感器、第二距离传感器和计算设备的连接关系示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式 实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本公开将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”和“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。用语“第一”和“第二”仅作为标记使用,不是对其对象的数量限制。
在相关技术中,铁路重载机车具有大轴重、大功率、高粘着的特性,通常以多台机车编组的方式,如图1所示。牵引高数量级重量的长大货物列车,在重载列车正常运行过程中,当列车运行在制动状态时,受列车编组长,列车前后制动不同步、惯性大等因素的影响,重载机车经常在车钩处要承受较大的纵向冲动或挤压力的作用,导致机车之间发生不同程度偏折,如图2所示。为了确保机车在正常线路能够安全牵引运行,测试机车处于动态挤压时的抗偏折性能是必要的。但是对于新造机车,由于组织时间较长,组织难度较大,而且风险较大,往往难以直接在正线上组织测试试验。因此,如何采取安全、有效且便捷的方式对机车的抗偏折性能进行测试是相关技术亟待解决的问题。
本公开的示例性实施例首先提供了一种机车偏折测试方法,本实施例方法的应用场景可以是:新造机车在正式运行之前对其抗偏折性能进行测试,以确保其安全运行;或对已运行的机车进行抗偏折性能测试的抽检等等。
下面结合附图3对本示例性实施例做进一步说明,如图3所示,机车偏折测试方法 可以包括以下步骤S310~S340:
步骤S310,在待测试机车运行方向的至少一侧连接辅助测试机车。
其中,待测试机车是指需要进行测试的机车,辅助测试机车是指用于辅助测试待测试机车的陪试机车,待测试机车与辅助测试机车可以是多种类型的机车,例如可以是客运机车、货运机车、调车机车、工矿机车、或通用机车等,本公开对此不做具体限定。为了测试待测试机车的抗偏折性能,本示例性实施例中,在待测试机车运行方向的至少一侧可以连接辅助测试机车,即可以在待测试机车运行方向的前端或后端连接一台或多台辅助测试机车,也可以在待测试机车运行方向的前端和后端连接一台或多台辅助测试机车。在实际应用中,可以采用多种特殊连接装置将待测试机车与辅助测试机车进行连接,例如使用车钩等连接装置。
步骤S320,在待测试机车和辅助测试机车相对的两个车身面中的第一车身面上确定一基准点,并确定基准点在两个车身面中的第二车身面上的投影点,为第一投影点。
其中,第一车身面是指待测试机车与辅助测试机车相对的两个车身面中其中一个车身面,第二车身面是指区别于第一车身面的另一个车身面,举例说明,如图4所示,2号机车为待测试机车,1号机车为辅助测试机车,运行方向的前端如图所示,2号机车的前端410即可以为第一车身面,则1号机车的后端420即可以为第二车身面。需要说明的是,在本示例性实施例中,2号机车的前端410也可以为第二车身面,1号机车的后端420也可以为第一车身面。基准点是指在第一车身面上确定的用于测试车体偏折程度的基准点,其可以位于第一车身面的任意位置,特别的,在本示例性实施例中,基准点的位置可以是第一车身面水平位置的中点位置,如图4所示,以2号机车的前端410为第一车身面时,基准点可以是2号机车前端A点所在的位置。投影点是指上述基准点在第二车身面投影的点,即在某些情况下也可以认为投影点为基准点到第二车身面的垂点,将其作为第一投影点。
步骤S330,将待测试机车和辅助测试机车共同进行试运行,确定基准点在第二车身面上的投影点,为第二投影点。
步骤S340,基于第一投影点和第二投影点的偏移程度,确定待测试机车的抗偏折性能。
在本示例性实施例中,可以将待测试机车与辅助测试机车作为整体,使其在一固定区段进行试运行,以进行测试试验。各机车在动态运行状态时,由于机车可能发生偏折,则步骤S320所确定的投影点位置会随机车偏折产生一定的偏移。因此,为了确定机车 的偏折幅度,本示例性实施例可以确定机车试运行时,基准点在第二车身面上的投影点,即第二投影点。换而言之,可以认为,第一投影点为试运行之前,机车未发生偏折时的投影点,第二投影点为试运行之后,机车发生偏折时的投影点。需要说明的是,第一投影点位置与第二投影点位置因机车发生偏折产生偏移,因此,第一投影点也可以是机车试运营过程中某一时刻基准点在第二车身面上的投影点,则第二投影点也可以是机车试运营过程中另一时刻基准点在第二车身面上的投影点,通过对第一投影点与第二投影点的分析,可以获取机车在试运行过程中的动态偏折情况,本公开对此不做具体限定。通过本示例性实施例可以灵活确定机车在各时刻下的投影点,从而确定机车的偏折幅度,测试较为方便,灵活,具有较强的适用性。
在本示例性实施例中,根据步骤S330确定的第一投影点步骤S340确定的第二投影点,可以得到第一投影点与第二投影点的偏移程度,该偏移程度可以反映待测试机车车体的偏折程度,进而确定待测试机车的抗偏折性能。在本示例性实施例中,可以为其设置一预设阈值,当第一投影点与第二投影点的偏移程度小于该阈值时,说明待测试机车的车体偏折幅度在正常范围内,即待测试机车能够通过测试,反之,待测试机车抗抗偏折性能较弱,无法确保其正常运行的安全性。
基于上述说明,在本示例性实施例中,在待测试机车运行方向的至少一侧连接辅助测试机车,在待测试机车和辅助测试机车相对的两个车身面中的第一车身面上确定一基准点,并确定基准点在两个车身面中的第二车身面上的投影点,为第一投影点,将待测试机车和辅助测试机车共同进行试运行,确定基准点在所述第二车身面上的投影点,为第二投影点,基于第一投影点和第二投影点的偏移程度,确定待测试机车的抗偏折性能。一方面,机车偏折测试过程中,通过确定基准点和投影点,可以实现对机车抗偏折性能的测试,获取参数较少,测试过程较为简洁、方便;另一方面,通过基准点和投影点可以确定机车的抗偏折性能,计算过程简单,无需复杂的试验组织过程,具有较为广泛的适用性。
在一示例性实施例中,步骤S310可以包括:
步骤S510,在待测试机车的前端连接第一辅助测试机车,后端连接第二辅助测试机车,前端为待测试机车运行方向的前端;
进一步的,步骤S320可以包括:
步骤S520,在待测试机车的前端车身面上确定前基准点,后端车身面上确定后基准点,并确定前基准点在第一辅助测试机车上的第一前投影点,后基准点在第二辅助测试 机车上的第一后投影点;
步骤S330可以包括:
步骤S530,将待测试机车和辅助测试机车共同进行试运行,确定前基准点在第一辅助测试机车上的第二前投影点,后基准点在第二辅助机车上的第二后投影点;
步骤S340可以包括:
步骤S540,基于第一前投影点和第二前投影点的偏移程度,以及第一后投影点和第二后投影点的偏移程度,确定待测试机车的抗偏折性能。
在本示例性实施例中,以待测试机车运行方向的前端为正方向,可以在待测试机车的前端连接第一辅助测试机车,后端连接第二辅助测试机车。如图4所示,附图4中的1#、2#、3#表示1号、2号、3号。其中,2号车为待测试机车,1号车及3号车为辅助测试机车,本示例性实施例中,可以在2号车的前端及后端分别确定前基准点以及后基准点,并确定前基准点在1号车后端车身面的第一前投影点,与后基准点在3号车前端车身面的第一后投影点,得到基准点的初始投影点,机车试运行后,机车发生偏折,再次获取前基准点在1号车后端车身面的第二前投影点,与后基准点在3号车前端车身面的第二后投影点,得到偏移后的投影点。本示例性实施例可以通过对前投影点的偏移程度和后投影点的偏移程度计算,确定待测试机车在试运行过程中受前后辅助机车的挤压影响,前端及后端产生的不同偏折状态,能够更加全面的分析待测试机车的抗偏折性能。
在一示例性实施例中,机车偏折测试方法还可以包括:
在进行试运行的过程中,运行速度低于第一阈值时,对待测试机车以及第一辅助测试机车施加第一作用力,对第二辅助测试机车施加第二作用力;
其中,第一作用力的方向为待测试机车运行方向的反方向,第二作用力与第一作用力的作用方向相反。
考虑到安全性的问题,试运行过程可以设置一运行速度阈值,即第一阈值,可以设置待测试机车与辅助测试机车在运行过程中的速度不高于50km/h。另外,为了模拟机车在运输过程中处于动态挤压时受到的压钩力,本示例性实施例,对待测试机车以及第一辅助测试机车施加第一作用力,其可以是再生制动,作用力方向为测试机车运行方向的反方向,以及对第二辅助测试机车施加第二作用力,其可以是牵引顶推,作用力方向为测试机车运行方向的正方向。采用上述方法施加作用力方向相反的第一作用力与第二作用力,可以使待测试机车受到两端辅助测试机车给予的挤压力,从而模拟动态挤压过程下,待测试机车的抗偏折性能。本示例性实施例可以丰富测试内容,增加测试结果的有 效性。
在一示例性实施例中,通常,待测试机车与辅助测试机车通过车钩连接,试运行过程中待测试机车会受到一定程度的压钩力,待测试机车和辅助测试机车可以在固定区段进行试运行,在试运行之前,机车偏折测试方法还可以包括:
根据固定区段的长度及压钩力的大小,确定辅助测试机车的数量。
为了合理进行机车抗偏折性能的测试,可以根据试运行的固定区段的长度及压钩力的大小,确定辅助测试机车的数量,例如如果固定区段较长,压钩力较大,则需要较多的辅助机车,反之则可以采用较少的辅助机车,以模拟较为合理的运行过程。
在本示例性实施例中,可以分为两种测试情况。第一种情况是,当固定区段的长度在第一区间内,且压钩力不大于第二阈值(该第二阈值为一个力的阈值),则确定在待测试机车运行方向的两侧均连接m台辅助测试机车,具体的,可以在前端连接m台第一辅助测试机车,后端连接m台第二辅助测试机车。其中,第一区间可以是较短路段的长度区间,例如可以是小于3km的长度区间,如[1.5km,3km],或者小于4km的长度区间等等,第二阈值可以是单台第一辅助测试机车的最大再生制动力。在上述条件下,m台可以是较少数量的辅助测试机车,例如可以在待测试机车的前端连接一台第一辅助测试机车,后端连接一台第二辅助测试机车,如图6所示,其中2号车为待测试机车,1号车为第一辅助测试机车,3号车为第二辅助测试机车。同时参考图6,其中运行方向F的单箭头指示的方向为待测试机车的前进方向,即其箭头指向表示待测试机车的前方。
第二种情况是,当固定区段的长度在第二区间内,且压钩力不大于第三阈值(该第三阈值也为一个力的阈值),则确定在待测试机车运行方向的两侧均连接n台辅助测试机车,具体的,可以在前端连接n台第一辅助测试机车,后端连接n台第二辅助测试机车。其中,第二区间可以是较长路段的长度区间,例如大于5km的长度区间,第三阈值可以是多台机车的最大再生制动力之和。在上述条件下,n台可以是较多数量的辅助测试机车,例如可以在待测试机车的前端连接3台第一辅助测试机车,后端连接3台第二辅助测试机车,如图7所示,其中图7中的1#、2#、3#、4#、5#、6#、7#也分别表示1号、2号、3号、4号、5号、6号、7号。其中表示运行方向F的单箭头指示的方向为待测试机车的前进方向,即其箭头指向表示待测试机车的前方。其中,4号车为待测试机车,1、2、3号车为第一辅助测试机车,5、6、7号车为第二辅助测试机车。第三阈值可以是3台第一辅助测试机车的最大再生制动力之和,具体的,第三阈值可以设置为1500kN、1200kN、900kN、600kN,本示例性实施例可以根据模拟的压钩力需要,确定第三阈值 的大小,需要说明的是,第三阈值的大小可以根据需要进行设置,本公开不限于上述四种等级大小的第三阈值。另外,上述第二区间的最小值大于第一区间的最大值,如5km>3km。第三阈值大于第二阈值,例如,在待测试机车的前端连接1台第一辅助测试机车,后端连接1台第二辅助测试机车时,第二阈值为单台测试机车的最大再生制动力,在待测试机车的前端连接3台第一辅助测试机车,后端连接3台第二辅助测试机车时,第三阈值为3台测试机车的最大再生制动力。n>m,例如第一种情况下,m可以是1台辅助测试机车,第二种情况下,n可以是3台辅助测试机车。本示例性实施例根据不同测试条件,建立待测试机车的测试模型进行测试,根据测试条件,合理调整待测试机车与辅助测试机车的编组情况,能够简单、准确的获取待测试机车在不同测试条件下的测试结果。
在一示例性实施例中,机车偏折测试方法还可以包括以下步骤:
在第二车身面确定第一参考点和第二参考点,在第一参考点设置第一距离传感器,在第二参考点设置第二距离传感器;
步骤S330中,确定基准点在第二车身面上的投影点,可以包括:
通过第一距离传感器测量第一参考点到基准点的第一距离,以及通过第二距离传感器测量第二参考点到基准点的第二距离;
根据第一距离,第二距离,以及第一距离传感器与第二距离传感器之间的第三距离,确定基准点在第二车身面上的投影点。
为了有效确定机车试运行过程中基准点的投影点的偏移程度,可以在第二车身面确定第一参考点与第二参考点,如图4所示,在1号车后端420,确定第一参考点C、第二参考点B,使其与基准点A形成三角形结构,如图8所示。在本示例性实施例中,可以在第一参考点C设置第一距离传感器,用于测量第一参考点C到基准点的实时距离,即第一距离;在第二参考点B设置第二距离传感器,用于测量第二参考点B到基准点的实时距离,即第二距离。第一参考点C与第二参考点B之间的距离保持不变,为第三距离。基准点A处可以设置一固定装置,固定装置分别与距离传感器连线,距离传感器与数据采集仪通过数据线连接。通过距离传感器可以采集固定装置相对于距离传感器的动态变化量,根据三角形的边角关系,可以确定第二投影点,从而确定待测试机车的偏折幅度。
举例说明,图8所示为第一参考点C、第二参考点B与基准点A的原始位置关系。A代表基准点原始位置,即固定装置的原始位置,B和C分别代表第二参考点与第一参 考点的原始位置,即距离传感器的原始位置,D代表基准点到第二车身面的投影点位置,即第一投影点,也可以认为是固定装置在两个距离传感器连线上的投影点,a和b分别代表基准点到第一参考点与第二参考点的原始距离,d代表第一参考点C到第一投影点D的原始距离,α代表在第一参考点C、第二参考点B与基准点A组成的三角形结构中,以第一参考点C为顶点的角的原始夹角。在本示例性实施例中,可以先测量构成三角形的三边原始长度,三边原始长度分别为a、b、c,通过余弦定理的公式:
Figure PCTCN2019122422-appb-000001
计算得到α角的余弦值,再通过公式:d=a·cosα,计算得到第一投影点D到第一参考点C的原始距离。
图9示出了待测试机车发生偏折后,第一参考点、第二参考点与基准点的位置关系,A代表基准点原始位置,即固定装置的原始位置,A’代表待测试机车发生相对偏折后基准点的位置,B和C代表第二参考点位置与第一参考点位置,D’代表待测试机车发生相对偏折后基准点在第二车身面上的第二投影点,a’和b’分别代表待测试机车发生相对偏折后基准点到两个参考点的距离,d’代表待测试机车发生相对偏折后第一参考点C到第二投影点D’的距离,β代表机车发生相对偏折后,在第一参考点C、第二参考点B与基准点A’组成的三角形结构中,以第一参考点C为顶点的角的夹角。在本示例性实施例中,试运行时,待测试机车相对辅助测试机车发生了偏折,其偏折的幅度是动态的,所以基准点相对于第一参考点与第二参考点的位置也发生了变化,通过数据采集仪读取基准点相对参考点的动态变化量,根据原始距离,可以计算出基准点的实时位置与第一参考点的第一距离a’、以及与第二参考点的第二距离b’。两个距离传感器可以安装在同一台辅助机车上,其之间的距离c保持不变。在本示例性实施例中,由于基准点相对于第一参考点和第二参考点的位置发生了变化,基准点与参考点组成了新的三角形,通过余弦定理:
Figure PCTCN2019122422-appb-000002
计算可以得到β角的余弦值,再通过公式d′=a′·cosβ,计算可以得到第一参考点到第二投影点的实时距离。进一步的,实时距离d’与原始距离d差值的绝对值即为待测试机车发生偏折的幅度。需要说明的是,本示例性实施例也可以通过计算投影点与第二参考点位置的距离的变化量来确定待测试机车的偏折幅度,具体计算过程与上述计算过程类似,在此不做赘述。通过计算待测试机车发生偏折的幅度大小,评估待测试机车处于动态挤压时的抗偏折性能,简单,便捷,提高了测试效率。在本示例性实施例中,可以以待测试机车与相邻辅助测试机车车体偏折幅度不大于150mm为量化标准,未超过该量化标准,可以认为待测试机车通过测试。
在一示例性实施例中,还可以通过在机车端部与车钩呈水平且距离为1m的位置设置一传感器测量车钩与车体的偏转角度。通过车钩的偏转角度确定待测试机车的抗偏折性能,以上述偏折幅度为150mm的某型机车为例,与该型机车车钩相对车体偏转6度时车体偏折幅度相对应,即可以认为车钩的偏转角度小于6度时,待测试机车的抗偏折性能较好,通过测试。
本公开的示例性实施例还提供了一种机车偏折测试装置,如图10和图11所示,该装置可以包括:
标识物30,设置于第一机车10的第一车身面上的基准点;
第一距离传感器40,设置于第二机车20的第二车身面上的第一参考点,用于检测第一参考点到基准点的第一距离;
第二距离传感器50,设置于第二车身面上的第二参考点,用于检测第二参考点到基准点的第二距离;
计算设备60,与第一距离传感器40和第二距离传感器50通信连接,用于根据第一距离、第二距离以及第一参考点和第二参考点之间的第三距离确定基准点在第二车身面上的投影点,并基于在第一机车10和第二机车20进行试运行过程中投影点的偏移,确定第一机车或第二机车20的抗偏折性能;
其中,第一机车10和第二机车20按照试运行方向连接,第一车身面和第二车身面为第一机车10和第二机车20相对的两个车身面。
其中,标识物30可以是指设置于第一机车10的第一车身面上基准点的固定装置,其可以为平板结构或立体结构等,其上可以设有用于紧固的零件,用以通过特定绳线连接距离传感器,其形状可以是长方形、正方形、圆形或其他不规则图形、其材料可以是金属、合金、硬质板材或其他材料,本公开对此不做具体限定。第一机车10可以是待测试机车,也可以是辅助测试机车。举例说明,第一机车10是待测试机车,则第二机车20为辅助测试机车,标识物可以设置于待测试机车的第一车身面上的基准点,第一距离传感器40与第二距离传感器50可以分别设置于辅助测试机车的第二车身面上的第一参考点与第二参考点。反之,第一机车10是辅助测试机车,则第二机车20为待测试机车,标识物可以设置于辅助测试机车的第一车身面上的基准点,第一距离传感器40与第二距离传感器50可以分别设置于待测试记着的第二车身面上的第一参考点与第二参考点。
机车偏折测试装置还包括用于测量第一参考点与基准点距离的第一距离传感器 40,与用于测量第二参考点与基准点距离的第二距离传感器50,其中,距离传感器与参考点的连接方式可以通过粘接、焊接、螺栓连接或其他方式固定连接,本公开在此不做一一列举。本示例性实施例通过设置距离传感器,可以实时检测第一参考点与基准点的距离,以及第二参考点与基准点的距离,以实现准确测试机车的抗偏折性能。
为了使机车在试运行过程中连接处能够适应挤压、拉伸等变形作用,可以使用第一金属绳连接基准点与待测试机车上的第一参考点,使用第二金属绳连接基准点和待测试机车上的第二参考点,其金属绳的材质、尺寸与连接方式,本公开对此不做具体限定。如图4所示,区域430示出了本示例性实施例中一种机车偏折测试装置,其中,A点为设置于第一机车10的第一车身面上的基准点的标识物,第一参考点位置C为第一距离传感器40的设置位置,第二参考点位置B为第二距离传感器50的设置位置,其具体的结构关系可以参考图8~图9所示,其中,第一距离为第一参考点至基准点的距离,第二距离为第二参考点至基准点的距离,第三距离为第一参考点到第二参考点的距离。
本领域技术人员在考虑说明书及实践这里公开的技术方案后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限。

Claims (12)

  1. 一种机车偏折测试方法,其特征在于,包括:
    在待测试机车沿运行方向上的至少一侧连接辅助测试机车;
    在所述待测试机车和所述辅助测试机车相对的两个车身面中的第一车身面上确定一基准点,并确定所述基准点在所述两个车身面中的第二车身面上的投影点,为第一投影点;
    将所述待测试机车和所述辅助测试机车共同进行试运行,确定所述基准点在所述第二车身面上的投影点,为第二投影点;
    基于所述第一投影点和所述第二投影点的偏移程度,确定所述待测试机车的抗偏折性能。
  2. 根据权利要求1所述的方法,其特征在于,所述在待测试机车运行方向的至少一侧连接辅助测试机车,包括:
    在待测试机车的前端连接第一辅助测试机车,后端连接第二辅助测试机车,所述前端为所述待测试机车在运行方向上的前端;
    所述在所述待测试机车和所述辅助测试机车相对的两个车身面中的第一车身面上确定一基准点,并确定所述基准点在所述两个车身面中的第二车身面上的投影点,为第一投影点,包括:
    在所述待测试机车的前端车身面上确定前基准点,后端车身面上确定后基准点,并确定所述前基准点在所述第一辅助测试机车上的第一前投影点,所述后基准点在所述第二辅助测试机车上的第一后投影点;
    所述将所述待测试机车和所述辅助测试机车共同进行试运行,确定所述基准点在所述第二车身面上的投影点,为第二投影点,包括:
    将所述待测试机车和所述辅助测试机车共同进行试运行,确定所述前基准点在所述第一辅助测试机车上的第二前投影点,所述后基准点在所述第二辅助机车上的第二后投影点;
    所述基于所述第一投影点和所述第二投影点的偏移程度,确定所述待测试机车的抗偏折性能,包括:
    基于所述第一前投影点和所述第二前投影点的偏移程度,以及所述第一后投影点和所述第二后投影点的偏移程度,确定所述待测试机车的抗偏折性能。
  3. 根据权利要求2所述的方法,其特征在于,还包括:
    在进行试运行的过程中,运行速度低于第一阈值时,对所述待测试机车以及所述第一辅助测试机车施加第一作用力,对所述第二辅助测试机车施加第二作用力;
    其中,所述第一作用力的方向为所述待测试机车的运行方向的反方向,所述第二作用力与所述第一作用力的作用方向相反。
  4. 根据权利要求3所述的方法,其特征在于,所述第一阈值为50km/h。
  5. 根据权利要求1所述的方法,其特征在于,所述待测试机车与辅助测试机车通过车钩连接;试运行中,所述待测试机车受到所述车钩的压钩力作用;所述待测试机车和所述辅助测试机车在固定区段进行试运行。
  6. 根据权利要求5所述的方法,其特征在于,在试运行之前,所述方法还包括:
    根据所述固定区段的长度及压钩力的大小,确定所述辅助测试机车的数量。
  7. 根据权利要求6所述的方法,其特征在于,所述根据所述固定区段的长度及压钩力的大小,确定所述辅助测试机车的数量,包括:
    如果固定区段的长度在第一区间内,且所述压钩力不大于第二阈值,则确定在所述待测试机车运行方向的两侧均连接m台所述辅助测试机车;
    如果固定区段的长度在第二区间内,且所述压钩力不大于第三阈值,则确定在所述待测试机车运行方向的两侧均连接n台所述辅助测试机车;
    其中,所述第二区间的最小值大于所述第一区间的最大值,所述第三阈值大于所述第二阈值,所述n>m。
  8. 根据权利要求7所述的方法,其特征在于,所述第一区间的范围为1.5km~3km。
  9. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述第二车身面确定第一参考点和第二参考点,在所述第一参考点设置第一距离传感器,在所述第二参考点设置第二距离传感器;
    所述确定所述基准点在所述第二车身面上的投影点,包括:
    通过所述第一距离传感器测量所述第一参考点到所述基准点的第一距离,以及通过所述第二距离传感器测量所述第二参考点到所述基准点的第二距离;
    根据所述第一距离,所述第二距离,以及所述第一参考点与所述第二参考点之间的第三距离,确定所述基准点在所述第二车身面上的投影点。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述第一距离,所述第二距离,以及所述第一距离传感器与所述第二距离传感器之间的第三距离,确定所述 基准点在所述第二车身面上的投影点,包括:
    根据所述第一距离、所述第二距离以及所述第三距离,对所述第一参考点、第二参考点以及基准点组成的三角形结构,通过余弦定理确定所述基准点在所述第二车身面上的投影点。
  11. 一种机车偏折测试装置,其特征在于,包括:
    标识物,设置于第一机车的第一车身面上的基准点;
    第一距离传感器,设置于第二机车的第二车身面上的第一参考点,用于检测所述第一参考点到所述基准点的第一距离;
    第二距离传感器,设置于所述第二车身面上的第二参考点,用于检测所述第二参考点到所述基准点的第二距离;
    计算设备,与所述第一距离传感器和第二距离传感器通信连接,用于根据所述第一距离、第二距离以及所述第一参考点和所述第二参考点之间的第三距离确定所述基准点在所述第二车身面上的投影点,并基于在所述第一机车和所述第二机车进行试运行过程中所述投影点的偏移,确定所述第一机车或所述第二机车的抗偏折性能;
    其中,所述第一机车和所述第二机车按照试运行方向连接,所述第一车身面和所述第二车身面为所述第一机车和所述第二机车相对的两个车身面。
  12. 根据权利要求11所述的装置,其特征在于,所述第一机车为待测试机车,所述第二机车为辅助测试机车。
PCT/CN2019/122422 2019-06-12 2019-12-02 机车偏折测试方法、机车偏折测试装置 WO2020248533A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL440698A PL440698A1 (pl) 2019-06-12 2019-12-02 Sposób testowania wychylenia lokomotywy oraz aparat do testowania wychylenia lokomotywy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910504992.4 2019-06-12
CN201910504992.4A CN111912633B (zh) 2019-06-12 2019-06-12 机车偏折测试方法、机车偏折测试装置

Publications (1)

Publication Number Publication Date
WO2020248533A1 true WO2020248533A1 (zh) 2020-12-17

Family

ID=73241789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122422 WO2020248533A1 (zh) 2019-06-12 2019-12-02 机车偏折测试方法、机车偏折测试装置

Country Status (3)

Country Link
CN (1) CN111912633B (zh)
PL (1) PL440698A1 (zh)
WO (1) WO2020248533A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039641A1 (de) * 2005-10-06 2007-04-12 Gutehoffnungshütte Radsatz Gmbh Verfahren zur berührungslosen dynamischen erfassung des profils eines festkörpers
CN101082489A (zh) * 2007-07-11 2007-12-05 武汉立得空间信息技术发展有限公司 铁路限界高速动态检测装置
CN101580071A (zh) * 2009-06-05 2009-11-18 中南大学 铁路机车车辆运行姿态测量系统
CN101666716A (zh) * 2009-06-05 2010-03-10 中南大学 铁路机车车辆运行姿态测量方法
CN103168220A (zh) * 2010-10-19 2013-06-19 米其林企业总公司 用于识别和定义形成轮胎胎面设计的基本花纹的方法
CN207280421U (zh) * 2017-09-20 2018-04-27 中机科(北京)车辆检测工程研究院有限公司 汽车列车轨迹偏移量测试系统
CN109767475A (zh) * 2018-12-28 2019-05-17 广州小鹏汽车科技有限公司 一种传感器的外部参数标定方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051725A1 (de) * 2006-10-30 2008-05-08 Schenck Process Gmbh Verfahren und Vorrichtung zum Positionieren eines Prüflings in einem Prüfstand für Drehgestelle von Schienenfahrzeugen
WO2013052100A1 (en) * 2011-10-03 2013-04-11 International Electronic Machines Corporation Brake component monitoring
CN103448755B (zh) * 2013-05-28 2016-01-20 武汉钢铁(集团)公司 轨道机车运行监测诊断方法及系统
CN108001481B (zh) * 2017-12-07 2019-04-09 石家庄铁道大学 基于双激光源的车载式轮轨位移图像检测方法及检测装置
CN207741730U (zh) * 2018-01-03 2018-08-17 中车青岛四方机车车辆股份有限公司 一种车钩与车体间摆角的测量装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007039641A1 (de) * 2005-10-06 2007-04-12 Gutehoffnungshütte Radsatz Gmbh Verfahren zur berührungslosen dynamischen erfassung des profils eines festkörpers
CN101082489A (zh) * 2007-07-11 2007-12-05 武汉立得空间信息技术发展有限公司 铁路限界高速动态检测装置
CN101580071A (zh) * 2009-06-05 2009-11-18 中南大学 铁路机车车辆运行姿态测量系统
CN101666716A (zh) * 2009-06-05 2010-03-10 中南大学 铁路机车车辆运行姿态测量方法
CN103168220A (zh) * 2010-10-19 2013-06-19 米其林企业总公司 用于识别和定义形成轮胎胎面设计的基本花纹的方法
CN207280421U (zh) * 2017-09-20 2018-04-27 中机科(北京)车辆检测工程研究院有限公司 汽车列车轨迹偏移量测试系统
CN109767475A (zh) * 2018-12-28 2019-05-17 广州小鹏汽车科技有限公司 一种传感器的外部参数标定方法及系统

Also Published As

Publication number Publication date
CN111912633B (zh) 2022-01-25
CN111912633A (zh) 2020-11-10
PL440698A1 (pl) 2023-02-13

Similar Documents

Publication Publication Date Title
CN101819286B (zh) 一种基于图像灰度直方图的雾天检测方法
CN202057331U (zh) 基于多点测速方法的列车故障轨边图像检测设备
CN105923014B (zh) 一种基于证据推理规则的轨道高低不平顺幅值估计方法
CN107054404B (zh) 一种列车轮对轮径自动校验方法及装置
Šarkan et al. Vehicle coast-down method as a tool for calculating total resistance for the purposes of type-approval fuel consumption
CN107895478B (zh) 一种路面道路交通监控方法
CN109002622A (zh) 一种随机车流作用下大跨径桥梁总体荷载响应估算方法
WO2019233335A1 (zh) 一种轨道列车中间车钩实验的实验方法
CN111637852B (zh) 全挂汽车列车铰接角的测量系统及测量方法
CN103879398A (zh) 测试气压型abs中的电子控制单元性能的系统与方法
CN109017166A (zh) 一种利用声音检测轮胎气压的设备
CN105929025A (zh) 一种基于时间与空间连续的车轮踏面与轨道故障检测方法
WO2020248533A1 (zh) 机车偏折测试方法、机车偏折测试装置
CN216357337U (zh) 一种智能网联研究测试装置
CN105116167A (zh) 一种机动车在坡度平面行驶时的加速度确定方法
CN206038328U (zh) 一种平板制动检验台
CN106996880A (zh) 一种城轨车辆制动性能测量装置及方法
CN110363988A (zh) 一种交叉口车辆通行效率的计算系统及方法
CN112945969B (zh) 基于机器视觉测量的空心板梁桥铰缝损伤识别方法及系统
CN101832869B (zh) 一种检测粘着系数的方法、装置和系统
CN108973543A (zh) 一种利用用电量检测轮胎气压的设备
CN203580808U (zh) 一种模拟隧道考试中实时检测车辆占道行驶的检测仪
CN105372080A (zh) 一种有轨电车及其嵌入式轨道耦合动力学测试装置及方法
CN101509837A (zh) 轨道车辆横向动力学性能地面监测评估方法
CN207423095U (zh) 轮辋变形检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19933069

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19933069

Country of ref document: EP

Kind code of ref document: A1