WO2020248473A1 - 一种基于微流控芯片的纳米微晶纤维素制备方法 - Google Patents
一种基于微流控芯片的纳米微晶纤维素制备方法 Download PDFInfo
- Publication number
- WO2020248473A1 WO2020248473A1 PCT/CN2019/113884 CN2019113884W WO2020248473A1 WO 2020248473 A1 WO2020248473 A1 WO 2020248473A1 CN 2019113884 W CN2019113884 W CN 2019113884W WO 2020248473 A1 WO2020248473 A1 WO 2020248473A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- microfluidic chip
- reaction
- sulfuric acid
- suspension
- mcc
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B15/00—Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
- C08B15/02—Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
Definitions
- the invention belongs to the technical field of CNCs (nano microcrystalline cellulose), and specifically relates to a method for preparing nano microcrystalline cellulose based on a microfluidic chip.
- Nanocrystalline cellulose As a new type of biomass-based polymer materials, has become a research hotspot in many fields. Nanocrystalline cellulose is used in many fields such as cosmetics and composite materials due to its excellent mechanical properties and optical properties, and how to control CNCs preparation and characterization has instructive significance for its application. Microfluidic technology has been widely used in the fields of biomedicine and chemical reactions due to its advantages of high sensitivity, low sample consumption, and automation.
- the present invention provides a method for preparing nano-microcrystalline cellulose based on a microfluidic chip.
- the technical problem to be solved is: how to control and adjust the reaction mixture and reaction conditions during the preparation of nano-microcrystalline cellulose to improve the reaction The efficiency and safety of operation.
- the main purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art and provide a method for preparing nano-crystalline cellulose based on a microfluidic chip.
- the method for preparing nano-crystalline cellulose based on a microfluidic chip of the present invention includes the following steps:
- the microfluidic chip is used as the carrier of the whole reaction to carry out the reaction of hydrolyzing MCC with sulfuric acid to prepare CNCs.
- the pipe structure in the microfluidic chip is configured such that the main pipe is dispersed into multiple thin pipes and then recombined In the main pipe, the multiple thin pipes and the main pipe are all spiral pipes;
- the microfluidic chip includes an MCC sample injection port 1, a sulfuric acid solution injection port 2, a deionized water injection port 3, and a product outlet 4;
- the sample is led to the sampling pipe 5, and the sulfuric acid solution is led to the pipe 6.
- the pipe starts to disperse into three mixed solution pipes, and the three mixed solution pipes are "U"
- the glyphs are arranged in the first position.
- the deionized water injection port is set on the back section of the mixed solution pipeline.
- the MCC suspension and the sulfuric acid solution meet in the mixed solution pipeline at the same time, and then start to enter the mixing reaction stage.
- a T-shaped microchannel mixing structure is selected. The fluid enters from two directions of the channel, and the product after the reaction is discharged from the product outlet.
- the fluid flowing in the spiral tube forms a secondary vortex on a section perpendicular to the main flow direction, so that the fluid flows outward along the pipe and moves inward along the pipe wall, which is in line with the main flow direction.
- the parallel flows driven by the fluid interact to form a three-direction fluid mixing and cross, so that the reactants achieve a continuous dispersion and mixing process.
- the mass concentration of the sulfuric acid solution is 60%.
- the suspension is subjected to ultrasonic dispersion with an ultrasonic time of 3 s, an interval of 3 s, and a total time of 20 min.
- the flow rate of injection into the microfluidic channel using a syringe pump is controlled to 2 ⁇ L/min.
- the temperature of the constant temperature hot water bath is 40°C.
- the centrifugal rotation speed is 5000 r/min.
- the present invention has the following advantages and beneficial effects:
- the current preparation method of nano-microcrystalline cellulose has many limitations. For example, a large amount of acid treatment is required in the preparation process, which increases production costs and instrument maintenance costs, and generates a large number of difficult-to-recover pollutants.
- the reaction conditions can be more accurately controlled, including the amount of acid added, can also be accurately controlled and recycled, the mixing of multiple reactants is more uniform, and the safety of the experiment is also improved.
- the technical scheme of the present invention also has the following advantages: high sensitivity for controlling reaction conditions, low reagent consumption, short diffusion time, good mixing effect, its own miniaturization makes it easy to be combined with other analysis and detection technologies, and Good safety and operability.
- FIG. 1 is a flowchart of the present invention
- Figures 2(a) and 2(b) are SEM images of CNCs particles at 1 ⁇ m and 200 nm obtained in Example 1;
- Figure 3(a) and Figure 3(b) are respectively the length and width distribution diagrams of CNCs particles in Example 1;
- Figures 4(a) and 4(b) are SEM images of CNCs particles at 1 ⁇ m and 200 nm obtained in Example 2;
- Figures 5(a) and 5(b) are respectively the length and width distribution diagrams of CNCs particles in Example 2;
- Figures 6(a) and 6(b) are SEM images of CNCs particles at 1 ⁇ m and 200 nm obtained in Example 3;
- Figures 7(a) and 7(b) are respectively the length and width distribution diagrams of CNCs particles in Example 3.
- Fig. 8 is a structural diagram of the microfluidic chip of this embodiment.
- the principle of a method for preparing nano-microcrystalline cellulose based on a microfluidic chip of the present invention is:
- microfluidic chip as the carrier of the entire reaction to carry out the reaction of preparing CNCs by hydrolyzing MCC with sulfuric acid, and add and mix the reaction reagents according to the specific microfluidic chip structure;
- the reaction area of the entire microfluidic chip can be placed in a beaker of hot water bath to maintain a suitable reaction temperature
- the pipe structure in the microfluidic chip is configured such that the main pipe is dispersed into multiple thin pipes and then recombined into the main pipe, and the multiple thin pipes and the main pipe are all spiral pipes.
- the microfluidic chip includes an MCC sample injection port 1, a sulfuric acid solution injection port 2, an ionized water injection port 3, and a product outlet 4.
- the MCC sample injection port 1 is connected to an MCC sample injection pipe 5,
- the sulfuric acid solution injection port 2 is connected to the sulfuric acid solution pipeline 6.
- the MCC sample injection pipeline 5 and the sulfuric acid solution pipeline 6 are combined and then dispersed and configured into three mixed solution pipelines 7, and the three mixed solution pipelines are arranged in a "U" shape first.
- a and B are the sample and reagent injection ports respectively.
- MCC suspension is injected from the A injection port, sulfuric acid is injected from the B injection port, deionized water is injected from the C injection port, and finally at the D outlet Collect the product.
- the MCC suspension and sulfuric acid meet in the pipeline at the same time (because the lengths of the pipelines at both ends are the same, and the injection flow rate is also the same), and then start to enter the stage of mixing reaction.
- a T-shaped micro-channel mixing structure is selected, and the fluid enters from two directions of the channel respectively, which can achieve efficient mixing.
- the pipeline structure in the microfluidic chip is designed such that the main pipeline is dispersed into three thin pipelines, and then recombined into the main pipeline.
- the fluid flowing in the spiral tube forms a secondary vortex on the cross section perpendicular to the main flow direction, which can make the fluid flow outward along the pipe and move inward along the pipe wall, and flow in parallel with the fluid in the main flow direction.
- CNCs nanocrystalline cellulose
- Example 1 the finally obtained SEM images of CNCs particles are shown in Figs. 2(a) and 2(b), and the length and width distribution diagrams of CNCs particles are shown in Figs. 3(a) and 3(b).
- the step (2) in Example 1 was changed to add 65% sulfuric acid, and the step (3) in Example 1 was changed to maintain the reaction temperature of 50°C.
- Example 2 the SEM images of CNCs particles finally obtained are shown in Fig. 4(a) and Fig. 4(b), and the length and width distribution diagrams of CNCs particles are shown in Fig. 5(a) and Fig. 5(b).
- the step (2) in Example 1 was changed to adding 55% sulfuric acid, and the step (3) in Example 1 was changed to maintain the reaction temperature of 30°C.
- Example 3 the SEM images of CNCs particles finally obtained are shown in Fig. 6(a) and Fig. 6(b), and the length and width distribution diagrams of CNCs particles are shown in Fig. 7(a) and Fig. 7(b).
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
一种基于微流控芯片的纳米微晶纤维素制备方法,包括下述步骤:(1)制作加工微流控芯片;(2)配置一定浓度的硫酸;(3)配置MCC悬浮液胶体,并进行超声分散;(4)将MCC悬浮液加入到制备用微流控芯片的入口处,同时取等量硫酸从另一个入口加入;(5)控制微注射泵注射流量来控制酸水解的反应时间;(6)将整个微流控芯片的反应区域部分放置于恒温水浴中;(7)稀释反应液中的硫酸浓度,抑制反应的进行,并在出口位置收集最终产物;(8)对产物进行离心,得到CNCs悬浮液。反应条件可以更加精准的控制,包括酸加入的量也可以精准的进行控制和回收处理,多种反应物混合更加均匀,实验的安全性也得到提高。
Description
本发明属于CNCs(纳米微晶纤维素)的技术领域,具体涉及一种基于微流控芯片的纳米微晶纤维素制备方法。
纳米微晶纤维素(CNCs)作为一种新型的生物质基高分子材料,目前在多个领域内成为研究的热点。纳米微晶纤维素因其优异的机械性能、光学性能等应用在化妆品、复合材料等多个领域,而如何将CNCs进行可控的制备和表征对于它的应用有指导性的意义。微流控技术由于其灵敏度高、样品消耗少、自动化的优点,在生物医学领域、化学反应领域得到广泛的应用。
发明概述
本发明提供一种基于微流控芯片的纳米微晶纤维素制备方法,所要解决的技术问题是:在纳米微晶纤维素制备过程中,如何对反应混合物和反应条件进行控制调节,以提高反应的效率和操作的安全性。
问题的解决方案
本发明的主要目的在于克服现有技术的缺点与不足,提供一种基于微流控芯片的纳米微晶纤维素制备方法。
为了达到上述目的,本发明采用以下技术方案:
本发明一种基于微流控芯片的纳米微晶纤维素制备方法,包括下述步骤:
(1)采用微流控芯片作为整个反应的载体,来进行硫酸水解MCC制备CNCs的反应,所述微流控芯片中的管道结构被配置成主管道分散为多条细管道,后又重新组合到主管道中,所述多条细管道和主管道均为螺旋管;
(2)配置浓度范围为55%-65%的硫酸溶液;
(3)向MCC粉末加入少量的超纯水配置成悬浮液胶体,并对悬浮液进行超声 时间2s-4s,间隔时间2s-4s,总时长为15min-30min的超声分散;
(4)将分散好的MCC悬浮液加入到微流控芯片的入口处,同时取等量硫酸溶液从另一个入口加入;
(5)控制微注射泵以调节注射流量来控制酸水解的反应时间,反应时间为30-40min;
(6)将整个微流控芯片的反应区域部分放置于恒温热水浴中;
(7)根据芯片持液量及注射流量计算反应溶液至反应区域出口3时加入超纯水以稀释反应液中的硫酸浓度,抑制反应的进行,并在出口位置收集最终产物;
(8)对悬浮液产物进行离心,离心后倒去上层清液取下层部分,再加入去离子水,重复离心操作,重复多次,得到CNCs悬浮液。
作为优选的技术方案,所述步骤(1)中,所述微流控芯片包括MCC样品进样口1、硫酸溶液进样口2、去离子水进样口3以及产物出口4;所述MCC样品通入到进样管道5,所述硫酸溶液通入到管道6,所述MCC样品和硫酸溶液于管道汇合后,管道开始分散成三条混合溶液管道,所述三条混合溶液管道呈“U”字形首位排列,所述去离子水进样口设置在混合溶液管道后段上,在开始注入一段时间后,MCC悬浮液和硫酸溶液同时于混合溶液管道中交汇,然后开始进入混合反应的阶段,在混合结构方面选取T型微通道混合结构,流体分别从通道的两个方向进入,经过反应后的产物从产物出口排出。
作为优选的技术方案,在离心力作用下,螺旋管内流动的流体在垂直于主流方向的截面上形成二次涡流,使流体沿着管道向外侧流动,沿管壁向内侧移动,与主流动方向的流体带动的平行流动相互作用,形成三个方向的流体混合交叉,使反应物之间达到一个不断的分散、混合的过程。
作为优选的技术方案,所述步骤(2)中,所述硫酸溶液的质量浓度为60%。
作为优选的技术方案,所述步骤(3)中,并对悬浮液进行超声时间3s,间隔时间3s,总时长为20min的超声分散。
作为优选的技术方案,所述步骤(5)中,使用注射泵向微流通道中注射的流量控制为2μL/min。
作为优选的技术方案,所述步骤(6)中,恒温热水浴的温度为40℃。
作为优选的技术方案,所述步骤(8)中,离心转数为5000r/min。
发明的有益效果
本发明与现有技术相比,具有如下优点和有益效果:
(1)目前纳米微晶纤维素的制备方法还有很多局限性,比如制备过程中需要用到大量的酸处理,增加了生产成本和仪器维护成本,而且会产生大量难以回收的污染物。而通过使用微流控芯片作为载体进行试验,反应条件可以更加精准的控制,包括酸加入的量也可以精准的进行控制和回收处理,多种反应物混合更加均匀,实验的安全性也得到提高。
(2)通过本发明的技术方案,还具备下述优点:控制反应条件的灵敏度高,试剂消耗低,扩散时间短、混合效果好,自身的微型化导致易于与其它分析检测技术联用,以及安全性和操作性好。
对附图的简要说明
图1为本发明的流程图;
图2(a)、图2(b)为实施例1得到CNCs粒子在1μm和200nm时的SEM图像;
图3(a)、图3(b)分别为实施例1中CNCs粒子的长度和宽度分布图;
图4(a)、图4(b)为实施例2得到CNCs粒子在1μm和200nm的SEM图像;
图5(a)、图5(b)分别为实施例2中CNCs粒子的长度和宽度分布图;
图6(a)、图6(b)为实施例3得到CNCs粒子在1μm和200nm时的SEM图像;
图7(a)、图7(b)分别为实施例3中CNCs粒子的长度和宽度分布图。
图8为本实施例微流控芯片结构图。
发明实施例
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例
如图1所示,本发明一种基于微流控芯片的纳米微晶纤维素制备方法的原理为:
S1、使用微流控芯片作为整个反应的载体,来进行硫酸水解MCC制备CNCs的反应,根据特定的微流控芯片结构,进行对反应试剂的加入和混合;
S2、将分散好的MCC悬浮液加入到制备用微流控芯片的入口处,同时取等量硫酸从另一个入口加入,控制两者的注射流速相同,两者会在微流控芯片中同时交汇,然后进行混合,开始酸水解反应;
S3、由于微流控芯片的体积很小,因此可以将整个微流控芯片的反应区域部分放置于烧杯热水浴中,以此来保持合适的反应温度;
S4、由于微流控芯片的制作材料是透明可见的,可以直观的观察到反应液体在微流控芯片中的流动,在肉眼观察反应液体流动至反应区域出口时加入超纯水以稀释反应液中的硫酸浓度,抑制反应的进行,并在出口位置收集最终产物。
如图8所示,所述微流控芯片中的管道结构被配置成主管道分散为多条细管道,后又重新组合到主管道中,所述多条细管道和主管道均为螺旋管。所述微流控芯片包括MCC样品进样口1、硫酸溶液进样口2、离子水进样口3以及产物出口4;所述MCC样品进样口1连接MCC样品进样管道5,所述硫酸溶液进样口2连接硫酸溶液管道6,所述MCC样品进样管道5和硫酸溶液管道6汇合后分散配置成三条混合溶液管道7,所述三条混合溶液管道呈“U”字形首位排列。结合附图8,A、B分别为样品和试剂的进样口,从A进样口注入MCC悬浮液,从B进样口注入硫酸,从C进样口注入去离子水,最终在D出口收集产物。在注入一段时间后,MCC悬浮液和硫酸同时于管道中交汇(因为两端管道长度是相等的,而且注射流速也相同),然后开始进入混合反应的阶段。在混合结构方面选取T型微通道混合结构,流体分别从通道的两个方向进入,可实现高效混合。微流控芯片中的管道结构设计成主管道分散为三条细管道,后又重新组合到主管道中。在离心力作用下,螺旋管内流动的流体在垂直于主流方向的截面上形成二次涡流,可使流体沿着管道向外侧流动,沿管壁向内侧移动,与主流动方向的流体带动的平行流动相互作用,形成三个方向的流体混合交叉,使反应物之间达到一个不断的分散、混合的过程,尤其是在微米尺度下进行,可以大大提高反应的效率。
下面结合具体的实施例对本发明做进一步的阐述:
本实施例对一种基于微流控芯片的对CNCs(纳米微晶纤维素)的新型制备方法包括下述步骤:
(1)取5g MCC粉末,加入少量的超纯水配置成悬浮液胶体,并对MCC悬浮液进行超声时间3s,间隔时间3s,总时长为20min的超声分散;
(2)使将分散好的MCC悬浮液加入到制备用微流控芯片的入口处,同时取等量60%浓度的硫酸从另一个入口加入,通过控制微型注射泵的注射流量为2μL/min保证MCC悬浮液和浓硫酸于微流控芯片中交汇混合;
(3)将整个微流控芯片的反应区域部分放置于烧杯热水浴中,保持40℃的反应温度;
(4)根据芯片持液量及注射流量计算反应溶液至反应区域出口3时加入超纯水以稀释反应液中的硫酸浓度,抑制反应的进行,并在出口位置收集最终产物;
(5)对悬浮液产物进行离心,离心后倒去上层清液取下层部分,再加入去离子水重复离心操作,重复五次,直至最后离心完下层无沉淀产生即可得到CNCs悬浮液。
本实施例1中,最终得到CNCs粒子的SEM图像如图2(a)和图2(b)所示,CNCs粒子的长度宽度分布图如图3(a)和图3(b)所示。
实施例2
将实施例1中的步骤(2)改为加入65%的硫酸,将实施例1中的步骤(3)改为保持50℃的反应温度。
本实施例2中,最终得到CNCs粒子的SEM图像如图4(a)和图4(b)所示,CNCs粒子的长度宽度分布图如图5(a)、图5(b)所示。
实施例3
将实施例1中的步骤(2)改为加入55%的硫酸,将实施例1中的步骤(3)改为保持30℃的反应温度。
本实施例3中,最终得到CNCs粒子的SEM图像如图6(a)和图6(b)所示,CNCs粒子的长度宽度分布图如图7(a)、图7(b)所示。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例 的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (8)
- 一种基于微流控芯片的纳米微晶纤维素制备方法,其特征在于,包括下述步骤:(1)采用微流控芯片作为整个反应的载体,来进行硫酸水解MCC制备CNCs的反应,所述微流控芯片中的管道结构被配置成主管道分散为多条细管道,后又重新组合到主管道中,所述多条细管道和主管道均为螺旋管;(2)配置浓度范围为55%-65%的硫酸溶液;(3)向MCC粉末加入少量的超纯水配置成悬浮液胶体,并对悬浮液进行超声时间2s-4s,间隔时间2s-4s,总时长为15min-30min的超声分散;4)将分散好的MCC悬浮液加入到微流控芯片的入口处,同时取等量硫酸溶液从另一个入口加入;(5)控制微注射泵以调节注射流量来控制酸水解的反应时间,反应时间为30-40min;(6)将整个微流控芯片的反应区域部分放置于恒温热水浴中;(7)根据芯片持液量及注射流量计算反应溶液至反应区域出口时加入超纯水以稀释反应液中的硫酸浓度,抑制反应的进行,并在出口位置收集最终产物;(8)对悬浮液产物进行离心,离心后倒去上层清液取下层部分,再加入去离子水重复离心操作,重复多次,得到CNCs悬浮液。
- 根据权利要求1所述基于微流控芯片的纳米微晶纤维素制备方法,其特征在于,所述步骤(1)中,所述微流控芯片包括MCC样品进样口、硫酸溶液进样口、去离子水进样口以及产物出口;所述MCC样品通入到进样管道,所述硫酸溶液通入到管道,所述MCC样品和硫酸溶液于管道汇合后,管道开始分散成三条混合溶液管道,所述三条混合溶液管道呈“U”字形首位排列,所述去离子水进样口设置在混合溶液管道后段上,在开始注入一段时间后,MCC悬 浮液和硫酸溶液同时于混合溶液管道中交汇,然后开始进入混合反应的阶段,在混合结构方面选取T型微通道混合结构,流体分别从通道的两个方向进入,经过反应后的产物从产物出口排出。
- 根据权利要求1所述基于微流控芯片的纳米微晶纤维素制备方法,其特征在于,在离心力作用下,螺旋管内流动的流体在垂直于主流方向的截面上形成二次涡流,使流体沿着管道向外侧流动,沿管壁向内侧移动,与主流动方向的流体带动的平行流动相互作用,形成三个方向的流体混合交叉,使反应物之间达到一个不断的分散、混合的过程。
- 根据权利要求1所述基于微流控芯片的纳米微晶纤维素制备方法,其特征在于,所述步骤(2)中,所述硫酸溶液的质量浓度为60%。
- 根据权利要求1所述基于微流控芯片的纳米微晶纤维素制备方法,其特征在于,所述步骤(3)中,并对悬浮液进行超声时间3s,间隔时间3s,总时长为20min的超声分散。
- 根据权利要求1所述基于微流控芯片的纳米微晶纤维素制备方法,其特征在于,所述步骤(5)中,使用注射泵向微流通道中注射的流量控制为2μL/min。
- 根据权利要求1所述基于微流控芯片的纳米微晶纤维素制备方法,其特征在于,所述步骤(6)中,恒温热水浴的温度为40℃。
- 根据权利要求1所述基于微流控芯片的纳米微晶纤维素制备方法,其特征在于,所述步骤(8)中,离心转数为5000r/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ZA2021/03191A ZA202103191B (en) | 2019-06-10 | 2021-05-11 | Method for preparing cellulose nanocrystals based on microfluidic chip |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910495382.2A CN110256584A (zh) | 2019-06-10 | 2019-06-10 | 一种基于微流控芯片的纳米微晶纤维素制备方法 |
CN201910495382.2 | 2019-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020248473A1 true WO2020248473A1 (zh) | 2020-12-17 |
Family
ID=67917253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/113884 WO2020248473A1 (zh) | 2019-06-10 | 2019-10-29 | 一种基于微流控芯片的纳米微晶纤维素制备方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110256584A (zh) |
WO (1) | WO2020248473A1 (zh) |
ZA (1) | ZA202103191B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023124437A1 (zh) * | 2021-12-27 | 2023-07-06 | Tcl科技集团股份有限公司 | 微流控芯片、微反应系统和量子点的制备方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112961254B (zh) * | 2021-01-29 | 2022-03-29 | 衢州学院 | 一种利用微通道反应系统制备疏水改性纳米纤维素的方法 |
CN114534530A (zh) * | 2022-02-23 | 2022-05-27 | 厦门芯曙光科技有限公司 | 一种流动化学自动化实验系统及其控制方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004515A (en) * | 1997-06-09 | 1999-12-21 | Calipher Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
CN101618308A (zh) * | 2009-06-09 | 2010-01-06 | 宋玉军 | 用于纳米颗粒制备的微流体反应器及颗粒的可控制备工艺 |
CN102080343B (zh) * | 2010-11-25 | 2013-05-29 | 山东轻工业学院 | 阴离子纳米微晶纤维素作为纸张增强剂的应用 |
CN106109440A (zh) * | 2016-06-17 | 2016-11-16 | 安徽理工大学 | 一种微流控芯片及海藻酸盐磁性微球的制备方法 |
CN108555309A (zh) * | 2018-01-10 | 2018-09-21 | 云南大学 | 一种尺寸可控的单分散金纳米颗粒的微流控制备技术 |
CN108904818A (zh) * | 2018-09-03 | 2018-11-30 | 国家纳米科学中心 | Ttd核杂化纳米颗粒、其制备方法及应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107831811A (zh) * | 2017-09-04 | 2018-03-23 | 华南理工大学 | 一种微纳米纤维素的微流道流动控制装置及控制方法 |
CN109438580B (zh) * | 2018-11-27 | 2021-04-27 | 陕西科技大学 | 一种超低酸水解纤维制备纳米纤维素晶体的方法 |
CN109517076B (zh) * | 2018-11-27 | 2021-04-13 | 陕西科技大学 | 一种超低酸水解纤维制备纳米微晶纤维素的方法 |
-
2019
- 2019-06-10 CN CN201910495382.2A patent/CN110256584A/zh active Pending
- 2019-10-29 WO PCT/CN2019/113884 patent/WO2020248473A1/zh active Application Filing
-
2021
- 2021-05-11 ZA ZA2021/03191A patent/ZA202103191B/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004515A (en) * | 1997-06-09 | 1999-12-21 | Calipher Technologies Corp. | Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems |
CN101618308A (zh) * | 2009-06-09 | 2010-01-06 | 宋玉军 | 用于纳米颗粒制备的微流体反应器及颗粒的可控制备工艺 |
CN102080343B (zh) * | 2010-11-25 | 2013-05-29 | 山东轻工业学院 | 阴离子纳米微晶纤维素作为纸张增强剂的应用 |
CN106109440A (zh) * | 2016-06-17 | 2016-11-16 | 安徽理工大学 | 一种微流控芯片及海藻酸盐磁性微球的制备方法 |
CN108555309A (zh) * | 2018-01-10 | 2018-09-21 | 云南大学 | 一种尺寸可控的单分散金纳米颗粒的微流控制备技术 |
CN108904818A (zh) * | 2018-09-03 | 2018-11-30 | 国家纳米科学中心 | Ttd核杂化纳米颗粒、其制备方法及应用 |
Non-Patent Citations (1)
Title |
---|
YUAN, ZHE: "Preparation and Characterization of Cellulose Nanocrystalline Based on Microfluidic Technology", CHINESE MASTER’S THESES FULL-TEXT DATABASE, 15 April 2019 (2019-04-15), pages 1 - 67, XP055763793 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023124437A1 (zh) * | 2021-12-27 | 2023-07-06 | Tcl科技集团股份有限公司 | 微流控芯片、微反应系统和量子点的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
ZA202103191B (en) | 2022-08-31 |
CN110256584A (zh) | 2019-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020248473A1 (zh) | 一种基于微流控芯片的纳米微晶纤维素制备方法 | |
CN101279232B (zh) | 基于微流体的微球制备方法 | |
CN105363503B (zh) | 多组分微液滴微流控芯片及其加工方法 | |
CN103386333A (zh) | 一种微流控液滴生产芯片 | |
CN105842324B (zh) | 一种集成微流控芯片及其工作方法 | |
CN108525622B (zh) | 一种多级反应微流控装置及其制备纳米材料的应用 | |
CN108555309A (zh) | 一种尺寸可控的单分散金纳米颗粒的微流控制备技术 | |
CN104650104A (zh) | 锌离子-卟啉纳米络合物的制备方法 | |
CN208320829U (zh) | 一种微流控长液路混合器 | |
CN103386338A (zh) | 一种微流控组合化学反应芯片 | |
CN103949170A (zh) | 一种分流汇流型混合器及混合方法 | |
CN110006873A (zh) | 基于三维微纳结构增强拉曼光谱的环境污染物检测方法 | |
CN105921188A (zh) | 一种乳液多维度快速制备微流控装置 | |
CN107051304A (zh) | 一种非对称结构与电极的主动式电渗微混合器 | |
CN103331121A (zh) | 微型流体混合系统 | |
CN109482249B (zh) | 用于非牛顿流体中高分子含量检测的微流控装置及方法 | |
Cui et al. | Enhancement of forward osmosis (FO) process by capillary force difference in microchannel | |
CN203935846U (zh) | 一种用于形成浓度梯度的装置及系统 | |
CN108993337A (zh) | 一种液滴流微反应器的集成装置 | |
CN209393198U (zh) | 一种离心式微流控芯片和离心式微流控系统 | |
CN112295622A (zh) | 一种基于光流控技术的总磷消解及实时在线检测的集成芯片 | |
CN110106355A (zh) | 基于微反应器的微乳液萃取金的方法 | |
CN202290071U (zh) | 用于产生连续浓度梯度和输出独立浓度的微流控芯片 | |
CN202129066U (zh) | 一种微流控微球制备装置 | |
CN205382177U (zh) | 一种内置细胞拦截器的高通量多单元微流控芯片装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19932491 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19932491 Country of ref document: EP Kind code of ref document: A1 |