WO2020248406A1 - Système hydraulique à décélération constante permettant le freinage à changement de vitesse en sûreté d'un appareil de levage, et procédé de freinage associé - Google Patents

Système hydraulique à décélération constante permettant le freinage à changement de vitesse en sûreté d'un appareil de levage, et procédé de freinage associé Download PDF

Info

Publication number
WO2020248406A1
WO2020248406A1 PCT/CN2019/105023 CN2019105023W WO2020248406A1 WO 2020248406 A1 WO2020248406 A1 WO 2020248406A1 CN 2019105023 W CN2019105023 W CN 2019105023W WO 2020248406 A1 WO2020248406 A1 WO 2020248406A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
electromagnetic
port
braking
directional valve
Prior art date
Application number
PCT/CN2019/105023
Other languages
English (en)
Chinese (zh)
Inventor
孙正
张晓光
徐文涛
徐桂云
蒋奇
孙佳胜
张春梅
侯建华
李辉
郭学军
Original Assignee
枣庄学院
徐州大恒测控技术有限公司
山西霍宝干河煤矿有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 枣庄学院, 徐州大恒测控技术有限公司, 山西霍宝干河煤矿有限公司 filed Critical 枣庄学院
Publication of WO2020248406A1 publication Critical patent/WO2020248406A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D5/00Braking or detent devices characterised by application to lifting or hoisting gear, e.g. for controlling the lowering of loads
    • B66D5/02Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes
    • B66D5/24Operating devices
    • B66D5/26Operating devices pneumatic or hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/025Pressure reducing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D5/00Braking or detent devices characterised by application to lifting or hoisting gear, e.g. for controlling the lowering of loads
    • B66D5/02Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes
    • B66D5/12Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes with axial effect
    • B66D5/14Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes with axial effect embodying discs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B2013/002Modular valves, i.e. consisting of an assembly of interchangeable components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/31523Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member
    • F15B2211/31541Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source and an output member having a single pressure source and multiple output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/634Electronic controllers using input signals representing a state of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6653Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode

Definitions

  • the invention relates to a safe conversion braking constant deceleration hydraulic station suitable for emergency braking of a hoist, in particular to a hoist safe conversion braking constant deceleration hydraulic system and a braking method, belonging to the technical field of mine hoists.
  • the mine hoisting system is an important part of ensuring the normal operation of the mine, and the reliability of the braking system directly affects the safe operation of the mine hoisting equipment.
  • Dynamic, constant deceleration braking is to adjust the proportional reversing valve or proportional servo valve to adjust the oil pressure of the disc brake by monitoring the closed loop feedback of the hoist speed, so that the brake shoe slowly locks the brake disc and maintains the deceleration Within a stable range;
  • the first level of braking is to adjust the oil pressure of the two sets of disc brakes to zero, and directly lock the brake discs with the maximum braking torque;
  • the second level of braking is to apply the disc brakes first The oil pressure adjustment is reduced to a two-stage brake pressure value, and then the oil pressure value is reduced to zero, and braking is performed through the two-stage oil pressure.
  • the present invention provides a hoist safe conversion braking constant deceleration hydraulic system and a braking method to prevent secondary braking from impacting the hoisting system after the constant deceleration braking function fails, and to ensure Reliability of braking.
  • the present invention is a hydraulic system for safe conversion braking and constant deceleration of hoist, which includes oil tank, motor, variable pump, accumulator, electromagnetic reversing valve group, brake valve group and pressure reducing valve group, variable pump
  • the inlet of the valve is connected to the fuel tank through the filter screen
  • the outlet of the variable pump is connected to the P port of the electromagnetic directional valve G1 through the filter screen
  • the T port of the electromagnetic directional valve G1 is connected to the first accumulator through the first check valve.
  • the second one-way valve is connected to the second accumulator and to the B port of the electromagnetic reversing valve G6; the P port of the electromagnetic reversing valve G6 and the P port of the electromagnetic reversing valve G66 are both connected to the brake valve group
  • the oil inlet of the first brake valve is connected, the P port of the electromagnetic directional valve G7 and the P port of the electromagnetic directional valve G77 are connected to the oil inlet of the second brake valve in the brake valve group; the electromagnetic directional valve
  • the T port of the electromagnetic directional valve G4 is connected to the P port of the electromagnetic directional valve G44
  • the T port of the electromagnetic directional valve G44 is connected to the B port of the electromagnetic proportional directional valve G5
  • the P of the electromagnetic proportional directional valve G5 The port is connected in parallel on the oil path connecting the second accumulator and the second one-way valve, and the T port of the electromagnetic proportional reversing valve G5 is connected to the oil tank through an electromagnetic overflow valve.
  • the first accumulator is respectively connected to the B port of the electromagnetic reversing valve G2 and the B port of the electromagnetic reversing valve G22 through the first throttle valve, and to the B port of the electromagnetic reversing valve G3 through the second throttle valve. , Connect the B port of the electromagnetic directional valve G33.
  • the oil inlet of the electromagnetic proportional relief valve is connected in parallel on the oil path connecting the outlet of the variable pump and the P port of the electromagnetic directional valve G1, and the oil outlet of the electromagnetic proportional relief valve is connected to the oil tank through a radiator.
  • Electromagnetic directional valve G1 electromagnetic directional valve G2, electromagnetic directional valve G22, electromagnetic directional valve G3, electromagnetic directional valve G33, electromagnetic directional valve G4, electromagnetic directional valve G44, electromagnetic directional valve G6, electromagnetic directional valve
  • the direction valve G66, the electromagnetic direction valve G7, and the electromagnetic direction valve G77 are all equipped with valve position monitoring sensors.
  • the T port of the electromagnetic reversing valve G1, the inlets of the first and second accumulators, the A port of the electromagnetic reversing valve G, and the oil inlet of the brake group are all equipped with oil pressure sensors.
  • the parallel electromagnetic reversing valve G7 and electromagnetic reversing valve G77 immediately lose power and switch to the right position.
  • the hydraulic oil of the brake group is quickly returned to the tank, and the oil pressure quickly drops to zero.
  • the brake reaches the full braking state, realizing immediate stop;
  • the parallel electromagnetic directional valve G6 and electromagnetic directional valve G66 immediately lose power and switch to the right position, while the parallel electromagnetic directional valve G7 and electromagnetic directional valve G77 do not act and maintain the left position.
  • the electromagnetic reversing valve G2, the electromagnetic reversing valve G22, the electromagnetic reversing valve G3, and the electromagnetic reversing valve G33 do not operate and maintain the left position.
  • the oil pressure of the brake group will immediately drop from the working oil pressure to the third pressure reducing valve setting. Fixed oil pressure;
  • the electromagnetic reversing valve G4 and the electromagnetic reversing valve G44 are in the right position when the power is lost, and the electromagnetic proportional reversing valve G5 is constantly reversing left and right.
  • the electromagnetic proportional reversing valve G5 is in the right position, the second accumulator is in the right position.
  • the electromagnetic proportional directional valve G5 is in the left position, the oil in the brake group will flow back to the tank through the electromagnetic overflow valve to increase the deceleration value to make up for the excessive deceleration value.
  • the oil pressure of the group decreases linearly and slowly, and the deceleration of the lifting container is maintained in a stable range until the oil pressure drops to zero and it is in a fully braked state;
  • the right position makes the oil pressure drop of the brake group to the set value of the first pressure reducing valve or the second pressure reducing valve, and the first accumulator passes the first throttle valve or the second throttle at the same time
  • the valve replenishes fluid to the brake group to stabilize the system at a secondary brake oil pressure value.
  • the hoist is in a half-brake state. After a delay of 5 seconds, the electromagnetic directional valve G7 and the electromagnetic directional valve G77 are de-energized and are on the right. Position, so that the oil pressure drop of the brake group is zero, and the hoist is fully braked.
  • step c) the secondary braking in step c) above is realized in the following two ways:
  • the first type when the oil pressure of the brake group is lower than the setting value of the second pressure reducing valve and higher than the setting value of the first pressure reducing valve, the electromagnetic directional valve G2 and the electromagnetic directional valve G22 fail Electric, implement low oil pressure secondary braking;
  • the second type when the oil pressure value of the brake group is higher than the setting value of the second pressure reducing valve, the electromagnetic reversing valve G3 and the electromagnetic reversing valve G33 are de-energized, and high oil pressure secondary braking is performed.
  • the invention avoids the impact of the accumulator's rapid pressure increase on the lifting system caused by the rapid pressure increase of the accumulator during the braking process through the different reversal of the electromagnetic proportional reversing valve, so that the oil pressure of the brake group is linearly and slowly reduced, and the lifting container is kept stable and decelerated;
  • deceleration fails, immediately switch to the secondary brake, and use the first and second pressure reducing valves to ensure that the lifting system first reduces the pressure to the set secondary brake oil pressure at a stable speed to increase
  • the machine is in a semi-braking state, and after a delay, the pressure is reduced to zero to achieve full braking.
  • the secondary braking method realized by this hydraulic system is safer and more reliable than previous braking methods, and the speed reduction process is more stable, avoiding the impact of the oil pressure falling too fast or the sudden pressure compensation of the accumulator on the lifting system It can also selectively brake the secondary brake oil pressure after the constant pressure brake function fails.
  • FIG. 1 is a schematic diagram of the hydraulic system in the present invention
  • Oil tank 1. Motor; 3. Variable pump; 4. Electromagnetic proportional relief valve; 5.1. The first one-way valve; 5.2. The second one-way valve; 6.1. The first accumulator; 6.2. The second accumulator; 7, the electromagnetic overflow valve; 8.1, the first pressure reducing valve; 8.2, the second pressure reducing valve; 8.3, the third pressure reducing valve; 9.1 the first throttle valve; 9.2, the second throttle Valve; 10. Valve position monitoring sensor; 11. Oil pressure sensor; 12.
  • electromagnetic reversing valve G1 electromagnetic reversing valve G2, electromagnetic reversing valve G22, electromagnetic reversing valve G3, electromagnetic reversing valve G33, electromagnetic directional valve G4, electromagnetic directional valve G44, electromagnetic proportional directional valve G5, electromagnetic directional valve G6, electromagnetic directional valve G66, electromagnetic directional valve G7, electromagnetic directional valve G77.
  • a hydraulic system for safe conversion braking and constant deceleration of a hoist includes an oil tank 1, a motor 2, a variable pump 3, an accumulator, an electromagnetic reversing valve group, a brake valve group and a pressure reducing valve group.
  • the inlet of the variable pump 3 is connected to the fuel tank 1 through the filter screen, the outlet of the variable pump 3 is connected to the P port of the electromagnetic directional valve G1 through the filter, and the outlet of the variable pump 3 is connected to the P port of the electromagnetic directional valve G1
  • the oil inlet of the electromagnetic proportional relief valve 4 is connected in parallel on the oil circuit, and the oil outlet of the electromagnetic proportional relief valve 4 is connected to the oil tank through the radiator;
  • the T port of the electromagnetic reversing valve G1 is connected to the first accumulator 6.1 through the first one-way valve 5.1, connected to the second accumulator 6.2 through the second one-way valve 5.2, and connected to the B of the electromagnetic reversing valve G6.
  • the P port of the electromagnetic reversing valve G6 and the P port of the electromagnetic reversing valve G66 are connected to the first brake valve oil inlet of the brake valve group 12.
  • the P port of the electromagnetic reversing valve G7 and the solenoid The P port of the direction valve G77 is connected to the second brake valve oil inlet of the brake valve group 12, the T port of the electromagnetic directional valve G6, the T port of the electromagnetic directional valve G66, and the T port of the electromagnetic directional valve G7 Port and T port of solenoid directional valve G77 return oil to the tank; solenoid directional valve G6 port A, solenoid directional valve G66 port A, solenoid directional valve G2 port P, solenoid directional valve G22 port P Port, the P port of the electromagnetic directional valve G3, the P port of the electromagnetic directional valve G33 and the P port of the electromagnetic directional valve G4 are connected; the A port of the electromagnetic directional valve G2 and the A port of the electromagnetic directional valve G22 are connected in parallel with The first pressure reducing valve 8.1 is connected; the A port of the electromagnetic directional valve G3 and the A port of the electromagnetic directional valve G33 are connected in parallel to the second pressure reducing valve 8.2
  • the T port of the electromagnetic directional valve G4 is connected to the P port of the electromagnetic directional valve G44, the T port of the electromagnetic directional valve G44 is connected to the B port of the electromagnetic proportional directional valve G5, and the P port of the electromagnetic proportional directional valve G5 is connected in parallel
  • the T port of the electromagnetic proportional directional valve G5 is connected to the oil tank through the electromagnetic overflow valve 7.
  • the first accumulator 6.1 is respectively connected to the B port of the electromagnetic reversing valve G2 and the B port of the electromagnetic reversing valve G22 through the first throttle valve 9.1, and to the B port of the electromagnetic reversing valve G3 through the second throttle valve 9.2. , Connect the B port of the electromagnetic directional valve G33.
  • the first accumulator 6.1 supplies fluid to the brake valve group 12 through two sets of electromagnetic reversing valves, so that the two-stage hydraulic brake can be selected during the two-stage braking process.
  • the direction valve G66, the electromagnetic direction valve G7, and the electromagnetic direction valve G77 are all provided with a valve position monitoring sensor 10.
  • the T port of the electromagnetic reversing valve G1, the inlets of the first accumulator 6.1 and the second accumulator 6.2, the A port of the electromagnetic reversing valve G6, and the oil inlet of the brake group 12 are all equipped with an oil pressure sensor 11.
  • the electromagnetic directional valve G6 is de-energized, and is in the right position, the electromagnetic directional valve G1, the electromagnetic directional valve G2, the electromagnetic directional valve G22, the electromagnetic directional valve G3, the electromagnetic directional valve G33,
  • the electromagnetic directional valve G4, electromagnetic directional valve G44, electromagnetic directional valve G66, electromagnetic directional valve G7, electromagnetic directional valve G77 are all energized and are in the left position, and the electromagnetic proportional directional valve G5 is in the neutral position and does not act;
  • the pressure oil pumped by the pump 3 is adjusted by the proportional relief valve 4 to charge the first accumulator 6.1 and the second accumulator 6.2 through the first check valve 5.1 and the second check valve 5.2 respectively until reaching the oil pressure
  • the size of the sensor 11 is set, the proportional relief valve 4 is opened to the maximum, and the oil filling is completed, the system can enter normal operation.
  • the electromagnetic directional valve G1, electromagnetic directional valve G2, electromagnetic directional valve G22, electromagnetic directional valve G3, electromagnetic directional valve G33, electromagnetic directional valve G4, electromagnetic directional valve G44, electromagnetic directional valve G6, electromagnetic reversing valve G66, electromagnetic reversing valve G7, electromagnetic reversing valve G77 are all energized, in the left position, electromagnetic proportional reversing valve G5 is in the neutral position and does not operate; the power supply voltage of proportional relief valve 4 is gradually adjusted When the working voltage is reached, the brake group 12 opens slowly, the oil pressure gradually rises to the working oil pressure, and the system enters normal operation.
  • a method for braking a hydraulic system with a constant deceleration and safe conversion braking of a hoist includes the following steps:
  • the parallel electromagnetic directional valve G6 and electromagnetic directional valve G66 immediately lose power and switch to the right position, while the parallel electromagnetic directional valve G7 and electromagnetic directional valve G77 do not act and maintain the left position.
  • the electromagnetic reversing valve G2, the electromagnetic reversing valve G22, the electromagnetic reversing valve G3, and the electromagnetic reversing valve G33 do not operate and maintain the left position, and the oil pressure of the brake group 12 is immediately reduced from the working oil pressure to the third pressure reducing valve 8.3 Set oil pressure;
  • the electromagnetic reversing valve G4 and the electromagnetic reversing valve G44 are in the right position when the power is lost, and the electromagnetic proportional reversing valve G5 is constantly reversing left and right.
  • the electromagnetic proportional reversing valve G5 is in the right position, the second accumulator 6.2
  • the brake group 12 performs fluid replenishment to compensate for the excessive deceleration value.
  • the right position makes the oil pressure drop of the brake group 12 equal to the setting value of the first pressure reducing valve 8.1 or the setting value of the second pressure reducing valve 8.2, and the first accumulator 6.1 passes the first throttle valve 9.1 Or the second throttle valve 9.2 replenishes fluid to the brake group 12 to stabilize the system at a secondary brake oil pressure value, and the hoist is in a semi-brake state.
  • the solenoid directional valve G7 and solenoid switch The power to valve G77 is in the right position, so that the oil pressure drop of the brake group 12 is zero, and the hoist is fully braked.
  • step c) the secondary braking in step c) above is realized in the following two ways:
  • the first type when the oil pressure value of the brake group 12 is lower than the setting value of the second pressure reducing valve 8.2 and higher than the setting value of the first pressure reducing valve 8.1, the electromagnetic reversing valve G2, electromagnetic reversing Valve G22 loses power and performs low oil pressure secondary braking;
  • the electromagnetic directional valve G3 and the electromagnetic directional valve G33 are de-energized, and high oil pressure secondary braking is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Elevator Control (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Braking Arrangements (AREA)

Abstract

L'invention concerne un système hydraulique à décélération constante permettant le freinage à changement de vitesse en sûreté d'un appareil de levage, ledit système comprenant un réservoir d'huile (1), un moteur (2), une pompe à cylindrée variable (3), une soupape de trop-plein proportionnelle électromagnétique (4), un clapet anti-retour, un accumulateur d'énergie, une soupape de trop-plein électromagnétique (7), des soupapes de réduction de pression, un ensemble (12) de freins amortisseurs, une pluralité de soupapes d'inversion électromagnétiques, et une soupape d'inversion proportionnelle électromagnétique (G5). L'invention concerne également un procédé de freinage pour le système hydraulique à décélération constante permettant le freinage à changement de vitesse en sûreté de l'appareil de levage. Une condition dans laquelle la pression de l'accumulateur d'énergie augmente rapidement pendant un procédé de freinage, et un système de levage est affecté, peut être évitée au moyen de différentes manœuvres d'inversion de la soupape d'inversion proportionnelle électromagnétique (G5), la pression d'huile de l'ensemble (12) de freins amortisseurs est réduite linéairement et lentement, et la décélération stable d'un contenant de levage est maintenue. Lors de la défaillance d'une décélération constante, un freinage de second étage est effectué immédiatement, et une première soupape de réduction de pression (8.1) et une seconde soupape de réduction de pression (8.2) sont utilisées pour assurer que la pression du système de levage soit d'abord réduite à la valeur définie de la pression d'huile de freinage de second étage à la vitesse stable, de sorte que l'appareil de levage soit en état de semi-freinage ; et après un intervalle de temps, la pression est réduite à zéro afin d'obtenir un freinage complet. Le mode de freinage précédent peut empêcher une condition dans laquelle le système de levage est affecté par un freinage de second étage après défaillance de la fonction de freinage à décélération constante, et la fiabilité de freinage est ainsi assurée.
PCT/CN2019/105023 2019-06-10 2019-09-10 Système hydraulique à décélération constante permettant le freinage à changement de vitesse en sûreté d'un appareil de levage, et procédé de freinage associé WO2020248406A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910495369.7A CN110219836B (zh) 2019-06-10 2019-06-10 一种提升机安全转换制动恒减速液压系统及制动方法
CN201910495369.7 2019-06-10

Publications (1)

Publication Number Publication Date
WO2020248406A1 true WO2020248406A1 (fr) 2020-12-17

Family

ID=67815926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105023 WO2020248406A1 (fr) 2019-06-10 2019-09-10 Système hydraulique à décélération constante permettant le freinage à changement de vitesse en sûreté d'un appareil de levage, et procédé de freinage associé

Country Status (2)

Country Link
CN (1) CN110219836B (fr)
WO (1) WO2020248406A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112833058A (zh) * 2021-01-21 2021-05-25 长沙中联重科环境产业有限公司 一种负载敏感液压系统、绿篱修剪设备
CN112879366A (zh) * 2020-12-31 2021-06-01 华中科技大学 一种多功能全海深电控集成阀组
CN114151390A (zh) * 2021-12-08 2022-03-08 中国铁建重工集团股份有限公司 一种轴承试验台的液压制动系统
CN114658700A (zh) * 2022-02-16 2022-06-24 河钢股份有限公司承德分公司 一种分离指故障快速切换结构
CN115972664A (zh) * 2022-12-19 2023-04-18 山东泰丰智能控制股份有限公司 一种调角装置控制系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111285281B (zh) * 2020-02-27 2020-12-08 中国矿业大学 一种矿井提升机多套制动器贴闸动作一致性控制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962648A1 (de) * 1998-12-25 2000-07-06 Kabelco Constrution Machinery Steuerverfahren für eine hydraulisch angetriebene Winde und Gerät für diese
JP5134831B2 (ja) * 2007-02-28 2013-01-30 株式会社タダノ 油圧ウィンチ装置
CN103573729A (zh) * 2013-11-19 2014-02-12 贵阳高原矿山机械股份有限公司 矿井提升机液压站
CN103950859A (zh) * 2014-04-01 2014-07-30 中信重工机械股份有限公司 一种矿井提升机同步共点多通道恒减速安全制动系统及方法
CN206232360U (zh) * 2016-11-23 2017-06-09 庞启 一种可区分不同载荷工况的二级制动液压站
CN207330219U (zh) * 2017-10-30 2018-05-08 河北钢铁集团矿业有限公司 一种高可靠性的井矿提升机液压制动装置
CN108249339A (zh) * 2018-01-09 2018-07-06 徐州大恒测控技术有限公司 一种恒减速安全制动冗余液压站及其控制方法
CN109812457A (zh) * 2017-11-20 2019-05-28 成都多明科技有限公司 单轨吊机车用液压制动系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3954205B2 (ja) * 1998-08-03 2007-08-08 カヤバ工業株式会社 ブレーキ装置
JP3942754B2 (ja) * 1998-12-01 2007-07-11 カヤバ工業株式会社 ブレーキ装置
DE19914400A1 (de) * 1999-03-30 2000-10-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Kompensation des Speicherdrucks in einem elektrohydraulischen Bremssystem
US6652039B1 (en) * 2002-09-30 2003-11-25 Robert Bosch Corporation Anti-lock braking system with accumulator volume monitoring
JP2008207664A (ja) * 2007-02-26 2008-09-11 Toyota Motor Corp ブレーキ制御装置及びブレーキ制御方法
CN101367484B (zh) * 2008-07-14 2011-01-19 平顶山煤业(集团)有限责任公司 高可靠性回油二级制动液压站及其控制方法
CN202608756U (zh) * 2012-05-17 2012-12-19 郑州宇通重工有限公司 一种矿用自卸车液压制动控制系统
US9248815B2 (en) * 2012-12-07 2016-02-02 Robert Bosch Gmbh System and method for emergency braking
CN203794539U (zh) * 2014-04-01 2014-08-27 中信重工机械股份有限公司 一种矿井提升机同步共点多通道恒减速安全制动系统
CN106194859B (zh) * 2016-09-30 2018-01-30 上海振华重工(集团)股份有限公司 集装箱跨运车的电液制动液压系统及其控制方法
CN206770300U (zh) * 2017-06-12 2017-12-19 锦州矿山机器(集团)有限公司 双二级制动提升机液压站
CN108180187B (zh) * 2018-01-09 2019-12-06 徐州大恒测控技术有限公司 安全制动串并联冗余二级制动液压站及其控制方法
CN108358099B (zh) * 2018-01-26 2019-11-29 太原理工大学 提升机制动闸组冗余液压控制回路
CN208686672U (zh) * 2018-09-06 2019-04-02 洛阳智超机电科技有限公司 一种矿井提升机安全制动恒减速液压控制装置
CN210565392U (zh) * 2019-06-10 2020-05-19 山西霍宝干河煤矿有限公司 一种提升机安全转换制动恒减速液压系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19962648A1 (de) * 1998-12-25 2000-07-06 Kabelco Constrution Machinery Steuerverfahren für eine hydraulisch angetriebene Winde und Gerät für diese
JP5134831B2 (ja) * 2007-02-28 2013-01-30 株式会社タダノ 油圧ウィンチ装置
CN103573729A (zh) * 2013-11-19 2014-02-12 贵阳高原矿山机械股份有限公司 矿井提升机液压站
CN103950859A (zh) * 2014-04-01 2014-07-30 中信重工机械股份有限公司 一种矿井提升机同步共点多通道恒减速安全制动系统及方法
CN206232360U (zh) * 2016-11-23 2017-06-09 庞启 一种可区分不同载荷工况的二级制动液压站
CN207330219U (zh) * 2017-10-30 2018-05-08 河北钢铁集团矿业有限公司 一种高可靠性的井矿提升机液压制动装置
CN109812457A (zh) * 2017-11-20 2019-05-28 成都多明科技有限公司 单轨吊机车用液压制动系统
CN108249339A (zh) * 2018-01-09 2018-07-06 徐州大恒测控技术有限公司 一种恒减速安全制动冗余液压站及其控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112879366A (zh) * 2020-12-31 2021-06-01 华中科技大学 一种多功能全海深电控集成阀组
CN112833058A (zh) * 2021-01-21 2021-05-25 长沙中联重科环境产业有限公司 一种负载敏感液压系统、绿篱修剪设备
CN112833058B (zh) * 2021-01-21 2023-03-31 长沙中联重科环境产业有限公司 一种负载敏感液压系统、绿篱修剪设备
CN114151390A (zh) * 2021-12-08 2022-03-08 中国铁建重工集团股份有限公司 一种轴承试验台的液压制动系统
CN114658700A (zh) * 2022-02-16 2022-06-24 河钢股份有限公司承德分公司 一种分离指故障快速切换结构
CN115972664A (zh) * 2022-12-19 2023-04-18 山东泰丰智能控制股份有限公司 一种调角装置控制系统

Also Published As

Publication number Publication date
CN110219836A (zh) 2019-09-10
CN110219836B (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
WO2020248406A1 (fr) Système hydraulique à décélération constante permettant le freinage à changement de vitesse en sûreté d'un appareil de levage, et procédé de freinage associé
CN103527536B (zh) 液压马达调速系统及调速方法、起重设备
CN105217508B (zh) 一种卷扬制动器控制系统、方法及起重机
CN110526152B (zh) 多通道防冲击智能恒减速液压制动系统
CN109809311A (zh) 起重机的回转液压系统及起重机
CN108083116A (zh) 一种用于起重机的液压控制系统
KR100303012B1 (ko) 유압엘리베이터장치
CN210565392U (zh) 一种提升机安全转换制动恒减速液压系统
CN108249339B (zh) 一种恒减速安全制动冗余液压站及其控制方法
CN212766185U (zh) 一种反拖缓速制动系统及自行式高空作业车
CN111845677A (zh) 一种反拖缓速制动系统及自行式高空作业车
US5285027A (en) Hydraulic elevator and a control method thereof
CN104692254B (zh) 起重机防二次提升下滑系统
CN108180187B (zh) 安全制动串并联冗余二级制动液压站及其控制方法
CN113928980B (zh) 闭式系统、起重设备和履带式行走设备
CN114593166A (zh) 一种驻车制动液压控制系统及叉装车
CN114873461A (zh) 一种单轨吊机车起吊梁液压控制系统及其工作方法
JP3399251B2 (ja) 油圧エレベータ装置
CN217056088U (zh) 一种驻车制动液压控制系统及叉装车
CN216589343U (zh) 一种提升机安全制动无级调压后备液路
CN107882787A (zh) 一种舞台升降机液压站
CN221275098U (zh) 一种带二级制动显示功能的提升机液压站
CN217051416U (zh) 一种绞车液压系统及绞车控制系统
CN220929858U (zh) 一种闭式液压系统冷却回路及起重装置
CN112408200B (zh) 起重机的升降系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932428

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19932428

Country of ref document: EP

Kind code of ref document: A1