WO2020248136A1 - 用于驾驶控制的方法、装置、设备、介质和系统 - Google Patents

用于驾驶控制的方法、装置、设备、介质和系统 Download PDF

Info

Publication number
WO2020248136A1
WO2020248136A1 PCT/CN2019/090768 CN2019090768W WO2020248136A1 WO 2020248136 A1 WO2020248136 A1 WO 2020248136A1 CN 2019090768 W CN2019090768 W CN 2019090768W WO 2020248136 A1 WO2020248136 A1 WO 2020248136A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
driving
functional node
message
vehicle
Prior art date
Application number
PCT/CN2019/090768
Other languages
English (en)
French (fr)
Inventor
张珠华
鲍泽文
胡星
Original Assignee
北京百度网讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京百度网讯科技有限公司 filed Critical 北京百度网讯科技有限公司
Priority to EP19932431.0A priority Critical patent/EP3943352A4/en
Priority to JP2021562175A priority patent/JP2022535664A/ja
Priority to PCT/CN2019/090768 priority patent/WO2020248136A1/zh
Publication of WO2020248136A1 publication Critical patent/WO2020248136A1/zh
Priority to US17/505,208 priority patent/US20220032934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/44Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for communication between vehicles and infrastructures, e.g. vehicle-to-cloud [V2C] or vehicle-to-home [V2H]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network

Definitions

  • the embodiments of the present disclosure mainly relate to the field of driving control, and more specifically, to methods, devices, devices, computer-readable storage media, and driving control systems for driving control.
  • ITS Intelligent Transportation System
  • 5G fifth-generation
  • ITS expects to support "human-vehicle-road-cloud" collaborative communication and interaction, which will help different types of vehicles (including high-level autonomous vehicles).
  • Connected vehicles with communication capabilities and existing public travel vehicles) provide different services.
  • driving safety and traffic efficiency are improved, and intelligent transportation is realized.
  • a solution for driving control is provided.
  • a method for driving control includes, at a service node, providing access to the function node based on an access protocol supported by the function node, the function node being configured to provide a communication function with an on-board unit OBU of a vehicle or to provide a pair of The calculation function of the information associated with the transportation means; based on the access, the configuration information for the functional node is transmitted to the functional node; and based on the configuration information, the message interaction with the functional node is controlled to Promote driving control of the vehicle via the OBU.
  • a method for driving control includes obtaining access to a service node at a function node based on an access protocol supported by the function node, the function node being configured to provide a communication function with an OBU of a vehicle or to provide Computing function of the information associated with the vehicle; receiving configuration information for the function node from the service node based on the access; and performing message interaction with the service node based on the configuration information, To facilitate driving control of the vehicle via the OBU.
  • an apparatus for driving control includes: an access module configured to provide access to the functional node at a service node based on an access protocol supported by the functional node, and the functional node is configured to provide an on-board unit OBU of a vehicle A communication function or a computing function that provides information associated with the vehicle; a configuration module configured to transmit configuration information for the function node to the function node based on the access; and an interaction module, It is configured to control message interaction with the functional node based on the configuration information, so as to facilitate driving control of the vehicle via the OBU.
  • an apparatus for driving control includes: an access module configured to obtain access to a service node at a function node based on an access protocol supported by the function node, and the function node is configured to provide an on-board unit OBU of a vehicle The communication function of or provides a calculation function of information associated with the vehicle; a configuration module configured to receive configuration information for the function node from the service node based on the access; and an interaction module, And configured to perform message interaction with the service node based on the configuration information to facilitate driving control of the vehicle via the OBU.
  • an electronic device including one or more processors; and a storage device, for storing one or more programs, when one or more programs are used by one or more processors Execution enables one or more processors to implement the method according to the first aspect of the present disclosure.
  • an electronic device including one or more processors; and a storage device, for storing one or more programs, when one or more programs are used by one or more processors Execution enables one or more processors to implement the method according to the first aspect of the present disclosure.
  • a computer-readable storage medium having a computer program stored thereon, which when executed by a processor implements the method according to the first aspect of the present disclosure.
  • a computer-readable storage medium having a computer program stored thereon, which when executed by a processor implements the method according to the second aspect of the present disclosure.
  • a driving control system in a ninth aspect of the present disclosure, includes a central platform subsystem, which includes the device according to the first aspect.
  • the system also includes at least one of a roadside subsystem and an edge computing subsystem, including the device according to the second aspect.
  • FIG. 1 shows a schematic diagram of an example environment in which multiple embodiments of the present disclosure can be implemented
  • Figure 2 shows a block diagram of a driving control system according to some embodiments of the present disclosure
  • 3A to 3D show block diagrams of networking examples related to roadside subsystems according to some embodiments of the present disclosure
  • FIG. 4 shows a block diagram of an example of networking related to edge computing subsystems according to some embodiments of the present disclosure
  • FIG. 5 shows a block diagram of an example structure of an abstract service node according to some embodiments of the present disclosure
  • Figure 6 is a signaling diagram between a serving node and a functional node according to some embodiments of the present disclosure
  • Figures 7A and 7B are signaling diagrams between a service node, a function node, and an on-board unit (OBU) according to some embodiments of the present disclosure
  • FIG. 8 shows a block diagram of a driving control system according to other embodiments of the present disclosure.
  • 9A to 9C are signaling diagrams between a service node, a function node, a third-party platform, and an OBU according to some embodiments of the present disclosure
  • Fig. 10 is a flowchart of a method for driving control on a service node side according to some embodiments of the present disclosure
  • Fig. 11 is a schematic block diagram of an apparatus for driving control on a function node side according to some embodiments of the present disclosure
  • Fig. 12 is a schematic block diagram of an apparatus for driving control on the side of a service node according to some embodiments of the present disclosure
  • Fig. 13 is a schematic block diagram of an apparatus for driving control on a functional node side according to some embodiments of the present disclosure.
  • Figure 14 shows a block diagram of a device capable of implementing various embodiments of the present disclosure.
  • ITS Intelligent Transportation Systems
  • the driving control of transportation tools is related to the environment perception and communication capabilities of the transportation tools.
  • the intelligence and networking of transportation tools are developing.
  • intelligent vehicles ranges from driving assistance to fully automatic driving.
  • intelligent vehicles are classified according to the degree of intelligence of the vehicles themselves, and the vehicles themselves do not necessarily have the ability to communicate with other devices, that is, intelligent vehicles are intelligent bicycles.
  • intelligent vehicles are intelligent bicycles.
  • an improved driving control scheme is proposed.
  • This scheme standardizes the interaction between service nodes and functional nodes that provide communication or computing functions.
  • the function node may be a computing function that provides communication with an on-board unit (OBU) of a vehicle or information associated with the vehicle.
  • OBU on-board unit
  • the service node provides access to the functional node based on the access protocol, transmits configuration information for the functional node to the functional node based on the access, and controls the message interaction with the functional node based on the configuration information, so as to promote the traffic through the OBU.
  • Tool for driving control is realized.
  • FIG. 1 shows a schematic diagram of an example traffic environment 100 in which multiple embodiments of the present disclosure can be implemented.
  • one or more vehicles 130-1, 130-2, ..., 130-N are included.
  • the vehicles 130-1, 130-2,..., 130-N may be collectively or individually referred to as the vehicle 130.
  • a vehicle refers to any type of tool that can carry people and/or things and is movable.
  • the vehicle 130 is illustrated as a vehicle.
  • the vehicle may be a motor vehicle or a non-motor vehicle, examples of which include but are not limited to cars, cars, trucks, buses, electric vehicles, motorcycles, bicycles, and so on.
  • the vehicle is only an example of a vehicle.
  • the embodiments of the present disclosure are equally applicable to other vehicles other than vehicles, such as ships, trains, airplanes, and so on.
  • One or more vehicles 130 in the environment 100 may be vehicles with certain autonomous driving capabilities, which are also referred to as unmanned vehicles.
  • another one or some vehicles 130 in the environment 100 may be vehicles that do not have automatic driving capabilities or only have driving assistance capabilities. Such vehicles can be controlled by the driver.
  • the integrated devices or removable devices in one or more vehicles 130 may have the ability to communicate with other devices based on one or more communication technologies, such as vehicle-to-vehicle (V2V) technology, vehicle-to-infrastructure (V2I) Technology, vehicle-to-network (V2N), vehicle-to-everything or vehicle-to-everything (V2X) technology or any other communication technology to communicate with other vehicles or other devices.
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-network
  • V2X vehicle-to-everything
  • any other communication technology such as vehicle-to-everything or vehicle-to-everything (V2
  • the vehicle 130 may be equipped with a positioning device to determine its own position, and the positioning device may, for example, realize positioning based on any of the following technologies: positioning technology based on laser point cloud data, global positioning system (GPS) technology, global navigation Satellite system (GLONASS) technology, Beidou navigation system technology, Galileo positioning system (Galileo) technology, quasi-zenith satellite system (QAZZ) technology, base station positioning technology, Wi-Fi positioning technology, etc.
  • GPS global positioning system
  • GLONASS global navigation Satellite system
  • Beidou navigation system technology Beidou navigation system technology
  • Galileo positioning system Galileo
  • QAZZ quasi-zenith satellite system
  • base station positioning technology Wi-Fi positioning technology
  • the traffic infrastructure includes objects for guiding traffic and indicating traffic rules, such as traffic lights 120, traffic signs (not shown), street lights, and so on. Objects outside the vehicle are collectively referred to as objects outside the vehicle 105.
  • a driving control system 110 for the vehicle 130 is also deployed in the environment 100.
  • the driving control system 110 is configured to at least control the driving of the vehicle 130 in the environment 100.
  • Each vehicle 130-1, 130-2, ..., 130-N can be equipped with a corresponding OBU 132-1, 132-2, ..., 132-N.
  • OBU 132-1, 132-2, ..., 132-N may be collectively or individually referred to as OBU 132.
  • the driving control system 110 and the OBU 132 may perform signaling communication.
  • the OBU 132 may support communication with the driving control system 110 to obtain corresponding information, and perform driving control of the vehicle 130 based on the obtained information.
  • the OBU 132 can also transmit information related to the vehicle 130 to the driving control system 110, such as feedback information, perception data collected by the sensing device on the vehicle 130 (if present), or by the computing unit on the vehicle 130 (If it exists) the processing results of the perception data, etc.
  • the driving control system 110 and the OBU 132 it is possible to support part or all of the driving control of vehicles with various levels of intelligence and connectivity.
  • FIG. 1 the facilities and objects shown in FIG. 1 are only examples. The type, number, and relative arrangement of objects that appear in different environments may vary. The scope of the present disclosure is not limited in this respect. For example, there may be more roadside devices 110 and sensing devices 260 deployed in the environment 100 to monitor additional geographic locations. The embodiments of the present disclosure may involve multiple remote devices, or may not involve remote devices.
  • FIG. 2 shows a schematic block diagram of the driving control system 110 of FIG. 1 according to some embodiments of the present disclosure.
  • FIG. 2 also shows the OBU 132 equipped on the vehicle 130 that interacts with the driving control system 110.
  • the driving control system 110 includes a central platform subsystem 210 for centralized control and management of various subsystems in the driving control system 110.
  • the central platform subsystem 210 may also be referred to as a central platform, a central platform, or a centralized platform.
  • the driving control system 110 may also include one or more roadside subsystems 220, and/or one or more edge computing subsystems 230, which are configured to provide perception, decision-making, and/or driving of the vehicle 130 Collaborative control.
  • the central platform subsystem 210 may include one or more service nodes among a roadside service node 212, a roadside unit (RSU) service node 214, and an edge computing service node 216.
  • the roadside service node 212 is configured to manage, control, and message interaction of the edge computing devices in the driving control system 110
  • the RSU service node 214 is configured to manage, control, and data exchange the RSU in the driving control system 110.
  • the edge computing service node 216 is configured to manage, control, and interact with the edge computing devices in the driving control system 110.
  • the roadside subsystem 220 is mainly deployed near the geographic area where the vehicle 130 is traveling and/or parking, for example, it may be deployed on both sides of the road at a certain interval, or have a predetermined distance from the location where the vehicle 130 may appear.
  • the roadside subsystem 220 may include a roadside calculation module 240, one or more RSUs 250, and one or more sensing devices 260.
  • the roadside calculation module 240 may include a roadside calculation unit 242 and an RSU service node 214.
  • the RSU 250 is a device with communication capabilities.
  • the RSU 250 may provide direct communication with the OBU 132, for example, it may be a direct communication based on the Internet of Things (V2X) protocol.
  • the RSU 250 may also provide network communication with the RSU service node 214 in the central platform subsystem 210 and/or the roadside computing module 240, for example, communication via a cellular network.
  • the sensing device 260 is configured to monitor the environment 100 in which the vehicle 130 is located.
  • the sensing device 260 may be configured to sense the road traffic state, road natural conditions, weather conditions, etc. of the environment 100 within the sensing range, and input the sensing data into the roadside calculation module 240.
  • the sensing device 260 may be arranged near the area where the vehicle 130 runs and/or parks. Depending on the sensing ability, the sensing range of the sensing device 260 is limited. In some cases, the sensing ranges of multiple neighboring sensing devices 260 may partially overlap.
  • the sensing device 260 may be arranged on the roadside, on the road surface, or deployed at a certain height, for example, fixed at a certain height by a support rod.
  • a movable sensing device 260 may also be provided, such as a mobile sensing station.
  • the sensing device 260 may include one or more sensor units, which may be of the same type or different types, and may be distributed in the same position or different positions of the sensing range 102.
  • sensor units in the sensing device 260 may include, but are not limited to: image sensors (such as cameras), lidar, millimeter wave radar, infrared sensors, positioning sensors, light sensors, pressure sensors, temperature sensors, humidity sensors, wind speed sensors, Wind direction sensor, air quality sensor, etc.
  • Image sensors can collect image information; lidar and millimeter wave radars can collect laser point cloud data; infrared sensors can use infrared to detect environmental conditions in the environment; positioning sensors can collect object position information; light sensors can collect information indicating the environment The measurement value of light intensity; pressure, temperature and humidity sensors can collect measurement values indicating pressure, temperature and humidity respectively; wind speed and wind direction sensors can collect measurement values used to indicate wind speed and wind direction respectively; air quality sensors can collect some measurement values that are related to air Quality-related indicators, such as the oxygen concentration, carbon dioxide concentration, dust concentration, and pollutant concentration in the air. It should be understood that only some examples of sensor units are listed above. According to actual needs, other types of sensors may also exist.
  • the roadside calculation unit 242 in the roadside calculation module 240 is configured to provide a calculation function, especially a calculation function for information associated with the vehicle 130.
  • the roadside computing unit 242 may be any device with computing capability, such as one or more processors, processing devices, general-purpose computers, and so on.
  • the roadside calculation unit 242 may be configured to obtain original perception information from one or more perception devices 260.
  • the data transmission between the roadside computing unit 242 and the sensing device 260 may be based on a wired line or may be based on a wireless communication connection.
  • the roadside computing unit 242 may also be configured to process the perception information from the perception device 260 and generate driving-related messages for the driving tool 130 based on the perception information.
  • the driving-related message may include at least one of the following: a perception message indicating the perception result of the environment around the vehicle 130, a decision planning message indicating the decision planning of the vehicle 130 while driving, and a specific driving operation instructing the vehicle 130 while driving Control messages.
  • a perception message indicating the perception result of the environment around the vehicle 130
  • a decision planning message indicating the decision planning of the vehicle 130 while driving
  • a specific driving operation instructing the vehicle 130 while driving Control messages may include at least one of the following: a perception message indicating the perception result of the environment around the vehicle 130, a decision planning message indicating the decision planning of the vehicle 130 while driving, and a specific driving operation instructing the vehicle 130 while driving Control messages.
  • the information indicated by these three types of messages all depend on the information contained in the previous type of messages.
  • the environment perception result is based on the perception information of the perception device 260
  • the decision plan is based on at least the environment perception result
  • the control message is usually made on the basis of the decision plan or the environment perception result.
  • the roadside computing unit 242 may perform one or more levels of calculations on the basis of the sensing information of the sensing device 260 to determine the sensing messages and decision planning messages for the vehicle 130 And/or control messages.
  • the driving-related messages determined by the roadside computing unit 242 may be further processed by other computing devices or even by the OBU as needed.
  • the roadside computing unit 242 may use algorithms such as data fusion and obstacle perception to determine the environment perception result related to the vehicle 130 and generate a perception message.
  • the roadside computing unit 242 may perform direct obstacle perception processing and/or further semantic level perception processing on the original perception information.
  • Obstacle perception includes identifying the size, shape, speed, etc. of obstacles on the road.
  • Semantic level perception processing also includes determining road conditions based on the results of obstacle perception, such as judging zombie vehicles on the road and performing special vehicles on the road. Judgment etc.
  • the perception message may include instruction information related to one or more other aspects of the environment 100 and/or the vehicle 130 in the environment 100.
  • the perception message may include one or more of the following information: information related to obstacles existing in the environment 100 to indicate the type of obstacle, location information, speed information, direction information, and physical appearance At least one of the description information, the historical trajectory and the predicted trajectory; information related to the physical condition of the road in the environment 100 to indicate at least one of the physical condition of the road surface and the structured information of the road; and the environment 100 Information related to traffic facilities in to indicate at least one of the status of signal lights and traffic signs on the road; information related to road traffic conditions in environment 100 to indicate lane signs related to the road and/or lanes in the road , At least one of traffic flow and traffic events; and information related to weather conditions in the environment 100.
  • the perception message may also include auxiliary information related to the positioning of the vehicle 130, diagnosis information of the fault of the vehicle 130, information related to the software system in the vehicle 130, and/or time information.
  • auxiliary information related to the positioning of the vehicle 130
  • diagnosis information of the fault of the vehicle 130 information related to the software system in the vehicle 130
  • time information information related to the software system in the vehicle 130
  • the perception message may also include other content, including less or more content.
  • the decision planning message may include one or more of the following information: an indication of the driving road to which the decision is to be applied, start time information and/or end time information of the decision plan, and start position information and/or end point of the decision plan Location information, the identification of the vehicle targeted by the decision-making plan, the decision-making information related to the driving behavior of the vehicle, the decision-making information related to the driving action of the vehicle, the information of the trajectory point of the path planning, and the expected time to reach the trajectory point of the path planning , Information related to other vehicles involved in decision-making and planning, map information, time information, etc.
  • the map information may, for example, indicate at least one of the identification of the map, the update method of the map, the area to be updated, and the location information.
  • the identifier of the map may include, for example, the version number of the map, the update frequency of the map, and so on.
  • the update method of the map may, for example, indicate the update source of the map (from the remote device 120 or from other external sources), update link, update time, and so on.
  • the control message may include information related to one or more of the following: kinematic control information related to the movement of the vehicle, related to at least one of the power system, transmission system, braking system, and steering system of the vehicle Dynamic control information, control information related to the ride experience of the occupant in the vehicle, control information related to the traffic warning system of the vehicle, and time information.
  • kinematic control information related to the movement of the vehicle, related to at least one of the power system, transmission system, braking system, and steering system of the vehicle Dynamic control information, control information related to the ride experience of the occupant in the vehicle, control information related to the traffic warning system of the vehicle, and time information.
  • the roadside calculation unit 242 may have communication with the roadside service node 212.
  • the communication between the roadside computing unit 242 and the roadside service node 212 may be through wired or wireless network communication. Via the communication with the roadside service node 212, the roadside calculation unit 242 may transfer driving related messages to the roadside service node 212.
  • the roadside calculation unit 242 may also receive control signaling, information, data, etc. from the roadside service node 212.
  • the roadside computing unit 242 may also forward the corresponding information to the OBU 132 through the RSU 250 based on the control of the roadside service node 212.
  • the roadside calculation module 240 may also include an RSU service node 214 for managing and controlling the RSU 250.
  • the RSU service node 214 may be configured to support message interaction with the RSU 250.
  • the edge computing subsystem 230 in the driving control system 110 may include an edge computing module 270, which includes an edge computing device 272 and an RSU service node 214.
  • the edge computing device 230 may also include one or more RSU 250 and one or more sensing devices 260.
  • the functions and deployment modes of the RSU service node 214, RSU 250, and sensing device 260 are similar to those in the roadside subsystem 220.
  • the edge computing device 272 is configured to provide computing functions, particularly computing functions for information associated with the vehicle 130.
  • the edge computing device 272 may be configured to process the perception information from the perception device 260, and based on the perception information, generate driving related messages for the driving tool 130, such as perception messages, decision planning messages, and/or control messages Wait.
  • the edge computing device 272 may also be referred to as an edge computing node, which may be a server, a large server, a network node such as an edge server, a cloud computing device such as a virtual machine (VM), and any other device that provides computing capabilities. In a cloud environment, remote devices can sometimes be referred to as cloud devices.
  • the edge computing device 272 can provide more powerful computing capabilities and/or more convenient access to the core network. In this way, the edge computing device 272 can support the fusion of sensory information in a larger geographic range.
  • the edge computing device 272 may be deployed at a road section level, for example, may be deployed in an edge computer room of a road section.
  • the roadside subsystem 220 and the edge computing subsystem 230 interacting with the central platform subsystem 210 are described above.
  • Each of the roadside sub-system 220 and the edge computing sub-system 230 can be considered as a small local area network, responsible for environmental perception and calculation based on the perception information of a specific geographic area of the environment 100 to achieve local driving control.
  • the RSU 250 that provides communication functions, the roadside computing unit 242 and the edge computing device 272 that provide computing functions may be collectively referred to as "functional nodes", and the nodes used to serve these functional nodes, such as the roadside service node 212
  • the RSU service node 214, the edge service node 216, etc. can be collectively referred to as "service nodes”.
  • the central platform subsystem 210 can be considered to provide cloud capabilities, and can obtain multi-dimensional information related to the driving control of the vehicle 130 in multiple sections, multiple regions, or even an entire city or a larger geographic area, such as environmental awareness, emergency Events etc. By grasping the global road network information, the central platform subsystem 210 can provide more expanded capabilities based on the global information. Such capabilities will be mentioned below.
  • one or more roadside subsystems 220 and one or more edge computing subsystems 230 can be distributed, and these subsystems can interact with the central platform subsystem 210.
  • the connection between these subsystems and the central platform subsystem and the internal deployment of each subsystem can be changed as needed.
  • the following will describe an example of the networking mode of the roadside subsystem and the edge computing subsystem.
  • 3A to 3D show examples of networking related to the roadside subsystem 220.
  • the networking mode in the roadside subsystem 220 may depend on the computing capability of the roadside computing device 242, the communication range supported by the RSU 250, and/or the sensing range supported by the sensing device 260.
  • the central platform subsystem 210 can communicate with multiple roadside subsystems (represented as 220-1, ..., 220-K) via the network 310, and each road The side subsystem 220 includes a roadside calculation module 240, a single sensing device 260 and a single RSU 250.
  • K is an integer greater than or equal to 1.
  • the roadside subsystem 220-1 includes a single sensing device 260-1 and a single RSU 250-1, both of which are communicatively coupled with the roadside computing module 240-1.
  • the roadside subsystem 220-K includes a single sensing device 260-K and a single RSU 250-K, both of which are communicatively coupled with the roadside computing module 240-K.
  • the feature of this networking mode is to deploy the roadside subsystem 220 with the limitation of the sensing range of the sensing device 260. For example, if the sensing range of the sensing device 260 is 150m, then a roadside subsystem 220 is deployed every 150m on the road on which the vehicle 130 is traveling. In this example, it is assumed that the communication range of the RSU 250, especially the direct communication range with the OBU 132, is greater than the sensing range of the sensing device 260. This assumption is valid under normal circumstances. If the communication range is less than the perception range, the roadside subsystem 220 is deployed with the communication range of the RSU 250 as the limit.
  • the roadside computing unit 242 in the roadside computing module 240 has more powerful computing capabilities and can process the sensing information from multiple sensing devices 260. Therefore, in FIG. 3B, the roadside computing module 240-1 can be connected to multiple sensing devices 260-11, ..., 260-1M, and the roadside computing module 240-K can be connected to multiple sensing devices 260-K1, «, 260-KM and so on.
  • M is an integer greater than or equal to 1.
  • the feature of the networking mode of FIG. 3B is that the communication capability of the RSU 250 and the computing resources of the roadside computing unit 242 can be fully utilized.
  • each roadside computing module 240 can support the processing of the sensing information of three consecutive sensing devices 260, and it can be used in the vehicle 130 A roadside subsystem 220 is installed every 500m on the road to be driven. Note that the number of sensing devices connected to each roadside computing module 240 may be different.
  • the sensing device 260 and the roadside computing module 240 are deployed at each location according to the sensing capabilities of the sensing device 260, and multiple roadside computing modules 240 have one RSU.
  • the deployment of the sensing device 260 and the roadside computing module 240 is determined based on the sensing range of the sensing device 260, and the deployment of the entire roadside subsystem 220 is determined based on the communication range of the RSU 250. That is to say, in this networking mode, the RSU and the roadside calculation module 240 are not in a 1:1 relationship. This can make full use of the RSU250's communication capabilities. As shown in FIG.
  • the roadside subsystem 220-1 includes a single RSU250-1, multiple roadside computing modules 240-11, ..., 240-1M, and sensing devices 260-11 respectively connected to these roadside computing modules. , «,260-1M.
  • the roadside subsystem 220-K includes a single RSU 250-K, multiple roadside calculation modules 240-K1, ..., 240-KM, and sensing devices 260-K1, ... respectively connected to these roadside calculation modules. ..., 260-KM.
  • one roadside calculation module 240 can be designated as the main roadside calculation module, and the other roadside calculation modules 240 are slave roadside calculation modules.
  • the main road-side computing module can be determined by adopting the active-standby mode or adopting a dynamic election strategy.
  • the main roadside computing module 240 is responsible for fusing the results of all computing units in the sub-network, directly communicating with the RSU 250 and the central platform subsystem 210, and forwarding the information of the secondary roadside computing module, and so on.
  • FIG 3D also shows another networking example 304, which is similar to the networking example 303 in Figure 3, except that each roadside computing module 240 can be connected to multiple sensing devices 260 to process Sensing information of the sensing device 260. This can further make full use of the computing resources of the roadside computing unit 242.
  • FIG. 4 shows a networking example 401 related to the edge subsystem 230.
  • the central platform subsystem 210 may communicate with multiple edge computing subsystems (respectively denoted as 230-1, ..., 230-K) via the network 310.
  • K is an integer greater than or equal to 1. Since the edge computing module 270 generally has more powerful computing capabilities and network coverage capabilities, the edge computing module 270 in each edge computing subsystem 230 can be connected to multiple sensing devices 260 to process the sensing information from the multiple sensing devices 260 , And includes multiple RSU 250.
  • the edge computing subsystem 230-1 includes an edge computing module 270-1, a first group of sensing devices 260-11, ..., 260-1M connected to it, and a second group of sensing devices 260-11, ..., 260 -1M, as well as RSU 250-11 and RSU 250-1M.
  • M is an integer greater than or equal to 1.
  • the edge computing subsystem 230-K includes an edge computing module 270-K, a first group of sensing devices 260-K1,..., 260-KM connected to it, and a second group of sensing devices 260-K1,..., 260-KM, as well as RSU 250-K1 and RSU 250-KM.
  • multiple RSUs 250 can provide a larger communication range.
  • the powerful computing capabilities of the edge computing device 272 can be fully used to process more sensing devices and provide driving control for vehicles in a larger geographic area.
  • the central platform subsystem 210 in the driving control system 110 may be communicatively coupled to one or more roadside subsystems 220 shown in one or more examples in FIGS. 3A to 3D, and/or communicatively coupled to The edge computing subsystem 230 shown in FIG. 4D.
  • the RSU 250, the roadside computing unit 242, and the edge computing device 272 may be collectively referred to as "functional nodes", and the nodes used to serve these functional nodes, such as the roadside service node 212, RSU
  • the service node 214 and the edge service node 216 may be collectively referred to as “service nodes”.
  • the interaction between the various subsystems is mainly realized through the interaction between the service node and the function node.
  • FIG. 5 shows an example architecture of a service node 501, which interacts with a function node 502.
  • the service node 501 may be the roadside service node 212, the RSU service node 214, or the edge service node 216 in the driving control system 110 of FIG.
  • the functions of multiple nodes in the roadside service node 212, the RSU service node 214, and the edge service node 216 in the central platform subsystem 210 may be integrated and implemented by a single service node 501.
  • the embodiments of the present disclosure are not limited in this respect.
  • the functional node 502 may be the RSU 250, the roadside computing unit 242, or the edge computing device 272 in the driving control system 110 in FIG. 2.
  • the driving of the service node 501 shown in FIG. 5 can realize the information interaction between the various subsystems, provide a unified path for the internal interaction of the subsystems, provide unified protocols and interfaces for connecting the subsystems to the outside, and realize the management and management of the functional nodes. Message interaction.
  • the service node 501 is divided into a control plane 510, a management plane 520, and an access plane 550.
  • the access layer 550 includes an access protocol stack 552 for supporting the access protocol of the functional node 502.
  • the access layer 550 can integrate access protocol stacks corresponding to one or more access protocols suitable for each functional node 502 according to the type of the functional node 502.
  • the functional node 502 includes an RSU 250
  • the access protocol stack 552 may be a V2X-related protocol supported by the RSU 250, such as a lightweight V2X protocol, including the LwM2M protocol, the mqtt protocol, and the like. Lightweight protocols can reduce node-side resource consumption.
  • the functional node 502 such as the RSU 250, the roadside computing unit 242, and/or the edge computing unit 272 supports network communication
  • the access protocol stack 552 may be a network protocol stack, such as Hypertext Transfer Protocol (HTTP) Protocol stack, Hypertext Secure Transmission (HTTPS) protocol stack, cellular communication protocol stack, etc.
  • HTTP Hypertext Transfer Protocol
  • HTTPS Hypertext Secure Transmission
  • the management layer 520 involves a device management part 530 and a configuration management part 540.
  • the device management part 530 includes a connection management module 532 and a status monitoring module 534 for the functional node 502.
  • the configuration management 540 includes a device configuration module 542 and a policy configuration module 544 for the functional node 502.
  • the control plane 510 is used to control the message collection module 512, the message delivery module 514, and the message forwarding module 516 of the service node 501.
  • FIG. 6 shows a signaling diagram 600 between the serving node 501 and the functional node 502 according to some embodiments of the present disclosure.
  • the service node 501 may be any one of the roadside service node 212, the RSU service node 214, and the edge service node 216
  • the functional node 502 may be the RSU 250, the roadside computing unit 242, and the edge computing device Any of 272.
  • the serving node 501 provides access to the functional node 502 based on the access protocol supported by the functional node 502.
  • the function node 502 establishes a communication coupling with the service node 501 after accessing the service node 501.
  • the function node 502 may send an access request to the service node 501 based on the corresponding access protocol.
  • the access protocol stack 552 in the access plane 550 of the service node 501 processes the access request.
  • the service node 501 may perform the verification of the access authorization of the function node 502 in response to the access request. This can be implemented by the connection management module 534 in the device management part 530, for example.
  • the serving node 501 may provide access to the functional node 502.
  • the functional node 502 can be connected to the service node 501 and communicate with the service node 501.
  • the serving node 501 transmits configuration information for the functional node to the functional node 502 based on the provided access.
  • the provision of configuration information can be implemented by the configuration management part 540 of the service node 501, for example.
  • the device configuration 542 in the configuration management part 540 may be configured to send first configuration information (also referred to as device configuration information) to the functional node 502 for configuring the communication resources and/or calculations of the functional node 502 Resources.
  • first configuration information also referred to as device configuration information
  • the first configuration information may be used to configure the transmission power of the RSU 250, so as to control the communication range of the RSU 250.
  • the first configuration information may configure computing resources, for example, reserve a part of computing resources for subsequent calculations.
  • the policy configuration 544 in the configuration management part 540 may be configured to send second configuration information (also referred to as policy configuration information) to the functional node 502 for configuring the message interaction strategy of the functional node 502.
  • the message interaction strategy may include the message collection strategy of the service node 501 to the function node 502, the message delivery strategy, and the message forwarding strategy.
  • the second configuration information may configure the start time, sampling interval, data type, priority transmission, transmission frequency, etc. of message collection and/or delivery.
  • the second configuration information can set the validity period of the message to be forwarded, the initial sending time, the repetition period within the sending time, and the sending frequency.
  • the functional node 502 uses the configuration information to set itself, and may also return feedback information to the service node 501.
  • the service node 501 may control the message interaction with the function node 502 based on the configuration information, so as to facilitate the driving control of the vehicle 130 by the OBU.
  • the message interaction between the service node 501 and the function node 502 may include message collection, message delivery, and message forwarding.
  • Message collection refers to the service node 501 receiving messages from one or more functional nodes 502, and the functional node 502 reports the message to the service node 501 according to the message collection strategy.
  • Message delivery means that the service node 501 delivers a message to the function node 502, which can be controlled by a message delivery policy.
  • Message forwarding means that the service node 501 performs message forwarding across functional nodes, which occurs when two functional nodes 502 need to communicate. Message forwarding can be controlled by message forwarding policies.
  • the message interaction process between the service node 501 and the function node 502 will be described in detail below.
  • the service node 501 also performs state monitoring of the functional node 502 to detect whether the functional node 502 is in an online state, an offline state, a fault state, or other states.
  • the status monitoring can be performed by the status monitoring module 534 in the service node 501.
  • the function node 502 can report its status to the service node 501 periodically.
  • the service node 501 can update the local status information corresponding to the function node 502 based on the received status report, and record the latest status of the function node 502.
  • the function node 502 may transmit a status report to the service node 501 in response to an update request from the service node 501.
  • the service node 501 can actively detect the status report of the service node 501 by sending an update request.
  • the message interaction process between the service node 501 and the functional node 502 will be described below with reference to FIG. 7A and FIG. 7B.
  • the message interaction process also involves the OBU 132 to support driving control of the vehicle 130 carrying the OBU 132.
  • the difference in the message exchange process is related to the communication capability of OBU 132.
  • the functional node 502-1 is, for example, a roadside computing unit 242 or an edge computing device 272 that provides computing functions
  • the functional node 502-2 is, for example, an RSU 250 that provides communication capabilities.
  • the functional nodes 502-1 and 502-2 may be included in the roadside subsystem 220 or the edge computing subsystem 230.
  • the service node 501 may include a roadside computing unit 242 or an edge computing device 272.
  • OBU 132 has a communication connection with function node 502-2.
  • Such a communication connection may be, for example, a V2X communication connection.
  • the function node 502-1 transmits a driving-related message for the vehicle 130 to the service node 501 (for the convenience of discussion, it is also referred to herein as the "first driving-related message").
  • the first driving-related message may be at least one of a perception message, a decision planning message, and/or a control message for the vehicle 130 determined by the functional node 502-1.
  • the first driving-related message is determined by the functional node 502 based on the perception information of the perception device 260 in the subsystem 220 or 230 where it is located.
  • the service node 501 determines another driving-related message for the vehicle 130 by processing the first driving-related message (for the convenience of discussion, in this article Also called "second driving related messages").
  • the second driving-related message may be different from the first driving-related message, and may also include at least one of a perception message, a decision planning message, and/or a control message for the vehicle 130.
  • the first driving related message may be a perception message for the vehicle 130
  • the second driving related message may be a decision planning message and/or a control message for the vehicle 130 determined on the basis of the perception message.
  • the first driving-related message may be a driving planning message
  • the second driving-related message may be a control message for the vehicle 130.
  • the service node 501 provides further computing capabilities.
  • the service node 501 may also receive a driving-related message for another vehicle 130 from another functional node 502 (for discussion convenience, it is also referred to herein as a “third driving-related message”).
  • the service node 501 may process the first driving related message and the third driving related message to determine the first driving related message.
  • the service node 501 can implement more customized services based on such global information. This can be implemented by a separate service module in the service node 501, for example.
  • the service node 501 can determine the overall traffic congestion status, road traffic flow notifications, lane adjustment status, signal light reminders, abnormal road conditions, road construction conditions and other global traffic-related conditions in a specific area. .
  • the service node 501 can determine whether to adjust the driving path of the specific vehicle 130 and/or a specific driving operation, and generate a second driving related message based on this.
  • the service node 501 provides the second driving-related message to the functional node 502-1, such as the roadside computing unit 242 in the roadside subsystem 220 or the edge computing device 272 in the edge computing subsystem 230.
  • the functional node 502-1 transmits the second driving-related message to the functional node 502-2, which may be implemented in the local area network of the subsystem 220 or 230, for example.
  • the functional node 502-2 such as the RSU 250, transmits the second driving related message to the OBU 132.
  • the function node 502-2 may broadcast the second driving related message to the OBU 132. After receiving the second driving-related message, the OBU 132 may perform driving control of the vehicle 130 according to the second driving-related message.
  • the OBU 132 has a communication connection with the service node 501.
  • the OBU 132 may have networking capabilities.
  • the OBU 132 may access the Internet through an application on a user terminal device or a vehicle-mounted central control platform, so as to obtain a communication connection with the service node 501.
  • the operations at 710 and 720 are similar to the signaling diagram 701.
  • the service node 501 determines the second driving-related message, it may transmit the second driving-related message to the OBU 132 via the communication connection with the OBU 132.
  • the driving control of the vehicle 130 may also be implemented inside the roadside subsystem 220 and/or the edge computing subsystem 230.
  • the driving-related information determined by the roadside computing unit 242 and/or the edge computing device 272 may be directly provided to the OBU 132 via the RSU 250.
  • the OBU 132 may further process the received driving-related message or directly control the vehicle 130 based on the message.
  • Such typical application scenarios include collaborative perception, semantic level perception result sharing, etc.; collaborative perception refers to the roadside subsystem 220 sharing the perceived global information to the vehicle as a supplement to vehicle perception; semantic level perception result
  • the shared roadside subsystem recognizes the sensed results at a semantic level and shares them with the vehicles. For example, the roadside subsystem 220 recognizes and shares roadside zombie vehicles, and recognizes and shares engineering vehicles and ambulance vehicles.
  • the driving control system 110 may also be connected to a third-party platform.
  • Figure 8 shows such an embodiment.
  • the central platform subsystem 210 of the driving control system 110 also includes a third-party docking service node 818 for docking with a third-party service platform 880.
  • the third-party service platform 880 may include one or more third-party server 882-1, ..., 882-N (for the convenience of discussion, collectively or individually referred to as the third-party server 882).
  • Each third-party server 882 can provide corresponding third-party services, such as map services, navigation services, and traffic monitoring services.
  • the third-party docking service node 818 is configured to control, manage, and exchange messages on the third-party server 882.
  • the structure of the third-party docking service node 818 may be similar to the service node 501 shown in FIG. 5.
  • the central platform subsystem 210 can provide data support for the third-party platform 880, and can provide a more flexible and convenient channel for the interaction between the third-party platform 880 and the vehicle 130.
  • the OBU 132 may have networking capabilities and may communicate with the third-party platform 880.
  • one or more OBUs 132 may be installed with third-party applications 830-1,..., 830-N, etc. corresponding to the services provided by the corresponding service terminals of the third-party platform 880 (for the convenience of discussion, collectively or individually 830) for third-party applications.
  • the OBU 132 can use the third-party application 830 to communicate with the third-party platform 880.
  • FIG. 9A shows a signaling diagram 901 in an embodiment with a communication connection between the OBU 132 and the third-party platform 880.
  • the signaling diagram 901 inherits operations 710 and 720 in the signaling diagrams 701 and 702, in which the service node 501 determines the second driving-related message for the vehicle 130 based on the first driving-related message from the functional node 502-1.
  • the service node 501 expects to provide the second driving-related message to the OBU 132 on the corresponding vehicle 130.
  • such message provision may be implemented via a third-party platform 880, particularly a third-party server 882 in the third-party platform. As shown in FIG.
  • the service node 501 transmits the second driving related message to the third-party server 882.
  • the service node 501 and the third-party server 882 may communicate via a wired or wireless network.
  • the third-party server 882 forwards the second driving-related message to the OBU 132 via the corresponding communication connection.
  • third-party platforms have achieved more flexible driving assistance.
  • the first driving-related message uploaded by the function node 502-1 includes the traffic signal status of the geographic area or driving path of the vehicle 130.
  • the service node 501 may provide the third-party server 882 with the information related to the state of the traffic signal light as the second driving-related message without processing or after performing the corresponding message transition.
  • the third-party server 882 can then provide the status of the traffic light to the OBU 132.
  • the third-party server 882 can provide map services, so the traffic signal status information can be pushed to the map application installed on the OBU 132. Through the map application, the status of traffic lights on the corresponding geographic area or route can be displayed in real time.
  • the third-party platform 880 there is no communication connection between the third-party platform 880 and the OBU 132.
  • the third-party platform 880 such as the third-party server 882, can also provide driving-related information to the OBU 132 through the driving control system 110.
  • Figures 9B and 9C show such an embodiment.
  • the OBU 132 has a communication connection with the functional node 502-2 (for example, the RSU 250).
  • the service node 501 receives a driving-related message for the vehicle 130 from the third-party server 882 (for ease of discussion, it is also referred to as a "fourth driving-related message").
  • the fourth driving-related message may include, for example, information related to the perception message, but may not be determined by the perception information of the perception device, but generated by the third-party platform 880.
  • the fourth driving-related message may include, for example, a notification of a temporary road closure by a traffic control department, which relates to information about the trafficable state of the road.
  • the fourth driving-related information may also include temporary road speed limit adjustments, emergency announcements, and the like.
  • the serving node 501 may forward the fourth driving-related message to the functional node 502-2 (for example, RSU 250) of the subsystem 220 or 230.
  • the selection of the functional node 502-2 may be related to the geographic location where the vehicle 130 is located, so that the OBU 132 on the vehicle 130 is within the communication range of the functional node 502-2.
  • the function node 502-2 forwards the fourth driving-related message to the OBU 132 at 950, so that the OBU 132 can perform corresponding driving control, such as adjusting the route, according to the fourth driving-related message.
  • the OBU 132 has a network communication connection with the service node 501.
  • the service node 501 receives the fourth driving related message for the vehicle 130 from the third-party server 882, and then the service node 501 may forward the fourth driving related message to the OBU 132 via the communication connection with the OBU 132 in 960.
  • FIG. 10 shows a flowchart of a method 1000 for driving control according to an embodiment of the present disclosure.
  • the method 1000 may be implemented at the service node 501 in FIG. 5, which may be the roadside service node 212, the RSU service node 214, the edge computing service node 216, and/or the third-party docking service node 818 in the driving control system 110. It should be understood that although shown in a specific order, some steps in method 1000 may be performed in a different order than shown or in a parallel manner. The embodiments of the present disclosure are not limited in this respect.
  • the service node 501 provides access to the function node based on the access protocol supported by the function node, and the function node is configured to provide a communication function with the OBU of the vehicle or provide information associated with the vehicle. Calculation function.
  • the service node 501 transmits configuration information for the functional node to the functional node based on the access.
  • the service node 501 controls the message interaction with the functional node based on the configuration information to facilitate driving control of the vehicle via the OBU.
  • the functional node includes at least one of a roadside computing unit and an edge computing device, and each of the roadside computing unit and the edge computing device is configured to provide a computing function.
  • the functional node includes a roadside unit RSU, which is configured to provide communication functions.
  • the service node is included in at least one of the roadside computing unit, the edge computing device, and the central platform, and wherein the RSU is configured to provide at least one of the roadside computing unit and the edge computing device and the OBU. Inter-communication.
  • the functional node is deployed in the environment in which the vehicle is located based on at least one of the following: the communication range supported by the functional node; the computing capability of the functional node; and the sensing range supported by the sensing device associated with the functional node ,
  • the functional node is configured to process the sensing information from the sensing device.
  • providing access includes: receiving an access request from the functional node based on the access protocol supported by the functional node; in response to the access request, performing verification of the access authorization of the functional node; and responding to the access The access authorization is verified and access is provided.
  • the process 1000 further includes: receiving a status report from the function node, the status report is received periodically or in response to an update request of the service node; and based on the status report, updating the local corresponding to the function node status information.
  • transmitting configuration information for the functional node includes at least one of the following: transmitting first configuration information for the functional node to configure at least one of communication resources and computing resources of the functional node; and transmitting the configuration information for the functional node The second configuration information to configure the message exchange strategy of the functional node.
  • controlling the message interaction with the functional node includes: receiving a first driving-related message for the vehicle from the functional node; and determining the second driving-related message for the vehicle by processing the first driving-related message.
  • the second driving-related message is different from the first driving-related message.
  • controlling the message interaction with the functional node further includes prompting the functional node to transmit the second driving-related message to the OBU via the communication connection between the functional node and the OBU, so as to control the driving of the vehicle.
  • the process 1000 further includes transmitting the second driving-related message to the OBU via the communication connection between the service node and the OBU.
  • the process 1000 further includes a communication connection with the OBU via a third-party platform, and transmitting the second driving related message to the OBU.
  • determining the second driving-related message includes: receiving a third driving-related message for another vehicle from another functional node; and determining the second driving-related message by processing the first driving-related message and the third driving-related message 2. Driving related news.
  • the service node has a communication connection with the OBU
  • the process 1000 further includes: receiving a fourth driving-related message for the vehicle from the third-party platform via the communication connection with the third-party platform; and relating the fourth driving The message is provided to OBU.
  • the first driving-related message is determined based on the perception information collected by at least one perception device associated with the functional node, and the at least one perception device is deployed in the environment where the vehicle is located.
  • FIG. 1100 shows a flowchart of a method 1100 for driving control according to an embodiment of the present disclosure.
  • the method 1100 may be implemented at the functional node 502 in FIG. 5, which may be the RSU 250, the roadside computing unit 242, or the edge computing device 272 in the driving control system 110. It should be understood that although shown in a specific order, some steps in method 1100 may be performed in a different order than shown or in a parallel manner. The embodiments of the present disclosure are not limited in this respect.
  • the functional node 502 obtains access to the service node based on the access protocol supported by the functional node, and the functional node is configured to provide a communication function with the on-board unit OBU of the vehicle or to provide access to the vehicle associated with the vehicle. Information calculation function.
  • the functional node 502 receives configuration information for the functional node from the serving node based on the access.
  • the function node 502 performs message interaction with the service node based on the configuration information to facilitate driving control of the vehicle via the OBU.
  • the functional node includes at least one of a roadside computing unit and an edge computing device, and each of the roadside computing unit and the edge computing device is configured to provide a computing function.
  • the functional node includes a roadside unit RSU, which is configured to provide communication functions.
  • the service node is included in at least one of the roadside computing unit, the edge computing device, and the central platform, and wherein the RSU is configured to provide at least one of the roadside computing unit and the edge computing device and the OBU. Inter-communication.
  • the functional node is deployed in the environment in which the vehicle is located based on at least one of the following: the communication range supported by the functional node; the computing capability of the functional node; and the sensing range supported by the sensing device associated with the functional node ,
  • the functional node is configured to process the sensing information from the sensing device.
  • obtaining access includes: transmitting an access request to the service node based on an access protocol supported by the function node; and obtaining access in response to the authorization of access to the function node being verified by the service node.
  • the process 1100 further includes: periodically or in response to an update request from the service node, transmitting a status report to the service node to update the local status information maintained by the service node and corresponding to the function node.
  • receiving configuration information for the functional node includes at least one of the following: receiving first configuration information for the functional node to configure at least one of communication resources and computing resources of the functional node; and receiving The second configuration information to configure the message exchange strategy of the functional node.
  • performing the message interaction with the service node includes: transmitting to the service node a first driving-related message for the vehicle.
  • the function node has a communication connection with the OBU, and performing message interaction with the service node further includes: receiving a second driving-related message for the vehicle from the service node, and the second driving-related message is based on the service node The first driving-related message and the third driving-related message for another vehicle are determined; and the second driving-related message is forwarded to the OBU via the communication connection.
  • the service node has a communication connection with the OBU, and controlling the message interaction with the function node includes: obtaining a fourth driving-related message for the vehicle from the service node, and the fourth driving-related message is provided by a third-party platform .
  • the first driving-related message is determined based on the perception information collected by at least one perception device associated with the functional node, and the at least one perception device is deployed in the environment where the vehicle is located.
  • FIG. 12 shows a schematic block diagram of an apparatus 1200 for driving control according to an embodiment of the present disclosure.
  • the apparatus 1200 may be included in the roadside subsystem 112 in FIGS. 1 and 2 or implemented as the roadside subsystem 112.
  • the apparatus 1200 includes an access module 1210 configured to provide access to the functional node at the service node based on the access protocol supported by the functional node, and the functional node is configured to provide a vehicle-mounted unit of a vehicle.
  • the communication function of the OBU or the calculation function of the information associated with the vehicle The apparatus 1200 further includes a configuration module 1220 configured to transmit configuration information for the functional node to the functional node based on the access.
  • the device 1200 further includes an interaction module 1230 configured to control message interaction with the functional node based on the configuration information, so as to facilitate driving control of the vehicle via the OBU.
  • the functional node includes at least one of a roadside computing unit and an edge computing device, and each of the roadside computing unit and the edge computing device is configured to provide a computing function.
  • the functional node includes a roadside unit RSU, which is configured to provide communication functions.
  • the service node is included in at least one of the roadside computing unit, the edge computing device, and the central platform, and wherein the RSU is configured to provide at least one of the roadside computing unit and the edge computing device and the OBU. Inter-communication.
  • the functional node is deployed in the environment in which the vehicle is located based on at least one of the following: the communication range supported by the functional node; the computing capability of the functional node; and the sensing range supported by the sensing device associated with the functional node ,
  • the functional node is configured to process the sensing information from the sensing device.
  • the access module 1210 includes: a request receiving module configured to receive an access request from the functional node based on an access protocol supported by the functional node; and a verification module configured to execute in response to the access request Verification of the access authorization of the functional node; and an access module based on the verification, configured to provide access in response to the access authorization being verified.
  • the apparatus 1200 further includes: a report receiving module configured to receive a status report from the functional node, the status report is received periodically or in response to an update request of the service node; and a status update module, It is configured to update the local status information corresponding to the function node based on the status report.
  • the configuration module 1220 includes at least one of the following: a device configuration module configured to transmit first configuration information for the functional node to configure at least one of communication resources and computing resources of the functional node; and policies The configuration module is configured to transmit second configuration information for the functional node to configure the message interaction strategy of the functional node.
  • the interaction module 1230 includes: a first message receiving module configured to receive a first driving related message for a vehicle from a functional node; and a first message processing module configured to process the first driving related message Message, determining the second driving related message for the vehicle, the second driving related message is different from the first driving related message.
  • the interaction module 1230 is further configured to cause the functional node to transmit the second driving-related message to the OBU via the communication connection between the functional node and the OBU, so as to control the driving of the vehicle.
  • the device 1200 further includes a first message transmission module configured to transmit a second driving-related message to the OBU via the communication connection between the service node and the OBU.
  • the device 1200 further includes a second The message transmission module is configured to transmit the second driving related message to the OBU via the communication connection between the third-party platform and the OBU.
  • the message processing module includes: a second message receiving module configured to receive a third driving related message for another vehicle from another functional node; and a second message processing module configured to process The first driving related message and the third driving related message are used to determine the second driving related message.
  • the service node has a communication connection with the OBU
  • the apparatus 1200 further includes: a third message receiving module configured to receive the fourth driving information for the vehicle from the third-party platform via the communication connection with the third-party platform Related messages; and a message supply module configured to provide the fourth driving related message to the OBU.
  • the first driving-related message is determined based on the perception information collected by at least one perception device associated with the functional node, and the at least one perception device is deployed in the environment where the vehicle is located.
  • FIG. 13 shows a schematic block diagram of an apparatus 1300 for driving control according to an embodiment of the present disclosure.
  • the apparatus 1300 may be included in the on-board subsystem 132 in FIGS. 1 and 2 or implemented as the on-board subsystem 132.
  • the apparatus 1300 includes an access module 1320 configured to obtain access to the service node at the function node based on the access protocol supported by the function node, and the function node is configured to provide on-board communication with vehicles The communication function of the unit OBU or the calculation function of the information associated with the vehicle.
  • the apparatus 1300 further includes a configuration module 1320 configured to receive configuration information for the function node from the service node based on the access.
  • the device 1300 further includes an interaction module 1330 configured to perform message interaction with the service node based on the configuration information, so as to facilitate driving control of the vehicle via the OBU.
  • the functional node includes at least one of a roadside computing unit and an edge computing device, and each of the roadside computing unit and the edge computing device is configured to provide a computing function.
  • the functional node includes a roadside unit RSU, which is configured to provide communication functions.
  • the service node is included in at least one of the roadside computing unit, the edge computing device, and the central platform, and wherein the RSU is configured to provide at least one of the roadside computing unit and the edge computing device and the OBU. Inter-communication.
  • the functional node is deployed in the environment in which the vehicle is located based on at least one of the following: the communication range supported by the functional node; the computing capability of the functional node; and the sensing range supported by the sensing device associated with the functional node ,
  • the functional node is configured to process the sensing information from the sensing device.
  • the access module 1320 includes: a request transmission module configured to transmit an access request to the service node based on an access protocol supported by the functional node; and a verification module configured to respond to the request to the functional node The access authorization is verified by the service node and access is obtained.
  • the apparatus 1300 further includes: a report transmission module configured to transmit a status report to the service node periodically or in response to an update request from the service node, so as to update the status report maintained by the service node and corresponding to the function node Local status information.
  • a report transmission module configured to transmit a status report to the service node periodically or in response to an update request from the service node, so as to update the status report maintained by the service node and corresponding to the function node Local status information.
  • the configuration module 1320 includes at least one of the following: a device configuration module configured to receive first configuration information for a functional node to configure at least one of communication resources and computing resources of the functional node; and policies The configuration module is configured to receive second configuration information for the functional node to configure the message interaction strategy of the functional node.
  • the interaction module 1330 includes: a message transmission module configured to transmit the first driving-related message for the vehicle to the service node.
  • the function node has a communication connection with the OBU
  • the interaction module further includes: a message receiving module configured to receive a second driving-related message for the vehicle from the service node, and the second driving-related message is served by the service node.
  • the node is determined based on the first driving-related message and the third driving-related message for another vehicle; and the message forwarding module is configured to forward the second driving-related message to the OBU via the communication connection.
  • the service node has a communication connection with the OBU
  • the interaction module includes: a message obtaining module configured to obtain a fourth driving-related message for the vehicle from the service node, and the fourth driving-related message is provided by a third party Platform provided.
  • the first driving-related message is determined based on the perception information collected by at least one perception device associated with the functional node, and the at least one perception device is deployed in the environment where the vehicle is located.
  • FIG. 14 shows a schematic block diagram of an example device 1400 that may be used to implement embodiments of the present disclosure.
  • the device 1400 may be used to implement the service node 501 or the function node 502 in FIG. 5.
  • the device 1400 includes a computing unit 1401, which can be based on computer program instructions stored in a read-only memory (ROM) 1402 or computer program instructions loaded from a storage unit 1408 into a random access memory (RAM) 1403. Perform various appropriate actions and processing.
  • ROM 1402 read-only memory
  • RAM random access memory
  • the computing unit 1401, ROM 1402, and RAM 1403 are connected to each other through a bus 1404.
  • An input/output (I/O) interface 1405 is also connected to the bus 1404.
  • the I/O interface 1405 Multiple components in the device 1400 are connected to the I/O interface 1405, including: an input unit 1406, such as a keyboard, a mouse, etc.; an output unit 1407, such as various types of displays, speakers, etc.; and a storage unit 1408, such as a magnetic disk, an optical disk, etc. ; And the communication unit 1409, such as a network card, a modem, a wireless communication transceiver, etc.
  • the communication unit 1409 allows the device 1400 to exchange information/data with other devices through a computer network such as the Internet and/or various telecommunication networks.
  • the computing unit 1401 may be various general and/or dedicated processing components with processing and computing capabilities. Some examples of computing unit 1401 include, but are not limited to, central processing unit (CPU), graphics processing unit (GPU), various dedicated artificial intelligence (AI) computing chips, various computing units running machine learning model algorithms, digital signal processing DSP, and any appropriate processor, controller, microcontroller, etc.
  • the calculation unit 1401 executes the various methods and processes described above, such as the process 1000 or the process 1100.
  • the process 1000 or the process 1100 may be implemented as a computer software program, which is tangibly contained in a machine-readable medium, such as the storage unit 1408.
  • part or all of the computer program may be loaded and/or installed on the device 1400 via the ROM 802 and/or the communication unit 1409.
  • the computer program When the computer program is loaded into the RAM 1403 and executed by the computing unit 1401, one or more steps of the process 1000 or the process 11000 described above can be executed.
  • the computing unit 1401 may be configured to perform the process 1000 or the process 1100 in any other suitable manner (for example, by means of firmware).
  • exemplary types of hardware logic components include: field programmable gate array (FPGA), application specific integrated circuit (ASIC), application specific standard product (ASSP), system on chip (SOC), Load programmable logic device (CPLD) and so on.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • ASSP application specific standard product
  • SOC system on chip
  • CPLD Load programmable logic device
  • the program code used to implement the method of the present disclosure can be written in any combination of one or more programming languages. These program codes can be provided to the processors or controllers of general-purpose computers, special-purpose computers, or other programmable data processing devices, so that when the program codes are executed by the processor or controller, the functions specified in the flowchart and/or block diagrams The operation is implemented.
  • the program code can be executed entirely on the machine, partly executed on the machine, partly executed on the machine and partly executed on the remote machine as an independent software package, or entirely executed on the remote machine or server.
  • a machine-readable medium may be a tangible medium, which may contain or store a program for use by or in combination with the instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • the machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing.
  • machine-readable storage media would include electrical connections based on one or more wires, portable computer disks, hard drives, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • CD-ROM portable compact disk read only memory
  • magnetic storage device or any suitable combination of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computing Systems (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Human Computer Interaction (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Traffic Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种用于驾驶控制的方法、装置、设备、介质和系统。所述驾驶控制的方法包括在服务节点(501)处,基于由功能节点(502)支持的接入协议来为功能节点(502)提供接入,功能节点(502)被配置为提供与交通工具(130)的车载单元OBU(132)的通信功能或者提供对与交通工具(130)相关联的信息的计算功能。该方法还包括基于接入,向功能节点(502)传输针对功能节点(502)的配置信息,并且基于配置信息,控制与功能节点(502)的消息交互,以促进经由OBU(132)对交通工具(130)进行驾驶控制。通过外部设备的辅助实现交通工具(130)的驾驶控制功能,可以实现有效的安全自动驾驶。由此,实现整体交通系统的智能控制。

Description

用于驾驶控制的方法、装置、设备、介质和系统 技术领域
本公开的实施例主要涉及驾驶控制领域,并且更具体地,涉及用于驾驶控制的方法、装置、设备、计算机可读存储介质以及驾驶控制系统。
背景技术
近年来,智能交通系统(ITS)作为一种全新的技术,采用先进的科学技术,将涉及的道路,交通,人与环境等系统的综合考虑,实现智能化的交通管理,为解决道路交通问题带来可能和希望。随着通信网络发展,特别是随着第五代(5G)通信网络的部署,ITS期望支持“人-车-路-云”协同通信和交互,为不同类型的车辆(包括高等级自动驾驶车辆、具备通信能力的网联车车辆以及现有的大众出行车辆)提供不同的服务。由此,提升行车的安全及通行效率,实现智能交通。当前缺少这样的解决方案用于规范车端、路端和云端之间的协同交互。
发明内容
根据本公开的实施例,提供了一种用于驾驶控制的方案。
在本公开的第一方面中,提供了一种用于驾驶控制的方法。该方法包括在服务节点处,基于由功能节点支持的接入协议来为所述功能节点提供接入,所述功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与所述交通工具相关联的信息的计算功能;基于所述接入,向所述功能节点传输针对所述功能节点的配置信息;以及基于所述配置信息,控制与所述功能节点的消息交互,以促进经由所述OBU对所述交通工具进行驾驶控制。
在本公开的第二方面中,提供了一种用于驾驶控制的方法。该 方法包括在功能节点处,基于由所述功能节点支持的接入协议来获得对服务节点的接入,所述功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与所述交通工具相关联的信息的计算功能;基于所述接入,从所述服务节点接收针对所述功能节点的配置信息;以及基于所述配置信息,执行与所述服务节点的消息交互,以促进经由所述OBU对所述交通工具进行驾驶控制。
在本公开的第三方面中,提供了一种用于驾驶控制的装置。该装置包括:接入模块,被配置为在服务节点处基于由功能节点支持的接入协议来为所述功能节点提供接入,所述功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与所述交通工具相关联的信息的计算功能;配置模块,被配置为基于所述接入来向所述功能节点传输针对所述功能节点的配置信息;以及交互模块,被配置为基于所述配置信息,控制与所述功能节点的消息交互,以促进经由所述OBU对所述交通工具进行驾驶控制。
在本公开的第四方面中,提供了一种用于驾驶控制的装置。该装置包括:接入模块,被配置为在功能节点处基于由所述功能节点支持的接入协议来获得对服务节点的接入,所述功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与所述交通工具相关联的信息的计算功能;配置模块,被配置为基于所述接入,从所述服务节点接收针对所述功能节点的配置信息;以及交互模块,被配置为基于所述配置信息,执行与所述服务节点的消息交互,以促进经由所述OBU对所述交通工具进行驾驶控制。
在本公开的第五方面中,提供了一种电子设备,包括一个或多个处理器;以及存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现根据本公开的第一方面的方法。
在本公开的第六方面中,提供了一种电子设备,包括一个或多个处理器;以及存储装置,用于存储一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现根据 本公开的第一方面的方法。
在本公开的第七方面中,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现根据本公开的第一方面的方法。
在本公开的第八方面中,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现根据本公开的第二方面的方法。
在本公开的第九方面中,提供了一种驾驶控制系统。该系统包括中心平台子系统,其包括根据第一方面的装置。该系统还包括路侧子系统和边缘计算子系统中的至少一个,包括根据第二方面的装置。
应当理解,发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。在附图中,相同或相似的附图标注表示相同或相似的元素,其中:
图1示出了本公开的多个实施例能够在其中实现的示例环境的示意图;
图2示出了根据本公开的一些实施例的驾驶控制系统的框图;
图3A至图3D示出了根据本公开的一些实施例的与路侧子系统相关的组网示例的框图;
图4示出了根据本公开的一些实施例的与边缘计算子系统相关的组网示例的框图;
图5示出了根据本公开的一些实施例的抽象服务节点的示例结构的框图;
图6根据本公开的一些实施例的在服务节点与功能节点之间的 信令图;
图7A和图7B根据本公开的一些实施例的在服务节点、功能节点与车载单元(OBU)之间的信令图;
图8示出了根据本公开的另一些实施例的驾驶控制系统的框图;
图9A至图9C根据本公开的一些实施例的在服务节点、功能节点、第三方平台和OBU之间的信令图;
图10根据本公开的一些实施例的在服务节点侧的用于驾驶控制的方法的流程图;
图11根据本公开的一些实施例的在功能节点侧的用于驾驶控制的装置的示意框图;
图12根据本公开的一些实施例的在服务节点侧的用于驾驶控制的装置的示意框图;
图13根据本公开的一些实施例的在功能节点侧的用于驾驶控制的装置的示意框图;以及
图14示出了能够实施本公开的多个实施例的设备的框图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
在本公开的实施例的描述中,术语“包括”及其类似用语应当理解为开放性包含,即“包括但不限于”。术语“基于”应当理解为“至少部分地基于”。术语“一个实施例”或“该实施例”应当理解为“至少一个实施例”。术语“第一”、“第二”等等可以指代不同的或相同的对象。下文还可能包括其他明确的和隐含的定义。
如以上提及的,在智能交通系统(ITS)中,对于诸如车辆等交 通工具的驾驶控制与交通工具自身的环境感知能力和通信能力相关。当前,交通工具的智能化和网联化正在发展中。
从智能化角度来看,交通工具的智能化的分级从驾驶辅助到完全的自动驾驶。然而,智能化交通工具是针对交通工具本身智能程度而划分的,交通工具本身不一定具备与其他设备通信的能力,即智能化交通工具是单车智能化。例如,对于L4/L5级别的自动驾驶车辆,要求在车辆上部署摄像头、激光雷达、毫米波雷达等设备,通过车辆感知周边环境,实时调整无人车的运动状态。由于单车的局限性,即使是最高级别的智能化的车辆,单车感知仍然会存在遮挡、感知距离有限等问题,因此需要针对高智能化车辆弥补其现有的不足,针对低智能化车辆,通过其他方式提升其智能化程度。
从网联化角度来看,从传统的网联辅助信息交互(诸如导航信息获取等)到网联化协同决策与控制(车车、车路之间协同对车辆进行规划控制),交通工具的网联化维度主要关注车车、车路、车云、车人等参与方之间的通信化程度。网联化等级越高,交通工具之间可共享的信息越完善。然而,由于目前市场的存量交通工具(例如车辆)很多不具备网联化或只具备最初期的网联化功能,因此,也需要提供一种方式,能够让网联化等级低的交通工具也能参与到高级网联化中,实现整体交通系统的智能控制。
根据本公开的实施例,提出了一种改进的驾驶控制方案。该方案规范化了具有服务节点以及提供通信或计算功能的功能节点之间的交互。功能节点可以是提供与交通工具的车载单元(OBU)的通信或与交通工具相关联的信息的计算功能。具体地,服务节点基于接入协议来为功能节点提供接入,基于接入向功能节点传输针对功能节点的配置信息,并且基于配置信息来控制与功能节点的消息交互,以促进经由OBU对交通工具进行驾驶控制。由此,实现整体交通系统的智能控制。
以下将参照附图来具体描述本公开的实施例。
示例环境
图1示出了本公开的多个实施例能够在其中实现的示例交通环境100的示意图。在该示例环境100中包括一个或多个交通工具130-1、130-2、……、130-N。为便于描述,交通工具130-1、130-2、……、130-N可以统称或单独称为交通工具130。如本文中所使用的,交通工具指的是能够承载人和/或物并且可移动的任何类型的工具。在图1以及本文的其他附图和描述中,交通工具130被图示为车辆。车辆可以是机动车辆或非机动车辆,其示例包括但不限于小汽车、轿车、卡车、公交车、电动车、摩托车、自行车,等等。然而,应当理解,车辆仅仅是交通工具的一个示例。本公开的实施例同样适用于除车辆之外的其他交通工具,诸如船、火车、飞机等等。
环境100中的一个或多个交通工具130可以是具有一定自动驾驶能力的交通工具,也被称为无人驾驶交通工具。当然,环境100中的另外一个或一些交通工具130可以是不具有自动驾驶能力的交通工具或者仅具有驾驶辅助能力。这样的交通工具可以由驾驶者控制。一个或多个交通工具130中的集成设备或者可移除设备可以具有基于一个或多个通信技术来与其他设备通信的能力,例如通过车到车(V2V)技术、车到基础设施(V2I)技术、车到网(V2N)、车到万物或车联网(V2X)技术或者任何其他通信技术来与其他交通工具或其他设备进行通信。
交通工具130可以安装有定位装置以确定其自身位置,该定位装置例如可以基于以下技术中的任一种来实现定位:基于激光点云数据的定位技术、全球定位系统(GPS)技术、全球导航卫星系统(GLONASS)技术、北斗导航系统技术、伽利略定位系统(Galileo)技术、准天顶卫星系统(QAZZ)技术、基站定位技术、Wi-Fi定位技术等。
除交通工具130之外,环境100中还可能存在其他物体,诸如是动物、植物105-1、人105-2、交通基础设施等可移动或不可移动的物体。交通基础设施包括用于引导交通通行和指示交通规则的物 体,诸如交通信号灯120、交通指示牌(未示出)、路灯等等。在交通工具外部的物体统称为车外物体105。
环境100中还部署针对交通工具130的驾驶控制系统110。驾驶控制系统110被配置为至少控制交通工具130在环境100中的驾驶。每个交通工具130-1、130-2、……、130-N可以配备有相应的OBU132-1、132-2、……、132-N。为便于描述,OBU 132-1、132-2、……、132-N可以统称或单独称为OBU 132。驾驶控制系统110与OBU 132可以进行信令通信。OBU 132可以支持与驾驶控制系统110的通信,以获得相应的信息,并且基于所获得的信息来进行交通工具130的驾驶控制。OBU 132还可以向驾驶控制系统110传输与交通工具130相关的信息,诸如反馈信息、由交通工具130上的感知设备(如果存在的话)采集到的感知数据、或者由交通工具130上的计算单元(如果存在的话)对感知数据的处理结果等。根据本公开的实施例,通过驾驶控制系统110和OBU 132,可以支持对具有各种智能化等级和网联化等级的交通工具的部分或全部驾驶控制。
应当理解,图1示出的设施和物体仅是示例。在不同环境中出现的物体的类型、数目和相对布置等可能会变化。本公开的范围在此方面不受限制。例如,环境100中可以具有更多个路侧部署的路侧设备110和感知设备260,用于监测另外的地理位置。本公开的实施例可以涉及多个远端设备,或者可以不涉及远端设备。
示例驾驶控制系统
图2示出了根据本公开的一些实施例的图1的驾驶控制系统110的示意框图。图2还示出了与驾驶控制系统110交互的、被配备在交通工具130上的OBU 132。驾驶控制系统110包括中心平台子系统210,用于集中控制和管理驾驶控制系统110中的各个子系统。中心平台子系统210也可被称为中心平台、中央平台或集中平台等。驾驶控制系统110还可以包括一个或多个路侧子系统220,和/或一个或多个边缘计算子系统230,这些子系统被配置为提供对交通工具 130的驾驶的感知、决策和/或协同控制。
中心平台子系统210可以包括路侧服务节点212、路侧单元(RSU)服务节点214和边缘计算服务节点216中的一个或多个服务节点。路侧服务节点212被配置为对驾驶控制系统110中的边缘计算设备进行管理、控制和消息交互,RSU服务节点214被配置为对驾驶控制系统110中的RSU进行管理、控制和数据交互。边缘计算服务节点216被配置为对驾驶控制系统110中的边缘计算设备进行管理、控制和数据交互。
路侧子系统220主要部署在交通工具130行驶和/或停泊的地理区域附近,例如可以按一定间隔部署在道路两侧、或者与交通工具130可能出现的位置具有预定距离。路侧子系统220可以包括路侧计算模块240、一个或多个RSU 250和一个或多个感知设备260。路侧计算模块240可以包括路侧计算单元242和RSU服务节点214。
RSU 250是具有通信能力的设备。RSU 250可以提供与OBU 132的直接通信,例如可以是基于物联网(V2X)协议的直连通信。备选地或附加地,RSU 250还可以提供与中心平台子系统210和/或路侧计算模块240中的RSU服务节点214的网络通信,例如经由蜂窝网络的通信。
感知设备260被配置为监测交通工具130所处的环境100。例如,感知设备260可以被配置为对感知范围内的环境100的道路交通状态、道路自然状况、天气状况等进行感知,并将感知数据输入路侧计算模块240。感知设备260可以被布置在交通工具130行驶和/或停泊的区域附近。取决于感知能力,感知设备260的感知范围是有限的。在一些情况下,多个相邻部署的感知设备260的感知范围可以具有部分重叠。根据需要,感知设备260可以被布置在路侧、路面上或者以一定高度被部署,例如由支撑杆固定在某个高度。在一些示例中,除了将感知设备260固定在特定位置之外,还可以设置可移动的感知设备260,诸如可移动感知站点等。
感知设备260可以包括一个或多个传感器单元,这些传感器单 元可以是相同类型或不同类型,并且可以被分布在感知范围102的同一位置或不同位置。感知设备260中的传感器单元的示例可以包括但不限于:图像传感器(例如摄像头)、激光雷达、毫米波雷达、红外传感器、定位传感器、光照传感器、压力传感器、温度传感器、湿度传感器、风速传感器、风向传感器、空气质量传感器等等。图像传感器可以采集图像信息;激光雷达和毫米波雷达可以采集激光点云数据;红外传感器可以利用红外线来探测环境中的环境状况;定位传感器可以采集物体的位置信息;光照传感器可以采集指示环境中的光照强度的度量值;压力、温度和湿度传感器可以分别采集指示压力、温度和湿度的度量值;风速、风向传感器可以分别采集用于指示风速、风向的度量值;空气质量传感器可以采集一些与空气质量相关的指标,诸如空气中的氧气浓度、二氧化碳浓度、粉尘浓度、污染物浓度等。应当理解,以上仅列出了传感器单元的一些示例。根据实际需要,还可以存在其他类型的传感器。
路侧计算模块240中的路侧计算单元242被配置为提供针对计算功能,特别是提供对与交通工具130相关联的信息的计算功能。路侧计算单元242可以是任何具有计算能力的设备,诸如一个或多个处理器、处理设备、通用计算机等。路侧计算单元242可以被配置为获得来自一个或多个感知设备260的原始感知信息。路侧计算单元242与感知设备260的数据传送可以基于有线线路或者可以基于无线通信连接。路侧计算单元242还可以被配置为处理来自感知设备260的感知信息,并且基于感知信息来生成针对驾驶工具130的驾驶相关消息。
驾驶相关消息可以包括以下至少一项:指示交通工具130周围的环境感知结果的感知消息,指示交通工具130在驾驶时的决策规划的决策规划消息,以及指示交通工具130在驾驶时的具体驾驶操作的控制消息。按顺序来看,这三类消息所指示的信息分别均依赖于前一类消息中包含的信息。例如,环境感知结果基于感知设备260的感知信息,决策规划至少基于环境感知结果,控制消息通常在决 策规划的基础上或是在环境感知结果的基础上做出。取决于路侧计算单元242的计算能力以及配置,路侧计算单元242可以在感知设备260的感知信息的基础上执行一级或多级计算,从而确定针对交通工具130的感知消息、决策规划消息和/或控制消息。由路侧计算单元242确定的驾驶相关消息可以由其他计算设备或者甚至由OBU根据需要进一步处理。
在一些实施例中,路侧计算单元242可以通过诸如数据融合、障碍物感知等算法,以确定与交通工具130相关的环境感知结果,生成感知消息。例如,路侧计算单元242可以对原始感知信息执行直接障碍物感知处理和/或进一步的语义级别感知处理。障碍物感知包括识别道路上障碍物的大小、形状、速度等,语义级别感知处理还包括基于障碍物感知结果,确定道路状况,诸如对道路上的僵尸车辆进行判断,对道路上的特殊车辆进行判断等。
取决于感知信息的来源和具体内容,感知消息可以包括与环境100和/或环境100中的交通工具130的一个或多个其他方面相关的指示信息。在一些实施例中,感知消息可以包括以下的一个或多个方面的信息:与环境100中存在的障碍物相关的信息,以指示障碍物的类型、位置信息、速度信息、方向信息、物理外观的描述信息、历史轨迹和预测轨迹中的至少一项;与环境100中的道路的物理状况相关的信息,以指示道路的路面物理状况和道路的结构化信息中的至少一项;与环境100中的交通设施相关的信息,以指示道路上的信号灯状态和交通标志中的至少一项;与环境100中的道路交通状况相关的信息,以指示道路和/或道路中的车道相关的车道标志、交通流量和交通事件中的至少一项;以及与环境100中的气象状况相关的信息。在一些实施例中,感知消息还可以包括与交通工具130的定位相关的辅助信息、对交通工具130的故障的诊断信息、与交通工具130中的软件系统的相关信息、和/或时间信息。虽然以上列出了感知消息所包含的内容的一些示例,但应当理解,感知消息还可以包括其他内容,包括更少或更多的内容。
决策规划消息可以包括以下的一个或多个方面的信息:与要应用决策的行驶道路的指示,决策规划的起始时间信息和/或终止时间信息,决策规划的起始位置信息和/或终点位置信息,决策规划所针对的交通工具的标识,与交通工具的驾驶行为相关的决策信息,与交通工具的驾驶动作相关的决策信息,路径规划轨迹点的信息,到达路径规划轨迹点的预期时间,与决策规划所涉及的其他交通工具相关的信息,地图信息以及时间信息等等。地图信息例如可以指示地图的标识、地图的更新方式、要更新地图的区域和位置信息中的至少一项。地图的标识例如可以包括地图的版本号、地图的更新频率等。地图的更新方式例如可以指示地图的更新源(从远端设备120或是从其他外部源)、更新链接、更新时间等。虽然以上列出了决策规划消息所包含的内容的一些示例,但应当理解,决策规划消息还可以包括其他内容,包括更少或更多的内容。
控制消息可以包括以下的一个或多个方面相关的信息:对交通工具的运动相关的运动学控制信息,与交通工具的动力系统、传动系统、制动系统和转向系统中的至少一项相关的动力学控制信息,与交通工具中的乘坐者的乘坐体验相关的控制信息,与交通工具的交通警示系统相关的控制信息,以及时间信息。虽然以上列出了控制消息所包含的内容的一些示例,但应当理解,控制消息还可以包括其他内容,包括更少或更多的内容。
路侧计算单元242可以具有与路侧服务节点212的通信。路侧计算单元242与路侧服务节点212之间的通信可以是通过有线或无线网络通信。经由与路侧服务节点212的通信,路侧计算单元242可以将驾驶相关消息传递给路侧服务节点212。此外,路侧计算单元242还可以接收来自路侧服务节点212的控制信令、信息、数据等。路侧计算单元242还可以基于路侧服务节点212的控制,将相应信息通过RSU 250转发给OBU 132。除了路侧计算单元242之外,在一些实施例中,路侧计算模块240还可以包括RSU服务节点214,用于对RSU 250进行管理和控制。RSU服务节点214可以被配置为 支持与RSU 250的消息交互。
驾驶控制系统110中的边缘计算子系统230可以包括边缘计算模块270,其包括边缘计算设备272和RSU服务节点214。边缘计算设备230也可以包括一个或多个RSU 250和一个或多个感知设备260。在边缘计算子系统230中,RSU服务节点214、RSU 250和感知设备260的功能与部署方式与在路侧子系统220中的类似。边缘计算设备272被配置为提供针对计算功能,特别是提供对与交通工具130相关联的信息的计算功能。在一些实施例中,边缘计算设备272可以被配置为处理来自感知设备260的感知信息,并且基于感知信息来生成针对驾驶工具130的驾驶相关消息,诸如感知消息、决策规划消息和/或控制消息等。
边缘计算设备272也可以被称为边缘计算节点,其可以是服务器、大型服务机、诸如边缘服务器等网络节点、诸如虚拟机(VM)等云端计算设备、以及任何其他提供计算能力的设备。在云环境中,远端设备有时也可以称为云端设备。在一些实施例中,与路侧计算单元242相比,边缘计算设备272可以提供更强大的计算能力和/或更便捷的接入核心网的能力。由此,边缘计算设备272可以支持对更大地理范围的感知信息的融合。边缘计算设备272可以针对路段级别进行部署,例如可以被部署在一个路段的边缘机房中。
以上描述了与中心平台子系统210交互的路侧子系统220和边缘计算子系统230。路侧子系统220和边缘计算子系统230中的每一个可以被认为是一个小型局域网,负责对环境100的特定地理范围进行环境感知和基于感知信息的计算,以实现局部驾驶控制。在本文中,提供通信功能的RSU 250以及提供计算功能的路侧计算单元242和边缘计算设备272可以被统称为“功能节点”,而用于服务这些功能节点的节点,诸如路侧服务节点212、RSU服务节点214和边缘服务节点216等,可以被统称为“服务节点”。
在驾驶控制系统110中,可以存在与中心平台子系统210交互的一个或多个路侧子系统220和一个或多个边缘计算子系统230。中 心平台子系统210可以被认为是提供云端能力,能够获得多路段、多区域、甚至是整个城市或更大地理范围的与交通工具130的驾驶控制相关的多维度信息,诸如环境感知、突发事件等。通过掌握全局路网信息,中心平台子系统210可以提供更多基于全局信息而扩展的能力。这样的能力将在下文中提及。
示例组网方式
在驾驶控制系统110中,可以分布一个或多个路侧子系统220和一个或多个边缘计算子系统230,这些子系统均可以与中心平台子系统210交互。这些子系统与中心平台子系统的连接以及各个子系统内部的部署方式可以根据需要而变化。以下将描述路侧子系统和边缘计算子系统的组网方式的示例。
图3A至图3D示出了与路侧子系统220相关的组网示例。通常,路侧子系统220内的组网方式可以取决于路侧计算设备242的计算能力,RSU 250支持的通信范围,和/或感知设备260支持的感知范围。
在图3A所示的组网示例301中,中心平台子系统210可以经由网络310与多个路侧子系统(分别被表示为220-1、……、220-K)进行通信,每个路侧子系统220中包括路侧计算模块240以及单个感知设备260和单个RSU 250。在此,K是大于等于1的整数。例如,除了路侧计算模块240-1外,路侧子系统220-1中包括单个感知设备260-1和单个RSU 250-1,均与路侧计算模块240-1通信耦合。除了路侧计算模块240-K外,路侧子系统220-K中包括单个感知设备260-K和单个RSU 250-K,均与路侧计算模块240-K通信耦合。这样的组网方式的特点是以感知设备260的感知范围为限制来部署路侧子系统220。例如,如果感知设备260的感知范围是150m,那么在交通工具130所行驶的道路上每隔150m部署一个路侧子系统220。在这个例子中,假设RSU 250的通信范围,特别是与OBU 132的直连通信范围大于感知设备260的感知范围,这个假设在通常情 况下是成立的。如果通信范围小于感知范围,则以RSU 250的通信范围为限制来部署路侧子系统220。
在图3B所示的组网示例302中,与组网示例301相比,路侧计算模块240中的路侧计算单元242的计算能力更强大,可以处理来自多个感知设备260的感知信息。因此,在图3B中,路侧计算模块240-1可以连接到多个感知设备260-11、……、260-1M,路侧计算模块240-K可以连接到多个感知设备260-K1、……、260-KM等等。在此,M是大于等于1的整数。图3B的组网方式的特点是可以充分利用RSU 250的通信能力和路侧计算单元242的计算资源。因此,假设RSU 250支持的通信范围是500m,感知设备260的感知范围是150m,那么每个路侧计算模块240可以支持对连续三个感知设备260的感知信息的处理,并且可以在交通工具130所行驶的道路上每隔500m设置一个路侧子系统220。注意,每个路侧计算模块240所连接到的感知设备的数目可以不同。
在图3B所示的组网示例303中,在每个位置处根据感知设备260的感知能力部署感知设备260和路侧计算模块240,并且多个路侧计算模块240具有一个RSU。感知设备260和路侧计算模块240的部署基于感知设备260的感知范围来确定,而整个路侧子系统220的部署基于RSU 250的通信范围来确定。也就是说,在这种组网方式中,RSU与路侧计算模块240不是1:1的关系。这可以充分利用RSU250的通信能力。如图3B所示,路侧子系统220-1包括单个RSU250-1,多个路侧计算模块240-11、……、240-1M以及分别与这些路侧计算模块相连的感知设备260-11、……、260-1M。类似的,路侧子系统220-K包括单个RSU 250-K,多个路侧计算模块240-K1、……、240-KM以及分别与这些路侧计算模块相连的感知设备260-K1、……、260-KM。
在每个路侧子系统220中,可以指定一个路侧计算模块240作为主路侧计算模块,并且其他路侧计算模块240是从路侧计算模块。主路侧计算模块可以采用主备模式或者采用动态选举策略来确定。 主路侧计算模块240负责融合子网络内的所有计算单元的结果,与RSU 250和中心平台子系统210直接通信,对从路侧计算模块的信息执行转发,等等。
图3D还示出了另一种组网示例304,该示例与图3中的组网示例303类似,区别在于每个路侧计算模块240可以连接到多个感知设备260,以处理来自多个感知设备260的感知信息。这可以进一步充分利用路侧计算单元242的计算资源。
图4示出了与边缘子系统230相关的组网示例401。在图4所示的组网示例401中,中心平台子系统210可以经由网络310与多个边缘计算子系统(分别被表示为230-1、……、230-K)进行通信。在此,K是大于等于1的整数。由于边缘计算模块270通常具有更强大的计算能力和网络覆盖能力,每个边缘计算子系统230中的边缘计算模块270可以与多个感知设备260相连,以处理来自多个感知设备260的感知信息,并且包括多个RSU 250。例如,边缘计算子系统230-1包括边缘计算模块270-1,与之相连的第一组感知设备260-11、……、260-1M,第二组感知设备260-11、……、260-1M,以及RSU 250-11和RSU 250-1M。在此,M是大于等于1的整数。类似的,边缘计算子系统230-K包括边缘计算模块270-K,与之相连的第一组感知设备260-K1、……、260-KM,第二组感知设备260-K1、……、260-KM,以及RSU 250-K1和RSU 250-KM。在每个边缘计算子系统230中,多个RSU 250可以提供更大的通信范围。由此,边缘计算设备272的强大计算能力可以被充分用于处理更多的感知设备,为更大地理范围内的交通工具提供驾驶控制。
以上描述了路侧子系统220和边缘计算子系统230的一些示例组网方式。应当理解,附图中仅是示出了一些示例,这对本公开的实施例不产生限制。在一些实现中,这些不同的组网方式可以通常存在于驾驶控制系统110中。例如,驾驶控制系统110中的中心平台子系统210可以经由网络通信耦合到图3A至图3D中的一个或多个示例所示的一个或多个路侧子系统220,和/或通信耦合到图4D示 出的边缘计算子系统230。
服务节点的架构及与功能节点的交互示例
如以上提及的,在本文中,RSU 250、路侧计算单元242和边缘计算设备272可以被统称为“功能节点”,而用于服务这些功能节点的节点,诸如路侧服务节点212、RSU服务节点214和边缘服务节点216,可以被统称为“服务节点”。在驾驶控制系统110中,各个子系统之间的交互主要通过服务节点与功能节点之间的交互来实现。
服务节点具有相应架构来支持这样的交互。图5示出了服务节点501的示例架构,该服务节点501与功能节点502交互。服务节点501可以是图2的驾驶控制系统110中的路侧服务节点212、RSU服务节点214、或者边缘服务节点216。在一些实施例中,中心平台子系统210中的路侧服务节点212、RSU服务节点214和边缘服务节点216中的多个节点的功能可以被集成由单个服务节点501来实现。本公开的实施例在此方面不受限制。功能节点502可以是图2的驾驶控制系统110中的RSU 250、路侧计算单元242或边缘计算设备272。
图5所示的服务节点501的驾驶可以实现各个子系统之间的信息交互,提供子系统内部交互的统一路径,提供子系统对接外部的统一化协议和接口,并且实现对功能节点的管理和消息交互。
如图5所示,服务节点501被划分为控制层面510、管理层面520和接入层面550。接入层面550包括接入协议栈552,用于支持功能节点502的接入协议。接入层面550可以根据功能节点502的类型,集成各个功能节点502适合的一个或多个接入协议对应的接入协议栈。在一些实施例中,功能节点502包括RSU 250,接入协议栈552可以是RSU 250支持的V2X相关协议,诸如轻量级V2X协议,包括LwM2M协议、mqtt协议等。轻量级协议可以降低节点侧资源消耗。在一些实施例中,功能节点502,诸如RSU 250、路侧 计算单元242和/或边缘计算单元272支持网络通信,因此接入协议栈552可以是网络协议栈,诸如超文本传输协议(HTTP)协议栈、超文本安全传输(HTTPS)协议栈、蜂窝通信协议栈,等等。
管理层面520涉及设备管理部分530和配置管理部分540。设备管理部分530包括对功能节点502的连接管理模块532和状态监控模块534。配置管理540包括对功能节点502的设备配置模块542和策略配置模块544。控制层面510用于控制与服务节点501的消息收集模块512、消息下发模块514和消息转发模块516。
服务节点501的各个层面的具体功能将在下文中结合与功能节点502的交互来具体描述。
图6示出了本公开的一些实施例的在服务节点501与功能节点502之间的信令图600。在图6的实施例中,服务节点501可以是路侧服务节点212、RSU服务节点214和边缘服务节点216中的任一个,功能节点502可以是RSU 250、路侧计算单元242和边缘计算设备272中的任一个。
在610,服务节点501基于由功能节点支502持的接入协议来为功能节点502提供接入。功能节点502在接入服务节点501后才与服务节点501建立通信耦合。在一些实施例中,在接入提供610的过程中,功能节点502基于相应的接入协议,可以向服务节点501发送接入请求。服务节点501的接入层面550中的接入协议栈552处理接入请求。在一些实施例中,服务节点501可以响应于接入请求,执行对功能节点502的接入授权的验证。这例如可以由设备管理部分530中的连接管理模块534来实现。响应于接入授权被验证,服务节点501可以为功能节点502提供接入。由此,功能节点502可以连接到服务节点501,与服务节点501通信。
在620,服务节点501基于所提供的接入,向功能节点502传输针对功能节点的配置信息。配置信息的提供例如可以由服务节点501的配置管理部分540来实现。
在一些实施例中,配置管理部分540中的设备配置542可以被 配置为向功能节点502发送第一配置信息(也称为设备配置信息),用于配置功能节点502的通信资源和/或计算资源。例如,在功能节点502包括RSU 250的情况中,第一配置信息可以用于配置RSU 250的发射功率,从而控制RSU 250的通信范围。对于功能节点502包括路侧计算单元242或边缘计算设备272的情况,第一配置信息可以对计算资源进行配置,例如预留一部分计算资源用于后续计算。
在一些实施例中,配置管理部分540中的策略配置544可以被配置为向功能节点502发送第二配置信息(也称为策略配置信息),用于配置功能节点502的消息交互策略。消息交互策略可以包括服务节点501对功能节点502的消息收集策略,消息下发策略,以及消息转发策略。例如,对于消息收集和消息下发,第二配置信息可以配置消息收集和/或下发的起始时间、采样间隔、数据类型、优先级发送、发送频率等。对于消息转发,第二配置信息可以设置要转发的消息的有效期、起始发送时间、发送时间内的重复周期、发送频率等。
在一些实施例中,功能节点502接收到配置信息后,利用配置信息对自身进行设置,并且还可以向服务节点501返回反馈信息。
在630,服务节点501可以基于配置信息来控制与功能节点502的消息交互,以促进OBU对交通工具130的驾驶控制。服务节点501与功能节点502之间的消息交互可以包括消息收集、消息下发和消息转发。消息收集指的是服务节点501从一个或多个功能节点502接收消息,功能节点502按照消息收集策略来向服务节点501上报消息。消息下发指的是服务节点501向功能节点502下发消息,可以通过消息下发策略来控制。消息转发指的是服务节点501跨功能节点执行消息转发,这在两个功能节点502需要通信时出现。消息转发可以受消息转发策略控制。服务节点501与功能节点502之间的消息交互过程将在下文中详细描述。
在一些可能的实施例中,在640,服务节点501还执行对功能节点502的状态监控,以检测功能节点502是否处于在线状态、离线 状态、故障状态或者其他状态。状态监控可以由服务节点501中的状态监控模块534来执行。在状态监控过程中,功能节点502可以周期性地上报自身的状态到服务节点501。服务节点501可以基于接收到的状态报告,更新与功能节点502对应的本地状态信息,记录功能节点502的最新状态。在一些实施例中,功能节点502可以响应于来自服务节点501的更新请求而向服务节点501传输状态报告。例如,如果服务节点501长期(例如,超过某个时间阈值)没有收到来自某个功能节点502的状态报告,服务节点501可以通过发送更新请求来主动探测服务节点501的状态报告。
下面将参考图7A和图7B来描述服务节点501与功能节点502之间的消息交互过程,该消息交互过程还涉及OBU 132,以支持对承载OBU 132的交通工具130的驾驶控制。消息交互过程的不同与OBU 132的通信能力有关。
在图7A示出的信令图701中,功能节点502-1例如是提供计算功能的路侧计算单元242或边缘计算设备272,而功能节点502-2例如是提供通信能力的RSU 250。功能节点502-1和502-2可以被包括在路侧子系统220或边缘计算子系统230中。由此,服务节点501可以包括路侧计算单元242或边缘计算设备272。在该示例中,OBU132具有与功能节点502-2的通信连接。这样的通信连接例如可以是V2X通信连接。
在710,功能节点502-1向服务节点501传输针对交通工具130的驾驶相关消息(为讨论方便,在本文中也称为“第一驾驶相关消息”)。第一驾驶相关消息可以是由功能节点502-1确定的针对交通工具130的感知消息、决策规划消息和/或控制消息中的至少一个。第一驾驶相关消息是由功能节点502基于所处的子系统220或230中的感知设备260的感知信息而确定的。
在接收到来自功能节点502-1的第一驾驶相关消息后,在720,服务节点501通过处理第一驾驶相关消息来确定针对交通工具130的另一驾驶相关消息(为讨论方便,在本文中也称为“第二驾驶相 关消息”)。第二驾驶相关消息可以不同于第一驾驶相关消息,并且也可以包括针对交通工具130的感知消息、决策规划消息和/或控制消息中的至少一项。例如,第一驾驶相关消息可以是针对交通工具130的感知消息,而第二驾驶相关消息可以是在感知消息基础上确定的针对交通工具130的决策规划消息和/或控制消息。又例如,第一驾驶相关消息可以是驾驶规划消息,而第二驾驶相关消息可以是针对交通工具130的控制消息。在这样的示例中,服务节点501提供进一步的计算能力。
在一些实施例中,服务节点501还可以从另外的功能节点502接收针对另一交通工具130的驾驶相关消息(为讨论方便,在本文中也称为“第三驾驶相关消息”)。服务节点501可以处理第一驾驶相关消息和第三驾驶相关消息,以确定第一驾驶相关消息。由于具有更多的驾驶相关信息,服务节点501可以基于这样的全局信息来实现更多的定制化服务。这例如可以由服务节点501中的单独的服务模块来实现。例如,基于来自多个功能节点的消息,服务节点501可以确定特定区域的整体交通拥堵状态、道路交通流通报、车道调整状况、信号灯提醒、道路异常状况、道路施工状况等与全局交通相关的状况。由此,服务节点501可以确定是否要调整特定交通工具130的行驶路径和/或某个具体驾驶操作,并且基于此来生成第二驾驶相关消息。
在730,服务节点501将第二驾驶相关消息提供给功能节点502-1,例如路侧子系统220中的路侧计算单元242或边缘计算子系统230中的边缘计算设备272。在740,功能节点502-1将第二驾驶相关消息传递给功能节点502-2,这例如可以在子系统220或230的局域网内实现。在750,功能节点502-2,例如RSU 250,将第二驾驶相关消息传输给OBU 132。在一个实施例中,功能节点502-2可以将第二驾驶相关消息广播给OBU 132。在接收到第二驾驶相关消息后,OBU 132可以根据第二驾驶相关消息来执行对交通工具130的驾驶控制。
在图7B示出的实施例中,假设OBU 132具有与服务节点501的通信连接。在这样的实施例中,OBU 132可以具有联网能力,例如OBU 132可以通过用户终端设备上的应用程序或者车载中控平台等方式接入互联网,从而获得与服务节点501的通信连接。在图7B的信令图702中,在710和720处的操作与信令图701类似。在服务节点501确定第二驾驶相关消息后,可以经由与OBU 132的通信连接,将第二驾驶相关消息传输给OBU 132。
在一些实施例中,除了与服务节点501交互外,在路侧子系统220和/或边缘计算子系统230内部也可以实现对交通工具130的驾驶控制。由路侧计算单元242和/或边缘计算设备272确定的驾驶相关消息可以直接经由RSU 250提供给OBU 132。OBU 132可以对接收到的驾驶相关消息进一步处理或者直接基于该消息来控制交通工具130。这样的典型应用场景包括协同式感知、语义级别感知结果共享等;协作式感知指的是路侧子系统220将感知到的全局信息共享给交通工具,作为交通工具感知的补充;语义级别感知结果共享指路侧子系统将感知到的结果做语义级别的识别,并共享给交通工具,例如路侧子系统220对路边僵尸交通工具的识别与共享,工程车辆、救护车辆等识别与共享。
与第三平台对接的示例
在一些实施例中,根据本公开的实施例的驾驶控制系统110还可以对接到第三方平台。图8示出了这样的实施例。如图8所示,驾驶控制系统110的中心平台子系统210还包括第三方对接服务节点818,用于对接到第三方服务平台880。第三方服务平台880可以包括一个或多个第三方服务端882-1、……、882-N(为讨论方便,统称为或单独称为第三方服务端882)。每个第三方服务端882可以提供相应的第三方服务,诸如地图服务、导航服务、交通监管服务等。第三方对接服务节点818被配置为对第三方服务端882进行控制、管理和消息交互。第三方对接服务节点818的结构可以类似于 图5示出的服务节点501。中心平台子系统210可以为第三方平台880提供数据支撑,并且可以为第三方平台880与交通工具130的交互提供更灵活、方便的通道。
在一些实施例中,OBU 132可以具有联网能力,并且可以与第三方平台880通信。例如,一个或多个OBU 132可以安装有与第三方平台880的相应服务终端所提供的服务对应的第三方应用830-1、……、830-N等(为讨论方便,统称为或单独称为第三方应用830)。OBU 132可以借助第三方应用830来实现与第三方平台880的通信。
图9A示出了在OBU 132与第三方平台880之间具有通信连接的实施例中的信令图901。信令图901继承了信令图701和702中的操作710和720,其中服务节点501基于来自功能节点502-1的第一驾驶相关消息确定了针对交通工具130的第二驾驶相关消息。服务节点501期望将第二驾驶相关消息提供给相应交通工具130上的OBU 132。在图9A的实施例中,这样的消息提供可以经由第三方平台880,特别是第三方平台中的第三方服务端882来实现。如图9A所示,在910,服务节点501将第二驾驶相关消息传递给第三方服务端882。服务节点501与第三方服务端882可以经由有线或无线网络通信。接收到第二驾驶相关消息之后,在920,第三方服务端882将第二驾驶相关消息经由对应的通信连接转发给OBU 132。由此,第三方平台实现了更灵活的驾驶辅助。
作为一个具体示例,以交通信号灯提醒功能为例,功能节点502-1上传的第一驾驶相关消息包括交通工具130所处地理区域或行驶路径上的交通信号灯状态。服务节点501可以不做处理或者执行相应消息转变后,将交通信号灯状态相关信息作为第二驾驶相关消息提供给第三方服务端882。第三方服务端882然后可以将交通信号灯状态提供给OBU 132。例如,第三方服务端882可以提供地图服务,因此可以将交通信号灯状态信息推送到OBU 132上安装的地图应用上。通过地图应用,可以实时显示相应地理区域或路径上的交 通信号灯状态。
在另外一些实施例中,第三方平台880与OBU 132之间不存在通信连接。在这种情况下,第三方平台880、例如第三方服务端882还可以借助驾驶控制系统110来向OBU 132提供驾驶相关消息。图9B和图9C示出了这样的实施例。
在图9B所示的信令图902中,OBU 132具有与功能节点502-2(例如,RSU 250)的通信连接。在930,服务节点501接收第三方服务端882的针对交通工具130的驾驶相关消息(为便于讨论,也称为“第四驾驶相关消息”)。第四驾驶相关消息例如可以包括与感知消息相关的信息,但可能不是由感知设备的感知信息确定的,而是第三方平台880生成的。在一些示例中,第四驾驶相关消息例如可以包括交管部门临时封路的通知,这涉及对道路可通行状态的信息。第四驾驶相关消息还可以包括道路限速临时调整、紧急播报等。
在940,服务节点501可以将第四驾驶相关消息转发给子系统220或230的功能节点502-2(例如,RSU 250)。功能节点502-2的选择可以与交通工具130所处的地理位置相关,以使得交通工具130上的OBU 132处于功能节点502-2的通信范围。功能节点502-2在950将第四驾驶相关消息转发给OBU 132,以使OBU 132可以根据第四驾驶相关消息执行相应驾驶控制,诸如调整路线等。
在图9C所示的信令图903中,OBU 132具有与服务节点501的网络通信连接。在930,服务节点501接收第三方服务端882的针对交通工具130的第四驾驶相关消息,然后服务节点501在960可以经由与OBU 132的通信连接而将第四驾驶相关消息转发给OBU132。
示例过程
图10示出了根据本公开实施例的用于驾驶控制的方法1000的流程图。方法1000可以被实现在图5的服务节点501处,其可以是 驾驶控制系统110中的路侧服务节点212、RSU服务节点214、边缘计算服务节点216和/或第三方对接服务节点818。应当理解,虽然以特定顺序示出,方法1000中的一些步骤可以以与所示出的不同顺序或者以并行方式执行。本公开的实施例在此方面不受限制。
在框1010,服务节点501基于由功能节点支持的接入协议来为功能节点提供接入,功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与交通工具相关联的信息的计算功能。在框1020,服务节点501基于接入,向功能节点传输针对功能节点的配置信息。在框1030,服务节点501基于配置信息,控制与功能节点的消息交互,以促进经由OBU对交通工具进行驾驶控制。
在一些实施例中,功能节点包括路侧计算单元和边缘计算设备中的至少一个,路侧计算单元和边缘计算设备中的每一个被配置为提供计算功能。
在一些实施例中,功能节点包括路侧单元RSU,RSU被配置为提供通信功能。在一些实施例中,服务节点被包括在路侧计算单元、边缘计算设备和中心平台中的至少一个中,并且其中RSU被配置为提供路侧计算单元和边缘计算设备中的至少一个与OBU之间的通信。
在一些实施例中,功能节点基于以下至少一项被部署在交通工具所处的环境:功能节点支持的通信范围;功能节点的计算能力;以及由与功能节点相关联的感知设备支持的感知范围,功能节点被配置为处理来自感知设备的感知信息。
在一些实施例中,提供接入包括:基于由功能节点支持的接入协议,从功能节点接收接入请求;响应于接入请求,执行对功能节点的接入授权的验证;以及响应于接入授权被验证,提供接入。
在一些实施例中,过程1000还包括:从功能节点接收状态报告,状态报告被周期性接收到或者响应于服务节点的更新请求而被接收到;以及基于状态报告,更新与功能节点对应的本地状态信息。
在一些实施例中,传输针对功能节点的配置信息包括以下至 少一项:传输针对功能节点的第一配置信息,以配置功能节点的通信资源和计算资源中的至少一项;以及传输针对功能节点的第二配置信息,以配置功能节点的消息交互策略。
在一些实施例中,控制与功能节点的消息交互包括:从功能节点接收针对交通工具的第一驾驶相关消息;以及通过处理第一驾驶相关消息,确定针对交通工具的第二驾驶相关消息,第二驾驶相关消息不同于第一驾驶相关消息。
在一些实施例中,控制与功能节点的消息交互还包括促使功能节点经由功能节点与OBU的通信连接来将第二驾驶相关消息传输给OBU,以用于控制交通工具的驾驶。在一些实施例中,过程1000还包括经由服务节点与OBU的通信连接,将第二驾驶相关消息传输给OBU。在一些实施例中,过程1000还包括经由第三方平台与OBU的通信连接,将第二驾驶相关消息传输给OBU。
在一些实施例中,确定第二驾驶相关消息包括:从另一功能节点接收针对另一交通工具的第三驾驶相关消息;以及通过处理第一驾驶相关消息和第三驾驶相关消息,来确定第二驾驶相关消息。
在一些实施例中,服务节点具有与OBU的通信连接,过程1000还包括:经由与第三方平台的通信连接,从第三方平台接收针对交通工具的第四驾驶相关消息;以及将第四驾驶相关消息提供给OBU。
在一些实施例中,第一驾驶相关消息基于与功能节点相关联的至少一个感知设备采集到的感知信息被确定,至少一个感知设备被部署在交通工具所处的环境中。
图1100示出了根据本公开实施例的用于驾驶控制的方法1100的流程图。方法1100可以被实现在图5中的功能节点502处,其可以是驾驶控制系统110中的RSU 250、路侧计算单元242或边缘计算设备272。应当理解,虽然以特定顺序示出,方法1100中的一些步骤可以以与所示出的不同顺序或者以并行方式执行。本公开的实施例在此方面不受限制。
在框1110,功能节点502基于由功能节点支持的接入协议来获得对服务节点的接入,功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与交通工具相关联的信息的计算功能。在框1120,功能节点502基于接入,从服务节点接收针对功能节点的配置信息。在框1130,功能节点502基于配置信息,执行与服务节点的消息交互,以促进经由OBU对交通工具进行驾驶控制。
在一些实施例中,功能节点包括路侧计算单元和边缘计算设备中的至少一个,路侧计算单元和边缘计算设备中的每一个被配置为提供计算功能。
在一些实施例中,功能节点包括路侧单元RSU,RSU被配置为提供通信功能。在一些实施例中,服务节点被包括在路侧计算单元、边缘计算设备和中心平台中的至少一个中,并且其中RSU被配置为提供路侧计算单元和边缘计算设备中的至少一个与OBU之间的通信。
在一些实施例中,功能节点基于以下至少一项被部署在交通工具所处的环境:功能节点支持的通信范围;功能节点的计算能力;以及由与功能节点相关联的感知设备支持的感知范围,功能节点被配置为处理来自感知设备的感知信息。
在一些实施例中,获得接入包括:基于由功能节点支持的接入协议,向服务节点传输接入请求;以及响应于对功能节点的接入授权被服务节点验证,获得接入。
在一些实施例中,过程1100还包括:周期性地或者响应于来自服务节点的更新请求,向服务节点传输状态报告,以更新由服务节点维护的、与功能节点对应的本地状态信息。
在一些实施例中,接收针对功能节点的配置信息包括以下至少一项:接收针对功能节点的第一配置信息,以配置功能节点的通信资源和计算资源中的至少一项;以及接收针对功能节点的第二配置信息,以配置功能节点的消息交互策略。
在一些实施例中,执行与服务节点的消息交互包括:向服务 节点传输针对交通工具的第一驾驶相关消息。
在一些实施例中,功能节点具有与OBU的通信连接,并且其中执行与服务节点的消息交互还包括:从服务节点接收针对交通工具的第二驾驶相关消息,第二驾驶相关消息由服务节点基于第一驾驶相关消息和针对另一交通工具的第三驾驶相关消息而确定;以及经由通信连接,将第二驾驶相关消息转发给OBU。
在一些实施例中,服务节点具有与OBU的通信连接,并且其中控制与功能节点的消息交互包括:从服务节点获得针对交通工具的第四驾驶相关消息,第四驾驶相关消息由第三方平台提供。
在一些实施例中,第一驾驶相关消息基于与功能节点相关联的至少一个感知设备采集到的感知信息被确定,至少一个感知设备被部署在交通工具所处的环境中。
示例装置和设备
图12示出了根据本公开实施例的用于驾驶控制的装置1200的示意性框图。装置1200可以被包括在图1和图2中的路侧子系统112中或者被实现为路侧子系统112。如图12所示,装置1200包括接入模块1210,被配置为在服务节点处基于由功能节点支持的接入协议来为功能节点提供接入,功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与交通工具相关联的信息的计算功能。装置1200还包括配置模块1220,被配置为基于接入来向功能节点传输针对功能节点的配置信息。装置1200还包括交互模块1230,被配置为基于配置信息,控制与功能节点的消息交互,以促进经由OBU对交通工具进行驾驶控制。
在一些实施例中,功能节点包括路侧计算单元和边缘计算设备中的至少一个,路侧计算单元和边缘计算设备中的每一个被配置为提供计算功能。
在一些实施例中,功能节点包括路侧单元RSU,RSU被配置为提供通信功能。在一些实施例中,服务节点被包括在路侧计算单 元、边缘计算设备和中心平台中的至少一个中,并且其中RSU被配置为提供路侧计算单元和边缘计算设备中的至少一个与OBU之间的通信。
在一些实施例中,功能节点基于以下至少一项被部署在交通工具所处的环境:功能节点支持的通信范围;功能节点的计算能力;以及由与功能节点相关联的感知设备支持的感知范围,功能节点被配置为处理来自感知设备的感知信息。
在一些实施例中,接入模块1210包括:请求接收模块,被配置为基于由功能节点支持的接入协议,从功能节点接收接入请求;验证模块,被配置为响应于接入请求,执行对功能节点的接入授权的验证;以及基于验证的接入模块,被配置为响应于接入授权被验证,提供接入。
在一些实施例中,装置1200还包括:报告接收模块,被配置为从功能节点接收状态报告,状态报告被周期性接收到或者响应于服务节点的更新请求而被接收到;以及状态更新模块,被配置为基于状态报告,更新与功能节点对应的本地状态信息。
在一些实施例中,配置模块1220包括以下至少一项:设备配置模块,被配置为传输针对功能节点的第一配置信息,以配置功能节点的通信资源和计算资源中的至少一项;以及策略配置模块,被配置为传输针对功能节点的第二配置信息,以配置功能节点的消息交互策略。
在一些实施例中,交互模块1230包括:第一消息接收模块,被配置为从功能节点接收针对交通工具的第一驾驶相关消息;以及第一消息处理模块,被配置为通过处理第一驾驶相关消息,确定针对交通工具的第二驾驶相关消息,第二驾驶相关消息不同于第一驾驶相关消息。
在一些实施例中,交互模块1230还被配置为促使功能节点经由功能节点与OBU的通信连接来将第二驾驶相关消息传输给OBU,以用于控制交通工具的驾驶。在一些实施例中,装置1200还包括第 一消息传输模块,被配置为经由服务节点与OBU的通信连接,将第二驾驶相关消息传输给OBU.在一些实施例中,装置1200还包括第二消息传输模块,被配置为经由第三方平台与OBU的通信连接,将第二驾驶相关消息传输给OBU。
在一些实施例中,消息处理模块包括:第二消息接收模块,被配置为从另一功能节点接收针对另一交通工具的第三驾驶相关消息;以及第二消息处理模块,被配置为通过处理第一驾驶相关消息和第三驾驶相关消息,来确定第二驾驶相关消息。
在一些实施例中,服务节点具有与OBU的通信连接,装置1200还包括:第三消息接收模块,被配置为经由与第三方平台的通信连接,从第三方平台接收针对交通工具的第四驾驶相关消息;以及消息供应模块,被配置为将第四驾驶相关消息提供给OBU。
在一些实施例中,第一驾驶相关消息基于与功能节点相关联的至少一个感知设备采集到的感知信息被确定,至少一个感知设备被部署在交通工具所处的环境中。
图13示出了根据本公开实施例的用于驾驶控制的装置1300的示意性框图。装置1300可以被包括在图1和图2中的车载子系统132中或者被实现为车载子系统132。如图13所示,装置1300包括接入模块1320,被配置为在功能节点处基于由功能节点支持的接入协议来获得对服务节点的接入,功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与交通工具相关联的信息的计算功能。装置1300还包括配置模块1320,被配置为基于接入,从服务节点接收针对功能节点的配置信息。装置1300还包括交互模块1330,被配置为基于配置信息,执行与服务节点的消息交互,以促进经由OBU对交通工具进行驾驶控制。
在一些实施例中,功能节点包括路侧计算单元和边缘计算设备中的至少一个,路侧计算单元和边缘计算设备中的每一个被配置为提供计算功能。
在一些实施例中,功能节点包括路侧单元RSU,RSU被配置 为提供通信功能。在一些实施例中,服务节点被包括在路侧计算单元、边缘计算设备和中心平台中的至少一个中,并且其中RSU被配置为提供路侧计算单元和边缘计算设备中的至少一个与OBU之间的通信。
在一些实施例中,功能节点基于以下至少一项被部署在交通工具所处的环境:功能节点支持的通信范围;功能节点的计算能力;以及由与功能节点相关联的感知设备支持的感知范围,功能节点被配置为处理来自感知设备的感知信息。
在一些实施例中,接入模块1320包括:请求传输模块,被配置为基于由功能节点支持的接入协议,向服务节点传输接入请求;以及验证模块,被配置为响应于对功能节点的接入授权被服务节点验证,获得接入。
在一些实施例中,装置1300还包括:报告传输模块,被配置为周期性地或者响应于来自服务节点的更新请求,向服务节点传输状态报告,以更新由服务节点维护的、与功能节点对应的本地状态信息。
在一些实施例中,配置模块1320包括以下至少一项:设备配置模块,被配置为接收针对功能节点的第一配置信息,以配置功能节点的通信资源和计算资源中的至少一项;以及策略配置模块,被配置为接收针对功能节点的第二配置信息,以配置功能节点的消息交互策略。
在一些实施例中,交互模块1330包括:消息传输模块,被配置为向服务节点传输针对交通工具的第一驾驶相关消息。
在一些实施例中,功能节点具有与OBU的通信连接,并且其中交互模块还包括:消息接收模块,被配置为从服务节点接收针对交通工具的第二驾驶相关消息,第二驾驶相关消息由服务节点基于第一驾驶相关消息和针对另一交通工具的第三驾驶相关消息而确定;以及消息转发模块,被配置为经由通信连接,将第二驾驶相关消息转发给OBU。
在一些实施例中,服务节点具有与OBU的通信连接,并且其中交互模块包括:消息获得模块,被配置为从服务节点获得针对交通工具的第四驾驶相关消息,第四驾驶相关消息由第三方平台提供。
在一些实施例中,第一驾驶相关消息基于与功能节点相关联的至少一个感知设备采集到的感知信息被确定,至少一个感知设备被部署在交通工具所处的环境中。
图14示出了可以用来实施本公开的实施例的示例设备1400的示意性框图。设备1400可以用于实现图5中的服务节点501或功能节点502。如图所示,设备1400包括计算单元1401,其可以根据存储在只读存储器(ROM)1402中的计算机程序指令或者从存储单元1408加载到随机访问存储器(RAM)1403中的计算机程序指令,来执行各种适当的动作和处理。在RAM 1403中,还可存储设备1400操作所需的各种程序和数据。计算单元1401、ROM 1402以及RAM1403通过总线1404彼此相连。输入/输出(I/O)接口1405也连接至总线1404。
设备1400中的多个部件连接至I/O接口1405,包括:输入单元1406,例如键盘、鼠标等;输出单元1407,例如各种类型的显示器、扬声器等;存储单元1408,例如磁盘、光盘等;以及通信单元1409,例如网卡、调制解调器、无线通信收发机等。通信单元1409允许设备1400通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
计算单元1401可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元1401的一些示例包括但不限于中央处理单元(CPU)、图形处理单元(GPU)、各种专用的人工智能(AI)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(DSP)、以及任何适当的处理器、控制器、微控制器等。计算单元1401执行上文所描述的各个方法和处理,例如过程1000或过程1100。例如,在一些实施例中,过程1000或过程1100可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元 1408。在一些实施例中,计算机程序的部分或者全部可以经由ROM802和/或通信单元1409而被载入和/或安装到设备1400上。当计算机程序加载到RAM 1403并由计算单元1401执行时,可以执行上文描述的过程1000或过程11000的一个或多个步骤。备选地,在其他实施例中,计算单元1401可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行过程1000或过程1100。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)等等。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (52)

  1. 一种用于驾驶控制的方法,包括:
    在服务节点处,基于由功能节点支持的接入协议来为所述功能节点提供接入,所述功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与所述交通工具相关联的信息的计算功能;
    基于所述接入,向所述功能节点传输针对所述功能节点的配置信息;以及
    基于所述配置信息,控制与所述功能节点的消息交互,以促进经由所述OBU对所述交通工具进行驾驶控制。
  2. 根据权利要求1所述的方法,其中所述功能节点包括路侧计算单元和边缘计算设备中的至少一个,所述路侧计算单元和所述边缘计算设备中的每一个被配置为提供所述计算功能。
  3. 根据权利要求1所述的方法,其中所述功能节点包括路侧单元RSU,所述RSU被配置为提供所述通信功能;并且
    其中所述服务节点被包括在路侧计算单元、边缘计算设备和中心平台中的至少一个中,并且其中所述RSU被配置为提供所述路侧计算单元和所述边缘计算设备中的所述至少一个与所述OBU之间的通信。
  4. 根据权利要求1所述的方法,其中所述功能节点基于以下至少一项被部署在所述交通工具所处的环境:
    所述功能节点支持的通信范围;
    所述功能节点的计算能力;以及
    由与所述功能节点相关联的感知设备支持的感知范围,所述功能节点被配置为处理来自所述感知设备的感知信息。
  5. 根据权利要求1所述的方法,其中提供所述接入包括:
    基于由所述功能节点支持的接入协议,从所述功能节点接收接入请求;
    响应于所述接入请求,执行对所述功能节点的接入授权的验证;以及
    响应于所述接入授权被验证,提供所述接入。
  6. 根据权利要求1所述的方法,还包括:
    从所述功能节点接收状态报告,所述状态报告被周期性接收到或者响应于所述服务节点的更新请求而被接收到;以及
    基于所述状态报告,更新与所述功能节点对应的本地状态信息。
  7. 根据权利要求1所述的方法,其中传输针对所述功能节点的所述配置信息包括以下至少一项:
    传输针对所述功能节点的第一配置信息,以配置所述功能节点的通信资源和计算资源中的至少一项;以及
    传输针对所述功能节点的第二配置信息,以配置所述功能节点的消息交互策略。
  8. 根据权利要求1至7中任一项所述的方法,其中控制与所述功能节点的消息交互包括:
    从所述功能节点接收针对所述交通工具的第一驾驶相关消息;以及
    通过处理所述第一驾驶相关消息,确定针对所述交通工具的第二驾驶相关消息,所述第二驾驶相关消息不同于所述第一驾驶相关消息。
  9. 根据权利要求8所述的方法,其中控制与所述功能节点的消息交互还包括促使所述功能节点经由所述功能节点与所述OBU的通信连接来将所述第二驾驶相关消息传输给所述OBU,以用于控制所述交通工具的驾驶;
    其中所述方法还包括经由所述服务节点与所述OBU的通信连接,将所述第二驾驶相关消息传输给所述OBU;或者
    其中所述方法还包括经由第三方平台与所述OBU的通信连接,将所述第二驾驶相关消息传输给所述OBU。
  10. 根据权利要求8所述的方法,其中确定所述第二驾驶相关 消息包括:
    从另一功能节点接收针对另一交通工具的第三驾驶相关消息;以及
    通过处理所述第一驾驶相关消息和所述第三驾驶相关消息,来确定所述第二驾驶相关消息。
  11. 根据权利要求1至7中任一项所述的方法,其中所述服务节点具有与所述OBU的通信连接,所述方法还包括:
    经由与所述第三方平台的所述通信连接,从所述第三方平台接收针对所述交通工具的第四驾驶相关消息;以及
    将所述第四驾驶相关消息提供给所述OBU。
  12. 根据权利要求8所述的方法,其中所述第一驾驶相关消息基于与所述功能节点相关联的至少一个感知设备采集到的感知信息被确定,所述至少一个感知设备被部署在所述交通工具所处的环境中。
  13. 一种用于驾驶控制的方法,包括
    在功能节点处,基于由所述功能节点支持的接入协议来获得对服务节点的接入,所述功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与所述交通工具相关联的信息的计算功能;
    基于所述接入,从所述服务节点接收针对所述功能节点的配置信息;以及
    基于所述配置信息,执行与所述服务节点的消息交互,以促进经由所述OBU对所述交通工具进行驾驶控制。
  14. 根据权利要求13所述的方法,其中所述功能节点包括路侧计算单元和边缘计算设备中的至少一个,所述路侧计算单元和所述边缘计算设备中的每一个被配置为提供所述计算功能。
  15. 根据权利要求13所述的方法,其中所述功能节点包括路侧单元RSU,所述RSU被配置为提供所述通信功能;并且
    其中所述服务节点被包括在路侧计算单元、边缘计算设备和中 心平台中的至少一个中,并且其中所述RSU被配置为提供所述路侧计算单元和所述边缘计算设备中的所述至少一个与所述OBU之间的通信。
  16. 根据权利要求13所述的方法,其中所述功能节点基于以下至少一项被部署在所述交通工具所处的环境:
    所述功能节点支持的通信范围;
    所述功能节点的计算能力;以及
    由与所述功能节点相关联的感知设备支持的感知范围,所述功能节点被配置为处理来自所述感知设备的感知信息。
  17. 根据权利要求13所述的方法,其中获得所述接入包括:
    基于由所述功能节点支持的接入协议,向所述服务节点传输接入请求;以及
    响应于对所述功能节点的接入授权被所述服务节点验证,获得所述接入。
  18. 根据权利要求13所述的方法,还包括:
    周期性地或者响应于来自所述服务节点的更新请求,向所述服务节点传输状态报告,以更新由所述服务节点维护的、与所述功能节点对应的本地状态信息。
  19. 根据权利要求13所述的方法,其中接收针对所述功能节点的所述配置信息包括以下至少一项:
    接收针对所述功能节点的第一配置信息,以配置所述功能节点的通信资源和计算资源中的至少一项;以及
    接收针对所述功能节点的第二配置信息,以配置所述功能节点的消息交互策略。
  20. 根据权利要求13至19中任一项所述的方法,其中执行与所述服务节点的消息交互包括:
    向所述服务节点传输针对所述交通工具的第一驾驶相关消息。
  21. 根据权利要求20所述的方法,其中所述功能节点具有与所述OBU的通信连接,并且其中执行与所述服务节点的消息交互还包 括:
    从所述服务节点接收针对所述交通工具的第二驾驶相关消息,所述第二驾驶相关消息由所述服务节点基于所述第一驾驶相关消息和针对另一交通工具的第三驾驶相关消息而确定;以及
    经由所述通信连接,将所述第二驾驶相关消息转发给所述OBU。
  22. 根据权利要求13至19中任一项所述的方法,其中所述服务节点具有与所述OBU的通信连接,并且其中控制与所述功能节点的消息交互包括:
    从所述服务节点获得针对所述交通工具的第四驾驶相关消息,所述第四驾驶相关消息由所述第三方平台提供。
  23. 根据权利要求20所述的方法,其中所述第一驾驶相关消息基于与所述功能节点相关联的至少一个感知设备采集到的感知信息被确定,所述至少一个感知设备被部署在所述交通工具所处的环境中。
  24. 一种用于驾驶控制的装置,包括:
    接入模块,被配置为在服务节点处基于由功能节点支持的接入协议来为所述功能节点提供接入,所述功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与所述交通工具相关联的信息的计算功能;
    配置模块,被配置为基于所述接入来向所述功能节点传输针对所述功能节点的配置信息;以及
    交互模块,被配置为基于所述配置信息,控制与所述功能节点的消息交互,以促进经由所述OBU对所述交通工具进行驾驶控制。
  25. 根据权利要求24所述的装置,其中所述功能节点包括路侧计算单元和边缘计算设备中的至少一个,所述路侧计算单元和所述边缘计算设备中的每一个被配置为提供所述计算功能。
  26. 根据权利要求24所述的装置,其中所述功能节点包括路侧单元RSU,所述RSU被配置为提供所述通信功能;并且
    其中所述服务节点被包括在路侧计算单元、边缘计算设备和中 心平台中的至少一个中,并且其中所述RSU被配置为提供所述路侧计算单元和所述边缘计算设备中的所述至少一个与所述OBU之间的通信。
  27. 根据权利要求24所述的装置,其中所述功能节点基于以下至少一项被部署在所述交通工具所处的环境:
    所述功能节点支持的通信范围;
    所述功能节点的计算能力;以及
    由与所述功能节点相关联的感知设备支持的感知范围,所述功能节点被配置为处理来自所述感知设备的感知信息。
  28. 根据权利要求24所述的装置,其中所述接入模块包括:
    请求接收模块,被配置为基于由所述功能节点支持的接入协议,从所述功能节点接收接入请求;
    验证模块,被配置为响应于所述接入请求,执行对所述功能节点的接入授权的验证;以及
    基于验证的接入模块,被配置为响应于所述接入授权被验证,提供所述接入。
  29. 根据权利要求24所述的装置,还包括:
    报告接收模块,被配置为从所述功能节点接收状态报告,所述状态报告被周期性接收到或者响应于所述服务节点的更新请求而被接收到;以及
    状态更新模块,被配置为基于所述状态报告,更新与所述功能节点对应的本地状态信息。
  30. 根据权利要求24所述的装置,其中所述配置模块包括以下至少一项:
    设备配置模块,被配置为传输针对所述功能节点的第一配置信息,以配置所述功能节点的通信资源和计算资源中的至少一项;以及
    策略配置模块,被配置为传输针对所述功能节点的第二配置信息,以配置所述功能节点的消息交互策略。
  31. 根据权利要求24至30中任一项所述的装置,其中所述交互模块包括:
    第一消息接收模块,被配置为从所述功能节点接收针对所述交通工具的第一驾驶相关消息;以及
    第一消息处理模块,被配置为通过处理所述第一驾驶相关消息,确定针对所述交通工具的第二驾驶相关消息,所述第二驾驶相关消息不同于所述第一驾驶相关消息。
  32. 根据权利要求31所述的装置,其中所述交互模块被配置为促使所述功能节点经由所述功能节点与所述OBU的通信连接来将所述第二驾驶相关消息传输给所述OBU,以用于控制所述交通工具的驾驶;
    其中所述装置还包括第一消息传输模块,被配置为经由所述服务节点与所述OBU的通信连接,将所述第二驾驶相关消息传输给所述OBU;或者
    其中所述装置还包括第二消息传输模块,被配置为经由第三方平台与所述OBU的通信连接,将所述第二驾驶相关消息传输给所述OBU。
  33. 根据权利要求31所述的装置,其中所述消息处理模块包括:
    第二消息接收模块,被配置为从另一功能节点接收针对另一交通工具的第三驾驶相关消息;以及
    第二消息处理模块,被配置为通过处理所述第一驾驶相关消息和所述第三驾驶相关消息,来确定所述第二驾驶相关消息。
  34. 根据权利要求24至30中任一项所述的装置,其中所述服务节点具有与所述OBU的通信连接,所述装置还包括:
    第三消息接收模块,被配置为经由与所述第三方平台的所述通信连接,从所述第三方平台接收针对所述交通工具的第四驾驶相关消息;以及
    消息供应模块,被配置为将所述第四驾驶相关消息提供给所述OBU。
  35. 根据权利要求31所述的装置,其中所述第一驾驶相关消息基于与所述功能节点相关联的至少一个感知设备采集到的感知信息被确定,所述至少一个感知设备被部署在所述交通工具所处的环境中。
  36. 一种用于驾驶控制的装置,包括:
    接入模块,被配置为在功能节点处基于由所述功能节点支持的接入协议来获得对服务节点的接入,所述功能节点被配置为提供与交通工具的车载单元OBU的通信功能或者提供对与所述交通工具相关联的信息的计算功能;
    配置模块,被配置为基于所述接入,从所述服务节点接收针对所述功能节点的配置信息;以及
    交互模块,被配置为基于所述配置信息,执行与所述服务节点的消息交互,以促进经由所述OBU对所述交通工具进行驾驶控制。
  37. 根据权利要求36所述的装置,其中所述功能节点包括路侧计算单元和边缘计算设备中的至少一个,所述路侧计算单元和所述边缘计算设备中的每一个被配置为提供所述计算功能。
  38. 根据权利要求36所述的装置,其中所述功能节点包括路侧单元RSU,所述RSU被配置为提供所述通信功能;并且
    其中所述服务节点被包括在路侧计算单元、边缘计算设备和中心平台中的至少一个中,并且其中所述RSU被配置为提供所述路侧计算单元和所述边缘计算设备中的所述至少一个与所述OBU之间的通信。
  39. 根据权利要求36所述的装置,其中所述功能节点基于以下至少一项被部署在所述交通工具所处的环境:
    所述功能节点支持的通信范围;
    所述功能节点的计算能力;以及
    由与所述功能节点相关联的感知设备支持的感知范围,所述功能节点被配置为处理来自所述感知设备的感知信息。
  40. 根据权利要求36所述的装置,其中所述接入模块包括:
    请求传输模块,被配置为基于由所述功能节点支持的接入协议,向所述服务节点传输接入请求;以及
    验证模块,被配置为响应于对所述功能节点的接入授权被所述服务节点验证,获得所述接入。
  41. 根据权利要求36所述的装置,还包括:
    报告传输模块,被配置为周期性地或者响应于来自所述服务节点的更新请求,向所述服务节点传输状态报告,以更新由所述服务节点维护的、与所述功能节点对应的本地状态信息。
  42. 根据权利要求36所述的装置,其中所述配置模块包括以下至少一项:
    设备配置模块,被配置为接收针对所述功能节点的第一配置信息,以配置所述功能节点的通信资源和计算资源中的至少一项;以及
    策略配置模块,被配置为接收针对所述功能节点的第二配置信息,以配置所述功能节点的消息交互策略。
  43. 根据权利要求36至42中任一项所述的装置,其中所述交互模块包括:
    消息传输模块,被配置为向所述服务节点传输针对所述交通工具的第一驾驶相关消息。
  44. 根据权利要求43所述的装置,其中所述功能节点具有与所述OBU的通信连接,并且其中所述交互模块还包括:
    消息接收模块,被配置为从所述服务节点接收针对所述交通工具的第二驾驶相关消息,所述第二驾驶相关消息由所述服务节点基于所述第一驾驶相关消息和针对另一交通工具的第三驾驶相关消息而确定;以及
    消息转发模块,被配置为经由所述通信连接,将所述第二驾驶相关消息转发给所述OBU。
  45. 根据权利要求36至42中任一项所述的装置,其中所述服务节点具有与所述OBU的通信连接,并且其中所述交互模块包括:
    消息获得模块,被配置为从所述服务节点获得针对所述交通工具的第四驾驶相关消息,所述第四驾驶相关消息由所述第三方平台提供。
  46. 根据权利要求43所述的装置,其中所述第一驾驶相关消息基于与所述功能节点相关联的至少一个感知设备采集到的感知信息被确定,所述至少一个感知设备被部署在所述交通工具所处的环境中。
  47. 一种电子设备,包括:
    一个或多个处理器;以及
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1至12中任一项所述的方法。
  48. 一种电子设备,包括:
    一个或多个处理器;以及
    存储装置,用于存储一个或多个程序,当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求13至23中任一项所述的方法。
  49. 一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求1至12中任一项所述的方法。
  50. 一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如权利要求13至23中任一项所述的方法。
  51. 一种驾驶控制系统,包括:
    中心平台子系统,包括根据权利要求1至12中任一项所述装置;以及
    路侧子系统和边缘计算子系统中的至少一个,包括根据权利要求13至23中任一项所述的装置。
  52. 根据权利要求51所述的系统,其中所述路侧子系统和所述边缘计算子系统中的至少一个还包括至少一个感知设备,所述至少一个感知设备被配置为采集与交通工具所处的环境相关联的数据。
PCT/CN2019/090768 2019-06-11 2019-06-11 用于驾驶控制的方法、装置、设备、介质和系统 WO2020248136A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19932431.0A EP3943352A4 (en) 2019-06-11 2019-06-11 DRIVING CONTROL METHOD, APPARATUS, DEVICE, MEDIA AND SYSTEM
JP2021562175A JP2022535664A (ja) 2019-06-11 2019-06-11 運転制御のための方法及び装置、電子機器、コンピュータ可読記憶媒体、運転制御システム並びにコンピュータプログラム
PCT/CN2019/090768 WO2020248136A1 (zh) 2019-06-11 2019-06-11 用于驾驶控制的方法、装置、设备、介质和系统
US17/505,208 US20220032934A1 (en) 2019-06-11 2021-10-19 Method, apparatus, device and system for controlling driving

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/090768 WO2020248136A1 (zh) 2019-06-11 2019-06-11 用于驾驶控制的方法、装置、设备、介质和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/505,208 Continuation US20220032934A1 (en) 2019-06-11 2021-10-19 Method, apparatus, device and system for controlling driving

Publications (1)

Publication Number Publication Date
WO2020248136A1 true WO2020248136A1 (zh) 2020-12-17

Family

ID=73781200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090768 WO2020248136A1 (zh) 2019-06-11 2019-06-11 用于驾驶控制的方法、装置、设备、介质和系统

Country Status (4)

Country Link
US (1) US20220032934A1 (zh)
EP (1) EP3943352A4 (zh)
JP (1) JP2022535664A (zh)
WO (1) WO2020248136A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910981B (zh) * 2021-01-27 2022-07-26 联想(北京)有限公司 一种控制方法及装置
CN115103368B (zh) * 2022-06-07 2023-07-25 南京邮电大学 一种基于内容感知的移动基站轨迹规划方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105704031A (zh) * 2015-12-30 2016-06-22 东软集团股份有限公司 一种数据传输路径确定方法及装置
WO2017108128A1 (en) * 2015-12-23 2017-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Local service node improving the user experience
CN108012232A (zh) * 2017-11-30 2018-05-08 东北大学 雾计算架构下的VANETs位置隐私保护查询方法
US20180146323A1 (en) * 2016-11-22 2018-05-24 Toyota Jidosha Kabushiki Kaisha Storage service for mobile nodes in a roadway area
KR20180104898A (ko) * 2017-03-14 2018-09-27 한국전자통신연구원 Wave 서비스 메시지 전송을 위한 서비스 채널 할당 방법
GB2562054A (en) * 2017-05-02 2018-11-07 Bitbond Ltd Automotive electronic blockchain information system - AEBIS
CN109391681A (zh) * 2018-09-14 2019-02-26 重庆邮电大学 基于mec的v2x移动性预测与内容缓存卸载方案

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3311105B2 (ja) * 1993-09-21 2002-08-05 富士通テン株式会社 ビーコン通信制御装置
JP4353345B2 (ja) * 2000-03-28 2009-10-28 クラリオン株式会社 通信システム、通信方法並びに通信用ソフトウェアを記録した記録媒体
JP4828832B2 (ja) * 2005-01-24 2011-11-30 三菱電機株式会社 路車間通信システム
US9124421B2 (en) * 2013-12-04 2015-09-01 Intel Corporation Data prioritization, storage and protection in a vehicular communication system
CN106507449B (zh) * 2015-09-07 2021-01-26 中兴通讯股份有限公司 车联网通信的控制方法及装置
JP6428668B2 (ja) * 2016-02-12 2018-11-28 株式会社デンソー 情報配信システム
JP6697349B2 (ja) * 2016-08-10 2020-05-20 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 通信方法およびサーバ
US10907974B2 (en) * 2017-04-17 2021-02-02 Cisco Technology, Inc. Real-time updates to maps for autonomous navigation
US11240647B2 (en) * 2017-06-09 2022-02-01 Convida Wireless, Llc Efficient vehicular services
US10762785B1 (en) * 2018-01-09 2020-09-01 State Farm Mutual Automobile Insurance Company Vehicle collision alert system and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017108128A1 (en) * 2015-12-23 2017-06-29 Telefonaktiebolaget Lm Ericsson (Publ) Local service node improving the user experience
CN105704031A (zh) * 2015-12-30 2016-06-22 东软集团股份有限公司 一种数据传输路径确定方法及装置
US20180146323A1 (en) * 2016-11-22 2018-05-24 Toyota Jidosha Kabushiki Kaisha Storage service for mobile nodes in a roadway area
KR20180104898A (ko) * 2017-03-14 2018-09-27 한국전자통신연구원 Wave 서비스 메시지 전송을 위한 서비스 채널 할당 방법
GB2562054A (en) * 2017-05-02 2018-11-07 Bitbond Ltd Automotive electronic blockchain information system - AEBIS
CN108012232A (zh) * 2017-11-30 2018-05-08 东北大学 雾计算架构下的VANETs位置隐私保护查询方法
CN109391681A (zh) * 2018-09-14 2019-02-26 重庆邮电大学 基于mec的v2x移动性预测与内容缓存卸载方案

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3943352A4 *

Also Published As

Publication number Publication date
EP3943352A1 (en) 2022-01-26
EP3943352A4 (en) 2022-11-02
US20220032934A1 (en) 2022-02-03
JP2022535664A (ja) 2022-08-10

Similar Documents

Publication Publication Date Title
US20210407285A1 (en) Intelligent traffic management for vehicle platoons
CN110431037B (zh) 包括运用部分可观察马尔可夫决策过程模型示例的自主车辆操作管理
CN110603497B (zh) 自主车辆操作管理控制的自主车辆和方法
US9761136B2 (en) Methods and software for managing vehicle priority in a self-organizing traffic control system
WO2019085846A1 (zh) 一种快速车道的规划方法及单元
WO2020258277A1 (zh) 一种智能驾驶车辆让行方法、装置及车载设备
US20180090009A1 (en) Dynamic traffic guide based on v2v sensor sharing method
US11495131B2 (en) Vehicle to vehicle safety messaging congestion control for platooning vehicles
WO2020164238A1 (zh) 用于驾驶控制的方法、装置、设备、介质和系统
JP2020508252A (ja) 自律走行車の動作管理
JP2020507509A (ja) 自律走行車の動作管理ブロックモニタ
JP2019537159A (ja) 生成されたインターフェースを使用する自律走行車の監視
JP2019537159A5 (zh)
US11568741B2 (en) Communication device, control method thereof, and communication system including the same
US11895566B2 (en) Methods of operating a wireless data bus in vehicle platoons
CN114501385A (zh) 一种应用于智能网联交通系统的协同自动驾驶系统
WO2020258276A1 (zh) 一种智能驾驶车辆让行方法、装置及车载设备
US20220032934A1 (en) Method, apparatus, device and system for controlling driving
US20210110708A1 (en) Hierarchical integrated traffic management system for managing vehicles
CN112839319A (zh) 蜂窝车联网信息处理方法、装置、系统、终端及存储介质
WO2022145379A1 (ja) 車両の走行制御システム、これに用いられるサーバ装置、および車両
WO2021253374A1 (en) V2X Message For Platooning
US20230012196A1 (en) Operating embedded traffic light system for autonomous vehicles
CN114255604A (zh) 用于驾驶控制的方法、装置、设备、介质和系统
WO2023189878A1 (en) Intersection-based offboard vehicle path generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19932431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021562175

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019932431

Country of ref document: EP

Effective date: 20211019

NENP Non-entry into the national phase

Ref country code: DE