WO2020246719A1 - Polyester composite fibers having excellent elasticity and preparation method thereof - Google Patents
Polyester composite fibers having excellent elasticity and preparation method thereof Download PDFInfo
- Publication number
- WO2020246719A1 WO2020246719A1 PCT/KR2020/006174 KR2020006174W WO2020246719A1 WO 2020246719 A1 WO2020246719 A1 WO 2020246719A1 KR 2020006174 W KR2020006174 W KR 2020006174W WO 2020246719 A1 WO2020246719 A1 WO 2020246719A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composite fiber
- component
- equation
- polyester composite
- measured
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/06—Load-responsive characteristics
- D10B2401/061—Load-responsive characteristics elastic
Definitions
- the present invention relates to a polyester composite fiber having excellent elasticity and a method for manufacturing the same, and more particularly, to a polyester composite fiber having excellent elasticity and excellent touch without gloss and a method for manufacturing the same. .
- Spandex is a type of polyurethane fiber, which is melt-spun by polymerizing polyether and methylenediphenyl isocyanate. Spandex is lighter than rubber bands and has stronger aging resistance. Have.
- spandex is a unique fiber with elasticity similar to rubber, and its tensile strength and/or ultimate strength is very high, so it does not break easily, and it is elastic enough to be extended 5 to 8 times its original length. have.
- spandex does not get dirty from sweat, oil or cosmetics, and is resistant to washing.
- spandex can be pulled out thinner than rubber and has good dyeability.
- spandex has excellent elasticity, so it is easy to work with, and has excellent durability, sweating, and drying properties, so it is widely used for various purposes such as underwear, lining, and outerwear.
- spandex has the advantage of giving a pleasant feeling due to high sweating and drying ability to quickly expel sweat.
- spandex is expensive, weak to heat, generates static electricity, has problems with alkali resistance, spandex yarn alone cannot be used, and requires a separate covering process. Therefore, there was a limit to the market's demand for increasingly thinner fabrics because there was no choice but to obtain a relatively thick fabric.
- Latent crimped fiber is heat-shrinkable by applying heat in a spinning or drawing process after complex spinning of two types of polymers with different heat shrinkage properties in a side-by-side or sheath-core. It is a fiber that physically has a coil shape due to the difference and gives high elasticity with a principle similar to that of a spring. In terms of elasticity, it is not comparable to the existing spandex fiber, but as a disadvantage of spandex mentioned above, a lot of latent crimped fibers are used, which are excellent in alkali resistance and shape stability, and easy to dye and post-process.
- the present invention has been devised to solve the above problems, and an object of the present invention is to provide a polyester composite fiber having excellent elasticity and a method of manufacturing the same, which does not generate gloss, has excellent touch feeling, and has excellent elasticity.
- the polyester composite fiber having excellent elasticity of the present invention may be a polyester composite fiber produced by composite spinning of the first component and the second component.
- the first component may include polybutelene terephthalate (PBT).
- PBT polybutelene terephthalate
- the second component may include polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- the polyester composite fiber of the present invention may satisfy the following relational formula 1.
- A represents the intrinsic viscosity of the first component
- B represents the intrinsic viscosity of the second component
- the intrinsic viscosity of the first component may be 0.90 to 1.30 dl/g.
- the melting point of the first component may be 200 ⁇ 250 °C.
- the intrinsic viscosity of the second component may be 0.40 to 0.70 dl/g.
- the melting point of the second component may be 230 ⁇ 270 °C.
- the first component may further include a matting agent.
- the second component may further include a matting agent.
- the matting agent may include at least one selected from titanium oxide (TiO 2 ), zinc oxide (ZnO), silicon oxide (SiO 2 ), and barium sulfate (BaSO 4 ).
- the first component may contain 1.0 to 3.0% by weight based on the total weight% of the matting agent.
- the second component may contain 1.0 to 3.0% by weight of a matting agent based on the total weight%.
- the weight ratio of the first component and the second component may be 30:70 to 70:30.
- the cross-sectional shape of the polyester composite fiber of the present invention may be a peanut-type side-by-side or a circular side-by-side.
- the intrinsic viscosity of the polyester composite fiber of the present invention may be 0.50 to 0.80 dl/g.
- the polyester composite fiber of the present invention may contain 1.0 to 3.0% by weight of a matting agent based on the total weight%.
- the polyester composite fiber of the present invention may have a fineness of 20 to 180 denier and a number of filaments of 12 to 96.
- the polyester composite fiber of the present invention may have a lysona shrinkage (%) measured by Equation 1 below of 15 to 30%.
- Equation 1 the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
- the polyester composite fiber of the present invention may have a residual shrinkage (%) of 45 to 70% measured by Equation 2 below.
- Equation 2 the residual shrinkage is measured by applying a load of 1.5 g to the composite fiber to measure the initial length (L 0 ), immersing it in hot water at 82° C. for 10 minutes and drying for 3 minutes while applying a load of 1.5 g. After treatment, the length (L 1 ) is measured.
- the method of manufacturing a polyester composite fiber having excellent elasticity of the present invention is a first step of melting the first component and the second component, respectively, and composite spinning of the melted first component and the second component to produce a polyester composite fiber. It may include a second step.
- the prepared composite fiber may be a side-by-side composite fiber having an intrinsic viscosity of 0.60 to 0.80 dl/g.
- the manufactured composite fiber may have a lysona shrinkage (%) measured by Equation 1 below of 15 to 30%.
- Equation 1 the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
- the first component may include polybutelene terephthalate (PBT) and a matting agent.
- PBT polybutelene terephthalate
- the second component may include polyethylene terephthalate (PET) and a matting agent.
- PET polyethylene terephthalate
- the method for producing a polyester composite fiber having excellent elasticity of the present invention may satisfy the following relational formula 1.
- A represents the intrinsic viscosity of the first component
- B represents the intrinsic viscosity of the second component
- the polyester composite fiber produced in the method for producing a polyester composite fiber having excellent elasticity of the present invention may have a full rate (%) measured by Equation 3 below of 80% or more.
- the fabric of the present invention includes the aforementioned polyester composite fiber having excellent elasticity.
- the term'fiber' as used means'yarn' or'thread', and generally refers to various types of yarns and fibers.
- composite fiber' as used in the present invention is used to mean the yarn itself manufactured by composite spinning, or to include stretched and/or partially stretched coarse fibers.
- The'heat treatment temperature' used in the present invention means the surface temperature of the secondary godet roller among the godet rollers commonly used in the stretching process.
- the polyester composite fiber having excellent elasticity of the present invention does not generate gloss and has excellent touch.
- the polyester composite fiber having excellent elasticity of the present invention can be applied to a variety of products that require the use of excellent elasticity and non-glossy fiber.
- the polyester composite fiber having excellent elasticity of the present invention is suitable to be used as a yarn for a fabric or knitted fabric requiring elasticity, and at the same time, the fabric including the same does not generate gloss, has a good touch feeling, and has excellent elasticity.
- FIG. 1 is a schematic diagram of a side-by-side composite fiber having a peanut-shaped cross-sectional shape according to a preferred embodiment of the present invention.
- FIG. 2 is an SEM photograph of a side-by-side composite fiber having a peanut-shaped cross-sectional shape according to a preferred embodiment of the present invention.
- FIG. 3 is a schematic diagram of a side-by-side composite fiber having a circular cross-sectional shape according to a preferred embodiment of the present invention.
- FIG. 4 is a SEM photograph of a side-by-side composite fiber having a circular cross-sectional shape according to a preferred embodiment of the present invention.
- FIG. 5 is a manufacturing process flow diagram according to a preferred embodiment of the present invention.
- FIG. 6 is a schematic diagram of a manufacturing process according to a preferred embodiment of the present invention.
- the polyester composite fiber having excellent elasticity of the present invention is prepared by composite spinning of the first component and the second component.
- the first component of the polyester composite fiber having excellent stretchability of the present invention may include polybutene terephthalate (PBT).
- PBT polybutene terephthalate
- PBT polybutelene terephthalate
- PBT may be prepared by polymerizing butanediol and terephthalic acid.
- the second component of the polyester composite fiber having excellent elasticity of the present invention may include polyethylene terephthalate (PET).
- PET polyethylene terephthalate
- PET may be prepared by polymerizing ethylene glycol and terephthalic acid.
- the polyester composite fiber having excellent elasticity of the present invention may satisfy the following relational equation 1, and if it deviates from the range described in the following relational equation 1, there may be a problem in that the elasticity expression is weak.
- A represents the intrinsic viscosity of the first component
- B represents the intrinsic viscosity of the second component
- the first component of the present invention has an intrinsic viscosity (IV) of 0.90 to 1.30 dl/g, preferably 0.92 to 1.30 dl/g, more preferably 0.95 to 1.15 dl/g, and even more preferably 0.95 to 1.05 dl/g, and if the intrinsic viscosity is less than 0.90dl/g, there may be a problem that the desired elasticity cannot be expressed, and if it exceeds 1.30 dl/g, the howitzing phenomenon of the composite fiber produced during composite spinning is remarkably There may be a problem that the spinning operation becomes poor due to an increase.
- IV intrinsic viscosity
- the second component of the present invention has an intrinsic viscosity (IV) of 0.40 to 0.70 dl/g, preferably 0.45 to 0.65 dl/g, more preferably 0.48 to 0.60 dl/g, even more preferably 0.48 to 0.53 dl/g, and if the intrinsic viscosity is less than 0.40 dl/g, there may be a problem that the howitzing phenomenon of the composite fiber produced during composite spinning increases significantly, resulting in poor spinning operation. If it exceeds 0.70 dl/g There may be a problem that the desired elasticity cannot be expressed.
- IV intrinsic viscosity
- the first component of the present invention may have a melting point of 200 to 250 °C, preferably 210 to 240 °C, more preferably 220 to 230 °C, and if the melting point is less than 200 °C, the crystallinity of the first component There may be a problem that the strength of the composite fiber is lowered, and the strength of the composite fiber to be manufactured is lowered, and when the melt spinning temperature is higher when the temperature exceeds 250°C, thermal decomposition occurs when the first component is melted, thereby reducing the strength of the composite fiber There may be.
- the second component of the present invention may have a melting point of 230 to 270 °C, preferably 240 to 265 °C, more preferably 250 to 260 °C, and if the melting point is less than 230 °C, the crystallinity of the second component There may be a problem that the strength of the composite fiber is lowered, and the strength of the composite fiber to be manufactured is lowered, and when the melt spinning temperature is higher when it exceeds 270°C, thermal decomposition occurs when the second component is melted, thereby reducing the strength of the composite fiber to be manufactured. There may be.
- the first component of the present invention may further include a matting agent.
- the matting agent may include at least one selected from titanium oxide (TiO 2 ), zinc oxide (ZnO), silicon oxide (SiO 2 ), and barium sulfate (BaSO 4 ), preferably titanium oxide (TiO 2 ) may be included.
- titanium oxide may have an anatase-type, rutile-type, or bruchite-type crystal form, and titanium oxide may include the crystal form alone or as a mixture, but titanium oxide may include density, refractive index, and light reflection depending on the crystal form. And absorption characteristics are different, so they can be properly classified and used according to the purpose and use.
- titanium oxide subjected to surface treatment may be included in order to control performance such as dispersibility and light reflection performance in the polymer.
- the first component of the present invention may contain a matting agent in an amount of 1.0 to 3.0% by weight, preferably 1.2 to 2.5% by weight, more preferably 1.5 to 2.0% by weight, based on the total weight%, and if the matting agent If it is included in less than 1.0% by weight, the gloss suppression effect is lowered, and there may be a problem that the touch feeling of the fabric manufactured using the composite fiber of the present invention is deteriorated. If it exceeds 3.0% by weight, quenching in the first component There may be a problem in that the agglomeration phenomenon of the agent increases, so that cutting occurs during spinning, resulting in poor spinning operation.
- the second component of the present invention may contain a matting agent in an amount of 1.0 to 3.0% by weight, preferably 1.2 to 2.5% by weight, more preferably 1.5 to 2.0% by weight, based on the total weight%, and if the matting agent If it is included in less than 1.0% by weight, the gloss suppression effect is lowered, and there may be a problem that the touch feeling of the fabric manufactured using the composite fiber of the present invention is deteriorated. If it exceeds 3.0% by weight, quenching in the second component There may be a problem in that the agglomeration phenomenon of the agent increases, so that cutting occurs during spinning, resulting in poor spinning operation.
- the weight ratio of the first component and the second component of the present invention may be 30: 70 to 70: 30, preferably 35: 65 to 65: 35, more preferably 45: 55 to 55 to 40, if When the weight ratio of the first component is less than 30 or the weight ratio of the first component exceeds 70, the balance between the first component and the second component is not matched, resulting in severe grain sand, resulting in poor spinning operation, and the elasticity of the composite fiber. There may be a diminishing problem.
- cross-sectional shape of the composite fiber of the present invention may be a peanut-type side-by-side or a circular side-by-side, preferably a peanut-type side-by-side. .
- FIG. 1 is a schematic diagram of a side-by-side composite fiber having a cross-sectional shape of a peanut type according to a preferred embodiment of the present invention
- FIG. 2 is a cross-sectional shape of a peanut type according to a preferred embodiment of the present invention.
- the cross-sectional shape is a peanut type, and the first component 101 and the second component 102 are included in the composite fiber. You can check the shape.
- FIG. 3 is a schematic diagram of a side-by-side composite fiber having a circular cross-sectional shape according to a preferred embodiment of the present invention, and FIG.
- FIGS. 3 and 4 are side-by-side having a circular cross-sectional shape in a preferred embodiment of the present invention.
- the cross-sectional shape is circular, and the shape in which the first component 112 and the second component 113 are included in the composite fiber can be confirmed. .
- the intrinsic viscosity of the composite fiber of the present invention may be 0.50 to 0.80 dl/g, preferably 0.60 to 0.80 dl/g, more preferably 0.60 to 0.70 dl/g.
- the composite fiber of the present invention has a fineness of 20 to 180 denier, preferably a fineness of 30 to 170 denier, more preferably a fineness of 50 to 100 denier, the number of filaments of 12 to 96, preferably of 20 to 60 denier. It may have the number of filaments, and is not particularly limited thereto, and may be changed according to the purpose.
- the composite fiber of the present invention may have a lysona shrinkage (%) of 15 to 30%, preferably 17 to 25%, as measured by Equation 1 below.
- Equation 1 the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
- Leesona shrinkage is the load on the skeined stretched yarn obtained by stretching the composite fiber at a primary godet roller speed of 1,700 mpm, a temperature of 73°C, a secondary godet roller speed of 4,400 mpm, and a temperature of 120°C. It may be a percentage of the original length of the contracted length after heat treatment in water at 82 ⁇ 3°C for 10 minutes by giving 20.5g.
- the composite fiber of the present invention may have a residual shrinkage (%) of 40 to 70%, preferably 47 to 63%, as measured by Equation 2 below.
- Equation 2 the residual shrinkage is measured by applying a load of 1.5 g to the composite fiber to measure the initial length (L 0 ), immersing it in hot water at 82° C. for 10 minutes and drying for 3 minutes while applying a load of 1.5 g. After treatment, the length (L 1 ) is measured.
- the residual shrinkage (%) is for the skeined drawn yarn obtained by stretching the composite fiber at a primary godet roller speed of 1,700 mpm, a temperature of 73°C, a secondary godet roller speed of 4,400 mpm, and a temperature of 120°C. It may be a percentage of the original length of the contracted length after heat treatment in water at 82 ⁇ 3° C. for 10 minutes by applying 1.5 g of load.
- the composite fiber of the present invention satisfies the lysona shrinkage rate of 15 to 30% and the residual shrinkage rate of 40 to 70%, the best elasticity can be expressed, if the lysona shrinkage rate is less than 15% or the residual shrinkage rate is less than 40%. In this case, there may be a problem that the elasticity is deteriorated, and when the lysona shrinkage rate exceeds 30% or the residual shrinkage rate exceeds 70%, the crimp expression in the yarn state becomes severe and the filaments become entangled with each other when manufacturing fabrics and knitted fabrics. There may be a problem that process workability is significantly deteriorated.
- the method for producing a polyester composite fiber having excellent elasticity of the present invention includes a first step and a second step.
- FIG. 5 is a flow chart of a manufacturing process according to a preferred embodiment of the present invention, and when described with reference to FIG. 5, the first component and the second component are melted through a first step (S10).
- the composite fiber of the present invention may be manufactured through the second step (S11), and may additionally undergo a cooling and solidification step (S12), an oil supply step (S13), heat setting and stretching step (S14) after spinning.
- the first step of the method for producing a polyester composite fiber having excellent elasticity of the present invention may melt the first component and the second component, respectively.
- the first component may include polybutelene terephthalate (PBT), and may further include a matting agent.
- the second component may include polyethylene terephthalate (PET), and may further include a matting agent.
- the prepared composite fiber may be a side-by-side composite fiber having an intrinsic viscosity of 0.60 to 0.80 dl/g.
- the prepared composite fiber may have a lysona shrinkage (%) measured by Equation 1 below of 15 to 30%.
- Equation 1 the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
- A represents the intrinsic viscosity of the first component
- B represents the intrinsic viscosity of the second component
- FIG. 6 is a schematic diagram of a manufacturing process according to a preferred embodiment of the present invention, and the first component 10 and the second component 20 can be melted in the melting section.
- the first component and the second component melted in the first step may be combined-spun to produce a polyester composite fiber.
- the first component and the second component may be combined in a weight ratio of 30:70 to 70:30, and the spinning temperature is preferably 250 to 300°C, more preferably It may be 260 ⁇ 280 °C, the spinning speed may be 3000 ⁇ 4500mpm.
- the complex spinning of the second step can be performed through various types of detention, and preferably, the cross-sectional shape is achieved through side-by-side detention in a peanut-shaped cross-section or side-by-side detention in a circular cross-section.
- the cross-sectional shape may be a peanut-like side-by-side or a circular side-by-side composite fiber.
- the cooling and solidification process (40 in FIG. 6) may be performed for the composite fiber composite spun after the second step at a temperature of 15 to 25°C and a speed of 25 to 50 mpm. If it is out of the above range, it is difficult to control the cross-sectional shape of the composite fiber, and there is a problem in that the uniformity cannot be improved.
- an emulsion can be supplied for smooth spinning and winding.
- an oil spray method or an oil roller method may be used in a guide (50 in FIG. 6) installed with a guide in the solidified area, and any of the two methods may be used.
- a partial stretching process or a stretching process may be further included. Fibers having higher strength can be obtained by improving fiber orientation through partial stretching or stretching.
- the partial stretching may be performed under conditions of a first godet roller speed of 2,000 to 3,500 mpm and a second godet roller speed of 2,000 to 3,500 mpm.
- the speed of the first godet roller may be 1,000 to 2,500 mpm, and preferably 1,400 to 2,000 mpm. If the speed of the primary godet roller is less than 1,000mpm, there is a problem in that the physical properties are deteriorated according to the aging change of the yarn, and the spinning tension is low due to the low primary godet roller speed, thereby causing a lot of thread trimming. If the speed of the primary godet roller exceeds 2,500mpm, there is a concern that a defect in dyeing may occur due to uneven stretching.
- the temperature of the primary godet roller may be 50 to 100°C, preferably 70 to 80°C.
- the secondary godet roller speed may be 3,000 to 5,000 mpm, and in consideration of spinning operability, the secondary godet roller speed may preferably be 3,500 to 4,500 mpm. If the speed of the secondary godet roller is less than 3,000mpm, the physical properties of the spun yarn, especially the stiffness and elongation, are lowered and the productivity is lowered.If it exceeds 5,000mpm, there is a concern that yarn tremors will occur in the secondary godet roller and thread trimming may occur. There is.
- the temperature of the secondary godet roller may be 90 to 150°C, and preferably 110 to 130°C.
- the heat setting temperature of the secondary godet roller is less than 90°C, there is a risk of changes in physical properties such as strength and elongation over time, and it is a yarn with a high shrinkage rate, which may lead to over-shrinkage during subsequent dyeing processing. If the temperature exceeds 150°C, there is a concern that stable operation may be difficult due to increased vibration in the secondary godet roller.
- the composite fiber produced by the manufacturing method of the present invention has a full rate (%) of 80% or more, preferably 85% or more, more preferably 90%- It may be 99.9%, and the higher the full rate, the better the spinning workability.
- the composite fiber of the present invention has excellent spinning operability despite the composite spinning of two components (the first component and the second component) having a difference in intrinsic viscosity.
- the present invention provides a fabric comprising the polyester fiber having excellent elasticity of the present invention.
- the fabric is meant to include all fabrics or knitted fabrics.
- the fabric may be a weaving fabric using a polyester composite fiber having excellent elasticity according to the present invention as one or more of warp and weft yarns.
- the weaving may be made by any one method selected from the group consisting of plain weave, twill weave, weave and double weave.
- the substrate of the fabric structure it is not limited to the substrate of the fabric structure, and the density of warp yarns in weaving is not particularly limited.
- the fabric may be a knitted fabric including polyester fibers having excellent elasticity.
- the knitting may be performed by a weft knitting or warp knitting method, and the specific method of the weft knitting and warp knitting may be by a conventional weft knitting or warp knitting method.
- polybutylene terephthalate (PBT) containing 1.5% by weight of titanium oxide (TiO 2 ) was prepared based on the total weight %.
- the first component has a melting point of 223°C and an intrinsic viscosity of 0.98 dl/g.
- PET polyethylene terephthalate
- TiO 2 titanium oxide
- the melting temperature of the first component prepared to manufacture the composite fiber was 270°C
- the melting temperature of the prepared second component was 275°C
- the spinning temperature was 272°C.
- the first component and The discharge weight ratio of the second component was 50:50.
- the speed of the first godet roller for stretching was 1,700mpm
- the temperature was 73°C
- the speed of the second godet roller was 4,400mpm
- the temperature was 120°C
- the winding speed was 4,340mpm, resulting in a fineness of 75 denier and filament.
- the number is 24, and the cross-sectional shape including titanium oxide as 1.65% with respect to the total weight% is a peanut type side-by-side polyester composite fiber as shown in Table 1 was prepared.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike in Example 1, a polyester composite fiber using the first component having a melting point of 220°C and an intrinsic viscosity of 0.90 dl/g instead of the first component having a melting point of 223°C and an intrinsic viscosity of 0.98 dl/g. was prepared.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a polyester composite fiber was prepared by using a discharge weight ratio of 60:40 instead of 50:50 to the second component.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a polyester composite fiber was prepared by using a discharge weight ratio of 40:60 instead of 50:50 to the first component and the second component.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a fineness of 75 denier, a number of filaments of 24, and a cross-sectional shape containing 1.65% titanium oxide based on the total weight% is not a peanut-type side-by-side polyester composite fiber, but a fineness of 40. A polyester composite fiber having a denier and a number of filaments of 24, and a cross-sectional shape of 1.65% of titanium oxide based on the total weight% was prepared as a peanut type side-by-side.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a fineness of 75 denier, a number of filaments of 24, and a cross-sectional shape containing 1.65% titanium oxide based on the total weight% is not a peanut-type side-by-side polyester composite fiber, but a fineness of 40. A polyester composite fiber having a denier and a number of filaments of 24, and a cross-sectional shape of 1.65% titanium oxide based on the total weight% was prepared with a circular side-by-side.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, the melting point of 223°C, not the first component having an intrinsic viscosity of 0.98 dl/g and the melting point of 254°C, and the second component having an intrinsic viscosity of 0.5 dl/g, 1.10 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254° C. and a second component having an intrinsic viscosity of 0.55 dl/g.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a melting point of 223° C., not a second component having a melting point of 223° C., an intrinsic viscosity of 0.98 dl/g, and a melting point of 254° C., and a melting point of 0.5 dl/g, 1.20 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.70 dl/g.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a melting point of 223°C, not a first component having an intrinsic viscosity of 0.98 dl/g and a melting point of 254° C., and a second component having an intrinsic viscosity of 0.5 dl/g, 0.75 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.5dl/g.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, the melting point of 223°C, not the second component having a melting point of 223°C, an intrinsic viscosity of 0.98 dl/g, and a melting point of 254°C, and an intrinsic viscosity of 0.5 dl/g, 0.85 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.65 dl/g.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a melting point of 223° C., not a second component having a melting point of 223° C., an intrinsic viscosity of 0.98 dl/g, and a melting point of 254° C., and a melting point of 0.5 dl/g, 1.35 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.35 dl/g.
- a polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a melting point of 223°C, not the first component having an intrinsic viscosity of 0.98 dl/g and a melting point of 254°C, and the second component having an intrinsic viscosity of 0.5 dl/g, 1.60 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.75 dl/g.
- Strength and elongation are the value (g/de) obtained by dividing the load applied to the composite fiber by the denier when it is stretched until it is cut by applying a certain force to the strength, and the value (%) representing the initial length to the elongated length as a percentage. Defined.
- the lysona shrinkage rate and the residual shrinkage rate were measured by the following equations 1 and 2, respectively.
- Equation 1 the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82 ⁇ 3° C. for 10 minutes while applying a load of 20.5 g. After drying for 3 minutes, the length (L 1 ) is measured after treatment.
- Equation 2 the residual shrinkage is measured by applying a load of 1.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82 ⁇ 3° C. for 10 minutes while applying a load of 1.5 g. After drying for a minute, the length (L 1 ) is measured after treatment.
- the polyester composite fibers prepared in Examples 1 to 4 were excellent in both the full rate, lysona shrinkage rate, and residual shrinkage rate at the same time, so it was confirmed that both spinning operation and elasticity were excellent.
- the full rate of the polyester composite fibers prepared in Examples 3 to 4 is slightly lowered, which is the result of the first component and the second component. It was confirmed that the weight ratio of 50:50 showed the best spinning operability.
- Example 5 Compared to Example 1, due to the different fineness of the composite fiber, it was confirmed that the elongation was significantly lowered.
- Example 6 compared to Example 1, not only the fineness of the conjugate fiber was different, but due to the circular cross-sectional shape, it was confirmed that the strength was slightly lowered, and the lysona shrinkage rate and the residual shrinkage rate were lowered. .
- Comparative Example 4 if the difference in intrinsic viscosity between the first component and the second component is higher than the target intrinsic viscosity difference 0.30 ⁇ 0.80 dl/g, the level of howitzer occurs during complex spinning is severe, and the spinning operability is considerably poor. It can be seen that the full coverage is reduced to 40% level, and when the intrinsic viscosity of the second component is high, the elasticity properties are also reduced.
- the present invention relates to a polyester composite fiber having excellent elasticity and a method for manufacturing the same, and more particularly, to a polyester composite fiber having excellent elasticity and excellent touch without gloss and a method for manufacturing the same. .
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Multicomponent Fibers (AREA)
Abstract
The present invention relates to polyester composite fibers having excellent elasticity and a preparation method thereof and, more specifically, to polyester composite fibers and a preparation method thereof, the fibers being side-by-side composite fibers having an intrinsic viscosity of 0.60-0.80 dl/g and a Leesona shrinkage (%) of 15-30% and having been prepared by means of composite spinning a first component and a second component, the fibers having enhanced elasticity, not showing glossiness and feeling excellent to the touch.
Description
본 발명은 신축성이 우수한 폴리에스테르 복합섬유 및 이의 제조방법에 관한 것으로써, 보다 상세하게는 신축성이 더욱 향상되었을 뿐만 아니라 광택이 발생하지 않고 터치감이 우수한 폴리에스테르 복합섬유 및 이의 제조방법에 관한 것이다.The present invention relates to a polyester composite fiber having excellent elasticity and a method for manufacturing the same, and more particularly, to a polyester composite fiber having excellent elasticity and excellent touch without gloss and a method for manufacturing the same. .
최근 고신축성을 요구하는 원단의 수요가 커지면서 스판덱스에 대한 시장의 수요가 점점 늘어가는 추세에 있다. 스판덱스란 폴리우레탄계 섬유의 일종으로 폴리에테르와 메틸렌디페닐이소시아네이트를 중합하여 용융방사(熔融紡絲)한 것으로서, 스판덱스는 고무줄보다 가볍고 내노화성(耐老化性)이 강하다는 등 종래의 고무실 이상의 품질을 가진다. Recently, as the demand for fabrics requiring high elasticity increases, the market demand for spandex is on the rise. Spandex is a type of polyurethane fiber, which is melt-spun by polymerizing polyether and methylenediphenyl isocyanate. Spandex is lighter than rubber bands and has stronger aging resistance. Have.
또한, 스판덱스는 고무와 비슷한 탄성을 지닌 특이한 섬유로 인장강도(tensile strength) 및/또는 극한강도(ultimate strength)가 아주 높아 올이 잘 끊어지지 않으며 원길이의 5~8배나 늘어날 수 있을 정도로 신축성이 있다. In addition, spandex is a unique fiber with elasticity similar to rubber, and its tensile strength and/or ultimate strength is very high, so it does not break easily, and it is elastic enough to be extended 5 to 8 times its original length. have.
또한, 스판덱스는 땀, 기름, 화장품에도 더러워지는 일이 없고 세탁에도 잘 견딘다. 또한, 스판덱스는 고무와는 견줄 수 없을 만큼 올을 가늘게 뽑아낼 수 있고 염색성이 좋다. In addition, spandex does not get dirty from sweat, oil or cosmetics, and is resistant to washing. In addition, spandex can be pulled out thinner than rubber and has good dyeability.
한편, 스판덱스는 신축성이 뛰어나 활동하기에 편하고 내구성, 발한성, 건조성이 뛰어나 속옷, 안감, 겉옷 등 여러 가지 용도로 다양하게 쓰이고 있다. 또한, 스판덱스는 땀을 빨리 배출하는 발한성과 건조 능력이 높아 쾌적한 느낌을 주는 장점이 있다. On the other hand, spandex has excellent elasticity, so it is easy to work with, and has excellent durability, sweating, and drying properties, so it is widely used for various purposes such as underwear, lining, and outerwear. In addition, spandex has the advantage of giving a pleasant feeling due to high sweating and drying ability to quickly expel sweat.
그러나 스판덱스는 가격이 비싸고 열에 약하며, 정전기가 생기고, 내알카리성에 문제가 있으며, 스판덱스 원사 단독으로는 사용할 수 없고 별도의 커버링 공정이 필요한 단점이 있다. 따라서 상대적으로 두꺼운 원단을 얻을 수 밖에 없어서 점점 얇은 원단을 원하는 시장의 요구에 한계가 있었다. However, spandex is expensive, weak to heat, generates static electricity, has problems with alkali resistance, spandex yarn alone cannot be used, and requires a separate covering process. Therefore, there was a limit to the market's demand for increasingly thinner fabrics because there was no choice but to obtain a relatively thick fabric.
이러한 스판덱스의 단점을 극복하기 위해서 신축성 잠재권축사가 제시되었다. 잠재권축섬유란 열수축특성이 다른 2종의 폴리머를 사이드-바이-사이드형(Side By Side) 또는 심초형(Sheath-Core)으로 복합방사한 후, 방사공정이나 연신공정에서 열을 가함으로써 열수축성 차이에 의해 물리적으로 코일 모양을 띄게 하여, 스프링과 유사한 원리로 고도의 신축성을 부여한 섬유이다. 신축성에 있어서는 기존의 스판덱스 섬유에 미치지 못하지만, 상기에 언급한 스판덱스의 단점으로 내알칼리성 및 형태안정성 등이 우수하고 염색 및 후가공공정이 용이한 잠재권축섬유를 많이 사용하고 있다.In order to overcome these shortcomings of spandex, an elastic latent winding yarn was proposed. Latent crimped fiber is heat-shrinkable by applying heat in a spinning or drawing process after complex spinning of two types of polymers with different heat shrinkage properties in a side-by-side or sheath-core. It is a fiber that physically has a coil shape due to the difference and gives high elasticity with a principle similar to that of a spring. In terms of elasticity, it is not comparable to the existing spandex fiber, but as a disadvantage of spandex mentioned above, a lot of latent crimped fibers are used, which are excellent in alkali resistance and shape stability, and easy to dye and post-process.
한편, 잠재권축섬유으로써, 종래에는 점도차가 있는 폴리에스테르 수지를 복합방사한 섬유가 제시되었는데, 이와 같은 방법에 제조된 섬유는 목적하는 신축성을 얻기에는 부족한 문제점이 있었다. On the other hand, as a latent crimped fiber, conventionally, a fiber obtained by composite spinning a polyester resin having a viscosity difference has been proposed, but the fiber produced in this way has a problem that is insufficient to obtain the desired elasticity.
또한, 고신축성을 위해 폴리테트라메틸렌테레프탈레이트(PTT)를 잠재권축사에 포함시킨 복합섬유가 제시되었으나 폴리테트라메틸렌테레프탈레이트는 중합시에 소요되는 단량체의 가격이 높아 원료비 상승에 따른 복합섬유 자체의 제조단가가 높아지는 문제점이 있었다.In addition, a composite fiber containing polytetramethylene terephthalate (PTT) in latent crimped yarn has been suggested for high elasticity, but polytetramethylene terephthalate has a high cost of monomers required during polymerization. There was a problem of increasing the manufacturing cost.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 광택이 발생하지 않고 터치감이 우수할 동시에 우수한 신축성을 가지는 신축성이 우수한 폴리에스테르 복합섬유 및 이의 제조방법을 제공하는데 목적이 있다.The present invention has been devised to solve the above problems, and an object of the present invention is to provide a polyester composite fiber having excellent elasticity and a method of manufacturing the same, which does not generate gloss, has excellent touch feeling, and has excellent elasticity.
상술한 과제를 해결하기 위하여, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유는 제1성분 및 제2성분을 복합방사하여 제조되는 폴리에스테르 복합섬유일 수 있다. In order to solve the above-described problem, the polyester composite fiber having excellent elasticity of the present invention may be a polyester composite fiber produced by composite spinning of the first component and the second component.
본 발명의 바람직한 일실시예에 있어서, 제1성분은 폴리부텔렌테레프탈레이트(PBT)를 포함할 수 있다. In a preferred embodiment of the present invention, the first component may include polybutelene terephthalate (PBT).
본 발명의 바람직한 일실시예에 있어서, 제2성분은 폴리에틸렌테레프탈레이트(PET)를 포함할 수 있다.In a preferred embodiment of the present invention, the second component may include polyethylene terephthalate (PET).
본 발명의 바람직한 일실시예에 있어서, 본 발명의 폴리에스테르 복합섬유는 하기 관계식 1을 만족할 수 있다.In a preferred embodiment of the present invention, the polyester composite fiber of the present invention may satisfy the following relational formula 1.
[관계식 1][Relationship 1]
0.30 dl/g ≤ |A - B| ≤ 0.80 dl/g0.30 dl/g ≤ |A-B| ≤ 0.80 dl/g
상기 관계식 1에 있어서, A는 제1성분의 고유점도를 나타내고, B는 제2성분의 고유점도를 나타낸다. In the above relational formula 1, A represents the intrinsic viscosity of the first component, and B represents the intrinsic viscosity of the second component.
본 발명의 바람직한 일실시예에 있어서, 제1성분의 고유점도는 0.90 ~ 1.30 dl/g일 수 있다.In a preferred embodiment of the present invention, the intrinsic viscosity of the first component may be 0.90 to 1.30 dl/g.
본 발명의 바람직한 일실시예에 있어서, 제1성분의 융점은 200 ~ 250℃일 수 있다.In a preferred embodiment of the present invention, the melting point of the first component may be 200 ~ 250 ℃.
본 발명의 바람직한 일실시예에 있어서, 제2성분의 고유점도는 0.40 ~ 0.70 dl/g일 수 있다.In a preferred embodiment of the present invention, the intrinsic viscosity of the second component may be 0.40 to 0.70 dl/g.
본 발명의 바람직한 일실시예에 있어서, 제2성분의 융점은 230 ~ 270℃일 수 있다.In a preferred embodiment of the present invention, the melting point of the second component may be 230 ~ 270 ℃.
본 발명의 바람직한 일실시예에 있어서, 제1성분은 소광제를 더 포함할 수 있다.In a preferred embodiment of the present invention, the first component may further include a matting agent.
본 발명의 바람직한 일실시예에 있어서, 제2성분은 소광제를 더 포함할 수 있다.In a preferred embodiment of the present invention, the second component may further include a matting agent.
본 발명의 바람직한 일실시예에 있어서, 소광제는 산화티탄(TiO2), 산화아연(ZnO), 산화규소(SiO2) 및 황산바륨(BaSO4) 중에서 선택된 1종 이상을 포함할 수 있다.In a preferred embodiment of the present invention, the matting agent may include at least one selected from titanium oxide (TiO 2 ), zinc oxide (ZnO), silicon oxide (SiO 2 ), and barium sulfate (BaSO 4 ).
본 발명의 바람직한 일실시예에 있어서, 제1성분은 소광제를 전체 중량%에 대하여 1.0 ~ 3.0 중량%로 포함할 수 있다.In a preferred embodiment of the present invention, the first component may contain 1.0 to 3.0% by weight based on the total weight% of the matting agent.
본 발명의 바람직한 일실시예에 있어서, 제2성분은 전체 중량%에 대하여 소광제를 1.0 ~ 3.0 중량%로 포함할 수 있다.In a preferred embodiment of the present invention, the second component may contain 1.0 to 3.0% by weight of a matting agent based on the total weight%.
본 발명의 바람직한 일실시예에 있어서, 제1성분과 제2성분의 중량비는 30 : 70 ~ 70 : 30일 수 있다.In a preferred embodiment of the present invention, the weight ratio of the first component and the second component may be 30:70 to 70:30.
본 발명의 바람직한 일실시예에 있어서, 본 발명의 폴리에스테르 복합섬유의 단면 형상은 땅콩형 사이드-바이-사이드 또는 원형의 사이드-바이-사이드일 수 있다.In a preferred embodiment of the present invention, the cross-sectional shape of the polyester composite fiber of the present invention may be a peanut-type side-by-side or a circular side-by-side.
본 발명의 바람직한 일실시예에 있어서, 본 발명의 폴리에스테르 복합섬유의 고유점도는 0.50 ~ 0.80 dl/g일 수 있다.In a preferred embodiment of the present invention, the intrinsic viscosity of the polyester composite fiber of the present invention may be 0.50 to 0.80 dl/g.
본 발명의 바람직한 일실시예에 있어서, 본 발명의 폴리에스테르 복합섬유는 전체 중량%에 대하여 소광제를 1.0 ~ 3.0 중량%로 포함할 수 있다.In a preferred embodiment of the present invention, the polyester composite fiber of the present invention may contain 1.0 to 3.0% by weight of a matting agent based on the total weight%.
본 발명의 바람직한 일실시예에 있어서, 본 발명의 폴리에스테르 복합섬유는 20 ~ 180 데니어의 섬도, 12 ~ 96의 필라멘트수를 가질 수 있다.In a preferred embodiment of the present invention, the polyester composite fiber of the present invention may have a fineness of 20 to 180 denier and a number of filaments of 12 to 96.
본 발명의 바람직한 일실시예에 있어서, 본 발명의 폴리에스테르 복합섬유는 하기 방정식 1에 의해 측정된 리소나 수축율(%)이 15 ~ 30%일 수 있다.In a preferred embodiment of the present invention, the polyester composite fiber of the present invention may have a lysona shrinkage (%) measured by Equation 1 below of 15 to 30%.
[방정식 1][Equation 1]
상기 방정식 1에 있어서, 상기 리소나 수축율은 복합섬유에 20.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 20.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 1, the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
본 발명의 바람직한 일실시예에 있어서, 본 발명의 폴리에스테르 복합섬유는 하기 방정식 2에 의해 측정된 잔존 수축율(%)이 45 ~ 70%일 수 있다.In a preferred embodiment of the present invention, the polyester composite fiber of the present invention may have a residual shrinkage (%) of 45 to 70% measured by Equation 2 below.
[방정식 2][Equation 2]
상기 방정식 2에 있어서, 상기 잔존 수축율은 복합섬유에 1.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 1.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 2, the residual shrinkage is measured by applying a load of 1.5 g to the composite fiber to measure the initial length (L 0 ), immersing it in hot water at 82° C. for 10 minutes and drying for 3 minutes while applying a load of 1.5 g. After treatment, the length (L 1 ) is measured.
한편, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유의 제조방법은 제1성분 및 제2성분을 각각 용융시키는 제1단계 및 용융된 제1성분 및 제2성분을 복합방사하여 폴리에스테르 복합섬유를 제조하는 제2단계를 포함할 수 있다.On the other hand, the method of manufacturing a polyester composite fiber having excellent elasticity of the present invention is a first step of melting the first component and the second component, respectively, and composite spinning of the melted first component and the second component to produce a polyester composite fiber. It may include a second step.
본 발명의 바람직한 일실시예에 있어서, 제조된 복합섬유는 0.60 ~ 0.80 dl/g의 고유점도를 가지는 사이드-바이-사이드 복합섬유일 수 있다.In a preferred embodiment of the present invention, the prepared composite fiber may be a side-by-side composite fiber having an intrinsic viscosity of 0.60 to 0.80 dl/g.
본 발명의 바람직한 일실시예에 있어서, 제조된 복합섬유는 하기 방정식 1에 의해 측정된 리소나 수축율(%)이 15 ~ 30%일 수 있다.In a preferred embodiment of the present invention, the manufactured composite fiber may have a lysona shrinkage (%) measured by Equation 1 below of 15 to 30%.
[방정식 1][Equation 1]
상기 방정식 1에 있어서, 상기 리소나 수축율은 복합섬유에 20.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 20.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 1, the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
본 발명의 바람직한 일실시예에 있어서, 제1성분은 폴리부텔렌테레프탈레이트(PBT) 및 소광제를 포함할 수 있다.In a preferred embodiment of the present invention, the first component may include polybutelene terephthalate (PBT) and a matting agent.
본 발명의 바람직한 일실시예에 있어서, 제2성분은 폴리에틸렌테레프탈레이트(PET) 및 소광제를 포함할 수 있다.In a preferred embodiment of the present invention, the second component may include polyethylene terephthalate (PET) and a matting agent.
본 발명의 바람직한 일실시예에 있어서, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유의 제조방법은 하기 관계식 1을 만족할 수 있다.In a preferred embodiment of the present invention, the method for producing a polyester composite fiber having excellent elasticity of the present invention may satisfy the following relational formula 1.
[관계식 1][Relationship 1]
0.30 dl/g ≤ |A - B| ≤ 0.80 dl/g0.30 dl/g ≤ |A-B| ≤ 0.80 dl/g
상기 관계식 1에 있어서, A는 제1성분의 고유점도를 나타내고, B는 제2성분의 고유점도를 나타낸다. In the above relational formula 1, A represents the intrinsic viscosity of the first component, and B represents the intrinsic viscosity of the second component.
본 발명의 바람직한 일실시예에 있어서, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유의 제조방법에서 제조된 폴리에스테르 복합섬유는 하기 방정식 3에 의해 측정된 만관율(%)이 80% 이상일 수 있다.In a preferred embodiment of the present invention, the polyester composite fiber produced in the method for producing a polyester composite fiber having excellent elasticity of the present invention may have a full rate (%) measured by Equation 3 below of 80% or more.
[방정식 3][Equation 3]
나아가, 본 발명의 원단은 앞서 언급한 신축성이 우수한 폴리에스테르 복합섬유를 포함한다.Further, the fabric of the present invention includes the aforementioned polyester composite fiber having excellent elasticity.
이하, 본 발명에서 사용한 용어에 대해 설명한다.Hereinafter, terms used in the present invention will be described.
본 발명에서, 사용되는 용어인 '섬유'는 '사(絲, Yarn)' 또는 '실'을 의미하며, 통상적인 다양한 종류의 사 및 섬유를 의미한다.In the present invention, the term'fiber' as used means'yarn' or'thread', and generally refers to various types of yarns and fibers.
본 발명에서 사용되는 용어인 '복합섬유'는 복합방사하여 제조된 원사 그 자체, 또는 이를 연신 및/또는 부분연신 거친 섬유를 포함하는 의미로 사용한다.The term'composite fiber' as used in the present invention is used to mean the yarn itself manufactured by composite spinning, or to include stretched and/or partially stretched coarse fibers.
본 발명에서 사용한 '열처리 온도'는 연신공정에서 통상적으로 사용되는 고뎃롤러 중 2차 고뎃롤러의 표면온도를 의미한다. The'heat treatment temperature' used in the present invention means the surface temperature of the secondary godet roller among the godet rollers commonly used in the stretching process.
본 발명의 신축성이 우수한 폴리에스테르 복합섬유는 광택이 발생하지 않고, 터치감이 우수하다.The polyester composite fiber having excellent elasticity of the present invention does not generate gloss and has excellent touch.
또한, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유는 우수한 신축성과 광택이 없는 섬유의 사용이 필요한 다양한 제품에 적용이 가능하다. 구체적으로, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유는 신축성이 요구되는 직물 또는 편물의 원사로서 사용되기에 적합한 동시에 이를 포함하는 원단 자체도 광택이 발생하지 않고 터치감이 좋으며 우수한 신축성을 가진다.In addition, the polyester composite fiber having excellent elasticity of the present invention can be applied to a variety of products that require the use of excellent elasticity and non-glossy fiber. Specifically, the polyester composite fiber having excellent elasticity of the present invention is suitable to be used as a yarn for a fabric or knitted fabric requiring elasticity, and at the same time, the fabric including the same does not generate gloss, has a good touch feeling, and has excellent elasticity.
도 1은 본 발명의 바람직한 일구현예에 따른 땅콩형 단면 형상을 갖는 사이드-바이-사이드 복합섬유의 모식도이다.1 is a schematic diagram of a side-by-side composite fiber having a peanut-shaped cross-sectional shape according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 일구현예에 따른 땅콩형 단면 형상을 갖는 사이드-바이-사이드 복합섬유의 SEM 사진이다.2 is an SEM photograph of a side-by-side composite fiber having a peanut-shaped cross-sectional shape according to a preferred embodiment of the present invention.
도 3는 본 발명의 바람직한 일구현예에 따른 원형 단면 형상을 갖는 사이드-바이-사이드 복합섬유의 모식도이다.3 is a schematic diagram of a side-by-side composite fiber having a circular cross-sectional shape according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 일구현예에 따른 원형 단면 형상을 갖는 사이드-바이-사이드 복합섬유의 SEM 사진이다.4 is a SEM photograph of a side-by-side composite fiber having a circular cross-sectional shape according to a preferred embodiment of the present invention.
도 5은 본 발명의 바람직한 일실시예에 따른 제조공정흐름도이다.5 is a manufacturing process flow diagram according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 일실시예에 따른 제조공정 모식도이다.6 is a schematic diagram of a manufacturing process according to a preferred embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement the present invention. The present invention may be implemented in various different forms, and is not limited to the embodiments described herein. In the drawings, parts not related to the description are omitted in order to clearly describe the present invention, and the same reference numerals are added to the same or similar components throughout the specification.
본 발명의 신축성이 우수한 폴리에스테르 복합섬유는 제1성분 및 제2성분을 복합방사하여 제조된다.The polyester composite fiber having excellent elasticity of the present invention is prepared by composite spinning of the first component and the second component.
본 발명의 신축성이 우수한 폴리에스테르 복합섬유의 제1성분은 폴리부텔렌테레프탈레이트(PBT)를 포함할 수 있다. 일 예로서, 폴리부텔렌테레프탈레이트(PBT)는 부탄디올과 테레프탈산을 중합하여 제조될 수 있다.The first component of the polyester composite fiber having excellent stretchability of the present invention may include polybutene terephthalate (PBT). As an example, polybutelene terephthalate (PBT) may be prepared by polymerizing butanediol and terephthalic acid.
또한, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유의 제2성분은 폴리에틸렌테레프탈레이트(PET)를 포함할 수 있다. 일 예로서, 폴리에틸렌테레프탈레이트(PET)는 에틸렌글리콜과 테레프탈산을 중합하여 제조될 수 있다.In addition, the second component of the polyester composite fiber having excellent elasticity of the present invention may include polyethylene terephthalate (PET). As an example, polyethylene terephthalate (PET) may be prepared by polymerizing ethylene glycol and terephthalic acid.
한편, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유는 하기 관계식 1을 만족할 수 있으며, 만일 하기 관계식 1에 기재된 범위를 벗어나게 된다면 신축성 발현이 미약한 문제가 있을 수 있다.On the other hand, the polyester composite fiber having excellent elasticity of the present invention may satisfy the following relational equation 1, and if it deviates from the range described in the following relational equation 1, there may be a problem in that the elasticity expression is weak.
[관계식 1][Relationship 1]
0.30 dl/g ≤ |A - B| ≤ 0.80 dl/g, 바람직하게는 0.4 dl/g ≤ |A - B| ≤ 0.70 dl/g, 더욱 바람직하게는 0.4 dl/g ≤ |A - B| ≤ 0.60 dl/g, 더더욱 바람직하게는 0.45 dl/g ≤ |A - B| ≤ 0.53 dl/g, 더더더욱 바람직하게는 0.45 dl/g ≤ |A - B| ≤ 0.49 dl/g0.30 dl/g ≤ |A-B| ≤ 0.80 dl/g, preferably 0.4 dl/g ≤ |A-B| ≤ 0.70 dl/g, more preferably 0.4 dl/g ≤ |A-B| ≤ 0.60 dl/g, even more preferably 0.45 dl/g ≤ |A-B| ≤ 0.53 dl/g, even more preferably 0.45 dl/g ≤ |A-B| ≤ 0.49 dl/g
상기 관계식 1에 있어서, A는 제1성분의 고유점도를 나타내고, B는 제2성분의 고유점도를 나타낸다. In the above relational formula 1, A represents the intrinsic viscosity of the first component, and B represents the intrinsic viscosity of the second component.
나아가, 본 발명의 제1성분은 고유점도(I.V)가 0.90 ~ 1.30 dl/g, 바람직하게는 0.92 ~ 1.30 dl/g, 더욱 바람직하게는 0.95 ~ 1.15 dl/g, 더더욱 바람직하게는 0.95 ~ 1.05 dl/g일 수 있고, 만약 고유점도가 0.90dl/g 미만이면 목적하는 신축성을 발현할 수 없는 문제가 있을 수 있고, 1.30 dl/g를 초과하면 복합 방사시 제조된 복합섬유의 곡사 현상이 현저히 증가하여 방사조업성이 불량해지는 문제가 있을 수 있다.Further, the first component of the present invention has an intrinsic viscosity (IV) of 0.90 to 1.30 dl/g, preferably 0.92 to 1.30 dl/g, more preferably 0.95 to 1.15 dl/g, and even more preferably 0.95 to 1.05 dl/g, and if the intrinsic viscosity is less than 0.90dl/g, there may be a problem that the desired elasticity cannot be expressed, and if it exceeds 1.30 dl/g, the howitzing phenomenon of the composite fiber produced during composite spinning is remarkably There may be a problem that the spinning operation becomes poor due to an increase.
또한, 본 발명의 제2성분은 고유점도(I.V)가 0.40 ~ 0.70 dl/g, 바람직하게는 0.45 ~ 0.65 dl/g, 더욱 바람직하게는 0.48 ~ 0.60 dl/g, 더더욱 바람직하게는 0.48 ~ 0.53 dl/g일 수 있고, 만약 고유점도가 0.40dl/g 미만이면 복합 방사시 제조된 복합섬유의 곡사 현상이 현저히 증가하여 방사조업성이 불량해지는 문제가 있을 수 있고, 0.70 dl/g를 초과하면 목적하는 신축성을 발현할 수 없는 문제가 있을 수 있다.In addition, the second component of the present invention has an intrinsic viscosity (IV) of 0.40 to 0.70 dl/g, preferably 0.45 to 0.65 dl/g, more preferably 0.48 to 0.60 dl/g, even more preferably 0.48 to 0.53 dl/g, and if the intrinsic viscosity is less than 0.40 dl/g, there may be a problem that the howitzing phenomenon of the composite fiber produced during composite spinning increases significantly, resulting in poor spinning operation. If it exceeds 0.70 dl/g There may be a problem that the desired elasticity cannot be expressed.
한편, 본 발명의 제1성분은 융점이 200 ~ 250℃, 바람직하게는 210 ~ 240℃, 더욱 바람직하게는 220 ~ 230℃일 수 있고, 만일 융점이 200℃ 미만이면 제1성분의 결정성이 저하되고, 제조되는 복합섬유의 강도가 낮아지는 문제가 있을 수 있고, 250℃를 초과하면 용융 방사 온도가 높아짐으로 인해 제1성분 용융 시 열분해가 발생하여 제조되는 복합섬유의 강도가 저하되는 문제가 있을 수 있다.On the other hand, the first component of the present invention may have a melting point of 200 to 250 °C, preferably 210 to 240 °C, more preferably 220 to 230 °C, and if the melting point is less than 200 °C, the crystallinity of the first component There may be a problem that the strength of the composite fiber is lowered, and the strength of the composite fiber to be manufactured is lowered, and when the melt spinning temperature is higher when the temperature exceeds 250°C, thermal decomposition occurs when the first component is melted, thereby reducing the strength of the composite fiber There may be.
또한, 본 발명의 제2성분은 융점이 230 ~ 270℃, 바람직하게는 240 ~ 265℃, 더욱 바람직하게는 250 ~ 260℃일 수 있고, 만일 융점이 230℃ 미만이면 제2성분의 결정성이 저하되고, 제조되는 복합섬유의 강도가 낮아지는 문제가 있을 수 있고, 270℃를 초과하면 용융 방사 온도가 높아짐으로 인해 제2성분 용융 시 열분해가 발생하여 제조되는 복합섬유의 강도가 저하되는 문제가 있을 수 있다.In addition, the second component of the present invention may have a melting point of 230 to 270 °C, preferably 240 to 265 °C, more preferably 250 to 260 °C, and if the melting point is less than 230 °C, the crystallinity of the second component There may be a problem that the strength of the composite fiber is lowered, and the strength of the composite fiber to be manufactured is lowered, and when the melt spinning temperature is higher when it exceeds 270°C, thermal decomposition occurs when the second component is melted, thereby reducing the strength of the composite fiber to be manufactured. There may be.
나아가, 본 발명의 제1성분은 소광제를 더 포함할 수 있다. 이 때, 소광제는 산화티탄(TiO2), 산화아연(ZnO), 산화규소(SiO2) 및 황산바륨(BaSO4) 중에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 산화티탄(TiO2)을 포함할 수 있다. 또한, 산화티탄은 아나타제형, 루틸형 또는 브루카이트형 결정 형태를 가질 수 있으며, 산화티탄은 상기 결정 형태를 단독 또는 혼합되어 포함할 수 있으나, 산화티탄은 결정 형태에 의해 밀도, 굴절률, 광반사 및 흡수 특성 등의 특성이 다르기 때문에 목적 및 용도에 따라 적절히 구분하여 사용할 수 있다. 또한 폴리머 중에서의 분산성이나 광반사 성능 등의 성능 제어를 위해 표면 처리가 실시된 산화티탄을 포함할 수 있다.Furthermore, the first component of the present invention may further include a matting agent. In this case, the matting agent may include at least one selected from titanium oxide (TiO 2 ), zinc oxide (ZnO), silicon oxide (SiO 2 ), and barium sulfate (BaSO 4 ), preferably titanium oxide (TiO 2 ) may be included. In addition, titanium oxide may have an anatase-type, rutile-type, or bruchite-type crystal form, and titanium oxide may include the crystal form alone or as a mixture, but titanium oxide may include density, refractive index, and light reflection depending on the crystal form. And absorption characteristics are different, so they can be properly classified and used according to the purpose and use. In addition, titanium oxide subjected to surface treatment may be included in order to control performance such as dispersibility and light reflection performance in the polymer.
또한, 본 발명의 제1성분은 전체 중량%에 대하여 소광제를 1.0 ~ 3.0 중량%, 바람직하게는 1.2 ~ 2.5 중량%, 더욱 바람직하게는 1.5 ~ 2.0 중량%로 포함할 수 있으며, 만일 소광제가 1.0 중량% 미만으로 포함한다면 광택 억제 효과가 저하되며, 본 발명의 복합섬유를 사용하여 제조한 원단의 터치감이 저하되는 문제가 있을 수 있고, 3.0 중량%를 초과하면 제1성분 내에서의 소광제의 응집 현상이 증가하여 방사 시 절사가 발생하여 방사 조업성이 불량해지는 문제가 있을 수 있다. 또한, 본 발명의 제2성분은 전체 중량%에 대하여 소광제를 1.0 ~ 3.0 중량%, 바람직하게는 1.2 ~ 2.5 중량%, 더욱 바람직하게는 1.5 ~ 2.0 중량%로 포함할 수 있으며, 만일 소광제가 1.0 중량% 미만으로 포함한다면 광택 억제 효과가 저하되며, 본 발명의 복합섬유를 사용하여 제조한 원단의 터치감이 저하되는 문제가 있을 수 있고, 3.0 중량%를 초과하면 제2성분 내에서의 소광제의 응집 현상이 증가하여 방사 시 절사가 발생하여 방사 조업성이 불량해지는 문제가 있을 수 있다.In addition, the first component of the present invention may contain a matting agent in an amount of 1.0 to 3.0% by weight, preferably 1.2 to 2.5% by weight, more preferably 1.5 to 2.0% by weight, based on the total weight%, and if the matting agent If it is included in less than 1.0% by weight, the gloss suppression effect is lowered, and there may be a problem that the touch feeling of the fabric manufactured using the composite fiber of the present invention is deteriorated.If it exceeds 3.0% by weight, quenching in the first component There may be a problem in that the agglomeration phenomenon of the agent increases, so that cutting occurs during spinning, resulting in poor spinning operation. In addition, the second component of the present invention may contain a matting agent in an amount of 1.0 to 3.0% by weight, preferably 1.2 to 2.5% by weight, more preferably 1.5 to 2.0% by weight, based on the total weight%, and if the matting agent If it is included in less than 1.0% by weight, the gloss suppression effect is lowered, and there may be a problem that the touch feeling of the fabric manufactured using the composite fiber of the present invention is deteriorated.If it exceeds 3.0% by weight, quenching in the second component There may be a problem in that the agglomeration phenomenon of the agent increases, so that cutting occurs during spinning, resulting in poor spinning operation.
한편, 본 발명의 제1성분 및 제2성분의 중량비는 30 : 70 ~ 70 : 30, 바람직하게는 35 : 65 ~ 65 : 35, 더욱 바람직하게는 45 : 55 ~ 55 ~ 40일 수 있으며, 만일 제1성분의 중량비가 30 미만 또는 제1 성분의 중량비가 70을 초과하는 경우 제1성분과 제2성분의 밸런스가 맞지 않아서 곡사 발생이 심해져 방사 조업성이 불량해지며, 복합섬유의 신축 특성 또한 감소하는 문제점이 있을 수 있다.On the other hand, the weight ratio of the first component and the second component of the present invention may be 30: 70 to 70: 30, preferably 35: 65 to 65: 35, more preferably 45: 55 to 55 to 40, if When the weight ratio of the first component is less than 30 or the weight ratio of the first component exceeds 70, the balance between the first component and the second component is not matched, resulting in severe grain sand, resulting in poor spinning operation, and the elasticity of the composite fiber. There may be a diminishing problem.
나아가, 본 발명의 복합섬유의 단면 형상은 땅콩형 사이드-바이-사이드(side-by-side) 또는 원형의 사이드-바이-사이드일 수 있고, 바람직하게는 땅콩형 사이드-바이-사이드일 수 있다.Further, the cross-sectional shape of the composite fiber of the present invention may be a peanut-type side-by-side or a circular side-by-side, preferably a peanut-type side-by-side. .
구체적으로, 도 1은 본 발명의 바람직한 일구현예에 따른 땅콩형의 단면 형상을 갖는 사이드-바이-사이드 복합섬유의 모식도이고, 도 2는 본 발명의 바람직한 일구현예에 따른 땅콩형의 단면 형상을 갖는 사이드-바이-사이드 복합섬유의 SEM 사진으로서, 도 1 및 도 2를 참고하면, 단면 형상이 땅콩형이고, 제1성분(101)과 제2성분(102)이 복합섬유 내 포함되어 있는 형상을 확인할 수 있다. 또한, 도 3는 본 발명의 바람직한 일구현예에 따른 원형의 단면 형상을 갖는 사이드-바이-사이드 복합섬유의 모식도이고, 도 4는 본 발명의 바람직한 일구현예에 원형의 단면 형상을 갖는 사이드-바이-사이드 복합섬유의 SEM 사진으로서, 도 3 및 도 4를 참고하면, 단면 형상이 원형이고, 제1성분(112)과 제2성분(113)이 복합섬유 내 포함되어 있는 형상을 확인할 수 있다.Specifically, FIG. 1 is a schematic diagram of a side-by-side composite fiber having a cross-sectional shape of a peanut type according to a preferred embodiment of the present invention, and FIG. 2 is a cross-sectional shape of a peanut type according to a preferred embodiment of the present invention. As a SEM photograph of the side-by-side composite fiber having, referring to FIGS. 1 and 2, the cross-sectional shape is a peanut type, and the first component 101 and the second component 102 are included in the composite fiber. You can check the shape. In addition, FIG. 3 is a schematic diagram of a side-by-side composite fiber having a circular cross-sectional shape according to a preferred embodiment of the present invention, and FIG. 4 is a side-by-side having a circular cross-sectional shape in a preferred embodiment of the present invention. As a SEM photograph of the bi-side composite fiber, referring to FIGS. 3 and 4, the cross-sectional shape is circular, and the shape in which the first component 112 and the second component 113 are included in the composite fiber can be confirmed. .
또한, 본 발명의 복합섬유의 고유점도는 0.50 ~ 0.80 dl/g, 바람직하게는 0.60 ~ 0.80 dl/g, 더욱 바람직하게는 0.60 ~ 0.70 dl/g일 수 있다.In addition, the intrinsic viscosity of the composite fiber of the present invention may be 0.50 to 0.80 dl/g, preferably 0.60 to 0.80 dl/g, more preferably 0.60 to 0.70 dl/g.
나아가, 본 발명의 복합섬유는 20 ~ 180 데니어의 섬도, 바람직하게는 30 ~ 170 데니어의 섬도, 더욱 바람직하게는 50 ~ 100 데니어의 섬도, 12 ~ 96의 필라멘트수, 바람직하게는 20 ~ 60의 필라멘트수를 가질 수 있으며, 이에 특별히 한정하지는 않으며, 목적에 따라 이를 변경할 수 있다.Further, the composite fiber of the present invention has a fineness of 20 to 180 denier, preferably a fineness of 30 to 170 denier, more preferably a fineness of 50 to 100 denier, the number of filaments of 12 to 96, preferably of 20 to 60 denier. It may have the number of filaments, and is not particularly limited thereto, and may be changed according to the purpose.
한편, 본 발명의 복합섬유는 하기 방정식 1에 의해 측정된 리소나 수축율(%)이 15 ~ 30%, 바람직하게는 17 ~ 25%일 수 있다.On the other hand, the composite fiber of the present invention may have a lysona shrinkage (%) of 15 to 30%, preferably 17 to 25%, as measured by Equation 1 below.
[방정식 1][Equation 1]
상기 방정식 1에 있어서, 상기 리소나 수축율은 복합섬유에 20.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 20.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 1, the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
구체적으로, 리소나 수축률(Leesona shrinkage)은 복합섬유를 1차 고뎃롤러 속도 1,700mpm, 온도 73℃ 및 2차 고뎃롤러 속도 4,400mpm, 온도 120℃로 연신처리한 타래 상태의 연신사에 대해 하중을 20.5g 부여하여 82±3℃의 물에서 10분간 열처리 후 수축된 길이의 원래 상태의 길이에 대한 백분율일 수 있다.Specifically, Leesona shrinkage is the load on the skeined stretched yarn obtained by stretching the composite fiber at a primary godet roller speed of 1,700 mpm, a temperature of 73°C, a secondary godet roller speed of 4,400 mpm, and a temperature of 120°C. It may be a percentage of the original length of the contracted length after heat treatment in water at 82±3℃ for 10 minutes by giving 20.5g.
또한, 본 발명의 복합섬유는 하기 방정식 2에 의해 측정된 잔존 수축율(%)이 40 ~ 70%, 바람직하게는 47 ~ 63%일 수 있다.In addition, the composite fiber of the present invention may have a residual shrinkage (%) of 40 to 70%, preferably 47 to 63%, as measured by Equation 2 below.
[방정식 2][Equation 2]
상기 방정식 2에 있어서, 상기 잔존 수축율은 복합섬유에 1.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 1.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 2, the residual shrinkage is measured by applying a load of 1.5 g to the composite fiber to measure the initial length (L 0 ), immersing it in hot water at 82° C. for 10 minutes and drying for 3 minutes while applying a load of 1.5 g. After treatment, the length (L 1 ) is measured.
구체적으로, 잔존 수축률(Residual shrinkage)(%)은 복합섬유를 1차 고뎃롤러 속도 1,700mpm, 온도 73℃ 및 2차 고뎃롤러 속도 4,400mpm, 온도 120℃로 연신처리한 타래 상태의 연신사에 대해 하중을 1.5g 부여하여 82±3℃의 물에서 10분간 열처리 후 수축된 길이의 원래 상태의 길이에 대한 백분율일 수 있다.Specifically, the residual shrinkage (%) is for the skeined drawn yarn obtained by stretching the composite fiber at a primary godet roller speed of 1,700 mpm, a temperature of 73°C, a secondary godet roller speed of 4,400 mpm, and a temperature of 120°C. It may be a percentage of the original length of the contracted length after heat treatment in water at 82±3° C. for 10 minutes by applying 1.5 g of load.
본 발명의 복합섬유는 15 ~ 30%의 리소나 수축율 및 40 ~ 70%의 잔존 수축율을 만족할 때, 가장 우수한 신축성이 발현될 수 있으며, 만일 리소나 수축율이 15% 미만이거나 잔존 수축율이 40% 미만일 경우 신축성이 저하되는 문제가 있을 수 있고, 리소나 수축율이 30%를 초과하거나 잔존 수축율이 70%를 초과하면 원사 상태에서 크림프 발현이 심해져서 필라멘트들끼리 엉킴 현상이 심하여 원단 및 편물을 제조할 때 공정작업성이 현저히 저하되는 문제가 있을 수 있다.When the composite fiber of the present invention satisfies the lysona shrinkage rate of 15 to 30% and the residual shrinkage rate of 40 to 70%, the best elasticity can be expressed, if the lysona shrinkage rate is less than 15% or the residual shrinkage rate is less than 40%. In this case, there may be a problem that the elasticity is deteriorated, and when the lysona shrinkage rate exceeds 30% or the residual shrinkage rate exceeds 70%, the crimp expression in the yarn state becomes severe and the filaments become entangled with each other when manufacturing fabrics and knitted fabrics. There may be a problem that process workability is significantly deteriorated.
한편, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유의 제조방법은 제1단계 및 제2단계를 포함한다.On the other hand, the method for producing a polyester composite fiber having excellent elasticity of the present invention includes a first step and a second step.
구체적으로, 도 5는 본 발명의 바람직한 일실시예에 따른 제조공정흐름도로써, 도 5를 참조하여 설명하면, 제1성분 및 제2성분을 용융시키는 제1단계(S10)를 거쳐 복합방사하는 제2단계(S11)를 통해 본 발명의 복합섬유가 제조될 수 있으며, 부가적으로 방사 후 냉각 고화 단계(S12), 유제공급단계(S13), 열고정 및 연신단계(S14)를 거칠 수 있다.Specifically, FIG. 5 is a flow chart of a manufacturing process according to a preferred embodiment of the present invention, and when described with reference to FIG. 5, the first component and the second component are melted through a first step (S10). The composite fiber of the present invention may be manufactured through the second step (S11), and may additionally undergo a cooling and solidification step (S12), an oil supply step (S13), heat setting and stretching step (S14) after spinning.
먼저, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유의 제조방법의 제1단계는 제1성분 및 제2성분을 각각 용융시킬 수 있다. 이 때, 제1성분은 폴리부텔렌테레프탈레이트(PBT)를 포함할 수 있고, 소광제를 더 포함할 수 있다. 또한, 제2성분은 폴리에틸렌테레프탈레이트(PET)를 포함할 수 있고, 소광제를 더 포함할 수 있다.First, the first step of the method for producing a polyester composite fiber having excellent elasticity of the present invention may melt the first component and the second component, respectively. In this case, the first component may include polybutelene terephthalate (PBT), and may further include a matting agent. In addition, the second component may include polyethylene terephthalate (PET), and may further include a matting agent.
또한, 제조된 복합섬유는 0.60 ~ 0.80 dl/g의 고유점도를 가지는 사이드-바이-사이드 복합섬유일 수 있다.In addition, the prepared composite fiber may be a side-by-side composite fiber having an intrinsic viscosity of 0.60 to 0.80 dl/g.
또한, 제조된 복합섬유는 하기 방정식 1에 의해 측정된 리소나 수축율(%)이 15 ~ 30%일 수 있다.In addition, the prepared composite fiber may have a lysona shrinkage (%) measured by Equation 1 below of 15 to 30%.
[방정식 1][Equation 1]
상기 방정식 1에 있어서, 상기 리소나 수축율은 복합섬유에 20.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 20.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 1, the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
또한, 하기 관계식 1을 만족할 수 있으며, 만일 하기 관계식 1에 기재된 범위를 벗어나게 된다면 제조되는 복합섬유의 신축성 발현이 미약한 문제가 있을 수 있다.In addition, the following relational expression 1 may be satisfied, and if it is out of the range described in the following relational expression 1, there may be a problem in that the elasticity expression of the manufactured composite fiber is weak.
[관계식 1][Relationship 1]
0.30 dl/g ≤ |A - B| ≤ 0.80 dl/g, 바람직하게는 0.4 dl/g ≤ |A - B| ≤ 0.70 dl/g, 더욱 바람직하게는 0.4 dl/g ≤ |A - B| ≤ 0.60 dl/g, 더더욱 바람직하게는 0.45 dl/g ≤ |A - B| ≤ 0.53 dl/g, 더더더욱 바람직하게는 0.45 dl/g ≤ |A - B| ≤ 0.49 dl/g0.30 dl/g ≤ |A-B| ≤ 0.80 dl/g, preferably 0.4 dl/g ≤ |A-B| ≤ 0.70 dl/g, more preferably 0.4 dl/g ≤ |A-B| ≤ 0.60 dl/g, even more preferably 0.45 dl/g ≤ |A-B| ≤ 0.53 dl/g, even more preferably 0.45 dl/g ≤ |A-B| ≤ 0.49 dl/g
상기 관계식 1에 있어서, A는 제1성분의 고유점도를 나타내고, B는 제2성분의 고유점도를 나타낸다. In the above relational formula 1, A represents the intrinsic viscosity of the first component, and B represents the intrinsic viscosity of the second component.
참고적으로, 도 6은 본 발명의 바람직한 일실시예에 따른 제조공정모식도로써, 제1성분(10) 및 제2성분(20)은 용융부에서 용융시킬 수 있다.For reference, FIG. 6 is a schematic diagram of a manufacturing process according to a preferred embodiment of the present invention, and the first component 10 and the second component 20 can be melted in the melting section.
다음으로, 본 발명의 신축성이 우수한 폴리에스테르 복합섬유의 제조방법의 제2단계는 제1단계에서 용융된 제1성분 및 제2성분을 복합방사하여 폴리에스테르 복합섬유를 제조할 수 있다.Next, in the second step of the method for producing a polyester composite fiber having excellent elasticity of the present invention, the first component and the second component melted in the first step may be combined-spun to produce a polyester composite fiber.
이 때, 제2단계의 복합방사는 제1성분과 제2성분이 30 : 70 ~ 70 : 30의 중량비로 복합방사될 수 있으며, 방사온도는 바람직하게는 250 ~ 300℃, 보다 더 바람직하게는 260 ~ 280℃일 수 있고, 방사속도는 3000 ~ 4500mpm일 수 있다.At this time, in the second step, the first component and the second component may be combined in a weight ratio of 30:70 to 70:30, and the spinning temperature is preferably 250 to 300°C, more preferably It may be 260 ~ 280 ℃, the spinning speed may be 3000 ~ 4500mpm.
한편, 제2단계의 복합방사는 다양한 형태의 구금을 통해서 수행할 수 있으며, 바람직하게는 땅콩형 단면형태의 사이드-바이-사이드 구금 또는 원형 단면형태의 사이드-바이-사이드 구금을 통해 단면 형상이 단면 형상은 땅콩형 사이드-바이-사이드 또는 원형의 사이드-바이-사이드인 복합섬유가 제조될 수 있다.On the other hand, the complex spinning of the second step can be performed through various types of detention, and preferably, the cross-sectional shape is achieved through side-by-side detention in a peanut-shaped cross-section or side-by-side detention in a circular cross-section. The cross-sectional shape may be a peanut-like side-by-side or a circular side-by-side composite fiber.
나아가, 제2단계 이후 복합방사된 복합섬유에 대해 냉각풍의 온도는 15 ~ 25℃, 속도는 25 ~ 50 mpm로 냉각 및 고화공정(도 6의 40)을 수행할 수 있다. 상기 범위를 벗어날 경우 복합섬유 단면 형상의 제어가 어렵고, 균제도를 향상시킬 수 없는 문제점이 있다.Further, the cooling and solidification process (40 in FIG. 6) may be performed for the composite fiber composite spun after the second step at a temperature of 15 to 25°C and a speed of 25 to 50 mpm. If it is out of the above range, it is difficult to control the cross-sectional shape of the composite fiber, and there is a problem in that the uniformity cannot be improved.
다음으로 원활한 방사 및 권취를 위하여 유제를 공급할 수 있다. 유제공급은 고화 영역에 가이드를 설치한 가이드(도 6의 50)에서 유제 분사 방식이나 오일 롤러 방식이 사용될 수 있으며, 두 방식 중 어떤 방식을 사용하더라도 무방하다.Next, an emulsion can be supplied for smooth spinning and winding. For the oil supply, an oil spray method or an oil roller method may be used in a guide (50 in FIG. 6) installed with a guide in the solidified area, and any of the two methods may be used.
또한, 상기 유제공급 이후에, 부분연신 공정 또는 연신공정을 더 포함할 수 있다. 부분연신 또는 연신공정을 통해 섬유배향을 향상시켜 보다 높은 강도를 가지는 섬유를 수득할 수 있다.In addition, after the oil agent is supplied, a partial stretching process or a stretching process may be further included. Fibers having higher strength can be obtained by improving fiber orientation through partial stretching or stretching.
구체적으로 도 6의 두 롤러(1차 고뎃롤러(60), 2차 고뎃롤러(70))를 기준으로 이하 상세히 설명한다.Specifically, it will be described in detail below based on the two rollers of FIG. 6 (the first godet roller 60 and the second godet roller 70).
상기 부분연신은 1차 고뎃롤러 속도 2,000 ~ 3,500mpm 및 2차 고뎃롤러 속도 2,000 ~ 3,500mpm 조건으로 수행될 수 있다.The partial stretching may be performed under conditions of a first godet roller speed of 2,000 to 3,500 mpm and a second godet roller speed of 2,000 to 3,500 mpm.
또한, 상기 연신공정의 경우 구체적으로 1차 고뎃롤러 속도는 1,000 ~ 2,500 mpm일 수 있으며, 바람직하게는 1,400 ~ 2,000mpm일 수 있다. 만일 1차 고뎃롤러의 속도가 1,000mpm 미만인 경우, 원사의 경시변화에 따라 물성이 저하되는 문제점이 있으며, 낮은 1차 고뎃 롤러 속도로 인하여 방사 장력이 낮아 그로 인하여 사절이 많이 발생할 수 있다. 만일 1차 고뎃롤러의 속도가 2,500mpm을 초과하면 불균일한 연신이 됨으로서 염색 불량이 발생될 우려가 있다. 상기 1차 고뎃롤러의 온도는 50 ~ 100℃일 수 있으며, 바람직하게는 70 ~ 80℃일 수 있다.In addition, in the case of the stretching process, specifically, the speed of the first godet roller may be 1,000 to 2,500 mpm, and preferably 1,400 to 2,000 mpm. If the speed of the primary godet roller is less than 1,000mpm, there is a problem in that the physical properties are deteriorated according to the aging change of the yarn, and the spinning tension is low due to the low primary godet roller speed, thereby causing a lot of thread trimming. If the speed of the primary godet roller exceeds 2,500mpm, there is a concern that a defect in dyeing may occur due to uneven stretching. The temperature of the primary godet roller may be 50 to 100°C, preferably 70 to 80°C.
다음으로 2차 고뎃롤러 속도는 3,000 ~ 5,000 mpm일 수 있으며, 방사조업성을 고려하여 바람직하게는 2차 고뎃롤러 속도는 3,500 내지 4,500mpm일 수 있다. 만일 상기 2차 고뎃 롤러 속도가 3,000mpm 미만인 경우, 방사된 원사의 물성, 특히 강신도가 낮아지고 생산성이 저하되게 되며, 5,000mpm을 초과하면 2차 고뎃 롤러에서 원사 떨림이 심하게 발생하여 사절이 발생할 우려가 있다. 2차 고뎃롤러의 온도는 90 ~ 150℃일 수 있고 바람직하게는 110 내지 130℃일 수 있다. 만일 2차 고뎃 롤러의 열고정 온도가 90℃ 미만인 경우, 경시에 따른 강신도 등의 물성 변화가 발생할 우려가 있으며 또한 수축율이 높은 원사가 되어 차후 원단에서 염색 가공 진행 시 과수축이 발생 할 우려가 있으며, 150℃를 초과하면 2차 고뎃 롤러에서 사 떨림이 커져 안정한 조업이 곤란할 우려가 있다.Next, the secondary godet roller speed may be 3,000 to 5,000 mpm, and in consideration of spinning operability, the secondary godet roller speed may preferably be 3,500 to 4,500 mpm. If the speed of the secondary godet roller is less than 3,000mpm, the physical properties of the spun yarn, especially the stiffness and elongation, are lowered and the productivity is lowered.If it exceeds 5,000mpm, there is a concern that yarn tremors will occur in the secondary godet roller and thread trimming may occur. There is. The temperature of the secondary godet roller may be 90 to 150°C, and preferably 110 to 130°C. If the heat setting temperature of the secondary godet roller is less than 90℃, there is a risk of changes in physical properties such as strength and elongation over time, and it is a yarn with a high shrinkage rate, which may lead to over-shrinkage during subsequent dyeing processing. If the temperature exceeds 150°C, there is a concern that stable operation may be difficult due to increased vibration in the secondary godet roller.
한편, 본 발명의 제조방법으로 제조된 복합섬유는 하기 방정식 3에 의해 측정된 만관율(%)이 80% 이상, 바람직하게는 만관율(%)이 85% 이상, 더욱 바람직하게는 90% ~ 99.9%일 수 있으며, 만관율이 높을수록 방사조업성이 우수한 것을 의미한다.On the other hand, the composite fiber produced by the manufacturing method of the present invention has a full rate (%) of 80% or more, preferably 85% or more, more preferably 90%- It may be 99.9%, and the higher the full rate, the better the spinning workability.
[방정식 3][Equation 3]
이와 같이 본 발명의 복합섬유는 고유점도의 차이가 나는 2종(제1성분 및 제2성분)의 성분을 복합방사함에도 불구하고 방사조업성이 우수함을 알 수 있다. As described above, it can be seen that the composite fiber of the present invention has excellent spinning operability despite the composite spinning of two components (the first component and the second component) having a difference in intrinsic viscosity.
또한, 본 발명은 본 발명의 신축성이 우수한 폴리에스테르 섬유를 포함하는 원단을 제공한다. In addition, the present invention provides a fabric comprising the polyester fiber having excellent elasticity of the present invention.
본 발명에서 사용한 용어인 상기 원단은 직물 또는 편물을 모두 포함하는 의미이다.The term used in the present invention, the fabric is meant to include all fabrics or knitted fabrics.
먼저, 상기 원단은 본 발명에 따른 신축성이 우수한 폴리에스테르 복합섬유를 경사 및 위사 중 어느 하나 이상으로 사용하여 제직(weaving)된 직물일 수 있다. First, the fabric may be a weaving fabric using a polyester composite fiber having excellent elasticity according to the present invention as one or more of warp and weft yarns.
상기 제직은 평직, 능직, 수자직 및 이중직으로 이루어진 군에서 선택된 어느 하나의 방법으로 이루어질 수 있다. The weaving may be made by any one method selected from the group consisting of plain weave, twill weave, weave and double weave.
다만, 상기 직물조직의 기재에 한정되지 않으며, 제직에서의 경위사 밀도의 경우 특별하게 한정하지 않는다.However, it is not limited to the substrate of the fabric structure, and the density of warp yarns in weaving is not particularly limited.
또한, 상기 원단은 신축성이 우수한 폴리에스테르 섬유를 포함하여 편성(knitting)된 편물일 수 있다. 상기 편성은 위편성 또는 경편성의 방법에 의할 수 있으며, 상기 위편성과 경편성의 구체적인 방법은 통상적인 위편성 또는 경편성의 편성방법에 의할 수 있다.In addition, the fabric may be a knitted fabric including polyester fibers having excellent elasticity. The knitting may be performed by a weft knitting or warp knitting method, and the specific method of the weft knitting and warp knitting may be by a conventional weft knitting or warp knitting method.
이상에서 본 발명에 대하여 구현예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명의 구현예를 한정하는 것이 아니며, 본 발명의 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 구현예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The embodiments of the present invention have been described above, but these are only examples and do not limit the embodiments of the present invention, and those of ordinary skill in the field to which the embodiments of the present invention pertain are not limited to the essential characteristics of the present invention. It will be appreciated that various modifications and applications not illustrated above are possible within the range not departing from. For example, each component specifically shown in the embodiments of the present invention can be modified and implemented. And differences related to these modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.
실시예 1 : 폴리에스테르 복합섬유의 제조 Example 1: Preparation of polyester composite fiber
(1) 제1성분으로 전체 중량%에 대하여 산화티탄(TiO2)을 1.5중량%로 포함하는 폴리부틸렌테레프탈레이트(PBT)를 준비하였다. 이 때, 제1성분은 223℃의 융점, 0.98dl/g의 고유점도를 가진다.(One) As the first component, polybutylene terephthalate (PBT) containing 1.5% by weight of titanium oxide (TiO 2 ) was prepared based on the total weight %. At this time, the first component has a melting point of 223°C and an intrinsic viscosity of 0.98 dl/g.
또한, 제2성분으로 전체 중량%에 대하여 산화티탄(TiO2)을 1.8중량%로 포함하는 폴리에틸렌테레프탈레이트(PET)를 준비하였다. 이 때, 제2성분은 254℃의 융점, 0.50dl/g의 고유점도를 가진다.In addition, as a second component, polyethylene terephthalate (PET) containing 1.8% by weight of titanium oxide (TiO 2 ) based on the total weight% was prepared. At this time, the second component has a melting point of 254°C and an intrinsic viscosity of 0.50 dl/g.
(2) 복합섬유를 제조하기 위해 준비한 제1성분의 용융 온도를 270℃, 준비한 제2성분의 용융 온도를 275℃로 하고, 방사 온도를 272℃ 로 하여 복합방사 하였고, 이 때 제1성분과 제2성분의 토출 중량비는 50 : 50으로 하였다. 연신을 위한 1차 고뎃 롤러의 속도는 1,700mpm, 온도는 73℃, 2차 고뎃 롤러의 속도는 4,400mpm, 온도는 120℃로 진행하였으며, 권취 속도는 4,340mpm으로 권취하여 섬도가 75 데니어, 필라멘트수가 24이고, 전체 중량%에 대하여 산화티탄을 1.65%로 포함하는 단면 형상이 땅콩형 사이드-바이-사이드인 하기 표 1과 같은 폴리에스테르 복합섬유를 제조하였다.(2) The melting temperature of the first component prepared to manufacture the composite fiber was 270°C, the melting temperature of the prepared second component was 275°C, and the spinning temperature was 272°C. In this case, the first component and The discharge weight ratio of the second component was 50:50. The speed of the first godet roller for stretching was 1,700mpm, the temperature was 73℃, the speed of the second godet roller was 4,400mpm, and the temperature was 120℃, and the winding speed was 4,340mpm, resulting in a fineness of 75 denier and filament. The number is 24, and the cross-sectional shape including titanium oxide as 1.65% with respect to the total weight% is a peanut type side-by-side polyester composite fiber as shown in Table 1 was prepared.
실시예 2 : 폴리에스테르 복합섬유의 제조Example 2: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 223℃의 융점, 0.98dl/g의 고유점도를 가지는 제1성분이 아닌 220℃의 융점, 0.90dl/g의 고유점도를 가지는 제1성분을 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike in Example 1, a polyester composite fiber using the first component having a melting point of 220°C and an intrinsic viscosity of 0.90 dl/g instead of the first component having a melting point of 223°C and an intrinsic viscosity of 0.98 dl/g. Was prepared.
실시예 3 : 폴리에스테르 복합섬유의 제조Example 3: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 제1성분과 제2성분의 토출 중량비가 50 : 50이 아닌 60 : 40으로 하여 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a polyester composite fiber was prepared by using a discharge weight ratio of 60:40 instead of 50:50 to the second component.
실시예 4 : 폴리에스테르 복합섬유의 제조Example 4: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 제1성분과 제2성분의 토출 중량비가 50 : 50이 아닌 40 : 60으로 하여 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a polyester composite fiber was prepared by using a discharge weight ratio of 40:60 instead of 50:50 to the first component and the second component.
실시예 5 : 폴리에스테르 복합섬유의 제조Example 5: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 섬도가 75 데니어, 필라멘트수가 24이고, 전체 중량%에 대하여 산화티탄을 1.65%로 포함하는 단면 형상이 땅콩형 사이드-바이-사이드인 폴리에스테르 복합섬유가 아닌 섬도가 40 데니어, 필라멘트수가 24이고, 전체 중량%에 대하여 산화티탄을 1.65%로 포함하는 단면 형상이 땅콩형 사이드-바이-사이드인 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a fineness of 75 denier, a number of filaments of 24, and a cross-sectional shape containing 1.65% titanium oxide based on the total weight% is not a peanut-type side-by-side polyester composite fiber, but a fineness of 40. A polyester composite fiber having a denier and a number of filaments of 24, and a cross-sectional shape of 1.65% of titanium oxide based on the total weight% was prepared as a peanut type side-by-side.
실시예 6 : 폴리에스테르 복합섬유의 제조Example 6: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 섬도가 75 데니어, 필라멘트수가 24이고, 전체 중량%에 대하여 산화티탄을 1.65%로 포함하는 단면 형상이 땅콩형 사이드-바이-사이드인 폴리에스테르 복합섬유가 아닌 섬도가 40 데니어, 필라멘트수가 24이고, 전체 중량%에 대하여 산화티탄을 1.65%로 포함하는 단면 형상이 원형 사이드-바이-사이드인 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a fineness of 75 denier, a number of filaments of 24, and a cross-sectional shape containing 1.65% titanium oxide based on the total weight% is not a peanut-type side-by-side polyester composite fiber, but a fineness of 40. A polyester composite fiber having a denier and a number of filaments of 24, and a cross-sectional shape of 1.65% titanium oxide based on the total weight% was prepared with a circular side-by-side.
실시예 7 : 폴리에스테르 복합섬유의 제조Example 7: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 223℃의 융점, 0.98dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.5dl/g의 고유점도를 가지는 제2성분이 아닌 223℃의 융점, 1.10dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.55dl/g의 고유점도를 가지는 제2성분을 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, the melting point of 223°C, not the first component having an intrinsic viscosity of 0.98 dl/g and the melting point of 254°C, and the second component having an intrinsic viscosity of 0.5 dl/g, 1.10 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254° C. and a second component having an intrinsic viscosity of 0.55 dl/g.
실시예 8 : 폴리에스테르 복합섬유의 제조Example 8: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 223℃의 융점, 0.98dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.5dl/g의 고유점도를 가지는 제2성분이 아닌 223℃의 융점, 1.20dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.70dl/g의 고유점도를 가지는 제2성분을 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a melting point of 223° C., not a second component having a melting point of 223° C., an intrinsic viscosity of 0.98 dl/g, and a melting point of 254° C., and a melting point of 0.5 dl/g, 1.20 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.70 dl/g.
비교예 1 : 폴리에스테르 복합섬유의 제조Comparative Example 1: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 223℃의 융점, 0.98dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.5dl/g의 고유점도를 가지는 제2성분이 아닌 223℃의 융점, 0.75dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.5dl/g의 고유점도를 가지는 제2성분을 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a melting point of 223°C, not a first component having an intrinsic viscosity of 0.98 dl/g and a melting point of 254° C., and a second component having an intrinsic viscosity of 0.5 dl/g, 0.75 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.5dl/g.
비교예 2 : 폴리에스테르 복합섬유의 제조Comparative Example 2: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 223℃의 융점, 0.98dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.5dl/g의 고유점도를 가지는 제2성분이 아닌 223℃의 융점, 0.85dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.65dl/g의 고유점도를 가지는 제2성분을 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, the melting point of 223°C, not the second component having a melting point of 223°C, an intrinsic viscosity of 0.98 dl/g, and a melting point of 254°C, and an intrinsic viscosity of 0.5 dl/g, 0.85 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.65 dl/g.
비교예 3 : 폴리에스테르 복합섬유의 제조Comparative Example 3: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 223℃의 융점, 0.98dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.5dl/g의 고유점도를 가지는 제2성분이 아닌 223℃의 융점, 1.35dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.35dl/g의 고유점도를 가지는 제2성분을 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a melting point of 223° C., not a second component having a melting point of 223° C., an intrinsic viscosity of 0.98 dl/g, and a melting point of 254° C., and a melting point of 0.5 dl/g, 1.35 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.35 dl/g.
비교예 4 : 폴리에스테르 복합섬유의 제조Comparative Example 4: Preparation of polyester composite fiber
실시예 1과 동일한 방법으로 폴리에스테르 복합섬유를 제조하였다. 다만, 실시예 1과 달리 223℃의 융점, 0.98dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.5dl/g의 고유점도를 가지는 제2성분이 아닌 223℃의 융점, 1.60dl/g의 고유점도를 가지는 제1성분 및 254℃의 융점, 0.75dl/g의 고유점도를 가지는 제2성분을 사용하여 폴리에스테르 복합섬유를 제조하였다.A polyester composite fiber was prepared in the same manner as in Example 1. However, unlike Example 1, a melting point of 223°C, not the first component having an intrinsic viscosity of 0.98 dl/g and a melting point of 254°C, and the second component having an intrinsic viscosity of 0.5 dl/g, 1.60 A polyester composite fiber was prepared using a first component having an intrinsic viscosity of dl/g, a melting point of 254°C, and a second component having an intrinsic viscosity of 0.75 dl/g.
실험예 1 : 폴리에스테르 복합섬유의 물성 측정Experimental Example 1: Measurement of physical properties of polyester composite fiber
실시예 1 ~ 8 및 비교예 1 ~ 4에서 제조된 폴리에스테르 복합섬유 각각을 하기 기재된 실험을 실시하고, 이를 통해 측정된 결과를 하기 표 1 ~ 3에 기재하였다.Each of the polyester conjugated fibers prepared in Examples 1 to 8 and Comparative Examples 1 to 4 was subjected to the following experiment, and the results measured through it are shown in Tables 1 to 3 below.
1. 강도 및 신도의 측정1. Measurement of strength and elongation
자동 인장 시험기(Textechno 사)을 사용하여 200 cm/min 의 속도, 50 cm 의 파지 거리를 적용하여 측정하였다. 강도 및 신도는 복합섬유에 일정한 힘을 주어 절단될 때까지 연신시켰을 때 걸린 하중을 데니어로 나눈 값(g/de)을 강도, 늘어난 길이에 대한 처음 길이를 백분율로 나타낸 값(%)을 신도로 정의하였다.It was measured by applying a speed of 200 cm/min and a gripping distance of 50 cm using an automatic tensile tester (manufactured by Textechno). Strength and elongation are the value (g/de) obtained by dividing the load applied to the composite fiber by the denier when it is stretched until it is cut by applying a certain force to the strength, and the value (%) representing the initial length to the elongated length as a percentage. Defined.
2. 방사조업성의 측정2. Measurement of radiation operability
방사조업성을 평가하기 위해 만관율(%)을 통해 측정하였으며, 만관율은 실시예 및 비교예에서 각각 제조한 폴리에스테르 복합섬유 8kg 드럼을 만권으로 하여 방사하였을 때의 절사없는 폴리에스테르 복합섬유의 수율로서, 하기 방정식 3에 의해 측정하였다.In order to evaluate the spinning operability, it was measured through the full pipe rate (%), and the full pipe rate of the polyester composite fibers without cutting when spun with an 8 kg drum of polyester composite fibers prepared in Examples and Comparative Examples respectively As a yield, it was measured by Equation 3 below.
[방정식 3][Equation 3]
3. 리소나 수축율(Leesona shrinkage, %) 및 잔존 수축율(Residual shrinkage, %) 측정3. Measurement of Leesona shrinkage (%) and residual shrinkage (%)
리소나 수축율 및 잔존 수축율은 각각 하기 방정식 1 및 2에 의해 측정하였다.The lysona shrinkage rate and the residual shrinkage rate were measured by the following equations 1 and 2, respectively.
[방정식 1][Equation 1]
상기 방정식 1에 있어서, 상기 리소나 수축율은 복합섬유에 20.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 20.5g의 하중을 적용한 상태에서 82±3℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 1, the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82±3° C. for 10 minutes while applying a load of 20.5 g. After drying for 3 minutes, the length (L 1 ) is measured after treatment.
[방정식 2][Equation 2]
상기 방정식 2에 있어서, 상기 잔존 수축율은 복합섬유에 1.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 1.5g의 하중을 적용한 상태에서 82±3℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 2, the residual shrinkage is measured by applying a load of 1.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82±3° C. for 10 minutes while applying a load of 1.5 g. After drying for a minute, the length (L 1 ) is measured after treatment.
표 1에서 확인할 수 있듯이, 실시예 1 ~ 4에서 제조된 폴리에스테르 복합섬유는 만관율, 리소나수축율, 잔존수축율이 동시에 우수하여 방사조업성 및 신축성이 모두 우수함을 확인할 수 있었다. 또한, 실시예 1 ~ 2에서 제조된 폴리에스테르 복합섬유와 비교하여 실시예 3 ~ 4에서 제조된 폴리에스테르 복합섬유의 만관율이 다소 저하되는 것을 알 수 있는데, 이를 제1성분과 제2성분의 중량비가 50 : 50 에서 가장 좋은 방사 조업성을 나타내는 것을 확인할 수 있었다.As can be seen in Table 1, the polyester composite fibers prepared in Examples 1 to 4 were excellent in both the full rate, lysona shrinkage rate, and residual shrinkage rate at the same time, so it was confirmed that both spinning operation and elasticity were excellent. In addition, compared to the polyester composite fibers prepared in Examples 1 to 2, it can be seen that the full rate of the polyester composite fibers prepared in Examples 3 to 4 is slightly lowered, which is the result of the first component and the second component. It was confirmed that the weight ratio of 50:50 showed the best spinning operability.
다음으로, 상기 표 2를 살펴보면, 실시예 5의 경우에는 실시예 1과 비교하여, 복합섬유의 섬도가 상이함으로 인해, 신도가 현저히 저하됨을 확인할 수 있었다.Next, looking at Table 2, in the case of Example 5, compared to Example 1, due to the different fineness of the composite fiber, it was confirmed that the elongation was significantly lowered.
또한, 실시예 6의 경우에는 실시예 1과 비교하여, 복합섬유의 섬도가 상이할 뿐만 아니라, 단면형태가 원형으로 인해, 강도가 다소 저하되고, 리소나 수축율 및 잔존수축율이 저하됨을 확인할 수 있었다.In addition, in the case of Example 6, compared to Example 1, not only the fineness of the conjugate fiber was different, but due to the circular cross-sectional shape, it was confirmed that the strength was slightly lowered, and the lysona shrinkage rate and the residual shrinkage rate were lowered. .
또한, 실시예 7 및 8의 경우에는 리소나수축율 및 잔존수축율은 만족한 수준으로 발현되나, 제1성분과 제2성분과의 고유점도 차이가 높음으로 인하여 실시예 1 ~ 4 보다 다소 저하된 만관율을 보임을 확인할 수 있었다.In addition, in the case of Examples 7 and 8, the lysona contraction rate and the residual contraction rate were expressed at a satisfactory level, but due to the high difference in intrinsic viscosity between the first component and the second component, the full pipe was slightly lower than that of Examples 1 to 4. It was confirmed that the rate was shown.
다음으로, 상기 표 3을 살펴보면, 비교예 1및 2와 같이 두 성분의 고유점도 차이가 목표하는 고유점도 차이 0.30 ~ 0.80 dl/g 보다 낮으면, 현저히 낮은 신축성을 발현하는 것을 확인할 수 있었다.Next, looking at Table 3, it was confirmed that, as in Comparative Examples 1 and 2, when the difference in intrinsic viscosity of the two components is lower than the target intrinsic viscosity difference 0.30 ~ 0.80 dl/g, remarkably low elasticity is expressed.
한편, 비교예 3과 같이 제1성분과 제2성분의 고유점도 차이가 목표하는 고유점도 차이 0.30 ~ 0.80 dl/g 보다 높으면 복합방사 시 발생하는 곡사의 수준이 심하여 방사 조업성이 상당히 불량해져서 만관율이 30% 수준으로 저하되는 것을 확인할 수 있었다. On the other hand, as in Comparative Example 3, if the difference in the intrinsic viscosity of the first component and the second component is higher than the target intrinsic viscosity difference 0.30 ~ 0.80 dl/g, the level of howitzer generated during complex spinning is severe and the spinning workability becomes considerably poor. It was confirmed that the rate was reduced to the level of 30%.
한편, 비교예 4와 같이 제1성분과 제2성분의 고유점도 차이가 목표하는 고유점도 차이 0.30 ~ 0.80 dl/g 보다 높으면 복합방사 시 발생하는 곡사의 수준이 심하여 방사 조업성이 상당히 불량해 져서 만관율이 40% 수준으로 저하되며, 제2성분의 고유점도가 높은 경우에는 신축 특성 또한 저하되는 것을 알 수 있다.On the other hand, as in Comparative Example 4, if the difference in intrinsic viscosity between the first component and the second component is higher than the target intrinsic viscosity difference 0.30 ~ 0.80 dl/g, the level of howitzer occurs during complex spinning is severe, and the spinning operability is considerably poor. It can be seen that the full coverage is reduced to 40% level, and when the intrinsic viscosity of the second component is high, the elasticity properties are also reduced.
본 발명의 단순한 변형이나 변경은 이 분야의 통상의 지식을 가진 자에 의해서 용이하게 실시될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.A simple modification or change of the present invention can be easily implemented by those of ordinary skill in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.
본 발명은 신축성이 우수한 폴리에스테르 복합섬유 및 이의 제조방법에 관한 것으로써, 보다 상세하게는 신축성이 더욱 향상되었을 뿐만 아니라 광택이 발생하지 않고 터치감이 우수한 폴리에스테르 복합섬유 및 이의 제조방법에 관한 것이다.The present invention relates to a polyester composite fiber having excellent elasticity and a method for manufacturing the same, and more particularly, to a polyester composite fiber having excellent elasticity and excellent touch without gloss and a method for manufacturing the same. .
Claims (9)
- 제1성분 및 제2성분을 복합방사하여 제조되는 폴리에스테르 복합섬유에 있어서,In the polyester composite fiber produced by composite spinning of the first component and the second component,상기 복합섬유는 0.60 ~ 0.80 dl/g의 고유점도를 가지는 사이드-바이-사이드 복합섬유이고,The composite fiber is a side-by-side composite fiber having an intrinsic viscosity of 0.60 to 0.80 dl/g,하기 방정식 1에 의해 측정된 리소나 수축율(%)이 15 ~ 30%인 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유.Polyester composite fiber having excellent elasticity, characterized in that the lysona shrinkage (%) measured by Equation 1 below is 15 to 30%.[방정식 1][Equation 1]상기 방정식 1에 있어서, 상기 리소나 수축율은 복합섬유에 20.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 20.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 1, the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
- 제1항에 있어서,The method of claim 1,상기 복합섬유는 하기 방정식 2에 의해 측정된 잔존 수축율(%)이 40 ~ 70%인 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유.The composite fiber is a polyester composite fiber having excellent elasticity, characterized in that the residual shrinkage (%) measured by Equation 2 below is 40 to 70%.[방정식 2][Equation 2]상기 방정식 2에 있어서, 상기 잔존 수축율은 복합섬유에 1.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 1.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 2, the residual shrinkage is measured by applying a load of 1.5 g to the composite fiber to measure the initial length (L 0 ), immersing it in hot water at 82° C. for 10 minutes and drying for 3 minutes while applying a load of 1.5 g. After treatment, the length (L 1 ) is measured.
- 제1항에 있어서,The method of claim 1,상기 제1성분은 폴리부텔렌테레프탈레이트(PBT)를 포함하고, The first component contains polybutelene terephthalate (PBT),상기 제2성분은 폴리에틸렌테레프탈레이트(PET)를 포함하는 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유. The second component is a polyester composite fiber having excellent elasticity, characterized in that it contains polyethylene terephthalate (PET).
- 제3항에 있어서,The method of claim 3,상기 복합섬유는 하기 관계식 1을 만족하는 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유.The composite fiber is a polyester composite fiber having excellent elasticity, characterized in that it satisfies the following relational formula 1.[관계식 1][Relationship 1]0.30 dl/g ≤ |A - B| ≤ 0.80 dl/g0.30 dl/g ≤ |A-B| ≤ 0.80 dl/g상기 관계식 1에 있어서, A는 제1성분의 고유점도를 나타내고, B는 제2성분의 고유점도를 나타낸다. In the above relational formula 1, A represents the intrinsic viscosity of the first component, and B represents the intrinsic viscosity of the second component.
- 제1항에 있어서,The method of claim 1,상기 복합섬유의 단면 형상은 땅콩형인 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유.Polyester composite fiber excellent in elasticity, characterized in that the cross-sectional shape of the composite fiber is a peanut type.
- 제1항에 있어서,The method of claim 1,상기 제1성분 및 제2성분은 각각 독립적으로, 전체 중량%에 대하여 소광제를 1.0 ~ 3.0 중량%로 포함하는 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유.The first component and the second component are each independently, a polyester composite fiber excellent in elasticity, characterized in that it contains 1.0 to 3.0% by weight of a matting agent based on the total weight%.
- 제6항에 있어서,The method of claim 6,상기 소광제는 산화티탄(TiO2), 산화아연(ZnO), 산화규소(SiO2) 및 황산바륨(BaSO4) 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유.The matting agent is a polyester composite fiber having excellent elasticity, characterized in that it contains at least one selected from titanium oxide (TiO 2 ), zinc oxide (ZnO), silicon oxide (SiO 2 ) and barium sulfate (BaSO 4 ).
- 제1성분 및 제2성분을 각각 용융시키는 제1단계; 및A first step of melting the first component and the second component, respectively; And상기 용융된 제1성분 및 제2성분을 복합방사하여 폴리에스테르 복합섬유를 제조하는 제2단계; 를 포함하고,A second step of producing a polyester composite fiber by composite spinning the melted first component and the second component; Including,제조된 복합섬유는 0.60 ~ 0.80 dl/g의 고유점도를 가지는 사이드-바이-사이드 복합섬유이고,The prepared composite fiber is a side-by-side composite fiber having an intrinsic viscosity of 0.60 ~ 0.80 dl/g,제조된 복합섬유는 하기 방정식 1에 의해 측정된 리소나 수축율(%)이 15 ~ 30%인 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유의 제조방법.The prepared composite fiber is a method of producing a polyester composite fiber having excellent elasticity, characterized in that the lysona shrinkage (%) measured by the following equation 1 is 15 to 30%.[방정식 1][Equation 1]상기 방정식 1에 있어서, 상기 리소나 수축율은 복합섬유에 20.5g의 하중을 적용하여 초기 길이(L0)를 측정하고, 20.5g의 하중을 적용한 상태에서 82℃의 온수에 10분간 침지하고 3분간 건조 후에 처리 후 길이(L1)를 측정한다.In Equation 1, the lysona shrinkage rate is measured by applying a load of 20.5 g to the composite fiber to measure the initial length (L 0 ), and immersing it in hot water at 82°C for 10 minutes while applying a load of 20.5 g for 3 minutes. After drying, the length (L 1 ) is measured after treatment.
- 제8항에 있어서,The method of claim 8,상기 복합섬유는 하기 방정식 3에 의해 측정된 만관율(%)이 80% 이상인 것을 특징으로 하는 신축성이 우수한 폴리에스테르 복합섬유의 제조방법.The composite fiber is a method for producing a polyester composite fiber having excellent elasticity, characterized in that the full rate (%) measured by Equation 3 below is 80% or more.[방정식 3][Equation 3]
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021572073A JP7320081B2 (en) | 2019-06-04 | 2020-05-11 | Polyester composite fiber with excellent stretchability and method for producing the same |
CN202080045760.8A CN114008255B (en) | 2019-06-04 | 2020-05-11 | Polyester composite fiber with good elasticity and preparation method thereof |
KR1020207014972A KR20220004930A (en) | 2019-06-04 | 2020-05-11 | Polyester composite fiber with excellent elasticity and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0066026 | 2019-06-04 | ||
KR20190066026 | 2019-06-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246719A1 true WO2020246719A1 (en) | 2020-12-10 |
Family
ID=73652408
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/006174 WO2020246719A1 (en) | 2019-06-04 | 2020-05-11 | Polyester composite fibers having excellent elasticity and preparation method thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7320081B2 (en) |
KR (1) | KR20220004930A (en) |
CN (1) | CN114008255B (en) |
WO (1) | WO2020246719A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220116918A (en) * | 2021-02-16 | 2022-08-23 | 도레이첨단소재 주식회사 | cation dyeable polyester complexfiber and method for manufacturing thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240014211A (en) * | 2022-07-25 | 2024-02-01 | 도레이첨단소재 주식회사 | Polyester complexfiber and method for manufacturing thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950001653A (en) * | 1993-06-08 | 1995-01-03 | 윤종용 | In yoke loading device |
KR20130131002A (en) * | 2012-05-23 | 2013-12-03 | 웅진케미칼 주식회사 | Flame-retardant low melting polyester fiber and manufacturing method thereof |
KR20130131001A (en) * | 2012-05-23 | 2013-12-03 | 웅진케미칼 주식회사 | Flame-retardant recycled low melting polyester fiber |
KR20160119915A (en) * | 2015-04-06 | 2016-10-17 | 주식회사 휴비스 | Polyester Complex Hollow Fiber And Warmth Filler Using That |
KR20170010167A (en) * | 2015-07-15 | 2017-01-26 | 주식회사 휴비스 | The Manufacturing Method For Good Bulky Polyester Complex Hollow Fiber And Warmth Filler Using That |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5551051B2 (en) * | 1973-04-02 | 1980-12-22 | ||
JPS5184924A (en) * | 1975-01-17 | 1976-07-24 | Kuraray Co | KOKENSHUKUSEIHORIESUTERUKEIFUKUGOSENI |
JPS5789617A (en) * | 1980-11-24 | 1982-06-04 | Kuraray Co Ltd | Composite fiber and its preparation |
JPS5813720A (en) * | 1981-07-14 | 1983-01-26 | Teijin Ltd | Production of nontorque crimped yarn with high stretchability |
JPS58169514A (en) * | 1982-03-26 | 1983-10-06 | Teijin Ltd | Polyester conjugated and crimped yarn |
JP3786435B2 (en) * | 1993-05-06 | 2006-06-14 | 帝人ファイバー株式会社 | Polyester composite yarn |
JP2898532B2 (en) * | 1994-01-31 | 1999-06-02 | 帝人株式会社 | Suede-like fabric manufacturing method |
JP3563160B2 (en) * | 1995-08-02 | 2004-09-08 | 株式会社クラレ | Longline |
JP3692931B2 (en) | 2000-12-11 | 2005-09-07 | 東レ株式会社 | POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME |
JP2007169806A (en) | 2005-12-20 | 2007-07-05 | Kaneka Corp | Fiber bundle for artificial hair and wig for head ornament using the same |
CN101851812B (en) * | 2009-12-18 | 2012-07-04 | 东丽纤维研究所(中国)有限公司 | Parallel composite elastic fiber and manufacture method thereof |
JP2014040683A (en) | 2012-08-22 | 2014-03-06 | Kuraray Co Ltd | Cation-dyeable split type conjugate fiber |
JP6282860B2 (en) | 2013-12-19 | 2018-02-21 | ユニチカトレーディング株式会社 | Method for producing polyester composite false twisted yarn |
WO2017202262A1 (en) | 2016-05-23 | 2017-11-30 | 东丽纤维研究所(中国)有限公司 | Parallel composite fibre |
-
2020
- 2020-05-11 CN CN202080045760.8A patent/CN114008255B/en active Active
- 2020-05-11 JP JP2021572073A patent/JP7320081B2/en active Active
- 2020-05-11 KR KR1020207014972A patent/KR20220004930A/en not_active Application Discontinuation
- 2020-05-11 WO PCT/KR2020/006174 patent/WO2020246719A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950001653A (en) * | 1993-06-08 | 1995-01-03 | 윤종용 | In yoke loading device |
KR20130131002A (en) * | 2012-05-23 | 2013-12-03 | 웅진케미칼 주식회사 | Flame-retardant low melting polyester fiber and manufacturing method thereof |
KR20130131001A (en) * | 2012-05-23 | 2013-12-03 | 웅진케미칼 주식회사 | Flame-retardant recycled low melting polyester fiber |
KR20160119915A (en) * | 2015-04-06 | 2016-10-17 | 주식회사 휴비스 | Polyester Complex Hollow Fiber And Warmth Filler Using That |
KR20170010167A (en) * | 2015-07-15 | 2017-01-26 | 주식회사 휴비스 | The Manufacturing Method For Good Bulky Polyester Complex Hollow Fiber And Warmth Filler Using That |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220116918A (en) * | 2021-02-16 | 2022-08-23 | 도레이첨단소재 주식회사 | cation dyeable polyester complexfiber and method for manufacturing thereof |
KR102557960B1 (en) | 2021-02-16 | 2023-07-19 | 도레이첨단소재 주식회사 | cation dyeable polyester complexfiber and method for manufacturing thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2022536095A (en) | 2022-08-12 |
JP7320081B2 (en) | 2023-08-02 |
CN114008255B (en) | 2023-11-14 |
KR20220004930A (en) | 2022-01-12 |
CN114008255A (en) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020190070A1 (en) | Cut resistant polyethylene yarn, method for manufacturing same, and protective article produced using same | |
WO2020246719A1 (en) | Polyester composite fibers having excellent elasticity and preparation method thereof | |
WO2020009271A1 (en) | Thermoplastic polyurethane yarn and fabric manufactured therefrom | |
WO2014014152A1 (en) | Synthetic leather production method using different liquid silicone rubber coating solutions | |
WO2016144105A1 (en) | Method for preparing high-strength synthetic fiber, and high-strength synthetic fiber prepared thereby | |
WO2009134063A2 (en) | Aramid tire cord and manufacturing method thereof | |
WO2015016675A1 (en) | C-shaped composite fiber, c-shaped hollow fiber thereof, fabric including same, and method for manufacturing same | |
WO2016021968A1 (en) | Modified cross-section hollow fiber, and fiber assembly using same | |
WO2015102297A1 (en) | Copolymerized aramid dope-dyed yarn and method for preparing same | |
WO2018124832A1 (en) | Lyocell fiber, nonwoven fabric aggregate comprising same, and mask pack sheet comprising same | |
WO2021025339A1 (en) | Core sheath-type composite false-twist textured yarn and method for manufacturing same | |
WO2021133114A1 (en) | Wet non-woven fabric and article comprising same | |
WO2021071251A1 (en) | Thermally adhesive fiber and fiber aggregate comprising same for motor vehicle interior material | |
WO2021071250A1 (en) | Thermal bonding fiber, and fiber assembly for automotive interior and exterior materials, comprising same | |
WO2014115940A1 (en) | Method for preparing cord yarn with excellent shape stability | |
WO2016003189A1 (en) | Thermal bonding conjugate fiber for nonwoven binder | |
WO2024025222A1 (en) | Polyester composite fiber and manufacturing method therefor | |
WO2021132972A1 (en) | Polyethylene yarn of high tenacity having high dimensional stability and method for manufacturing same | |
WO2016024721A1 (en) | Electrospinning apparatus comprising temperature adjustment device, preparation method, for nanofibers or nanomembrane, using same, and nanofibers or nanomembrane prepared by means of same | |
WO2022092854A1 (en) | Functional fabric | |
WO2021132769A1 (en) | Polyethylene yarn, manufacturing method therefor, and cooling sensation fabric including same | |
WO2022203183A1 (en) | Tire cord | |
WO2024076102A1 (en) | Polyethylene yarn having excellent thermal properties and method for manufacturing same | |
WO2015076540A1 (en) | Copolyester readily soluble in alkali, for preparing conjugate fiber, preparation method therefor, and conjugate fiber containing same | |
WO2023121212A1 (en) | Polyester nonwoven fabric with suppressed reduction in physical properties by tufting process, method for manufacturing same, and backing fabric for carpet comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20819261 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021572073 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20819261 Country of ref document: EP Kind code of ref document: A1 |