WO2023121212A1 - Polyester nonwoven fabric with suppressed reduction in physical properties by tufting process, method for manufacturing same, and backing fabric for carpet comprising same - Google Patents

Polyester nonwoven fabric with suppressed reduction in physical properties by tufting process, method for manufacturing same, and backing fabric for carpet comprising same Download PDF

Info

Publication number
WO2023121212A1
WO2023121212A1 PCT/KR2022/020817 KR2022020817W WO2023121212A1 WO 2023121212 A1 WO2023121212 A1 WO 2023121212A1 KR 2022020817 W KR2022020817 W KR 2022020817W WO 2023121212 A1 WO2023121212 A1 WO 2023121212A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
nonwoven fabric
component
based nonwoven
filament
Prior art date
Application number
PCT/KR2022/020817
Other languages
French (fr)
Korean (ko)
Inventor
강동헌
이민호
조희정
박영신
최우석
장정순
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2023121212A1 publication Critical patent/WO2023121212A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/55Polyesters
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G27/00Floor fabrics; Fastenings therefor
    • A47G27/02Carpets; Stair runners; Bedside rugs; Foot mats
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N7/00Flexible sheet materials not otherwise provided for, e.g. textile threads, filaments, yarns or tow, glued on macromolecular material
    • D06N7/0063Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf
    • D06N7/0071Floor covering on textile basis comprising a fibrous top layer being coated at the back with at least one polymer layer, e.g. carpets, rugs, synthetic turf characterised by their backing, e.g. pre-coat, back coating, secondary backing, cushion backing
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/04Floor or wall coverings; Carpets
    • D10B2503/041Carpet backings

Definitions

  • the present invention relates to a polyester nonwoven fabric in which reduction in physical properties due to a tufting process is suppressed, a method for manufacturing the same, and a foam fabric for carpet including the same.
  • the present invention relates to a polyester nonwoven fabric capable of producing a foam paper for carpet with excellent mechanical properties by significantly suppressing the decrease in physical properties before and after the ting process, a manufacturing method thereof, and a foam paper for carpet produced thereby.
  • a polyester-based nonwoven fabric made of polyester filament fibers is widely used as a carpet base fabric.
  • a tufting process in which carpet yarn is transplanted to the carpet foam paper by a needle is required.
  • Korean Patent Publication No. 1998-0061102 discloses that after forming filament fibers and a web using two polyester polymers, needle punching is performed, and a spun for carpet bubble paper is passed through a calender roll. A method for producing a bonded nonwoven fabric is exemplified.
  • the nonwoven fabric manufactured by this method still exhibits the disadvantage of greatly deteriorating physical properties after tufting, and is difficult to apply for carpet base paper.
  • Korean Patent Publication No. 2001-0053138 discloses a method of manufacturing carpet foam paper through a process of manufacturing deformed cross-section yarn by spinning polyester and polylactic acid (PLA) by a composite spinning method.
  • this method is not good in spinnability, spinning defects are likely to occur, and manufacturing costs increase due to the high price of polylactic acid.
  • the present invention has been made to solve the above problems, and the problem to be solved by the present invention is to control the components and physical properties of the first component filament and the second component filament to significantly suppress the degradation of physical properties before and after the tufting process. It is to provide a polyester-based nonwoven fabric, a manufacturing method thereof, and a foam paper for carpets including the same.
  • the present invention is a first component filament comprising a first polyester having a melting point of 250 °C to 300 °C;
  • a second component filament comprising a second polyester having a melting point of 160 ° C to 220 ° C;
  • Polyester-based nonwoven fabric characterized in that the stiffness before the tufting process measured by the measurement method specified in ASTM D 6125-97 is 100 mg to 300 mg in both the machine direction (MD) and the vertical direction (CD) provides
  • the machine direction stiffness (S MD ) and vertical direction stiffness (S CD ) of the polyester-based nonwoven fabric before the tufting process may satisfy the following Conditional Expression 1).
  • the first polyester may have an intrinsic viscosity of 0.65 dl/g to 0.80 dl/g.
  • the polyester-based nonwoven fabric may be formed by fusing the second component filaments.
  • the second polyester is at least one acid component selected from terephthalic acid, dimethyl terephthalate, isophthalic acid, and dimethyl isophthalate, 1,4-butanediol (BD), ethylene glycol (EG ) and neopentyl glycol (NPG).
  • BD 1,4-butanediol
  • EG ethylene glycol
  • NPG neopentyl glycol
  • the polyester-based nonwoven fabric has a deviation between the machine direction (MD) tensile strength (T MD,0 ) and the vertical direction (CD) tensile strength (T CD,0 ) before the tufting process.
  • T MD,0 ⁇ 0.05 or less
  • the reduction rate of tensile strength may be 60% or less in both the machine direction and the vertical direction.
  • the polyester-based nonwoven fabric may have both T MD,0 and T CD,0 of 25 kgf/5cm to 35 kgf/5cm before the tufting process.
  • the polyester-based nonwoven fabric may include the first component filaments and the second component filaments in a weight ratio of 85:15 to 90:10.
  • the polyester-based nonwoven fabric may have a machine direction heat shrinkage of 1.5% or less and a vertical direction heat shrinkage of 1.0% or less measured according to the following measurement method.
  • the polyester-based nonwoven fabric may have a tear strength of 7 kgf to 13 kgf in both the machine direction and the vertical direction before the tufting process.
  • the polyester-based nonwoven fabric may satisfy the following Conditional Expressions 2) and 3).
  • IV 1 and IV 2 represent the intrinsic viscosity of the first polyester and the intrinsic viscosity of the second polyester, respectively.
  • the first component filament has a fineness of 7 denier to 10 denier
  • the second component filament has a fineness of 2 deiner to 4 denier, respectively
  • the number of filaments of the first component filaments may be 2 to 5 times the number of filaments of the second component filaments.
  • the present invention also provides a foam paper for carpets comprising the polyester-based nonwoven fabric.
  • the present invention also includes the steps of: 1) forming a mixed fiber web by laminating a web by mixing a first polyester having a melting point of 250 ° C to 300 ° C and a second polyester having a melting point of 160 ° C to 220 ° C; and
  • polyester-based nonwoven fabric manufacturing method characterized in that for producing a nonwoven fabric having both the bending strength in the machine direction and the stiffness in the vertical direction before the tufting process, including 100 mg to 300 mg.
  • step 1) the first polyester and the second polyester are drawn at a speed of 4,500 m/min to 5,200 m/min, respectively, to form the first component filament and the second component filament, respectively.
  • the polyester-based nonwoven fabric according to the present invention can provide a polyester-based nonwoven fabric that is excellently maintained in tensile strength, tear strength, etc. even after the tufting process. Therefore, the polyester-based nonwoven fabric of the present invention can be usefully used for carpet base paper and can implement excellent mechanical properties.
  • the conventional nonwoven fabric for carpet base paper has disadvantages in that filaments are damaged in the tufting process during carpet manufacturing, resulting in deterioration in physical properties, poor spinnability of fibers, and high manufacturing cost.
  • the present invention provides a first component filament comprising a first polyester having a melting point of 250 ° C to 300 ° C;
  • a second component filament comprising a second polyester having a melting point of 160 ° C to 220 ° C;
  • Polyester-based nonwoven fabric characterized in that the stiffness before the tufting process measured by the measurement method specified in ASTM D 6125-97 is 100 mg to 300 mg in both the machine direction (MD) and the vertical direction (CD) provides
  • the present invention significantly suppresses a decrease in physical properties such as tear strength and tensile strength of the nonwoven fabric despite the tufting process for carpet manufacturing. It is possible to provide a polyester-based nonwoven fabric that can be.
  • the first component filament is produced by spinning high-melting polyester, and thus serves as a matrix fiber (filament) in the nonwoven fabric manufacturing process.
  • the second component filament is produced by spinning low-melting polyester, and thus serves as a binder fiber (filament) in the manufacturing process of nonwoven fabric.
  • the melting point of the first polyester of the first component filament is less than 250 ° C, the melting point difference with the second polyester serving as a binder decreases, and the usable temperature range for spinning may be reduced. Conversely, when the melting point exceeds 300° C., thermal decomposition of the second polyester at the spinning temperature may occur.
  • the melting point of the second polyester of the second component filament when the melting point of the second polyester of the second component filament is less than 160° C., heat shrinkage may occur during post-processing of the carpet base fabric including the polyester-based nonwoven fabric, resulting in poor dimensional stability. Conversely, if the melting point exceeds 220 ° C, the heat shrinkage rate of the nonwoven fabric is stable and the sheet may not be deformed during the carpet manufacturing process. There is a slight difference in elongation with the coating solution to be applied. Such subtle differences are not a problem in products immediately after manufacture, but as the usage period of the carpet increases, the latent stress due to the difference in elongation between the coating material and the nonwoven fabric may cause deformation of the carpet.
  • the stiffness of the nonwoven fabric is less than 100 mg, it has too soft properties to be used for carpets, so it is not well suited for carpets because it does not maintain its shape well, and if it exceeds 300 mg, excessively stiff results , there is a problem in that the physical properties of the nonwoven fabric are deteriorated due to damage or loss of fibers, generation of fluff, etc. during the tufting process.
  • the stiffness exceeds 300 mg, the nonwoven fabric is stiff and lacks flexibility, so wrinkles are easily generated, and workability may also deteriorate.
  • the machine direction stiffness (S MD ) and vertical direction stiffness (S CD ) of the polyester-based nonwoven fabric before the tufting process may satisfy the following Conditional Expression 1).
  • the polyester-based nonwoven fabric according to the present invention exhibits almost similar stiffness in the machine direction and the vertical direction, and if the above conditional expression 1 is not satisfied, that is, the S MD exceeds 1.05 times or 0.95 times the S CD If it is less than, the physical properties of the polyester-based nonwoven fabric in the tufting process may be greatly deteriorated.
  • S MD and S CD may satisfy the following Conditional Expression 1-1).
  • the first polyester may have an intrinsic viscosity of 0.65 dl/g to 0.80 dl/g. If the intrinsic viscosity exceeds 0.80 dl/g, the tensile strength of the first component filament and the tear strength of the polyester nonwoven fabric increase, but the stiffness of the nonwoven fabric is excessively increased or the pressure of the spinneret increases rapidly. As a result, problems such as leakage of the molten first polyester polymer may occur.
  • the polyester-based nonwoven fabric may be formed by fusing the second component filaments. Since the second polyester has a relatively low melting point compared to the first polyester, the second component filaments formed therefrom can be easily fused with the first component filaments when heat is applied. Therefore, according to the present invention in which the second component filaments are uniformly distributed in the nonwoven fabric together with the first component filaments, the first and second component filaments are easily adhered to each other even without a separate process such as needle punching. It can be made into a non-woven fabric.
  • the nonwoven fabric manufacturing process can be simplified according to the present invention, and the first and second component filaments included in the finally produced nonwoven fabric of the present invention may not have any damage caused by the needle punching process. .
  • the second polyester is at least one acid component selected from terephthalic acid, dimethyl terephthalate, isophthalic acid, and dimethyl isophthalate, 1,4-butanediol (BD), ethylene glycol (EG ) and neopentyl glycol (NPG).
  • BD 1,4-butanediol
  • EG ethylene glycol
  • NPG neopentyl glycol
  • the compound of acid component and diol component is not limited to the compounds listed above, and can be selected according to the purpose of the invention from compounds of acid component and diol component for polyester polymerization generally used in the art.
  • the polyester-based nonwoven fabric has a deviation between the machine direction (MD) tensile strength (T MD,0 ) and the vertical direction (CD) tensile strength (T CD,0 ) before the tufting process.
  • T MD,0 ⁇ 0.05 or less
  • the reduction rate of tensile strength after the tufting process may be 60% or less in both the machine direction and the vertical direction.
  • the tensile strength in the machine direction and the vertical direction before the tufting process has a uniform tensile strength of 5% or less of the vertical tensile strength (T CD,0 ), there is little difference in physical properties depending on the direction, During the tufting process, the defect rate can be greatly reduced, and after the tufting process, the reduction rate of tensile strength is less than 60% in both the machine direction and the vertical direction, so the deterioration of physical properties can be greatly suppressed.
  • the tensile strength reduction rate exceeds 60%, it may not be suitable for use as a carpet base paper because the tensile strength of the nonwoven fabric is significantly lowered after the tufting process.
  • the polyester-based nonwoven fabric may have both T MD,0 and T CD,0 of 25 kgf/5cm to 35 kgf/5cm before the tufting process.
  • any one of the tensile strength in the machine direction or the vertical direction before the tufting process is 25 kgf / 5 cm or less, the tensile strength is lowered after the tufting process and may not be suitable for using the nonwoven fabric for carpet base paper.
  • the tensile strength before the tufting process exceeds 35 kgf/5cm in either the machine direction or the vertical direction, the stiffness of the nonwoven fabric becomes excessively high, rather it becomes vulnerable to wrinkles, etc., and workability is poor or the physical properties before and after the tufting process There may be a problem in which the decrease in is significant.
  • the polyester-based nonwoven fabric may include the first component filaments and the second component filaments in a weight ratio of 85:15 to 90:10. If the content ratio of the second component filaments is less than 10% by weight, since the physical properties are similar to those of the nonwoven fabric composed of only the high melting point first component filaments, a nonwoven fabric satisfying the required strength cannot be manufactured, A separate process such as needle punching that causes filament breakage will be required for nonwoven fabric manufacturing.
  • the polyester-based nonwoven fabric may have a machine direction heat shrinkage of 1.5% or less and a vertical direction heat shrinkage of 1.0% or less measured according to the following measurement method.
  • the dimensional stability of the manufactured nonwoven fabric may be poor and may not be suitable for use as a carpet base paper.
  • the polyester-based nonwoven fabric may have a tear strength of 7 kgf to 13 kgf in both the machine direction and the vertical direction before the tufting process.
  • the tear strength is less than 7 kgf in the machine direction or vertical direction, the non-woven fabric is damaged during the tufting process, such as tearing, or the tear strength is lowered after the tufting process. There may be problems, and if it exceeds 13 kgf, problems such as excessive increase in stiffness or decrease in tensile strength may occur.
  • the polyester-based nonwoven fabric may satisfy the following Conditional Expressions 2) and 3).
  • IV 1 and IV 2 represent the intrinsic viscosity of the first polyester and the intrinsic viscosity of the second polyester, respectively.
  • the intrinsic viscosity of the second polyester is lower than the intrinsic viscosity of the first polyester, since it has a significantly lower melt viscosity than the first polyester at the spinning temperature, there may be a problem of spinnability due to the difference in viscosity,
  • the variation may be 5% to 12% relative to the intrinsic viscosity of the first polyester. If the intrinsic viscosity of the second polyester is greater than that of the first polyester by more than 12%, the internal pressure of the extruder increases and the nozzle is blocked during melt-spinning of the second component filament, which causes problems in the process. may occur, and due to the segmentation of the manufactured yarn, the fiber properties may be lowered and the tear strength of the nonwoven fabric may be lowered. In addition, when the difference between the intrinsic viscosity of the second polyester and the intrinsic viscosity of the first polyester is less than 5%, the effect of improving the strength of the yarn due to the production of high-viscosity fibers may be insignificant.
  • the first component filament has a fineness of 7 denier to 10 denier
  • the second component filament has a fineness of 2 denier to 4 denier, respectively
  • the number of filaments of the first component filament is the second component filament It may be included in 2 to 5 times the number of filaments of.
  • the fineness of the first component filaments is less than 7 denier, since the number of first component filaments per unit area increases, when the nonwoven fabric is used as a carpet base material and undergoes a tufting process, needles filaments will be significantly damaged, and as a result, deterioration of bubble paper properties due to the tufting process will become serious.
  • the fineness of the first filament exceeds 10 denier, the uniformity of the nonwoven fabric manufactured using this will be severely impaired and its commercial usefulness will be lost.
  • the second component filament when the fineness of the second component filament is less than 2 deiner, the second component filament may be cut during the cooling process.
  • the fineness of the second component filaments exceeds 4 denier, cooling of the second component filaments is not properly performed in a cooling process (for example, a cooling process performed immediately after web formation), so that the second component filaments are not properly cooled. Adhesion between the component filaments will cause the uniformity of the nonwoven fabric to deteriorate, resulting in a loss of commercial usefulness of the nonwoven fabric.
  • the present invention also provides a foam paper for carpets comprising the polyester-based nonwoven fabric.
  • the polyester-based nonwoven fabric of the present invention can properly suppress filament breakage during the tufting process for transplanting carpet yarns to exhibit excellent physical properties even after the tufting process, providing carpet base paper having excellent physical properties can do.
  • the polyester-based nonwoven fabric can be easily manufactured by thermally bonding the filaments constituting it, the manufacturing process is easy and simple, and the manufacturing cost can also be greatly reduced.
  • the present invention 1) forming a mixed fiber web by laminating a web by mixing a first polyester having a melting point of 250 ° C to 300 ° C and a second polyester having a melting point of 160 ° C to 220 ° C; and
  • the temperature of the hot air may preferably have a temperature of 0° C. to 5° C. or higher than the melting point of the second polyester.
  • step 1) the first polyester and the second polyester are drawn at a speed of 4,500 m/min to 5,200 m/min, respectively, to form the first component filament and the second component filament, respectively.
  • Components and physical properties of each of the first component filament, the second component filament, and the first polyester and the second polyester are the same as those described for the polyester-based nonwoven fabric, so they will be omitted.
  • non-woven fabric manufacturing process can be performed through a general non-woven fabric manufacturing process method, which is within the range that a person skilled in the art can easily select and carry out.
  • Polyester for matrix filament (manufactured by Kolon Industries, Inc., polymerizing terephthalic acid (TPA) and ethylene glycol (EG)) with a melting point of 255 ° C and an intrinsic viscosity (I.V.) of 0.65 dl / g and a melting point of 212 ° C
  • Low-melting copolyester for binder filaments with an intrinsic viscosity of 0.82 dl/g manufactured by Kolon Industries Co., Ltd., copolymerization of terephthalic acid (TPA), isophthalic acid (IPA), adipic acid (AA) and ethylene glycol (EG)) using a continuous extruder After melting using a, each was discharged through the spinning nozzle at the bottom of the continuous extruder and mixed spinning to prepare a first row of mixed yarn for web.
  • the weight ratio of the matrix filament and the binder filament was 90:10
  • the fineness of the matrix filament and the binder filament was 8.5
  • the prepared filament is laminated in the form of a web on a conveyor net by a conventional opening method, and then subjected to a calendering process using a heated smooth roll to impart smoothness and appropriate thickness, and binder filament
  • a spunbond nonwoven fabric for carpet base paper having a weight per unit area of 100 g/m 2 was prepared by thermal bonding with hot air at a melting point of +3° C. of the melting point copolyester.
  • a spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the matrix filaments were spun using polyester having an intrinsic viscosity of 0.78 dl/g. did
  • the binder filament was made of a low melting point copolyester (manufactured by Kolon Industries, Inc., copolymerized with terephthalic acid (TPA), isophthalic acid (IPA), adipic acid (AA) and ethylene glycol (EG)) having a melting point of 164 ° C.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • AA adipic acid
  • EG ethylene glycol
  • a spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the weight ratio of the matrix filament and the binder filament was adjusted to 85:15.
  • Example 2 The same method as in Example 1 was used, except that the polyester of the matrix filament and the binder filament were different as shown in Table 1, and thermally bonded with hot air at a temperature of +3° C., the melting point of the copolyester for binder filament. Thus, a spunbond nonwoven fabric for carpet foam paper was prepared.
  • a spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that polyester having an intrinsic viscosity of 0.57 dl/g was used as the matrix filament.
  • the binder filament is changed to a copolyester having a melting point of 156 ° C. (manufactured by Kolon Industries, Inc., copolymerization of terephthalic acid (TPA), isophthalic acid (IPA), adipic acid (AA) and ethylene glycol (EG)) and hot air at 159 ° C.
  • TPA terephthalic acid
  • IPA isophthalic acid
  • AA adipic acid
  • EG ethylene glycol
  • a spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the melting point of the binder filament was adjusted to 226° C. and thermally bonded with hot air at 229° C.
  • a spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the weight ratio of the matrix filament and the binder filament was changed to be 94:6.
  • a spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the weight ratio of the matrix filament and the binder filament was changed to be 80:20.
  • KS K 0536 Single Tongue
  • the tensile strength before the tufting process was measured using the measurement method specified in KS K 0521.
  • a specimen having a width ⁇ length 5 cm ⁇ 20 cm was fixed to a jig with a height of 5/5 cm using INSTRON's (USA) measuring equipment, and the tensile speed was measured at 200 mm/min.
  • the tensile strength after tufting was measured using the KS K 0521 method as described above after tufting using a small tufting machine having a width of 1.0 m.
  • the operating conditions of the tufting machine were pile height 5.0 mm, gauge 1.10 inch, stitch 1/13 inch, and operating speed 600 rpm, and the carpet yarn (BCF) used at this time was Hyosung Co., Ltd.
  • a carpet in the form of a single loop was manufactured using 1200 denier 96 filament triangular cross-section yarn of nylon 6 material manufactured by
  • Example 1 255 0.65 90 212 0.82 10 229/ 234 9.4/ 9.9 31.7/ 33.7 14.0/ 18.1 56/ 46 0.5/ 0.0
  • Example 2 255 0.78 90 212 0.82 10 254/269 10.5/ 10.9 32.5/ 33.9 16.6/ 18.3 49/ 46 0.4/ 0.0
  • Example 3 255 0.65 90 164 0.82 10 197/204 11.2/ 11.5 30.4/ 31.1 16.7/ 18.0 45/ 42 0.9/ 0.2
  • Example 4 255 0.65 85 212 0.82 15 265/273 8.4/ 8.6 33.2/ 32.1 13.6/ 13.8 59/ 57 0.6/
  • Comparative Example 2 has a problem that the melting point of the second component filament is too low, so that the heat shrinkage rate is high, and thus the dimensional stability of the nonwoven fabric is deteriorated.
  • Comparative Example 4 it can be seen that the content of the second component filaments is too low, and the tensile strength of the nonwoven fabric is significantly low, resulting in poor physical properties.
  • the nonwoven fabrics according to the Examples did not have a large tensile strength decrease rate before and after tufting and had a low heat shrinkage rate, so that they were suitable for use as carpet foam paper.
  • Example 7 it was confirmed that the difference in physical properties between the machine direction and the vertical direction was large, and the rate of decrease in tensile strength before and after tufting was large. .
  • the heat shrinkage rate is small and the tear strength is excellent. Therefore, it can be seen that the smaller the deviation in stiffness between the vertical and machine directions, the better the physical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

The present invention relates to a polyester nonwoven fabric with suppressed reduction in physical properties by a tufting process, a method for manufacturing same, and a backing fabric for a carpet, comprising same and, in particular, to: a polyester nonwoven fabric in which, by controlling the physical properties of fibers of a first component filament and a second filament, a reduction in physical properties is remarkably suppressed before/after a tufting process, thus enabling the manufacture of a carpet backing fabric with excellent mechanical properties; a method for manufacturing same; and a backing fabric for a carpet, manufactured thereby.

Description

터프팅 공정에 의한 물성 감소가 억제된 폴리에스테르 부직포, 그 제조방법 및 이를 포함하는 카페트용 기포지Polyester non-woven fabric with suppressed reduction in physical properties by tufting process, method for manufacturing the same, and foam paper for carpet including the same
본 발명은 터프팅 공정에 의한 물성 감소가 억제된 폴리에스테르 부직포, 그 제조방법 및 이를 포함하는 카페트용 기포지에 관한 발명으로서, 구체적으로는 제1 성분 필라멘트와 제2 필라멘트의 섬유 물성을 조절하여 터프팅 공정 전후로 물성의 감소를 현저히 억제하여 우수한 기계적 물성의 카페트용 기포지를 제조할 수 있는 폴리에스테르 부직포, 그 제조방법 및 이에 의하여 제조된 카페트용 기포지에 관한 발명이다.The present invention relates to a polyester nonwoven fabric in which reduction in physical properties due to a tufting process is suppressed, a method for manufacturing the same, and a foam fabric for carpet including the same. The present invention relates to a polyester nonwoven fabric capable of producing a foam paper for carpet with excellent mechanical properties by significantly suppressing the decrease in physical properties before and after the ting process, a manufacturing method thereof, and a foam paper for carpet produced thereby.
일반적으로 카페트 기포지로서 폴리에스테르 필라멘트 섬유로 이루어진 폴리에스테르계 부직포가 널리 사용되고 있다. 카페트 기포지를 이용해 카페트를 제조할 때는 니들(Needle)에 의하여 카페트사를 카페트 기포지에 이식하는 터프팅(Tufting) 공정이 필수적으로 요구된다.In general, a polyester-based nonwoven fabric made of polyester filament fibers is widely used as a carpet base fabric. When manufacturing a carpet using carpet foam paper, a tufting process in which carpet yarn is transplanted to the carpet foam paper by a needle is required.
상기 터프팅 공정에서 상기 폴리에스테르계 부직포를 이루는 필라멘트 섬유들이 니들에 의해 파손되어 부직포의 인장강도, 인열강력 등의 물성이 열화되는 문제점이 있다. 이러한 단점을 해결하기 위한 방법 중 하나로 한국 특허 공개 제1998-0061102호에는, 2가지 폴리에스테르 중합체를 이용해 필라멘트 섬유 및 웹을 형성한 후, 니들 펀칭을 실시하고, 캘린더롤을 통과시켜 카페트 기포지용 스펀 본드 부직포를 제조하는 방법이 예시되어 있다.In the tufting process, the filament fibers constituting the polyester-based nonwoven fabric are damaged by needles, and thus physical properties such as tensile strength and tear strength of the nonwoven fabric are deteriorated. As one of the methods for solving these disadvantages, Korean Patent Publication No. 1998-0061102 discloses that after forming filament fibers and a web using two polyester polymers, needle punching is performed, and a spun for carpet bubble paper is passed through a calender roll. A method for producing a bonded nonwoven fabric is exemplified.
그런데, 이러한 방법은 전체적인 제조 과정이 복잡할 뿐 아니라, 니들 펀칭에 의해 필라멘트 섬유를 결속시키는 과정에서 필라멘트 섬유의 파손이 나타나기 때문에 카페트사를 심는 터프팅 공정 후의 파손이 더욱 심각해진다.However, in this method, not only is the overall manufacturing process complicated, but also damage to the filament fibers after the tufting process of planting the carpet yarn becomes more serious because the filament fibers are damaged in the process of binding the filament fibers by needle punching.
따라서, 이러한 방법으로 제조된 부직포는 터프팅 후의 물성이 크게 저하되는 단점을 여전히 나타내며, 카페트 기포지용으로 적용하기에 곤란한 점이 있다.Therefore, the nonwoven fabric manufactured by this method still exhibits the disadvantage of greatly deteriorating physical properties after tufting, and is difficult to apply for carpet base paper.
또한, 한국 특허 공개 제2001-0053138호에는, 폴리에스테르와 폴리락트산(PLA)을 복합 방사법으로 방사해 이형단면사를 제조하는 과정 등을 거쳐 카페트 기포지를 제조하는 방법이 개시되어 있다. 그러나, 이러한 방법은 방사성이 좋지 않기 때문에 방사 결점이 발생하기 쉽고, 폴리유산의 높은 가격으로 제조원가가 높아진다.In addition, Korean Patent Publication No. 2001-0053138 discloses a method of manufacturing carpet foam paper through a process of manufacturing deformed cross-section yarn by spinning polyester and polylactic acid (PLA) by a composite spinning method. However, since this method is not good in spinnability, spinning defects are likely to occur, and manufacturing costs increase due to the high price of polylactic acid.
따라서, 보다 단순화된 공정 및 낮은 제조 원가로도 제조 가능하며, 터프팅 공정 후에도 양호한 물성을 가짐에 따라 카페트 기포지로 바람직하게 사용될 수 있는 부직포 및 이의 제조 방법이 계속적으로 요구되고 있다.Therefore, there is a continuous demand for a nonwoven fabric that can be manufactured with a simplified process and low manufacturing cost, and that can be preferably used as a carpet base material as it has good physical properties even after the tufting process and a manufacturing method thereof.
본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 해결하고자 하는 과제는 제1 성분 필라멘트 및 제2 성분 필라멘트의 성분과 물성을 조절하여 터프팅 공정 전후로 물성의 저하를 현저히 억제할 수 있는 폴리에스테르계 부직포, 그 제조방법과 이를 포함하는 카페트용 기포지를 제공하는 것이다.The present invention has been made to solve the above problems, and the problem to be solved by the present invention is to control the components and physical properties of the first component filament and the second component filament to significantly suppress the degradation of physical properties before and after the tufting process. It is to provide a polyester-based nonwoven fabric, a manufacturing method thereof, and a foam paper for carpets including the same.
상술한 과제를 해결하기 위하여, 본 발명은 250℃ 내지 300℃의 융점을 갖는 제1 폴리에스테르를 포함하는 제1 성분 필라멘트; 및In order to solve the above problems, the present invention is a first component filament comprising a first polyester having a melting point of 250 ℃ to 300 ℃; and
160℃ 내지 220℃의 융점을 갖는 제2 폴리에스테르를 포함하는 제2 성분 필라멘트;를 포함하며,A second component filament comprising a second polyester having a melting point of 160 ° C to 220 ° C;
ASTM D 6125-97로 규정된 측정법에 의하여 측정된 터프팅 공정 전의 강연도(Stiffness)가 기계방향(MD) 및 수직방향(CD)으로 모두 100 mg 내지 300 mg인 것을 특징으로 하는 폴리에스테르계 부직포를 제공한다.Polyester-based nonwoven fabric, characterized in that the stiffness before the tufting process measured by the measurement method specified in ASTM D 6125-97 is 100 mg to 300 mg in both the machine direction (MD) and the vertical direction (CD) provides
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포의 터프팅 공정 전의 기계방향 강연도(SMD)와 수직방향 강연도(SCD)가 하기 조건식 1)을 만족할 수 있다.In a preferred embodiment of the present invention, the machine direction stiffness (S MD ) and vertical direction stiffness (S CD ) of the polyester-based nonwoven fabric before the tufting process may satisfy the following Conditional Expression 1).
1) 0.95 ≤ SMD/SCD ≤ 1.051) 0.95 ≤ S MD /S CD ≤ 1.05
본 발명의 바람직한 일실시예에 있어서, 상기 제1 폴리에스테르는 고유점도가 0.65dl/g 내지 0.80 dl/g일 수 있다.In a preferred embodiment of the present invention, the first polyester may have an intrinsic viscosity of 0.65 dl/g to 0.80 dl/g.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 상기 제2 성분 필라멘트가 융착되어 형성된 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may be formed by fusing the second component filaments.
본 발명의 바람직한 일실시예에 있어서, 상기 제2 폴리에스테르는 테레프탈산, 디메틸 테레프탈레이트, 이소프탈산, 및 디메틸 이소프탈레이트 중에서 선택된 하나 이상의 산 성분과, 1,4-부탄디올(BD), 에틸렌글리콜(EG) 및 네오펜틸글리콜(NPG) 중에서 선택된 하나 이상의 디올 성분의 공중합에 의하여 형성된 코폴리에스테르일 수 있다.In a preferred embodiment of the present invention, the second polyester is at least one acid component selected from terephthalic acid, dimethyl terephthalate, isophthalic acid, and dimethyl isophthalate, 1,4-butanediol (BD), ethylene glycol (EG ) and neopentyl glycol (NPG).
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 터프팅 공정 전의 기계 방향(MD) 인장강도(TMD,0)와 수직 방향(CD) 인장강도(TCD,0) 간의 편차가 TCD,0×0.05 이하이며,In a preferred embodiment of the present invention, the polyester-based nonwoven fabric has a deviation between the machine direction (MD) tensile strength (T MD,0 ) and the vertical direction (CD) tensile strength (T CD,0 ) before the tufting process. T CD,0 × 0.05 or less,
터프팅 공정 후 인장강도의 감소율이 기계방향 및 수직방향 모두 60% 이하인 것일 수 있다.After the tufting process, the reduction rate of tensile strength may be 60% or less in both the machine direction and the vertical direction.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 터프팅 공정 전 TMD,0 및 TCD,0 모두 25 kgf/5cm 내지 35 kgf/5cm인 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may have both T MD,0 and T CD,0 of 25 kgf/5cm to 35 kgf/5cm before the tufting process.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 상기 제1 성분 필라멘트와 상기 제2 성분 필라멘트를 85:15 내지 90:10의 중량비로 포함할 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may include the first component filaments and the second component filaments in a weight ratio of 85:15 to 90:10.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 하기 측정방법에 따라 측정된 기계 방향 열수축률이 1.5% 이하이며, 수직 방향 열수축률이 1.0% 이하인 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may have a machine direction heat shrinkage of 1.5% or less and a vertical direction heat shrinkage of 1.0% or less measured according to the following measurement method.
[측정방법][measurement method]
기계방향과 수직방향으로 각각 25cm×25cm 크기의 부직포 시편에 20cm×20cm 크기의 무늬를 그리고, 이를 마티스 오븐(mathis oven)을 이용하여 예열판에서 180℃로 3분간 예열 후 꺼내어 수축된 길이를 측정하여 수축률을 계산한다.Draw a pattern of 20 cm × 20 cm on a nonwoven fabric specimen measuring 25 cm × 25 cm in the machine direction and the vertical direction, respectively, preheat it on a preheating plate at 180 ° C for 3 minutes using a mathis oven, and then take it out and measure the contracted length. to calculate the shrinkage rate.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 터프팅 공정 전의 인열강력이 기계방향 및 수직방향으로 모두 7 kgf 내지 13 kgf인 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may have a tear strength of 7 kgf to 13 kgf in both the machine direction and the vertical direction before the tufting process.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 하기 조건식 2) 및 3)을 만족하는 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may satisfy the following Conditional Expressions 2) and 3).
2) I.V.2 > I.V.1 2) IV 2 > IV 1
3) 0.05 ≤ (I.V.2-I.V.1)/I.V.1 ≤ 0.503) 0.05 ≤ (IV 2 -IV 1 )/IV 1 ≤ 0.50
상기 조건식 2) 및 3)에 있어서, 상기 I.V.1 및 I.V.2는 각각 제1 폴리에스테르의 고유점도 및 제2 폴리에스테르의 고유점도를 나타낸다.In Conditional Expressions 2) and 3), IV 1 and IV 2 represent the intrinsic viscosity of the first polyester and the intrinsic viscosity of the second polyester, respectively.
본 발명의 바람직한 일실시예에 있어서, 상기 제1 성분 필라멘트는 7 denier 내지 10 denier, 제2 성분 필라멘트는 2 deiner 내지 4 denier의 섬도를 각각 가지며,In a preferred embodiment of the present invention, the first component filament has a fineness of 7 denier to 10 denier, and the second component filament has a fineness of 2 deiner to 4 denier, respectively,
제1 성분 필라멘트의 필라멘트 개수가 제2 성분 필라멘트의 필라멘트 개수의 2배수 내지 5배수로 포함된 것일 수 있다.The number of filaments of the first component filaments may be 2 to 5 times the number of filaments of the second component filaments.
본 발명은 또한, 상기 폴리에스테르계 부직포를 포함하는 카페트용 기포지를 제공한다.The present invention also provides a foam paper for carpets comprising the polyester-based nonwoven fabric.
본 발명은 또한, 1) 융점이 250℃ 내지 300℃인 제1 폴리에스테르 및 융점이 160℃ 내지 220℃인 제2 폴리에스테르를 혼섬방사하여 웹 적층하여 혼섬 웹을 형성하는 단계; 및The present invention also includes the steps of: 1) forming a mixed fiber web by laminating a web by mixing a first polyester having a melting point of 250 ° C to 300 ° C and a second polyester having a melting point of 160 ° C to 220 ° C; and
2) 상기 혼섬 웹(web)을 상기 제2 폴리에스테르의 융점보다 0℃ 내지 10℃ 이상의 온도를 갖는 열풍으로 열접착하는 단계;2) thermally bonding the mixed fiber web with hot air having a temperature of 0° C. to 10° C. or more above the melting point of the second polyester;
를 포함하여 터프팅 공정 전 기계방향 굽힘강도 및 수직방향 강연도가 모두 100 mg 내지 300 mg인 부직포를 제조하는 것을 특징으로 하는 폴리에스테르계 부직포 제조방법을 제공한다.It provides a polyester-based nonwoven fabric manufacturing method characterized in that for producing a nonwoven fabric having both the bending strength in the machine direction and the stiffness in the vertical direction before the tufting process, including 100 mg to 300 mg.
본 발명의 바람직한 일실시예에 있어서, 상기 1) 단계에서 제1 폴리에스테르 및 제2 폴리에스테르를 각각 4,500 m/min 내지 5,200 m/min의 속도로 연신하여 각각 제1 성분 필라멘트 및 제2 성분 필라멘트를 형성할 수 있다.In a preferred embodiment of the present invention, in step 1), the first polyester and the second polyester are drawn at a speed of 4,500 m/min to 5,200 m/min, respectively, to form the first component filament and the second component filament, respectively. can form
본 발명에 따른 폴리에스테르계 부직포는 터프팅 공정 후에도 인장강도, 인열 강력 등이 우수하게 유지되는 폴리에스테르계 부직포를 제공할 수 있다. 따라서, 본 발명의 폴리에스테르계 부직포는 카페트 기포지용으로 유용하게 사용될 수 있고, 우수한 기계적 물성을 구현할 수 있다.The polyester-based nonwoven fabric according to the present invention can provide a polyester-based nonwoven fabric that is excellently maintained in tensile strength, tear strength, etc. even after the tufting process. Therefore, the polyester-based nonwoven fabric of the present invention can be usefully used for carpet base paper and can implement excellent mechanical properties.
이하, 본 발명의 상세한 구성 및 효과에 대하여 설명한다.Hereinafter, the detailed configuration and effects of the present invention will be described.
상술한 바와 같이, 종래의 카페트 기포지용 부직포는 카페트 제조시 터프팅 공정에서 필라멘트가 손상되어 물성이 저하하고, 섬유의 방사성이 나쁘거나 제조 원가가 높은 단점이 있었다.As described above, the conventional nonwoven fabric for carpet base paper has disadvantages in that filaments are damaged in the tufting process during carpet manufacturing, resulting in deterioration in physical properties, poor spinnability of fibers, and high manufacturing cost.
본 발명은 이러한 문제점을 해결하기 위하여 본 발명은 250℃ 내지 300℃의 융점을 갖는 제1 폴리에스테르를 포함하는 제1 성분 필라멘트; 및In order to solve this problem, the present invention provides a first component filament comprising a first polyester having a melting point of 250 ° C to 300 ° C; and
160℃ 내지 220℃의 융점을 갖는 제2 폴리에스테르를 포함하는 제2 성분 필라멘트;를 포함하며,A second component filament comprising a second polyester having a melting point of 160 ° C to 220 ° C;
ASTM D 6125-97로 규정된 측정법에 의하여 측정된 터프팅 공정 전의 강연도(Stiffness)가 기계방향(MD) 및 수직방향(CD)으로 모두 100 mg 내지 300 mg인 것을 특징으로 하는 폴리에스테르계 부직포를 제공한다.Polyester-based nonwoven fabric, characterized in that the stiffness before the tufting process measured by the measurement method specified in ASTM D 6125-97 is 100 mg to 300 mg in both the machine direction (MD) and the vertical direction (CD) provides
상기와 같은 물성을 갖는 섬유의 조합 및 상기와 같은 물성을 갖는 부직포를 제공함에 따라서, 본 발명은 카페트 제조를 위한 터프팅 공정에도 불구하고 부직포의 인열강력, 인장강도 등의 물성의 감소를 현저히 억제할 수 있는 폴리에스테르계 부직포를 제공할 수 있다.By providing a combination of fibers having the above physical properties and a nonwoven fabric having the above physical properties, the present invention significantly suppresses a decrease in physical properties such as tear strength and tensile strength of the nonwoven fabric despite the tufting process for carpet manufacturing. It is possible to provide a polyester-based nonwoven fabric that can be.
상기 제1 성분 필라멘트는 고융점 폴리에스테르를 방사하여 제조하는 결과 부직포 제조 과정에서 매트릭스 섬유(필라멘트)의 역할을 하게 된다.The first component filament is produced by spinning high-melting polyester, and thus serves as a matrix fiber (filament) in the nonwoven fabric manufacturing process.
또한, 상기 제2 성분 필라멘트는 저융점 폴리에스테르를 방사하여 제조하는 결과 부직포 제조 과정에서 바인더 섬유(필라멘트)의 역할을 하게 된다.In addition, the second component filament is produced by spinning low-melting polyester, and thus serves as a binder fiber (filament) in the manufacturing process of nonwoven fabric.
만일 제1 성분 필라멘트의 제1 폴리에스테르의 융점이 250℃ 미만인 경우, 바인더 역할을 하는 제2 폴리에스테르와의 융점 차이가 감소하여, 방사 가능한 가용 온도 범위가 줄어들 수 있고. 반대로 융점이 300℃를 초과하는 경우, 방사 온도에서의 제2 폴리에스테르의 열분해가 발생할 수 있다.If the melting point of the first polyester of the first component filament is less than 250 ° C, the melting point difference with the second polyester serving as a binder decreases, and the usable temperature range for spinning may be reduced. Conversely, when the melting point exceeds 300° C., thermal decomposition of the second polyester at the spinning temperature may occur.
또한, 제2 성분 필라멘트의 제2 폴리에스테르의 융점이 160℃ 미만인 경우, 상기 폴리에스테르계 부직포를 포함하는 카페트 기포지를 후가공하는 과정에서 열수축이 발생해 치수 안정성이 떨어질 수 있다. 반대로, 융점이 220℃를 초과하는 경우, 부직포의 열수축률이 안정되어 카페트 제조공정 중에 시트의 변형이 나타나지 않을 수 있으나, 카페트의 고온 코팅 및 열처리, 건조 공정에서 부직포의 유연성이 낮아져 부직포 하단에 코팅되는 코팅액과의 미세한 신장률의 차이가 나타난다. 이러한 미세한 차이는 제조 직후의 제품에서는 문제가 되지 않으나, 카페트의 사용 기간이 늘어나면서 코팅 재료와 부직포의 신장률 차이에 의한 잠재응력이 카페트의 변형을 유발할 수 있다.In addition, when the melting point of the second polyester of the second component filament is less than 160° C., heat shrinkage may occur during post-processing of the carpet base fabric including the polyester-based nonwoven fabric, resulting in poor dimensional stability. Conversely, if the melting point exceeds 220 ° C, the heat shrinkage rate of the nonwoven fabric is stable and the sheet may not be deformed during the carpet manufacturing process. There is a slight difference in elongation with the coating solution to be applied. Such subtle differences are not a problem in products immediately after manufacture, but as the usage period of the carpet increases, the latent stress due to the difference in elongation between the coating material and the nonwoven fabric may cause deformation of the carpet.
또한, 만일 상기 부직포의 강연도가 100 mg 미만인 경우, 카페트용으로 사용되기에 지나치게 부드러운 특성을 갖게 되므로 형태 유지가 잘 되지 않아 카페트용으로 부적합한 문제가 있으며, 300 mg를 초과하는 경우, 지나치게 뻣뻣한 결과, 터프팅 공정 중에 섬유의 손상이나 탈락, 보풀 발생 등에 의하여 부직포의 물성이 저하되게 되는 문제가 있다. 또한, 강연도가 300 mg를 초과하는 경우에는 부직포가 뻣뻣하고 유연성이 부족해져 주름이 생기기 쉬워지며, 작업성이 저하되는 문제 또한 있을 수 있다.In addition, if the stiffness of the nonwoven fabric is less than 100 mg, it has too soft properties to be used for carpets, so it is not well suited for carpets because it does not maintain its shape well, and if it exceeds 300 mg, excessively stiff results , there is a problem in that the physical properties of the nonwoven fabric are deteriorated due to damage or loss of fibers, generation of fluff, etc. during the tufting process. In addition, when the stiffness exceeds 300 mg, the nonwoven fabric is stiff and lacks flexibility, so wrinkles are easily generated, and workability may also deteriorate.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포의 터프팅 공정 전의 기계방향 강연도(SMD)와 수직방향 강연도(SCD)가 하기 조건식 1)을 만족할 수 있다.In a preferred embodiment of the present invention, the machine direction stiffness (S MD ) and vertical direction stiffness (S CD ) of the polyester-based nonwoven fabric before the tufting process may satisfy the following Conditional Expression 1).
1) 0.95 ≤ SMD/SCD ≤ 1.051) 0.95 ≤ S MD /S CD ≤ 1.05
즉, 본 발명에 따른 폴리에스테르계 부직포는 기계방향과 수직방향으로의 강연도가 거의 유사하게 나타나며, 만일 상기 조건식 1을 만족하지 못하는 경우, 즉 SMD가 SCD의 1.05배를 초과하거나 0.95배 미만인 경우, 터프팅 공정에서의 폴리에스테르계 부직포의 물성 저하가 크게 나타날 수 있다. 바람직하게는 SMD와 SCD는 하기 조건식 1-1)을 만족할 수 있다.That is, the polyester-based nonwoven fabric according to the present invention exhibits almost similar stiffness in the machine direction and the vertical direction, and if the above conditional expression 1 is not satisfied, that is, the S MD exceeds 1.05 times or 0.95 times the S CD If it is less than, the physical properties of the polyester-based nonwoven fabric in the tufting process may be greatly deteriorated. Preferably, S MD and S CD may satisfy the following Conditional Expression 1-1).
1-1) 0.98 ≤ SMD/SCD ≤ 1.031-1) 0.98 ≤ S MD /S CD ≤ 1.03
본 발명의 바람직한 일실시예에 있어서, 상기 제1 폴리에스테르는 고유점도가 0.65 dl/g 내지 0.80 dl/g일 수 있다. 만일 고유점도가 0.80 dl/g을 초과하는 경우, 제1 성분 필라멘트의 인장강도 및 폴리에스테르계 부직포의 인열강력은 상승하지만, 부직포의 강연도가 과도하게 상승되거나, 방사 구금의 압력이 급속히 상승하게 되어, 용융된 제1 폴리에스테르 중합체가 누출(leak)되는 등의 문제가 발생할 수 있다. 그러나, 반대로 고유 점도가 0.65 dl/g 이하인 경우, 필라멘트 인장강도 및 부직포 인열강력이 저하되며, 터프팅 공정 후에 인장강도가 크게 감소하게 되는 문제가 있을 수 있다.In a preferred embodiment of the present invention, the first polyester may have an intrinsic viscosity of 0.65 dl/g to 0.80 dl/g. If the intrinsic viscosity exceeds 0.80 dl/g, the tensile strength of the first component filament and the tear strength of the polyester nonwoven fabric increase, but the stiffness of the nonwoven fabric is excessively increased or the pressure of the spinneret increases rapidly. As a result, problems such as leakage of the molten first polyester polymer may occur. However, conversely, when the intrinsic viscosity is 0.65 dl/g or less, the tensile strength of the filament and the tear strength of the nonwoven fabric are lowered, and there may be a problem in that the tensile strength is greatly reduced after the tufting process.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 상기 제2 성분 필라멘트가 융착되어 형성된 것일 수 있다. 상기 제2 폴리에스테르는 제1 폴리에스테르에 비하여 상대적으로 낮은 융점을 가지고 있어, 이로부터 형성된 제2 성분 필라멘트는 열이 가해질 경우, 상기 제1 성분 필라멘트와 쉽게 융착될 수 있다. 따라서, 상기 제2 성분 필라멘트들이 상기 제1 성분 필라멘트들과 함께 상기 부직포 내에 균일하게 분포되어 있는 본 발명에 의하면, 니들 펀칭 등의 공정을 별도로 진행하지 않더라도 제1 및 제2 성분 필라멘트들끼리 쉽게 접착되어 부직포가 제조될 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may be formed by fusing the second component filaments. Since the second polyester has a relatively low melting point compared to the first polyester, the second component filaments formed therefrom can be easily fused with the first component filaments when heat is applied. Therefore, according to the present invention in which the second component filaments are uniformly distributed in the nonwoven fabric together with the first component filaments, the first and second component filaments are easily adhered to each other even without a separate process such as needle punching. It can be made into a non-woven fabric.
따라서, 본 발명에 의하여 부직포 제조 공정을 간소화할 수 있고, 최종적으로 생산된 본 발명의 부직포에 포함되어 있는 상기 제1 및 제2 성분 필라멘트들은 니들 펀칭 공정으로 인해 야기되는 손상을 전혀 갖지 않을 수 있다.Therefore, the nonwoven fabric manufacturing process can be simplified according to the present invention, and the first and second component filaments included in the finally produced nonwoven fabric of the present invention may not have any damage caused by the needle punching process. .
본 발명의 바람직한 일실시예에 있어서, 상기 제2 폴리에스테르는 테레프탈산, 디메틸 테레프탈레이트, 이소프탈산, 및 디메틸 이소프탈레이트 중에서 선택된 하나 이상의 산 성분과, 1,4-부탄디올(BD), 에틸렌글리콜(EG) 및 네오펜틸글리콜(NPG) 중에서 선택된 하나 이상의 디올 성분의 공중합에 의하여 형성된 코폴리에스테르일 수 있다.In a preferred embodiment of the present invention, the second polyester is at least one acid component selected from terephthalic acid, dimethyl terephthalate, isophthalic acid, and dimethyl isophthalate, 1,4-butanediol (BD), ethylene glycol (EG ) and neopentyl glycol (NPG).
그러나, 산 성분과 디올 성분의 화합물이 상기 열거된 화합물로 한정되는 것은 아니며, 당업계에서 일반적으로 사용되는 폴리에스테르 중합을 위한 산 성분 및 디올 성분의 화합물 가운데에서 발명의 목적에 따라 선택할 수 있다.However, the compound of acid component and diol component is not limited to the compounds listed above, and can be selected according to the purpose of the invention from compounds of acid component and diol component for polyester polymerization generally used in the art.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 터프팅 공정 전의 기계 방향(MD) 인장강도(TMD,0)와 수직 방향(CD) 인장강도(TCD,0) 간의 편차가 TCD,0×0.05 이하이며, 터프팅 공정 후 인장강도의 감소율이 기계방향 및 수직방향 모두 60% 이하인 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric has a deviation between the machine direction (MD) tensile strength (T MD,0 ) and the vertical direction (CD) tensile strength (T CD,0 ) before the tufting process. T CD,0 × 0.05 or less, and the reduction rate of tensile strength after the tufting process may be 60% or less in both the machine direction and the vertical direction.
본 발명은 터프팅 공정 전에 기계 방향과 수직 방향으로의 인장 강도 크기가 수직 방향 인장강도(TCD,0)의 5% 이하로서 균일한 인장 강도 크기를 갖기 때문에 방향에 따른 물성 차이가 거의 없고, 터프팅 공정 시 불량률을 크게 감소시 킬 수 있으며, 터프팅 공정 후에는 기계방향과 수직방향 모두에 대하여 인장강도의 감소율이 60% 이하로서 물성의 저하를 크게 억제할 수 있다.In the present invention, since the tensile strength in the machine direction and the vertical direction before the tufting process has a uniform tensile strength of 5% or less of the vertical tensile strength (T CD,0 ), there is little difference in physical properties depending on the direction, During the tufting process, the defect rate can be greatly reduced, and after the tufting process, the reduction rate of tensile strength is less than 60% in both the machine direction and the vertical direction, so the deterioration of physical properties can be greatly suppressed.
만일 인장강도의 감소율이 60%를 초과하는 경우 터프팅 공정 후에 부직포의 인장강도가 현저히 낮아지기 때문에 카페트 기포지로 사용하기에 적절하지 않을 수 있다.If the tensile strength reduction rate exceeds 60%, it may not be suitable for use as a carpet base paper because the tensile strength of the nonwoven fabric is significantly lowered after the tufting process.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 터프팅 공정 전 TMD,0 및 TCD,0 모두 25 kgf/5cm 내지 35 kgf/5cm인 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may have both T MD,0 and T CD,0 of 25 kgf/5cm to 35 kgf/5cm before the tufting process.
만일 터프팅 공정 전의 기계방향 또는 수직방향의 인장강도 중 어느 하나 이상이 25 kgf/5cm 이하인 경우, 터프팅 공정 후에 인장강도가 저하되어 카페트 기포지용으로 부직포를 사용하기에 적절하지 않을 수 있다. 또한, 반대로 터프팅 공정 전의 인장강도가 기계방향으로든 수직방향으로든 35 kgf/5cm을 초과하는 경우, 부직포의 강연도가 지나치게 높아지게 되는 바, 오히려 구김 등에 취약해지고 작업성이 떨어지거나 터프팅 공정 전후로 물성의 감소가 현저해지게 되는 문제가 있을 수 있다.If any one of the tensile strength in the machine direction or the vertical direction before the tufting process is 25 kgf / 5 cm or less, the tensile strength is lowered after the tufting process and may not be suitable for using the nonwoven fabric for carpet base paper. In addition, on the contrary, if the tensile strength before the tufting process exceeds 35 kgf/5cm in either the machine direction or the vertical direction, the stiffness of the nonwoven fabric becomes excessively high, rather it becomes vulnerable to wrinkles, etc., and workability is poor or the physical properties before and after the tufting process There may be a problem in which the decrease in is significant.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 상기 제1 성분 필라멘트와 상기 제2 성분 필라멘트를 85:15 내지 90:10의 중량비로 포함할 수 있다. 만일 상기 제2 성분 필라멘트의 함량비가 10 중량% 미만인 경우, 상기 고융점의 제1 성분 필라멘트만으로 이루어진 부직포와 물성이 유사해지기 때문에, 열접착만으로는 요구되는 강도를 만족시키는 부직포가 제조될 수 없으며, 필라멘트 파손을 야기하는 니들펀칭 등의 별도의 공정이 부직포 제조를 위하여 요구될 것이다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may include the first component filaments and the second component filaments in a weight ratio of 85:15 to 90:10. If the content ratio of the second component filaments is less than 10% by weight, since the physical properties are similar to those of the nonwoven fabric composed of only the high melting point first component filaments, a nonwoven fabric satisfying the required strength cannot be manufactured, A separate process such as needle punching that causes filament breakage will be required for nonwoven fabric manufacturing.
반면, 상기 제2 성분 필라멘트의 함량비가 15 중량%를 초과하는 경우, 부직포 내 접착제 성분이 너무 많아지기 때문에 상기 부직포가 카페트용 기포지로 사용될 경우 터프팅 공정에 의한 필라멘트 파손이 발생할 것이고, 그 결과 터프팅 공정에 의한 기포지 물성 저하가 심각해질 것이다.On the other hand, when the content ratio of the filaments of the second component exceeds 15% by weight, the adhesive component in the nonwoven fabric becomes too large, so when the nonwoven fabric is used as a base fabric for carpet, filament damage will occur due to the tufting process, resulting in tough The deterioration of the properties of the bubble paper due to the tinting process will become serious.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 하기 측정방법에 따라 측정된 기계 방향 열수축률이 1.5% 이하이며, 수직 방향 열수축률이 1.0% 이하인 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may have a machine direction heat shrinkage of 1.5% or less and a vertical direction heat shrinkage of 1.0% or less measured according to the following measurement method.
[측정방법][measurement method]
기계방향과 수직방향으로 각각 25cm×25cm 크기의 부직포 시편에 20cm×20cm 크기의 무늬를 그리고, 이를 마티스 오븐(mathis oven)을 이용하여 예열판에서 180℃로 3분간 예열 후 꺼내어 수축된 길이를 측정하여 수축률을 계산한다.Draw a pattern of 20 cm × 20 cm on a nonwoven fabric specimen measuring 25 cm × 25 cm in the machine direction and the vertical direction, respectively, preheat it on a preheating plate at 180 ° C for 3 minutes using a mathis oven, and then take it out and measure the contracted length. to calculate the shrinkage rate.
상기 기계방향의 열수축률이 1.5%를 초과하거나, 수직방향의 열수축률이 1.0%를 초과하는 경우, 제조된 부직포의 치수 안정성이 떨어져서 카페트 기포지용으로 사용하기에 적합하지 않을 수 있다.If the heat shrinkage in the machine direction exceeds 1.5% or the heat shrinkage in the vertical direction exceeds 1.0%, the dimensional stability of the manufactured nonwoven fabric may be poor and may not be suitable for use as a carpet base paper.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 터프팅 공정 전의 인열강력이 기계방향 및 수직방향으로 모두 7 kgf 내지 13 kgf인 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may have a tear strength of 7 kgf to 13 kgf in both the machine direction and the vertical direction before the tufting process.
인열강력이 기계방향 또는 수직방향으로 7 kgf 미만인 경우, 터프팅 공정 중 부직포가 찢어지는 등 부직포에 손상이 발생하거나, 터프팅 공정 후 인열강력의 저하에 의하여 카페트용 기포지로 적합하게 사용할 수 없게 되는 문제가 있을 수 있고, 13 kgf를 초과하는 경우, 강연도의 과도한 상승이나 인장강도의 저하와 같은 문제가 발생할 수 있다.If the tear strength is less than 7 kgf in the machine direction or vertical direction, the non-woven fabric is damaged during the tufting process, such as tearing, or the tear strength is lowered after the tufting process. There may be problems, and if it exceeds 13 kgf, problems such as excessive increase in stiffness or decrease in tensile strength may occur.
본 발명의 바람직한 일실시예에 있어서, 상기 폴리에스테르계 부직포는 하기 조건식 2) 및 3)을 만족하는 것일 수 있다.In a preferred embodiment of the present invention, the polyester-based nonwoven fabric may satisfy the following Conditional Expressions 2) and 3).
2) I.V.2 > I.V.1 2) IV 2 > IV 1
3) 0.05 ≤ (I.V.2 - I.V.1)/I.V.1 ≤ 0.503) 0.05 ≤ (IV 2 - IV 1 )/IV 1 ≤ 0.50
상기 조건식 2) 및 3)에 있어서, 상기 I.V.1 및 I.V.2는 각각 제1 폴리에스테르의 고유점도 및 제2 폴리에스테르의 고유점도를 나타낸다.In Conditional Expressions 2) and 3), IV 1 and IV 2 represent the intrinsic viscosity of the first polyester and the intrinsic viscosity of the second polyester, respectively.
상기 조건식 2) 및 3)을 만족함으로써 본 발명의 목적 달성을 위한 터프팅 공정 전의 부직포 굽힘 강도, 인장 강도 및 인열 강도를 만족할 수 있다.By satisfying Conditional Expressions 2) and 3), it is possible to satisfy bending strength, tensile strength, and tear strength of the nonwoven fabric before the tufting process for achieving the object of the present invention.
만일, 제2 폴리에스테르의 고유 점도가 제1 폴리에스테르의 고유 점도보다 낮은 경우 방사 온도에서 제1 폴리에스테르에 비해 현저히 낮은 용융 점도를 가지기 때문에, 점도의 차이로 인한 방사성의 문제가 있을 수 있으며, 그 편차는 제1 폴리에스테르의 고유 점도에 대하여 5% 내지 12%일 수 있다. 만일 제2 폴리에스테르의 고유 점도가 제1 폴리에스테르의 고유 점도보다 12%를 초과하여 더 클 경우, 제2 성분 필라멘트를 용융 방사하는 과정에서 익스트루더의 내압을 증가시키고 노즐을 막아 공정상의 문제가 일어날 수 있으며, 제조된 원사의 분절로 인해 섬유 물성이 저하되고 부직포의 인열강력이 저하되는 원인이 될 수 있다. 또한, 제2 폴리에스테르의 고유 점도와 제1 폴리에스테르의 고유 점도의 편차가 5% 미만인 경우 고점도 섬유의 제조로 인한 원사의 강력 향상 효과가 미미할 수 있다.If the intrinsic viscosity of the second polyester is lower than the intrinsic viscosity of the first polyester, since it has a significantly lower melt viscosity than the first polyester at the spinning temperature, there may be a problem of spinnability due to the difference in viscosity, The variation may be 5% to 12% relative to the intrinsic viscosity of the first polyester. If the intrinsic viscosity of the second polyester is greater than that of the first polyester by more than 12%, the internal pressure of the extruder increases and the nozzle is blocked during melt-spinning of the second component filament, which causes problems in the process. may occur, and due to the segmentation of the manufactured yarn, the fiber properties may be lowered and the tear strength of the nonwoven fabric may be lowered. In addition, when the difference between the intrinsic viscosity of the second polyester and the intrinsic viscosity of the first polyester is less than 5%, the effect of improving the strength of the yarn due to the production of high-viscosity fibers may be insignificant.
본 발명의 바람직한 일실시예에 있어서, 상기 제1 성분 필라멘트는 7 denier 내지 10 denier, 제2 성분 필라멘트는 2 denier 내지 4 denier의 섬도를 각각 가지며, 제1 성분 필라멘트의 필라멘트 개수가 제2 성분 필라멘트의 필라멘트 개수의 2 내지 5배수로 포함된 것일 수 있다.In a preferred embodiment of the present invention, the first component filament has a fineness of 7 denier to 10 denier, the second component filament has a fineness of 2 denier to 4 denier, respectively, and the number of filaments of the first component filament is the second component filament It may be included in 2 to 5 times the number of filaments of.
만일, 상기 제1 성분 필라멘트의 섬도가 7 denier 미만이면, 단위 면적당 제1 성분 필라멘트의 개수가 많아지기 때문에, 상기 부직포가 카페트용 기포지로 사용되어 터프팅 공정을 거치게 될 경우, 니들(needle)에 의한 필라멘트의 파손이 상당히 발생하게 될 것이고, 그 결과 터프팅 공정에 의한 기포지 물성 저하가 심각해질 것이다. 반면, 제1 필라멘트의 섬도가 10 denier를 초과하게 되면, 이것을 이용하여 제조된 부직포의 균일성이 심각하게 저해되어 그 상업적 유용성을 상실하게 될 것이다.If the fineness of the first component filaments is less than 7 denier, since the number of first component filaments per unit area increases, when the nonwoven fabric is used as a carpet base material and undergoes a tufting process, needles filaments will be significantly damaged, and as a result, deterioration of bubble paper properties due to the tufting process will become serious. On the other hand, if the fineness of the first filament exceeds 10 denier, the uniformity of the nonwoven fabric manufactured using this will be severely impaired and its commercial usefulness will be lost.
또한, 상기 제2 성분 필라멘트의 섬도가 2 deiner 미만이면, 냉각 공정에서 상기 제2 성분 필라멘트의 절단이 발생할 수 있다. 반면에, 상기 제2 성분 필라멘트의 섬도가 4 denier를 초과하는 경우, 냉각 공정(예를 들어, 웹 형성 직후 수행되는 냉각 공정)에서 상기 제2 성분 필라멘트의 냉각이 적절히 수행되지 않기 때문에 상기 제2 성분 필라멘트들끼리의 접착이 야기되어 부직포의 균일성이 저하되고, 그 결과 부직포의 상업적 유용성이 상실될 것이다.In addition, when the fineness of the second component filament is less than 2 deiner, the second component filament may be cut during the cooling process. On the other hand, when the fineness of the second component filaments exceeds 4 denier, cooling of the second component filaments is not properly performed in a cooling process (for example, a cooling process performed immediately after web formation), so that the second component filaments are not properly cooled. Adhesion between the component filaments will cause the uniformity of the nonwoven fabric to deteriorate, resulting in a loss of commercial usefulness of the nonwoven fabric.
본 발명은 또한, 상기 폴리에스테르계 부직포를 포함하는 카페트용 기포지를 제공한다.The present invention also provides a foam paper for carpets comprising the polyester-based nonwoven fabric.
상술한 바와 같은 구성을 가짐으로써, 본 발명의 폴리에스테르계 부직포는 카페트사의 이식을 위한 터프팅 공정시 필라멘트 파손이 적절히 억제되어 터프팅 공정 후에도 우수한 물성을 나타낼 수 있어 우수한 물성을 갖는 카페트 기포지를 제공할 수 있다. 또한, 상기 폴리에스테르계 부직포는 이를 이루는 필라멘트들을 열접착시켜 용이하게 제조될 수 있으므로, 제조 공정이 용이하고 단순하며, 그 제조 단가 또한 크게 낮출 수 있다.By having the configuration as described above, the polyester-based nonwoven fabric of the present invention can properly suppress filament breakage during the tufting process for transplanting carpet yarns to exhibit excellent physical properties even after the tufting process, providing carpet base paper having excellent physical properties can do. In addition, since the polyester-based nonwoven fabric can be easily manufactured by thermally bonding the filaments constituting it, the manufacturing process is easy and simple, and the manufacturing cost can also be greatly reduced.
이하에서는, 상기의 폴리에스테르계 부직포의 제조방법에 대하여 구체적으로 설명한다.Hereinafter, the manufacturing method of the polyester-based nonwoven fabric will be described in detail.
본 발명은, 1) 융점이 250℃ 내지 300℃인 제1 폴리에스테르 및 융점이 160℃ 내지 220℃인 제2 폴리에스테르를 혼섬방사하여 웹 적층하여 혼섬 웹을 형성하는 단계; 및The present invention, 1) forming a mixed fiber web by laminating a web by mixing a first polyester having a melting point of 250 ° C to 300 ° C and a second polyester having a melting point of 160 ° C to 220 ° C; and
2) 상기 혼섬 웹(web)을 상기 제2 폴리에스테르의 융점보다 0℃ 내지 10℃ 이상의 온도를 갖는 열풍으로 열접착하는 단계;를 포함하여 터프팅 공정 전 기계방향 굽힘강도 및 수직방향 강연도가 모두 100 mg 내지 300 mg인 부직포를 제조하는 것을 특징으로 하는 폴리에스테르계 부직포 제조방법을 제공한다.2) thermally bonding the mixed fiber web with hot air having a temperature of 0 ° C to 10 ° C higher than the melting point of the second polyester; It provides a method for producing a polyester-based nonwoven fabric, characterized in that for producing a nonwoven fabric of 100 mg to 300 mg.
상기 열풍의 온도는 바람직하게는 상기 제2 폴리에스테르의 융점보다 0℃ 내지 5℃ 이상의 온도를 갖는 것일 수 있다.The temperature of the hot air may preferably have a temperature of 0° C. to 5° C. or higher than the melting point of the second polyester.
본 발명의 바람직한 일실시예에 있어서, 상기 1) 단계에서 제1 폴리에스테르 및 제2 폴리에스테르를 각각 4,500 m/min 내지 5,200 m/min의 속도로 연신하여 각각 제1 성분 필라멘트 및 제2 성분 필라멘트를 형성할 수 있다.In a preferred embodiment of the present invention, in step 1), the first polyester and the second polyester are drawn at a speed of 4,500 m/min to 5,200 m/min, respectively, to form the first component filament and the second component filament, respectively. can form
이와 같은 속도로 연신함에 따라서, 상술한 바와 같은 범위의 섬도를 갖는 제1 성분 필라멘트 및 제2 성분 필라멘트를 얻을 수 있다.By stretching at such a speed, it is possible to obtain the first component filament and the second component filament having fineness within the above range.
각 제1 성분 필라멘트, 제2 성분 필라멘트 및 제1 폴리에스테르와 제2 폴리에스테르의 성분 및 물성에 관하여서는 상기 폴리에스테르계 부직포에 관하여 설명한 부분과 동일하므로 생략하기로 한다.Components and physical properties of each of the first component filament, the second component filament, and the first polyester and the second polyester are the same as those described for the polyester-based nonwoven fabric, so they will be omitted.
부직포 제조 공정의 다른 단계는 일반적인 부직포 제조 공정 방법을 통하여 수행할 수 있고, 이는 통상의 기술자가 용이하게 선택 실시할 수 있는 범위 내에 있는 것들이다.Other steps of the non-woven fabric manufacturing process can be performed through a general non-woven fabric manufacturing process method, which is within the range that a person skilled in the art can easily select and carry out.
이하에서는, 구체적인 실시예를 통하여 본 발명의 구체적인 효과를 설명하도록 한다. 그러나, 본 발명의 권리범위가 이하의 실시예로 한정 해석되는 것은 아니며, 이하의 실시예들은 본 발명의 이해를 돕기 위하여 제공되는 예시적인 실시 태양에 불과함을 이해하여야 할 것이다.Hereinafter, specific effects of the present invention will be described through specific examples. However, it should be understood that the scope of the present invention is not limited to the following examples, and the following examples are merely exemplary embodiments provided to aid understanding of the present invention.
<실시예><Example>
실시예 1Example 1
융점이 255℃이고, 고유점도(intrinsic viscosity, I.V.)가 0.65 dl/g인 매트릭스 필라멘트용 폴리에스테르(코오롱인더스트리㈜ 제조, 테레프탈산(TPA)과 에틸렌글리콜(EG)을 중합)와 융점이 212℃이고 고유점도가 0.82 dl/g인 바인더 필라멘트용 저융점 코폴리에스테르(코오롱인더스트리㈜ 제조, 테레프탈산(TPA), 이소프탈산(IPA), 아디프산(AA)과 에틸렌글리콜(EG) 공중합)를 연속 압출기를 이용하여 녹인 다음, 각각 연속압출기의 하단의 방사노즐을 통해 토출시키고 혼섬방사하여 제1열의 웹용 혼섬사를 제조하였다. 혼섬사는 매트릭스 필라멘트와 바인더 필라멘트의 중량비가 90:10가 되도록 하였고, 상기 매트릭스 필라멘트와 바인더 필라멘트의 섬도가 각각 8.5 denier, 3.5 denier가 되도록 하였다.Polyester for matrix filament (manufactured by Kolon Industries, Inc., polymerizing terephthalic acid (TPA) and ethylene glycol (EG)) with a melting point of 255 ° C and an intrinsic viscosity (I.V.) of 0.65 dl / g and a melting point of 212 ° C Low-melting copolyester for binder filaments with an intrinsic viscosity of 0.82 dl/g (manufactured by Kolon Industries Co., Ltd., copolymerization of terephthalic acid (TPA), isophthalic acid (IPA), adipic acid (AA) and ethylene glycol (EG)) using a continuous extruder After melting using a, each was discharged through the spinning nozzle at the bottom of the continuous extruder and mixed spinning to prepare a first row of mixed yarn for web. In the mixed yarn, the weight ratio of the matrix filament and the binder filament was 90:10, and the fineness of the matrix filament and the binder filament was 8.5 denier and 3.5 denier, respectively.
또한, 상기 방사노즐로부터 방출된 연속 필라멘트를 냉각풍으로 고화시킨 후, 고압의 공기 연신장치를 이용하여 방사속도가 5,000m/min이 되도록 연신시켰다.In addition, after solidifying the continuous filament discharged from the spinning nozzle with cooling air, it was stretched at a spinning speed of 5,000 m/min using a high-pressure air stretching device.
이후, 상기 제조된 필라멘트를 통상의 개섬법에 의하여 컨베이어 네트(net) 상에 웹의 형태로 적층시킨 후 가열된 스무스(smooth) 롤에 의한 캘린더 공정을 거쳐 평활성과 적정한 두께를 부여하고, 바인더 필라멘트용 저융점 코폴리에스테르의 융점 +3℃의 열풍으로 열접착하여 단위면적당 중량이 100 g/m2인 카페트 기포지용 스펀본드 부직포를 제조하였다.Thereafter, the prepared filament is laminated in the form of a web on a conveyor net by a conventional opening method, and then subjected to a calendering process using a heated smooth roll to impart smoothness and appropriate thickness, and binder filament A spunbond nonwoven fabric for carpet base paper having a weight per unit area of 100 g/m 2 was prepared by thermal bonding with hot air at a melting point of +3° C. of the melting point copolyester.
실시예 2Example 2
실시예 1과 동일하게 실시하되, 상기 매트릭스 필라멘트를 고유점도가 0.78dl/g인 폴리에스테르를 사용하여 방사한 점을 제외하고는 실시예 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.A spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the matrix filaments were spun using polyester having an intrinsic viscosity of 0.78 dl/g. did
실시예 3Example 3
상기 바인더 필라멘트를 융점이 164℃인 저융점 코폴리에스테르(코오롱인더스트리㈜ 제조, 테레프탈산(TPA), 이소프탈산(IPA), 아디프산(AA)과 에틸렌글리콜(EG) 공중합)로 하고, 167 ℃의 열풍으로 열접착한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.The binder filament was made of a low melting point copolyester (manufactured by Kolon Industries, Inc., copolymerized with terephthalic acid (TPA), isophthalic acid (IPA), adipic acid (AA) and ethylene glycol (EG)) having a melting point of 164 ° C. A spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that it was thermally bonded with hot air.
실시예 4Example 4
상기 매트릭스 필라멘트와 바인더 필라멘트의 중량비를 85:15로 조절한 점을 달리한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.A spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the weight ratio of the matrix filament and the binder filament was adjusted to 85:15.
실시예 5 내지 7Examples 5 to 7
상기 매트릭스 필라멘트와 바인더 필라멘트의 폴리에스테르를 표 1에 나타난 것과 같이 달리 하고, 바인더 필라멘트용 코폴리에스테르의 융점 +3℃ 온도의 열풍으로 열접착한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.The same method as in Example 1 was used, except that the polyester of the matrix filament and the binder filament were different as shown in Table 1, and thermally bonded with hot air at a temperature of +3° C., the melting point of the copolyester for binder filament. Thus, a spunbond nonwoven fabric for carpet foam paper was prepared.
비교예 1Comparative Example 1
상기 매트릭스 필라멘트를 고유점도가 0.57dl/g인 폴리에스테르를 사용한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.A spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that polyester having an intrinsic viscosity of 0.57 dl/g was used as the matrix filament.
비교예 2Comparative Example 2
상기 바인더 필라멘트를 융점이 156℃인 코폴리에스테르(코오롱인더스트리㈜ 제조, 테레프탈산(TPA), 이소프탈산(IPA), 아디프산(AA)과 에틸렌글리콜(EG) 공중합)로 달리하고 159℃의 열풍으로 열접착한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.The binder filament is changed to a copolyester having a melting point of 156 ° C. (manufactured by Kolon Industries, Inc., copolymerization of terephthalic acid (TPA), isophthalic acid (IPA), adipic acid (AA) and ethylene glycol (EG)) and hot air at 159 ° C. A spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that it was thermally bonded.
비교예 3Comparative Example 3
상기 바인더 필라멘트의 융점을 226℃로 조절하고, 229℃의 열풍으로 열접착한 것을 제외하고는, 실시예 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.A spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the melting point of the binder filament was adjusted to 226° C. and thermally bonded with hot air at 229° C.
비교예 4Comparative Example 4
매트릭스 필라멘트와 바인더 필라멘트의 중량비가 94:6이 되도록 달리한 점을 제외하고는 실시예 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.A spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the weight ratio of the matrix filament and the binder filament was changed to be 94:6.
비교예 5Comparative Example 5
상기 매트릭스 필라멘트와 바인더 필라멘트의 중량비가 80:20이 되도록 달리한 점을 제외하고는 실시에 1과 동일한 방법을 사용하여 카페트 기포지용 스펀본드 부직포를 제조하였다.A spunbond nonwoven fabric for carpet base paper was prepared in the same manner as in Example 1, except that the weight ratio of the matrix filament and the binder filament was changed to be 80:20.
<실험예><Experimental example>
실험예 1: 부직포 강연도(Stiffness)(mg) 측정Experimental Example 1: Measurement of stiffness (mg) of nonwoven fabric
실시예 및 비교예에 따라서 제조된 폴리에스테르 부직포의 강연도는 ASTM D 6125-97에 규정된 방법에 따라, Gurley Precision Instruments (Troy, New York)로부터 제작되는 Bending Resistance Tester를 이용하였다.For the stiffness of the polyester nonwoven fabric prepared according to Examples and Comparative Examples, a Bending Resistance Tester manufactured by Gurley Precision Instruments (Troy, New York) was used according to the method specified in ASTM D 6125-97.
실험예 2: 인열강력(kgf) 측정Experimental Example 2: Measurement of tear strength (kgf)
KS K 0536(Single Tongue) 법에 따라서 스펀본드 부직포를 7.6cm×20cm 크기의 시편을 절단하여 인장속도 300mm/min 속도로 만능인장시험기(Instron)를 이용하여 인열강력을 측정하였다.According to the KS K 0536 (Single Tongue) method, a specimen of 7.6 cm × 20 cm in size was cut from the spunbond nonwoven fabric and the tear strength was measured using a universal tensile tester (Instron) at a tensile speed of 300 mm / min.
실험예 3: 인장강도(kgf/5cm) 측정Experimental Example 3: Measurement of tensile strength (kgf/5cm)
터프팅(tufting) 공정 전의 인장 강도는 KS K 0521에 규정된 측정방법을 이용하여 측정하였다.The tensile strength before the tufting process was measured using the measurement method specified in KS K 0521.
구체적으로는 가로×세로=5cm×20cm 크기의 시편을 INSTRON사(미국)의 측정 장비를 이용하여 상하 5/5cm의 지그에 고정하고, 인장속도 200mm/min에서 측정하였다.Specifically, a specimen having a width × length = 5 cm × 20 cm was fixed to a jig with a height of 5/5 cm using INSTRON's (USA) measuring equipment, and the tensile speed was measured at 200 mm/min.
터프팅 후의 인장 강도는 폭 1.0m의 소형 터프팅기를 이용하여 터프팅한 후, 상기와 같은 KS K 0521법을 이용하여 측정하였다.The tensile strength after tufting was measured using the KS K 0521 method as described above after tufting using a small tufting machine having a width of 1.0 m.
이 때, 터프팅기의 운전 조건은 파일(pile) 높이 5.0mm, 게이지(gauge) 1.10인치, 스티치(stitch) 1/13인치, 운전 속도 600 rpm이었고, 이 때 사용한 카페트사(BCF)는 ㈜효성에서 제조한 나일론 6 소재의 1200 데니어 96 필라멘트 삼각단면사를 사용하여 싱글 루프(single loop) 형태의 카페트를 제조하였다.At this time, the operating conditions of the tufting machine were pile height 5.0 mm, gauge 1.10 inch, stitch 1/13 inch, and operating speed 600 rpm, and the carpet yarn (BCF) used at this time was Hyosung Co., Ltd. A carpet in the form of a single loop was manufactured using 1200 denier 96 filament triangular cross-section yarn of nylon 6 material manufactured by
실험예 4: 열수축률(%) 측정Experimental Example 4: Thermal contraction rate (%) measurement
가로×세로 = 25cm×25cm 크기의 부직포 시편에 20cm×20cm의 무늬를 그린다. 이를 마티스 오븐(Mathis oven, Daelim Starlet 社)을 이용하여 예열판에서 180℃로 3분간 예열 후 꺼내어, 수축된 길이를 통해 수축률을 계산하였다.Draw a pattern of 20 cm × 20 cm on a non-woven fabric specimen with a size of width × length = 25 cm × 25 cm. After preheating at 180 ° C. for 3 minutes on a preheating plate using a Mathis oven (Mathis oven, Daelim Starlet Co.), the shrinkage rate was calculated through the shrunk length.
상기의 실험 결과들을 하기의 표 1에 각각 나타내었다.The above experimental results are shown in Table 1 below, respectively.
구분division 제1 성분
융점, I.V., 함량
(℃, dl/g, wt%)
first component
melting point, IV, content
(℃, dl/g, wt%)
제2 성분
융점, I.V., 함량
(℃, dl/g, wt%)
second component
melting point, IV, content
(℃, dl/g, wt%)
강연도
(mg)
MD/CD
strength
(mg)
MD/CD
인열강력
(kgf)
MD/CD
tear strength
(kgf)
MD/CD
인장강도
(kgf/5cm)
MD/CD
tensile strength
(kgf/5cm)
MD/CD
열수축률
(%)
MD/CD
heat shrinkage rate
(%)
MD/CD
터프팅
tufting
jeon
터프팅
tufting
after
감소율
(%)
decrease rate
(%)
실시예 1Example 1 255255 0.650.65 9090 212212 0.820.82 1010 229/
234
229/
234
9.4/
9.9
9.4/
9.9
31.7/
33.7
31.7/
33.7
14.0/
18.1
14.0/
18.1
56/
46
56/
46
0.5/
0.0
0.5/
0.0
실시예 2Example 2 255255 0.780.78 9090 212212 0.820.82 1010 254/269254/269 10.5/
10.9
10.5/
10.9
32.5/
33.9
32.5/
33.9
16.6/
18.3
16.6/
18.3
49/
46
49/
46
0.4/
0.0
0.4/
0.0
실시예 3Example 3 255255 0.650.65 9090 164164 0.820.82 1010 197/204197/204 11.2/
11.5
11.2/
11.5
30.4/
31.1
30.4/
31.1
16.7/
18.0
16.7/
18.0
45/
42
45/
42
0.9/
0.2
0.9/
0.2
실시예 4Example 4 255255 0.650.65 8585 212212 0.820.82 1515 265/273265/273 8.4/
8.6
8.4/
8.6
33.2/
32.1
33.2/
32.1
13.6/
13.8
13.6/
13.8
59/
57
59/
57
0.6/
0.0
0.6/
0.0
실시예 5Example 5 267267 0.690.69 9090 201201 0.790.79 1010 248/260248/260 8.1/
8.3
8.1/
8.3
31.6/
33.0
31.6/
33.0
16.4/
16.2
16.4/
16.2
48/
51
48/
51
0.7/
0.0
0.7/
0.0
실시예 6Example 6 258258 0.680.68 9090 193193 0.640.64 1010 216/231216/231 7.3/
7.5
7.3/
7.5
29.8/
30.9
29.8/
30.9
16.7/
13.3
16.7/
13.3
44/
57
44/
57
0.8/
0.0
0.8/
0.0
실시예 7Example 7 252252 0.660.66 9090 218218 0.740.74 1010 257/284257/284 8.6/
9.1
8.6/
9.1
28.4/
29.2
28.4/
29.2
9.4/
11.1
9.4/
11.1
67/
62
67/
62
0.6/
0.1
0.6/
0.1
비교예 1Comparative Example 1 255255 0.570.57 9090 212212 0.820.82 1010 279/287279/287 6.4/
6.7
6.4/
6.7
30.5/
30.1
30.5/
30.1
8.8/
9.3
8.8/
9.3
71/
69
71/
69
2.5/
1.8
2.5/
1.8
비교예 2Comparative Example 2 255255 0.650.65 9090 156156 0.820.82 1010 185/193185/193 11.5/
11.7
11.5/
11.7
29.9/
32.2
29.9/
32.2
16.7/
19.6
16.7/
19.6
44/
39
44/
39
3.1/
2.9
3.1/
2.9
비교예 3Comparative Example 3 255255 0.650.65 9090 226226 0.820.82 1010 305/321305/321 5.9/
6.4
5.9/
6.4
29.5/
31.7
29.5/
31.7
6.8/
7.6
6.8/
7.6
77/
76
77/
76
0.3/
0.0
0.3/
0.0
비교예 4Comparative Example 4 255255 0.650.65 9494 212212 0.820.82 66 213/222213/222 10.3/
9.8
10.3/
9.8
15.8/
17.2
15.8/
17.2
8.7/
8.9
8.7/
8.9
45/
48
45/
48
0.6/
0.0
0.6/
0.0
비교예 5Comparative Example 5 255255 0.650.65 8080 212212 0.820.82 2020 298/303298/303 5.4/
5.2
5.4/
5.2
29.4/
30.1
29.4/
30.1
8.5/
7.5
8.5/
7.5
71/
75
71/
75
1.5/
0.2
1.5/
0.2
상기 표 1을 참고하면, 비교예 1은 제1 성분 필라멘트의 고유점도가 지나치게 낮은 바, 인열강력이 낮고, 터프팅 전후로 부직포의 인장강도 감소율이 현저히 높아 카페트 기포지용 폴리에스테르 부직포로 사용하기에 적합하지 않음을 알 수 있다.Referring to Table 1, in Comparative Example 1, the intrinsic viscosity of the first component filament is too low, the tear strength is low, and the tensile strength reduction rate of the nonwoven fabric before and after tufting is remarkably high, so it is suitable for use as a polyester nonwoven fabric for carpet foam paper. It can be seen that it does not
또한, 비교예 2는 제2 성분 필라멘트의 융점이 지나치게 낮아서 열 수축률이 높고 따라서 부직포의 치수안정성이 떨어지게 되는 문제가 있음을 알 수 있다.In addition, it can be seen that Comparative Example 2 has a problem that the melting point of the second component filament is too low, so that the heat shrinkage rate is high, and thus the dimensional stability of the nonwoven fabric is deteriorated.
비교예 3은 제2 성분 필라멘트의 융점이 지나치게 높은 결과 부직포의 강연도가 지나치게 높고, 인열강력이 낮으며, 터프팅 공정 후의 인장강도 감소율이 현저히 높은 것을 알 수 있다.In Comparative Example 3, as a result of the excessively high melting point of the second component filament, it can be seen that the nonwoven fabric has excessively high stiffness, low tear strength, and significantly high reduction in tensile strength after the tufting process.
비교예 4는 제2 성분 필라멘트의 함량이 지나치게 낮아 부직포의 인장강도가 현저히 낮아 물성이 좋지 않음을 알 수 있다.In Comparative Example 4, it can be seen that the content of the second component filaments is too low, and the tensile strength of the nonwoven fabric is significantly low, resulting in poor physical properties.
비교예 5는 제2 성분 필라멘트의 함량이 지나치게 높아 부직포의 강연도가 높고 인열강력이 떨어지며, 터프팅 공정에 의하여 인장강도가 지나치게 감소하는 것을 확인할 수 있었다.In Comparative Example 5, it was confirmed that the content of the second component filament was too high, so that the stiffness of the nonwoven fabric was high and the tear strength was low, and the tensile strength was excessively reduced by the tufting process.
또한, 실시예에 따른 부직포들은 터프팅 전후의 인장강도 감소율이 크지 않고 열수축률이 낮아 카페트 기포지로 사용하기에 적합한 것을 알 수 있었다. 그러나, 실시예 7의 경우 기계방향과 수직방향의 물성 차이가 크며, 터프팅 전후로 인장강도의 감소율이 큰 것을 확인할 수 있어 실시예 1에 비하여 기포지용 부직포로 사용하기에 물성이 부족한 것을 확인할 수 있었다. 그러나, 열수축률이 작고 인열강력이 우수하다. 따라서, 수직방향과 기계방향으로의 강연도 편차가 작을수록 물성이 우수하다는 것을 알 수 있다.In addition, it was found that the nonwoven fabrics according to the Examples did not have a large tensile strength decrease rate before and after tufting and had a low heat shrinkage rate, so that they were suitable for use as carpet foam paper. However, in the case of Example 7, it was confirmed that the difference in physical properties between the machine direction and the vertical direction was large, and the rate of decrease in tensile strength before and after tufting was large. . However, the heat shrinkage rate is small and the tear strength is excellent. Therefore, it can be seen that the smaller the deviation in stiffness between the vertical and machine directions, the better the physical properties.

Claims (15)

  1. 250℃ 내지 300℃의 융점을 갖는 제1 폴리에스테르를 포함하는 제1 성분 필라멘트; 및a first component filament comprising a first polyester having a melting point of 250° C. to 300° C.; and
    160℃ 내지 220℃의 융점을 갖는 제2 폴리에스테르를 포함하는 제2 성분 필라멘트;를 포함하며,A second component filament comprising a second polyester having a melting point of 160 ° C to 220 ° C;
    ASTM D 6125-97로 규정된 측정법에 의하여 측정된 터프팅 공정 전의 강연도(Stiffness)가 기계방향(MD) 및 수직방향(CD)으로 모두 100 mg 내지 300 mg인 것을 특징으로 하는 폴리에스테르계 부직포.Polyester-based nonwoven fabric, characterized in that the stiffness before the tufting process measured by the measurement method specified in ASTM D 6125-97 is 100 mg to 300 mg in both the machine direction (MD) and the vertical direction (CD) .
  2. 제1항에 있어서,According to claim 1,
    상기 폴리에스테르계 부직포의 터프팅 공정 전의 기계방향 강연도(SMD)와 수직방향 강연도(SCD)가 하기 조건식 1)을 만족하는 것을 특징으로 하는 폴리에스테르계 부직포:Polyester-based nonwoven fabric, characterized in that the machine direction stiffness ( SMD ) and vertical direction stiffness (S CD ) of the polyester nonwoven fabric before the tufting process satisfy the following Conditional Expression 1):
    1) 0.95 ≤ SMD/SCD ≤ 1.05.1) 0.95 ≤ S MD /S CD ≤ 1.05.
  3. 제1항에 있어서,According to claim 1,
    상기 제1 폴리에스테르는 고유점도가 0.65 dl/g 내지 0.80 dl/g인 것을 특징으로 하는 폴리에스테르계 부직포.The first polyester is a polyester-based nonwoven fabric, characterized in that the intrinsic viscosity of 0.65 dl / g to 0.80 dl / g.
  4. 제1항에 있어서,According to claim 1,
    상기 제2 성분 필라멘트가 융착되어 형성된 것을 특징으로 하는 폴리에스테르계 부직포.A polyester-based nonwoven fabric, characterized in that formed by fusing the second component filaments.
  5. 제1항에 있어서,According to claim 1,
    상기 제2 폴리에스테르는,The second polyester,
    테레프탈산, 디메틸 테레프탈레이트, 이소프탈산, 및 디메틸 이소프탈레이트 중에서 선택된 하나 이상의 산 성분과, 1,4-부탄디올(BD), 에틸렌글리콜(EG) 및 네오펜틸글리콜(NPG) 중에서 선택된 하나 이상의 디올 성분의 공중합에 의하여 형성된 코폴리에스테르인 것을 특징으로 하는 폴리에스테르계 부직포.Copolymerization of at least one acid component selected from terephthalic acid, dimethyl terephthalate, isophthalic acid, and dimethyl isophthalate with at least one diol component selected from 1,4-butanediol (BD), ethylene glycol (EG) and neopentyl glycol (NPG) A polyester-based nonwoven fabric, characterized in that it is a copolyester formed by.
  6. 제1항에 있어서,According to claim 1,
    상기 폴리에스테르계 부직포는 터프팅 공정 전의 기계 방향(MD) 인장강도(TMD,0)와 수직 방향(CD) 인장강도(TCD,0) 간의 편차가 TCD,0×0.05 이하이며,The polyester nonwoven fabric has a deviation between the machine direction (MD) tensile strength (T MD,0 ) and the vertical direction (CD) tensile strength (T CD,0 ) before the tufting process is T CD,0 × 0.05 or less,
    터프팅 공정 후 인장강도의 감소율이 기계방향 및 수직방향 모두 60% 이하인 것을 특징으로 하는 폴리에스테르계 부직포.Polyester-based nonwoven fabric, characterized in that the reduction rate of tensile strength after the tufting process is 60% or less in both the machine direction and the vertical direction.
  7. 제6항에 있어서,According to claim 6,
    상기 폴리에스테르계 부직포는 터프팅 공정 전 TMD,0 및 TCD,0 모두 25 kgf/5cm 내지 35 kgf/5cm인 것을 특징으로 하는 폴리에스테르계 부직포.The polyester-based nonwoven fabric is a polyester-based nonwoven fabric, characterized in that both T MD,0 and T CD,0 are 25 kgf / 5cm to 35 kgf / 5cm before the tufting process.
  8. 제1항에 있어서,According to claim 1,
    상기 폴리에스테르계 부직포는 상기 제1 성분 필라멘트와 상기 제2 성분 필라멘트를 85:15 내지 90:10의 중량비로 포함하는 것을 특징으로 하는 폴리에스테르계 부직포.The polyester-based nonwoven fabric comprises the first component filaments and the second component filaments in a weight ratio of 85:15 to 90:10.
  9. 제1항에 있어서,According to claim 1,
    상기 폴리에스테르계 부직포는 하기 측정방법에 따라 측정된 기계 방향 열수축률이 1.5% 이하이며, 수직 방향 열수축률이 1.0% 이하인 것을 특징으로 하는 폴리에스테르계 부직포:The polyester nonwoven fabric has a machine direction heat shrinkage of 1.5% or less and a vertical direction heat shrinkage of 1.0% or less, measured according to the following measurement method:
    [측정방법][measurement method]
    기계방향과 수직방향으로 각각 25cm×25cm 크기의 부직포 시편에 20cm×20cm 크기의 무늬를 그리고, 이를 마티스 오븐(mathis oven)을 이용하여 예열판에서 180℃로 3분간 예열 후 꺼내어 수축된 길이를 측정하여 수축률을 계산한다.Draw a pattern of 20 cm × 20 cm on a nonwoven fabric specimen measuring 25 cm × 25 cm in the machine direction and the vertical direction, respectively, preheat it on a preheating plate at 180 ° C for 3 minutes using a mathis oven, and then take it out and measure the contracted length. to calculate the shrinkage rate.
  10. 제1항에 있어서,According to claim 1,
    상기 폴리에스테르계 부직포는 터프팅 공정 전의 인열강력이 기계방향 및 수직방향으로 모두 7 kgf 내지 13 kgf인 것을 특징으로 하는 폴리에스테르계 부직포.The polyester-based nonwoven fabric is a polyester-based nonwoven fabric, characterized in that the tear strength before the tufting process is 7 kgf to 13 kgf in both the machine direction and the vertical direction.
  11. 제1항에 있어서,According to claim 1,
    상기 폴리에스테르계 부직포는 하기 조건식 2) 및 3)을 만족하는 것을 특징으로 하는 폴리에스테르계 부직포:The polyester-based nonwoven fabric is a polyester-based nonwoven fabric, characterized in that it satisfies the following Conditional Expressions 2) and 3):
    2) I.V.2 > I.V.1 2) IV 2 > IV 1
    3) 0.05 ≤ (I.V.2 - I.V.1)/I.V.1 ≤ 0.503) 0.05 ≤ (IV 2 - IV 1 )/IV 1 ≤ 0.50
    상기 조건식 2) 및 3)에 있어서, 상기 I.V.1 및 I.V.2는 각각 제1 폴리에스테르의 고유점도 및 제2 폴리에스테르의 고유점도를 나타낸다.In Conditional Expressions 2) and 3), IV 1 and IV 2 represent the intrinsic viscosity of the first polyester and the intrinsic viscosity of the second polyester, respectively.
  12. 제1항에 있어서,According to claim 1,
    상기 제1 성분 필라멘트는 7 denier 내지 10 denier, 제2 성분 필라멘트는 2 denier 내지 4 denier의 섬도를 각각 가지며,The first component filament has a fineness of 7 denier to 10 denier, and the second component filament has a fineness of 2 denier to 4 denier, respectively,
    제1 성분 필라멘트의 필라멘트 개수가 제2 성분 필라멘트의 필라멘트 개수의 2 배수 내지 5 배수로 포함된 것을 특징으로 하는 폴리에스테르계 부직포.A polyester-based nonwoven fabric, characterized in that the number of filaments of the first component filaments is 2 to 5 times the number of filaments of the second component filaments.
  13. 제1항 내지 제12항 중 어느 한 항에 따른 폴리에스테르계 부직포를 포함하는Comprising the polyester-based nonwoven fabric according to any one of claims 1 to 12
    카페트용 기포지.Bubble paper for carpet.
  14. 1) 융점이 250℃ 내지 300℃인 제1 폴리에스테르 및 융점이 160℃ 내지 220℃인 제2 폴리에스테르를 혼섬방사하여 웹 적층하여 혼섬 웹을 형성하는 단계; 및1) forming a mixed fiber web by mixing a first polyester having a melting point of 250° C. to 300° C. and a second polyester having a melting point of 160° C. to 220° C. and laminating the web; and
    2) 상기 혼섬 웹(web)을 상기 제2 폴리에스테르의 융점보다 0℃ 내지 10℃ 이상의 온도를 갖는 열풍으로 열접착하는 단계;를 포함하여 터프팅 공정 전 기계방향 굽힘강도 및 수직방향 강연도가 모두 100 mg 내지 300 mg인 부직포를 제조하는 것을 특징으로 하는 폴리에스테르계 부직포 제조방법.2) thermally bonding the mixed fiber web with hot air having a temperature of 0 ° C to 10 ° C higher than the melting point of the second polyester; A method for producing a polyester-based nonwoven fabric, characterized in that for producing a nonwoven fabric of 100 mg to 300 mg.
  15. 제14항에 있어서,According to claim 14,
    상기 1) 단계에서 제1 폴리에스테르 및 제2 폴리에스테르를 각각 4,500 m/min 내지 5,200 m/min의 속도로 연신하여 각각 제1 성분 필라멘트 및 제2 성분 필라멘트를 형성하는 것을 특징으로 하는 폴리에스테르계 부직포 제조방법.In step 1), the first polyester and the second polyester are drawn at a rate of 4,500 m/min to 5,200 m/min, respectively, to form first component filaments and second component filaments, respectively. Non-woven fabric manufacturing method.
PCT/KR2022/020817 2021-12-21 2022-12-20 Polyester nonwoven fabric with suppressed reduction in physical properties by tufting process, method for manufacturing same, and backing fabric for carpet comprising same WO2023121212A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210183999A KR20230094660A (en) 2021-12-21 2021-12-21 Polyester nonwoven fabric with suppressed deterioration of physical properties during tufting process, method for fabricating the same and primary backing substrate for carpet
KR10-2021-0183999 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023121212A1 true WO2023121212A1 (en) 2023-06-29

Family

ID=86903376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/020817 WO2023121212A1 (en) 2021-12-21 2022-12-20 Polyester nonwoven fabric with suppressed reduction in physical properties by tufting process, method for manufacturing same, and backing fabric for carpet comprising same

Country Status (2)

Country Link
KR (1) KR20230094660A (en)
WO (1) WO2023121212A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090067312A (en) * 2007-12-21 2009-06-25 주식회사 코오롱 Polyester spunbond nonwovens and the preparation method thereof
WO2014016172A1 (en) * 2012-07-26 2014-01-30 Bonar B.V. Primary carpet backing and tufted carpet comprising the same
KR20140042379A (en) * 2012-09-28 2014-04-07 코오롱인더스트리 주식회사 Polyester nonwoven fabric, method for manufacturing the same, and primary backing substrae for carpet comprising the same
KR101736421B1 (en) * 2010-09-17 2017-05-17 코오롱인더스트리 주식회사 Polyester fiber and preparation method thereof
KR20180097515A (en) * 2015-12-22 2018-08-31 도레이 카부시키가이샤 Spunbond nonwoven fabric for filter and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225205B1 (en) 1996-12-31 1999-10-15 한형수 Manufacturing method of polyester spun-bonded fabric for carpet foundation cloth
KR20010053138A (en) 1999-04-26 2001-06-25 다구찌 게이따 Ground fabric for tufted carpet and tufted carpet made using the ground fabric

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090067312A (en) * 2007-12-21 2009-06-25 주식회사 코오롱 Polyester spunbond nonwovens and the preparation method thereof
KR101736421B1 (en) * 2010-09-17 2017-05-17 코오롱인더스트리 주식회사 Polyester fiber and preparation method thereof
WO2014016172A1 (en) * 2012-07-26 2014-01-30 Bonar B.V. Primary carpet backing and tufted carpet comprising the same
KR20140042379A (en) * 2012-09-28 2014-04-07 코오롱인더스트리 주식회사 Polyester nonwoven fabric, method for manufacturing the same, and primary backing substrae for carpet comprising the same
KR20180097515A (en) * 2015-12-22 2018-08-31 도레이 카부시키가이샤 Spunbond nonwoven fabric for filter and manufacturing method thereof

Also Published As

Publication number Publication date
KR20230094660A (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2020190070A1 (en) Cut resistant polyethylene yarn, method for manufacturing same, and protective article produced using same
WO2020009271A1 (en) Thermoplastic polyurethane yarn and fabric manufactured therefrom
WO2019225848A1 (en) Method for preparing aramid nanofiber dispersion
WO2020004732A1 (en) Polyester composition for thermally adhesive fiber, thermally adhesive composite fiber implemented using same, and nonwoven fabric
WO2020246719A1 (en) Polyester composite fibers having excellent elasticity and preparation method thereof
WO2021071250A1 (en) Thermal bonding fiber, and fiber assembly for automotive interior and exterior materials, comprising same
WO2021025339A1 (en) Core sheath-type composite false-twist textured yarn and method for manufacturing same
WO2021133114A1 (en) Wet non-woven fabric and article comprising same
WO2022005223A1 (en) High-strength self-healing polyurethane polymer and temperature sensor web-film comprising same
WO2023121212A1 (en) Polyester nonwoven fabric with suppressed reduction in physical properties by tufting process, method for manufacturing same, and backing fabric for carpet comprising same
WO2016024721A1 (en) Electrospinning apparatus comprising temperature adjustment device, preparation method, for nanofibers or nanomembrane, using same, and nanofibers or nanomembrane prepared by means of same
WO2021071251A1 (en) Thermally adhesive fiber and fiber aggregate comprising same for motor vehicle interior material
WO2015076540A1 (en) Copolyester readily soluble in alkali, for preparing conjugate fiber, preparation method therefor, and conjugate fiber containing same
KR20150074374A (en) Improved Thermoform Spunbonded Nonwoven for Primary Carpet Backing, and Method for Manufacturing the Same
WO2021033992A1 (en) Hybrid-type fiber-reinforced composite material and apparatus for producing same
WO2023106796A1 (en) Dope-dyed polyethylene yarn and functional fabric including same
WO2019050375A2 (en) Compression-molded body and method for producing same
WO2021201430A1 (en) Spunbonded non-woven fabric and tile carpet using same
WO2022145726A1 (en) Non-woven fabric, carpet, and method for preparing same
WO2021133116A1 (en) Fibre aggregate for vehicle interior material, and vehicle interior material comprising same
WO2016003189A1 (en) Thermal bonding conjugate fiber for nonwoven binder
WO2022146005A1 (en) Spunbonded non-woven fabric and manufacturing method therefor
WO2022146004A1 (en) Core-sheath type spunbond nonwoven fabric and manufacturing method therefor
WO2021091170A1 (en) Spunbonded non-woven fabric, and tile carpet using same
WO2022145874A1 (en) Spunbond non-woven fabrics having sheath-core structure and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22911845

Country of ref document: EP

Kind code of ref document: A1