WO2020246271A1 - 神経機能調節剤 - Google Patents

神経機能調節剤 Download PDF

Info

Publication number
WO2020246271A1
WO2020246271A1 PCT/JP2020/020359 JP2020020359W WO2020246271A1 WO 2020246271 A1 WO2020246271 A1 WO 2020246271A1 JP 2020020359 W JP2020020359 W JP 2020020359W WO 2020246271 A1 WO2020246271 A1 WO 2020246271A1
Authority
WO
WIPO (PCT)
Prior art keywords
malvidin
diglucoside
nerve
manufactured
food
Prior art date
Application number
PCT/JP2020/020359
Other languages
English (en)
French (fr)
Inventor
礒田 博子
一憲 佐々木
佐藤 一彦
浅川 真澄
富永 健一
浩 藤澤
雅巳 腰山
Original Assignee
国立大学法人 筑波大学
国立研究開発法人産業技術総合研究所
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 筑波大学, 国立研究開発法人産業技術総合研究所, 日本ゼオン株式会社 filed Critical 国立大学法人 筑波大学
Priority to EP20819085.0A priority Critical patent/EP3981472A4/en
Priority to US17/595,841 priority patent/US20220241308A1/en
Priority to KR1020217038650A priority patent/KR20220016834A/ko
Priority to JP2021524758A priority patent/JPWO2020246271A1/ja
Priority to CN202080034054.3A priority patent/CN113795305A/zh
Publication of WO2020246271A1 publication Critical patent/WO2020246271A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/87Vitaceae or Ampelidaceae (Vine or Grape family), e.g. wine grapes, muscadine or peppervine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/322Foods, ingredients or supplements having a functional effect on health having an effect on the health of the nervous system or on mental function

Definitions

  • the present invention relates to a neurological function regulator containing a specific malvidin glycoside as an active ingredient.
  • anthocyanins which are active ingredients derived from natural products.
  • the physiological activity of anthocyanins varies depending on not only the structure of aglycone but also the type and number of sugar chains, such as visual impairment improving action, antioxidant action, vascular strengthening action, anti-inflammatory action, and antitumor action.
  • malvidin-3,5-diglucoside is said to have a cell death inhibitory effect on cell death via ultraviolet rays or active oxygen generated by ultraviolet rays, and a skin external preparation has been reported as a specific example. (Patent Document 1).
  • Malvidin-3,5-diglucoside can be obtained as a plant-derived component (biological resource-derived component), and is therefore considered to be safe and suitable for daily or continuous ingestion. It is desirable to find new properties of malvidin-3,5-diglucoside and apply it in the medical field based on the properties.
  • malvidin-3,5-diglucoside is effective in protecting nerve cells and exerts a nerve function-regulating action through the protection. It came to be completed.
  • a neurological function regulator containing malvidin-3,5-diglucoside as an active ingredient.
  • the nerve function regulator refers to an agent having a nerve function regulating action
  • the nerve function regulating action refers to an action related to prevention of deterioration of nerve function, maintenance of the status quo, recovery, improvement, and prevention.
  • Malvidin-3,5-diglucoside is represented by the following formula (1).
  • Malvidin-3,5-diglucoside may be in the form of having a counter anion, and examples thereof include chloride.
  • the above-mentioned nerve function regulators that exert a nerve function regulating action through protection of nerve cells are provided, and further, protection of nerve cells includes suppression of nerve cell death by amyloid ⁇ protein.
  • the above-mentioned neuronal function regulators are provided.
  • the above-mentioned neural function regulator containing delphinidin-3-glucoside is provided.
  • the above-mentioned neural function regulator for oral use is provided.
  • a pharmaceutical composition containing the above-mentioned nerve function regulator is provided.
  • a food composition containing the above-mentioned neurofunctional regulator is provided, and further, a functional food, a nutritional supplement, a health supplement, a nutritionally fortified food, a food with a functional claim, and a special use food.
  • a food composition for specified health use or a food with a nutritional function which is the above-mentioned food composition.
  • a method for regulating nerve function which comprises ingesting the above-mentioned nerve function regulator to an administration subject.
  • a nerve function regulator that is effective in protecting nerve cells and exerts a nerve function regulating action through the protection is provided, and a pharmaceutical composition and a food composition containing the nerve function regulator are also provided. Things are provided.
  • the present invention relates to a neurological function regulator containing malvidin-3,5-diglucoside as an active ingredient.
  • Malvidin-3,5-diglucoside also called Malvin, is a type of naturally occurring anthocyanin and is a major pigment in the genus Malva silvestris, Primula and Rhododendron. Are known.
  • malvidin-3,5-diglucoside derived from these plants can be used, but the biological resource containing any malvidin-3,5-diglucoside is not limited thereto. Derived ones can be used.
  • Malvidin-3,5-diglucoside may be separated from biological resources, or may be used as it is without separation. For example, malvidin-3,5-diglucoside may be supplied as an extract from biological resources.
  • malvidin-3,5-diglucoside derived from biological resources examples include malvidin-3,5-diglucoside derived from grapes.
  • the grapes are preferably of the genus Grapevine (Vitis), and from the viewpoint of the content of malvidin-3,5-diglucoside, European grapes (Vitis Vinifera), Crimson glory vines (Vitis Coignetea), Sankakuzuru (Vitis flexuosa) and hybrids thereof are preferable.
  • Crimson glory, Sankakuzuru, Crimson glory and European grape hybrids or Sankakuzuru and European grape hybrids are more preferred.
  • malvidin-3,5-diglucoside can be contained in grape skin, ground grape skin or an extract from grape skin can be used as a source of malvidin-3,5-diglucoside.
  • the extraction method is not particularly limited, and examples thereof include a method of extracting using an organic solvent.
  • Anthocyanins other than malvidin-3,5-diglucoside (eg, malvidin-3-glucoside, malvidin-3-glucoside, malvidin-3-kumaroyl glucoside, malvidin-3-kumaroyl glucoside-5-glucoside) that can be contained in grape skin ) Can be obtained at the same time as and efficiently with malvidin-3,5-diglucoside, and these can be used as a neurofunction regulator containing malvidin-3,5-diglucoside. It is preferable to use a thing.
  • malvidin-3,5-diglucoside As a source of malvidin-3,5-diglucoside, commercially available grape powder or grape concentrate may be used.
  • Malvidin-3,5-diglucoside can be a chemically synthesized product, but from the viewpoint of safety, those derived from biological resources are preferable.
  • the neural function regulator of the present invention contains malvidin-3,5-diglucoside as an active ingredient, but may contain other ingredients.
  • malvidin-3,5-diglucoside for example, delphinidin-3-glucoside, malvidin-3-glucoside, malvidin-3-kumaroyl glucoside, malbisin-3-kumaroyl glucoside-5-glucoside
  • anthocyanins other than malvidin-3,5-diglucoside for example, delphinidin-3-glucoside, malvidin-3-glucoside, malvidin-3-kumaroyl glucoside, malbisin-3-kumaroyl glucoside-5-glucoside
  • the nerve function regulator of the present invention exerts a nerve function regulation function through protection of nerve cells, it is effective for neurodegenerative diseases associated with nerve cell damage and decrease in the number of nerve cells, and various symptoms, among others. Highly effective against anti-aging. In the examples described later, suppression and improvement of the decrease in spatial learning memory were observed in the aging-promoting model mouse in which amyloid ⁇ protein was accumulated, which is considered to be caused by oxidative stress caused by amyloid ⁇ protein and amyloid ⁇ protein. It is effective for neurodegenerative diseases and various symptoms.
  • the neurofunctional regulator of the present invention can be used for the purpose of improving or preventing neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and depression.
  • the nerve function regulator of the present invention can be used for the purpose of anti-stress and anti-fatigue. Furthermore, the nerve function regulator of the present invention can be used for the purpose of recovering or improving nerve functions such as learning ability, memory ability, and reflex reaction ability.
  • the neural function regulator of the present invention can be an agent for anti-aging, anti-stress, anti-fatigue, recovery / improvement of learning ability, recovery / improvement of memory ability, recovery / improvement of reflex reaction ability.
  • the nerve function regulator of the present invention can also be administered to a healthy person.
  • administering method Mammals can be mentioned as administration targets of the neurological function regulator of the present invention, and examples thereof include humans, domestic animals (horses, cows, pigs, etc.), pet animals (dogs, cats, etc.), experimental (test) animals (mice, etc.). Rats and the like), preferably humans.
  • the dose of the neurological function regulator of the present invention can be appropriately set in consideration of the administration target, age, body weight, symptoms and the like.
  • the dose of malvidin-3,5-diglucoside may be 0.008 mg / day or more and 4 mg / day or less per 1 kg of the body weight of the administration subject (human).
  • the dose is preferably 0.04 mg / day or more, more preferably 0.08 mg / day or more, and preferably 1.6 mg / day or less, more preferably 0.8 mg / day or less.
  • the administration target is other than human, it can be set by appropriately increasing or decreasing the above range.
  • the administration may be once a day or may be divided into a plurality of doses.
  • the administration period can be appropriately set in consideration of the administration target, age, body weight, symptoms and the like, but continuous use is preferable.
  • the present invention relates to a method for regulating nerve function, which comprises ingesting the above-mentioned nerve function regulator to an administration subject.
  • humans can be excluded from the administration target, and the method can exclude medical practice.
  • the present invention also relates to a pharmaceutical composition containing the above-mentioned neural function regulator.
  • the pharmaceutical composition can be a drug or a quasi drug.
  • compositions can include pharmaceutically acceptable ingredients such as carriers, excipients (eg, lactose, sucrose, dextrin, hydroxypropyl cellulose, polyvinylpyrrolidone), disintegrants, buffers, emulsifiers, etc.
  • Suspensions, stabilizers, preservatives, preservatives, solvents eg, organic solvents such as water, saline, ethanol
  • solvents eg, organic solvents such as water, saline, ethanol
  • It can also contain pharmacological components having other pharmacological activities.
  • the pharmaceutical composition may be administered orally or parenterally, and is preferably orally administered.
  • oral administration examples thereof include powders, tablets, coating agents, sugar-coated tablets, soft capsules or hard capsules, liquid preparations, emulsions, and suspensions.
  • parenteral administration examples include suppositories, injections, infusions, ointments, creams and gels.
  • the administration method such as the target disease and symptom can be set in the same manner as the above-mentioned neural function regulator.
  • the pharmaceutical composition of the present invention can be used as a pharmaceutical composition for regulating nerve function, and is used for anti-aging, anti-stress, anti-fatigue, recovery / improvement of learning ability, recovery / improvement of memory, and recovery / improvement of reflex reaction ability.
  • Pharmaceutical compositions can be mentioned.
  • a food composition containing the above-mentioned nerve function regulator is provided.
  • the food composition can be a functional food, a nutritional supplement, a health supplement, a nutritionally enriched food, a food with a functional claim, a special purpose food, a food for specified health use or a food with a nutritional function.
  • Food compositions can include ingredients that are acceptable in the manufacture of foods, such as carriers, excipients (eg, lactose, sucrose, dextrin, hydroxypropyl cellulose, polyvinylpyrrolidone), disintegrants, buffers, etc.
  • excipients eg, lactose, sucrose, dextrin, hydroxypropyl cellulose, polyvinylpyrrolidone
  • disintegrants e.g, hydroxypropyl cellulose, polyvinylpyrrolidone
  • examples include emulsifiers, suspending agents, stabilizers, preservatives, preservatives, solvents (eg, organic solvents such as water, saline, ethanol).
  • solvents eg, organic solvents such as water, saline, ethanol.
  • Foods can also contain proteins, sugars, lipids, vitamins, minerals, organic acids, organic bases, flavors and the like.
  • the form of the food composition is not particularly limited, and examples thereof include solids, liquids, mixtures, suspensions, pastes, gels, powders, and capsules, which can be beverages, confectionery, seasonings, prepared foods, and processed foods.
  • the food composition may be a supplement.
  • the administration method such as the target disease and symptom can be set in the same manner as the above-mentioned neural function regulator.
  • the food composition of the present invention can be used as a food composition for regulating nerve function, and is used for anti-aging, anti-stress, anti-fatigue, recovery / improvement of learning ability, recovery / improvement of memory ability, recovery / improvement of reflex reaction ability. Examples include food compositions.
  • Example preparation> In each experiment, the following were used as malvidin-3,5-diglucoside.
  • Sample 5 The above single product (M3, 5G) is dissolved in ultrapure water (Milli-Q (registered trademark) water) so that the concentration of the single product (M3, 5G) in the obtained solution becomes 651 ⁇ g / mL. It was adjusted and used for animal experiments.
  • Sample 6 The above extract is dissolved in ultrapure water (Milli-Q (registered trademark) water), and the concentration of the extract powder in the obtained solution is adjusted to 7.5 mg / mL for animal experiments. Used for. The concentration of malvidin-3,5-diglucoside in the solution is 651 ⁇ g / mL (calculated with chloride).
  • Example 1 Cell survival experiment> The following experiments confirmed the inhibitory effect of malvidin-3,5-diglucoside on neuronal cell death.
  • SH-SY5Y cells neuroon model cells, ATCC
  • the cell culture medium is a mixture of F12 / DMEM medium (manufactured by Gibco), 1% non-essential amino acids (manufactured by Gibco), 15% FBS (manufactured by Bio West), and 1% penicillin / streptomycin (manufactured by Lonza).
  • F12 / DMEM medium manufactured by Gibco
  • non-essential amino acids manufactured by Gibco
  • FBS manufactured by Bio West
  • penicillin / streptomycin manufactured by Lonza
  • Relative cell viability was calculated in the same manner as above, except that sample 2 was used instead of sample 1 (“A ⁇ + M) in FIG. 1).
  • Relative cell viability was calculated in the same manner as above, except that sample 3 was used instead of sample 1 (“A ⁇ + M3G” in FIG. 1).
  • Example 2 Gene expression experiment> The following experiments analyzed the mechanism of the inhibitory effect of malvidin-3,5-diglucoside on neuronal cell death.
  • SH-SY5Y cells were seeded in a 100 mm cell dish (manufactured by BD Biocoat) at a concentration of 3.7 ⁇ 10 5 cells / mL at a concentration of 10 mL / dish for 24 hours under the conditions of 37 ° C. and 5% CO 2 .
  • the cell culture medium is a mixture of F12 / DMEM medium (manufactured by Gibco), 1% non-essential amino acids (manufactured by Gibco), 15% FBS (manufactured by Bio West), and 1% penicillin / streptomycin (manufactured by Lonza).
  • F12 / DMEM medium manufactured by Gibco
  • 1% non-essential amino acids manufactured by Gibco
  • FBS manufactured by Bio West
  • penicillin / streptomycin manufactured by Lonza
  • RNA extraction was performed using ISOGEN reagent (manufactured by Nippon Gene) according to the protocol recommended by Nippon Gene (URL: https://www.nippongene.com/siyaku/product/extraction/tds).
  • the real-time PCR method was performed using a reagent kit for TaqMan Real-Time PCR (manufactured by Thermo Fisher Scientific) according to the protocol recommended by Thermo Fisher Scientific (URL: https://assets.thermofisher.com/TFS-Assets). /LSG/manuals/4304449#TaqManPCRMM#UG.pdf).
  • MAP2K4 (Mightogen Activated Protein Kinase 4)
  • MAPK14 (Mightogen Activated Protein Kinase 14)
  • MAPK8 (Mightogen Activated Protein Kinase 8)
  • PI3KCA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit ⁇ )
  • AKT1 (AKT serine / threonine kinase 1)
  • PARP1 Poly (ADP-ribose) polymerase 1)
  • CASP3 (Caspase-3)
  • genes are genes involved in the stress response MAPK pathway. It is known that it is activated by various environmental stress stimuli such as ultraviolet rays, radiation, oxidative stress, and heat shock, and induces cell death (apoptosis) in stressed cells. It is known that this signaling pathway is also activated by amyloid ⁇ and plays a central role in the control of neurodegenerative diseases. There is a signal pathway from a series of mitogen-activated protein kinases to PI3KCA and AKT1 and a signal pathway from a series of mitogen-activated protein kinases to CASP3 and PARP1, the former involved in mitochondrial activity and the latter involved in apoptosis. To do.
  • the above gene expression was analyzed in the same manner as above, except that the mixture was mixed, the mixture was added at 10 ⁇ L / dish, the mixture was cultured for 24 hours at 37 ° C. and 5% CO 2 , and RNA was extracted. ("A ⁇ + M3,5G" in FIGS. 2 to 8).
  • malvidin-3,5-diglucoside has an effect of lowering the expression of CASP3, and it is suggested that this increase in expression due to amyloid ⁇ protein treatment is reduced, and that apoptosis is suppressed through this.
  • malvidin in cells treated with amyloid ⁇ protein, as shown in “A ⁇ + M” in the figure, malvidin also increased the expression of MAP2K4, MAPK14, MAPK8, PI3KCA, AKT1, and PARP1 and decreased the expression of CASP3.
  • malvidin-3-glucoside also increased the expression of MAP2K4, MAPK14, PI3KCA, AKT1, and PARP1, but malvidin-3,5-diglucoside was found to be MAP2K4, PI3KCA.
  • AKT1 expression increased and CASP3 expression decreased, showing the highest activity among them. It can be seen that the highest activity is in the order of malvidin-3,5-diglucoside, malvidin, and malvidin-3-glucoside.
  • ATP production amount measurement experiment The amount of ATP produced in nerve cells was measured by the following experiments, and the promotion of energy metabolism by malvidin-3,5-diglucoside was confirmed.
  • the cell culture medium is a mixture of F12 / DMEM medium (manufactured by Gibco), 1% non-essential amino acids (manufactured by Gibco), 15% FBS (manufactured by Bio West), and 1% penicillin / streptomycin (manufactured by Lonza). Was used. After 24 hours, the culture medium was completely removed with an ejector, 100 ⁇ L / well of Opti-MEM (manufactured by Gibco) medium was added, and the cells were cultured for 6, 12 and 24 hours at 37 ° C. and 5% CO 2. did.
  • ATP test reagent (“cellular” ATP test reagent, manufactured by Toyo Ink Mfg. Co., Ltd.) was added, mixed, and reacted at room temperature in the dark for 10 minutes. Then, 150 ⁇ L of a mixed solution of the cell solution and the ATP measurement reagent was transferred to a white well plate (manufactured by BD FALCON, 96 wells) using a micropipette. Then, using a microplate reader (manufactured by Sumitomo Dainippon Pharma Co., Ltd.), the amount of luminescence after a lapse of a predetermined time was measured, and the amount of ATP produced was calculated (“control” in FIG. 9).
  • ATP test reagent (“cellular” ATP test reagent, manufactured by Toyo Ink Mfg. Co., Ltd.) was added, mixed, and reacted at room temperature in the dark for 10 minutes. Then, 150 ⁇ L of a mixed solution of the cell solution and the ATP
  • Example 4 Reactive oxygen species measurement experiment> By the following experiments, the amount of reactive oxygen species in nerve cells was measured, and the reduction of oxidative stress by malvidin-3,5-diglucoside was confirmed.
  • well plates (BD Biocoat, Inc., well number 96) to each well of a (model cells of neuronal cells, ATCC Co.) SH-SY5Y cells at a concentration of 2 ⁇ 10 5 cells / mL, 100 [mu] L / Well clan seeds were cultivated for 24 hours under the conditions of 37 ° C. and 5% CO 2 .
  • the cell culture medium is a mixture of F12 / DMEM medium (manufactured by Gibco), 1% non-essential amino acids (manufactured by Gibco), 15% FBS (manufactured by Bio West), and 1% penicillin / streptomycin (manufactured by Lonza).
  • F12 / DMEM medium manufactured by Gibco
  • 1% non-essential amino acids manufactured by Gibco
  • FBS manufactured by Bio West
  • penicillin / streptomycin manufactured by Lonza
  • the culture medium was completely removed with an ejector, and 20X DCFH-DA (reagent included in the measurement kit) was mixed (diluted 20-fold) with the medium of Opti-MEM (manufactured by Gibco), and 100 ⁇ L / well was added. , 37 ° C., 5% CO 2 for 1 hour.
  • the Opti-MEM (manufactured by Gibco) and 20X DCFH-DA (reagent included in the measurement kit) mixed medium was completely removed by an aspirator, and 100 ⁇ L / well of the Opti-MEM (manufactured by Gibco) medium was added.
  • the cells were cultured under the conditions of 37 ° C. and 5% CO 2 for hours.
  • Opti-MEM manufactured by Gibco
  • 20X DCFH-DA reagent included in the measurement kit
  • the mixed medium was completely removed by an aspirator, and sample 1 and amyloid ⁇ protein (Beta-Amyloid 1-) were completely removed.
  • 42, AnaSpec was mixed with Opti-MEM (Gibco) to a final concentration of 12.56 ⁇ M and 5 ⁇ M, respectively, and the mixture was added at 100 ⁇ L / well for 1 hour at 37 ° C. and 5% CO 2 .
  • the amount of active oxygen species was determined in the same manner as above except that the cells were cultured under the conditions (“A ⁇ + M3,5G” in FIG. 10).
  • Opti-MEM manufactured by Gibco
  • 20X DCFH-DA reagent included in the measurement kit
  • the mixed medium was completely removed with an aspirator, and sample 2 and amyloid ⁇ protein (Beta-Amyloid 1-) were removed.
  • 42, AnaSpec was mixed with Opti-MEM (Gibco) to a final concentration of 12.56 ⁇ M and 5 ⁇ M, respectively, and the mixture was added at 100 ⁇ L / well for 1 hour at 37 ° C. and 5% CO 2 .
  • the amount of reactive oxygen species was determined in the same manner as above except that the cells were cultured under the conditions (“A ⁇ + extract” in FIG. 10).
  • Example 5 Animal experiment> The following experiments confirmed the effect of malvidin-3,5-diglucoside on improving learning and memory ability in animals.
  • mice used in the animal experiments and the administration contents are as follows. Breeding conditions other than the administration content are common to all groups.
  • Single product (M3,5G) administration (SAMP8) group Sample 5 was administered in an amount such that the daily dose was 2.17 mg of malvidin-3,5-diglucoside per 1 kg of mouse body weight, and the aging-accelerated mice (SAMP8) (Japan). Obtained from SLC Co., Ltd. 16 weeks old, body weight 28-30 g) 10 animals were orally administered for 30 days. (In FIGS.
  • Extract administration (SAMP8) group Sample 4 was administered at a daily dose of 25 mg of extract powder per 1 kg of mouse body weight (malvidin-3,5-diglucoside 2.17 mg in sample 6) in an aging-promoting mouse (SAMP8). ) (16 weeks old, body weight 28-30 g) were orally administered to 10 animals for 30 days. (In FIGS.
  • the contents of the animal experiment are as follows.
  • the Morris water maze test (platform test, probe test) was performed on the mice in each group from the day after the end of oral administration.
  • a Morris water maze a pool with a diameter of 120 cm and a depth of 45 cm was prepared.
  • a transparent platform was installed under the surface of the pool, and four marks were installed at equal intervals on the inner wall of the pool.
  • the platform test evaluates spatial learning memory using the time it takes for the mouse to reach the platform by relying on visual stimuli such as landmarks.
  • the arrival time was shortened in the normal aging mice (water administration), whereas the arrival time was not shortened in the aging-promoting mice (water administration).
  • the arrival time was shortened to the same extent as in the normal aging mice (water administration).
  • the aging-accelerated mice to which the extract was administered showed a greater reduction in the arrival time.
  • the probe test evaluates the memory retention ability of mice based on the number of times they crossed the place where the platform was installed and the length of stay at the place. As shown in FIGS. 12 and 13, the aging-accelerated mice (water administration) had significantly fewer crossings and a significantly shorter stay time than the normal aging mice (water administration). In the aging-accelerated mice to which the extract was administered, the number of crossings and the residence time were observed to be similar to those of the normal aging mice (water administration). Compared with the aging-accelerated mice to which malvidin-3,5-diglucoside was administered, the aging-accelerated mice to which the extract was administered crossed more frequently and stayed longer.
  • malvidin-3,5-diglucoside improves the learning and memory ability of animals, and it is suggested that a high improvement effect can be obtained especially when the extract is administered.
  • the nerve function regulator of the present invention is effective in protecting nerve cells and exerts a nerve function regulating action through the protection, and improves neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and depression. Prevention can be expected, and development as foods and pharmaceuticals such as health supplements and expansion of related markets are expected. Since the neurological function regulator of the present invention contains malvidin-3,5-diglucoside, which is a naturally occurring component, as an active ingredient, it is considered to be safe and suitable for daily or continuous ingestion. As described above, the present invention has high industrial usefulness.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Botany (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Microbiology (AREA)
  • Pediatric Medicine (AREA)
  • Medical Informatics (AREA)
  • Biotechnology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明は、神経細胞保護に有効であり、当該保護を介して神経機能調節作用を発揮する神経機能調節剤を提供する。本発明は、マルビジン-3,5-ジグルコシドを有効成分として含有する神経機能調節剤、この神経機能調節剤を含有する医薬組成物及びこの神経機能調節剤を含有する食品組成物である。

Description

神経機能調節剤
 本発明は、特定のマルビジン配糖体を有効成分として含有する神経機能調節剤に関する。
 近年、天然物由来の活性成分のアントシアニンについて、研究が盛んに進められている。アントシアニンの生理活性は、アグリコンの構造のみならず、糖鎖の種類・数によって、視覚障害改善作用、抗酸化作用、血管強化作用、抗炎症作用、抗腫瘍作用など、様々である。アントシアニンのうち、マルビジン-3,5-ジグルコシドについては、紫外線、あるいは紫外線により発生する活性酸素を介した細胞死に対し、細胞死抑制効果を有するとされ、具体例として皮膚外用剤が報告されている(特許文献1)。
特開2004-359603号公報
 マルビジン-3,5-ジグルコシドは、植物由来の成分(生物資源由来成分)として得ることができるため、安全であり、日常的又は継続的な摂取に適していると考えられる。マルビジン-3,5-ジグルコシドについて、新たな特性を見出し、当該特性に基づき、医療等の分野で応用を図ることが望ましい。
 本発明者らは、鋭意検討を行った結果、マルビジン-3,5-ジグルコシドが、神経細胞の保護に有効であり、当該保護を介して神経機能調節作用を発揮することを見出し、本発明を完成させるに至った。
 本発明によれば、マルビジン-3,5-ジグルコシドを有効成分として含有する神経機能調節剤が提供される。
 神経機能調節剤は、神経機能調節作用を有する剤をいい、神経機能調節作用は、神経機能の悪化防止、現状維持、回復、改善、予防に関連する作用をいうものとする。
 マルビジン-3,5-ジグルコシドは、下記式(1)で表わされる。
Figure JPOXMLDOC01-appb-C000001
 マルビジン-3,5-ジグルコシドは、カウンターアニオンを有した形態であってもよく、例えばクロリドが挙げられる。
 本発明によれば、神経細胞の保護を介して神経機能調節作用を発揮する、上記の神経機能調節剤が提供され、さらに、神経細胞の保護が、アミロイドβタンパク質による神経細胞死の抑制を含む、上記の神経機能調節剤が提供される。
 本発明によれば、デルフィニジン-3-グルコシドを含有する、上記の神経機能調節剤が提供される。
 本発明によれば、経口用である、上記の神経機能調節剤が提供される。
 また、本発明によれば、上記の神経機能調節剤を含有する医薬組成物が提供される。
 また、本発明によれば、上記の神経機能調節剤を含有する食品組成物が提供され、さらに、機能性食品、栄養補助食品、健康補助食品、栄養強化食品、機能性表示食品、特別用途食品、特定保健用食品又は栄養機能食品である、上記食品組成物が提供される。
 また、本発明によれば、上記の神経機能調節剤を、投与対象に摂取させることを含む、神経機能を調節する方法が提供される。
 本発明によれば、神経細胞保護に有効であり、当該保護を介して神経機能調節作用を発揮する神経機能調節剤が提供され、また、当該神経機能調節剤を含有する医薬組成物及び食品組成物が提供される。
実施例1の細胞生存実験の結果を示すグラフである。 実施例2の遺伝子発現実験における、MAP2K4(マイトジェン活性化プロテインキナーゼ4)の発現の結果を示すグラフである。(a)のグラフは、マルビジン-3,5-ジグルコシドを使用した細胞、使用していない細胞についての結果を示す。(b)のグラフは、マルビジン、マルビジン-3-グルコシド及びマルビジン-3,5-ジグルコシドを使用した結果を示す。図3~図8も同様である。 実施例2の遺伝子発現実験における、MAPK14(マイトジェン活性化プロテインキナーゼ14)の発現の結果を示すグラフである。 実施例2の遺伝子発現実験における、MAPK8(マイトジェン活性化プロテインキナーゼ8)の発現の結果を示すグラフである。 実施例2の遺伝子発現実験における、PI3KCA(ホスファチジルイノシトール-4,5-ビスホスフェート3-キナーゼ 触媒サブユニットα)の発現の結果を示すグラフである。 実施例2の遺伝子発現実験における、AKT1(AKTセリン/スレオニンキナーゼ1)の発現の結果を示すグラフである。 実施例2の遺伝子発現実験における、PARP1(ポリ(ADP-リボース)ポリメラーゼ1)の発現の結果を示すグラフである。 実施例2の遺伝子発現実験におけるCASP3(カスパーゼ-3)の発現の結果を示すグラフである。 実施例3のATP産生量測定実験の結果を示すグラフである。 実施例4の活性酸素種量測定実験の結果を示すグラフである。 実施例5の動物実験におけるプラットフォームテスト(プラットフォームまでの到達時間)の結果を示すグラフである。 実施例5の動物実験におけるプローブテスト(プラットフォームが設置されていた場所を横切った回数)の結果を示すグラフである。 実施例5の動物実験におけるプローブテスト(プラットフォームが設置されていた場所の滞在時間)の結果を示すグラフである。
 以下、本発明を詳細に説明する。
<神経機能調節剤>
 本発明はマルビジン-3,5-ジグルコシドを有効成分として含有する神経機能調節剤に関する。
(原料)
 マルビジン-3,5-ジグルコシドは、マルビン(Malvin)とも称され、天然に存在するアントシアニンの一種であり、アオイ属(Malva sylvestris)、サクラソウ属(Primula)及びツツジ属(Rhodoendron)の主要な色素として知られている。本発明の神経機能調節剤においては、これらの植物由来のマルビジン-3,5-ジグルコシドを使用することができるが、これらに限定されず、任意のマルビジン-3,5-ジグルコシドを含有する生物資源由来のものを使用することができる。マルビジン-3,5-ジグルコシドは、生物資源から分離したものであってもよいが、分離せずにそのまま使用してもよい。例えば、生物資源からの抽出物としてマルビジン-3,5-ジグルコシドを供給してもよい。
 生物資源由来のマルビジン-3,5-ジグルコシドとしては、ブドウ由来のマルビジン-3,5-ジグルコシドが挙げられる。ブドウは、ブドウ属(Vitis)が好ましく、マルビジン-3,5-ジグルコシドの含有量の点から、ヨーロッパブドウ(Vitis  Vinifera)、ヤマブドウ(Vitis Coignetiae)、サンカクヅル(Vitis flexuosa)及びこれらの交配種が好ましく、ヤマブドウ、サンカクヅル、ヤマブドウとヨーロッパブドウの交配種又はサンカクヅルとヨーロッパブドウの交配種がより好ましい。
 マルビジン-3,5-ジグルコシドは、ブドウの果皮に含まれ得るので、ブドウ果皮をすり潰したもの、又はブドウ果皮からの抽出物を、マルビジン-3,5-ジグルコシドの供給源とすることができる。抽出方法は特に限定されず、有機溶媒を用いて抽出する方法が挙げられる。ブドウ果皮に含まれ得るマルビジン-3,5-ジグルコシド以外のアントシアニン(例えば、デルフィニジン-3-グルコシド、マルビジン-3-グルコシド、マルビシン-3-クマロイルグルコシド、マルビシン-3-クマロイルグルコシド-5-グルコシド)を、マルビジン-3,5-ジグルコシドと同時に、かつ効率的に取得して、これらをマルビジン-3,5-ジグルコシドと一緒に含む神経機能調節剤とすることができる点から、ブドウ果皮の抽出物を使用することが好ましい。
 マルビジン-3,5-ジグルコシドの供給源として、市販のブドウ粉末、ブドウの濃縮液を使用してもよい。
 マルビジン-3,5-ジグルコシドは、化学合成品であることもできるが、安全性の点から、生物資源由来のものが好ましい。
(作用)
 本発明者らによって、マルビジン-3,5-ジグルコシドは、神経細胞の保護に有効であることが見出された。ここで、神経細胞の保護は、神経細胞死の抑制を含み、抑制とともに、神経細胞の増殖がみられてもよい。神経細胞の保護のメカニズムは明らかではないが、後述する実施例の結果によれば、抗酸化性とエネルギー代謝促進作用の両方がメカニズムとして示唆される。
 本発明の神経機能調節剤は、マルビジン-3,5-ジグルコシドを有効成分として含有するものであるが、その他の成分を含んでいてもよい。例えば、マルビジン-3,5-ジグルコシド以外のアントシアニン(例えば、デルフィニジン-3-グルコシド、マルビジン-3-グルコシド、マルビシン-3-クマロイルグルコシド、マルビシン-3-クマロイルグルコシド-5-グルコシド)が挙げられる。
(疾患及び症状等)
 本発明の神経機能調節剤は、神経細胞の保護を通して神経機能調節機能を発揮するため、神経細胞の損傷や神経細胞数の減少に関連する神経変性疾患や、種々の症状に有効であり、中でも抗老化に対する有効性が高い。後述する実施例では、アミロイドβタンパク質を蓄積させた老化促進モデルマウスにおいて、空間学習記憶の低下の抑制及び改善が認められており、アミロイドβタンパク質及びアミロイドβタンパク質による酸化ストレス等が原因と考えられる神経変性疾患や、種々の症状に有効である。
 具体的には、本発明の神経機能調節剤は、アルツハイマー病、パーキンソン病、うつ病等の神経変性疾患等の改善、予防を目的として使用することができる。
 また、本発明の神経機能調節剤は、抗ストレス、抗疲労を目的として使用することができる。
 さらに、本発明の神経機能調節剤は、学習能力、記憶力、反射反応能力等の神経機能の回復、向上を目的として使用することができる。
 本発明の神経機能調節剤は、抗老化、抗ストレス、抗疲労、学習能力回復・向上、記憶力回復・向上、反射反応能力回復・向上用の剤であることができる。
 本発明の神経機能調節剤は、健常人に投与することもできる。
(投与方法)
 本発明の神経機能調節剤の投与対象としては、哺乳動物が挙げられ、例えば、ヒト、家畜(ウマ、ウシ、ブタ等)、愛玩動物(イヌ、ネコ等)、実験(試験)動物(マウス、ラット等)であり、好ましくはヒトである。
 本発明の神経機能調節剤の投与量は、投与対象、年齢、体重、症状等を考慮して、適宜設定することができる。例えば、マルビジン-3,5-ジグルコシドの投与量で、投与対象(ヒト)の体重1kg当たり、0.008mg/日以上、4mg/日以下が挙げられる。投与量は、好ましくは0.04mg/日以上、より好ましくは0.08mg/日以上であり、また、好ましくは1.6mg/日以下、より好ましくは0.8mg/日以下である。投与対象がヒト以外の場合、上記範囲を適宜、増減することにより設定することができる。投与は、1日に1回の投与であっても、複数回に分けた投与であってもよい。投与期間は、投与対象、年齢、体重、症状等を考慮して、適宜設定することができるが、継続的な使用が好ましい。
(神経機能を調節する方法)
 本発明は、上記神経機能調節剤を、投与対象に摂取させることを含む、神経機能を調節する方法に関する。この方法においては、投与対象からヒトを除くことができ、また、方法は、医療行為を除くものとすることができる。
<医薬組成物>
 本発明はまた、上記神経機能調節剤を含有する医薬組成物に関する。医薬組成物は、医薬品又は医薬部外品であることができる。
 医薬組成物は、製薬上許容される成分を含むことができ、例えば、担体、賦形剤(例えば、乳糖、ショ糖、デキストリン、ヒドロキシプロピルセルロース、ポリビニルピロリドン)、崩壊剤、緩衝剤、乳化剤、懸濁剤、安定剤、保存剤、防腐剤、溶剤(例えば、水、食塩水、エタノール等の有機溶媒)が挙げられる。他の薬理活性を有する薬理成分を含むこともできる。
 医薬組成物は、経口投与用であっても、非経口投与であってもよく、好ましくは、経口投与である。経口投与の場合、散剤、錠剤、コーティング剤、糖衣錠、ソフトカプセル又はハードカプセル、液剤、乳濁剤、懸濁剤の形態が挙げられる。非経口投与の場合、坐剤、注射剤、輸液、軟膏、クリーム、ゲル剤の形態が挙げられる。
 対象となる疾患及び症状等、投与方法(投与対象、投与量、期間)は、上記神経機能調節剤と同様に設定することができる。本発明の医薬組成物は、神経機能調節用医薬組成物として使用することができ、抗老化、抗ストレス、抗疲労、学習能力回復・向上、記憶力回復・向上、反射反応能力回復・向上用の医薬組成物が挙げられる。
<食品組成物>
 本発明によれば、上記神経機能調節剤を含有する食品組成物が提供される。食品組成物は、機能性食品、栄養補助食品、健康補助食品、栄養強化食品、機能性表示食品、特別用途食品、特定保健用食品又は栄養機能食品であることができる。
 食品組成物は、食品の製造で許容される成分を含むことができ、例えば、担体、賦形剤(例えば、乳糖、ショ糖、デキストリン、ヒドロキシプロピルセルロース、ポリビニルピロリドン)、崩壊剤、緩衝剤、乳化剤、懸濁剤、安定剤、保存剤、防腐剤、溶剤(例えば、水、食塩水、エタノール等の有機溶媒)が挙げられる。食品は、タンパク質、糖質、脂質、ビタミン、ミネラル、有機酸、有機塩基、香料等を含むこともできる。
 食品組成物の形態は、特に限定されず、固体、液体、混合物、懸濁液、ペースト、ゲル、粉末、カプセルが挙げられ、飲料、菓子、調味料、惣菜、加工食品とすることができる。食品組成物は、サプリメントであってもよい。
 対象となる疾患及び症状等、投与方法(投与対象、期間)は、上記神経機能調節剤と同様に設定することができる。本発明の食品組成物は、神経機能調節用食品組成物として使用することができ、抗老化、抗ストレス、抗疲労、学習能力回復・向上、記憶力回復・向上、反射反応能力回復・向上用の食品組成物が挙げられる。
 以下、実施例により、本発明をさらに具体的に説明する。ただし、本発明の技術的範囲は、これらの実施例によって制限されない。
<試料の調製>
 各実験では、マルビジン-3,5-ジグルコシドとして、以下を用いた。
単品(M3,5G) :マルビジン-3,5-ジグルコシドクロリド(富士フィルム和光純薬株式会社製)
単品(M)     :マルビジンクロリド(富士フィルム和光純薬社製)
単品(M3G)   :マルビジン-3-グルコシドクロリド(富士フィルム和光純薬社製)
抽出物:マルビジン-3,5-ジグルコシドを含むブドウ果皮抽出物
 上記抽出物の調製方法は、以下のとおりである。
 ブドウ(品種名:富士の夢(行者の水(サンカクヅル)とメルロー(ヨーロッパブドウ)の交配種))の果実を圧搾して果汁を除いた後の果皮を、ステンレス製の網かごの上に互いが触れ合わないように置いて、乾燥機を用いて70℃の温風をあててブドウ果皮乾燥物を得た。得られたブドウ果皮乾燥物6gに、2%ギ酸メタノール水(メタノール:超純水:ギ酸=70:28:2(v/v/v))40mLを加え、12時間、室温遮光条件下で撹拌(360rpm)した。抽出溶液を、濾紙(ADVANTEC社製 定量濾紙No.5A、110mm)を用いて濾過し、濾過した抽出溶液を濃縮及び凍結乾燥してブドウ果皮抽出物の粉末3gを得た。
 得られたブドウ果皮抽出物の粉末をメタノールに溶解し、高速液体クロマトグラフィー-質量分析(HPLC/MS)を行い、抽出物粉末1gに対して、マルビジン-3,5-ジグルコシド86.8mg、デルフィニジン-3-グルコシド49.2mg、マルビジン-3-グルコシド2.6mg、マルビシン-3-クマロイルグルコシド12.6mg、マルビシン-3-クマロイルグルコシド-5-グルコシド51.5mgが含まれていることを確認した。成分の同定及び定量は、LC-MS分析のライブラリーで確認するとともに、標準品の測定値との対比により行った。
 上記単品及び上記抽出物を用いて、以下の試料1~6を調製した。試料1~4は、後述する細胞生存実験、遺伝子発現実験、ATP産生量測定実験及び活性酸素種量測定実験に用い、試料5及び6は、後述する動物実験に用いた。
 試料1:上記単品(M3,5G)を70%エタノール溶液(エタノール:水=70:30(v/v))に溶解し、得られた溶液中の単品(M3,5G)の濃度が12.56μMになるように調整し、各実験に用いた。
 試料2:上記単品(M)を70%エタノール溶液(エタノール:水=70:30(v/v))に溶解し、得られた溶液中の単品(M)の濃度が12.56μMになるように調整し、各実験に用いた。
 試料3:上記単品(M3G)を70%エタノール溶液(エタノール:水=70:30(v/v))に溶解し、得られた溶液中の単品(M3G)の濃度が12.56μMになるように調整し、各実験に用いた。
 試料4:上記抽出物を70%エタノール溶液(エタノール:水=70:30(v/v))に溶解し、得られた溶液中の抽出物粉末の濃度が100μg/mLになるように調整し、各実験に用いた。マルビジン-3,5-ジグルコシドの濃度にすると12.56μMである(クロリドで計算)。
 試料5:上記単品(M3,5G)を超純水(Milli-Q(登録商標)水)に溶解し、得られた溶液中の単品(M3,5G)の濃度が651μg/mLになるように調整し、動物実験に用いた。
 試料6:上記抽出物を超純水(Milli-Q(登録商標)水)に溶解し、得られた溶液中の抽出物粉末の濃度が7.5mg/mLになるように調整し、動物実験に用いた。溶液中のマルビジン-3,5-ジグルコシドの濃度は651μg/mLとなる(クロリドで計算)。
<実施例1:細胞生存実験>
 以下の実験により、マルビジン-3,5-ジグルコシドの神経細胞死の抑制作用を確認した。
 ウェルプレート(BD Biocoat社製、ウェル数96)の各ウェルに、SH-SY5Y細胞(神経細胞のモデル細胞、ATCC社製)を2×105セル/mLの濃度で、100μL/ウェル藩種し、24時間、37℃、5%CO2の条件下で培養した。細胞培養培地は、F12/DMEM培地(Gibco社製)に1%非必須アミノ酸(Gibco社製)、15%FBS(Bio West社製)、1%ペニシリン/ストレプトマイシン(Lonza社製)を混合したものを用いた。
 24時間後、培養培地をアスピレーターにより完全に除去し、Opti-MEM(Gibco社製)の培地を100μL/ウェル添加し、24時間、37℃、5%CO2の条件下で培養した。
 その後、Opti-MEMをアスピレーターにより完全に除去し、MTT試薬(3-(4,5-ジメチルチアゾール-2-イル)-2,5-ジフェニルテトラゾリウムブロミド、5mg/mL)をOpti-MEMに混合(MTT試薬:Opti-MEM=1:10)したものを、110μL/ウェル添加し、24時間、37℃、5%CO2の条件下で培養した。次いで、10%SDS(ドデシル硫酸ナトリウム)水溶液を、100μL/ウェル添加し、24時間、37℃、5%CO2の条件下で培養した。
 その後、マイクロプレートリーダー(大日本住友製薬社製)を用いて、570nmにおける吸光度を測定し、MTTホルマザン産出量を求め、相対細胞生存率を算出した(図1中、「対照」)。
 ウェルプレート(BD Biocoat社製、ウェル数96)へのSH-SY5Y細胞播種24時間後、培養培地をアスピレーターにより完全に除去し、アミロイドβタンパク質(Beta-Amyloid 1-42、AnaSpec社製)をOpti-MEM(Gibco社製)に最終濃度15μMとなるよう混合し、混合物を100μL/ウェル添加し、72時間、37℃、5%CO2の条件で培養し、細胞死を誘導したこと以外は、上記と同様にして、MTTホルマザン産出量を求め、相対細胞生存率を算出した(図1中、「Aβ」)。
 ウェルプレート(BD Biocoat社製、ウェル数96)へのSH-SY5Y細胞播種24時間後、培養培地をアスピレーターにより完全に除去し、試料1をOpti-MEM(Gibco社製)に最終濃度12.56μMとなるよう混合し、混合物を90μL/ウェル添加し、10分間放置し、次いでアミロイドβタンパク質(Beta-Amyloid 1-42、AnaSpec社製)をOpti-MEM(Gibco社製)に濃度150μMとなるよう混合し、混合物を10μL/ウェル添加し、72時間、37℃、5%CO2の条件で培養し、細胞死を誘導したこと以外は、上記と同様にして、MTTホルマザン産出量を求め、相対細胞生存率を算出した(図1中、「Aβ+M3,5G」)。
 試料1に代えて試料2を用いた他は、上記と同様にして、相対細胞生存率を算出した(図1中、「Aβ+M)。
 試料1に代えて試料3を用いた他は、上記と同様にして、相対細胞生存率を算出した(図1中、「Aβ+M3G」)。
 ウェルプレート(BD Biocoat社製、ウェル数96)へのSH-SY5Y細胞播種24時間後、培養培地をアスピレーターにより完全に除去し、試料4をOpti-MEMに最終濃度200μg/mLとなるよう混合し、混合物を90μL/ウェル添加し、10分間放置し、次いでアミロイドβタンパク質(Beta-Amyloid 1-42、AnaSpec社製)をOpti-MEMに濃度150μMとなるよう混合し、混合物を10μL/ウェル添加し、72時間、37℃、5%CO2の条件で培養し、細胞死を誘導したこと以外は、上記と同様にして、MTTホルマザン産出量を求め、相対細胞生存率を算出した(図1中、「Aβ+抽出物」)。
 結果を図1に示す。
 図中の「対照」と「Aβ」を比較すると、前者に対し後者の相対細胞生存率は顕著に低く、アミロイドβタンパク質による処理によって細胞死が誘導されていることがわかった。
 図中の「Aβ+M3,5G」を見ると、相対細胞生存率は、「Aβ」よりも有意に高く、アミロイドβタンパク質による細胞死が、マルビジン-3,5-ジグルコシドにより、抑制されることがわかった。細胞死の抑制は、図中の「Aβ+M」に示されるとおり、マルビジンについても確認されたが、図中の「Aβ+M3G」に示されるとおり、マルビジン-3-グルコシドについては確認されなかった。
 図中の「Aβ+抽出物」を見ると、相対細胞生存率は、「Aβ」よりも有意に高く、「対照」と同程度であり、マルビジン-3,5-ジグルコシドを抽出物として用いると、高い抑制作用が得られることがわかった。「Aβ+抽出物」の相対細胞生存率の高さから、マルビジン-3,5-ジグルコシドが細胞死の抑制作用のみならず、細胞の増殖作用も有する可能性が示唆される。
<実施例2:遺伝子発現実験>
 以下の実験により、マルビジン-3,5-ジグルコシドの神経細胞死の抑制作用のメカニズムを解析した。
 100mm細胞ディッシュ(BD Biocoat社製)に、SH-SY5Y細胞を3.7×105セル/mLの濃度で、10mL/ディッシュで藩種し、24時間、37℃、5%CO2の条件下で培養した。細胞培養培地は、F12/DMEM培地(Gibco社製)に1%非必須アミノ酸(Gibco社製)、15%FBS(Bio West社製)、1%ペニシリン/ストレプトマイシン(Lonza社製)を混合したものを用いた。24時間後、培養培地をアスピレーターにより完全に除去し、Opti-MEM(Gibco社製)の培地を10mL/ディッシュ添加し、24時間、37℃、5%CO2の条件下で培養した。その後、培養細胞から、RNAを抽出し、リアルタイムPCR法を用いて、下記の遺伝子発現について解析を行った(図2~8中、「対照」)。
 なお、RNA抽出に関しては、ISOGEN試薬(ニッポンジーン社製)を用いて、ニッポンジーン社推奨プロトコールに準じてRNA抽出を行なった(URL: https://www.nippongene.com/siyaku/product/extraction/tds/tds#isogen-rna-dna-protein.pdf参照)。またリアルタイムPCR法に関してはTaqMan Real-TimePCR用試薬キット(Thermo Fisher Scientific社製)を用いてThermo Fisher Scientific社推奨プロトコールに準じて行なった(URL: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/4304449#TaqManPCRMM#UG.pdf参照)。
 MAP2K4(マイトジェン活性化プロテインキナーゼ4)
 MAPK14(マイトジェン活性化プロテインキナーゼ14)
 MAPK8(マイトジェン活性化プロテインキナーゼ8)
 PI3KCA(ホスファチジルイノシトール-4,5-ビスホスフェート3-キナーゼ 触媒サブユニットα)
 AKT1(AKTセリン/スレオニンキナーゼ1)
 PARP1(ポリ(ADP-リボース)ポリメラーゼ1)
 CASP3(カスパーゼ-3)
 これらの遺伝子は、ストレス応答MAPK経路に関与する遺伝子である。紫外線や放射線、酸化ストレス、熱ショックなどの様々な環境ストレス刺激によって活性化され、ストレスを被った細胞に細胞死(アポトーシス)を誘導することが知られている。このシグナル経路はアミロイドβによっても活性化され、神経変性疾患の制御に中心的な役割を果たしていることが知られている。一連のマイトジェン活性化プロテインキナーゼから、PI3KCA及びAKT1へのシグナル経路と、一連のマイトジェン活性化プロテインキナーゼから、CASP3及びPARP1へのシグナル経路があり、前者はミトコンドリア活性に関与し、後者はアポトーシスに関与する。
 100mm細胞ディッシュ(BD Biocoat社製)へのSH-SY5Y細胞播種24時間後、培養培地をアスピレーターにより完全に除去し、アミロイドβタンパク質(Beta-Amyloid 1-42、AnaSpec社製)をOpti-MEM(Gibco社製)に最終濃度5μMとなるよう混合し、混合物を10mL/ディッシュ添加し、24時間、37℃、5%CO2の条件で培養し、RNAを抽出したこと以外は、上記と同様にして、上記の遺伝子発現について解析を行った(図2~8中、「Aβ」)。
 100mm細胞ディッシュ(BD Biocoat社製)へのSH-SY5Y細胞播種24時間後、培養培地をアスピレーターにより完全に除去し、試料1をOpti-MEM(Gibco社製)に最終濃度12.56μMとなるよう混合し、混合物を9,990μL/ディッシュ添加し、10分間放置し、次いでアミロイドβタンパク質(Beta-Amyloid 1-42、AnaSpec社製)をOpti-MEM(Gibco社製)に最終濃度5μMとなるよう混合し、混合物を10μL/ディッシュ添加し、24時間、37℃、5%CO2の条件で培養し、RNA抽出を行なったこと以外は、上記と同様にして、上記の遺伝子発現について解析を行った(図2~8中、「Aβ+M3,5G」)。
 試料1に代えて試料2を用いた他は、上記と同様にして、上記の遺伝子発現について解析を行った(図2~8中、「Aβ+M」)。
 試料1に代えて試料3を用いた他は、上記と同様にして、上記の遺伝子発現について解析を行った(図2~8中、「Aβ+M3G」)。
 100mm細胞ディッシュ(BD Biocoat社製)へのSH-SY5Y細胞播種24時間後、培養培地をアスピレーターにより完全に除去し、試料1をOpti-MEM(Gibco社製)に混合し、10mL/ディッシュ添加し、24時間、37℃、5%CO2の条件で培養し、RNA抽出を行なったこと以外は、上記と同様にして、上記の遺伝子発現について解析を行った(図2~8中、「M3,5G」)。
 結果を図2~8に示す。
 図中の「Aβ」では、「対照」に比べて、MAP2K4、MAPK14、MAPK8、PI3KCA、AKT1及びPARP1の発現が有意に低下し、CASP3の発現が有意に増加していた。
 一方、図中の「M3,5G」では、「対照」に比べて、MAP2K4、MAPK14、MAPK8、PI3KCA及びAKT1の発現が有意に増加し、CASP3の発現が有意に低下し、PARP1は発現が同程度であった。
 さらに、図中の「Aβ+M3,5G」では、「Aβ」に比べて、MAP2K4、MAPK14、MAPK8、PI3KCA、AKT1及びPARP1の発現は有意に高く、また、CASP3の発現は有意に低かった。また、「対照」に比べても、MAP2K4、MAPK8、PI3KCA、AKT1の発現は高く、CASP3の発現は有意に低かった。
 マルビジン-3,5-ジグルコシドは、MAP2K4、MAPK14、MAPK8、PI3KCA及びAKT1の発現を増強させる作用を有し、アミロイドβタンパク質処理によるこれらの発現低下を回復させ、これを介したミトコンドリア活性の上昇によるエネルギー代謝促進に寄与していることが示唆される。
 また、マルビジン-3,5-ジグルコシドは、CASP3の発現を低下させる作用を有し、アミロイドβタンパク質処理によるこの発現増加を低減し、これを介してアポトーシスを抑制していることが示唆される。
 一方、アミロイドβタンパク質処理の細胞においては、図中の「Aβ+M」に示されるとおり、マルビジンによっても、MAP2K4、MAPK14、MAPK8、PI3KCA、AKT1、PARP1の発現の増加、CASP3の発現の低下が見られ、また、「Aβ+M3G」に示されるとおり、マルビジン-3-グルコシドによっても、MAP2K4、MAPK14、PI3KCA,AKT1、PARP1の発現の増加が見られたが、マルビジン-3,5-ジグルコシドは、MAP2K4、PI3KCA、AKT1の発現の増加、CASP3の発現の低下において、これらの中で最も高い活性を示した。活性の高さは、マルビジン-3,5-ジグルコシド、マルビジン、マルビジン-3-グルコシドの順であることがわかる。
<実施例3:ATP産生量測定実験>
 以下の実験により、神経細胞におけるATP産生量を測定し、マルビジン-3,5-ジグルコシドによるエネルギー代謝促進を確認した。
 具体的には、ATP測定試薬(『細胞の』ATP測定試薬、東洋ビーネット社製)を用いて、東洋ビーネット社推奨のプロトコール(URL: https://search.cosmobio.co.jp/cosmo#search#p/search#gate2/docs/TIC#/CA10.20131125.pdf)に準じて、ATP産生量を求めた(図9中、「対照」)。
 具体的には、ウェルプレート(BD Biocoat社製、ウェル数96)の各ウェルに、SH-SY5Y細胞(神経細胞のモデル細胞、ATCC社製)を2×105セル/mLの濃度で、100μL/ウェル藩種し、24時間、37℃、5%CO2の条件下で培養した。細胞培養培地は、F12/DMEM培地(Gibco社製)に1%非必須アミノ酸(Gibco社製)、15%FBS(Bio West社製)、1%ペニシリン/ストレプトマイシン(Lonza社製)を混合したものを用いた。
 24時間後、培養培地をアスピレーターにより完全に除去し、Opti-MEM(Gibco社製)の培地を100μL/ウェル添加し、6、12及び24時間、37℃、5%CO2の条件下で培養した。各処理時間後、ATP測定試薬(『細胞の』ATP測定試薬、東洋インキ社製)を100μL/ウェル添加し、混合を行い、10分間、暗所室温で反応させた。次いで、細胞溶液とATP測定試薬の混合溶液150μLを白色のウェルプレート(BD FALCON社製、ウェル数96)にマイクロピペットを用いて移した。その後、マイクロプレートリーダー(大日本住友製薬社製)を用いて、所定時間経過後の発光量を測定し、ATP産生量を算出した(図9中、「対照」)。
 ウェルプレート(BD Biocoat社製、ウェル数96)へのSH-SY5Y細胞播種24時間後、培養培地をアスピレーターにより完全に除去し、試料1をOpti-MEM(Gibco社製)に最終濃度12.56μMとなるよう混合し、100μL/ウェル添加したこと以外は、上記と同様にして、ATP産生量を求めた(図9中、「M3,5G」)。
 ウェルプレート(BD Biocoat社製、ウェル数96)へのSH-SY5Y細胞播種24時間後、培養培地をアスピレーターにより完全に除去し、試料2をOpti-MEM(Gibco社製)に200μg/mLとなるよう混合し、100μL/ウェル添加したこと以外は、上記と同様にして、ATP産生量を求めた(図9中、「抽出物」)。
 結果を図9に示す。
 図中の「M3,5G」、「抽出物」のいずれも「対照」に比べて、ATP産生量が増加していた。マルビジン-3,5-ジグルコシドによるミトコンドリア活性の上昇によるエネルギー代謝促進が示唆される。
<実施例4:活性酸素種量測定実験>
 以下の実験により、神経細胞における活性酸素種量を測定し、マルビジン-3,5-ジグルコシドによる酸化ストレス低下を確認した。
 具体的には、OxiSelect(商標) Intracellular ROS測定アッセイキット(Cell Biolabs Ink.社製)を用いて、Cell Biolabs Ink.社の推奨プロトコール(URL: https://www.cellbiolabs.com/sites/default/files/STA-342-ROS-assay-kit.pdf)に準じて活性酸素種量を求めた(図10中、「対照」)。
 具体的には、ウェルプレート(BD Biocoat社製、ウェル数96)の各ウェルに、SH-SY5Y細胞(神経細胞のモデル細胞、ATCC社)を2×105セル/mLの濃度で、100μL/ウェル藩種し、24時間、37℃、5%CO2の条件下で培養した。細胞培養培地は、F12/DMEM培地(Gibco社製)に1%非必須アミノ酸(Gibco社製)、15%FBS(Bio West社製)、1%ペニシリン/ストレプトマイシン(Lonza社製)を混合したものを用いた。
 24時間後、培養培地をアスピレーターにより完全に除去し、Opti-MEM(Gibco社製)の培地に20X DCFH-DA(測定キットに含まれる試薬)を混合(20倍希釈)し100μL/ウェル添加し、1時間、37℃、5%CO2の条件下で培養した。その後Opti-MEM(Gibco社製)及び20X DCFH-DA(測定キットに含まれる試薬)混合培地をアスピレーターにより完全に除去し、Opti-MEM(Gibco社製)の培地を100μL/ウェル添加し、1時間、37℃、5%CO2の条件下で培養した。その後、2X Cell Lysis Buffer(測定キットに含まれる試薬)を100μL/ウェル添加し、混合を行い、10分間、暗所室温の条件下で反応させた。次いで、各ウェル中の溶液150μLを別のウェルプレート(BD FALCON社製、ウェル数96)にマイクロピペットを用いて移した。その後、マイクロプレートリーダー(大日本住友製薬社製)を用いて、480nm/530nmにおける蛍光量を測定し、相対ROS産生量を算出した(図10中、「対照」)。
 Opti-MEM(Gibco社製)及び20X DCFH-DA(測定キットに含まれる試薬)混合培地処理1時間後、混合培地をアスピレーターにより完全に除去し、アミロイドβタンパク質(Beta-Amyloid 1-42、AnaSpec社製)をOpti-MEM(Gibco社製)に最終濃度5μMとなるよう混合し、混合物を100μL/ウェル添加し、1時間、37℃、5%CO2の条件下で培養したこと以外は、上記と同様にして、活性酸素種量を求めた(図10中、「Aβ」)。
 Opti-MEM(Gibco社製)及び20X DCFH-DA(測定キットに含まれる試薬)混合培地処理1時間後、混合培地をアスピレーターにより完全に除去し、試料1及びアミロイドβタンパク質(Beta-Amyloid 1-42、AnaSpec社製)をOpti-MEM(Gibco社製)に最終濃度がそれぞれ12.56μM及び5μMとなるよう混合し、混合物を100μL/ウェル添加し、1時間、37℃、5%CO2の条件下で培養したこと以外は、上記と同様にして、活性酸素種量を求めた(図10中、「Aβ+M3,5G」)。
 Opti-MEM(Gibco社製)及び20X DCFH-DA(測定キットに含まれる試薬)混合培地処理1時間後、混合培地をアスピレーターにより完全に除去し、試料2及びアミロイドβタンパク質(Beta-Amyloid 1-42、AnaSpec社製)をOpti-MEM(Gibco社製)に最終濃度がそれぞれ12.56μM及び5μMとなるよう混合し、混合物を100μL/ウェル添加し、1時間、37℃、5%CO2の条件下で培養したこと以外は、上記と同様にして、活性酸素種量を求めた(図10中、「Aβ+抽出物」)。
 結果を図10に示す。
 「Aβ」において、「対照」と比較し、有意なROS産生量の増加が確認された。このことから「Aβ」による酸化ストレスの増加が示唆される。一方、「Aβ+M3,5G」及び「Aβ+抽出物」において、「Aβ」と比較して有意なROS産生量の減少が確認され、かつ「対照」と比較して有意差が認められなかったことから、単品(M3,5G)及び抽出物処理により、Aβが誘導する酸化ストレスを対照(酸化ストレスを受けていない状態)まで軽減することが示唆される。
<実施例5:動物実験>
 以下の実験により、マルビジン-3,5-ジグルコシドの動物における学習記憶能力の改善作用を確認した。
 動物実験において使用したマウス及び投与内容は、以下のとおりである。投与内容以外の飼育条件は、全部の群で共通である。
 単品(M3,5G)投与(SAMP8)群:試料5を、1日当たりの投与量が、マウス体重1kg当たりマルビジン-3,5-ジグルコシド2.17mgとなる量で、老化促進マウス(SAMP8)(日本エスエルシー社より入手。16週齢、体重28~30g)10匹に、30日間経口投与した。(図11~13中、「老化促進マウス+単品(M3,5G)
 マウス体重1kg当たりマルビジン-3,5-ジグルコシド2.17mgのヒト等価用量は、ヒト体重1kg当たりマルビジン-3,5-ジグルコシド0.18mgに相当する。
 抽出物投与(SAMP8)群:試料4を、1日当たりの投与量が、マウス体重1kg当たり抽出物粉末25mg(試料6中のマルビジン-3,5-ジグルコシド2.17mg)で、老化促進マウス(SAMP8)(16週齢、体重28~30g)10匹に、30日間経口投与した。(図11~13中、「老化促進マウス+抽出物)
 水投与(SAMP8)群:単品(M3,5G)投与群又は抽出物投与群で試料5又は試料6として投与したのとほぼ同量の飲料水を、老化促進マウス(SAMP8)(日本エスエルシー社より入手。16週齢、体重28~30g)10匹に、30日間経口投与した。(図11~13中、「老化促進マウス)
 水投与(SAMR1)群:単品(M3,5G)投与群又は抽出物投与群で試料5又は試料6として投与したのとほぼ同量の飲料水を、正常老化マウス(SAMR1)(日本エスエルシー社より入手。16週齢、体重28.5~34g)10匹に、30日間経口投与した。(図11~13中、「正常老化マウス)
 動物実験の内容は、以下のとおりである。
 各群のマウスについて、経口投与終了の翌日より、モリス水迷路試験(プラットフォームテスト、プローブテスト)を行った。モリス水迷路として、直径120cm、深さ45cmのプールを用意した。プールの水面下に透明の台(プラットフォーム)を設置し、プールの内壁に等間隔で4カ所目印を設置したものを用いた。
プラットフォームテスト:
 マウスをプール内に投入し、マウスがプラットフォームに到達するまでにかかる時間を測定した。その際、制限時間を60秒とし、到達できない場合は60秒とした。到達後マウスは15秒間、プラットフォーム上に置かれた。各群の各マウスについて、この実験を1日1回、7日間続けて行った。結果を図11に示す。
プローブテスト:
 試験最終日に、プラットフォームを取り除き、同様にマウスをプールに投入し、60秒の間に、マウスが、プラットフォームが設置されていた場所を横切った回数及び同場所に滞在していた時間を測定した。結果を図12及び13に示す。
 プラットフォームテストは、マウスが目印等の視覚刺激を頼りにプラットフォームに到達するまでにかかる時間を指標として空間学習記憶を評価するものである。図11に示されるように、正常老化マウス(水投与)については、到達時間が短縮していったのに対し、老化促進マウス(水投与)については、到達時間の短縮は見られなかった。抽出物を投与した老化促進マウスでは、正常老化マウス(水投与)と同程度の到達時間の短縮が見られた。マルビジン-3,5-ジグルコシドを投与した老化促進マウスと比べた場合、抽出物を投与した老化促進マウスの方が、到達時間の短縮幅は大きかった。
 プローブテストは、プラットフォームが設置されていた場所を横切った回数及び同場所の滞在時間により、マウスの記憶保持能力を評価するものである。図12及び13に示されるように、老化促進マウス(水投与)は、正常老化マウス(水投与)に比べて、横切った回数が有意に少なく、また、滞在時間が有意に短かった。抽出物を投与した老化促進マウスでは、正常老化マウス(水投与)と同程度の横切った回数及び滞在時間が観察された。マルビジン-3,5-ジグルコシドを投与した老化促進マウスと比べた場合、抽出物を投与した老化促進マウスの方が、横切った回数が多く、また、滞在時間は長かった。
 上記より、マルビジン-3,5-ジグルコシドの投与による、動物の学習記憶能力の改善が確認され、特に抽出物投与の場合に高い改善効果が得られることが示唆される。
 本発明の神経機能調節剤は、神経細胞保護に有効であり、当該保護を介して神経機能調節作用を発揮するものであり、アルツハイマー病、パーキンソン病、うつ病等の神経変性疾患等の改善、予防が期待でき、健康サプリメント等の食品、医薬品としての展開や関連市場の拡大が期待される。本発明の神経機能調節剤は、天然に存在する成分であるマルビジン-3,5-ジグルコシドを有効成分とするので、安全であり、日常的又は継続的な摂取に適していると考えられる。このように、本発明は、産業上の有用性が高い。

Claims (9)

  1.  マルビジン-3,5-ジグルコシドを有効成分として含有する神経機能調節剤。
  2.  神経細胞の保護を介して神経機能調節作用を発揮する、請求項1に記載の神経機能調節剤。
  3.  前記神経細胞の保護が、アミロイドβタンパク質による神経細胞死の抑制を含む、請求項2に記載の神経機能調節剤。
  4.  デルフィニジン-3-グルコシドを含有する、請求項1~3のいずれか一項に記載の神経機能調節剤。
  5.  経口用である、請求項1~4のいずれか一項に記載の神経機能調節剤。
  6.  請求項1~5のいずれか一項に記載の神経機能調節剤を含有する医薬組成物。
  7.  請求項1~5のいずれか一項に記載の神経機能調節剤を含有する食品組成物。
  8.  機能性食品、栄養補助食品、健康補助食品、栄養強化食品、機能性表示食品、特別用途食品、特定保健用食品又は栄養機能食品である、請求項7に記載の食品組成物。
  9.  請求項1~5のいずれか一項に記載の神経機能調節剤を、投与対象に摂取させることを含む、神経機能を調節する方法。
PCT/JP2020/020359 2019-06-05 2020-05-22 神経機能調節剤 WO2020246271A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20819085.0A EP3981472A4 (en) 2019-06-05 2020-05-22 NEUROLOGICAL FUNCTION REGULATOR
US17/595,841 US20220241308A1 (en) 2019-06-05 2020-05-22 Neuronal function modulating agent
KR1020217038650A KR20220016834A (ko) 2019-06-05 2020-05-22 신경 기능 조절제
JP2021524758A JPWO2020246271A1 (ja) 2019-06-05 2020-05-22
CN202080034054.3A CN113795305A (zh) 2019-06-05 2020-05-22 神经功能调节剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019105644 2019-06-05
JP2019-105644 2019-06-05

Publications (1)

Publication Number Publication Date
WO2020246271A1 true WO2020246271A1 (ja) 2020-12-10

Family

ID=73652826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020359 WO2020246271A1 (ja) 2019-06-05 2020-05-22 神経機能調節剤

Country Status (7)

Country Link
US (1) US20220241308A1 (ja)
EP (1) EP3981472A4 (ja)
JP (1) JPWO2020246271A1 (ja)
KR (1) KR20220016834A (ja)
CN (1) CN113795305A (ja)
TW (1) TW202112382A (ja)
WO (1) WO2020246271A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502954A (ja) * 2005-07-27 2009-01-29 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド タンパク質のミスフォールディングを修正する小分子及びその使用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642277B1 (en) * 1996-09-20 2003-11-04 The Howard Foundation Food supplements containing polyphenols
US6818234B1 (en) * 1999-08-27 2004-11-16 Access Business Group International Llc Dietary food supplement containing natural cyclooxygenase inhibitors and methods for inhibiting pain and inflammation
US20040259816A1 (en) * 2002-10-01 2004-12-23 Pandol Stephen J. Compositions comprising plant-derived polyphenolic compounds and inhibitors of reactive oxygen species and methods of using thereof
JP2004359603A (ja) 2003-06-04 2004-12-24 Fancl Corp 細胞死抑制剤
KR100733913B1 (ko) * 2005-08-30 2007-07-02 한국화학연구원 안토시아닌을 포함하는 뇌세포 보호제와 뇌경색 및 뇌졸중예방 또는 치료제
KR20110113465A (ko) * 2010-04-09 2011-10-17 경상대학교산학협력단 검정콩 추출물을 포함하는 퇴행성 뇌신경 질환 치료 또는 예방용 조성물
CN104177460B (zh) * 2014-07-17 2016-06-08 中国农业大学 一种3,5-二糖类花色苷的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502954A (ja) * 2005-07-27 2009-01-29 ユニバーシティ オブ フロリダ リサーチ ファウンデーション,インコーポレイティド タンパク質のミスフォールディングを修正する小分子及びその使用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CRUZ, A. ET AL.: "Anthocyanin Phytochemical Profiles and Anti-Oxidant Activities of Vitis Candicans and Vitis Doaniana", PHYTOCHEM ANAL., vol. 24, no. 5, 2013, pages 446 - 452, XP055766434 *
DREISEITEL, A. ET AL.: "Berry Anthocyanins and Their Aglycons Inhibit Monoamine Oxidases A and B", PHARMACOL RES., vol. 59, 2009, pages 306 - 311, XP026063509, DOI: 10.1016/j.phrs.2009.01.014 *
DREISEITEL, A. ET AL.: "Inhibition of Proteasome Activity by Anthocyanins and Anthocyanidins", BIOCHEM BIOPHYS RES COMMUN., vol. 372, no. 1, 2008, pages 57 - 61, XP022705342, DOI: 10.1016/j.bbrc.2008.04.140 *
OKAMOTO, G. ET AL.: "Juice constituents and skin pigments in Vitis coignetiae Pulliat grapevines", VITIS, vol. 41, no. 3, 2002, pages 161 - 162, XP055766431 *
See also references of EP3981472A4 *

Also Published As

Publication number Publication date
TW202112382A (zh) 2021-04-01
US20220241308A1 (en) 2022-08-04
CN113795305A (zh) 2021-12-14
JPWO2020246271A1 (ja) 2020-12-10
EP3981472A1 (en) 2022-04-13
KR20220016834A (ko) 2022-02-10
EP3981472A4 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
Mertens-Talcott et al. Pharmacokinetics of anthocyanins and antioxidant effects after the consumption of anthocyanin-rich acai juice and pulp (Euterpe oleracea Mart.) in human healthy volunteers
US10471114B2 (en) Composition from Sphaeranthus indicus and Garcinia mangostana for the control of metabolic syndrome
US20170071902A1 (en) NOX INHIBITOR AND NFkB INHIBITOR CONTAINING METHOXYFLAVONE
KR20180105138A (ko) 인플라마좀 활성화 억제제
JP2022169695A (ja) ルテイン類またはその塩およびヒシ属植物の加工物を含有する脳機能障害の予防および/または改善用組成物
Windari et al. Antioxidant Activity of Spirulina platensis and Sea cucumber Stichopus hermanii in Streptozotocin-Induced Diabetic Rats.
Chen et al. Eucommia ulmoides male flower as a remarkable edible floral resource exerts lifespan/healthspan-promoting effects on Caenorhabditis elegans
KR101071684B1 (ko) 팔각회향 추출물을 유효성분으로 포함하는 기억력 및 학습 능력 증진용 조성물
WO2021155633A1 (zh) 烷基间苯二酚类化合物在制备预防或治疗阿兹海默症的药物的应用
WO2020246271A1 (ja) 神経機能調節剤
KR101300798B1 (ko) 곰취 추출물을 포함하는 뇌신경세포 보호용 조성물
Mar et al. Theobroma spp.: A review of it's chemical and innovation potential for the food industry
EP3189846A1 (en) Pharmaceutical composition for prevention or treatment neuro-inflammation or neurodegenerative diseases comprising Portulaca grandiflora Hook. extracts or fractions thereof
WO2021167012A1 (ja) 神経機能調節用組成物
WO2018066676A1 (ja) 有機セレン化合物含有組成物
WO2020246272A1 (ja) ブドウ果皮抽出物
KR20210071678A (ko) 벌사상자 추출물을 포함하는 인지 기능 장애 또는 신경 염증의 예방 또는 치료용 조성물
Joshi et al. Sportsmen’s energy package Cordyceps sinensis: Medicinal importance and responsible phytochemical constituents
JPWO2020246272A5 (ja)
KR102514847B1 (ko) 병풀, 벌사상자 및 영하구기자 추출물을 포함하는 인지 기능 장애 또는 신경염증의 예방 또는 치료용 조성물
KR20180119235A (ko) 개오동나무 추출물을 이용한 항알러지용 조성물
Hashim et al. Study of Some Boswellia Carterii Contents and Effect of their Extracts as Antioxidants and Antibacterial
JP2024057941A (ja) ミトコンドリア活性向上用組成物
KR20210060843A (ko) 기억력 및 인지기능 개선, 조현병 예방, 치료 또는 개선용 조성물
US20200148971A1 (en) Concentrated oil-based polyphenol composition and a method of producing the oil-based polyphenol composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819085

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524758

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020819085

Country of ref document: EP

Effective date: 20220105