WO2020246215A1 - 半導体発光素子 - Google Patents
半導体発光素子 Download PDFInfo
- Publication number
- WO2020246215A1 WO2020246215A1 PCT/JP2020/019313 JP2020019313W WO2020246215A1 WO 2020246215 A1 WO2020246215 A1 WO 2020246215A1 JP 2020019313 W JP2020019313 W JP 2020019313W WO 2020246215 A1 WO2020246215 A1 WO 2020246215A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- metal layer
- side electrode
- light emitting
- semiconductor light
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 356
- 229910052751 metal Inorganic materials 0.000 claims abstract description 444
- 239000002184 metal Substances 0.000 claims abstract description 444
- 150000001875 compounds Chemical class 0.000 claims abstract description 6
- 238000009792 diffusion process Methods 0.000 claims description 57
- 230000004888 barrier function Effects 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 20
- 230000004048 modification Effects 0.000 description 123
- 238000012986 modification Methods 0.000 description 123
- 239000007769 metal material Substances 0.000 description 37
- 238000000034 method Methods 0.000 description 35
- 238000010586 diagram Methods 0.000 description 34
- 230000008859 change Effects 0.000 description 31
- 239000010936 titanium Substances 0.000 description 28
- 230000000052 comparative effect Effects 0.000 description 16
- 230000007423 decrease Effects 0.000 description 15
- 239000000758 substrate Substances 0.000 description 13
- 229910052782 aluminium Inorganic materials 0.000 description 12
- 238000000605 extraction Methods 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000010931 gold Substances 0.000 description 11
- 229910052719 titanium Inorganic materials 0.000 description 10
- 238000007740 vapor deposition Methods 0.000 description 10
- 239000000956 alloy Substances 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000011651 chromium Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000000206 photolithography Methods 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 229910052709 silver Inorganic materials 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000001579 optical reflectometry Methods 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000010944 silver (metal) Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/38—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/02—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
- H01L33/26—Materials of the light emitting region
- H01L33/30—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
- H01L33/32—Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/36—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
- H01L33/40—Materials therefor
- H01L33/405—Reflective materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/44—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
Definitions
- This disclosure relates to a semiconductor light emitting device.
- LEDs Light Emitting Diodes
- LEDs Light Emitting Diodes
- DRL Daytime Running Lights
- HL Head Lamp
- the semiconductor light emitting device includes, for example, an active layer (light emitting layer), semiconductor layers on both sides of the active layer, and electrodes.
- the electrode has an electrode layer that makes ohmic contact with the semiconductor layer, and a wiring layer that is laminated on the electrode layer.
- the electrodes may be formed to have portions of varying width. In this case, a portion whose width changes is formed in each of the electrode layer and the wiring layer constituting the electrode.
- the current density of the electrode layer locally increases in the portion where the width of the electrode is narrowed, and electromigration (EM) may occur to deteriorate the electrode layer. ..
- Patent Document 1 In order to suppress electromigration in a portion where a current density increases, a technique has been proposed in which an electrode layer is divided in a portion where the current density increases and an insulating layer is provided in the portion where the electrode layer is divided.
- Patent Document 1 can suppress electromigration, there is a problem that the drive voltage increases.
- the present disclosure has been made to solve such a problem, and an object of the present disclosure is to provide a semiconductor light emitting device capable of suppressing electromigration while suppressing an increase in drive voltage.
- One aspect of the semiconductor light emitting element includes a semiconductor layer made of a compound semiconductor and an electrode having a feeding portion and an extending portion extending from the feeding portion arranged on the semiconductor layer, and the feeding portion is provided.
- the width of the portion is larger than the width of the stretched portion
- the electrode has an electrode layer arranged on the semiconductor layer side and a wiring layer arranged on the electrode layer.
- the first metal having a first metal layer arranged in the power feeding portion and a second metal layer arranged on the stretched portion side of the first metal layer and directly connected to the first metal layer.
- the layer and the second metal layer are ohmically connected to the semiconductor layer, the conductivity of the first metal layer is higher than the conductivity of the second metal layer, and the wiring layer is the first metal layer and It is continuously arranged on the second metal layer.
- FIG. 1 is a diagram showing a configuration of a semiconductor light emitting device according to the first embodiment.
- FIG. 2A is a diagram showing a step of preparing a substrate in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 2B is a diagram showing a step of forming a semiconductor laminated structure in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 2C is a diagram showing a step of etching a semiconductor laminated structure in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 2D is a diagram showing a step of forming an insulating film in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 1 is a diagram showing a configuration of a semiconductor light emitting device according to the first embodiment.
- FIG. 2A is a diagram showing a step of preparing a substrate in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 2E is a diagram showing a step of forming a p-side electrode in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 2F is a diagram showing a step of forming a first metal layer and a third metal layer in the n-side electrode layer of the n-side electrode in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 2G is a diagram showing a step of forming a second metal layer in the n-side electrode layer of the n-side electrode in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 2H is a diagram showing a step of forming the n-side wiring layer of the n-side electrode in the method for manufacturing a semiconductor light emitting device according to the first embodiment.
- FIG. 3 is a diagram showing the configuration around the n-side electrode of the semiconductor light emitting device of Comparative Example 1 and the current density of the n-side electrode layer of the n-side electrode in the lateral direction (stretching direction of the stretched portion).
- FIG. 4 is a diagram showing the configuration around the n-side electrode of the semiconductor light emitting device of Comparative Example 2 and the current density of the n-side electrode layer of the n-side electrode in the lateral direction (stretching direction of the stretched portion).
- FIG. 3 is a diagram showing the configuration around the n-side electrode of the semiconductor light emitting device of Comparative Example 1 and the current density of the n-side electrode layer of the n-side electrode in the lateral direction (stretching direction of the stretched portion).
- FIG. 4 is a diagram
- FIG. 5 is a diagram showing the configuration around the n-side electrode of the semiconductor light emitting device according to the first embodiment and the current density of the n-side electrode layer of the n-side electrode in the lateral direction (stretching direction of the stretched portion).
- FIG. 6 is a diagram showing a modified example of the n-side electrode layer in the n-side electrode of the semiconductor light emitting device according to the first embodiment.
- FIG. 7 is a diagram showing another modification of the n-side electrode layer in the n-side electrode of the semiconductor light emitting device according to the first embodiment.
- FIG. 8 is a diagram showing still another modification of the n-side electrode layer in the n-side electrode of the semiconductor light emitting device according to the first embodiment.
- FIG. 9 shows the distance in the stretching direction of the stretched portion from the position where the width of the n-side electrode changes (width change position) and the current density in the n-side electrode layer of the n-side electrode of the semiconductor light emitting device according to the first embodiment. It is a figure which shows the relationship with.
- FIG. 10 is a diagram showing a desired range in which a second metal layer is provided in each of a plurality of variations of the n-side electrode layer of the n-side electrode of the semiconductor light emitting device according to the first embodiment.
- FIG. 11 is a diagram showing a configuration of a semiconductor light emitting device according to the first modification of the first embodiment.
- FIG. 12 is a diagram showing another configuration of the semiconductor light emitting device according to the first modification of the first embodiment.
- FIG. 13 is a diagram showing a configuration of a semiconductor light emitting device according to the second modification of the first embodiment.
- FIG. 14 is a diagram showing another configuration of the semiconductor light emitting device according to the second modification of the first embodiment.
- FIG. 15 is a diagram showing a configuration of a semiconductor light emitting device according to a modification 3 of the first embodiment.
- FIG. 16 is a diagram showing another configuration of the semiconductor light emitting device according to the third modification of the first embodiment.
- FIG. 17 is a diagram showing still another configuration of the semiconductor light emitting device according to the third modification of the first embodiment.
- FIG. 18 is a diagram showing a configuration of a semiconductor light emitting device according to a modification 4 of the first embodiment.
- FIG. 19 is a diagram showing another configuration of the semiconductor light emitting device according to the fourth modification of the first embodiment.
- FIG. 20 is a diagram showing still another configuration of the semiconductor light emitting device according to the fourth modification of the first embodiment.
- FIG. 21 is a diagram showing a configuration of a semiconductor light emitting device according to a modification 5 of the first embodiment.
- FIG. 22 is a diagram showing a configuration of a semiconductor light emitting device according to the second embodiment.
- FIG. 23 is a diagram showing the configuration of the semiconductor light emitting device according to the first modification of the second embodiment.
- FIG. 24 is a diagram showing the configuration of the semiconductor light emitting device according to the second modification of the second embodiment.
- FIG. 25 is a diagram showing another configuration of the semiconductor light emitting device according to the second modification of the second embodiment.
- FIG. 26 is a diagram showing still another configuration of the semiconductor light emitting device according to the second modification of the second embodiment.
- FIG. 27 is a diagram showing the configuration of the semiconductor light emitting device according to
- each figure is a schematic view and is not necessarily exactly illustrated. Therefore, the scales and the like do not always match in each figure.
- substantially the same configuration is designated by the same reference numerals, and duplicate description will be omitted or simplified.
- FIG. 1 is a plan view of the semiconductor light emitting device 1 according to the first embodiment, and (b) is a vertical sectional view of the semiconductor light emitting device 1 on the line AA of (a). , (C) are horizontal sectional views of the semiconductor light emitting device 1 on the line BB of (b).
- the plan view of (a) is also hatched for convenience. This also applies to the following drawings.
- the semiconductor light emitting device 1 has a semiconductor laminated structure 10 and an n-side electrode 20 and a p-side electrode 30 provided in the semiconductor laminated structure 10.
- the semiconductor light emitting device 1 is a light emitting diode (LED) chip having a single-sided electrode structure in which both the n-side electrode 20 and the p-side electrode 30 are formed on one side.
- LED light emitting diode
- the semiconductor laminated structure 10 has a substrate 11, an n-type semiconductor layer 12 (first conductive semiconductor layer), an active layer 13 serving as a light emitting layer, and a p-type semiconductor layer 14 (second conductive semiconductor layer). ..
- the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14 are semiconductor laminates formed on the substrate 11. Specifically, the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14 are laminated on the substrate 11 in this order.
- the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14 are made of a compound semiconductor.
- the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14 are composed of a group III-V compound semiconductor such as GaN.
- the n-side electrode 20 is the first electrode and is arranged on the n-type semiconductor layer 12. Specifically, the n-side electrode 20 is formed in an exposed region in which the n-type semiconductor layer 12 is partially exposed by removing a part of the p-type semiconductor layer 14 and the active layer 13. On the other hand, the p-side electrode 30 is the second electrode and is arranged on the p-type semiconductor layer 14.
- the insulating film 40 is formed on the semiconductor laminated structure 10.
- the n-side electrode 20 is formed on the n-type semiconductor layer 12 exposed from the opening of the insulating film 40
- the p-side electrode 30 is formed on the p-type semiconductor layer 14 exposed from the opening of the insulating film 40. Is formed in.
- the insulating film 40 is, for example, an oxide film made of SiO 2 or the like.
- the n-side electrode 20 has an n-side electrode layer 21 arranged on the n-type semiconductor layer 12 side and an n-side wiring layer 22 arranged on the n-side electrode layer 21.
- the n-side electrode layer 21 is laminated on the n-type semiconductor layer 12, and the n-side wiring layer 22 is laminated on the n-side electrode layer 21.
- the n-type semiconductor layer 12 and the n-side electrode layer 21 are in contact with each other, and the n-side electrode layer 21 and the n-side wiring layer 22 are in contact with each other.
- the n-side electrode layer 21 and the n-side wiring layer 22 have the same shape in top view.
- the n-side electrode 20 has a feeding portion E1 and an extending portion E2 extending from the feeding portion E1.
- the power feeding unit E1 is a portion to which the power feeding terminal 100 is connected at the n-side electrode 20. That is, electrons are supplied to the power feeding unit E1.
- the power supply terminal 100 is, for example, a bump or a wire.
- the stretching section E2 distributes the electrons fed to the feeding section E1 to the n-type semiconductor layer 12.
- the width of the feeding portion E1 is larger than the width of the stretched portion E2 in the direction orthogonal to the stretching direction of the stretched portion E2. That is, the width of the stretched portion E2 is smaller than the width of the feeding portion E1. Therefore, the n-side electrode 20 has a portion where the width changes. That is, each of the n-side electrode layer 21 and the n-side wiring layer 22 has a portion whose width changes.
- the n-side electrode layer 21 has a first metal layer 21a arranged on the feeding portion E1 and a second metal layer 21b arranged on the stretched portion E2 side of the first metal layer 21a.
- the second metal layer 21b is directly connected to the first metal layer 21a.
- the first metal layer 21a and the second metal layer 21b are made of a metal material.
- the n-side electrode layer 21 further has a third metal layer 21c in the stretched portion E2.
- the third metal layer 21c is made of a metal material.
- the third metal layer 21c is located on the side opposite to the first metal layer 21a side of the second metal layer 21b. Therefore, the second metal layer 21b is located between the first metal layer 21a and the third metal layer 21c in the stretching direction of the stretched portion E2. That is, the n-side electrode layer 21 is divided into a first metal layer 21a and a third metal layer 21c in the stretching direction of the stretched portion E2, and the second metal layer 21b is provided in the divided portion. ing.
- the third metal layer 21c is directly connected to the second metal layer 21b.
- the second metal layer 21b is arranged at least near a position where the width of the n-side electrode layer 21 changes with respect to the stretching direction of the stretched portion E2.
- the second metal layer 21b straddles the position where the width of the n-side electrode layer 21 changes. That is, the second metal layer 21b is formed on both the feeding portion E1 and the extending portion E2.
- Each of the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c is in contact with the n-type semiconductor layer 12. Specifically, the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c are ohmic-connected to the n-type semiconductor layer 12.
- the conductivity of the first metal layer 21a is higher than the conductivity of the second metal layer 21b. Further, the conductivity of the third metal layer 21c is higher than the conductivity of the second metal layer 21b. Further, the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c are preferably made of a metal material having light reflectivity in order to reflect the light generated in the active layer 13. In the present embodiment, the first metal layer 21a and the third metal layer 21c are made of the same material.
- the first metal layer 21a and the third metal layer 21c can be made of, for example, aluminum (Al) or an alloy containing aluminum. In the present embodiment, the first metal layer 21a and the third metal layer 21c are made of aluminum.
- the second metal layer 21b which has a lower conductivity than the first metal layer 21a and the third metal layer 21c, is, for example, at least one metal selected from titanium (Ti), tungsten (W), and chromium (Cr). It can be composed of a material or an alloy containing at least one of these metallic materials. In the present embodiment, the second metal layer 21b is made of titanium.
- the n-side wiring layer 22 laminated on the n-side electrode layer 21 is continuously arranged on the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c of the n-side electrode layer 21. Has been done. That is, the n-side wiring layer 22 is continuously formed over the feeding portion E1 and the extending portion E2.
- the power supply terminal 100 is connected to the portion of the n-side wiring layer 22 corresponding to the power supply unit E1.
- a current flows from the feeding portion E1 of the n-side electrode 20 to the extending portion E2, and the entire area of the feeding portion E1 and the extending portion E2 of the n-side electrode 20 Power is distributed.
- the n-side wiring layer 22 is made of a metal material.
- the wiring resistance value of the n-side wiring layer 22 is preferably smaller than the wiring resistance value of the n-side electrode layer 21. That is, the n-side wiring layer 22 is made of a metal material having a wiring resistance value lower than the average wiring resistance value of the n-side electrode layer 21 composed of the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c. It should be configured.
- the wiring resistance value of the n-side wiring layer 22 is preferably smaller than the wiring resistance value (average wiring resistance value) of the n-side electrode layer 21 in the stretched portion E2.
- the n-side wiring layer 22 is made of, for example, at least one metal material selected from copper (Cu), silver (Ag), and gold (Au), or an alloy containing at least one of these metal materials. can do.
- the p-side electrode 30 has a p-side electrode layer 31 arranged on the p-type semiconductor layer 14 side and a p-side wiring layer 32 arranged on the p-side electrode layer 31.
- the p-side electrode 30 is a p-side diffusion barrier layer in order to suppress mutual diffusion between the metal material constituting the p-side electrode layer 31 and the metal material constituting the p-side wiring layer 32. It has 33.
- the p-side diffusion barrier layer 33 is arranged between the p-side electrode layer 31 and the p-side wiring layer 32.
- the p-side electrode layer 31 is laminated on the p-type semiconductor layer 14, the p-side diffusion barrier layer 33 is laminated on the p-side electrode layer 31, and the p-side wiring layer 32 is on the p-side. It is laminated on the diffusion barrier layer 33.
- the p-side electrode layer 31, the p-side diffusion barrier layer 33, and the p-side wiring layer 32 have the same shape when viewed from above.
- the p-side electrode layer 31 is in contact with the p-type semiconductor layer 14. Specifically, the p-side electrode layer 31 is ohmic-connected to the p-type semiconductor layer 14.
- the p-side electrode layer 31 and the p-side wiring layer 32 are made of a metal material.
- the p-side electrode layer 31 is preferably made of a metal material having light reflectivity in order to reflect the light generated in the active layer 13.
- the p-side electrode layer 31 is made of, for example, at least one metal material selected from aluminum (Al), silver (Ag), and rhodium (Rh), or an alloy containing at least one of these metal materials. can do.
- the p-side electrode layer 31 is made of silver.
- the p-side wiring layer 32 is made of, for example, gold (Au), and the p-side diffusion barrier layer 33 is made of, for example, titanium (Ti).
- the semiconductor light emitting device 1 configured in this way, light is generated in the active layer 13 by applying a predetermined driving voltage to the n-side electrode 20 and the p-side electrode 30.
- the light generated by the active layer 13 is taken out not from the p-side electrode 30 side but from the substrate 11 side. That is, the light extraction direction of the semiconductor light emitting device 1 is the downward direction of the paper surface of FIG.
- FIGS. 2A to 2H are diagrams for explaining the manufacturing method of the semiconductor light emitting device 1 according to the first embodiment.
- the substrate 11 is prepared.
- a wafer made of GaN GaN substrate
- the n-type semiconductor layer 12, the active layer 13, and the p-type semiconductor layer 14 are sequentially laminated on the substrate 11 by the organic metal vapor phase epitaxial growth method (MOVPE method). As a result, the semiconductor laminated structure 10 is formed.
- MOVPE method organic metal vapor phase epitaxial growth method
- the n-type semiconductor layer 12 is an n-type nitride semiconductor layer (for example, a GaN layer)
- the active layer 13 is a nitride semiconductor light emitting layer
- the p-type semiconductor layer 14 is a p-type nitride. It is a physical semiconductor layer.
- the nitride semiconductor light emitting layer constituting the active layer 13 contains at least Ga and N, and if necessary, contains an appropriate amount of In to obtain a desired emission wavelength.
- the active layer 13 is an InGaN layer, and the In composition ratio is set so that the emission peak wavelength is 450 nm.
- the n-type semiconductor layer is formed by removing a part of the p-type semiconductor layer 14, the active layer 13, and the n-type semiconductor layer 12 by dry etching with respect to the semiconductor laminated structure 10. A part of 12 is exposed from the p-type semiconductor layer 14 and the active layer 13. As a result, an exposed region can be formed in a part of the n-type semiconductor layer 12.
- the insulating film 40 is formed on the entire upper surface of the semiconductor laminated structure 10 including the exposed region of the n-type semiconductor layer 12.
- an oxide film made of SiO 2 is formed as the insulating film 40.
- a resist is applied on the insulating film 40, an opening is formed in the resist at a position corresponding to the p-type semiconductor layer 14 by photolithography, and an insulating film in the resist opening is formed by etching with fluoroacid. 40 is removed. As a result, the p-type semiconductor layer 14 is exposed.
- the p-side electrode 30 is formed in the exposed region of the p-type semiconductor layer 14. Specifically, using the EB vapor deposition method, metal films to be the p-side electrode layer 31, the p-side diffusion barrier layer 33, and the p-side wiring layer 32 are sequentially formed to form a metal laminated film, and the registry foot-off method is performed. By removing the resist and the excess metal laminated film, the p-side electrode 30 is formed in the exposed region of the p-type semiconductor layer 14 from which the insulating film 40 has been removed. As a result, the p-side electrode having a laminated structure of the p-side electrode layer 31, the p-side diffusion barrier layer 33, and the p-side wiring layer 32 can be formed.
- the Ag layer (film thickness 0.2 ⁇ m) serving as the p-side electrode layer 31 and the Ti layer (film) serving as the p-side diffusion barrier layer 33 are directed away from the side closer to the p-type semiconductor layer 14.
- a thickness of 0.7 ⁇ m) and an Au layer (thickness: 1.0 ⁇ m) to be the p-side wiring layer 32 were formed in order.
- the method for forming the metal film to be the p-side electrode layer 31, the p-side diffusion barrier layer 33, and the p-side wiring layer 32 is not limited to the EB vapor deposition method, and may be a sputtering method.
- the p-side electrode 30 may be formed so as to be separated from the insulating film 40. That is, the p-side electrode layer 31 and the insulating film 40 may be separated from each other. In this case, the p-type semiconductor layer 14 is exposed from between the p-side electrode 30 and the insulating film 40.
- a resist is applied so as to cover the whole, an opening is formed in the resist at a position corresponding to the n-type semiconductor layer 12 by photolithography, and an insulating film 40 in the opening of the resist is formed by etching with fluoroacid. To remove. As a result, the n-type semiconductor layer 12 is exposed.
- the first metal layer 21a and the third metal layer 21c are formed in a part of the exposed region of the n-type semiconductor layer 12.
- the EB vapor deposition method is used to form a first metal film to be the first metal layer 21a and the third metal layer 21c, and the resist and the excess first metal film are removed by the registry foot-off method.
- the separated first metal layer 21a and the third metal layer 21c are formed in the exposed region of the n-type semiconductor layer 12 from which the insulating film 40 has been removed.
- the first metal layer 21a and the third metal layer 21c made of the same material are formed so as to be in contact with the n-type semiconductor layer 12. In the portion where the first metal film is removed, the first metal layer 21a and the third metal layer 21c are not formed, and the n-type semiconductor layer 12 is exposed again.
- the first metal layer 21a and the third metal layer 21c directly laminated on the n-type semiconductor layer 12 function as an ohmic contact layer with respect to the n-type semiconductor layer 12 and also function as a light-reflecting reflective layer. It is preferable that it is composed of a metal material containing the above. In the present embodiment, an Al layer (thickness 0.3 ⁇ m) is formed as the first metal layer 21a and the third metal layer 21c.
- the method for forming the first metal film to be the first metal layer 21a and the third metal layer 21c is not limited to the EB vapor deposition method, and may be a sputtering method.
- first metal layer 21a and the third metal layer 21c may be formed so as to be separated from the insulating film 40. That is, each of the first metal layer 21a and the third metal layer 21c and the insulating film 40 may be separated from each other. In this case, the n-type semiconductor layer 12 is exposed from between each of the first metal layer 21a and the third metal layer 21c and the insulating film 40.
- the second metal layer 21b is formed in the exposed region of the n-type semiconductor layer 12 between the first metal layer 21a and the third metal layer 21c. Specifically, a resist is applied so as to cover the entire surface, an opening is formed in the resist at a position corresponding to the second metal layer 21b by photolithography, and the second metal layer 21b is formed by using the EB vapor deposition method. The second metal film is formed, and the resist and the excess second metal film are removed by the registry lithography method to form the second metal layer 21b in the exposed region where the n-type semiconductor layer 12 is exposed. As a result, the second metal layer 21b is formed so as to be embedded between the first metal layer 21a and the third metal layer 21c and in contact with the n-type semiconductor layer 12.
- the second metal layer 21b directly laminated on the n-type semiconductor layer 12 functions as an ohmic contact layer for the n-type semiconductor layer 12 and also functions as a reflective layer that reflects light.
- the second metal layer 21b is made of a metal material having higher electromigration resistance than the first metal layer 21a and the third metal layer 21c and having a lower conductivity than the first metal layer 21a and the third metal layer 21c. It should be configured. Therefore, for example, Ti, W, Cr and the like can be used as the metal material constituting the second metal layer 21b. In the present embodiment, a Ti layer (thickness 0.3 ⁇ m) is formed as the second metal layer 21b.
- the method for forming the second metal film to be the second metal layer 21b is not limited to the EB vapor deposition method, and may be a sputtering method.
- the second metal layer 21b By forming the second metal layer 21b between the first metal layer 21a and the third metal layer 21c in this way, the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c are formed.
- the n-side electrode layer 21 can be formed.
- the n-side wiring layer 22 is formed on the n-side electrode layer 21. Specifically, a resist is applied so as to cover the entire surface, an opening is formed in the resist at a position corresponding to the n-side electrode layer 21 by photolithography, and the n-side wiring layer 22 is formed by using the EB vapor deposition method.
- the n-side wiring layer 22 is formed on the n-side electrode layer 21 by forming a film of the third metal film and removing the resist and the excess third metal film by the registry lithography method. That is, the n-side wiring layer 22 is formed on the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c over the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c. ..
- the n-side wiring layer 22 laminated on the n-side electrode layer 21 is made of a metal material having higher electromigration resistance than the n-side electrode layer 21 and a lower average wiring resistance value than the n-side electrode layer 21. It is good to have. Therefore, for example, Au, Cu, Ag, etc. can be used as the metal material constituting the n-side wiring layer 22. In the present embodiment, an Au layer (thickness 1.0 ⁇ m) is formed as the n-side wiring layer 22.
- the method for forming the third metal film to be the n-side wiring layer 22 is not limited to the EB vapor deposition method, and may be a sputtering method.
- the n-side electrode 20 By forming the n-side wiring layer 22 on the n-side electrode layer 21 in this way, the n-side electrode 20 having a laminated structure of the n-side electrode layer 21 and the n-side wiring layer 22 can be formed.
- the semiconductor light emitting device 1 according to the present embodiment shown in FIG. 1 can be manufactured.
- FIG. 3A is a vertical cross-sectional view showing the configuration around the n-side electrode 20X of the semiconductor light emitting element 1X of Comparative Example 1, and FIG. 3B is BB of FIG. 3A. It is a horizontal sectional view of the n-side electrode layer 21X of the same n-side electrode 20X in the line, and FIG. 3 (c) shows the n-side electrode layer 21X of the same n-side electrode 20X in the lateral direction (stretching direction of the stretched portion). It is a figure which shows the current density.
- FIG. 4A is a vertical cross-sectional view showing the configuration around the n-side electrode 20Y of the semiconductor light emitting element 1Y of Comparative Example 2, and FIG. 4B is BB of FIG. 4A. It is a horizontal sectional view of the n-side electrode layer 21Y of the same n-side electrode 20Y in the line, and FIG. It is a figure which shows the current density.
- FIG. 5A is a vertical cross-sectional view showing the configuration around the n-side electrode 20 of the semiconductor light emitting element 1 according to the first embodiment
- FIG. 5B is FIG. 5B. It is a horizontal sectional view of the n-side electrode layer 21 of the n-side electrode 20 in line B
- FIG. 5 (c) is the n-side electrode layer of the n-side electrode 20 in the lateral direction (the stretching direction of the stretched portion). It is a figure which shows the current density of 21.
- FIG. 3A, FIG. 4A, and FIG. 5A indicate the flow of electrons.
- the n-side electrode 20X in the semiconductor light emitting device 1X of Comparative Example 1 is an n-side electrode layer formed on the n-type semiconductor layer 12 on the substrate 11. It has 21X and an n-side wiring layer 22X formed on the n-side electrode layer 21X.
- the n-side electrode 20X is formed so as to have a portion where the width changes. Specifically, the n-side electrode 20X has a feeding portion E1 and an extending portion E2 extending from the feeding portion E1 and having a width smaller than that of the feeding portion E1. That is, the n-side electrode 20X (n-side electrode layer 21X and n-side wiring layer 22X) has a portion whose width changes.
- the current density of the n-side electrode layer 21X is local in the portion where the width of the n-side electrode 20X changes. It may increase to exceed the critical value of electromigration (EM). As a result, electromigration may occur in the portion of the n-side electrode 20X where the width changes, and the n-side electrode layer 21X may deteriorate.
- EM electromigration
- the n-side electrode 20Y in the semiconductor light emitting device 1Y of Comparative Example 2 is an n-type semiconductor on the substrate 11 like the semiconductor light emitting device 1X of Comparative Example 1. It has an n-side electrode layer 21Y formed on the layer 12 and an n-side wiring layer 22Y formed on the n-side electrode layer 21Y.
- the width of the n-side electrode 20Y is changed as in the semiconductor light emitting device 1X of Comparative Example 1.
- the n-side electrode 20Y has a feeding portion E1 and an extending portion E2 extending from the feeding portion E1 and having a width smaller than that of the feeding portion E1. That is, the n-side electrode 20Y (n-side electrode layer 21Y and n-side wiring layer 22Y) has a portion whose width changes.
- the n side electrode layer 21Y is divided at the portion where the width of the n side electrode 20Y changes, and the n side electrode is divided.
- An insulating layer 50Y is provided at a portion where the layer 21Y is divided. That is, the n-side electrode 20Y has two separated n-side electrode layers 21Y and an insulating layer 50Y embedded between the two n-side electrode layers 21Y.
- the current density of the n-side electrode layer 21Y at the portion where the insulating layer 50Y is provided. Can be zero. Therefore, it is possible to suppress the occurrence of electromigration in the portion where the width of the n-side electrode 20Y changes.
- the n-side electrode 20 has an n-side electrode layer 21 and an n-side electrode layer 21. It has an n-side wiring layer 22 arranged on the top, and the n-side electrode layer 21 has a first metal layer 21a arranged on the feeding portion E1 and an extension portion E2 side of the first metal layer 21a. It has a second metal layer 21b which is arranged in and has a lower conductivity than the first metal layer 21a.
- n-side electrode 20 configured in this way, as shown in FIG. 5A, a part of the lateral current flowing through the n-side electrode layer 21 at the portion where the second metal layer 21b is provided. Can be bypassed by the n-side wiring layer 22. As a result, as shown in FIG. 5C, the lateral current density of the n-side electrode layer 21 can be reduced at the portion where the second metal layer 21b is provided. Therefore, in the portion where the width of the n-side electrode 20 changes, the portion where the current density exceeds the critical value of electromigration can be eliminated. Further, by using the second metal layer 21b having conductivity instead of the insulating layer, a portion where the current density becomes zero does not occur in the n-side electrode layer 21.
- the ohmic contact area between the n-side electrode 20 and the n-type semiconductor layer 12 is made larger than that of the semiconductor light emitting device 1Y of Comparative Example 2 shown in FIG. be able to. Therefore, it is possible to suppress an increase in the drive voltage.
- the semiconductor light emitting device 1 As described above, according to the semiconductor light emitting device 1 according to the present embodiment, even if the n-side electrode 20 is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. ..
- the first metal layer 21a and the third metal layer 21c are formed of aluminum having a high light reflectance, and the reflectance is not high only in the portion where the current density is high.
- the second metal layer 21b is formed by the above.
- the wiring resistance value of the n-side wiring layer 22 in the stretched portion E2 of the n-side electrode 20 is the wiring resistance value (average) of the n-side electrode layer 21 in the stretched portion E2. It is smaller than the wiring resistance value).
- the electrons supplied to the n-side electrode 20 from the feeding portion E1 toward the extending portion E2 are the n-side electrode layer 21. It becomes easier to flow to the n-side wiring layer 22 than this. That is, the amount of current bypass to the n-side wiring layer 22 can be increased. Therefore, electromigration can be suppressed more effectively.
- the position where the width of the n-side electrode 20 changes is clear, as shown in FIG.
- the position where the width of the n-side electrode 20 changes is the width L of the n-side electrode layer 21 with respect to the position x in the direction from the feeding portion E1 to the extending portion E2. This is the position where the differential value (dL / dx) of is minimized.
- the differential value of the width L of the n-side electrode layer 21 with respect to the position x in the direction from the feeding portion E1 to the stretching portion E2 is minimized. It is preferable that the region is arranged in a region including a position or a region including a position where the differential values are discontinuous.
- the maximum width W 21b of the second metal layer 21b is equal to or less than the maximum width W E1 of the feeding portion E1 and larger than the maximum width W E2 of the extending portion E2. It is good to have.
- the maximum width W 21b of the second metal layer 21b is equal to or less than the maximum width W E2 of the stretched portion E2 and smaller than the maximum width W E1 of the feeding portion E1. It is good to have.
- the second metal layer 21b when the second metal layer 21b is arranged from a position immediately near the stretched portion E2 side of the width change position (for example, a distance within 10 ⁇ m from the width change position) to the stretched portion E2 side without including the width change position. Regardless of the area, the n-side electrode 20 could not reduce the lateral current density near the width change position to a desired value. Further, at a position opposite to the stretching direction from the width change position, even if the second metal layer 21b is not arranged, the width of the n-side electrode 20 becomes wider and the current density decreases, so that the current density decreases from the width change position. However, it is not necessary to arrange the second metal layer 21b farther than the position in the stretching direction.
- FIG. 9 is a graph showing the maximum current density of the n-side electrode at each measurement position of the stretched portion E2 when the 0.5 mm square semiconductor light emitting device 1 is driven by 1A.
- the n-side electrode is arranged along the outer circumference of the semiconductor light emitting device 1, and the stretched portion E2 is directed from the power feeding unit E1 toward the center of the semiconductor light emitting device 1. It is arranged so as to extend.
- the n-side electrode was made of aluminum having a film thickness of 1.2 ⁇ m, the width of the stretched portion E2 was 50 ⁇ m, and the measurement position in the stretched portion E2 was changed to obtain the maximum current density at each point. As shown in FIG.
- the maximum current density in the lateral direction from the width changed position to a distance of 100 ⁇ m, the value electromigration of aluminum is that there may occur (1 ⁇ 10 5 [A / cm 2]) Was exceeded. Therefore, by arranging the second metal layer 21b made of titanium from the width change position to the position 100 ⁇ m with respect to the stretching direction, the maximum current density in the lateral direction can be set to be equal to or less than the value at which electromigration occurs. In actual use, the maximum current density may be limited to a range in which electromigration does not occur. Therefore, depending on conditions such as the configuration of the semiconductor light emitting element 1, the material constituting the n-side electrode 20, and the width of the stretched portion E2. , The arrangement range of the second metal layer 21b may be appropriately set.
- the definition of the width change position is defined as the n-side electrode layer with respect to the position x in the direction from the feeding portion E1 to the extending portion E2.
- the width of the stretched portion E2 is constant, the current density is highest in the region of the constant width closest to the feeding portion E1 side. Therefore, the current density peak value in the lateral direction can be reduced by providing the second metal layer 21b in the region including the portion where the current density on the stretched portion E2 side is higher than the width change position based on the differentiation.
- the second metal layer 21b it is not always necessary to arrange the second metal layer 21b at the width change position as in the case where the width of the n-side electrode 20 changes discontinuously. Further, at the width change position, the electrode width is wider than the position where the maximum current density is generated, and the current density is lowered due to the effect of widening the electrode width. Therefore, at the position opposite to the stretching direction from the width change position, It is not necessary to arrange the second metal layer 21b farther than the position in the stretching direction than the width change position. In actual use, the maximum current density may be limited to a range in which electromigration does not occur. Therefore, depending on conditions such as the configuration of the semiconductor light emitting element 1, the material constituting the n-side electrode 20, the width of the stretched portion E2, and the like. The arrangement range of the two metal layers 21b may be appropriately set.
- the second metal layer 21b is arranged within 100 ⁇ m from the width change position in the stretching direction.
- the second metal layer 21b may be provided over both the feeding portion E1 and the extending portion E2.
- the second metal layer 21b is provided up to a region exceeding 100 ⁇ m in the stretching direction with reference to the position x 0 at which the width of the n-side electrode layer 21 changes.
- it may be provided only in a region within 100 ⁇ m in the stretching direction with reference to the position x 0 at which the width of the n-side electrode layer 21 changes.
- the second metal layer 21b may be provided only on the stretched portion E2.
- the second metal layer 21b is provided only in a region within 100 ⁇ m in the stretching direction with reference to the position x 0 at which the width of the n-side electrode layer 21 changes.
- the n-side electrode layer 21 may be provided in a region exceeding 100 ⁇ m in the stretching direction with reference to the position x 0 at which the width of the n-side electrode layer 21 changes.
- FIG. 11 is a plan view of the semiconductor light emitting device 1A according to the first modification of the first embodiment, and (b) is the vertical view of the semiconductor light emitting device 1A on the line AA of (a). It is a cross-sectional view, (c) is a horizontal cross-sectional view of the semiconductor light emitting device 1A in line BB of (b).
- the semiconductor light emitting device 1A according to the present modification has a different configuration of the n-side electrode 20A from the semiconductor light emitting device 1 according to the first embodiment.
- the n-side electrode 20A of the semiconductor light-emitting element 1A according to the present modification is the n-side of the semiconductor light-emitting element 1 according to the first embodiment. Similar to the electrode 20, it has an n-side electrode layer 21A and an n-side wiring layer 22A, but the n-side electrode layer 21A of the n-side electrode 20A in the semiconductor light emitting element 1A according to this modification is the first metal layer 21a. In addition to the second metal layer 21b and the third metal layer 21c, it has a fourth metal layer 21d and a fifth metal layer 21e.
- the n-side electrode 20A has a feeding portion E1 and a stretched portion E2, and the fourth metal layer 21d is on the second metal layer 21b side of the third metal layer 21c in the stretched portion E2. It is located on the opposite side of.
- the fourth metal layer 21d is directly connected to the third metal layer 21c.
- the fourth metal layer 21d is made of the same material as the second metal layer 21b. Specifically, the fourth metal layer 21d is made of titanium, like the second metal layer 21b.
- the fifth metal layer 21e is located on the stretched portion E2 on the side opposite to the third metal layer 21c side of the fourth metal layer 21d.
- the fifth metal layer 21e is directly connected to the fourth metal layer 21d.
- the fifth metal layer 21e is made of the same material as the first metal layer 21a.
- the fifth metal layer 21e is made of aluminum, like the first metal layer 21a and the third metal layer 21c.
- the fourth metal layer 21d and the fifth metal layer 21e are in contact with the n-type semiconductor layer 12 in the same manner as the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c. Specifically, the fourth metal layer 21d and the fifth metal layer 21e are ohmic-connected to the n-type semiconductor layer 12.
- n-side electrode 20A in this modification a plurality of positions where the width changes (width change positions) are provided. Therefore, a plurality of width change positions are provided in each of the n-side electrode layer 21A and the n-side wiring layer 22A.
- the boundary portion between the feeding portion E1 and the extending portion E2 is at the width change position as in the n-side electrode 20 in the first embodiment.
- a width change position is provided in a part of the stretched portion E2. That is, the width of the n-side electrode 20A in this modification changes in two stages, and the n-side electrode 20A has two width change positions.
- the width of the stretched portion E2 of the n-side electrode 20A is changed so that the width becomes narrower in a stepped manner toward the tip of the stretched portion E2 in the stretching direction.
- the fourth metal layer 21d of the n-side electrode layer 21A is provided in the vicinity of the width change position of the stretched portion E2.
- the n side electrode 20A is above the n side electrode layer 21A and the n side electrode layer 21A, similarly to the semiconductor light emitting element 1 according to the first embodiment.
- the n-side electrode layer 21A is arranged on the first metal layer 21a arranged on the feeding portion E1 and on the stretched portion E2 side of the first metal layer 21a. It also has a second metal layer 21b that has a lower conductivity than the first metal layer 21a.
- n-side electrode 20A is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. In addition, it is possible to suppress a decrease in light extraction efficiency.
- the n-side electrode 20A in the semiconductor light emitting device 1A has a plurality of width change positions with respect to the current path direction, and each of the plurality of width change positions in the n-side electrode layer 21A has.
- a metal layer having a lower conductivity than that of the first metal layer 21a is provided.
- a second metal layer 21b is provided at one of the two width change positions of the n-side electrode layer 21A, and a fourth metal layer 21d is provided at the other of the two width change positions of the n-side electrode layer 21A. It is provided.
- the stretched portion E2 of the n-side electrode 20A in this modification is provided with a portion whose width changes as a portion where the current density of the n-side electrode layer 21A increases, and the stretched portion E2 of the n-side electrode layer 21A.
- the fourth metal layer 21d is provided in the portion where the width changes, but the present invention is not limited to this.
- the portion of the n-side electrode layer 21A where the current density increases may be a bent portion provided in the stretched portion E2 of the n-side electrode 20A. At the bent portion, the electric lines of force become dense and the current density becomes high.
- the fourth metal layer 21d may be provided in the vicinity of the bent portion.
- the width change position was present in a part of the stretched portion E2 of the n-side electrode layer 21A of the n-side electrode 20A, but the width change position is not limited to this, and FIG. As shown, the width change position may not exist in the stretched portion E2 of the n-side electrode layer 21A.
- FIG. 13 (a) is a plan view of the semiconductor light emitting device 1B according to the second modification of the first embodiment, and (b) is the vertical view of the semiconductor light emitting device 1B on the line AA of (a). It is a cross-sectional view, (c) is a horizontal cross-sectional view of the semiconductor light emitting device 1B in line BB of (b).
- the semiconductor light emitting device 1B according to the present modification has a different shape of the n-side electrode 20B from the semiconductor light emitting device 1 according to the first embodiment.
- the stretched portion E2 of the n-side electrode 20B in this modified example has a width smaller than the width of the feeding portion E1 side on the side opposite to the feeding portion E1 side. Has a part. Therefore, each of the n-side electrode layer 21B and the n-side wiring layer 22B in the stretched portion E2 has a portion smaller than the width of the feeding portion E1 side on the side opposite to the feeding portion E1 side.
- the stretched portion E2 of the n-side electrode 20B has a shape in which the width gradually narrows toward the tip of the stretched portion E2 in the stretching direction.
- the stretched portion E2 of the n-side electrode 20B has a tapered shape that tapers toward the tip of the stretched portion E2 in the stretching direction. Therefore, each of the n-side electrode layer 21B and the n-side wiring layer 22B has a tapered shape that tapers toward the tip of the stretched portion E2 in the stretching direction. More specifically, in the n-side electrode layer 21B, the stretched portion E2 of the second metal layer 21b and the third metal layer 21c have a substantially isosceles triangular taper shape.
- the n-side electrode 20B is arranged on the n-side electrode layer 21B and the n-side electrode layer 21B, similarly to the semiconductor light emitting element 1 according to the first embodiment.
- the n-side wiring layer 22B is provided, and the n-side electrode layer 21B is arranged on the first metal layer 21a arranged in the feeding portion E1 and on the extending portion E2 side of the first metal layer 21a. It has a second metal layer 21b having a lower conductivity than the first metal layer 21a.
- n-side electrode 20B is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. In addition, it is possible to suppress a decrease in light extraction efficiency.
- the stretched portion E2 of the n-side electrode 20B has a portion smaller than the width of the feeding portion E1 side on the side opposite to the feeding portion E1 side.
- the area of the n-side electrode 20B can be reduced, so that the area of the p-side electrode 30 (that is, the light emitting area) can be increased.
- the light output of the semiconductor light emitting device 1B can be improved.
- the width of the stretched portion E2 opposite to the feeding portion E1 side (tip side) is set as in this modification. Even if it is made smaller, the current density does not become so large, so that the occurrence of electromigration can be suppressed.
- the tip of the stretched portion E2 of the n-side electrode 20B may be thinned so that the current density does not exceed the critical value of electromigration to reduce the area of the n-side electrode 20 and increase the area of the p-side electrode 30.
- the semiconductor light emitting device 1B according to the present modification the light output of the semiconductor light emitting device 1B can be improved while maintaining the effect of suppressing electromigration.
- the entire stretched portion E2 has a tapered shape, but the present invention is not limited to this, and for example, as shown in FIG. 14, one of the stretched portions E2.
- the portion (third metal layer 21c in FIG. 14) may have a tapered shape.
- FIG. 15 is a plan view of the semiconductor light emitting device 1C according to the third modification of the first embodiment, and (b) is the vertical view of the semiconductor light emitting device 1C in the line AA of (a). It is a cross-sectional view, (c) is a horizontal cross-sectional view of the semiconductor light emitting device 1C in line BB of (b).
- the semiconductor light emitting device 1C according to this modification has a different configuration of the n-side electrode 20C from the semiconductor light emitting device 1 according to the first embodiment.
- the n-side electrode 20C of the semiconductor light-emitting element 1C according to the present modification is the n-side of the semiconductor light-emitting element 1 according to the first embodiment. Similar to the electrode 20, it has an n-side electrode layer 21C and an n-side wiring layer 22C. However, the n-side electrode layer 21C of the n-side electrode 20C in the semiconductor light emitting element 1C according to this modification is the first metal layer 21a. In addition to the second metal layer 21b and the third metal layer 21c, it has a fourth metal layer 21d and a fifth metal layer 21e.
- the n-side electrode 20C has a feeding portion E1 and a stretched portion E2, but the n-side electrode 20C in this modified example is on the side opposite to the feeding portion E1 side in the stretched portion E2. It has a branch DP. Specifically, the extension portion E2 is branched into two branch electrodes at the branch portion DP. By providing the branch portion DP on the n-side electrode 20C, it is possible to efficiently supply power to the entire semiconductor light emitting device 1C with a small electrode area. In this modification, the width of the electrode (branch electrode) after branching at the branch portion DP is smaller than the width of the electrode branched at the branch portion DP.
- the fourth metal layer 21d is located on the stretched portion E2 on the side opposite to the second metal layer 21b side of the third metal layer 21c.
- the fourth metal layer 21d is arranged at the branch portion DP. Further, the fourth metal layer 21d is directly connected to the third metal layer 21c.
- the fourth metal layer 21d is made of the same material as the second metal layer 21b. Specifically, the fourth metal layer 21d is made of titanium, like the second metal layer 21b.
- the fifth metal layer 21e is located on the stretched portion E2 on the side opposite to the third metal layer 21c side of the fourth metal layer 21d.
- the fifth metal layer 21e is arranged on the branch electrode after branching at the branch portion DP.
- the fifth metal layer 21e is directly connected to the fourth metal layer 21d.
- the fifth metal layer 21e is made of the same material as the first metal layer 21a.
- the fifth metal layer 21e is made of aluminum, like the first metal layer 21a and the third metal layer 21c.
- the fourth metal layer 21d and the fifth metal layer 21e are in contact with the n-type semiconductor layer 12 in the same manner as the first metal layer 21a, the second metal layer 21b, and the third metal layer 21c. Specifically, the fourth metal layer 21d and the fifth metal layer 21e are ohmic-connected to the n-type semiconductor layer 12.
- the n side electrode 20C is above the n side electrode layer 21C and the n side electrode layer 21C, similarly to the semiconductor light emitting element 1 according to the first embodiment.
- the n-side electrode layer 21C is arranged on the first metal layer 21a arranged in the feeding portion E1 and the extending portion E2 side of the first metal layer 21a. It also has a second metal layer 21b that has a lower conductivity than the first metal layer 21a.
- n-side electrode 20C is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. In addition, it is possible to suppress a decrease in light extraction efficiency.
- the n-side electrode 20C in the semiconductor light emitting device 1C according to this modification has a branching portion DP on the side opposite to the feeding portion E1 side in the stretching portion E2.
- the current density of the n-side electrode layer 21C increases at the location where the branch portion DP of the n-side electrode 20C is provided. For example, when the sum of the widths of the plurality of electrodes (branch electrodes) after branching at the branch DP is smaller than the width of the electrodes before branching, the current density at the branch DP becomes large.
- the fourth metal layer 21d is arranged at the branch portion DP of the n-side electrode layer 21C.
- the stretched portion E2 of the n-side electrode 20C in this modification is provided with a branched portion DP so as to branch in a Y shape, but the present invention is not limited to this.
- the extension portion E2 of the n-side electrode 20C may be provided with a branch portion DP so as to branch in a T shape. In this case, even if the sum of the electrode widths is equal before and after the branch, the branch portion becomes a bent portion, so that the electric lines of force become dense at the branch portion and the current density increases.
- At least a part of the fourth metal layer 21d provided in the branch portion DP exists in a region within ⁇ 100 ⁇ m in the branch direction with respect to the center of the branch portion DP.
- the fourth metal layer 21d is provided at the branch portion DP of the n-side electrode layer 21C, but the present invention is not limited to this.
- the n-side electrode layer 21C does not have the fourth metal layer 21d and the fifth metal layer 21e, and the first metal layer 21a, the second metal layer 21b, and the third metal layer 21e.
- a second metal layer 21b may be provided at the branch portion DP of the n-side electrode layer 21C.
- one extending portion E2 is extended from the feeding portion E1, but the present invention is not limited to this.
- a plurality of (four in FIG. 17) extending portions E2 may be extended from the feeding portion E1.
- FIG. 18 is a plan view of the semiconductor light emitting device 1D according to the modified example 4 of the first embodiment, and (b) is the vertical direction of the semiconductor light emitting device 1D in the line AA of (a). It is a cross-sectional view, (c) is a horizontal cross-sectional view of the semiconductor light emitting device 1D in line BB of (b).
- the semiconductor light emitting device 1D according to this modification has a different configuration of the n-side electrode 20D from the semiconductor light emitting device 1 according to the first embodiment.
- the n-side electrode 20D of the semiconductor light emitting device 1D according to the present modification is the n-side electrode 20 of the semiconductor light emitting device 1 according to the first embodiment. Further, it has an n-side diffusion barrier layer 23. That is, the n-side electrode 20D in this modification has an n-side diffusion barrier layer 23 in addition to the n-side electrode layer 21 and the n-side wiring layer 22.
- the n-side diffusion barrier layer 23 is arranged between the n-side electrode layer 21 and the n-side wiring layer 22.
- the n-side diffusion barrier layer 23 is in contact with each of the n-side electrode layer 21 and the n-side wiring layer 22, but is not limited to this.
- the n-side diffusion barrier layer 23 suppresses mutual diffusion between the metal material constituting the n-side electrode layer 21 and the metal material constituting the n-side wiring layer 22.
- the n-side diffusion barrier layer 23 suppresses mutual diffusion between aluminum contained in the n-side electrode layer 21 and gold contained in the n-side wiring layer 22.
- the n-side diffusion barrier layer 23 is, for example, at least one metal material selected from titanium (Ti), molybdenum (Mo), chromium (Cr), platinum (Pt), nickel (Ni) and tungsten (W). Alternatively, it can be composed of an alloy containing at least one of these metallic materials.
- the first metal layer 21a and the third metal layer 21c of the n-side electrode layer 21 are Al layers (thickness 0.3 ⁇ m), and the second metal layer 21b of the n-side electrode layer 21 is a Ti layer (thickness 0).
- the n-side wiring layer 22 is an Au layer (thickness 1.0 ⁇ m)
- the n-side diffusion barrier layer 23 is a Mo layer (thickness 0.375 ⁇ m) composed of molybdenum.
- the n side electrode 20D is above the n side electrode layer 21 and the n side electrode layer 21 as in the semiconductor light emitting element 1 according to the first embodiment.
- the n-side electrode layer 21 is arranged on the first metal layer 21a arranged on the feeding portion E1 and on the extending portion E2 side of the first metal layer 21a. It also has a second metal layer 21b that has a lower conductivity than the first metal layer 21a.
- n-side electrode 20D is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. In addition, it is possible to suppress a decrease in light extraction efficiency.
- the n-side electrode 20D in the semiconductor light emitting device 1D according to this modification has an n-side diffusion barrier layer 23 between the n-side electrode layer 21 and the n-side wiring layer 22.
- the n-side diffusion barrier layer 23 can suppress mutual diffusion between the metal material constituting the n-side electrode layer 21 and the metal material constituting the n-side wiring layer 22. Therefore, the semiconductor light emitting device 1D having excellent long-term reliability can be realized.
- the n-side diffusion barrier layer 23 and the n-side electrode layer 21 are made of different materials, but the present invention is not limited to this.
- the n-side diffusion barrier layer 23 may be made of the same material as the second metal layer 21b of the n-side electrode layer 21.
- the second metal layer 21b of the n-side electrode layer 21 and the n-side diffusion barrier layer 23 are integrated, and the n-side electrode layer 21E is like the n-side electrode 20E of the semiconductor light emitting device 1E shown in FIG.
- the second metal layer 21b may function as the n-side diffusion barrier layer.
- the second metal layer 21b of the n-side electrode layer 21E is a Ti layer.
- the n-side electrode 20E of the semiconductor light emitting device 1E shown in FIG. 19 includes a Ti layer serving as a second metal layer 21b of the n-side electrode layer 21E and a Ti layer serving as an n-side diffusion barrier layer on the n-side electrode layer 21E.
- the first metal layer 21a, the third metal layer 21c (for example, Al layer) and the second metal layer 21b (for example, Ti layer) are formed to form the n-side electrode layer 21E, and then the n-side electrode layer is formed.
- n-side diffusion barrier layer (for example, Ti layer) made of the same material as the second metal layer 21b is formed on the 21E by an EB vapor deposition method, a sputtering method, or the like, and formed into a predetermined shape by a photolithography method.
- the Ti layer to be the second metal layer 21b of the n-side electrode layer 21E and the Ti layer to be the n-side diffusion barrier layer on the n-side electrode layer 21E are not formed separately but are formed at the same time. May be good.
- the first metal layer 21a and the third metal layer 21c (for example, Al layer) are formed into an island shape, and then the island-shaped first metal layer 21a and the third metal layer 21c are covered with EB deposition.
- a second metal layer 21b (for example, a Ti layer) to be an n-side diffusion barrier layer is formed into a film by a method or a sputtering method, and formed into a predetermined shape by a photolithography method.
- each of the second metal layer 21b and the n-side wiring layer 22 of the n-side electrode layer 21F that also functions as the n-side diffusion barrier layer is a portion between the separated first metal layer 21a and the third metal layer 21c. It has a dented shape. In this way, the manufacturing process can be reduced by integrally forming the second metal layer 21b of the n-side electrode layer 21F and the diffusion barrier layer at the same time.
- FIG. 21 is a plan view of the semiconductor light emitting element 1G according to the modified example 5 of the first embodiment, and (b) is the vertical direction of the semiconductor light emitting element 1G in the line AA of (a). It is a cross-sectional view, (c) is a horizontal sectional view of the semiconductor light emitting element 1G in line BB of (b), (d) is the semiconductor light emitting element 1G in line CC of (a). It is a vertical sectional view of (e), and (e) is a horizontal sectional view of the semiconductor light emitting element 1G in line DD of (d).
- the semiconductor light emitting device 1G according to this modification has a different configuration of the p-side electrode 30G from the semiconductor light emitting device 1 according to the first embodiment.
- the p-side electrode 30G of the semiconductor light emitting device 1G according to the present modification is the semiconductor light emitting device according to the first embodiment.
- the p-side electrode 30 of 1 is arranged on the p-type GaN layer, whereas it is arranged on the oxide semiconductor layer 34.
- the oxide semiconductor layer 34 is arranged on the p-type semiconductor layer 14. In this modification, the oxide semiconductor layer 34 is in contact with the p-type semiconductor layer 14.
- the oxide semiconductor layer 34 is made of a compound semiconductor.
- the oxide semiconductor layer 34 include indium tin oxide (ITO; Indium Tin Oxide), indium zinc oxide (IZO; Indium Zinc Oxide), zinc oxide (ZnO; Zinc Oxide), and InGaZnO x (IGZO).
- ITO indium tin oxide
- IZO Indium Tin Oxide
- IZO Indium Zinc Oxide
- ZnO Zinc Oxide
- IGZO InGaZnO x
- a transparent conductive film made of a transparent metal oxide can be used.
- the light generated in the active layer 13 can be transmitted to the outside through the oxide semiconductor layer 34. That is, the light generated by the active layer 13 is taken out not from the substrate 11 side but from the p-side electrode 30G side.
- the light extraction direction of the semiconductor light emitting device 1G is the upward direction of the paper surface of FIG.
- the oxide semiconductor layer 34 is an ITO film composed of ITO.
- the oxide semiconductor layer 34 may include a thin ohmic contact layer at the interface with the p-type semiconductor layer 14.
- a thin ohmic contact layer at the interface with the p-type semiconductor layer 14.
- the p-side electrode 30G has the same configuration as the n-side electrode 20, and is arranged on the p-side electrode layer 31G arranged on the p-type semiconductor layer 14 side and the p-side electrode layer 31G. It has a p-side wiring layer 32. Specifically, the p-side electrode layer 31G is laminated on the oxide semiconductor layer 34, and the p-side wiring layer 32 is laminated on the p-side electrode layer 31G.
- the p-side electrode layer 31G and the p-side wiring layer 32 have the same shape when viewed from above.
- the p-side electrode 30G has a feeding portion E1 and an extending portion E2 extending from the feeding portion E1, similarly to the n-side electrode 20.
- the power feeding unit E1 is a portion to which the power feeding terminal 100 is connected at the p-side electrode 30G.
- the width of the feeding portion E1 is larger than the width of the stretched portion E2 in the direction orthogonal to the stretching direction of the stretched portion E2. That is, in the p-side electrode 30G, the width of the stretched portion E2 is smaller than the width of the feeding portion E1. Therefore, the p-side electrode 30G has a portion where the width changes. That is, each of the p-side electrode layer 31G and the p-side wiring layer 32 has a portion whose width changes.
- the p-side electrode layer 31G has a first metal layer 31a arranged on the feeding portion E1 and a second metal layer 31b arranged on the stretched portion E2 side of the first metal layer 31a.
- the second metal layer 31b is directly connected to the first metal layer 31a.
- the first metal layer 31a and the second metal layer 31b are made of a metal material.
- the p-side electrode layer 31G further has a third metal layer 31c in the stretched portion E2.
- the third metal layer 31c is made of a metal material.
- the third metal layer 31c is located on the side opposite to the first metal layer 31a side of the second metal layer 31b. Therefore, the second metal layer 31b is located between the first metal layer 31a and the third metal layer 31c in the stretching direction of the stretched portion E2. That is, the p-side electrode layer 31G is divided into a first metal layer 31a and a third metal layer 31c in the stretching direction of the stretched portion E2, and the second metal layer 31b is provided in the divided portion. ing. In this modification, the third metal layer 31c is directly connected to the second metal layer 31b.
- the second metal layer 31b is arranged at least near a position where the width of the p-side electrode layer 31 changes with respect to the stretching direction of the stretched portion E2.
- the second metal layer 31b straddles the position where the width of the p-side electrode layer 31G changes. That is, the second metal layer 31b is formed on both the feeding portion E1 and the extending portion E2.
- each of the first metal layer 31a, the second metal layer 31b, and the third metal layer 31c is in contact with the oxide semiconductor layer 34. Therefore, the first metal layer 31a, the second metal layer 31b, and the third metal layer 31c may be made of a material that functions as an ohmic contact layer with respect to the oxide semiconductor layer 34.
- the conductivity of the first metal layer 31a is higher than the conductivity of the second metal layer 31b.
- the conductivity of the third metal layer 31c is higher than the conductivity of the second metal layer 31b.
- the first metal layer 31a and the third metal layer 31c are made of the same material.
- the first metal layer 31a and the third metal layer 31c can be composed of, for example, at least one metal material selected from Al and Ag, or an alloy containing at least one of these metal materials. In this modification, the first metal layer 31a and the third metal layer 31c are made of aluminum.
- the second metal layer 31b which has a lower conductivity than the first metal layer 31a and the third metal layer 31c, is, for example, at least one metal material selected from Ti, W, and Cr, or at least one of these. It can be composed of an alloy containing the metallic material of. In this modification, the second metal layer 31b is made of titanium.
- the p-side wiring layer 32 laminated on the p-side electrode layer 31G is continuously arranged on the first metal layer 31a, the second metal layer 31b, and the third metal layer 31c of the p-side electrode layer 31G. Has been done. That is, the p-side wiring layer 32 is continuously formed over the feeding portion E1 and the extending portion E2.
- the power supply terminal 100 is connected to the portion of the p-side wiring layer 32 corresponding to the power supply unit E1.
- the p-side wiring layer 32 is made of a metal material.
- the wiring resistance value of the p-side wiring layer 32 is preferably smaller than the wiring resistance value of the p-side electrode layer 31G. That is, the p-side wiring layer 32 is made of a metal material having a wiring resistance value lower than the average wiring resistance value of the p-side electrode layer 31G composed of the first metal layer 31a, the second metal layer 31b, and the third metal layer 31c. It should be configured.
- the wiring resistance value of the p-side wiring layer 32 is preferably smaller than the wiring resistance value (average wiring resistance value) of the p-side electrode layer 31G in the stretched portion E2.
- the p-side wiring layer 32 can be composed of, for example, at least one metal material selected from Cu, Ag, and Au, or an alloy containing at least one of these metal materials.
- the p-side electrode 30G configured in this way has the same configuration as the n-side electrode 20, it can be formed by the same method as the n-side electrode 20 of the semiconductor light emitting device 1 according to the first embodiment. ..
- the p-side electrode 30G is formed on the ITO layer (thickness 0.2 ⁇ m) which is the oxide semiconductor layer 34, and the first metal layer 31a and the third metal layer 31c of the p-side electrode layer 31G are formed.
- the second metal layer 31b of the p-side electrode layer 31G is the Ti layer (thickness 0.3 ⁇ m)
- the p-side wiring layer 32 is the Au layer (thickness 1.0 ⁇ m). is there.
- the n side electrode 20 is above the n side electrode layer 21 and the n side electrode layer 21 as in the semiconductor light emitting element 1 according to the first embodiment.
- the n-side electrode layer 21 is arranged on the first metal layer 21a arranged on the feeding portion E1 and on the extending portion E2 side of the first metal layer 21a. It also has a second metal layer 21b that has a lower conductivity than the first metal layer 21a.
- n-side electrode 20 is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. In addition, it is possible to suppress a decrease in light extraction efficiency.
- the p-side electrode 30G has a p-side electrode layer 31G and a p-side wiring layer 32 arranged on the p-side electrode layer 31G.
- the p-side electrode layer 31G has a first metal layer 31a arranged on the feeding portion E1 and a second metal layer 31a arranged on the stretched portion E2 side of the first metal layer 31a and having a lower conductivity than the first metal layer 31a. It has a metal layer 31b.
- the p-side electrode 30G did not have the p-side diffusion barrier layer, but the p-side electrode 30G was the same as the semiconductor light emitting device 1 according to the first embodiment.
- the p-side diffusion barrier layer 33 may be provided. In this case, the p-side diffusion barrier layer is arranged between the p-side electrode layer 31G and the p-side wiring layer 32.
- the configuration of the n-side electrode 20 in the modifications 1 to 5 of the first embodiment may be applied to the p-side electrode 30G.
- FIG. 22 is a plan view of the semiconductor light emitting device 1H according to the second embodiment, and (b) is a vertical sectional view of the semiconductor light emitting device 1H on the line AA of (a). , (C) are horizontal sectional views of the semiconductor light emitting device 1H on the line BB of (b).
- the semiconductor light emitting device 1H according to the present embodiment has a different configuration of the n-side electrode 20H from the semiconductor light emitting device 1 according to the first embodiment.
- the n-side electrode layer 21 of the n-side electrode 20 has a first metal layer 21a, a second metal layer 21b, and a third metal layer 21c.
- the n-side electrode layer 21H of the n-side electrode 20H has a third metal layer 21c. It is composed of only the first metal layer 21a and the second metal layer 21b.
- the second metal layer 21b of the n-side electrode layer 21H is formed over the entire stretched portion E2.
- the n-side electrode 20H is the n-side electrode layer 21H and the n-side electrode layer 21H, similarly to the semiconductor light emitting element 1 according to the first embodiment. It has an n-side wiring layer 22 arranged above, and the n-side electrode layer 21H has a first metal layer 21a arranged in the feeding portion E1 and a stretched portion E2 side of the first metal layer 21a. It has a second metal layer 21b that is arranged and has a lower conductivity than the first metal layer 21a.
- n-side electrode 20H is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. In addition, it is possible to suppress a decrease in light extraction efficiency.
- FIG. 23A is a plan view of the semiconductor light emitting device 1I according to the second embodiment
- FIG. 23B is a vertical sectional view of the semiconductor light emitting device 1I on the line AA of FIG. 23.
- (C) are horizontal sectional views of the semiconductor light emitting device 1I on the line BB of (b).
- the semiconductor light emitting device 1I according to the present modification has a different configuration of the n-side electrode 20I from the semiconductor light emitting device 1H according to the second embodiment.
- the stretched portion E2 of the n-side electrode 20I in this modification is fed.
- a portion having a width smaller than the width of the feeding portion E1 side is provided on the side opposite to the portion E1 side. Therefore, each of the n-side electrode layer 21I and the n-side wiring layer 22I in the stretched portion E2 has a portion smaller than the width of the feeding portion E1 side on the side opposite to the feeding portion E1 side.
- the stretched portion E2 of the n-side electrode 20I has a shape in which the width gradually narrows toward the tip of the stretched portion E2 in the stretching direction.
- the stretched portion E2 of the n-side electrode 20I has a tapered shape that tapers toward the tip of the stretched portion E2 in the stretching direction. Therefore, each of the n-side electrode layer 21I and the n-side wiring layer 22I has a tapered shape that tapers toward the tip of the stretched portion E2 in the stretching direction. More specifically, in the n-side electrode layer 21I, the portion of the stretched portion E2 of the second metal layer 21b has a substantially isosceles triangular taper shape.
- the n-side electrode 20I is arranged on the n-side electrode layer 21I and the n-side electrode layer 21I, similarly to the semiconductor light emitting element 1H according to the second embodiment.
- the n-side wiring layer 22I is provided, and the n-side electrode layer 21I is arranged on the first metal layer 21a arranged in the feeding portion E1 and on the extending portion E2 side of the first metal layer 21a. It has a second metal layer 21b having a lower conductivity than the first metal layer 21a.
- n-side electrode 20I is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. In addition, it is possible to suppress a decrease in light extraction efficiency.
- the stretched portion E2 of the n-side electrode 20I is located on the opposite side to the feeding portion E1 side, similarly to the semiconductor light emitting element 1B according to the modification 2 of the first embodiment. It has a portion smaller than the width on the power feeding portion E1 side.
- the same effect as that of the semiconductor light emitting device 1B according to the second modification of the first embodiment is obtained. That is, since the area of the n-side electrode 20I can be reduced and the area of the p-side electrode 30 (that is, the light emitting area) can be increased, the light output of the semiconductor light emitting device 1I can be improved while maintaining the effect of suppressing electromigration. Can be made to. Further, in this case, since the amount of current in the stretched portion E2 of the n-side electrode 20B decreases as it approaches the tip, the side (tip side) of the stretched portion E2 opposite to the feeding portion E1 side as in this modification. Even if the width is reduced, the current density does not increase so much, so that the occurrence of electromigration can be suppressed.
- FIG. 24A is a plan view of the semiconductor light emitting device 1J according to the second modification of the second embodiment
- FIG. 24B is a vertical view of the semiconductor light emitting device 1J on the line AA of FIG. It is a cross-sectional view
- (c) is a horizontal cross-sectional view of the semiconductor light emitting device 1J in line BB of (b).
- the semiconductor light emitting device 1J according to this modification has a different configuration of the n-side electrode 20J from the semiconductor light emitting device 1H according to the second embodiment.
- the n-side electrode 20J of the semiconductor light emitting device 1J according to the present modification is the n-side electrode 20H of the semiconductor light emitting device 1H according to the second embodiment. Further, it has an n-side diffusion barrier layer 23. That is, the n-side electrode 20J in this modification is the n-side electrode in addition to the n-side electrode layer 21H and the n-side wiring layer 22, as in the semiconductor light emitting device 1D according to the modification 4 of the first embodiment. It has an n-side diffusion barrier layer 23 arranged between the layer 21H and the n-side wiring layer 22.
- the n side electrode 20J is above the n side electrode layer 21H and the n side electrode layer 21H, similarly to the semiconductor light emitting element 1H according to the second embodiment.
- the n-side electrode layer 21H is arranged on the first metal layer 21a arranged on the feeding portion E1 and on the stretched portion E2 side of the first metal layer 21a. It also has a second metal layer 21b that has a lower conductivity than the first metal layer 21a.
- the n-side electrode 20J in the semiconductor light emitting device 1J according to this modification has an n-side diffusion barrier layer 23 between the n-side electrode layer 21H and the n-side wiring layer 22.
- the n-side diffusion barrier layer 23 can suppress mutual diffusion between the metal material constituting the n-side electrode layer 21H and the metal material constituting the n-side wiring layer 22. Therefore, the semiconductor light emitting device 1J having excellent long-term reliability can be realized.
- the n-side diffusion barrier layer 23 and the n-side electrode layer 21H are made of different materials, but the present invention is not limited to this.
- the n-side diffusion barrier layer 23 may be made of the same material as the second metal layer 21b of the n-side electrode layer 21H.
- the second metal layer 21b of the n-side electrode layer 21H and the n-side diffusion barrier layer 23 are integrated to form a semiconductor light emitting device as shown in FIG. 25. It may be 1K. That is, the second metal layer 21b of the n-side electrode layer 21K may function as the n-side diffusion barrier layer, as in the n-side electrode 20K of the semiconductor light emitting device 1K shown in FIG.
- the n-side electrode 20K of the semiconductor light emitting device 1K shown in FIG. 25 includes a Ti layer serving as a second metal layer 21b of the n-side electrode layer 21K and a Ti layer serving as an n-side diffusion barrier layer above the n-side electrode layer 21K. Can be formed by separately forming a film, but may be formed at the same time.
- a first metal layer 21a for example, an Al layer
- a second metal layer 21b for example, an N-side diffusion barrier layer
- an EB vapor deposition method or a sputtering method so as to cover the first metal layer 21a (for example)
- the Ti layer is formed into a film and formed into a predetermined shape by a photolithography method.
- the n-side electrode 20L of the semiconductor light emitting device 1L as shown in FIG. 26 can be formed. That is, each of the second metal layer 21b and the n-side wiring layer 22 of the n-side electrode layer 21L that also functions as the n-side diffusion barrier layer has a shape recessed in the stretched portion E2.
- FIG. 27 (a) is a plan view of the semiconductor light emitting device 1M according to the third modification of the second embodiment, and (b) is the vertical view of the semiconductor light emitting device 1M in the line AA of (a). It is a cross-sectional view, (c) is a horizontal cross-sectional view of the semiconductor light emitting device 1M in line BB of (b).
- the semiconductor light emitting device 1M according to the present modification has a different configuration of the p-side electrode 30M from the semiconductor light emitting device 1G according to the modification 5 of the first embodiment shown in FIG.
- the p-side electrode layer 31G of the p-side electrode 30G is the first metal layer 31a, the second metal layer 31b, and the third metal layer.
- the p-side electrode layer 31M of the p-side electrode 30M was a third metal layer. It does not have 31c and is composed only of the first metal layer 31a and the second metal layer 31b.
- the second metal layer 31b of the p-side electrode layer 31M is formed over the entire stretched portion E2.
- the n side electrode 20 is above the n side electrode layer 21 and the n side electrode layer 21 as in the semiconductor light emitting element 1 according to the first embodiment.
- the n-side electrode layer 21 is arranged on the first metal layer 21a arranged on the feeding portion E1 and on the extending portion E2 side of the first metal layer 21a. It also has a second metal layer 21b that has a lower conductivity than the first metal layer 21a.
- n-side electrode 20 is provided with a portion where the width changes, electromigration can be suppressed while suppressing an increase in the drive voltage. In addition, it is possible to suppress a decrease in light extraction efficiency.
- the p-side electrode 30M has a p-side electrode layer 31M and a p-side wiring layer 32 arranged on the p-side electrode layer 31M.
- the p-side electrode layer 31M has a first metal layer 31a arranged in the feeding portion E1 and a second metal layer 31a arranged on the stretched portion E2 side of the first metal layer 31a and having a lower conductivity than the first metal layer 31a. It has a metal layer 31b.
- the p-side electrode 30M did not have the p-side diffusion barrier layer, but the p-side electrode 30M was the same as the semiconductor light emitting device 1 according to the first embodiment.
- the p-side diffusion barrier layer 33 may be provided. In this case, the p-side diffusion barrier layer is arranged between the p-side electrode layer 31M and the p-side wiring layer 32.
- the present disclosure also includes a form realized by arbitrarily combining the components and functions in the modified example.
- the configuration of the n-side electrode 20A of the semiconductor light emitting device 1A according to the first modification of the first embodiment can be applied to the n-side electrode 20H of the semiconductor light emitting device 1H according to the second embodiment.
- the configuration of the n-side electrode 20C of the semiconductor light emitting device 1C according to the third modification of the first embodiment can be applied to the n-side electrode 20H of the semiconductor light emitting device 1H according to the second embodiment.
- the semiconductor light emitting device according to the present disclosure is useful as a light source for various devices such as lighting applications or display applications.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Led Devices (AREA)
Abstract
半導体発光素子(1)は、化合物半導体からなる半導体層と、半導体層上に配置された、給電部(E1)と給電部(E1)から延伸する延伸部(E2)とを有するn側電極(20)とを備え、給電部(E1)の幅は、延伸部(E2)の幅より大きく、n側電極(20)は、半導体層側に配置されたn側電極層(21)と、n側電極層(21)の上に配置されたn側配線層(22)とを有し、n側電極層(21)は、給電部(E1)に配置された第1金属層(21a)と、第1金属層(21a)よりも延伸部(E2)側に配置され且つ第1金属層(21a)と直接接続する第2金属層(21b)とを有し、第1金属層(21a)及び第2金属層(21b)は、半導体層にオーミック接続し、第1金属層(21a)の導電率は、第2金属層(21b)の導電率よりも高く、n側配線層(22)は、第1金属層(21a)及び第2金属層(21b)上に連続して配置される。
Description
本開示は、半導体発光素子に関する。
LED(Light Emitting Diode)等の半導体発光素子は、照明用途又はディスプレイ用途等の様々な機器の光源として利用されている。種々の光源の中でも、大きな光出力の領域では、例えば、LEDは、DRL(Daytime Running Lights)及びHL(Head Lamp)等の車載用照明装置の光源に用いられている。
半導体発光素子は、例えば、活性層(発光層)と、活性層の両側の半導体層と、電極とを備える。電極は、半導体層とオーミック接触する電極層と、電極層に積層された配線層とを有する。平面視において、電極は、幅が変化する部分を有するように形成されることがある。この場合、電極を構成する電極層及び配線層の各々に、幅が変化する部分が形成される。
しかしながら、電極に幅が変化する部分が存在すると、電極の幅が狭くなる部分で電極層の電流密度が局所的に大きくなり、エレクトロマイグレーション(EM)が発生して電極層が劣化するおそれがある。
従来、電流密度が大きくなる部分でのエレクトロマイグレーションを抑制するために、電流密度が大きくなる部分において電極層を分断して、その電極層を分断した部分に絶縁層を設ける技術が提案されている(例えば特許文献1)。
しかしながら、特許文献1に開示された技術では、エレクトロマイグレーションを抑制することができるものの、駆動電圧が増加するという課題がある。
本開示は、このような課題を解決するためになされたものであり、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制できる半導体発光素子を提供することを目的とする。
本開示に係る半導体発光素子の一態様は、化合物半導体からなる半導体層と、前記半導体層上に配置された、給電部と前記給電部から延伸する延伸部とを有する電極とを備え、前記給電部の幅は、前記延伸部の幅より大きく、前記電極は、前記半導体層側に配置された電極層と、前記電極層の上に配置された配線層とを有し、前記電極層は、前記給電部に配置された第1金属層と、前記第1金属層よりも前記延伸部側に配置され且つ前記第1金属層と直接接続する第2金属層とを有し、前記第1金属層及び前記第2金属層は、前記半導体層にオーミック接続し、前記第1金属層の導電率は、前記第2金属層の導電率よりも高く、前記配線層は、前記第1金属層及び前記第2金属層上に連続して配置される。
本開示によれば、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。
(実施の形態)
以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。従って、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序などは、一例であって本開示を限定する主旨ではない。
以下、本開示の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。従って、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序などは、一例であって本開示を限定する主旨ではない。
また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、各図において縮尺などは必ずしも一致していない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
(実施の形態1)
[半導体発光素子]
まず、実施の形態1に係る半導体発光素子1の構成について、図1を用いて説明する。図1において、(a)は、実施の形態1に係る半導体発光素子1の平面図であり、(b)は、(a)のA-A線における同半導体発光素子1の垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1の水平断面図である。なお、図1では、各部材の位置関係を分かりやすくするために、(a)の平面図にも便宜的にハッチングを施している。このことは、以下の図面においても同様である。
[半導体発光素子]
まず、実施の形態1に係る半導体発光素子1の構成について、図1を用いて説明する。図1において、(a)は、実施の形態1に係る半導体発光素子1の平面図であり、(b)は、(a)のA-A線における同半導体発光素子1の垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1の水平断面図である。なお、図1では、各部材の位置関係を分かりやすくするために、(a)の平面図にも便宜的にハッチングを施している。このことは、以下の図面においても同様である。
図1に示すように、実施の形態1に係る半導体発光素子1は、半導体積層構造10と、半導体積層構造10に設けられたn側電極20及びp側電極30とを有する。本実施の形態において、半導体発光素子1は、一方側にn側電極20及びp側電極30の両方が形成された片面電極構造の発光ダイオード(LED)チップである。
半導体積層構造10は、基板11と、n型半導体層12(第1導電型半導体層)と、発光層となる活性層13と、p型半導体層14(第2導電型半導体層)とを有する。n型半導体層12、活性層13及びp型半導体層14は、基板11に形成された半導体積層体である。具体的には、n型半導体層12、活性層13及びp型半導体層14は、基板11の上に、この順で積層されている。
n型半導体層12、活性層13及びp型半導体層14は、化合物半導体からなる。本実施の形態において、n型半導体層12、活性層13及びp型半導体層14は、GaN等のIII-V族化合物半導体によって構成されている。
n側電極20は、第1電極であり、n型半導体層12の上に配置されている。具体的には、n側電極20は、p型半導体層14及び活性層13の一部を除去することで部分的にn型半導体層12を露出させた露出領域に形成されている。一方、p側電極30は、第2電極であり、p型半導体層14の上に配置されている。
本実施の形態において、半導体積層構造10の上には、絶縁膜40が形成されている。そして、n側電極20は、絶縁膜40の開口部から露出するn型半導体層12の上に形成され、p側電極30は、絶縁膜40の開口部から露出するp型半導体層14の上に形成されている。なお、絶縁膜40は、例えば、SiO2等からなる酸化膜である。
n側電極20は、n型半導体層12側に配置されたn側電極層21と、n側電極層21の上に配置されたn側配線層22とを有する。具体的には、n側電極層21は、n型半導体層12の上に積層されており、n側配線層22は、n側電極層21の上に積層されている。なお、n型半導体層12とn側電極層21とは接触しており、また、n側電極層21とn側配線層22とは接触している。本実施の形態において、n側電極層21とn側配線層22とは、上面視において、同一形状である。
n側電極20は、給電部E1と、給電部E1から延伸する延伸部E2とを有する。給電部E1は、n側電極20において給電端子100が接続される部分である。つまり、給電部E1には、電子が供給される。給電端子100は、例えば、バンプ又はワイヤ等である。延伸部E2は、給電部E1に給電された電子をn型半導体層12に配電する。本実施の形態において、延伸部E2の延伸方向と直交する方向において、給電部E1の幅は、延伸部E2の幅より大きい。つまり、延伸部E2の幅は、給電部E1の幅よりも小さい。したがって、n側電極20は、幅が変化する部分を有する。つまり、n側電極層21及びn側配線層22の各々は、幅が変化する部分を有する。
n側電極層21は、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置された第2金属層21bとを有する。本実施の形態において、第2金属層21bは、第1金属層21aと直接接続している。第1金属層21a及び第2金属層21bは、金属材料によって構成されている。
n側電極層21は、さらに、延伸部E2において第3金属層21cを有する。第3金属層21cは、金属材料によって構成されている。第3金属層21cは、第2金属層21bの第1金属層21a側とは反対側に位置している。したがって、第2金属層21bは、延伸部E2の延伸方向において、第1金属層21aと第3金属層21cとの間に位置している。つまり、n側電極層21は、延伸部E2の延伸方向において第1金属層21aと第3金属層21cとに分断されており、その分断された部分には、第2金属層21bが設けられている。本実施の形態において、第3金属層21cは、第2金属層21bに直接接続している。
第2金属層21bは、少なくとも延伸部E2の延伸方向に対してn側電極層21の幅が変化する位置近傍に配置されている。本実施の形態において、第2金属層21bは、n側電極層21の幅が変化する位置を跨いでいる。つまり、第2金属層21bは、給電部E1と延伸部E2との両方に形成されている。
第1金属層21a、第2金属層21b及び第3金属層21cの各々は、n型半導体層12に接触している。具体的には、第1金属層21a、第2金属層21b及び第3金属層21cは、n型半導体層12にオーミック接続している。
第1金属層21aの導電率は、第2金属層21bの導電率よりも高い。また、第3金属層21cの導電率は、第2金属層21bの導電率よりも高い。さらに、第1金属層21a、第2金属層21b及び第3金属層21cは、活性層13で発生した光を反射するために、光反射性を有する金属材料によって構成されているとよい。本実施の形態において、第1金属層21aと第3金属層21cとは、同一材料で形成されている。
第1金属層21a及び第3金属層21cは、例えば、アルミニウム(Al)、または、アルミニウムを含む合金によって構成することができる。本実施の形態において、第1金属層21a及び第3金属層21cは、アルミニウムによって構成されている。
第1金属層21a及び第3金属層21cよりも導電率が低い第2金属層21bは、例えば、チタン(Ti)、タングステン(W)、クロム(Cr)の中から選ばれる少なくとも1種類の金属材料、あるいは、これらの少なくとも1種類の金属材料を含む合金によって構成することができる。本実施の形態において、第2金属層21bは、チタンによって構成されている。
また、n側電極層21の上に積層されたn側配線層22は、n側電極層21の第1金属層21a、第2金属層21b及び第3金属層21cの上に連続して配置されている。つまり、n側配線層22は、給電部E1及び延伸部E2にわたって連続して形成されている。
n側配線層22の給電部E1に対応する部分には、給電端子100が接続される。n側配線層22の給電部E1から電子が給電されることで、n側電極20の給電部E1から延伸部E2にかけて電流が流れ、n側電極20の給電部E1及び延伸部E2の全域に配電される。
n側配線層22は、金属材料によって構成されている。n側配線層22の配線抵抗値は、n側電極層21の配線抵抗値よりも小さくなっているとよい。つまり、n側配線層22は、第1金属層21a、第2金属層21b及び第3金属層21cで構成されるn側電極層21の平均配線抵抗値よりも低い配線抵抗値の金属材料によって構成されているとよい。特に、延伸部E2において、n側配線層22の配線抵抗値は、延伸部E2におけるn側電極層21の配線抵抗値(平均配線抵抗値)よりも小さくなっているとよい。n側配線層22は、例えば、銅(Cu)、銀(Ag)、金(Au)の中から選ばれる少なくとも1種類の金属材料、あるいは、これらの少なくとも1種類の金属材料を含む合金によって構成することができる。
p側電極30は、p型半導体層14側に配置されたp側電極層31と、p側電極層31の上に配置されたp側配線層32とを有する。本実施の形態において、p側電極30は、p側電極層31を構成する金属材料とp側配線層32を構成する金属材料とが相互拡散することを抑制するために、p側拡散バリア層33を有する。p側拡散バリア層33は、p側電極層31とp側配線層32との間に配置される。
p側電極層31は、p型半導体層14の上に積層されており、p側拡散バリア層33は、p側電極層31の上に積層されており、p側配線層32は、p側拡散バリア層33の上に積層されている。なお、p側電極層31とp側拡散バリア層33とp側配線層32とは、上面視において、同一形状である。
p側電極層31は、p型半導体層14に接触している。具体的には、p側電極層31は、p型半導体層14にオーミック接続している。
本実施の形態において、p側電極層31及びp側配線層32は、金属材料によって構成されている。p側電極層31は、活性層13で発生した光を反射するために、光反射性を有する金属材料によって構成されているとよい。
p側電極層31は、例えば、アルミニウム(Al)、銀(Ag)、ロジウム(Rh)の中から選ばれる少なくとも1種類の金属材料、あるいは、これらの少なくとも1種類の金属材料を含む合金によって構成することができる。本実施の形態において、p側電極層31は、銀によって構成されている。
また、p側配線層32は、例えば、金(Au)によって構成されており、p側拡散バリア層33は、例えば、チタン(Ti)によって構成されている。
このように構成される半導体発光素子1では、n側電極20及びp側電極30に所定の駆動電圧が印加されることで、活性層13で光が生成される。活性層13で生成された光は、p側電極30側ではなく基板11側から取り出される。つまり、半導体発光素子1の光取り出し方向は、図1の紙面の下方向である。
[半導体発光素子の製造方法]
次に、実施の形態1に係る半導体発光素子1の製造方法について、図2A~図2Hを用いて説明する。図2A~図2Hは、実施の形態1に係る半導体発光素子1の製造方法を説明するための図である。
次に、実施の形態1に係る半導体発光素子1の製造方法について、図2A~図2Hを用いて説明する。図2A~図2Hは、実施の形態1に係る半導体発光素子1の製造方法を説明するための図である。
まず、図2Aに示すように、基板11を準備する。本実施の形態では、基板11には半導体からなる透光性基板として、GaNからなるウエハ(GaN基板)を用いている。
次に、図2Bに示すように、基板11の上に、有機金属気相エピタキシャル成長法(MOVPE法)により、n型半導体層12と、活性層13と、p型半導体層14とを順に積層することで、半導体積層構造10を形成する。
本実施の形態において、n型半導体層12は、n型窒化物半導体層(例えばGaN層)であり、活性層13は、窒化物半導体発光層であり、p型半導体層14は、p型窒化物半導体層である。活性層13を構成する窒化物半導体発光層は、少なくともGaとNとを含み、必要に応じて適量のInを含ませることで、所望の発光波長を得ることができる。本実施の形態では、活性層13はInGaN層であり、発光ピーク波長が450nmとなるようにIn組成比を設定している。
次に、図2Cに示すように、半導体積層構造10に対して、p型半導体層14と活性層13とn型半導体層12との一部をドライエッチングにより除去することで、n型半導体層12の一部をp型半導体層14及び活性層13から露出させる。これにより、n型半導体層12の一部に露出領域を形成することができる。
次に、図2Dに示すように、n型半導体層12の露出領域を含む半導体積層構造10の上面全体に絶縁膜40を成膜する。本実施の形態では、絶縁膜40として、SiO2からなる酸化膜を成膜した。
その後、図示しないが、絶縁膜40の上にレジストを塗布し、フォトリソグラフィによりp型半導体層14に対応する位置におけるレジストに開口部を形成し、弗酸によるエッチングによりレジストの開口部内の絶縁膜40を除去する。これにより、p型半導体層14が露出する。
次に、図2Eに示すように、p型半導体層14の露出領域内に、p側電極30を形成する。具体的には、EB蒸着法を用いて、p側電極層31、p側拡散バリア層33及びp側配線層32となる金属膜を順次成膜して金属積層膜を形成し、レジストリフトオフ法によりレジストと余分な金属積層膜を除去することで、絶縁膜40を除去したp型半導体層14の露出領域内にp側電極30を形成する。これにより、p側電極層31、p側拡散バリア層33及びp側配線層32の積層構造からなるp側電極を形成することができる。
本実施の形態では、p型半導体層14に近い側から離れる方向に向かって、p側電極層31となるAg層(膜厚0.2μm)とp側拡散バリア層33となるTi層(膜厚0.7μm)とp側配線層32となるAu層(膜厚1.0μm)とを順に成膜した。なお、p側電極層31、p側拡散バリア層33及びp側配線層32となる金属膜の成膜方法は、EB蒸着法に限るものではなく、スパッタ法であってもよい。
また、p側電極30は、絶縁膜40と離間するように形成されていてもよい。つまり、p側電極層31と絶縁膜40とは離間していてもよい。この場合、p側電極30と絶縁膜40との間からp型半導体層14が露出する。
その後、図示しないが、全体を覆うようにレジストを塗布し、フォトリソグラフィによりn型半導体層12に対応する位置におけるレジストに開口部を形成し、弗酸によるエッチングによりレジストの開口部内の絶縁膜40を除去する。これにより、n型半導体層12が露出する。
次に、図2Fに示すように、n型半導体層12の露出領域内の一部に、第1金属層21a及び第3金属層21cを形成する。具体的には、EB蒸着法を用いて、第1金属層21a及び第3金属層21cとなる第1金属膜を成膜し、レジストリフトオフ法によりレジストと余分な第1金属膜を除去することで、絶縁膜40を除去したn型半導体層12の露出領域内に、離間した第1金属層21a及び第3金属層21cを形成する。これにより、同一材料によって構成された第1金属層21a及び第3金属層21cがn型半導体層12に接するように形成される。なお、第1金属膜を除去した部分は、第1金属層21a及び第3金属層21cが形成されておらず、n型半導体層12が再び露出することになる。
n型半導体層12上に直接積層される第1金属層21a及び第3金属層21cは、n型半導体層12に対するオーミックコンタクト層として機能するとともに、光を反射する反射層として機能するので、Al等を含む金属材料によって構成されているとよい。本実施の形態では、第1金属層21a及び第3金属層21cとして、Al層(膜厚0.3μm)を形成した。なお、第1金属層21a及び第3金属層21cとなる第1金属膜の成膜方法は、EB蒸着法に限るものではなく、スパッタ法であってもよい。
また、第1金属層21a及び第3金属層21cは、絶縁膜40と離間するように形成されていてもよい。つまり、第1金属層21a及び第3金属層21cの各々と絶縁膜40とは離間していてもよい。この場合、第1金属層21a及び第3金属層21cの各々と絶縁膜40との間からn型半導体層12が露出する。
次に、図2Gに示すように、第1金属層21aと第3金属層21cとの間のn型半導体層12の露出領域に、第2金属層21bを形成する。具体的には、全体を覆うようにレジストを塗布し、フォトリソグラフィにより第2金属層21bに対応する位置におけるレジストに開口部を形成し、EB蒸着法を用いて、第2金属層21bとなる第2金属膜を成膜し、レジストリフトオフ法によりレジストと余分な第2金属膜を除去することで、n型半導体層12が露出した露出領域に第2金属層21bを形成する。これにより、第1金属層21aと第3金属層21cとの間に埋め込まれるとともにn型半導体層12に接するようにして第2金属層21bが形成される。
n型半導体層12上に直接積層される第2金属層21bは、n型半導体層12に対するオーミックコンタクト層として機能するとともに、光を反射する反射層として機能する。さらに、第2金属層21bは、第1金属層21a及び第3金属層21cよりもエレクトロマイグレーション耐性が高く、かつ、第1金属層21a及び第3金属層21cよりも導電率が低い金属材料によって構成されているとよい。したがって、第2金属層21bを構成する金属材料としては、例えば、Ti、W、Cr等を用いることができる。本実施の形態では、第2金属層21bとして、Ti層(膜厚0.3μm)を形成した。なお、第2金属層21bとなる第2金属膜の成膜方法は、EB蒸着法に限るものではなく、スパッタ法であってもよい。
このように、第1金属層21aと第3金属層21cとの間に第2金属層21bを形成することで、第1金属層21a、第2金属層21b及び第3金属層21cによって構成されたn側電極層21を形成することができる。
次に、図2Hに示すように、n側電極層21の上にn側配線層22を形成する。具体的には、全体を覆うようにレジストを塗布し、フォトリソグラフィによりn側電極層21に対応する位置におけるレジストに開口部を形成し、EB蒸着法を用いて、n側配線層22となる第3金属膜を成膜し、レジストリフトオフ法によりレジストと余分な第3金属膜を除去することで、n側電極層21の上にn側配線層22を形成する。つまり、第1金属層21a、第2金属層21b及び第3金属層21cにわたって、第1金属層21a、第2金属層21b及び第3金属層21cの上に、n側配線層22を形成する。
n側電極層21上に積層されるn側配線層22は、n側電極層21よりもエレクトロマイグレーション耐性が高く、かつ、n側電極層21よりも平均配線抵抗値が低い金属材料によって構成されているとよい。したがって、n側配線層22を構成する金属材料としては、例えば、Au、Cu、Ag等を用いることができる。本実施の形態では、n側配線層22として、Au層(膜厚1.0μm)を形成した。なお、n側配線層22となる第3金属膜の成膜方法は、EB蒸着法に限るものではなく、スパッタ法であってもよい。
このように、n側電極層21の上にn側配線層22を形成することで、n側電極層21及びn側配線層22の積層構造からなるn側電極20を形成することができる。
以上のようにして、図1に示される本実施の形態に係る半導体発光素子1を製造することができる。
[作用効果など]
次に、本実施の形態における半導体発光素子1の作用効果について、図3~図5を用いて説明する。
次に、本実施の形態における半導体発光素子1の作用効果について、図3~図5を用いて説明する。
図3の(a)は、比較例1の半導体発光素子1Xのn側電極20X周辺の構成を示す垂直断面図であり、図3の(b)は、図3の(a)のB-B線における同n側電極20Xのn側電極層21Xの水平断面図であり、図3の(c)は、横方向(延伸部の延伸方向)における同n側電極20Xのn側電極層21Xの電流密度を示す図である。
図4の(a)は、比較例2の半導体発光素子1Yのn側電極20Y周辺の構成を示す垂直断面図であり、図4の(b)は、図4の(a)のB-B線における同n側電極20Yのn側電極層21Yの水平断面図であり、図4の(c)は、横方向(延伸部の延伸方向)における同n側電極20Yのn側電極層21Yの電流密度を示す図である。
図5の(a)は、実施の形態1に係る半導体発光素子1のn側電極20周辺の構成を示す垂直断面図であり、図5の(b)は、図5の(a)のB-B線における同n側電極20のn側電極層21の水平断面図であり、図5の(c)は、横方向(延伸部の延伸方向)における同n側電極20のn側電極層21の電流密度を示す図である。
なお、図3の(a)、図4の(a)及び図5の(a)に示される矢印は、電子の流れを示している。
図3の(a)及び(b)に示されるように、比較例1の半導体発光素子1Xにおけるn側電極20Xは、基板11上のn型半導体層12の上に形成されたn側電極層21Xと、n側電極層21Xの上に形成されたn側配線層22Xとを有する。
平面視において、n側電極20Xは、幅が変化する部分を有するように形成されている。具体的には、n側電極20Xは、給電部E1と、給電部E1から延伸し且つ給電部E1よりも幅が小さい延伸部E2とを有する。つまり、n側電極20X(n側電極層21X及びn側配線層22X)は、幅が変化する部分を有する。
このように構成された比較例1の半導体発光素子1Xでは、図3の(c)に示すように、n側電極20Xの幅が変化する部分において、n側電極層21Xの電流密度が局所的に大きくなってエレクトロマイグレーション(EM)の臨界値を超えることがある。この結果、n側電極20Xにおける幅が変化する部分において、エレクトロマイグレーションが発生してn側電極層21Xが劣化するおそれがある。
そこで、n側電極20Xの幅が変化する部分でのエレクトロマイグレーションを抑制するために、比較例2の半導体発光素子1Yの構造を検討した。
図4の(a)及び(b)に示されるように、比較例2の半導体発光素子1Yにおけるn側電極20Yは、比較例1の半導体発光素子1Xと同様に、基板11上のn型半導体層12の上に形成されたn側電極層21Yと、n側電極層21Yの上に形成されたn側配線層22Yとを有する。
また、比較例2の半導体発光素子1Yでは、比較例1の半導体発光素子1Xと同様に、n側電極20Yの幅が変化している。具体的には、n側電極20Yは、給電部E1と、給電部E1から延伸し且つ給電部E1よりも幅が小さい延伸部E2とを有する。つまり、n側電極20Y(n側電極層21Y及びn側配線層22Y)は、幅が変化する部分を有する。
一方、比較例2の半導体発光素子1Yでは、比較例1の半導体発光素子1Xと異なり、n側電極20Yの幅が変化する部分において、n側電極層21Yが分断されており、そのn側電極層21Yが分断された部分に絶縁層50Yが設けられている。つまり、n側電極20Yは、分離された2つのn側電極層21Yと、2つのn側電極層21Yの間に埋め込まれた絶縁層50Yとを有する。
このように構成された比較例2の半導体発光素子1Yのn側電極20Yにおいては、図4の(c)に示すように、絶縁層50Yが設けられた部分でn側電極層21Yの電流密度をゼロにすることができる。したがって、n側電極20Yの幅が変化する部分においてエレクトロマイグレーションが発生することを抑制することができる。
しかしながら、図4に示される比較例2の半導体発光素子1Yでは、図4の(a)に示すように、n側電極20Yとn型半導体層12とのオーミック接合面積が減少し、駆動電圧が増加する。
これに対して、本実施の形態に係る半導体発光素子1では、図5の(a)及び(b)に示すように、n側電極20は、n側電極層21と、n側電極層21の上に配置されたn側配線層22とを有しており、n側電極層21は、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
このように構成されたn側電極20においては、図5の(a)に示すように、第2金属層21bが設けられた部分で、n側電極層21を流れる横方向の電流の一部をn側配線層22にバイパスさせることができる。これにより、図5の(c)に示すように、第2金属層21bが設けられた部分でn側電極層21の横方向の電流密度を小さくすることができる。したがって、n側電極20の幅が変化する部分において、電流密度がエレクトロマイグレーションの臨界値を超える部分を無くすことができる。また、絶縁層ではなく導電性を有する第2金属層21bを用いることで、n側電極層21において電流密度がゼロになる部分が生じない。このため、本実施の形態に係る半導体発光素子1では、図4に示される比較例2の半導体発光素子1Yと比べて、n側電極20とn型半導体層12とのオーミック接合面積を大きくすることができる。したがって、駆動電圧の増加を抑制することができる。
以上、本実施の形態に係る半導体発光素子1によれば、n側電極20に幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。
しかも、本実施の形態に係る半導体発光素子1では、光反射率が高いアルミニウムによって第1金属層21a及び第3金属層21cを構成し、電流密度が高くなる部分にのみ反射率が高くないチタンによって第2金属層21bを構成している。これにより、n側電極層22の平均反射率が低下することを抑制できるので、光取り出し効率が低下することを抑制できる。
また、本実施の形態に係る半導体発光素子1では、n側電極20の延伸部E2において、n側配線層22の配線抵抗値は、延伸部E2におけるn側電極層21の配線抵抗値(平均配線抵抗値)よりも小さくなっている。
この構成により、n側電極層21とn側配線層22とを並列回路としたときに、給電部E1から延伸部E2に向かってn側電極20に供給される電子は、n側電極層21よりもn側配線層22に流れやすくなる。つまり、n側配線層22への電流バイパス量を増加させることができる。したがって、エレクトロマイグレーションを一層効果的に抑制することができる。
なお、本実施の形態に係る半導体発光素子1のように、n側電極20の幅が急激に変化する場合、n側電極20の幅が変化する位置は明確であるが、図6に示すように、n側電極20の幅が滑らかに変化する場合、n側電極20の幅が変化する位置は、給電部E1から延伸部E2に向かう方向への位置xに対するn側電極層21の幅Lの微分値(dL/dx)が極小となる位置である。
一方、図5の(b)に示すように、n側電極20の幅が急激に変化する場合、給電部E1から延伸部E2に向かう方向への位置xに対するn側電極層21の幅Lの微分値(dL/dx)は、不連続となる。
したがって、n側電極20におけるn側電極層21の第2金属層21bは、給電部E1から延伸部E2に向かう方向への位置xに対するn側電極層21の幅Lの微分値が極小となる位置を含む領域、又は、前記微分値が不連続となる位置を含む領域に配置されているとよい。
また、図7の(a)~(c)に示すように、n側電極20におけるn側電極層21の第2金属層21bの少なくとも一部が給電部E1に配置されている場合、第2金属層21bが配置された給電部E1の領域において、第2金属層21bの最大幅W21bは、給電部E1の最大幅WE1以下で、且つ、延伸部E2の最大幅WE2より大きくなっているとよい。
また、図8の(a)~(c)に示すように、n側電極20におけるn側電極層21の第2金属層21bの少なくとも一部が延伸部E2に配置されている場合、第2金属層21bが配置された延伸部E2の領域において、第2金属層21bの最大幅W21bは、延伸部E2の最大幅WE2以下で、且つ、給電部E1の最大幅WE1より小さくなっているとよい。
ここで、図3に示すように、n側電極20Xの幅が不連続に変化する場合、幅変化位置の延伸部E2側が最も電流密度が高くなる。そこで、図5に示すように、幅変化位置を含む領域に第2金属層21bを設けることによって、n側電極20における第2金属層21bが配置された領域において電流の一部が上部のn側配線層22にバイパスするため、n側電極20における横方向(延伸方向)の電流密度ピーク値を低減することができる。逆に、幅変化位置を含まず、幅変化位置の延伸部E2側のすぐ近傍(例えば幅変化位置から10μm以内の距離)の位置から延伸部E2側にかけて第2金属層21bを配置した場合は、その面積によらず、n側電極20が幅変化位置近傍の横方向の電流密度を所望の値まで低減することができなかった。また、幅変化位置よりも延伸方向とは逆側の位置では、第2金属層21bが配置されていなくてもn側電極20の幅が広くなるために電流密度は下がるので、幅変化位置よりも延伸方向の位置と比べて遠くまで第2金属層21bを配置する必要はない。
図9は、0.5mm角の半導体発光素子1を1Aで駆動したときの、延伸部E2の各測定位置におけるn側電極の最大電流密度を示すグラフである。n側電極は、図1(a)に示すように、給電部E1は半導体発光素子1の外周に沿って配置され、延伸部E2は、給電部E1から半導体発光素子1の中央部に向かって延びるように配置されている。n側電極は膜厚1.2μmのアルミニウムで構成され、延伸部E2の幅は50μmとして、延伸部E2内における測定位置を変化させて、各地点での最大電流密度を求めた。図9に示すように、幅変化位置から100μmの距離までの横方向の最大電流密度は、アルミニウムのエレクトロマイグレーションが発生するおそれがあるとされる値(1×105[A/cm2])を超えていた。よって、幅変化位置から延伸方向に対して100μmの位置までチタンからなる第2金属層21bを配置させることで、横方向の最大電流密度をエレクトロマイグレーションの発生する値以下にすることができる。実際の使用に際しては、エレクトロマイグレーションの発生しない範囲の最大電流密度に抑えればよいので、半導体発光素子1の構成、n側電極20を構成する材料、または、延伸部E2の幅などの条件によって、第2金属層21bの配置範囲を適宜設定してもよい。
またここで、図6に示すように、n側電極20の幅が滑らかに変化する場合、幅変化位置の定義を、給電部E1から延伸部E2に向かう方向への位置xに対するn側電極層21の幅Lの微分値(dL/dx)が極小となる位置とする。ここで、延伸部E2の幅が一定である場合は、一定幅の領域のうち最も給電部E1側に近いところが最も電流密度が高くなる。そこで、微分に基づく幅変化位置よりも延伸部E2側の電流密度が最も高い部分を含む領域に第2金属層21bを設けることによって、横方向の電流密度ピーク値を低減することができる。この場合、n側電極20の幅が不連続に変化する場合のように、幅変化位置に必ずしも第2金属層21bを配置する必要はない。また、幅変化位置では最大電流密度が発生する位置よりも電極幅は広くなっており、電極幅が広くなる効果で電流密度が下がるので、幅変化位置よりも延伸方向と逆側の位置では、幅変化位置よりも延伸方向の位置と比べて遠くまで第2金属層21bを配置する必要はない。実際の使用に際しては、エレクトロマイグレーションの発生しない範囲の最大電流密度に抑えればよいので、半導体発光素子1の構成、n側電極20を構成する材料、延伸部E2の幅などの条件によって、第2金属層21bの配置範囲を適宜設定してもよい。
なお、延伸部E2の幅が漸次変化している場合は、電流密度の高くなる位置は形状に依存して変化する。
以上より、第2金属層21bは、幅変化位置から延伸方向に向かって100μm以内の場所に配置されていることが望ましい。
ここで、図10の(a)及び(b)に示すように、第2金属層21bは、給電部E1及び延伸部E2の両方にわたって設けられていてもよい。この場合、第2金属層21bは、図10の(a)に示すように、n側電極層21の幅が変化する位置x0を基準に延伸方向に100μmを超える領域にまで設けられていてもよいし、図10の(b)に示すように、n側電極層21の幅が変化する位置x0を基準に延伸方向に100μm以内の領域のみに設けられていてもよい。
また、図10の(c)及び(d)に示すように、第2金属層21bは、延伸部E2のみに設けられていてもよい。この場合、第2金属層21bは、図10の(c)に示すように、n側電極層21の幅が変化する位置x0を基準に延伸方向に100μm以内の領域のみに設けられていてもよいし、図10の(d)に示すように、n側電極層21の幅が変化する位置x0を基準に延伸方向に100μmを超える領域にまで設けられていてもよい。
(実施の形態1の変形例1)
次に、実施の形態1の変形例1に係る半導体発光素子1Aについて、図11を用いて説明する。図11において、(a)は、実施の形態1の変形例1に係る半導体発光素子1Aの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Aの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Aの水平断面図である。
次に、実施の形態1の変形例1に係る半導体発光素子1Aについて、図11を用いて説明する。図11において、(a)は、実施の形態1の変形例1に係る半導体発光素子1Aの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Aの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Aの水平断面図である。
本変形例に係る半導体発光素子1Aは、上記実施の形態1に係る半導体発光素子1に対して、n側電極20Aの構成が異なる。
具体的には、図11の(b)及び(c)に示すように、本変形例に係る半導体発光素子1Aのn側電極20Aは、上記実施の形態1に係る半導体発光素子1のn側電極20と同様に、n側電極層21Aとn側配線層22Aとを有するが、本変形例に係る半導体発光素子1Aにおけるn側電極20Aのn側電極層21Aは、第1金属層21a、第2金属層21b及び第3金属層21cに加えて、第4金属層21d及び第5金属層21eを有する。
本変形例においても、n側電極20Aは、給電部E1と延伸部E2とを有しており、第4金属層21dは、延伸部E2において、第3金属層21cの第2金属層21b側とは反対側に位置している。第4金属層21dは、第3金属層21cに直接接続している。本変形例において、第4金属層21dは、第2金属層21bと同一材料で形成されている。具体的には、第4金属層21dは、第2金属層21bと同様に、チタンによって構成されている。
また、第5金属層21eは、延伸部E2において、第4金属層21dの第3金属層21c側とは反対側に位置している。第5金属層21eは、第4金属層21dに直接接続している。本変形例において、第5金属層21eは、第1金属層21aと同一材料で形成されている。具体的には、第5金属層21eは、第1金属層21a及び第3金属層21cと同様に、アルミニウムによって構成されている。
第4金属層21d及び第5金属層21eは、第1金属層21a、第2金属層21b及び第3金属層21cと同様に、n型半導体層12に接触している。具体的には、第4金属層21d及び第5金属層21eは、n型半導体層12にオーミック接続している。
また、本変形例におけるn側電極20Aでは、幅が変化する位置(幅変化位置)が複数設けられている。したがって、n側電極層21A及びn側配線層22Aの各々に幅変化位置が複数設けられている。
具体的には、本変形例におけるn側電極20Aでは、上記実施の形態1におけるn側電極20と同様に、給電部E1と延伸部E2との境界部分が幅変化位置になっているとともに、延伸部E2の一部に幅変化位置が設けられている。つまり、本変形例におけるn側電極20Aは、2段階に幅が変化しており、n側電極20Aには2つの幅変化位置が存在している。
本変形例において、n側電極20Aの延伸部E2では、延伸部E2の延伸方向先端に向かって幅が段差状に狭くなるように幅が変化している。そして、n側電極層21Aの第4金属層21dは、延伸部E2のこの幅変化位置の近傍に設けられている。
以上、本変形例に係る半導体発光素子1Aによれば、上記実施の形態1に係る半導体発光素子1と同様に、n側電極20Aは、n側電極層21Aと、n側電極層21Aの上に配置されたn側配線層22Aとを有しており、n側電極層21Aは、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
この構成により、n側電極20Aに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
しかも、本変形例に係る半導体発光素子1Aにおけるn側電極20Aには、電流経路方向に対して幅変化位置が複数存在しており、n側電極層21Aにおける複数の幅変化位置のそれぞれに、第1金属層21aよりも導電率が低い金属層が設けられている。具体的には、n側電極層21Aの2つの幅変化位置の一方には第2金属層21bが設けられ、n側電極層21Aの2つの幅変化位置の他方には第4金属層21dが設けられている。この構成により、n側電極20Aに幅変化位置が複数設けられていて電流密度が高くなる箇所が複数存在する場合であっても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを効果的に抑制することができる。
なお、本変形例におけるn側電極20Aの延伸部E2では、n側電極層21Aの電流密度が大きくなる部分として幅が変化する部分が設けられており、n側電極層21Aの延伸部E2における幅が変化する部分に第4金属層21dが設けられていたが、これに限らない。例えば、n側電極層21Aの電流密度が大きくなる部分は、n側電極20Aの延伸部E2に設けられた屈曲部であってもよい。屈曲部では、電気力線が密になり電流密度が高くなる。n側電極層21Aの延伸部E2に屈曲部が設けられている場合、屈曲部の近傍に第4金属層21dを設ければよい。
また、本変形例における半導体発光素子1Aでは、n側電極20Aのn側電極層21Aの延伸部E2の一部に幅変化位置が存在していたが、これに限るものではなく、図12に示すように、n側電極層21Aの延伸部E2に幅変化位置が存在していなくてもよい。
(実施の形態1の変形例2)
次に、実施の形態1の変形例2に係る半導体発光素子1Bについて、図13を用いて説明する。図13において、(a)は、実施の形態1の変形例2に係る半導体発光素子1Bの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Bの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Bの水平断面図である。
次に、実施の形態1の変形例2に係る半導体発光素子1Bについて、図13を用いて説明する。図13において、(a)は、実施の形態1の変形例2に係る半導体発光素子1Bの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Bの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Bの水平断面図である。
本変形例に係る半導体発光素子1Bは、上記実施の形態1に係る半導体発光素子1に対して、n側電極20Bの形状が異なる。
具体的には、図13の(c)に示すように、本変形例におけるn側電極20Bの延伸部E2は、給電部E1側と反対側に、給電部E1側の幅よりも幅の小さい部分を有する。したがって、延伸部E2におけるn側電極層21B及びn側配線層22Bの各々は、給電部E1側と反対側に、給電部E1側の幅よりも幅の小さい部分を有する。
本変形例において、n側電極20Bの延伸部E2は、延伸部E2の延伸方向先端に向かって幅が漸次狭くなる形状である。具体的には、n側電極20Bの延伸部E2は、延伸部E2の延伸方向先端に向かって先細りのテーパ状である。したがって、n側電極層21B及びn側配線層22Bの各々が、延伸部E2の延伸方向先端に向かって先細りのテーパ状になっている。より具体的には、n側電極層21Bにおいては、第2金属層21bの延伸部E2の部分と第3金属層21cとで略二等辺三角形のテーパ状になっている。
以上、本変形例に係る半導体発光素子1Bでも、上記実施の形態1に係る半導体発光素子1と同様に、n側電極20Bは、n側電極層21Bと、n側電極層21Bの上に配置されたn側配線層22Bとを有しており、n側電極層21Bは、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
これにより、n側電極20Bに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
しかも、本変形例に係る半導体発光素子1Bでは、n側電極20Bの延伸部E2が、給電部E1側と反対側に給電部E1側の幅よりも幅の小さい部分を有する。
この構成により、n側電極20Bの面積を小さくすることができるので、p側電極30の面積(つまり発光面積)を大きくすることができる。これにより、半導体発光素子1Bの光出力を向上させることができる。この場合、n側電極20Bの延伸部E2では先端に近づくにしたがって電流量が少なくなるため、本変形例のように、延伸部E2の給電部E1側とは反対側(先端側)の幅を小さくしても電流密度はあまり大きくならないのでエレクトロマイグレーションの発生を抑制することができる。つまり、電流密度がエレクトロマイグレーションの臨界値を超えない程度にn側電極20Bの延伸部E2の先端を細くしてn側電極20の面積を小さくするとともにp側電極30の面積を大きくするとよい。このように、本変形例に係る半導体発光素子1Bによれば、エレクトロマイグレーションの抑制効果を維持しつつ、半導体発光素子1Bの光出力を向上させることができる。
なお、図13に示される半導体発光素子1Bでは、延伸部E2の全体が先細りのテーパ状となっていたが、これに限るものではなく、例えば、図14に示すように、延伸部E2の一部(図14では第3金属層21c)が先細りのテーパ状となっていてもよい。
(実施の形態1の変形例3)
次に、実施の形態1の変形例3に係る半導体発光素子1Cについて、図15を用いて説明する。図15において、(a)は、実施の形態1の変形例3に係る半導体発光素子1Cの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Cの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Cの水平断面図である。
次に、実施の形態1の変形例3に係る半導体発光素子1Cについて、図15を用いて説明する。図15において、(a)は、実施の形態1の変形例3に係る半導体発光素子1Cの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Cの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Cの水平断面図である。
本変形例に係る半導体発光素子1Cは、上記実施の形態1に係る半導体発光素子1に対して、n側電極20Cの構成が異なる。
具体的には、図15の(a)及び(c)に示すように、本変形例に係る半導体発光素子1Cのn側電極20Cは、上記実施の形態1に係る半導体発光素子1のn側電極20と同様に、n側電極層21Cとn側配線層22Cとを有するが、本変形例に係る半導体発光素子1Cにおけるn側電極20Cのn側電極層21Cは、第1金属層21a、第2金属層21b及び第3金属層21cに加えて、第4金属層21d及び第5金属層21eを有する。
また、本変形例でも、n側電極20Cは、給電部E1と延伸部E2とを有しているが、本変形例におけるn側電極20Cは、延伸部E2における給電部E1側と反対側に分岐部DPを有する。具体的には、延伸部E2では、分岐部DPで2つの枝電極に分岐されている。n側電極20Cに分岐部DPを設けることで、少ない電極面積で半導体発光素子1Cの全体に効率的に給電することができる。なお、本変形例において、分岐部DPで分岐した後の電極(枝電極)の幅は、分岐部DPで分岐する電極の幅よりも小さくなっている。
第4金属層21dは、延伸部E2において、第3金属層21cの第2金属層21b側とは反対側に位置している。第4金属層21dは、分岐部DPに配置されている。また、第4金属層21dは、第3金属層21cに直接接続している。本変形例において、第4金属層21dは、第2金属層21bと同一材料で形成されている。具体的には、第4金属層21dは、第2金属層21bと同様に、チタンによって構成されている。
また、第5金属層21eは、延伸部E2において、第4金属層21dの第3金属層21c側とは反対側に位置している。第5金属層21eは、分岐部DPで分岐した後の枝電極に配置されている。第5金属層21eは、第4金属層21dに直接接続している。本変形例において、第5金属層21eは、第1金属層21aと同一材料で形成されている。具体的には、第5金属層21eは、第1金属層21a及び第3金属層21cと同様に、アルミニウムによって構成されている。
第4金属層21d及び第5金属層21eは、第1金属層21a、第2金属層21b及び第3金属層21cと同様に、n型半導体層12に接触している。具体的には、第4金属層21d及び第5金属層21eは、n型半導体層12にオーミック接続している。
以上、本変形例に係る半導体発光素子1Cによれば、上記実施の形態1に係る半導体発光素子1と同様に、n側電極20Cは、n側電極層21Cと、n側電極層21Cの上に配置されたn側配線層22Cとを有しており、n側電極層21Cは、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
この構成により、n側電極20Cに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
しかも、本変形例に係る半導体発光素子1Cにおけるn側電極20Cは、延伸部E2における給電部E1側と反対側に分岐部DPを有する。n側電極20Cの分岐部DPが設けられた箇所では、n側電極層21Cの電流密度が大きくなる。例えば、分岐部DPで分岐した後の複数の電極(枝電極)の幅の和が分岐前の電極の幅よりも小さくなると、分岐部DPでの電流密度が大きくなる。
そこで、本変形例に係る半導体発光素子1Cにおけるn側電極20Cでは、n側電極層21Cの分岐部DPに第4金属層21dが配置されている。
この構成により、n側電極20Cに分岐部DPが存在していても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを効果的に抑制することができる。
なお、本変形例におけるn側電極20Cの延伸部E2には、Y字状に分岐するように分岐部DPが設けられていたが、これに限らない。例えば、n側電極20Cの延伸部E2には、T字状に分岐するように分岐部DPが設けられていてもよい。この場合、分岐前後で電極幅の和が等しくても分岐部は屈曲部となるので、分岐部で電気力線が密になって電流密度が大きくなる。したがって、T字状に分岐するようにn側電極20Cの延伸部E2に分岐部DPが設けられていても、n側電極層21Cの分岐部DPに第4金属層21dを設けることで、エレクトロマイグレーションを効果的に抑制することができる。
なお、分岐部DPに設けられる第4金属層21dは、分岐部DPの中心を基準に分岐方向に±100μm以内の領域に少なくとも一部が存在するとよい。
また、本変形例における半導体発光素子1Cでは、n側電極層21Cの分岐部DPに第4金属層21dが設けられていたが、これに限るものではない。例えば、図16に示すように、n側電極層21Cは、第4金属層21d及び第5金属層21eを有しておらず、第1金属層21a、第2金属層21b及び第3金属層21cのみを有している場合は、n側電極層21Cの分岐部DPには第2金属層21bが設けられてもよい。
また、本変形例における半導体発光素子1Cのn側電極20Cでは、給電部E1から1つの延伸部E2が延伸していたが、これに限らない。例えば、図17に示すように、給電部E1から複数(図17では4本)の延伸部E2が延伸していてもよい。この場合、n側電極層21Cにおける複数の延伸部E2の各々の分岐部DPに第4金属層21dを設けるとよい。なお、複数の延伸部E2の全ての分岐部DPに第4金属層21dを設けなくてもよい。この場合、第2金属層21bは、分岐部DPの中心を基準に分岐方向に±100μm以内の領域に少なくとも一部が存在するとよい。
(実施の形態1の変形例4)
次に、実施の形態1の変形例4に係る半導体発光素子1Dについて、図18を用いて説明する。図18において、(a)は、実施の形態1の変形例4に係る半導体発光素子1Dの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Dの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Dの水平断面図である。
次に、実施の形態1の変形例4に係る半導体発光素子1Dについて、図18を用いて説明する。図18において、(a)は、実施の形態1の変形例4に係る半導体発光素子1Dの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Dの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Dの水平断面図である。
本変形例に係る半導体発光素子1Dは、上記実施の形態1に係る半導体発光素子1に対して、n側電極20Dの構成が異なる。
具体的には、図18の(b)に示すように、本変形例に係る半導体発光素子1Dのn側電極20Dは、上記実施の形態1に係る半導体発光素子1のn側電極20において、さらに、n側拡散バリア層23を有する。つまり、本変形例におけるn側電極20Dは、n側電極層21とn側配線層22とに加えて、n側拡散バリア層23を有する。
n側拡散バリア層23は、n側電極層21とn側配線層22との間に配置されている。本変形例において、n側拡散バリア層23は、n側電極層21及びn側配線層22の各々に接しているが、これに限らない。n側拡散バリア層23は、n側電極層21を構成する金属材料とn側配線層22を構成する金属材料とが相互拡散することを抑制する。例えば、n側拡散バリア層23は、n側電極層21に含まれるアルミニウムとn側配線層22に含まれる金との相互拡散を抑制する。
n側拡散バリア層23は、例えば、チタン(Ti)、モリブデン(Mo)、クロム(Cr)、白金(Pt)、ニッケル(Ni)及びタングステン(W)の中から選ばれる少なくとも1種類の金属材料、あるいは、これらの少なくとも1種類の金属材料を含む合金によって構成することができる。
一例として、n側電極層21の第1金属層21a及び第3金属層21cをAl層(膜厚0.3μm)とし、n側電極層21の第2金属層21bをTi層(膜厚0.3μm)とし、n側配線層22をAu層(膜厚1.0μm)とした場合、n側拡散バリア層23は、モリブデンによって構成されたMo層(膜厚0.375μm)である。
以上、本変形例に係る半導体発光素子1Dによれば、上記実施の形態1に係る半導体発光素子1と同様に、n側電極20Dは、n側電極層21と、n側電極層21の上に配置されたn側配線層22とを有しており、n側電極層21は、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
この構成により、n側電極20Dに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
また、本変形例に係る半導体発光素子1Dにおけるn側電極20Dは、n側電極層21とn側配線層22との間にn側拡散バリア層23を有する。
この構成により、n側拡散バリア層23によって、n側電極層21を構成する金属材料とn側配線層22を構成する金属材料とが相互拡散することを抑制できる。したがって、長期信頼性に優れた半導体発光素子1Dを実現することができる。
なお、本変形例における半導体発光素子1Dでは、n側拡散バリア層23とn側電極層21とを異なる材料によって構成したが、これに限らない。例えば、n側拡散バリア層23は、n側電極層21の第2金属層21bと同一材料で構成されていてもよい。この場合、n側電極層21の第2金属層21bとn側拡散バリア層23とを一体にして、図19に示される半導体発光素子1Eのn側電極20Eのように、n側電極層21Eの第2金属層21bをn側拡散バリア層として機能させてもよい。図19に示される半導体発光素子1Eでは、n側電極層21Eの第2金属層21bをTi層にしている。
図19に示される半導体発光素子1Eのn側電極20Eは、n側電極層21Eの第2金属層21bとなるTi層とn側電極層21Eの上のn側拡散バリア層となるTi層とを別々に成膜することで形成することができる。例えば、第1金属層21a及び第3金属層21c(例えばAl層)と第2金属層21b(例えばTi層)とを成膜してn側電極層21Eを形成し、その後、n側電極層21Eの上に、EB蒸着法又はスパッタ法等で第2金属層21bと同一材料のn側拡散バリア層(例えばTi層)を成膜してフォトリソグラフィ法によって所定形状に形成する。
また、n側電極層21Eの第2金属層21bとなるTi層とn側電極層21Eの上のn側拡散バリア層となるTi層とを別々に成膜するのではなく同時に成膜してもよい。例えば、第1金属層21a及び第3金属層21c(例えばAl層)を島状に成膜して、その後、島状の第1金属層21a及び第3金属層21cを覆うようにしてEB蒸着法又はスパッタ法等でn側拡散バリア層となる第2金属層21b(例えばTi層)を成膜してフォトリソグラフィ法によって所定形状に形成する。これにより、図20に示されるような半導体発光素子1Fのn側電極20Fを形成することができる。つまり、n側拡散バリア層としても機能するn側電極層21Fの第2金属層21b及びn側配線層22の各々は、離間した第1金属層21a及び第3金属層21cの間の部分で窪んだ形状となる。このように、n側電極層21Fの第2金属層21bと拡散バリア層とを一体にして同時に形成することで、製造工程を削減することができる。
(実施の形態1の変形例5)
次に、実施の形態1の変形例5に係る半導体発光素子1Gについて、図21を用いて説明する。図21において、(a)は、実施の形態1の変形例5に係る半導体発光素子1Gの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Gの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Gの水平断面図であり、(d)は、(a)のC-C線における同半導体発光素子1Gの垂直断面図であり、(e)は、(d)のD-D線における同半導体発光素子1Gの水平断面図である。
次に、実施の形態1の変形例5に係る半導体発光素子1Gについて、図21を用いて説明する。図21において、(a)は、実施の形態1の変形例5に係る半導体発光素子1Gの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Gの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Gの水平断面図であり、(d)は、(a)のC-C線における同半導体発光素子1Gの垂直断面図であり、(e)は、(d)のD-D線における同半導体発光素子1Gの水平断面図である。
本変形例に係る半導体発光素子1Gは、上記実施の形態1に係る半導体発光素子1に対して、p側電極30Gの構成が異なる。
具体的には、図21の(a)、(d)及び(e)に示すように、本変形例に係る半導体発光素子1Gのp側電極30Gは、上記実施の形態1に係る半導体発光素子1のp側電極30がp型GaN層上に配置されるのに対し、酸化物半導体層34上に配置される構成になっている。
酸化物半導体層34は、p型半導体層14の上に配置される。本変形例において、酸化物半導体層34は、p型半導体層14に接触している。
酸化物半導体層34は、化合物半導体によって構成されている。酸化物半導体層34としては、例えば、酸化インジウムスズ(ITO;Indium Tin Oxide)、酸化インジウム亜鉛(IZO;Indium Zinc Oxide)、酸化亜鉛(ZnO;Zinc Oxide)、又は、InGaZnOx(IGZO)等の透明金属酸化物からなる透明導電膜を用いることができる。これにより、活性層13で生成された光を酸化物半導体層34を透過させて外部に取り出すことができる。つまり、活性層13で生成された光は、基板11側ではなくp側電極30G側から取り出される。この場合、半導体発光素子1Gの光取り出し方向は、図21の紙面の上方向である。なお、本変形例において、酸化物半導体層34は、ITOによって構成されたITO膜である。
また、酸化物半導体層34は、p型半導体層14との界面に薄いオーミックコンタクト層を含んでもよい。例えば、Ni、Pd、Pt、Cr、Mn、Ta、Cu及びFeの中から選ばれる1種類の単体、又は、これらのいずれか1種類を含む合金等を、p型半導体層14に接する側の酸化物半導体層34に含めることで、オーミックコンタクトのコンタクト抵抗値を低減することができる。
本変形例において、p側電極30Gは、n側電極20と同様の構成であり、p型半導体層14側に配置されたp側電極層31Gと、p側電極層31Gの上に配置されたp側配線層32とを有する。具体的には、p側電極層31Gは、酸化物半導体層34の上に積層されており、p側配線層32は、p側電極層31Gの上に積層されている。なお、p側電極層31Gとp側配線層32とは、上面視において、同一形状である。
p側電極30Gは、n側電極20と同様に、給電部E1と、給電部E1から延伸する延伸部E2とを有する。給電部E1は、p側電極30Gにおいて給電端子100が接続される部分である。p側電極30Gにおいて、延伸部E2の延伸方向と直交する方向において、給電部E1の幅は、延伸部E2の幅より大きい。つまり、p側電極30Gにおいて、延伸部E2の幅は、給電部E1の幅よりも小さい。したがって、p側電極30Gは、幅が変化する部分を有する。つまり、p側電極層31G及びp側配線層32の各々は、幅が変化する部分を有する。
p側電極層31Gは、給電部E1に配置された第1金属層31aと、第1金属層31aよりも延伸部E2側に配置された第2金属層31bとを有する。本変形例において、第2金属層31bは、第1金属層31aと直接接続している。第1金属層31a及び第2金属層31bは、金属材料によって構成されている。
p側電極層31Gは、さらに、延伸部E2において第3金属層31cを有する。第3金属層31cは、金属材料によって構成されている。第3金属層31cは、第2金属層31bの第1金属層31a側とは反対側に位置している。したがって、第2金属層31bは、延伸部E2の延伸方向において、第1金属層31aと第3金属層31cとの間に位置している。つまり、p側電極層31Gは、延伸部E2の延伸方向において第1金属層31aと第3金属層31cとに分断されており、その分断された部分には、第2金属層31bが設けられている。本変形例において、第3金属層31cは、第2金属層31bに直接接続している。
第2金属層31bは、少なくとも延伸部E2の延伸方向に対してp側電極層31の幅が変化する位置近傍に配置されている。本変形例において、第2金属層31bは、p側電極層31Gの幅が変化する位置を跨いでいる。つまり、第2金属層31bは、給電部E1と延伸部E2との両方に形成されている。
p側電極30Gにおいて、第1金属層31a、第2金属層31b及び第3金属層31cの各々は、酸化物半導体層34に接触している。したがって、第1金属層31a、第2金属層31b及び第3金属層31cは、酸化物半導体層34に対するオーミックコンタクト層として機能する材料によって構成されているとよい。
また、第1金属層31aの導電率は、第2金属層31bの導電率よりも高い。また、第3金属層31cの導電率は、第2金属層31bの導電率よりも高い。本変形例において、第1金属層31aと第3金属層31cとは、同一材料で形成されている。
第1金属層31a及び第3金属層31cは、例えば、Al、Agの中から選ばれる少なくとも1種類の金属材料、あるいは、これらの少なくとも1種類の金属材料を含む合金によって構成することができる。本変形例において、第1金属層31a及び第3金属層31cは、アルミニウムによって構成されている。
第1金属層31a及び第3金属層31cよりも導電率が低い第2金属層31bは、例えば、Ti、W、Crの中から選ばれる少なくとも1種類の金属材料、あるいは、これらの少なくとも1種類の金属材料を含む合金によって構成することができる。本変形例において、第2金属層31bは、チタンによって構成されている。
また、p側電極層31Gの上に積層されたp側配線層32は、p側電極層31Gの第1金属層31a、第2金属層31b及び第3金属層31cの上に連続して配置されている。つまり、p側配線層32は、給電部E1及び延伸部E2にわたって連続して形成されている。p側配線層32の給電部E1に対応する部分には、給電端子100が接続される。
p側配線層32は、金属材料によって構成されている。p側配線層32の配線抵抗値は、p側電極層31Gの配線抵抗値よりも小さいとよい。つまり、p側配線層32は、第1金属層31a、第2金属層31b及び第3金属層31cで構成されるp側電極層31Gの平均配線抵抗値よりも低い配線抵抗値の金属材料によって構成されているとよい。特に、延伸部E2において、p側配線層32の配線抵抗値は、延伸部E2におけるp側電極層31Gの配線抵抗値(平均配線抵抗値)よりも小さくなっているとよい。p側配線層32は、例えば、Cu、Ag、Auの中から選ばれる少なくとも1種類の金属材料、あるいは、これらの少なくとも1種類の金属材料を含む合金によって構成することができる。
このように構成されるp側電極30Gは、n側電極20と同様の構成であるので、上記実施の形態1に係る半導体発光素子1のn側電極20と同様の方法で形成することができる。一例として、p側電極30Gは、酸化物半導体層34であるITO層(膜厚0.2μm)上に形成されており、p側電極層31Gの第1金属層31a及び第3金属層31cがAl層(膜厚0.3μm)で、p側電極層31Gの第2金属層31bがTi層(膜厚0.3μm)で、p側配線層32がAu層(膜厚1.0μm)である。
以上、本変形例に係る半導体発光素子1Gによれば、上記実施の形態1に係る半導体発光素子1と同様に、n側電極20は、n側電極層21と、n側電極層21の上に配置されたn側配線層22とを有しており、n側電極層21は、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
この構成により、n側電極20に幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
さらに、本変形例に係る半導体発光素子1Gによれば、p側電極30Gは、p側電極層31Gと、p側電極層31Gの上に配置されたp側配線層32とを有しており、p側電極層31Gは、給電部E1に配置された第1金属層31aと、第1金属層31aよりも延伸部E2側に配置され且つ第1金属層31aよりも導電率が低い第2金属層31bとを有する。
この構成により、p側電極30Gに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。
なお、本変形例に係る半導体発光素子1Gにおいて、p側電極30Gは、p側拡散バリア層を有していなかったが、p側電極30Gは、上記実施の形態1に係る半導体発光素子1と同様に、p側拡散バリア層33を有していてもよい。この場合、p側拡散バリア層は、p側電極層31Gとp側配線層32との間に配置される。
また、本変形例に係る半導体発光素子1Gにおいて、p側電極30Gに対して、上記実施の形態1の変形例1~5におけるn側電極20の構成を適用してもよい。
(実施の形態2)
次に、実施の形態2に係る半導体発光素子1Hについて、図22を用いて説明する。図22において、(a)は、実施の形態2に係る半導体発光素子1Hの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Hの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Hの水平断面図である。
次に、実施の形態2に係る半導体発光素子1Hについて、図22を用いて説明する。図22において、(a)は、実施の形態2に係る半導体発光素子1Hの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Hの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Hの水平断面図である。
本実施の形態に係る半導体発光素子1Hは、上記実施の形態1に係る半導体発光素子1に対して、n側電極20Hの構成が異なる。
具体的には、上記実施の形態1に係る半導体発光素子1では、n側電極20のn側電極層21は、第1金属層21a、第2金属層21b及び第3金属層21cを有していたが、本実施の形態に係る半導体発光素子1Hでは、図22の(b)及び(c)に示すように、n側電極20Hのn側電極層21Hは、第3金属層21cを有しておらず、第1金属層21a及び第2金属層21bのみによって構成されている。本実施の形態では、n側電極層21Hの第2金属層21bは、延伸部E2の全体にわたって形成されている。
以上、本実施の形態に係る半導体発光素子1Hによれば、上記実施の形態1に係る半導体発光素子1と同様に、n側電極20Hは、n側電極層21Hと、n側電極層21Hの上に配置されたn側配線層22とを有しており、n側電極層21Hは、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
この構成により、n側電極20Hに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
(実施の形態2の変形例1)
次に、実施の形態2の変形例1に係る半導体発光素子1Iについて、図23を用いて説明する。図23において、(a)は、実施の形態2に係る半導体発光素子1Iの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Iの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Iの水平断面図である。
次に、実施の形態2の変形例1に係る半導体発光素子1Iについて、図23を用いて説明する。図23において、(a)は、実施の形態2に係る半導体発光素子1Iの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Iの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Iの水平断面図である。
本変形例に係る半導体発光素子1Iは、上記実施の形態2に係る半導体発光素子1Hに対して、n側電極20Iの構成が異なる。
具体的には、図23の(c)に示すように、上記実施の形態1の変形例2に係る半導体発光素子1Bと同様に、本変形例におけるn側電極20Iの延伸部E2は、給電部E1側と反対側に、給電部E1側の幅よりも幅の小さい部分を有する。したがって、延伸部E2におけるn側電極層21I及びn側配線層22Iの各々は、給電部E1側と反対側に、給電部E1側の幅よりも幅の小さい部分を有する。
本変形例において、n側電極20Iの延伸部E2は、延伸部E2の延伸方向先端に向かって幅が漸次狭くなる形状である。具体的には、n側電極20Iの延伸部E2は、延伸部E2の延伸方向先端に向かって先細りのテーパ状である。したがって、n側電極層21I及びn側配線層22Iの各々が、延伸部E2の延伸方向先端に向かって先細りのテーパ状になっている。より具体的には、n側電極層21Iにおいては、第2金属層21bの延伸部E2の部分が略二等辺三角形のテーパ状になっている。
以上、本変形例に係る半導体発光素子1Iでも、上記実施の形態2に係る半導体発光素子1Hと同様に、n側電極20Iは、n側電極層21Iと、n側電極層21Iの上に配置されたn側配線層22Iとを有しており、n側電極層21Iは、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
これにより、n側電極20Iに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
しかも、本変形例に係る半導体発光素子1Iでは、上記実施の形態1の変形例2に係る半導体発光素子1Bと同様に、n側電極20Iの延伸部E2が、給電部E1側と反対側に給電部E1側の幅よりも幅の小さい部分を有する。
この構成により、上記実施の形態1の変形例2に係る半導体発光素子1Bと同様の効果を奏する。つまり、n側電極20Iの面積を小さくしてp側電極30の面積(つまり発光面積)を大きくすることができるので、エレクトロマイグレーションの抑制効果を維持しつつ、半導体発光素子1Iの光出力を向上させることができる。また、この場合、n側電極20Bの延伸部E2では先端に近づくにしたがって電流量が少なくなるため、本変形例のように、延伸部E2の給電部E1側とは反対側(先端側)の幅を小さくしても電流密度はあまり大きくならないのでエレクトロマイグレーションの発生を抑制することができる。
(実施の形態2の変形例2)
次に、実施の形態2の変形例2に係る半導体発光素子1Jについて、図24を用いて説明する。図24において、(a)は、実施の形態2の変形例2に係る半導体発光素子1Jの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Jの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Jの水平断面図である。
次に、実施の形態2の変形例2に係る半導体発光素子1Jについて、図24を用いて説明する。図24において、(a)は、実施の形態2の変形例2に係る半導体発光素子1Jの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Jの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Jの水平断面図である。
本変形例に係る半導体発光素子1Jは、上記実施の形態2に係る半導体発光素子1Hに対して、n側電極20Jの構成が異なる。
具体的には、図24の(b)に示すように、本変形例に係る半導体発光素子1Jのn側電極20Jは、上記実施の形態2に係る半導体発光素子1Hのn側電極20Hにおいて、さらに、n側拡散バリア層23を有する。つまり、本変形例におけるn側電極20Jは、上記実施の形態1の変形例4に係る半導体発光素子1Dと同様に、n側電極層21Hとn側配線層22とに加えて、n側電極層21Hとn側配線層22との間に配置されたn側拡散バリア層23を有する。
以上、本変形例に係る半導体発光素子1Jによれば、上記実施の形態2に係る半導体発光素子1Hと同様に、n側電極20Jは、n側電極層21Hと、n側電極層21Hの上に配置されたn側配線層22とを有しており、n側電極層21Hは、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
この構成により、n側電極20Jに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
また、本変形例に係る半導体発光素子1Jにおけるn側電極20Jは、n側電極層21Hとn側配線層22との間にn側拡散バリア層23を有する。
この構成により、上記実施の形態1の変形例4に係る半導体発光素子1Dと同様の効果を奏する。つまり、n側拡散バリア層23によって、n側電極層21Hを構成する金属材料とn側配線層22を構成する金属材料とが相互拡散することを抑制できる。したがって、長期信頼性に優れた半導体発光素子1Jを実現することができる。
なお、本変形例における半導体発光素子1Jでは、n側拡散バリア層23とn側電極層21Hとを異なる材料によって構成したが、これに限らない。例えば、n側拡散バリア層23は、n側電極層21Hの第2金属層21bと同一材料で構成されていてもよい。この場合、図19に示される半導体発光素子1Eと同様に、n側電極層21Hの第2金属層21bとn側拡散バリア層23とを一体にして、図25に示されるような半導体発光素子1Kとしてもよい。つまり、図25に示される半導体発光素子1Kのn側電極20Kのように、n側電極層21Kの第2金属層21bをn側拡散バリア層として機能させてもよい。
図25に示される半導体発光素子1Kのn側電極20Kは、n側電極層21Kの第2金属層21bとなるTi層とn側電極層21Kの上のn側拡散バリア層となるTi層とを別々に成膜することで形成することができるが、同時に成膜してもよい。例えば、第1金属層21a(例えばAl層)を形成し、その後、第1金属層21aを覆うようにしてEB蒸着法又はスパッタ法等でn側拡散バリア層となる第2金属層21b(例えばTi層)を成膜してフォトリソグラフィ法によって所定形状に形成する。これにより、図26に示されるような半導体発光素子1Lのn側電極20Lを形成することができる。つまり、n側拡散バリア層としても機能するn側電極層21Lの第2金属層21b及びn側配線層22の各々は、延伸部E2で窪んだ形状となる。
(実施の形態2の変形例3)
次に、実施の形態2の変形例3に係る半導体発光素子1Mについて、図27を用いて説明する。図27において、(a)は、実施の形態2の変形例3に係る半導体発光素子1Mの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Mの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Mの水平断面図である。
次に、実施の形態2の変形例3に係る半導体発光素子1Mについて、図27を用いて説明する。図27において、(a)は、実施の形態2の変形例3に係る半導体発光素子1Mの平面図であり、(b)は、(a)のA-A線における同半導体発光素子1Mの垂直断面図であり、(c)は、(b)のB-B線における同半導体発光素子1Mの水平断面図である。
本変形例に係る半導体発光素子1Mは、図21に示される上記実施の形態1の変形例5に係る半導体発光素子1Gに対して、p側電極30Mの構成が異なる。
具体的には、上記実施の形態1の変形例5に係る半導体発光素子1Gでは、p側電極30Gのp側電極層31Gは、第1金属層31a、第2金属層31b及び第3金属層31cを有していたが、本変形例に係る半導体発光素子1Mでは、図27の(b)及び(c)に示すように、p側電極30Mのp側電極層31Mは、第3金属層31cを有しておらず、第1金属層31a及び第2金属層31bのみによって構成されている。本変形例では、p側電極層31Mの第2金属層31bは、延伸部E2の全体にわたって形成されている。
以上、本変形例に係る半導体発光素子1Mによれば、上記実施の形態1に係る半導体発光素子1と同様に、n側電極20は、n側電極層21と、n側電極層21の上に配置されたn側配線層22とを有しており、n側電極層21は、給電部E1に配置された第1金属層21aと、第1金属層21aよりも延伸部E2側に配置され且つ第1金属層21aよりも導電率が低い第2金属層21bとを有する。
この構成により、n側電極20に幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。また、光取り出し効率が低下することを抑制することができる。
さらに、本変形例に係る半導体発光素子1Mによれば、p側電極30Mは、p側電極層31Mと、p側電極層31Mの上に配置されたp側配線層32とを有しており、p側電極層31Mは、給電部E1に配置された第1金属層31aと、第1金属層31aよりも延伸部E2側に配置され且つ第1金属層31aよりも導電率が低い第2金属層31bとを有する。
この構成により、p側電極30Mに幅が変化する部分が設けられていても、駆動電圧の増加を抑制しつつ、エレクトロマイグレーションを抑制することができる。
なお、本変形例に係る半導体発光素子1Mにおいて、p側電極30Mは、p側拡散バリア層を有していなかったが、p側電極30Mは、上記実施の形態1に係る半導体発光素子1と同様に、p側拡散バリア層33を有していてもよい。この場合、p側拡散バリア層は、p側電極層31Mとp側配線層32との間に配置される。
(その他の変形例)
以上、本開示に係る半導体発光素子について、実施の形態1、2及びその変形例に基づいて説明したが、本開示は、上記の実施の形態1、2及びその変形例に限定されるものではない。
以上、本開示に係る半導体発光素子について、実施の形態1、2及びその変形例に基づいて説明したが、本開示は、上記の実施の形態1、2及びその変形例に限定されるものではない。
例えば、上記の実施の形態1、2及びその変形例に対して当業者が思い付く各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で、上記の実施の形態1、2及びその変形例における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
一例として、上記実施の形態1の変形例1に係る半導体発光素子1Aのn側電極20Aの構成は、実施の形態2に係る半導体発光素子1Hのn側電極20Hにも適用することができる。また、上記実施の形態1の変形例3に係る半導体発光素子1Cのn側電極20Cの構成は、実施の形態2に係る半導体発光素子1Hのn側電極20Hにも適用することができる。
本開示に係る半導体発光素子は、照明用途又はディスプレイ用途等の様々な機器の光源として有用である。
1、1A、1B、1C、1D、1E、1F、1G、1H、1I、1J、1K、1L、1M、1X、1Y 半導体発光素子
10 半導体積層構造
11 基板
12 n型半導体層
13 活性層
14 p型半導体層
20、20A、20B、20C、20D、20E、20F、20H、20I、20J、20K、20L、20X、20Y n側電極
21、21A、21B、21C、21E、21F、21H、21I、21K、21L n側電極層
21a、31a 第1金属層
21b、31b 第2金属層
21c、31c 第3金属層
21d 第4金属層
21e 第5金属層
22、22A、22B、22C、22I n側配線層
23 n側拡散バリア層
30、30G、30M p側電極
31、31G、31M p側電極層
32 p側配線層
33 p側拡散バリア層
34 酸化物半導体層
40 絶縁膜
100 給電端子
E1 給電部
E2 延伸部
10 半導体積層構造
11 基板
12 n型半導体層
13 活性層
14 p型半導体層
20、20A、20B、20C、20D、20E、20F、20H、20I、20J、20K、20L、20X、20Y n側電極
21、21A、21B、21C、21E、21F、21H、21I、21K、21L n側電極層
21a、31a 第1金属層
21b、31b 第2金属層
21c、31c 第3金属層
21d 第4金属層
21e 第5金属層
22、22A、22B、22C、22I n側配線層
23 n側拡散バリア層
30、30G、30M p側電極
31、31G、31M p側電極層
32 p側配線層
33 p側拡散バリア層
34 酸化物半導体層
40 絶縁膜
100 給電端子
E1 給電部
E2 延伸部
Claims (12)
- 化合物半導体からなる半導体層と、
前記半導体層上に配置された、給電部と前記給電部から延伸する延伸部とを有する電極とを備え、
前記給電部の幅は、前記延伸部の幅より大きく、
前記電極は、前記半導体層側に配置された電極層と、前記電極層の上に配置された配線層とを有し、
前記電極層は、前記給電部に配置された第1金属層と、前記第1金属層よりも前記延伸部側に配置され且つ前記第1金属層と直接接続する第2金属層とを有し、
前記第1金属層及び前記第2金属層は、前記半導体層にオーミック接続し、
前記第1金属層の導電率は、前記第2金属層の導電率よりも高く、
前記配線層は、前記第1金属層及び前記第2金属層上に連続して配置される
半導体発光素子。 - 前記第2金属層は、前記給電部に配置され、
前記第2金属層が配置された前記給電部の領域において、前記第2金属層の最大幅は前記給電部の最大幅以下で、前記延伸部の最大幅より大きい
請求項1に記載の半導体発光素子。 - 前記第2金属層は、前記延伸部に配置され、
前記第2金属層が配置された前記延伸部の領域において、前記第2金属層の最大幅は前記延伸部の最大幅以下で、前記給電部の最大幅より小さい
請求項1または2に記載の半導体発光素子。 - 前記第2金属層は、前記給電部から前記延伸部の方向への位置に対する前記電極層の幅の微分値が極小となる位置を含む領域、または前記微分値が不連続となる位置を含む領域に配置されている
請求項1~3のいずれか1項に記載の半導体発光素子。 - 前記延伸部において、前記第2金属層の前記第1金属層側とは反対側に位置し且つ前記第2金属層に直接接続する第3金属層が配置され、
前記第1金属層と前記第3金属層は同一材料で形成される
請求項1~4のいずれか1項に記載の半導体発光素子。 - 前記延伸部において、前記第3金属層の前記第2金属層側とは反対側に位置し且つ前記第3金属層に直接接続する第4金属層が配置され、
前記第2金属層と前記第4金属層は同一材料で形成される
請求項5に記載の半導体発光素子。 - 前記電極は、前記延伸部における前記給電部側と反対側に分岐部を有し、
前記第4金属層は、前記分岐部に配置されている
請求項6に記載の半導体発光素子。 - 前記電極は、前記延伸部における前記給電部側と反対側に分岐部を有し、
前記第2金属層は、前記分岐部に配置されている
請求項1~4のいずれか1項に記載の半導体発光素子。 - 前記延伸部は、前記給電部側と反対側に、前記給電部側の幅よりも幅の小さい部分を有する
請求項1~8のいずれか1項に記載の半導体発光素子。 - 前記電極層と前記配線層の間に拡散バリア層を有する
請求項1~9のいずれか1項に記載の半導体発光素子。 - 前記拡散バリア層は前記第2金属層と同一材料で構成される
請求項10に記載の半導体発光素子。 - 前記延伸部において、前記配線層の配線抵抗値は、前記電極層の配線抵抗値よりも小さい
請求項1~11のいずれか1項に記載の半導体発光素子。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080039798.4A CN113939920A (zh) | 2019-06-05 | 2020-05-14 | 半导体发光元件 |
JP2021524731A JP7514828B2 (ja) | 2019-06-05 | 2020-05-14 | 半導体発光素子 |
US17/536,472 US20220085244A1 (en) | 2019-06-05 | 2021-11-29 | Semiconductor light-emitting element |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019105735 | 2019-06-05 | ||
JP2019-105735 | 2019-06-05 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/536,472 Continuation US20220085244A1 (en) | 2019-06-05 | 2021-11-29 | Semiconductor light-emitting element |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020246215A1 true WO2020246215A1 (ja) | 2020-12-10 |
Family
ID=73653156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019313 WO2020246215A1 (ja) | 2019-06-05 | 2020-05-14 | 半導体発光素子 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220085244A1 (ja) |
JP (1) | JP7514828B2 (ja) |
CN (1) | CN113939920A (ja) |
WO (1) | WO2020246215A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012114329A (ja) * | 2010-11-26 | 2012-06-14 | Toshiba Corp | 半導体発光素子及びその製造方法 |
WO2012144046A1 (ja) * | 2011-04-21 | 2012-10-26 | 創光科学株式会社 | 窒化物半導体紫外線発光素子 |
JP2013012709A (ja) * | 2011-05-31 | 2013-01-17 | Mitsubishi Chemicals Corp | 窒化物系発光ダイオード素子および発光方法 |
JP2013048199A (ja) * | 2011-07-26 | 2013-03-07 | Mitsubishi Chemicals Corp | GaN系LED素子 |
US20140291714A1 (en) * | 2012-07-18 | 2014-10-02 | Semicon Light Co., Ltd. | Semiconductor Light Emitting Device |
WO2016163083A1 (ja) * | 2015-04-09 | 2016-10-13 | パナソニックIpマネジメント株式会社 | 窒化物半導体発光素子 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5087097B2 (ja) * | 2010-03-08 | 2012-11-28 | 株式会社東芝 | 半導体発光素子 |
JP2012146926A (ja) * | 2011-01-14 | 2012-08-02 | Rohm Co Ltd | 発光素子、発光素子ユニットおよび発光素子パッケージ |
KR20170018201A (ko) * | 2015-08-06 | 2017-02-16 | 삼성전자주식회사 | 반도체 발광소자 및 제조방법 |
KR20170028082A (ko) * | 2015-09-03 | 2017-03-13 | 삼성전자주식회사 | 반도체 발광소자 및 제조방법 |
-
2020
- 2020-05-14 JP JP2021524731A patent/JP7514828B2/ja active Active
- 2020-05-14 WO PCT/JP2020/019313 patent/WO2020246215A1/ja active Application Filing
- 2020-05-14 CN CN202080039798.4A patent/CN113939920A/zh active Pending
-
2021
- 2021-11-29 US US17/536,472 patent/US20220085244A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012114329A (ja) * | 2010-11-26 | 2012-06-14 | Toshiba Corp | 半導体発光素子及びその製造方法 |
WO2012144046A1 (ja) * | 2011-04-21 | 2012-10-26 | 創光科学株式会社 | 窒化物半導体紫外線発光素子 |
JP2013012709A (ja) * | 2011-05-31 | 2013-01-17 | Mitsubishi Chemicals Corp | 窒化物系発光ダイオード素子および発光方法 |
JP2013048199A (ja) * | 2011-07-26 | 2013-03-07 | Mitsubishi Chemicals Corp | GaN系LED素子 |
US20140291714A1 (en) * | 2012-07-18 | 2014-10-02 | Semicon Light Co., Ltd. | Semiconductor Light Emitting Device |
WO2016163083A1 (ja) * | 2015-04-09 | 2016-10-13 | パナソニックIpマネジメント株式会社 | 窒化物半導体発光素子 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020246215A1 (ja) | 2020-12-10 |
JP7514828B2 (ja) | 2024-07-11 |
US20220085244A1 (en) | 2022-03-17 |
CN113939920A (zh) | 2022-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7505057B2 (ja) | 発光素子 | |
JP6665466B2 (ja) | 半導体発光素子及びその製造方法 | |
US10290772B2 (en) | Light-emitting diode and manufacturing method therefor | |
US7285801B2 (en) | LED with series-connected monolithically integrated mesas | |
US9972657B2 (en) | Semiconductor light emitting element | |
US20050269588A1 (en) | Flip chip type nitride semiconductor light-emitting diode | |
US11430934B2 (en) | Light-emitting diode device | |
JP2006203160A (ja) | Esd保護能力を有する窒化ガリウム系発光素子及びその製造方法 | |
US9024342B2 (en) | Semiconductor light emitting element | |
JP2007103689A (ja) | 半導体発光装置 | |
CN108389945B (zh) | 发光元件 | |
US8829558B2 (en) | Semiconductor light-emitting device | |
US9941446B2 (en) | Light-emitting element with first and second light transmissive electrodes and method of manufacturing the same | |
JP2011165853A (ja) | 半導体発光装置 | |
TWI653769B (zh) | 點光源發光二極體 | |
CN102694101B (zh) | Iii族氮化物半导体发光器件 | |
TWI657595B (zh) | 光電半導體元件 | |
WO2020246215A1 (ja) | 半導体発光素子 | |
JP6190591B2 (ja) | 半導体発光素子 | |
JPH08186287A (ja) | 半導体発光ダイオード | |
JP2004265923A (ja) | 半導体発光素子およびその製造方法 | |
JP2006261520A (ja) | 面発光型装置及びその製造方法 | |
US8502244B2 (en) | Solid state lighting devices with current routing and associated methods of manufacturing | |
JP6198396B2 (ja) | 半導体発光素子 | |
TWI435478B (zh) | 垂直式發光二極體結構及其製作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20818833 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021524731 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20818833 Country of ref document: EP Kind code of ref document: A1 |