WO2020246191A1 - 伝動ベルト - Google Patents

伝動ベルト Download PDF

Info

Publication number
WO2020246191A1
WO2020246191A1 PCT/JP2020/018377 JP2020018377W WO2020246191A1 WO 2020246191 A1 WO2020246191 A1 WO 2020246191A1 JP 2020018377 W JP2020018377 W JP 2020018377W WO 2020246191 A1 WO2020246191 A1 WO 2020246191A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission belt
content
mass
parts
rubber composition
Prior art date
Application number
PCT/JP2020/018377
Other languages
English (en)
French (fr)
Inventor
正吾 小林
秀之 加藤
貴文 升田
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to CN202080041408.7A priority Critical patent/CN113906241B/zh
Priority to JP2020526642A priority patent/JP6812605B1/ja
Priority to EP20818802.9A priority patent/EP3971443B1/en
Publication of WO2020246191A1 publication Critical patent/WO2020246191A1/ja
Priority to US17/543,613 priority patent/US11643527B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • F16G5/08V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber with textile reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/20V-belts, i.e. belts of tapered cross-section with a contact surface of special shape, e.g. toothed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • C08L11/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a transmission belt.
  • Patent Documents 1 and 2 It is known that a rubber composition containing cellulosic fine fibers and short fibers forms a belt body of a transmission belt (for example, Patent Documents 1 and 2).
  • the present invention is a transmission belt in which at least a part of the belt body is formed of a rubber composition containing a rubber component, cellulosic fine fibers, and cotton powder.
  • FIGS. 1A to 1C show the double cogged V-belt B (transmission belt) according to the embodiment.
  • the double cogged V-belt B according to the embodiment is a power transmission member used as a transmission belt in, for example, a transmission of a two-wheeled vehicle.
  • the double cogged V-belt B according to the embodiment has, for example, a belt length of 500 mm or more and 1400 mm or less, a maximum belt width of 15 mm or more and 40 mm or less, and a maximum belt thickness of 7.0 mm or more and 18.0 mm or less.
  • the double cogged V-belt B includes an endless rubber belt body 11.
  • the belt body 11 is formed so that the cross-sectional shape along the belt width direction is a combination of an isosceles trapezoid on the inner peripheral side of the belt and a horizontally long rectangle on the outer peripheral side of the belt.
  • the inclined surfaces on both sides of the belt body 11 are formed in pulley contact portions.
  • the belt main body 11 is composed of three layers: a compression rubber layer 111 on the inner peripheral side of the belt, an adhesive rubber layer 112 in the middle portion in the belt thickness direction, and an extension rubber layer 113 on the outer peripheral side of the belt.
  • the pulley contact portions on the inclined surfaces on both sides of the belt body 11 are composed of both side surfaces of the compressed rubber layer 111 and the adhesive rubber layer 112 and a part of the inner peripheral side of the belt on both side surfaces of the stretched rubber layer 113.
  • the double cogged V-belt B includes a covering cloth 12 provided so as to cover the surface of the compressed rubber layer 111 on the inner peripheral side of the belt.
  • lower cog forming portions 111a having a sine-curved cross-sectional shape along the belt length direction are arranged at a constant pitch.
  • the lower cog forming portion 111a is covered with the covering cloth 12 to form the lower cog 13.
  • the double cogged V-belt B according to the embodiment includes a core wire 14 embedded in an intermediate portion of the adhesive rubber layer 112 in the belt thickness direction.
  • the core wire 14 is provided so as to form a spiral having a pitch in the belt width direction along the circumferential direction.
  • upper cogs 15 having a rectangular cross-sectional shape along the belt length direction are arranged at a constant pitch.
  • the rubber composition A contains a rubber component, cellulosic fine fibers, and cotton powder.
  • the rubber composition A is an uncrosslinked rubber composition obtained by blending various rubber compounding agents with a rubber component in addition to cellulosic fine fibers and cotton powder, and kneading the mixture by heating and pressurizing. ..
  • the rubber composition A forming at least a part of the belt body 11 thus contains cellulosic fine fibers in addition to the cellulosic fine fibers.
  • the reinforcing effect of fibers can be enhanced. This is a good match because both the cellulosic fine fibers and the cotton powder are cellulosic materials, and as a result of the synergistic effect due to their physical entanglement, etc., the case where the cellulosic fine fibers are contained alone is compared. Therefore, it is presumed that this is because the dispersibility of the cellulosic fine fibers is enhanced.
  • the compressed rubber layer 111 forming most of the pulley contact surfaces on both side surfaces of the belt body 11 is formed of the rubber composition A.
  • the rubber composition A is preferably arranged so that the columnar direction corresponds to the belt width direction and the anti-columnar direction corresponds to the belt length direction.
  • Examples of the rubber component of the rubber composition A include chloroprene rubber (CR); ethylene-propylene copolymer (EPR), ethylene-propylene-dienter polymer (EPDM), ethylene-octene copolymer, ethylene-butene copolymer and the like. Examples thereof include ⁇ -olefin elastomer; chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR).
  • the rubber component is preferably one of these rubbers or a blended rubber of two or more, and more preferably contains chloroprene rubber (CR) from the viewpoint of obtaining a high reinforcing effect by the cellulosic fine fibers. It is more preferable to contain sulfur-modified chloroprene rubber (sulfur-modified CR).
  • Cellulose-based fine fibers are dispersed and contained in the rubber component.
  • Cellulose-based fine fibers are fiber materials derived from cellulosic fine fibers composed of skeletal components of plant cell walls obtained by finely loosening plant fibers. Examples of raw material plants for cellulosic fine fibers include trees, bamboos, rice (rice straw), potatoes, sugar cane (bagasse), aquatic plants, and seaweeds. Of these, wood is preferred.
  • cellulosic fine fiber examples include the cellulosic fine fiber itself and the hydrophobicized cellulose fine fiber obtained by hydrophobizing the cellulosic fine fiber itself.
  • Cellulose-based fine fibers preferably contain one or both of these.
  • cellulosic fine fibers include those having a high aspect ratio produced by mechanical defibration means and those having acicular crystals produced by chemical defibration means.
  • the cellulosic fine fibers preferably contain one or both of them, and more preferably contain cellulosic fine fibers produced by mechanical defibration means from the viewpoint of obtaining a high reinforcing effect by the cellulosic fine fibers. preferable.
  • the average fiber diameter of the cellulosic fine fibers is, for example, 10 nm or more and 1000 nm or less.
  • the average fiber length of the cellulosic fine fibers is, for example, 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the content of the cellulosic fine fibers in the rubber composition A is preferably 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the rubber component from the viewpoint of obtaining a high reinforcing effect by the cellulosic fine fibers. It is preferably 1.5 parts by mass or more and 10 parts by mass or less, and more preferably 2 parts by mass or more and 5 parts by mass or less.
  • Cotton powder is dispersed and contained in the rubber component.
  • the cotton flour is recovered, for example, by sieving a crushed cotton cloth.
  • the fiber length of the cotton powder is preferably 500 ⁇ m or less, more preferably 250 ⁇ m or less, still more preferably 177 ⁇ m or less, from the viewpoint of obtaining a high reinforcing effect by the cellulosic fine fibers.
  • the average fiber diameter of cotton powder is, for example, 5 ⁇ m or more and 20 ⁇ m or less.
  • the content of cotton powder in the rubber composition A is preferably 0.1 part by mass or more and 20 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the rubber component, from the viewpoint of obtaining a high reinforcing effect by the cellulosic fine fibers. It is 1 part by mass or more and 15 parts by mass or less, more preferably 2 parts by mass or more and 10 parts by mass or less. From the same viewpoint, the content of cotton powder in the rubber composition A is preferably the same as or higher than the content of cellulosic fine fibers.
  • the ratio of the cotton powder content to the cellulosic fine fiber content in the rubber composition A is preferably 1.0 or more from the same viewpoint. It is 0 or less, more preferably 1.5 or more and 4.5 or less, and further preferably 2.5 or more and 3.5 or less. From the same viewpoint, the sum of the content of cotton powder and the content of cellulosic fine fibers in the rubber composition A is preferably 5 parts by mass or more and 20 parts by mass or less, more preferably, with respect to 100 parts by mass of the rubber component. Is 7 parts by mass or more and 18 parts by mass or less, more preferably 10 parts by mass or more and 15 parts by mass or less.
  • the rubber composition A may contain carbon black dispersed in the rubber component.
  • carbon black include channel black; furnace black such as SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, and N-234; thermal black such as FT and MT; Examples include acetylene black.
  • the carbon black preferably contains one or more of these, and from the viewpoint of obtaining a high reinforcing effect, it is more preferable to contain carbon black having an arithmetic mean particle diameter of 50 ⁇ m or less, and it may contain FEF. More preferred.
  • the content of carbon black in the rubber composition A is preferably 5 parts by mass or more and 30 parts by mass or less, and more preferably 8 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of obtaining its effective reinforcing effect. It is 10 parts by mass or less, more preferably 10 parts by mass or more and 15 parts by mass or less.
  • the content of carbon black in the rubber composition A is preferably higher than the content of the cellulosic fine fibers.
  • the ratio of the carbon black content to the cellulosic fine fiber content in the rubber composition A is preferably 2.0 or more and 8.0 or less, more preferably. Is 2.5 or more and 6.0 or less, more preferably 3.0 or more and 5.0 or less.
  • the content of carbon black in the rubber composition A is preferably higher than the content of cotton powder.
  • the ratio of the carbon black content to the cotton powder content in the rubber composition A is preferably 0.5 or more and 8.0 or less, more preferably 0.8. It is 6.0 or more, more preferably 1.0 or more and 2.0 or less.
  • the content of carbon black in the rubber composition A is preferably the same as or greater than the sum of the contents of the cellulosic fine fibers and the cotton powder.
  • the ratio of the carbon black content in the rubber composition A to the sum of the contents of the cellulosic fine fibers and the cotton powder is preferably 1. It is 0.0 or more and 5.0 or less, more preferably 1.0 or more and 3.0 or less, and further preferably 1.0 or more and 1.5 or less.
  • the rubber composition A may contain short fibers (hereinafter, simply referred to as "short fibers") other than cotton powder dispersed in the rubber component.
  • the short fibers are preferably oriented in the belt width direction from the viewpoint of obtaining the effective reinforcing effect. It is preferable that the short fibers are subjected to an adhesive treatment such as an RFL treatment for imparting adhesiveness to rubber.
  • the short fibers include para-aramid short fibers (polyparaphenylene terephthalamide short fibers, copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fibers), meta-aramid short fibers, nylon 66 short fibers, and the like.
  • para-aramid short fibers polyparaphenylene terephthalamide short fibers, copolyparaphenylene-3,4'-oxydiphenylene terephthalamide short fibers
  • meta-aramid short fibers nylon 66 short fibers, and the like.
  • polyester short fibers ultrahigh molecular weight polyolefin short fibers, polyparaphenylene benzobisoxazole short fibers, polyarylate short fibers, cotton, glass short fibers, carbon short fibers and the like.
  • the short fibers preferably contain one or more of these, and from the viewpoint of obtaining a high reinforcing effect, preferably contain para-aramid short fibers, and copolyparaphenylene-3,4'-oxydi. More preferably, it contains phenylene terephthalamide short fibers.
  • the fiber length of the short fiber is preferably 1 mm or more and 5 mm or less, more preferably 2 mm or more and 4 mm or less, from the viewpoint of obtaining the effective reinforcing effect.
  • the fiber diameter of the short fiber is preferably 5 ⁇ m or more and 30 ⁇ m or less, and more preferably 10 ⁇ m or more and 15 ⁇ m or less.
  • the content of the short fibers in the rubber composition A is preferably 3 parts by mass or more and 40 parts by mass or less, and more preferably 5 parts by mass or more and 30 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of obtaining its effective reinforcing effect. It is 10 parts by mass or less, more preferably 10 parts by mass or more and 20 parts by mass or less.
  • the content of the short fibers in the rubber composition A is preferably higher than the content of the cellulosic fine fibers.
  • the ratio of the short fiber content to the cellulosic fine fiber content in the rubber composition A is preferably 2.0 or more and 8.0 or less, more preferably. Is 3.0 or more and 7.0 or less, more preferably 4.0 or more and 6.0 or less.
  • the content of the short fibers in the rubber composition A is preferably higher than the content of the cotton powder.
  • the ratio of the short fiber content to the cotton powder content in the rubber composition A is preferably 1.1 or more and 10 or less, and more preferably 1.3 or more and 5 or less. It is 0.0 or less, more preferably 1.5 or more and 2.0 or less.
  • the content of the short fibers in the rubber composition A is preferably larger than the sum of the contents of the cellulosic fine fibers and the cotton powder.
  • the ratio of the content of the short fibers in the rubber composition A to the sum of the contents of the cellulosic fine fibers and the cotton powder is preferably 1. .1 or more and 5.0 or less, more preferably 1.1 or more and 2.0 or less, still more preferably 1.2 or more and 1.5 or less.
  • the rubber composition A may contain a plasticizer, a processing aid, an antiaging agent, a cross-linking agent, a co-cross-linking agent, a vulcanization accelerator, a vulcanization accelerator, and the like as other rubber compounding agents.
  • the covering cloth 12 is made of, for example, a woven cloth, a knitted fabric, a non-woven fabric or the like formed of threads such as cotton, polyamide fibers, polyester fibers and aramid fibers. It is preferable that the covering cloth 12 is subjected to an adhesive treatment such as an RFL treatment for imparting adhesiveness to the compressed rubber layer 111 of the belt body 11.
  • the core wire 14 is composed of twisted yarns such as polyester fiber, polyethylene naphthalate fiber, aramid fiber, and vinylon fiber. It is preferable that the core wire 14 is subjected to an adhesive treatment such as an RFL treatment for imparting adhesiveness to the adhesive rubber layer 112 of the belt body 11.
  • the double cogged V-belt B according to the embodiment can be manufactured by a known method that has been generally used conventionally.
  • the double cogged V-belt B is used, but the present invention is not particularly limited to this, and a single cogged V-belt having a lower cog provided only on the inner peripheral side of the belt may be used. It may be a low-edge V-belt that is not provided. Further, other types of transmission belts such as flat belts, toothed belts, V-ribbed belts, and wrapped V-belts may be used.
  • the cover cloth 12 for covering the surface on the inner peripheral side of the belt is provided, but the present invention is not particularly limited to this, and in addition to the cover cloth 12 for covering the surface on the inner peripheral side of the belt.
  • a covering cloth that covers the surface on the outer peripheral side of the belt may be provided, or on the inner peripheral side of the belt and the outer peripheral side of the belt.
  • the configuration may not have a covering cloth for covering the surface.
  • Example 1 Kraft pulp is added to water so that its content is 1% by mass, premixed with a stirrer, then put into a atomizing device (manufactured by Starburst Sugino Machine Limited), pressurized to 150 MPa, and ceramic balls.
  • a atomizing device manufactured by Starburst Sugino Machine Limited
  • An aqueous dispersion of cellulosic fine fibers produced by mechanical defibration means was prepared by repeating the process of colliding with the sugino machine eight times.
  • the aqueous dispersion of cellulosic fine fibers was mixed with sulfur-modified CR latex so that the content of the cellulosic fine fibers was 3 parts by mass with respect to 100 parts by mass of the sulfur-modified CR of the rubber component of the sulfur-modified CR latex.
  • the mixture was air-dried and solidified.
  • a solid CR-cellulose fine fiber composite was put into a rubber kneader and kneaded, and 3 parts by mass of cotton powder (fiber length 250 ⁇ m or less), 20 parts by mass with respect to 100 parts by mass of sulfur-modified CR of the rubber component.
  • Parts of carbon black FEF arithmetic average particle size: 43 ⁇ m
  • 5 parts by mass of plastic DOS
  • 1 part of processing aid stearic acid
  • 2.3 parts by mass of anti-aging agent stearic acid
  • anti-aging agent stearic acid
  • anti-aging agent stearic acid
  • anti-aging agent stearic acid
  • anti-aging agent stearic acid
  • anti-aging agent 2.3 parts by mass of anti-aging agent
  • 5 parts by mass Part of magnesium oxide was added and kneaded, and then 5 parts by mass of zinc oxide and 16 parts by mass of RFL treatment were applied to the para-aramid short fibers (copolyparaphenylene-3,4'-oxydiphenylene terephthalamide).
  • a non-crosslinked rubber composition was prepared by adding short fibers (fiber length 3 mm, fiber diameter 12 ⁇ m) and kneading.
  • Example 1 A double-cogged V-belt having the same configuration as that of the embodiment was produced, and this was designated as Example 1.
  • the adhesive rubber layer and the stretched rubber layer were formed of a rubber composition having a sulfur-modified CR rubber component.
  • the covering cloth was composed of a polyester fiber woven cloth that had been subjected to RFL treatment and rubber glue treatment.
  • the core wire was composed of twisted yarn of polyester fiber subjected to RFL treatment and rubber glue treatment.
  • the belt size was 800 mm in length, 24 mm in maximum belt width, and 10.0 mm in maximum belt thickness.
  • Example 2 The content of cotton powder in the rubber composition forming the compressed rubber layer is 6 parts by mass with respect to 100 parts by mass of sulfur-modified CR of the rubber component, and the content of carbon black is set to 100 parts by mass of sulfur-modified CR of the rubber component.
  • a double-cogged V-belt having the same configuration as that of Example 1 was produced except that the weight was 16 parts by mass, and this was designated as Example 2.
  • Example 3 The content of cotton powder in the rubber composition forming the compressed rubber layer is 9 parts by mass with respect to 100 parts by mass of sulfur-modified CR of the rubber component, and the content of carbon black is set to 100 parts by mass of sulfur-modified CR of the rubber component.
  • a double-cogged V-belt having the same configuration as that of Example 1 was produced except that the weight was 12 parts by mass, and this was designated as Example 3.
  • FIG. 2 shows the pulley layout of the belt running tester 20.
  • the belt running tester 20 includes a drive pulley 21 and a driven pulley 22 provided at intervals on the left and right sides.
  • the drive pulley 21 has a pulley diameter of 60 mm and has a V-groove on the outer periphery.
  • the driven pulley 22 has a pulley diameter of 130 mm and has a V-groove on the outer periphery.
  • the double cogged V-belts B of Examples 1 to 3 and Comparative Examples 1 to 3 were wound so as to be fitted into the V grooves of the drive pulley 21 and the driven pulley 22. Then, under an atmospheric temperature of 80 ° C., a torque of 8 Nm was applied to the drive shaft to which the drive pulley 21 was attached, and the drive pulley 21 was rotated to cause the belt to travel.
  • the slip ratios of the drive pulley 21 at rotation speeds of 3000 rpm, 5000 rpm, and 7000 rpm were measured. Then, the average of those slip rates was taken as the average slip rate.
  • the slip ratio is N r0 : the rotation speed of the drive pulley 21 when there is no load, N rt : the rotation speed of the drive pulley 21 when there is a load, N n 0 : the rotation speed of the driven pulley 22 when there is no load, and N nt. : Calculated based on the following formula when the shaft rotation speed of the driven pulley 22 under load is used.
  • Test results The test results are shown in Table 2. According to Table 2, Examples 1 to 3 in which the rubber composition forming the compressed rubber layer contains cellulosic fine fibers and cotton powder are Comparative Example 1 in which both of them are not contained, and only one of them. It can be seen that the average slip ratio is lower than that of Comparative Examples 2 and 3 containing.
  • the present invention is useful in the technical field of transmission belts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Textile Engineering (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • General Details Of Gearings (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

伝動ベルト(B)は、ベルト本体(11)の少なくとも一部が、ゴム成分と、セルロース系微細繊維と、綿粉とを含有するゴム組成物で形成されている。

Description

伝動ベルト
 本発明は、伝動ベルトに関する。
 セルロース系微細繊維及び短繊維を含有するゴム組成物で伝動ベルトのベルト本体を形成することが知られている(例えば特許文献1及び2)。
特許第6487124号公報 特許第6427302号公報
 本発明は、ベルト本体の少なくとも一部が、ゴム成分と、セルロース系微細繊維と、綿粉とを含有するゴム組成物で形成された伝動ベルトである。
実施形態に係るダブルコグドVベルトの一片の斜視図である。 実施形態に係るダブルコグドVベルトのベルト幅方向に沿った断面図である。 実施形態に係るダブルコグドVベルトのベルト長さ方向に沿った断面図である。 ベルト走行試験機のプーリレイアウトを示す図である。
 以下、実施形態について詳細に説明する。
 図1A~Cは、実施形態に係るダブルコグドVベルトB(伝動ベルト)を示す。実施形態に係るダブルコグドVベルトBは、例えば2輪車の変速装置における変速ベルトとして用いられる動力伝達部材である。実施形態に係るダブルコグドVベルトBは、例えば、ベルト長さが500mm以上1400mm以下、ベルト最大幅が15mm以上40mm以下、及びベルト最大厚さが7.0mm以上18.0mm以下である。
 実施形態に係るダブルコグドVベルトBは、エンドレスのゴム製のベルト本体11を備える。ベルト本体11は、ベルト幅方向に沿った断面形状が、ベルト内周側の等脚台形とベルト外周側の横長矩形とが積層されるように組み合わされた形状に形成されている。ベルト本体11の両側の傾斜面は、プーリ接触部に構成されている。ベルト本体11は、ベルト内周側の圧縮ゴム層111と、ベルト厚さ方向の中間部の接着ゴム層112と、ベルト外周側の伸張ゴム層113との3層で構成されている。ベルト本体11の両側の傾斜面のプーリ接触部は、圧縮ゴム層111及び接着ゴム層112の両側面並びに伸張ゴム層113の両側面のベルト内周側の一部分で構成されている。
 実施形態に係るダブルコグドVベルトBは、圧縮ゴム層111のベルト内周側の表面を被覆するように設けられた被覆布12を備える。圧縮ゴム層111の内周には、ベルト長さ方向に沿った断面形状がサインカーブ状に形成された下コグ形成部111aが一定ピッチで配設されている。そして、この下コグ形成部111aが被覆布12で被覆されて下コグ13が構成されている。実施形態に係るダブルコグドVベルトBは、接着ゴム層112のベルト厚さ方向の中間部に埋設された心線14を備える。心線14は、周方向に沿ってベルト幅方向にピッチを有する螺旋を形成して延びるように設けられている。伸張ゴム層113の外周には、ベルト長さ方向に沿った断面形状が矩形状に形成された上コグ15が一定ピッチで配設されている。
 ベルト本体11の少なくとも一部、したがって、圧縮ゴム層111、接着ゴム層112、及び伸張ゴム層113のうちの少なくとも1つは、ゴム組成物Aで形成されている。ゴム組成物Aは、ゴム成分と、セルロース系微細繊維と、綿粉とを含有する。ゴム組成物Aは、ゴム成分に、セルロース系微細繊維及び綿粉に加えて、各種のゴム配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋したものである。
 実施形態に係るダブルコグドVベルトBによれば、このようにベルト本体11の少なくとも一部を形成するゴム組成物Aが、セルロース系微細繊維に加えて、綿粉を含有することにより、セルロース系微細繊維による補強効果を高めることができる。これは、セルロース系微細繊維及び綿粉が、いずれもセルロース系材料であるため相性がよく、それらの物理的な絡み合い等による相乗効果の結果、セルロース系微細繊維が単独で含有される場合と比較して、セルロース系微細繊維の分散性が高まるためであると推測される。
 特に、この補強効果によりプーリから受ける側圧への抵抗力を高める観点からは、ベルト本体11の両側面のプーリ接触面の大部分を構成する圧縮ゴム層111がゴム組成物Aで形成されていることが好ましい。ベルトがプーリから側圧を受けてベルト幅方向に圧縮変形すると、ベルトのプーリへの圧接力が低下し、それによってベルトがプーリ上でスリップし易くなる。しかしながら、プーリから受ける側圧への抵抗力が高ければ、ベルトのベルト幅方向の圧縮変形が抑えられ、かかるスリップの発生を抑制することができる。また、ゴム組成物Aは、同様の観点から、列理方向がベルト幅方向及び反列理方向がベルト長さ方向にそれぞれ対応するように配置されていることが好ましい。
 ゴム組成物Aのゴム成分としては、例えば、クロロプレンゴム(CR);エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー;クロロスルホン化ポリエチレンゴム(CSM);水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。ゴム成分は、これらのうちの1種のゴム又は2種以上のブレンドゴムであることが好ましく、セルロース系微細繊維による高い補強効果を得る観点から、クロロプレンゴム(CR)を含むことがより好ましく、硫黄変性クロロプレンゴム(硫黄変性CR)を含むことが更に好ましい。
 セルロース系微細繊維は、ゴム成分に分散して含有されている。セルロース系微細繊維は、植物繊維を細かくほぐすことで得られる植物細胞壁の骨格成分で構成されたセルロース微細繊維を由来とする繊維材料である。セルロース系微細繊維の原料植物としては、例えば、木、竹、稲(稲わら)、じゃがいも、サトウキビ(バガス)、水草、海藻等が挙げられる。これらのうち木が好ましい。
 セルロース系微細繊維としては、セルロース微細繊維自体及びそれを疎水化処理した疎水化セルロース微細繊維が挙げられる。セルロース系微細繊維は、これらのうちの一方又は両方を含むことが好ましい。
 セルロース系微細繊維としては、機械的解繊手段によって製造された高アスペクト比のもの及び化学的解繊手段によって製造された針状結晶のものが挙げられる。セルロース系微細繊維は、これらのうちの一方又は両方を含むことが好ましく、セルロース系微細繊維による高い補強効果を得る観点から、機械的解繊手段によって製造されたセルロース系微細繊維を含むことがより好ましい。
 セルロース系微細繊維の平均繊維径は、例えば10nm以上1000nm以下である。セルロース系微細繊維の平均繊維長は、例えば0.1μm以上1000μm以下である。ゴム組成物Aにおけるセルロース系微細繊維の含有量は、セルロース系微細繊維による高い補強効果を得る観点から、ゴム成分100質量部に対して、好ましくは0.1質量部以上20質量部以下、より好ましくは1.5質量部以上10質量部以下、更に好ましくは2質量部以上5質量部以下である。
 綿粉は、ゴム成分に分散して含有されている。綿粉は、例えば綿布の粉砕物を篩にかけることにより回収されるものである。綿粉の繊維長は、セルロース系微細繊維による高い補強効果を得る観点から、好ましくは500μm以下、より好ましくは250μm以下、更に好ましくは177μm以下である。繊維長が500μm以下、250μm以下、及び177μm以下の綿粉は、それぞれ30メッシュ(目開き500μm)の篩、60メッシュ(目開き250μm)の篩、及び80メッシュ(目開き177μm)の篩を用いて得られる。綿粉の平均繊維径は、例えば5μm以上20μm以下である。
 ゴム組成物Aにおける綿粉の含有量は、セルロース系微細繊維による高い補強効果を得る観点から、ゴム成分100質量部に対して、好ましくは0.1質量部以上20質量部以下、より好ましくは1質量部以上15質量部以下、更に好ましくは2質量部以上10質量部以下である。ゴム組成物Aにおける綿粉の含有量は、同様の観点から、セルロース系微細繊維の含有量と同一又はそれよりも多いことが好ましい。ゴム組成物Aにおける綿粉の含有量のセルロース系微細繊維の含有量に対する比(綿粉の含有量/セルロース系微細繊維の含有量)は、同様の観点から、好ましくは1.0以上5.0以下、より好ましくは1.5以上4.5以下、更に好ましくは2.5以上3.5以下である。ゴム組成物Aにおける綿粉の含有量とセルロース系微細繊維の含有量との和は、同様の観点から、ゴム成分100質量部に対して、好ましくは5質量部以上20質量部以下、より好ましくは7質量部以上18質量部以下、更に好ましくは10質量部以上15質量部以下である。
 ゴム組成物Aは、ゴム成分に分散したカーボンブラックを含有していてもよい。カーボンブラックとしては、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。カーボンブラックは、これらのうちの1種又は2種以上を含むことが好ましく、高い補強効果を得る観点から、算術平均粒子径が50μm以下のカーボンブラックを含むことがより好ましく、FEFを含むことが更に好ましい。
 ゴム組成物Aにおけるカーボンブラックの含有量は、その有効な補強効果を得る観点から、ゴム成分100質量部に対して、好ましくは5質量部以上30質量部以下、より好ましくは8質量部以上20質量部以下、更に好ましくは10質量部以上15質量部以下である。
 ゴム組成物Aがカーボンブラックを含有する場合、ゴム組成物Aにおけるカーボンブラックの含有量は、セルロース系微細繊維の含有量よりも多いことが好ましい。ゴム組成物Aにおけるカーボンブラックの含有量のセルロース系微細繊維の含有量に対する比(カーボンブラックの含有量/セルロース系微細繊維の含有量)は、好ましくは2.0以上8.0以下、より好ましくは2.5以上6.0以下、更に好ましくは3.0以上5.0以下である。
 ゴム組成物Aがカーボンブラックを含有する場合、ゴム組成物Aにおけるカーボンブラックの含有量は、綿粉の含有量よりも多いことが好ましい。ゴム組成物Aにおけるカーボンブラックの含有量の綿粉の含有量に対する比(カーボンブラックの含有量/綿粉の含有量)は、好ましくは0.5以上8.0以下、より好ましくは0.8以上6.0以下、更に好ましくは1.0以上2.0以下である。
 ゴム組成物Aがカーボンブラックを含有する場合、ゴム組成物Aにおけるカーボンブラックの含有量は、セルロース系微細繊維及び綿粉の含有量の和と同一又はそれよりも多いことが好ましい。ゴム組成物Aにおけるカーボンブラックの含有量のセルロース系微細繊維及び綿粉の含有量の和に対する比(カーボンブラックの含有量/セルロース系微細繊維及び綿粉の含有量の和)は、好ましくは1.0以上5.0以下、より好ましくは1.0以上3.0以下、更に好ましくは1.0以上1.5以下である。
 ゴム組成物Aは、ゴム成分に分散した綿粉以外の短繊維(以下単に「短繊維」という。)を含有していてもよい。短繊維は、その有効な補強効果を得る観点から、ベルト幅方向に配向していることが好ましい。短繊維には、ゴムへの接着性を付与するためのRFL処理等の接着処理が施されていることが好ましい。
 短繊維としては、例えば、パラ系アラミド短繊維(ポリパラフェニレンテレフタルアミド短繊維、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド短繊維)、メタ系アラミド短繊維、ナイロン66短繊維、ポリエステル短繊維、超高分子量ポリオレフィン短繊維、ポリパラフェニレンベンゾビスオキサゾール短繊維、ポリアリレート短繊維、綿、ガラス短繊維、炭素短繊維等が挙げられる。短繊維は、これらのうちの1種又は2種以上を含むことが好ましく、高い補強効果を得る観点から、パラ系アラミド短繊維を含むことが好ましく、コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド短繊維を含むことがより好ましい。
 短繊維の繊維長は、その有効な補強効果を得る観点から、好ましくは1mm以上5mm以下、より好ましくは2mm以上4mm以下である。短繊維の繊維径は、同様の観点から、好ましくは5μm以上30μm以下、より好ましくは10μm以上15μm以下である。
 ゴム組成物Aにおける短繊維の含有量は、その有効な補強効果を得る観点から、ゴム成分100質量部に対して、好ましくは3質量部以上40質量部以下、より好ましくは5質量部以上30質量部以下、更に好ましくは10質量部以上20質量部以下である。
 ゴム組成物Aが短繊維を含有する場合、ゴム組成物Aにおける短繊維の含有量は、セルロース系微細繊維の含有量よりも多いことが好ましい。ゴム組成物Aにおける短繊維の含有量のセルロース系微細繊維の含有量に対する比(短繊維の含有量/セルロース系微細繊維の含有量)は、好ましくは2.0以上8.0以下、より好ましくは3.0以上7.0以下、更に好ましくは4.0以上6.0以下である。
 ゴム組成物Aが短繊維を含有する場合、ゴム組成物Aにおける短繊維の含有量は、綿粉の含有量よりも多いことが好ましい。ゴム組成物Aにおける短繊維の含有量の綿粉の含有量に対する比(短繊維の含有量/綿粉の含有量)は、好ましくは1.1以上10以下、より好ましくは1.3以上5.0以下、更に好ましくは1.5以上2.0以下である。
 ゴム組成物Aが短繊維を含有する場合、ゴム組成物Aにおける短繊維の含有量は、セルロース系微細繊維及び綿粉の含有量の和よりも多いことが好ましい。ゴム組成物Aにおける短繊維の含有量のセルロース系微細繊維及び綿粉の含有量の和に対する比(短繊維の含有量/セルロース系微細繊維及び綿粉の含有量の和)は、好ましくは1.1以上5.0以下、より好ましくは1.1以上2.0以下、更に好ましくは1.2以上1.5以下である。
 ゴム組成物Aは、その他のゴム配合剤として、可塑剤、加工助剤、老化防止剤、架橋剤、共架橋剤、加硫促進剤、加硫促進助剤等を含有していてもよい。
 被覆布12は、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸で形成された織布、編物、不織布等で構成されている。被覆布12には、ベルト本体11の圧縮ゴム層111に対する接着性を付与するためのRFL処理等の接着処理が施されていることが好ましい。
 心線14は、ポリエステル繊維、ポリエチレンナフタレート繊維、アラミド繊維、ビニロン繊維等の撚糸で構成されている。心線14には、ベルト本体11の接着ゴム層112に対する接着性を付与するためのRFL処理等の接着処理が施されていることが好ましい。
 実施形態に係るダブルコグドVベルトBは、従来から一般的に行われている公知の方法で製造することができる。
 なお、上記実施形態では、ダブルコグドVベルトBとしたが、特にこれに限定されるものではなく、ベルト内周側のみに下コグが設けられたシングルコグドVベルトであってもよく、また、コグが設けられていないローエッジVベルトであってもよい。さらに、平ベルト、歯付ベルト、Vリブドベルト、ラップドVベルト等の他の種類の伝動ベルトであってもよい。
 上記実施形態では、ベルト内周側の表面を被覆する被覆布12を備えた構成としたが、特にこれに限定されるものではなく、ベルト内周側の表面を被覆する被覆布12に加えて、又は、ベルト内周側の表面を被覆する被覆布12に代えて、ベルト外周側の表面を被覆する被覆布を備えた構成であってもよく、また、ベルト内周側及びベルト外周側の表面を被覆する被覆布を有さない構成であってもよい。
 (ダブルコグドVベルト)
 以下の実施例1~3及び比較例1~3のダブルコグドVベルトを作製した。それぞれの圧縮ゴム層を形成するゴム組成物の構成は表1にも示す。
 <実施例1>
 クラフトパルプを、その含有量が1質量%となるように水に加えて攪拌機で予備混合した後、それを微粒化装置(スターバースト スギノマシン社製)に投入し、150MPaに加圧してセラミックスボールに衝突させる処理を8回繰り返すことにより、機械的解繊手段によって製造されたセルロース系微細繊維の水分散体を調製した。
 セルロース系微細繊維の水分散体を、硫黄変性CRラテックスに、セルロース系微細繊維の含有量が硫黄変性CRラテックスのゴム成分の硫黄変性CR100質量部に対して3質量部となるように混合し、その混合液を風乾して固形化させた。
 固体のCR-セルロース系微細繊維複合体をゴム混練機に投入して混練し、そこに、ゴム成分の硫黄変性CR100質量部に対して、3質量部の綿粉(繊維長250μm以下)、20質量部のカーボンブラック(FEF 算術平均粒子径:43μm)、5質量部の可塑剤(DOS)、1質量部の加工助剤(ステアリン酸)、2.3質量部の老化防止剤、及び5質量部の酸化マグネシウムを投入して混練し、その後、更に5質量部の酸化亜鉛及び16質量部のRFL処理を施したパラ系アラミド短繊維(コポリパラフェニレン-3,4’-オキシジフェニレンテレフタルアミド短繊維、繊維長3mm、繊維径12μm)を投入して混練することにより未架橋ゴム組成物を調製した。
 そして、この未架橋ゴム組成物を、列理方向が幅方向及び反列理方向がベルト長さ方向にそれぞれ対応するように配置して架橋させたゴム組成物で圧縮ゴム層を形成した上記実施形態と同様の構成のダブルコグドVベルトを作製し、それを実施例1とした。
 なお、接着ゴム層及び伸張ゴム層は、ゴム成分が硫黄変性CRのゴム組成物で形成した。被覆布は、RFL処理及びゴム糊処理を施したポリエステル繊維の織布で構成した。心線は、RFL処理及びゴム糊処理を施したポリエステル繊維の撚糸で構成した。ベルトサイズは、ベルト長さが800mm、ベルト最大幅が24mm、及びベルト最大厚さが10.0mmとした。
 <実施例2>
 圧縮ゴム層を形成するゴム組成物における綿粉の含有量を、ゴム成分の硫黄変性CR100質量部に対して6質量部とし、カーボンブラックの含有量を、ゴム成分の硫黄変性CR100質量部に対して16質量部としたことを除いて実施例1と同一構成のダブルコグドVベルトを作製し、それを実施例2とした。
 <実施例3>
 圧縮ゴム層を形成するゴム組成物における綿粉の含有量を、ゴム成分の硫黄変性CR100質量部に対して9質量部とし、カーボンブラックの含有量を、ゴム成分の硫黄変性CR100質量部に対して12質量部としたことを除いて実施例1と同一構成のダブルコグドVベルトを作製し、それを実施例3とした。
 <比較例1>
 圧縮ゴム層を形成するゴム組成物におけるカーボンブラックの含有量を、ゴム成分の硫黄変性CR100質量部に対して48質量部とし、セルロース系微細繊維及び綿粉を含有させなかったことを除いて実施例1と同一構成のダブルコグドVベルトを作製し、それを比較例1とした。
 <比較例2>
 圧縮ゴム層を形成するゴム組成物におけるカーボンブラックの含有量を、ゴム成分の硫黄変性CR100質量部に対して24質量部とし、綿粉を含有させなかったことを除いて実施例1と同一構成のダブルコグドVベルトを作製し、それを比較例2とした。
 <比較例3>
 圧縮ゴム層を形成するゴム組成物におけるカーボンブラックの含有量を、ゴム成分の硫黄変性CR100質量部に対して44質量部とし、セルロース系微細繊維を含有させなかったことを除いて実施例1と同一構成のダブルコグドVベルトを作製し、それを比較例3とした。
Figure JPOXMLDOC01-appb-T000001
 (試験方法)
 図2は、ベルト走行試験機20のプーリレイアウトを示す。
 このベルト走行試験機20は、左右に間隔をおいて設けられた駆動プーリ21及び従動プーリ22を備える。駆動プーリ21は、プーリ径が60mmであり、外周にV溝を有する。従動プーリ22は、プーリ径が130mmであり、外周にV溝を有する。
 実施例1~3及び比較例1~3のそれぞれのダブルコグドVベルトBについて、駆動プーリ21及び従動プーリ22のV溝に嵌め入れるように巻き掛けた。そして、雰囲気温度80℃の下、駆動プーリ21が取り付けられた駆動軸に8N・mのトルクを負荷するとともに駆動プーリ21を回転させることによりベルト走行させた。駆動プーリ21を回転数3000rpm、5000rpm、及び7000rpmとしたときのそれぞれのスリップ率を測定した。そして、それらのスリップ率の平均を平均スリップ率とした。なお、スリップ率は、Nr0:無負荷時の駆動プーリ21の回転数、Nrt:負荷時の駆動プーリ21の回転数、Nn0:無負荷時の従動プーリ22の回転数、及びNnt:負荷時の従動プーリ22の軸回転数としたとき、下記式に基づいて算出した。
 スリップ率=((I-I)/I)×100(%)
 (I=Nn0/Nr0,I=Nnt/Nrt
 (試験結果)
 試験結果を表2に示す。この表2によれば、圧縮ゴム層を形成するゴム組成物がセルロース系微細繊維及び綿粉を含有する実施例1~3は、それらの両方を含有しない比較例1並びにそれらのうちの一方のみを含有する比較例2及び3に比べて、平均スリップ率が低いことが分かる。
Figure JPOXMLDOC01-appb-T000002
 本発明は、伝動ベルトの技術分野について有用である。
B ダブルコグドVドベルト(伝動ベルト)
11 ベルト本体
111 圧縮ゴム層
111a 下コグ形成部
112 接着ゴム層
113 伸張ゴム層
12 被覆布
13 下コグ
14 心線
15 上コグ
20 ベルト走行試験機
21 駆動プーリ
22 従動プーリ

Claims (16)

  1.  ベルト本体の少なくとも一部が、ゴム成分と、セルロース系微細繊維と、綿粉と、を含有するゴム組成物で形成された伝動ベルト。
  2.  請求項1に記載された伝動ベルトにおいて、
     前記ゴム成分がクロロプレンゴムを含む伝動ベルト。
  3.  請求項1又は2に記載された伝動ベルトにおいて、
     前記セルロース系微細繊維が、機械的解繊手段によって製造されたセルロース系微細繊維を含む伝動ベルト。
  4.  請求項1乃至3のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記セルロース系微細繊維の含有量が、前記ゴム成分100質量部に対して0.1質量部以上20質量部以下である伝動ベルト。
  5.  請求項1乃至4のいずれかに記載された伝動ベルトにおいて、
     前記綿粉の繊維長が500μm以下である伝動ベルト。
  6.  請求項1乃至5のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記綿粉の含有量が、前記ゴム成分100質量部に対して0.1質量部以上20質量部以下である伝動ベルト。
  7.  請求項1乃至6のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記綿粉の含有量が、前記セルロース系微細繊維の含有量と同一又はそれよりも多い伝動ベルト。
  8.  請求項7に記載された伝動ベルトにおいて、
     前記ゴム組成物における前記綿粉の含有量の前記セルロース系微細繊維の含有量に対する比が1.0以上5.0以下である伝動ベルト。
  9.  請求項1乃至8のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記綿粉及び前記セルロース系微細繊維の含有量の和が、前記ゴム成分100質量部に対して5質量部以上20質量部以下である伝動ベルト。
  10.  請求項1乃至9のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物が前記綿粉以外の短繊維を含有するとともに、前記短繊維がパラ系アラミド短繊維を含み、且つ前記ゴム組成物における前記短繊維の含有量が、前記ゴム成分100質量部に対して3質量部以上40質量部以下である伝動ベルト。
  11.  請求項10に記載された伝動ベルトにおいて、
     前記ゴム組成物における前記短繊維の含有量が前記セルロース系微細繊維の含有量よりも多い伝動ベルト。
  12.  請求項11に記載された伝動ベルトにおいて、
     前記ゴム組成物における前記短繊維の含有量の前記セルロース系微細繊維の含有量に対する比が2.0以上8.0以下である伝動ベルト。
  13.  請求項10乃至12のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記短繊維の含有量が前記綿粉の含有量よりも多い伝動ベルト。
  14.  請求項13に記載された伝動ベルトにおいて、
     前記ゴム組成物における前記短繊維の含有量の前記綿粉の含有量に対する比が1.1以上10以下である伝動ベルト。
  15.  請求項10乃至14のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記短繊維の含有量が、前記セルロース系微細繊維及び前記綿粉の含有量の和よりも多い伝動ベルト。
  16.  請求項15に記載された伝動ベルトにおいて、
     前記ゴム組成物における前記短繊維の含有量の前記セルロース系微細繊維及び前記綿粉の含有量の和に対する比が1.1以上5.0以下である伝動ベルト。
PCT/JP2020/018377 2019-06-07 2020-05-01 伝動ベルト WO2020246191A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080041408.7A CN113906241B (zh) 2019-06-07 2020-05-01 传动带
JP2020526642A JP6812605B1 (ja) 2019-06-07 2020-05-01 伝動ベルト
EP20818802.9A EP3971443B1 (en) 2019-06-07 2020-05-01 Transmission belt
US17/543,613 US11643527B2 (en) 2019-06-07 2021-12-06 Transmission belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019107206 2019-06-07
JP2019-107206 2019-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/543,613 Continuation US11643527B2 (en) 2019-06-07 2021-12-06 Transmission belt

Publications (1)

Publication Number Publication Date
WO2020246191A1 true WO2020246191A1 (ja) 2020-12-10

Family

ID=73652782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018377 WO2020246191A1 (ja) 2019-06-07 2020-05-01 伝動ベルト

Country Status (6)

Country Link
US (1) US11643527B2 (ja)
EP (1) EP3971443B1 (ja)
JP (1) JP6812605B1 (ja)
CN (1) CN113906241B (ja)
TW (1) TWI820335B (ja)
WO (1) WO2020246191A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114986955A (zh) * 2022-06-10 2022-09-02 三力士股份有限公司 一种收割机用拨禾链条的制备方法
CN115418037A (zh) * 2022-09-19 2022-12-02 宁波伏龙同步带有限公司 橡塑碳纤维同步带

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0127302B2 (ja) 1978-12-05 1989-05-29 Leitz Ernst Gmbh
CN103244605A (zh) * 2013-05-08 2013-08-14 浙江三力士橡胶股份有限公司 一种耐疲劳窄v带及其制备方法
WO2013124943A1 (ja) * 2012-02-24 2013-08-29 バンドー化学株式会社 摩擦伝動ベルト
JP2015031315A (ja) * 2013-07-31 2015-02-16 バンドー化学株式会社 平ベルト
JP2015042903A (ja) * 2013-03-21 2015-03-05 バンドー化学株式会社 摩擦伝動ベルト
JP2016205565A (ja) * 2015-04-27 2016-12-08 バンドー化学株式会社 伝動ベルト
JP2016211589A (ja) * 2015-04-28 2016-12-15 バンドー化学株式会社 伝動ベルト
WO2017094213A1 (ja) * 2015-12-04 2017-06-08 バンドー化学株式会社 Vリブドベルト
JP6487124B1 (ja) 2017-06-19 2019-03-20 バンドー化学株式会社 伝動ベルト

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03001808A (es) * 2002-03-14 2003-09-22 Goodyear Tire & Rubber Banda de transmision de potencia.
JP2004125012A (ja) * 2002-09-30 2004-04-22 Mitsuboshi Belting Ltd 動力伝動ベルト
JP6144234B2 (ja) * 2013-06-27 2017-06-07 三ツ星ベルト株式会社 伝動ベルトとその繊維部材並びに繊維部材の製造方法
CN107532681B (zh) * 2015-04-24 2020-11-06 阪东化学株式会社 传动带
WO2016170747A1 (ja) * 2015-04-24 2016-10-27 バンドー化学株式会社 伝動ベルト
CN107531955A (zh) * 2015-04-24 2018-01-02 阪东化学株式会社 橡胶组合物、传动带及其制造方法
WO2018235421A1 (ja) 2017-06-19 2018-12-27 バンドー化学株式会社 伝動ベルト

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0127302B2 (ja) 1978-12-05 1989-05-29 Leitz Ernst Gmbh
WO2013124943A1 (ja) * 2012-02-24 2013-08-29 バンドー化学株式会社 摩擦伝動ベルト
JP2015042903A (ja) * 2013-03-21 2015-03-05 バンドー化学株式会社 摩擦伝動ベルト
CN103244605A (zh) * 2013-05-08 2013-08-14 浙江三力士橡胶股份有限公司 一种耐疲劳窄v带及其制备方法
JP2015031315A (ja) * 2013-07-31 2015-02-16 バンドー化学株式会社 平ベルト
JP2016205565A (ja) * 2015-04-27 2016-12-08 バンドー化学株式会社 伝動ベルト
JP2016211589A (ja) * 2015-04-28 2016-12-15 バンドー化学株式会社 伝動ベルト
WO2017094213A1 (ja) * 2015-12-04 2017-06-08 バンドー化学株式会社 Vリブドベルト
JP6487124B1 (ja) 2017-06-19 2019-03-20 バンドー化学株式会社 伝動ベルト

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3971443A4

Also Published As

Publication number Publication date
CN113906241A (zh) 2022-01-07
TWI820335B (zh) 2023-11-01
CN113906241B (zh) 2022-07-12
US20220089845A1 (en) 2022-03-24
TW202106786A (zh) 2021-02-16
EP3971443B1 (en) 2023-04-26
JPWO2020246191A1 (ja) 2021-09-13
JP6812605B1 (ja) 2021-01-13
EP3971443A4 (en) 2022-07-13
EP3971443A1 (en) 2022-03-23
US11643527B2 (en) 2023-05-09

Similar Documents

Publication Publication Date Title
TWI791024B (zh) 傳動帶
US11643527B2 (en) Transmission belt
WO2020246187A1 (ja) ローエッジvベルト
JP6950094B2 (ja) 伝動ベルト
WO2020246189A1 (ja) 伝動ベルト
JP6777835B1 (ja) 大型vベルト
WO2020246188A1 (ja) 大型vベルト
TWI838535B (zh) 傳動帶
JP2022070718A (ja) 伝動ベルト
WO2021085054A1 (ja) 伝動ベルト及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020526642

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020818802

Country of ref document: EP