WO2020246189A1 - 伝動ベルト - Google Patents

伝動ベルト Download PDF

Info

Publication number
WO2020246189A1
WO2020246189A1 PCT/JP2020/018373 JP2020018373W WO2020246189A1 WO 2020246189 A1 WO2020246189 A1 WO 2020246189A1 JP 2020018373 W JP2020018373 W JP 2020018373W WO 2020246189 A1 WO2020246189 A1 WO 2020246189A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
belt
parts
transmission belt
rubber
Prior art date
Application number
PCT/JP2020/018373
Other languages
English (en)
French (fr)
Inventor
正吾 小林
Original Assignee
バンドー化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バンドー化学株式会社 filed Critical バンドー化学株式会社
Priority to DE112020002286.2T priority Critical patent/DE112020002286T5/de
Priority to JP2020526641A priority patent/JP6884280B1/ja
Priority to CN202080040232.3A priority patent/CN113892000B/zh
Publication of WO2020246189A1 publication Critical patent/WO2020246189A1/ja
Priority to US17/543,477 priority patent/US11441020B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber
    • F16G1/08Driving-belts made of rubber with reinforcement bonded by the rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/28Driving-belts with a contact surface of special shape, e.g. toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G5/00V-belts, i.e. belts of tapered cross-section
    • F16G5/04V-belts, i.e. belts of tapered cross-section made of rubber
    • F16G5/06V-belts, i.e. belts of tapered cross-section made of rubber with reinforcement bonded by the rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Definitions

  • the present invention relates to a transmission belt.
  • Patent Document 1 discloses a toothed belt in which a belt body is formed of a rubber composition containing cellulosic fine fibers.
  • the present invention is a transmission belt including a pulley non-contact portion formed of a rubber composition, wherein the rubber composition contains a rubber component, cellulosic fine fibers, and a non-carbon black hydrophilic inorganic filler. However, it does not contain carbon black, or contains carbon black in an amount of less than 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • FIG. It is a perspective view of a piece of the wrapped V belt which concerns on Embodiment 1.
  • FIG. It is a perspective view of a piece of a toothed belt which concerns on Embodiment 2.
  • FIG. It is a pulley layout figure of a belt running tester.
  • FIG. 1 shows a wrapped V-belt B (transmission belt) according to the first embodiment.
  • the wrapped V-belt B according to the first embodiment is a friction transmission belt used as a power transmission member for, for example, an agricultural machine or an industrial machine.
  • the wrapped V-belt B according to the first embodiment includes an endless rubber belt body 11.
  • the cross-sectional shape of the belt body 11 is formed into a trapezoidal shape that becomes wider from the inner peripheral side of the belt toward the outer peripheral side of the belt.
  • the belt main body 11 is composed of three layers: a compression rubber layer 111 on the inner peripheral side of the belt, an adhesive rubber layer 112 in the middle portion in the belt thickness direction, and an extension rubber layer 113 on the outer peripheral side of the belt.
  • the wrapped V-belt B according to the first embodiment includes a core wire 12 embedded in an intermediate portion of the adhesive rubber layer 112 in the belt thickness direction.
  • the core wire 12 is provided so as to form a spiral having a pitch in the belt width direction along the circumferential direction.
  • the wrapped V-belt B according to the first embodiment includes a covering cloth 13 provided so as to cover the entire belt main body 11.
  • the compressed rubber layer 111, the adhesive rubber layer 112, and the stretched rubber layer 113 are all formed of a crosslinked rubber composition.
  • This rubber composition is obtained by cross-linking a sheet-shaped uncrosslinked rubber composition, so that the columnar direction corresponds to the belt width direction and the non-arrangement direction corresponds to the belt length direction, respectively. It is preferably arranged. Since the wrapped V-belt B according to the first embodiment is used by being fitted into the V-groove of the pulley, the covering cloths 13 on both side surfaces thereof form the pulley contact portion. Therefore, each of the compressed rubber layer 111, the adhesive rubber layer 112, and the stretched rubber layer 113 of the belt body 11 constitutes a pulley non-contact portion formed of the rubber composition contained in the wrapped V-belt B according to the first embodiment. ..
  • At least one of the compressed rubber layer 111, the adhesive rubber layer 112, and the stretched rubber layer 113 contains a rubber component, cellulose-based fine fibers, and a non-carbon black hydrophilic inorganic filler, and contains carbon black. It is formed of a rubber composition (hereinafter referred to as "rubber composition A") that does not contain or contains carbon black in an amount of less than 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • rubber composition A a rubber composition that does not contain or contains carbon black in an amount of less than 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • the non-contact portion of the pulley which is not required to have abrasion resistance, contains a rubber component, cellulosic fine fibers, and a non-carbon black hydrophilic inorganic filler.
  • excellent durability can be obtained by forming the rubber composition A which does not contain carbon black or contains carbon black in an amount of less than 20 parts by mass with respect to 100 parts by mass of the rubber component.
  • any one of the compressed rubber layer 111, the adhesive rubber layer 112, and the stretched rubber layer 113 may be formed of the rubber composition A, or all of them may be formed of the rubber composition A. .. From the viewpoint of obtaining excellent durability, it is preferable that at least the compressed rubber layer 111 is formed of the rubber composition A.
  • Examples of the rubber component in the rubber composition A include chloroprene rubber (CR); ethylene-propylene copolymer (EPR), ethylene-propylene-dienter polymer (EPDM), ethylene-octene copolymer, ethylene-butene copolymer and the like. Examples thereof include ⁇ -olefin elastomer; chlorosulfonated polyethylene rubber (CSM); hydrogenated acrylonitrile rubber (H-NBR).
  • the rubber component is preferably one of these rubbers or a blended rubber of two or more, and more preferably contains chloroprene rubber (CR) from the viewpoint of obtaining excellent durability, and sulfur-modified chloroprene rubber. It is more preferable to contain (sulfur-modified CR).
  • the cellulosic fine fibers in the rubber composition A are dispersed and contained in the rubber component.
  • Cellulose-based fine fibers are fiber materials derived from cellulosic fine fibers composed of skeletal components of plant cell walls obtained by finely loosening plant fibers. Examples of raw material plants for cellulosic fine fibers include trees, bamboos, rice (rice straw), potatoes, sugar cane (bagasse), aquatic plants, and seaweeds. Of these, wood is preferred.
  • cellulosic fine fiber examples include the cellulosic fine fiber itself and the hydrophobicized cellulose fine fiber obtained by hydrophobizing the cellulosic fine fiber itself.
  • Cellulose-based fine fibers preferably contain one or both of these.
  • cellulosic fine fibers include those having a high aspect ratio produced by mechanical defibration means and those having acicular crystals produced by chemical defibration means.
  • the cellulosic fine fibers preferably contain one or both of them, and more preferably contain cellulosic fine fibers produced by mechanical defibration means from the viewpoint of obtaining excellent durability.
  • the average fiber diameter of the cellulosic fine fibers is, for example, 10 nm or more and 1000 nm or less.
  • the average fiber length of the cellulosic fine fibers is, for example, 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the content of the cellulosic fine fibers in the rubber composition A is preferably 1 part by mass or more and 20 parts by mass or less, more preferably 1.5 parts by mass, with respect to 100 parts by mass of the rubber component, from the viewpoint of obtaining excellent durability. It is 10 parts by mass or less, more preferably 2 parts by mass or more and 5 parts by mass or less.
  • the hydrophilic inorganic filler in the rubber composition A is dispersed and contained in the rubber component.
  • the hydrophilic inorganic filler include silica, layered silicate, calcium carbonate, clay and the like.
  • the hydrophilic inorganic filler preferably contains one or more of these, and more preferably contains silica from the viewpoint of obtaining excellent durability.
  • the content of the hydrophilic inorganic filler in the rubber composition A is preferably 3 parts by mass or more and 50 parts by mass or less, and more preferably 15 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of obtaining excellent durability. It is 35 parts by mass or less.
  • the content of the hydrophilic inorganic filler in the rubber composition A is preferably higher than the content of the cellulosic fine fibers.
  • the ratio of the content of the hydrophilic inorganic filler to the content of the cellulosic fine fibers in the rubber composition A is from the viewpoint of obtaining excellent durability. It is preferably 1.0 or more and 15 or less, and more preferably 7 or more and 12 or less.
  • the rubber composition A preferably does not contain carbon black from the viewpoint of obtaining excellent durability.
  • carbon black includes, for example, channel black; SAF, ISAF, N-339, HAF, N-351, MAF, FEF, SRF, GPF, ECF, N.
  • Furnace black such as -234; thermal black such as FT and MT; acetylene black and the like.
  • the carbon black preferably contains one or more of these, and more preferably contains carbon black having an arithmetic mean particle size of 50 ⁇ m or less, and contains FEF, from the viewpoint of obtaining excellent durability. Is more preferable.
  • Carbon black is also dispersed and contained in the rubber component.
  • the content of carbon black in the rubber composition A is less than 20 parts by mass with respect to 100 parts by mass of the rubber component, and is preferably 10 parts by mass or less, more preferably 5 parts by mass or less from the viewpoint of obtaining excellent durability.
  • the sum of the contents of the hydrophilic inorganic filler and the carbon black in the rubber composition A is preferably 20 parts by mass or more and 40 parts by mass or less, more preferably 20 parts by mass or less, based on 100 parts by mass of the rubber component, from the viewpoint of obtaining excellent durability. Is 29 parts by mass or more and 35 parts by mass or less.
  • the rubber composition A may contain a plasticizer, a processing aid, an antiaging agent, a cross-linking agent, a vulcanization accelerator, a vulcanization accelerator, and the like as other rubber compounding agents.
  • the core wire 12 is composed of twisted yarns such as polyester fiber, polyethylene naphthalate fiber, aramid fiber, and vinylon fiber. It is preferable that the core wire 12 is subjected to an adhesive treatment such as an RFL treatment for imparting adhesiveness to the adhesive rubber layer 112 of the belt body 11.
  • the covering cloth 13 is made of, for example, a woven cloth, a knitted fabric, a non-woven fabric, etc. formed of threads such as cotton, polyamide fibers, polyester fibers, and aramid fibers. It is preferable that the covering cloth 13 is subjected to an adhesive treatment such as an RFL treatment for imparting adhesiveness to the belt body 11.
  • the wrapped V-belt B according to the first embodiment can be manufactured by a known method that has been generally used conventionally.
  • FIG. 2 shows a toothed belt C (transmission belt) according to the second embodiment.
  • the toothed belt C according to the second embodiment is a meshing transmission belt used as a power transmission member of, for example, an automobile or an industrial machine.
  • the toothed belt C includes an endless rubber belt body 21.
  • the belt main body 21 includes a back rubber portion 211 on the outer peripheral side of the belt and a plurality of tooth rubber portions 212 on the inner peripheral side of the belt.
  • the back rubber portion 211 is formed in a flat band shape.
  • the plurality of tooth rubber portions 212 are arranged at a constant pitch at intervals in the belt length direction, and each is integrally provided on the back rubber portion 211.
  • the tooth rubber portion 212 has a trapezoidal shape in which the side view shape becomes wider from the inner peripheral side of the belt toward the outer peripheral side of the belt, and is formed so as to extend in the belt width direction.
  • the toothed belt C according to the second embodiment includes a core wire 22 embedded in a portion of the back rubber portion 211 on the inner peripheral side of the belt.
  • the core wire 22 is provided so as to form a spiral having a pitch in the belt width direction along the circumferential direction.
  • the toothed belt C according to the second embodiment includes a covering cloth 23 provided so as to cover the surface on the inner peripheral side of the belt provided with the tooth rubber portion 212 of the belt main body 21.
  • the tooth rubber portion 212 is covered with the covering cloth 23 to form the tooth portion 24 of the trapezoidal tooth extending in the belt width direction.
  • the tooth portion 24 may be a tooth portion extending in a direction inclined with respect to the belt width direction, or may be a round tooth having a semicircular side view shape or the like.
  • the back rubber portion 211 and the tooth rubber portion 212 are both formed of a crosslinked rubber composition.
  • the covering cloth 23 on the inner peripheral side of the belt constitutes the pulley contact portion. Therefore, each of the back rubber portion 211 and the tooth rubber portion 212 constitutes a pulley non-contact portion formed of the rubber composition contained in the toothed belt C according to the second embodiment.
  • At least one of the back rubber portion 211 and the tooth rubber portion 212 is formed of the rubber composition A. Therefore, one of the back rubber portion 211 and the tooth rubber portion 212 may be formed of the rubber composition A, or both of them may be formed of the rubber composition A. From the viewpoint of obtaining excellent durability, it is preferable that both the back rubber portion 211 and the tooth rubber portion 212 are formed of the rubber composition A.
  • the core wire 22 is composed of twisted yarns such as glass fiber, aramid fiber, carbon fiber, and metal fiber. It is preferable that the core wire 22 is subjected to an adhesive treatment such as an RFL treatment for imparting adhesiveness to the back rubber portion 211 of the belt main body 21.
  • the covering cloth 23 is made of, for example, a woven cloth, a knitted fabric, a non-woven fabric, etc. formed of threads such as cotton, polyamide fiber, polyester fiber, and aramid fiber. It is preferable that the covering cloth 23 is subjected to an adhesive treatment such as an RFL treatment for imparting adhesiveness to the belt main body 21.
  • the toothed belt C according to the second embodiment can be manufactured by a known method that has been generally used conventionally.
  • the wrapped V-belt B and in the second embodiment, at least a part of the belt bodies 11 and 21 of the toothed belt C is formed of the rubber composition A, but the present invention is not particularly limited to these, and the pulley.
  • a covering cloth or a rubber layer is provided on the contact portion, and the inner rubber portion of the pulley non-contact portion inside the contact portion may be a V-belt, a V-ribbed belt, or the like formed of the rubber composition A.
  • Example 1 Kraft pulp is added to water so that its content is 1% by mass, premixed with a stirrer, then put into a atomizing device (manufactured by Starburst Sugino Machine Limited), pressurized to 150 MPa, and ceramic balls.
  • a atomizing device manufactured by Starburst Sugino Machine Limited
  • An aqueous dispersion of cellulosic fine fibers produced by mechanical defibration means was prepared by repeating the process of colliding with the sugino machine eight times.
  • the aqueous dispersion of cellulosic fine fibers was mixed with sulfur-modified CR latex so that the content of the cellulosic fine fibers was 3 parts by mass with respect to 100 parts by mass of the sulfur-modified CR of the rubber component of the sulfur-modified CR latex.
  • the mixture was air-dried and solidified.
  • a solid CR-cellulose fine fiber composite was put into a rubber kneader and kneaded, and 25 parts by mass of a hydrophilic inorganic filler (silica) and 5 parts by mass with respect to 100 parts by mass of the sulfur-modified CR of the rubber component were added thereto.
  • Parts of carbon black FEF arithmetic average particle size: 43 ⁇ m
  • 5 parts by mass of plasticizer (DOS) 1 part by mass of processing aid (stearic acid), 3 parts by mass of anti-aging agent, 5 parts by mass of magnesium oxide , And 5 parts by mass of zinc oxide were added and further kneaded to prepare an uncrosslinked rubber composition, which was then processed into a sheet by a calender.
  • a wrapped V-belt having the same configuration as that of the first embodiment in which the entire belt body including the compressed rubber layer, the adhesive rubber layer, and the stretchable rubber layer is formed of the crosslinked rubber composition of the uncrosslinked rubber composition is produced. That was designated as Example 1.
  • the uncrosslinked rubber composition was arranged so that its columnar direction corresponds to the belt width direction and the non-arrangement direction corresponds to the belt length direction.
  • For the core wire twisted yarn of polyester fiber subjected to RFL treatment and rubber glue treatment was used.
  • As the covering cloth a woven cloth made of nylon fiber which had been subjected to an adhesive treatment was used.
  • the belt size was 1100 mm in length, 16.7 mm in width, and 9.0 mm in thickness.
  • Example 2 shows that the content of the hydrophilic inorganic filler in the rubber composition forming the belt body is 33 parts by mass with respect to 100 parts by mass of the sulfur-modified CR of the rubber component, except that the rubber composition does not contain carbon black.
  • a wrapped V-belt having the same configuration as No. 1 was produced, and it was designated as Example 2.
  • Example 3 The content of the hydrophilic inorganic filler in the rubber composition forming the belt body is 18 parts by mass with respect to 100 parts by mass of the sulfur-modified CR of the rubber component, and the content of carbon black is 18 parts by mass with respect to 100 parts by mass of the sulfur-modified CR of the rubber component.
  • a wrapped V-belt having the same configuration as that of Example 1 was produced except that the volume was 10 parts by mass, and this was designated as Example 3.
  • Example 4 The content of the hydrophilic inorganic filler in the rubber composition forming the belt body is 5 parts by mass with respect to 100 parts by mass of the sulfur-modified CR of the rubber component, and the content of carbon black is set to 5 parts by mass with respect to 100 parts by mass of the sulfur-modified CR of the rubber component.
  • a wrapped V-belt having the same configuration as that of Example 1 was produced except that the volume was 20 parts by mass, and this was designated as Example 4.
  • FIG. 3 shows the pulley layout of the belt running tester 30.
  • the belt running tester 30 includes a drive pulley 31 and a driven pulley 32 provided at intervals on the left and right, and an idler pulley 33 provided slightly above the center between the axes of the drive pulley 31 and the driven pulley 32.
  • the drive pulley 31 and the driven pulley 32 have a pulley diameter of 110 mm and have a V-groove on the outer periphery.
  • the idler pulley 33 has a pulley diameter of 60 mm.
  • Each of the wrapped V-belts B of Examples 1 to 4 and Comparative Examples 1 to 3 is fitted into the V-groove of the drive pulley 31 and the driven pulley 32, and wound so as to press the back surface on the outer peripheral side of the belt with the idler pulley 33. I hung it. Then, under an atmospheric temperature of 80 ° C., a rotational load of 5.15 kW is applied to the driven pulley 32, and the back surface of the belt is pressed by the idler pulley 33 with a force of 88.3 N. In that state, the drive pulley 31 is rotated at a rotation speed of 3000 rpm. The belt was run by rotating it.
  • the slip ratio was calculated at the initial stage of belt running.
  • the slip ratio is N r0 : the rotation speed of the drive pulley 31 when there is no load
  • N rt the rotation speed of the drive pulley 31 when there is a load
  • N n 0 the rotation speed of the driven pulley 32 when there is no load
  • N nt the load. It is calculated based on the following formula when the shaft rotation speed of the driven pulley 32 is used.
  • the belt running was interrupted every 24 hours from the start of the belt running, and cracks generated on the inner circumference side of the belt were visually confirmed. Then, when a crack extending to the core line position was confirmed, the belt running was stopped, and the belt running time at that time was defined as the belt running life.
  • the maximum belt running time was set to 216 hours.
  • the wrapped V-belt B after running the belt was cut, and the rubber hardness of the compressed rubber layer portion was measured using a type A durometer based on JIS K6253-3: 2012.
  • Example 1 to 4 have a lower slip ratio and are also excellent in durability as compared with Comparative Examples 1 to 3.
  • the rubber hardness decreases as the temperature rises, the belt is compressed and deformed in the belt width direction, and the pressure contact force of the belt with the pulley decreases, so that the belt easily slips on the pulley.
  • the content of carbon black is small, it is estimated that the decrease in rubber hardness due to the temperature rise is suppressed and the slip during running at an atmospheric temperature of 80 ° C. is reduced. Ru.
  • the present invention is useful in the technical field of transmission belts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

伝動ベルト(B)は、ゴム組成物で形成されたプーリ非接触部分(11)を含む。ゴム組成物は、ゴム成分と、セルロース系微細繊維と、非カーボンブラックの親水性無機フィラーとを含有し、且つカーボンブラックを含有しない、又は、カーボンブラックを、ゴム成分100質量部に対して20質量部未満で含有する。

Description

伝動ベルト
 本発明は、伝動ベルトに関する。
 伝動ベルトのベルト本体を形成するゴム組成物にセルロース系微細繊維を含有させて補強することが知られている。例えば、特許文献1には、セルロース系微細繊維を含有するゴム組成物でベルト本体が形成された歯付ベルトが開示されている。
特開2016-205555号公報
 本発明は、ゴム組成物で形成されたプーリ非接触部分を含む伝動ベルトであって、前記ゴム組成物は、ゴム成分と、セルロース系微細繊維と、非カーボンブラックの親水性無機フィラーとを含有し、且つカーボンブラックを含有しない、又は、カーボンブラックを、前記ゴム成分100質量部に対して20質量部未満で含有する。
実施形態1に係るラップドVベルトの一片の斜視図である。 実施形態2に係る歯付ベルトの一片の斜視図である。 ベルト走行試験機のプーリレイアウト図である。
 以下、実施形態について詳細に説明する。
 (実施形態1)
 図1は、実施形態1に係るラップドVベルトB(伝動ベルト)を示す。この実施形態1に係るラップドVベルトBは、例えば農業機械や産業機械等の動力伝達部材として用いられる摩擦伝動ベルトである。
 実施形態1に係るラップドVベルトBは、エンドレスのゴム製のベルト本体11を備える。ベルト本体11の横断面形状は、ベルト内周側からベルト外周側に行くにしたがって幅広となった台形状に形成されている。ベルト本体11は、ベルト内周側の圧縮ゴム層111と、ベルト厚さ方向の中間部の接着ゴム層112と、ベルト外周側の伸張ゴム層113との3層で構成されている。実施形態1に係るラップドVベルトBは、接着ゴム層112のベルト厚さ方向の中間部に埋設された心線12を備える。心線12は、周方向に沿ってベルト幅方向にピッチを有する螺旋を形成して延びるように設けられている。実施形態1に係るラップドVベルトBは、ベルト本体11全体を被覆するように設けられた被覆布13を備える。
 圧縮ゴム層111、接着ゴム層112、及び伸張ゴム層113は、いずれも架橋したゴム組成物で形成されている。このゴム組成物は、シート状の未架橋ゴム組成物が架橋することにより得られるものであるが、その列理方向がベルト幅方向及び非列理方向がベルト長さ方向にそれぞれ対応するように配置されていることが好ましい。実施形態1に係るラップドVベルトBは、プーリのV溝に嵌め入れられて用いられるので、その両側面の被覆布13がプーリ接触部分を構成する。したがって、ベルト本体11の圧縮ゴム層111、接着ゴム層112、及び伸張ゴム層113のそれぞれは、実施形態1に係るラップドVベルトBが含むゴム組成物で形成されたプーリ非接触部分を構成する。
 圧縮ゴム層111、接着ゴム層112、及び伸張ゴム層113のうちの少なくとも1つは、ゴム成分と、セルロース系微細繊維と、非カーボンブラックの親水性無機フィラーとを含有し、且つカーボンブラックを含有しない、又は、カーボンブラックを、前記ゴム成分100質量部に対して20質量部未満で含有するゴム組成物(以下「ゴム組成物A」という。)で形成されている。
 一般にセルロース系微細繊維を含有するゴム組成物では、高い耐摩耗性を期待することができない。しかしながら、実施形態1に係るラップドVベルトBによれば、耐摩耗性が要求されないプーリ非接触部分が、ゴム成分と、セルロース系微細繊維と、非カーボンブラックの親水性無機フィラーとを含有し、且つカーボンブラックを含有しない、又は、カーボンブラックを、ゴム成分100質量部に対して20質量部未満で含有するゴム組成物Aで形成されていることにより、優れた耐久性を得ることができる。これは、耐摩耗性が要求されないプーリ非接触部分において、セルロース系微細繊維とそれとの親和性の高い親水性無機フィラーとの相互作用により、セルロース系微細繊維の補強効果が高められるとともに、カーボンブラックを含有しない、又は、カーボンブラックの含有量が少ないことにより発熱が低減されることから、セルロース系微細繊維の持つポテンシャルが有効に発揮されるためであると推測される。
 圧縮ゴム層111、接着ゴム層112、及び伸張ゴム層113は、それらのうちのいずれか1つがゴム組成物Aで形成されていてもよく、全てがゴム組成物Aで形成されていてもよい。優れた耐久性を得る観点からは、少なくとも圧縮ゴム層111がゴム組成物Aで形成されていることが好ましい。
 ゴム組成物Aにおけるゴム成分としては、例えば、クロロプレンゴム(CR);エチレン・プロピレンコポリマー(EPR)、エチレン・プロピレン・ジエンターポリマー(EPDM)、エチレン・オクテンコポリマー、エチレン・ブテンコポリマーなどのエチレン-α-オレフィンエラストマー;クロロスルホン化ポリエチレンゴム(CSM);水素添加アクリロニトリルゴム(H-NBR)等が挙げられる。ゴム成分は、これらのうちの1種のゴム又は2種以上のブレンドゴムであることが好ましく、優れた耐久性を得る観点から、クロロプレンゴム(CR)を含むことがより好ましく、硫黄変性クロロプレンゴム(硫黄変性CR)を含むことが更に好ましい。
 ゴム組成物Aにおけるセルロース系微細繊維は、ゴム成分に分散して含有されている。セルロース系微細繊維は、植物繊維を細かくほぐすことで得られる植物細胞壁の骨格成分で構成されたセルロース微細繊維を由来とする繊維材料である。セルロース系微細繊維の原料植物としては、例えば、木、竹、稲(稲わら)、じゃがいも、サトウキビ(バガス)、水草、海藻等が挙げられる。これらのうち木が好ましい。
 セルロース系微細繊維としては、セルロース微細繊維自体及びそれを疎水化処理した疎水化セルロース微細繊維が挙げられる。セルロース系微細繊維は、これらのうちの一方又は両方を含むことが好ましい。
 セルロース系微細繊維としては、機械的解繊手段によって製造された高アスペクト比のもの及び化学的解繊手段によって製造された針状結晶のものが挙げられる。セルロース系微細繊維は、これらのうちの一方又は両方を含むことが好ましく、優れた耐久性を得る観点から、機械的解繊手段によって製造されたセルロース系微細繊維を含むことがより好ましい。
 セルロース系微細繊維の平均繊維径は、例えば10nm以上1000nm以下である。セルロース系微細繊維の平均繊維長は、例えば0.1μm以上1000μm以下である。ゴム組成物Aにおけるセルロース系微細繊維の含有量は、優れた耐久性を得る観点から、ゴム成分100質量部に対して、好ましくは1質量部以上20質量部以下、より好ましくは1.5質量部以上10質量部以下、更に好ましくは2質量部以上5質量部以下である。
 ゴム組成物Aにおける親水性無機フィラーは、ゴム成分に分散して含有されている。親水性無機フィラーとしては、シリカ、層状珪酸塩、炭酸カルシウム、クレー等が挙げられる。親水性無機フィラーは、これらのうちの1種又は2種以上を含むことが好ましく、優れた耐久性を得る観点から、シリカを含むことがより好ましい。ゴム組成物Aにおける親水性無機フィラーの含有量は、優れた耐久性を得る観点から、ゴム成分100質量部に対して、好ましくは3質量部以上50質量部以下、より好ましくは15質量部以上35質量部以下である。
 ゴム組成物Aにおける親水性無機フィラーの含有量は、セルロース系微細繊維の含有量よりも多いことが好ましい。ゴム組成物Aにおける親水性無機フィラーの含有量のセルロース系微細繊維の含有量に対する比(親水性無機フィラーの含有量/セルロース系微細繊維の含有量)は、優れた耐久性を得る観点から、好ましくは1.0以上15以下、より好ましくは7以上12以下である。
 ゴム組成物Aは、優れた耐久性を得る観点から、カーボンブラックを含有しないことが好ましい。但し、ゴム組成物Aがカーボンブラックを含有する場合、かかるカーボンブラックとしては、例えば、チャネルブラック;SAF、ISAF、N-339、HAF、N-351、MAF、FEF、SRF、GPF、ECF、N-234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。カーボンブラックは、これらのうちの1種又は2種以上を含むことが好ましく、優れた耐久性を得る観点から、算術平均粒子径が50μm以下のカーボンブラックを含むことがより好ましく、FEFを含むことが更に好ましい。なお、カーボンブラックもまた、ゴム成分に分散して含有される。
 ゴム組成物Aにおけるカーボンブラックの含有量は、ゴム成分100質量部に対して20質量部未満であり、優れた耐久性を得る観点から、好ましくは10質量部以下、より好ましくは5質量部以下である。ゴム組成物Aにおける親水性無機フィラー及びカーボンブラックの含有量の和は、優れた耐久性を得る観点から、ゴム成分100質量部に対して、好ましくは20質量部以上40質量部以下、より好ましくは29質量部以上35質量部以下である。
 ゴム組成物Aは、その他のゴム配合剤として、可塑剤、加工助剤、老化防止剤、架橋剤、加硫促進剤、加硫促進助剤等を含有していてもよい。
 心線12は、ポリエステル繊維、ポリエチレンナフタレート繊維、アラミド繊維、ビニロン繊維等の撚糸で構成されている。心線12には、ベルト本体11の接着ゴム層112に対する接着性を付与するためのRFL処理等の接着処理が施されていることが好ましい。
 被覆布13は、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸で形成された織布、編物、不織布等で構成されている。被覆布13には、ベルト本体11に対する接着性を付与するためのRFL処理等の接着処理が施されていることが好ましい。
 実施形態1に係るラップドVベルトBは、従来から一般的に行われている公知の方法で製造することができる。
 (実施形態2)
 図2は、実施形態2に係る歯付ベルトC(伝動ベルト)を示す。実施形態2に係る歯付ベルトCは、例えば自動車や産業機械等の動力伝達部材として用いられる噛合伝動ベルトである。
 実施形態2に係る歯付ベルトCは、エンドレスのゴム製のベルト本体21を備える。ベルト本体21は、ベルト外周側の背ゴム部211とベルト内周側の複数の歯ゴム部212とを含む。背ゴム部211は、平帯状に形成されている。複数の歯ゴム部212は、ベルト長さ方向に間隔をおいて一定ピッチで配設されているとともに、それぞれが背ゴム部211に一体に設けられている。歯ゴム部212は、側面視形状がベルト内周側からベルト外周側に行くにしたがって幅広となった台形状で、且つベルト幅方向に延びるように形成されている。
 実施形態2に係る歯付ベルトCは、背ゴム部211のベルト内周側の部分に埋設された心線22を備える。心線22は、周方向に沿ってベルト幅方向にピッチを有する螺旋を形成して延びるように設けられている。
 実施形態2に係る歯付ベルトCは、ベルト本体21の歯ゴム部212が設けられたベルト内周側の表面を被覆するように設けられた被覆布23を備える。これにより、実施形態2に係る歯付ベルトCでは、歯ゴム部212が被覆布23で被覆されてベルト幅方向に延びる台形歯の歯部24が構成されている。なお、歯部24は、ベルト幅方向に対して傾斜する方向に延びるハス歯であってもよく、また、側面視形状が半円形の丸歯等であってもよい。
 背ゴム部211及び歯ゴム部212は、いずれも架橋したゴム組成物で形成されている。実施形態2に係る歯付ベルトCは、歯部24がプーリの歯部間に噛合わせて用いられるので、ベルト内周側の表面の被覆布23がプーリ接触部分を構成する。したがって、背ゴム部211及び歯ゴム部212のそれぞれは、実施形態2に係る歯付ベルトCが含むゴム組成物で形成されたプーリ非接触部分を構成する。
 背ゴム部211及び歯ゴム部212のうちの少なくとも一方は、ゴム組成物Aで形成されている。したがって、背ゴム部211及び歯ゴム部212は、それらのうちの一方がゴム組成物Aで形成されていてもよく、また、それらの両方がゴム組成物Aで形成されていてもよい。優れた耐久性を得る観点からは、背ゴム部211及び歯ゴム部212の両方がゴム組成物Aで形成されていることが好ましい。
 心線22は、ガラス繊維、アラミド繊維、カーボン繊維、金属繊維等の撚糸で構成されている。心線22には、ベルト本体21の背ゴム部211に対する接着性を付与するためのRFL処理等の接着処理が施されていることが好ましい。
 被覆布23は、例えば、綿、ポリアミド繊維、ポリエステル繊維、アラミド繊維等の糸で形成された織布、編物、不織布等で構成されている。被覆布23には、ベルト本体21に対する接着性を付与するためのRFL処理等の接着処理が施されていることが好ましい。
 実施形態2に係る歯付ベルトCは、従来から一般的に行われている公知の方法で製造することができる。
 その他の構成及び作用効果は実施形態1と同一である。
 (その他の実施形態)
 実施形態1ではラップドVベルトB及び実施形態2では歯付ベルトCのベルト本体11,21の少なくとも一部分をゴム組成物Aで形成する構成としたが、特にこれらに限定されるものではなく、プーリ接触部分に被覆布又はゴム層が設けられ、その内側のプーリ非接触部分の内部ゴム部がゴム組成物Aで形成されたVベルトやVリブドベルト等であってもよい。
 (ラップドVベルト)
 実施例1~4及び比較例1~3のラップドVベルトを作製した。それぞれのベルト本体を形成するゴム組成物の組成を表1に示す。
 <実施例1>
 クラフトパルプを、その含有量が1質量%となるように水に加えて攪拌機で予備混合した後、それを微粒化装置(スターバースト スギノマシン社製)に投入し、150MPaに加圧してセラミックスボールに衝突させる処理を8回繰り返すことにより、機械的解繊手段によって製造されたセルロース系微細繊維の水分散体を調製した。
 セルロース系微細繊維の水分散体を、硫黄変性CRラテックスに、セルロース系微細繊維の含有量が硫黄変性CRラテックスのゴム成分の硫黄変性CR100質量部に対して3質量部となるように混合し、その混合液を風乾して固形化させた。
 固体のCR-セルロース系微細繊維複合体をゴム混練機に投入して混練し、そこに、ゴム成分の硫黄変性CR100質量部に対して、25質量部の親水性無機フィラー(シリカ)、5質量部のカーボンブラック(FEF 算術平均粒子径:43μm)、5質量部の可塑剤(DOS)、1質量部の加工助剤(ステアリン酸)、3質量部の老化防止剤、5質量部の酸化マグネシウム、及び5質量部の酸化亜鉛を投入して更に混練することにより未架橋ゴム組成物を調製した後、カレンダによりシート状に加工した。
 この未架橋ゴム組成物を架橋させたゴム組成物で圧縮ゴム層、接着ゴム層、及び伸張ゴム層を含むベルト本体全体を形成した上記実施形態1と同様の構成のラップドVベルトを作製し、それを実施例1とした。なお、未架橋ゴム組成物は、その列理方向がベルト幅方向及び非列理方向がベルト長さ方向にそれぞれ対応するように配置した。心線には、RFL処理及びゴム糊処理を施したポリエステル繊維の撚糸を用いた。被覆布には、接着処理を施したナイロン繊維製の織布を用いた。ベルトサイズは、ベルト長さが1100mm、ベルト幅が16.7mm、及びベルト厚さが9.0mmとした。
 <実施例2>
 ベルト本体を形成するゴム組成物における親水性無機フィラーの含有量をゴム成分の硫黄変性CR100質量部に対して33質量部とし、ゴム組成物にカーボンブラックを含有させなかったことを除いて実施例1と同一構成のラップドVベルトを作製し、それを実施例2とした。
 <実施例3>
 ベルト本体を形成するゴム組成物における親水性無機フィラーの含有量をゴム成分の硫黄変性CR100質量部に対して18質量部とし、カーボンブラックの含有量をゴム成分の硫黄変性CR100質量部に対して10質量部としたことを除いて実施例1と同一構成のラップドVベルトを作製し、それを実施例3とした。
 <実施例4>
 ベルト本体を形成するゴム組成物における親水性無機フィラーの含有量をゴム成分の硫黄変性CR100質量部に対して5質量部とし、カーボンブラックの含有量をゴム成分の硫黄変性CR100質量部に対して20質量部としたことを除いて実施例1と同一構成のラップドVベルトを作製し、それを実施例4とした。
 <比較例1>
 ベルト本体を形成するゴム組成物に親水性無機フィラーを含有させず、ゴム組成物におけるカーボンブラックの含有量をゴム成分の硫黄変性CR100質量部に対して30質量部としたことを除いて実施例1と同一構成のラップドVベルトを作製し、それを比較例1とした。
 <比較例2>
 CR-セルロース系微細繊維複合体に代えて、硫黄変性CRラテックスを風乾して固形化させた硫黄変性CRを用い、ベルト本体を形成するゴム組成物における親水性無機フィラーの含有量をゴム成分の硫黄変性CR100質量部に対して65質量部とし、ゴム組成物にカーボンブラックを含有させなかったことを除いて実施例1と同一構成のラップドVベルトを作製し、それを比較例2とした。
 <比較例3>
 CR-セルロース系微細繊維複合体に代えて、硫黄変性CRラテックスを風乾して固形化させた硫黄変性CRを用い、ベルト本体を形成するゴム組成物に親水性無機フィラーを含有させず、ゴム組成物におけるカーボンブラックの含有量をゴム成分の硫黄変性CR100質量部に対して50質量部としたことを除いて実施例1と同一構成のラップドVベルトを作製し、それを比較例3とした。
Figure JPOXMLDOC01-appb-T000001
 (試験方法)
 図3は、ベルト走行試験機30のプーリレイアウトを示す。
 このベルト走行試験機30は、左右に間隔をおいて設けられた駆動プーリ31及び従動プーリ32と、それらの駆動プーリ31及び従動プーリ32の軸間中央のやや上方に設けられたアイドラプーリ33とを備える。駆動プーリ31及び従動プーリ32は、プーリ径が110mmであり、外周にV溝を有する。アイドラプーリ33は、プーリ径が60mmである。
 実施例1~4及び比較例1~3のそれぞれのラップドVベルトBについて、駆動プーリ31及び従動プーリ32のV溝に嵌め入れるとともに、アイドラプーリ33でベルト外周側の背面を押圧するように巻き掛けた。そして、雰囲気温度80℃の下、従動プーリ32に5.15kWの回転負荷を与えるとともに、アイドラプーリ33によりベルト背面を88.3Nの力で押圧し、その状態で駆動プーリ31を回転数3000rpmで回転させることによりベルト走行させた。
 まず、ベルト走行初期において、スリップ率を求めた。スリップ率は、Nr0:無負荷時の駆動プーリ31の回転数、Nrt:負荷時の駆動プーリ31の回転数、Nn0:無負荷時の従動プーリ32の回転数、及びNnt:負荷時の従動プーリ32の軸回転数としたとき、下記式に基づいて算出されるものである。
 スリップ率=((I-I)/I)×100(%)
 (I=Nn0/Nr0,I=Nnt/Nrt
 ベルト走行開始から24時間毎にベルト走行を中断し、ベルト内周側に発生するクラックを目視確認した。そして、心線位置まで進展したクラックが確認された時点でベルト走行を中止し、そのときのベルト走行時間をベルト走行寿命とした。なお、ベルト走行時間の最長を216時間とした。
 ベルト走行後のラップドVベルトBを切断し、圧縮ゴム層の部分のゴム硬さを、JIS K6253-3:2012に基づき、タイプAデュロメータを用いて測定した。
 (試験結果)
 試験結果を表2に示す。表2によれば、実施例1~4は、比較例1~3に比べてスリップ率が低く、また、耐久性も優れることが分かる。温度上昇に伴ってゴム硬さが低下すると、ベルトがベルト幅方向に圧縮変形し、ベルトのプーリへの圧接力が低下するため、ベルトがプーリ上でスリップし易くなる。しかしながら、実施例1~4では、カーボンブラックの含有量が少ないため、温度上昇に伴うゴム硬さの低下が抑制され、雰囲気温度80℃の下における走行中のスリップが低減されたものと推定される。そして、スリップが低減されることによる発熱抑制とカーボンブラックの含有量が少ないことによる発熱抑制との相乗効果により、ベルト走行寿命が大幅に向上したものと推定される。このことから、特に、カーボンブラックの含有量が少ない実施例1及びカーボンブラックを含有していない実施例2では、ベルト走行後のゴム硬さが他のものよりも低く、硬化の進行が遅いので、耐久性における余力を残しているものと思われる。
Figure JPOXMLDOC01-appb-T000002
 本発明は、伝動ベルトの技術分野について有用である。
B ラップドVベルト(伝動ベルト)
C 歯付ベルト(伝動ベルト)
11,21 ベルト本体
111 圧縮ゴム層
112 接着ゴム層
113 伸張ゴム層
12,22 心線
13,23 被覆布
211 背ゴム部
212 歯ゴム部
24 歯部
30 ベルト走行試験機
31 駆動プーリ
32 従動プーリ
33 アイドラプーリ

Claims (10)

  1.  ゴム組成物で形成されたプーリ非接触部分を含む伝動ベルトであって、
     前記ゴム組成物は、ゴム成分と、セルロース系微細繊維と、非カーボンブラックの親水性無機フィラーとを含有し、且つカーボンブラックを含有しない、又は、カーボンブラックを、前記ゴム成分100質量部に対して20質量部未満で含有する伝動ベルト。
  2.  請求項1に記載された伝動ベルトにおいて、
     前記ゴム成分がクロロプレンゴムを含む伝動ベルト。
  3.  請求項1又は2に記載された伝動ベルトにおいて、
     前記セルロース系微細繊維が、機械的解繊手段によって製造されたセルロース系微細繊維を含む伝動ベルト。
  4.  請求項1乃至3のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記セルロース系微細繊維の含有量が、前記ゴム成分100質量部に対して1質量部以上20質量部以下である伝動ベルト。
  5.  請求項1乃至4のいずれかに記載された伝動ベルトにおいて、
     前記親水性無機フィラーがシリカを含む伝動ベルト。
  6.  請求項1乃至5のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記親水性無機フィラーの含有量が、前記ゴム成分100質量部に対して3質量部以上50質量部以下である伝動ベルト。
  7.  請求項1乃至6のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記親水性無機フィラーの含有量の前記セルロース系微細繊維の含有量に対する比が1.0以上15以下である伝動ベルト。
  8.  請求項1乃至7のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物における前記親水性無機フィラーの含有量が前記セルロース系微細繊維の含有量よりも多い伝動ベルト。
  9.  請求項1乃至8のいずれかに記載された伝動ベルトにおいて、
     前記ゴム組成物がカーボンブラックを含有し、且つ前記カーボンブラックがFEFを含む伝動ベルト。
  10.  請求項9に記載された伝動ベルトにおいて、
     前記ゴム組成物における前記親水性無機フィラー及び前記カーボンブラックの含有量の和が、前記ゴム成分100質量部に対して20質量部以上40質量部以下である伝動ベルト。
PCT/JP2020/018373 2019-06-07 2020-05-01 伝動ベルト WO2020246189A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112020002286.2T DE112020002286T5 (de) 2019-06-07 2020-05-01 Übertragungsriemen
JP2020526641A JP6884280B1 (ja) 2019-06-07 2020-05-01 伝動ベルト
CN202080040232.3A CN113892000B (zh) 2019-06-07 2020-05-01 传动带
US17/543,477 US11441020B2 (en) 2019-06-07 2021-12-06 Transmission belt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-107202 2019-06-07
JP2019107202 2019-06-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/543,477 Continuation US11441020B2 (en) 2019-06-07 2021-12-06 Transmission belt

Publications (1)

Publication Number Publication Date
WO2020246189A1 true WO2020246189A1 (ja) 2020-12-10

Family

ID=73652787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018373 WO2020246189A1 (ja) 2019-06-07 2020-05-01 伝動ベルト

Country Status (5)

Country Link
US (1) US11441020B2 (ja)
JP (2) JP6884280B1 (ja)
CN (1) CN113892000B (ja)
DE (1) DE112020002286T5 (ja)
WO (1) WO2020246189A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158586A1 (ja) * 2010-06-15 2011-12-22 バンドー化学株式会社 伝動ベルト
JP2016211586A (ja) * 2015-04-28 2016-12-15 バンドー化学株式会社 高負荷伝動用vベルト及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177202B1 (en) 1997-10-31 2001-01-23 Mitsuboshi Belting Ltd. Power transmission belt
CN1109830C (zh) 1997-10-31 2003-05-28 三星皮带株式会社 动力传动带
US6361462B1 (en) 1997-10-31 2002-03-26 Mitsuboshi Belting Ltd. V-ribbed power transmission belt
JP6529323B2 (ja) * 2015-04-24 2019-06-12 バンドー化学株式会社 歯付ベルト
CN107531955A (zh) * 2015-04-24 2018-01-02 阪东化学株式会社 橡胶组合物、传动带及其制造方法
DE112016001875T5 (de) * 2015-04-24 2018-01-04 Bando Chemical Industries, Ltd. Treibriemen
EP3320039B1 (en) * 2015-07-10 2019-12-18 Gates Corporation Rubber composition and rubber products using same
JP6909174B2 (ja) * 2017-04-26 2021-07-28 三ツ星ベルト株式会社 Vリブドベルト及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158586A1 (ja) * 2010-06-15 2011-12-22 バンドー化学株式会社 伝動ベルト
JP2016211586A (ja) * 2015-04-28 2016-12-15 バンドー化学株式会社 高負荷伝動用vベルト及びその製造方法

Also Published As

Publication number Publication date
CN113892000B (zh) 2022-08-02
JPWO2020246189A1 (ja) 2021-09-13
US20220089843A1 (en) 2022-03-24
US11441020B2 (en) 2022-09-13
DE112020002286T5 (de) 2022-04-14
CN113892000A (zh) 2022-01-04
JP2021101125A (ja) 2021-07-08
JP6884280B1 (ja) 2021-06-09

Similar Documents

Publication Publication Date Title
TWI791024B (zh) 傳動帶
TWI762640B (zh) 傳動帶
WO2016170747A1 (ja) 伝動ベルト
US11643527B2 (en) Transmission belt
WO2016170795A1 (ja) 伝動ベルト
WO2020246189A1 (ja) 伝動ベルト
JP6950094B2 (ja) 伝動ベルト
WO2020246187A1 (ja) ローエッジvベルト
JP6777835B1 (ja) 大型vベルト
WO2020246188A1 (ja) 大型vベルト
JP2022070718A (ja) 伝動ベルト

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020526641

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819356

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20819356

Country of ref document: EP

Kind code of ref document: A1