WO2020244675A1 - 一种增加眼底血流和代谢率的方法 - Google Patents

一种增加眼底血流和代谢率的方法 Download PDF

Info

Publication number
WO2020244675A1
WO2020244675A1 PCT/CN2020/098413 CN2020098413W WO2020244675A1 WO 2020244675 A1 WO2020244675 A1 WO 2020244675A1 CN 2020098413 W CN2020098413 W CN 2020098413W WO 2020244675 A1 WO2020244675 A1 WO 2020244675A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood flow
metabolic rate
increasing
fundus
infrared light
Prior art date
Application number
PCT/CN2020/098413
Other languages
English (en)
French (fr)
Inventor
何明光
曹照云
朱卓婷
Original Assignee
中山大学中山眼科中心
苏州宣嘉光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学中山眼科中心, 苏州宣嘉光电科技有限公司 filed Critical 中山大学中山眼科中心
Priority to EP20817667.7A priority Critical patent/EP4011441A4/en
Priority to AU2020233703A priority patent/AU2020233703C1/en
Publication of WO2020244675A1 publication Critical patent/WO2020244675A1/zh
Priority to US17/345,150 priority patent/US11420072B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00863Retina
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/063Radiation therapy using light comprising light transmitting means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0645Applicators worn by the patient
    • A61N2005/0647Applicators worn by the patient the applicator adapted to be worn on the head
    • A61N2005/0648Applicators worn by the patient the applicator adapted to be worn on the head the light being directed to the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/065Light sources therefor
    • A61N2005/0651Diodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0662Visible light
    • A61N2005/0663Coloured light

Definitions

  • the invention relates to a method for increasing the blood flow and metabolic rate of the fundus of the eye to prevent, slow down, prevent or even reverse the effects of ocular diseases.
  • laser Since the laser was first used in ophthalmology to irradiate retinal detachment in 1962, laser has been widely used in ophthalmology diagnosis and treatment for half a century. From confocal scanning laser ophthalmoscope (confocal laser scanning microscopy), optical coherence tomography (optical coherence tomography, OCT) and other ophthalmic auxiliary examinations using laser, to laser photocoagulation, transpupillary thermotherapy (TTT) and optical Photodynamic therapy (PDT) and other methods use laser irradiation for eye diseases.
  • OCT optical coherence tomography
  • OCT optical coherence tomography
  • TTTT transpupillary thermotherapy
  • PDT optical Photodynamic therapy
  • the main mechanism of laser irradiation of ophthalmopathy is the thermal effect, such as transscleral ciliary body photocoagulation for refractory glaucoma and retinal photocoagulation for diabetic retinopathy (diabetic retinopathy, DR).
  • the mechanism of action is photocoagulation.
  • the temperature rises by 60-100°C; in recent years, the mechanism of TTT exposure to wet age-related macular degeneration (AMD) is the photothermal effect, that is, the temperature rises by 42-60°C.
  • PDT uses laser to excite an exogenous photosensitizer to produce active oxidizing substances, triggering a photodynamic effect, and destroying new blood vessels in wet AMD.
  • the traditional high-intensity laser irradiates eye diseases, it also damages normal tissues, resulting in a series of complications such as retinal fibrosis.
  • Photobiological regulation does not depend on the thermal effect (only raises the tissue by 0.1-0.5°C), but uses the photochemical conversion potential of low-intensity red light and near-infrared light to cause photochemical reactions in target tissues, including increasing cytochrome C oxidase Activity, change gene expression to regulate the mitochondrial respiratory chain, increase the biological activity of nitric oxide, etc.
  • LEDs light-emitting diodes
  • low-intensity red light and near-infrared light therapy have been initially applied to systemic diseases such as wound healing, nerve pain, peripheral nerve injury and stroke, and have achieved certain results. And this new type of light therapy also provides new thinking and new methods for the treatment of various vision-threatening eye diseases.
  • low-intensity near-infrared light to irradiate the eyes of TCM acupoints to chronic mitochondrial injury diseases, damaging diseases, and neurological diseases.
  • Ivandic and others used low-intensity red light (wavelength 780nm) through the conjunctiva and sclera to effectively improve the visual function and corresponding symptoms of AMD, adult amblyopia and retinitis pigmentosa (RP) patients.
  • RP retinitis pigmentosa
  • Tang et al. irradiated the closed eyelids with low-intensity red light (wavelength 670nm) to effectively improve the non-macular foveal edema of the retina in diabetic patients.
  • the fundus is a functional area where visual signals are generated. It has important ocular tissue structures such as the retina, choroid and sclera, as well as important cell structures such as retinal photoreceptor cells, choroidal blood vessels, scleral fibroblasts and fibroblasts. Low-intensity red and near-infrared light can penetrate transparent tissues such as the cornea, lens, and vitreous without causing pathological damage.
  • the present invention provides a method for increasing the blood flow and metabolic rate of the fundus of the eye. Its purpose is to improve the effect of ocular tissue damage and repair by increasing the blood flow and metabolic rate of the fundus tissue, including But it is not limited to the remodeling of scleral fibroblasts and the repair of visual function cells to achieve the effect of preventing, slowing down, preventing or even reversing eye diseases.
  • the technical solution adopted by the present invention is:
  • a method for increasing blood flow and metabolic rate of the fundus including the following steps: (1) Irradiate the fundus with red light or near-infrared light in a certain wavelength range, a certain energy density range, and a certain irradiation time range through the pupil; (2) After the irradiation is completed , Repeat the above steps at a certain interval of time, and use red or near-infrared light with the same wavelength range and the same energy density range to irradiate the fundus through the pupil.
  • step (2) a repeated method is adopted.
  • the repeating the above steps refers to irradiating the fundus through the pupil 2-3 times a day, and the interval between adjacent irradiations is at least two hours, and the required number of days is at least 30 days.
  • the red light or near-infrared light is low-intensity red light or near-infrared light.
  • the light wavelength range of the low-intensity red light or near-infrared light is 630-1000 nm.
  • the light wavelength range of the low-intensity red light or near-infrared light is 650 nm or 810 nm.
  • the energy density of the low-intensity red light or near-infrared light ranges from 0.5 to 25 J/cm 2 .
  • the energy density of the low-intensity red light or near-infrared light ranges from 0.5 to 15 J/cm 2 .
  • the low-intensity red or near-infrared light source includes but not limited to laser diode (LD), light emitting diode (LED) or bulb.
  • LD laser diode
  • LED light emitting diode
  • the laser diode is a gallium aluminum arsenide (GaAlAs) laser diode, a gallium arsenide phosphide (GaAsPa) laser diode or an aluminum gallium indium phosphide (AIGALP) laser diode.
  • GaAlAs gallium aluminum arsenide
  • GaAsPa gallium arsenide phosphide
  • AIGALP aluminum gallium indium phosphide
  • the irradiation time range is 150s-210s.
  • the irradiation time is 180s.
  • the beneficial effects of the present invention are: low-intensity red light and near-infrared light directly irradiating the fundus through the pupil will exert its photophysical and photochemical effects more effectively and safely, improve the metabolic rate of the fundus, blood circulation, and improve the effects of ocular tissue damage and repair.
  • a method for increasing blood flow and metabolic rate of the fundus which includes: (1) irradiating the fundus with red light or near-infrared light in a certain wavelength range, a certain energy density range, and a certain irradiation time range through the pupil; (2) after the irradiation is completed , Repeat the above steps several times at a certain time interval, and irradiate the fundus through the pupil with red light or near-infrared light with the same wavelength range and the same energy density range.
  • the repeating the above steps refers to irradiating the fundus through the pupil 2-3 times a day, and the interval between adjacent irradiations is at least two hours, and the required number of days is at least 30 days.
  • red light or near-infrared light is low-intensity red light or near-infrared light
  • the light wavelength range of the low-intensity red light or near-infrared light is 630-1000 nm.
  • the preferred light wavelength range is 650nm or 810nm.
  • the irradiation time range is 150s-210s, preferably 180s.
  • the energy density range of low-intensity red light or near-infrared light is 0.5-25 J/cm 2 .
  • the preferred range of energy density is 0.5-15 J/cm 2 .
  • the laser diode is a gallium aluminum arsenide (GaAlAs) laser diode, a gallium arsenide phosphide (GaAsPa) laser diode or an aluminum gallium indium phosphide (AIGALP) laser diode.
  • GaAlAs gallium aluminum arsenide
  • GaAsPa gallium arsenide phosphide
  • AIGALP aluminum gallium indium phosphide
  • Application Example 1 Myopia patient, male, 7 years old, right eye axis 23.73mm, equivalent spherical lens -4.875D; left eye axis 23.62mm, equivalent spherical lens -4.5D.
  • the method of increasing the blood flow and metabolic rate of the fundus used in this embodiment has achieved the effect of slowing down, preventing or even reversing myopia.
  • the diode emits low-intensity red light, the wavelength is 650 ⁇ 10nm, the laser power at 100mm from the light source is 1.07 ⁇ 1.42mW, the spot at the observation port is: 10mm ⁇ 2mm, and the calculated energy density range is 13 ⁇ 25J/cm 2 .
  • the above-mentioned repeated low-intensity red light through the pupil irradiates the fundus to slow down, prevent or even reverse myopia.
  • the specific implementation method includes the following steps: A. Use the above-mentioned low-intensity red light to irradiate the fundus through the pupil, and the duration of each irradiation is 180s; B . Irradiate twice a day, at least 2 hours apart. The duration of low-intensity red light irradiation was 3 months, the right eye axis was shortened by 0.16mm, and the myopia degree decreased by 0.625D; the left eye axis was shortened by 0.08mm, and the myopia degree decreased by 0.25D.
  • Clinical experiment Using the above method, in a group of myopic children, the number is 84, aged 6-23 years old, the male to female ratio is 1.08:1, and the number of days of irradiation is 6 months.
  • the average annual change rate of the right eye axis (as one of the most important evaluation indicators for myopia progression) is -0.14 ⁇ 0.42mm/y, and the average annual change rate of the left eye axis is -0.23 ⁇ 0.40mm/y, indicating repeated low intensity Red light illuminates the fundus through the pupil to prevent or even reverse myopia.
  • Working mechanism A method of repeating low-intensity red light and near-infrared light to irradiate the fundus through the pupil.
  • the mechanism of action is to repeat the photophysical and chemical effects produced by low-intensity red and near-infrared light to improve ocular tissue metabolism It has the effect of increasing ocular tissue damage and repair, including but not limited to the remodeling of scleral fibroblasts and the repair of visual function cells, so as to prevent, slow down, prevent or even reverse eye diseases.
  • Eye diseases include myopia and normal Intraocular pressure glaucoma, age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种增加眼底血流和代谢率的方法,其特征在于,包括以下步骤:(1)经瞳孔照射眼底一定波长范围、一定能量密度范围、一定照射时间范围的红光或近红外光;(2)照射完成后,间隔一定的时间范围,重复以上步骤,采用同一波长范围、同一能量密度范围的红光或近红外光经瞳孔照射眼底。通过重复低强度红光和近红外光经瞳孔照射眼底产生的光物理和光化学效应,以达到增加眼底组织血流和代谢率,改善眼部组织损伤修复的作用,包括但不限于巩膜成纤维细胞的重塑和视功能细胞的修复,以实现预防、减缓、阻止甚至逆转眼病的作用。

Description

一种增加眼底血流和代谢率的方法 技术领域
本发明涉及一种增加眼底血流和代谢率的方法,以预防、减缓、阻止甚至逆转眼病的作用。
背景技术
激光自1962年首次运用于眼科视网膜脱离的照射开始,半世纪以来,激光已经广泛应用于眼科的诊疗中。从共聚焦扫描激光检眼镜(confocal laser scanning microscopy)、光学相干断层扫描(optical coherence tomography,OCT)等运用激光的眼科辅助检查,到激光光凝、经瞳孔温热疗法(transpupillary thermotherapy,TTT)和光动力疗法(photodynamic therapy,PDT)等运用激光照射眼病的方法。激光照射眼病的主要机制是热效应,如经巩膜睫状体光凝照射难治性青光眼和视网膜光凝照射糖尿病性视网膜病变(diabetic retinopathy,DR)的作用机制是光凝固作用,短时间内使组织温度升高60-100℃;近年来兴起的TTT照射湿性老年性黄斑病变(age-related macular degeneration,AMD)的作用机制则为光温热效应,即温度上升42-60℃。而PDT则是通过激光激发外源性光敏剂,产生活性氧化物质,引发光动力效应,从而破坏湿性AMD新生血管。然而,值得注意的是,传统的高强度激光照射眼病的同时,对正常组织亦存在损害,从而产生诸如视网膜纤维化等一系列的并发症。
光生物调节是不依赖于热效应(仅使组织升高0.1-0.5℃),而是利用低强度红光和近红外光的光化学转化潜能,引起靶组织的光化学反应,包括提高细胞色素C氧化酶活性、改变基因表达以调节线粒体呼吸链、增加一氧化氮的生物学活性等。值得注意的是,近年来,发光二极管(LED)以其使用寿命长、价格便宜、安全性高、与激光相当的光化学效应等特征,成为除激光以外的低强度红光和近红外光疗的重要光源。
作为一种创新的、非侵入性的治疗手段,低强度红光和近红外光疗已初步应用于伤口愈合、神经疼痛、周围神经损伤和中风等全身系统性疾病,并取得了一定的成效。而这种新型的光疗法也为各种威胁视力的眼病提供了治疗的新思维和新方法。核发给И.П.Шурыгина等人的俄国专利案RU2265464、RU2267339和RU2274477采用低强度近红外激光照射仪,照射枕骨头部区域、颈部和颈动脉窦等区域,增加眼眶血液循环,用于预防、减缓和照射儿童近视和弱视(RU2265464;RU2267339;RU2274477)。核发给曲超等人的中国专利案CN101822872A公开了一种运用低强度近红外光照射眼部中医穴位照射眼部慢性线粒体损伤性病变、损伤性疾病以及神经性疾病。Ivandic等经结膜巩膜运用低强度红光(波长 780nm)有效改善了AMD、成人弱视和视网膜色素变性(retinitis pigmentosa,RP)患者的视功能和相应的症状。Tang等通过低强度红光(波长670nm)照射闭合的眼睑,有效改善糖尿病患者其视网膜非黄斑中心凹水肿。
值得注意的是,以上的低强度红光和近红外光疗照射部位是体表、穴位或者是结膜,未见直接进行眼底照射的方法。眼底是视觉信号产生的功能区域,具有视网膜、脉络膜和巩膜等眼部重要组织结构,也有视网膜感光细胞、脉络膜血管、巩膜成纤维和纤维细胞等重要细胞结构。低强度红光和近红外光可以穿透角膜、晶状体和玻璃体等透明组织,并且不会产生病理学损害。
发明内容
为解决上述现有技术中存在的缺陷,本发明提供了一种增加眼底血流和代谢率的方法,其目的是通过增加眼底组织血流和代谢率,改善眼部组织损伤修复的作用,包括但不限于巩膜成纤维细胞的重塑和视功能细胞的修复,以实现预防、减缓、阻止甚至逆转眼病的作用。
为解决上述技术问题,本发明所采用的技术方案是:
一种增加眼底血流和代谢率的方法,包括以下步骤:(1)经瞳孔照射眼底一定波长范围、一定能量密度范围、一定照射时间范围的红光或近红外光;(2)照射完成后,间隔一定的时间范围,重复以上步骤,采用同一波长范围、同一能量密度范围的红光或近红外光经瞳孔照射眼底。
优选的,所述步骤(2)中,采用多次重复的方式。
优选的,所述步骤(2)中,所述的重复以上步骤是指,一天经瞳孔照射眼底2-3次,并且相邻照射之间间隔至少两个小时,所需天数至少30天。
优选的,所述的红光或近红外光,采用的是低强度红光或近红外光。
优选的,所述的低强度红光或近红外光的光线波长范围为630-1000nm。
优选的,所述的低强度红光或近红外光的光线波长范围为650nm或810nm。
优选的,所述的低强度红光或近红外光的能量密度范围为0.5-25J/cm 2
优选的,所述的低强度红光或近红外光的能量密度范围为0.5-15J/cm 2
优选的,所述低强度红光或近红外光的光源,包括但不限于激光二极管(LD)、发光二极管(LED)或灯泡。
优选的,所述的激光二极管采用的是镓铝砷(GaAlAs)激光二极管、磷化镓砷(GaAsPa)激光二极管或磷化铝镓铟(AIGALP)激光二极管。
优选的,步骤(1)中,照射时间范围为150s-210s。
优选的,步骤(1)中,照射时间为180s。
本发明的有益效果在于:低强度红光和近红外光经瞳孔直接照射眼底将更有效且安全地发挥其光物理和光化学作用,提高眼底代谢率、血循环,改善眼部组织损伤修复的作用,如增加近视患者视网膜、脉络膜和巩膜血循环和供氧,进而促使成纤维细胞重塑而发挥预防、减缓、阻止甚至逆转近视的作用;也可作用于视功能细胞,增加视功能细胞代谢和血循环,可有效减少功能细胞的损伤和修复,以达到预防、减缓、阻止甚至逆转眼病的作用。
具体实施方式
一种增加眼底血流和代谢率的方法,其步骤包括,(1)经瞳孔照射眼底一定波长范围、一定能量密度范围、一定照射时间范围的红光或近红外光;(2)照射完成后,间隔一定的时间范围,多次重复以上步骤,采用同一波长范围、同一能量密度范围的红光或近红外光经瞳孔照射眼底。所述的重复以上步骤是指,一天经瞳孔照射眼底2-3次,并且相邻照射之间间隔至少两个小时,所需天数至少30天。其中,红光或近红外光,采用的是低强度红光或近红外光,所述的低强度红光或近红外光的光线波长范围为630-1000nm。优选的光线波长范围为650nm或810nm。步骤(1)中,照射时间范围为150s-210s,优选180s。低强度红光或近红外光的能量密度范围为0.5-25J/cm 2。优选的能量密度范围为0.5-15J/cm 2。低强度红光或近红外光的光源,包括但不限于激光二极管(LD)、发光二极管(LED)或灯泡。优选的,所述的激光二极管采用的是镓铝砷(GaAlAs)激光二极管、磷化镓砷(GaAsPa)激光二极管或磷化铝镓铟(AIGALP)激光二极管。
应用实施例1:近视患者,男性,7岁,右眼眼轴23.73mm,等效球镜-4.875D;左眼眼轴23.62mm,等效球镜-4.5D。本实施例所用的增加眼底血流和代谢率的方法,已达到减缓、阻止甚至逆转近视的作用。采用二极管发射低强度红光,其波长为650±10nm,距光源100mm处激光功率为:1.07~1.42mW,观察口处的光斑为:10mm±2mm,计算所得能量密度范围为13~25J/cm 2。上述重复低强度红光经瞳孔照射眼底减缓、阻止甚至逆转近视的一种方法,具体实施方法包括以下步骤:A.运用上述低强度红光,经瞳孔照射眼底,每次照射时长为180s;B.每天照射两次,间隔至少2小时。低强度红光照射时长为3个月,右眼眼轴缩短0.16mm,近视度数降低0.625D;左眼眼轴缩短0.08mm,近视度数降低0.25D。
临床实验:用上述方法,在一组近视儿童中,人数84名,年龄6-23岁,男女比例为1.08:1,实施照射的天数为6个月。右眼眼轴(作为近视进展最重要的评估指标之一)年平均变化率为-0.14±0.42mm/y,左眼眼轴年平均变化率为-0.23±0.40mm/y,表明重复低强度红光经瞳孔照射眼底可阻止甚至逆转近视。
工作机理:一种重复低强度红光和近红外光经瞳孔照射眼底的一种方法,其作用机制为重复低强度红光和近红外光产生的光物理效应和化学效应,提高眼部组织代谢率、血循环,增加眼部组织损伤修复的作用,包括但不限于对巩膜成纤维细胞的重塑和视功能细胞的修复,以达到预防、减缓、阻止甚至逆转眼病的作用,眼病包括近视、正常眼压性青光眼、老年性黄斑病变、糖尿病视网膜病变和视网膜色素变性等。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的保护范围。

Claims (12)

  1. 一种增加眼底血流和代谢率的方法,其特征在于,包括以下步骤:(1)经瞳孔照射眼底一定波长范围、一定能量密度范围、一定照射时间范围的红光或近红外光;(2)照射完成后,间隔一定的时间范围,重复以上步骤,采用同一波长范围、同一能量密度范围的红光或近红外光经瞳孔照射眼底。
  2. 根据权利要求1所述的增加眼底血流和代谢率的方法,其特征在于:所述步骤(2)中,采用多次重复的方式。
  3. 根据权利要求1所述的增加眼底血流和代谢率的方法,其特征在于:所述步骤(2)中,所述的重复以上步骤是指,一天经瞳孔照射眼底2-3次,并且相邻照射之间间隔至少两个小时,所需天数至少30天。
  4. 根据权利要求1所述的增加眼底血流和代谢率的方法,其特征在于:所述的红光或近红外光,采用的是低强度红光或近红外光。
  5. 根据权利要求4所述的增加眼底血流和代谢率的方法,其特征在于:所述的低强度红光或近红外光的光线波长范围为630-1000nm。
  6. 根据权利要求5所述的增加眼底血流和代谢率的方法,其特征在于:所述的低强度红光或近红外光的能量密度范围为0.5-25J/cm 2
  7. 根据权利要求6所述的增加眼底血流和代谢率的方法,其特征在于:所述低强度红光或近红外光的光源,包括但不限于激光二极管(LD)、发光二极管(LED)或灯泡。
  8. 根据权利要求7所述的增加眼底血流和代谢率的方法,其特征在于:所述的激光二极管采用的是镓铝砷(GaAlAs)激光二极管、磷化镓砷(GaAsPa)激光二极管或磷化铝镓铟(AIGALP)激光二极管。
  9. 根据权利要求5所述的增加眼底血流和代谢率的方法,其特征在于:所述的低强度红光或近红外光的能量密度范围为0.5-15J/cm 2
  10. 根据权利要求4所述的增加眼底血流和代谢率的方法,其特征在于:所述的低强度红光或近红外光的光线波长范围为650nm或810nm。
  11. 根据权利要求1所述的增加眼底血流和代谢率的方法,其特征在于:步骤(1)中,照射时间范围为150s-210s。
  12. 根据权利要求11所述的增加眼底血流和代谢率的方法,其特征在于:步骤(1)中,照射时间为180s。
PCT/CN2020/098413 2019-06-06 2020-06-28 一种增加眼底血流和代谢率的方法 WO2020244675A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20817667.7A EP4011441A4 (en) 2019-06-06 2020-06-28 METHOD FOR INCREASING BLOOD FLOW AND METABOLIC RHYTHM OF THE FUND
AU2020233703A AU2020233703C1 (en) 2019-06-06 2020-06-28 A method to increase blood flow and metabolic rate of eye ground
US17/345,150 US11420072B2 (en) 2019-06-06 2021-06-11 Method for increasing blood flow and metabolic rate of eye fundus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910490186.6 2019-06-06
CN201910490186.6A CN110237432A (zh) 2019-06-06 2019-06-06 一种增加眼底血流和代谢率的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/345,150 Continuation US11420072B2 (en) 2019-06-06 2021-06-11 Method for increasing blood flow and metabolic rate of eye fundus

Publications (1)

Publication Number Publication Date
WO2020244675A1 true WO2020244675A1 (zh) 2020-12-10

Family

ID=67886175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098413 WO2020244675A1 (zh) 2019-06-06 2020-06-28 一种增加眼底血流和代谢率的方法

Country Status (5)

Country Link
US (1) US11420072B2 (zh)
EP (1) EP4011441A4 (zh)
CN (2) CN110237432A (zh)
AU (1) AU2020233703C1 (zh)
WO (1) WO2020244675A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110237432A (zh) 2019-06-06 2019-09-17 中山大学中山眼科中心 一种增加眼底血流和代谢率的方法
CN111965819B (zh) * 2020-07-24 2022-05-17 光朗(海南)生物科技有限责任公司 一种vr设备
CN112657067A (zh) * 2021-01-12 2021-04-16 昆明医科大学第一附属医院 用于高度近视视网膜病变预防及治疗的光生物调节治疗仪及使用方法
CN112675435A (zh) * 2021-01-12 2021-04-20 昆明医科大学第一附属医院 用于治疗年龄相关性黄斑变性的光生物调节治疗仪及使用方法
CN113244045A (zh) * 2021-07-15 2021-08-13 中山大学中山眼科中心 一种高效视力恢复方法及其设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161526A (en) * 1989-04-04 1992-11-10 Hellwing Isak A Method of treating of bleeding in hemophiliacs
RU2032432C1 (ru) * 1991-06-28 1995-04-10 Монич Виктор Анатольевич Способ лечения кожных ран
CN1216002A (zh) * 1996-04-11 1999-05-05 尼古拉·泰穆拉佐维奇·巴格拉夫 用非相干辅射治疗组织中病理状态的方法与设备
RU2265464C1 (ru) 2004-12-14 2005-12-10 Шурыгина Ирина Петровна Способ лечения и профилактики прогрессирования близорукости у детей
RU2267339C1 (ru) 2005-01-11 2006-01-10 Ирина Петровна Шурыгина Способ лечения дисбинокулярной амблиопии у детей
RU2274477C1 (ru) 2005-01-11 2006-04-20 Ирина Петровна Шурыгина Способ лечения рефракционной амблиопии у детей
CN101822872A (zh) 2010-04-22 2010-09-08 四川省医学科学院(四川省人民医院) 一种眼近红外光治疗仪
CN102894953A (zh) * 2011-07-29 2013-01-30 佳能株式会社 眼科设备
CN109620137A (zh) * 2018-12-17 2019-04-16 深圳盛达同泽科技有限公司 视网膜曝光方法、装置、电子设备及可读存储介质
CN110237432A (zh) * 2019-06-06 2019-09-17 中山大学中山眼科中心 一种增加眼底血流和代谢率的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046636C (zh) * 1994-11-02 1999-11-24 李志升 自动变频激光弱视治疗仪
US6544193B2 (en) * 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
US20050159793A1 (en) 2002-07-02 2005-07-21 Jackson Streeter Methods for treating macular degeneration
CN100569200C (zh) * 2005-08-31 2009-12-16 刘文六 半导体激光弱视治疗仪
US8945197B1 (en) * 2005-10-24 2015-02-03 Lockheed Martin Corporation Sight-restoring visual prosthetic and method using infrared nerve-stimulation light
WO2010015255A1 (en) * 2008-08-08 2010-02-11 Glostrup Hospital System and method for treatment of lens related disorders
US10874873B2 (en) 2012-05-25 2020-12-29 Ojai Retinal Technology, Llc Process utilizing pulsed energy to heat treat biological tissue
WO2014008405A2 (en) * 2012-07-03 2014-01-09 Doheny Eye Institute Sonolysis method
NZ767766A (en) * 2014-09-09 2023-03-31 Lumithera Inc Multi-wavelength phototherapy devices, systems, and methods for the non-invasive treatment of damaged or diseased tissue
US20160067087A1 (en) * 2014-09-09 2016-03-10 LumiThera, Inc. Wearable devices and methods for multi-wavelength photobiomodulation for ocular treatments
CN107810031A (zh) 2015-06-29 2018-03-16 托马斯·罗斯 用于治疗眼睛的低功率光疗设备
CN205516020U (zh) * 2016-01-20 2016-08-31 高锐 一种便携式智能感应红外理疗仪
CN109069294B (zh) * 2016-05-06 2022-05-31 奥哈伊视网膜技术有限责任公司 用于青光眼的神经保护疗法的系统及方法
US10960224B2 (en) * 2017-01-12 2021-03-30 Janssen Pharmaceutica Nv Trans-orbital infrared light therapy
US20180345034A1 (en) * 2017-06-06 2018-12-06 Peter Butzloff Myopia inhibition apparatus and ocular method
CN111343936B (zh) * 2017-11-15 2024-03-22 奥哈伊视网膜技术有限责任公司 利用能量治疗生物组织的方法及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161526A (en) * 1989-04-04 1992-11-10 Hellwing Isak A Method of treating of bleeding in hemophiliacs
RU2032432C1 (ru) * 1991-06-28 1995-04-10 Монич Виктор Анатольевич Способ лечения кожных ран
CN1216002A (zh) * 1996-04-11 1999-05-05 尼古拉·泰穆拉佐维奇·巴格拉夫 用非相干辅射治疗组织中病理状态的方法与设备
RU2265464C1 (ru) 2004-12-14 2005-12-10 Шурыгина Ирина Петровна Способ лечения и профилактики прогрессирования близорукости у детей
RU2267339C1 (ru) 2005-01-11 2006-01-10 Ирина Петровна Шурыгина Способ лечения дисбинокулярной амблиопии у детей
RU2274477C1 (ru) 2005-01-11 2006-04-20 Ирина Петровна Шурыгина Способ лечения рефракционной амблиопии у детей
CN101822872A (zh) 2010-04-22 2010-09-08 四川省医学科学院(四川省人民医院) 一种眼近红外光治疗仪
CN102894953A (zh) * 2011-07-29 2013-01-30 佳能株式会社 眼科设备
CN109620137A (zh) * 2018-12-17 2019-04-16 深圳盛达同泽科技有限公司 视网膜曝光方法、装置、电子设备及可读存储介质
CN110237432A (zh) * 2019-06-06 2019-09-17 中山大学中山眼科中心 一种增加眼底血流和代谢率的方法

Also Published As

Publication number Publication date
EP4011441A4 (en) 2023-10-25
EP4011441A1 (en) 2022-06-15
US20210402205A1 (en) 2021-12-30
CN110237432A (zh) 2019-09-17
AU2020233703B2 (en) 2022-04-21
AU2020233703A1 (en) 2020-12-24
AU2020233703C1 (en) 2022-08-04
CN115501493A (zh) 2022-12-23
US11420072B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
US11420072B2 (en) Method for increasing blood flow and metabolic rate of eye fundus
Scholz et al. A review of subthreshold micropulse laser for treatment of macular disorders
US10238542B2 (en) System and process for retina phototherapy
US10278865B2 (en) Process for neuroprotective therapy for glaucoma
US9814903B2 (en) Ophthalmic phototherapy system and associated method
US9592405B2 (en) Ophthalmic phototherapy device and associated treatment method
US10363171B2 (en) System and process for retina phototherapy
RU2290905C1 (ru) Способ лечения внутриглазных опухолей
RU2408335C1 (ru) Способ лечения возрастной макулярной дегенерации сетчатки
TWI722945B (zh) 具紅光及近紅外光多波段眼部活化裝置及其操作方法
RU2441631C2 (ru) Способ поэтапного поступательного лазерного лечения ретиношизиса
RU2438637C1 (ru) Способ лечения диабетического макулярного отека
Dyer et al. The role of laser wavelength in the treatment of vitreoretinal diseases
RU2819741C1 (ru) Способ хирургического лечения катаракты или факосклероза посредством фемтосекундного лазера (ФСЛ) с профилактикой интраоперационного миоза
CN112674932A (zh) 用于治疗开角型青光眼的光生物调节治疗仪及使用方法
RU2769487C1 (ru) Комбинированный метод лазерного лечения передней ишемической нейрооптикопатии
Hu et al. The value of photo biological regulation based on nano semiconductor laser technology in the treatment of hypertension fundus disease
RU2813156C1 (ru) Способ лечения глаукомной оптической нейропатии
RU2271790C1 (ru) Способ фотодинамической терапии внутриглазных новообразований
RU2452444C1 (ru) Способ органосохраняющего лечения внутриглазных опухолей
RU2814777C1 (ru) Способ лечения лимбально-склеральной стафиломы у детей
RU2297819C1 (ru) Способ лечения внутриглазной опухоли
Azoulay et al. The evolution of retinal laser technology and retinal photocoagulation as therapeutic modality
Menchini et al. Continuous wave Nd: YAG laser photocoagulation in proliferative diabetic retinopathy.
RU2314072C1 (ru) Способ профилактики развития диабетического макулярного отека у больных сахарным диабетом ii типа

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020233703

Country of ref document: AU

Date of ref document: 20200628

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20817667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020817667

Country of ref document: EP

Effective date: 20220107