WO2020244326A1 - 一种轻型货车隔板装置及其设计方法 - Google Patents

一种轻型货车隔板装置及其设计方法 Download PDF

Info

Publication number
WO2020244326A1
WO2020244326A1 PCT/CN2020/086296 CN2020086296W WO2020244326A1 WO 2020244326 A1 WO2020244326 A1 WO 2020244326A1 CN 2020086296 W CN2020086296 W CN 2020086296W WO 2020244326 A1 WO2020244326 A1 WO 2020244326A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition
light truck
partition plate
lower main
bolts
Prior art date
Application number
PCT/CN2020/086296
Other languages
English (en)
French (fr)
Inventor
袁刘凯
张汤赟
赵特
黄玉
张华林
邹亮
Original Assignee
南京依维柯汽车有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京依维柯汽车有限公司 filed Critical 南京依维柯汽车有限公司
Publication of WO2020244326A1 publication Critical patent/WO2020244326A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/026Rigid partitions inside vehicles, e.g. between passengers and load compartments

Definitions

  • the invention belongs to the field of vehicle component auxiliary design, and particularly relates to a light truck partition device and a design method.
  • the purpose of the present invention is to provide a light truck partition device, so as to overcome the above-mentioned defects in the prior art.
  • the present invention provides a light truck partition device, which is composed of a partition assembly and a reinforced cross beam with a cross-section of a letter.
  • the upper and lower ends of the partition assembly are respectively fixedly connected to the upper and lower cross beams of the vehicle body.
  • the left and right ends of the plate assembly are respectively fixedly connected with the B-pillar of the vehicle body; the reinforced cross beam is horizontally erected in the middle of the partition assembly, and the reinforced cross beam (2) and the partition assembly (1) are connected by spot welding.
  • the partition assembly is formed by spot welding the upper connecting plate and the lower main partition, the lower part of the lower main partition is provided with vertical reinforcement ribs, and the upper part of the lower main partition is provided with horizontal reinforcement ribs. And cross ribs symmetrically distributed on both sides of the horizontal ribs.
  • the linear crossbeam is composed of a crossbeam and two end brackets, and the crossbeam is provided with a waist-shaped weight-reducing hole with flanging.
  • the lower part of the lower main partition is provided with 7 vertical reinforcement ribs
  • the upper part of the lower main partition 9 is provided with two horizontal reinforcement ribs
  • the upper part of the lower main partition is provided with cross Stiffener.
  • 11 waist-shaped weight-reducing holes with flanging are provided on the beam.
  • the left and right ends of the lower main partition are provided with fixing holes
  • the upper end of the upper connecting plate and the lower end of the lower main partition are respectively provided with fixing holes
  • the left and right ends of the lower main partition are fixed with rivets. It is connected with the left and right B-pillars of the vehicle body, and the upper end of the upper connecting plate and the lower end of the lower main diaphragm are respectively connected to the upper and lower cross beams of the vehicle body through the fixing holes through bolts.
  • two mounting holes for installing the upper car armrest are left on the lower main partition.
  • a design method for light truck partitions according to the following steps:
  • the solver uses NASTRAN software, and uses the Lanczos method to generate a set of orthogonal canonical eigenvectors using the three-term recurrence relationship.
  • the stiffness matrix of the model is reduced to a three-diagonal matrix.
  • the problem is transformed into a tri-diagonal matrix method to solve the frequency value and mode shape of the first 3 modes;
  • the solver uses LS-DYNA software to output the displacement cloud graph, strain cloud graph, and the shear force Fs and tensile force Fa of the Beam element;
  • step S1 the strain rate is set in the material parameter to consider the influence of the tensile rate on the safety performance of the separator; the strain failure mode is used in the material parameter to consider the failure of the sheet metal;
  • step S3 the evaluation area of the partition in the partition safety calculation is 100mm upwards from the Z-direction underbody to 200mm upwards from the top of the seat headrest, and the Y-direction covers the partition area;
  • the impact head is a cylindrical head with a diameter of 80mm, a mass of 6.0kg, an impact speed of 65km/h, and the impact direction of the vehicle in the -X direction;
  • At least 5 points are selected for calculation of partition safety calculation, which are located at the left and right ends, upper and lower ends and middle positions of the assessment area of the partition;
  • the rivets or bolts of the bolts are connected by Beam units, output the axial force and shear force of the Beam units, and calculate whether their strength meets the requirements according to the relevant formula.
  • step S4 the evaluation result meets the following conditions: the first-order modal frequency value of the partition is ⁇ 35Hz; the maximum deformation of the partition in the X direction during the collision is ⁇ 220mm; the equivalent combined force of the fastener is less than or equal to the minimum tension of the bolt and rivet Extension load
  • the sensitive parameters of the partition device are the thickness of the sheet metal, the material of the sheet metal, the shape of the partition reinforcement rib, the shape and number of the end face of the "several" beam, the number of bolts, and the number of rivets.
  • step S3 the calculation formula is as follows:
  • Fa axial force of bolts or rivets
  • Fs shear force of bolts or rivets
  • F min minimum tensile load of bolts or rivets
  • Fa is a value greater than zero, if Fa is negative, then calculate When: Fa takes the value 0.
  • the present invention proposes a light truck partition device, which optimizes the structure of the beam and the shape of the reinforcing ribs, has a simple structure, improves the modal performance of the partition, and has good safety performance, light weight, and low cost.
  • the partition assembly and the beam are divided into two parts, which are more conducive to stamping and forming, and the manufacturing process is good. Both sides of the partition are connected by rivets, which are not easy to fall off and are strong and durable.
  • the present invention proposes a light truck partition design method. By optimizing the sensitive parameters of the partition, the design risk is greatly reduced, the product performance and quality are improved, the number of tests and the test cost are reduced, and the performance is maximized. Optimized design, lightweight design, and cost optimization.
  • Figure 1 A schematic diagram of the structure of a light truck partition device
  • Figure 2 is a schematic structural diagram of a cross beam in a light truck partition device
  • Fig. 3 is a schematic diagram of the structure of the partition assembly in a light truck partition device
  • Figure 4 The stress-strain curve of material DC03 under different strain rates in a design method of light truck diaphragm device
  • Figure 5 A design method of light truck diaphragm device displacement cloud diagram of diaphragm device
  • Figure 6 A design method of light truck diaphragm device strain cloud diagram of diaphragm device
  • Figure 7 A design method of light truck diaphragm device. Axial force and shear force of bolt or rivet
  • Figure 8 A design method of light truck partition device partition safety assessment area
  • Figure 9 A design method for a light truck diaphragm device collision cylinder head size
  • Figure 10 A design method for the design method of a light truck partition device, the safety calculation boundary condition setting.
  • one embodiment of the present invention is a light truck partition device, which is composed of a partition assembly 1 and a "several" shaped reinforced cross beam 2.
  • the left and right ends of the partition are provided with fixing holes 3, and the upper and lower ends
  • There are fixing holes 4, the left and right end fixing holes 3 of the partition are connected with the left and right B-pillars of the white body, the upper and lower end fixing holes 4 of the partition are connected with the upper and lower crossbeams of the white body; the left and right ends of the partition are connected with the left and right B pillars of the white body through rivets,
  • the upper and lower ends are connected with the upper and lower beams of the white body through bolts.
  • the "several"-shaped beam 2 is composed of a beam 5 and two end brackets 6.
  • the beam 5 is provided with 11 waist-shaped weight-reducing holes 7 with flanging;
  • the partition assembly 1 is formed by spot welding the upper connecting plate 8 and the lower main partition 9.
  • the lower part of the lower main partition is provided with 7 vertical reinforcing ribs 10, and the upper part of the lower main partition 9 is provided with There are two horizontal reinforcing ribs 11, the upper part of the lower main partition is provided with cross reinforcing ribs 12 on both sides, and the partition assembly 1 is left with two mounting holes 13 for installing the upper car armrest.
  • Step 1 Intercept the front part of the vehicle body structure, establish the finite element model of the body-in-white and the partition assembly according to the design state, the basic mesh size is 10mm, and establish the materials, properties and connections;
  • the material DC03 in the model is simulated by No. 24 elastoplastic material, taking into account the influence of material strain rate on the safety performance of the separator;
  • Material DC03 defines strain failure.
  • the failure strain value is set to 0.9 times the elongation rate of the material after fracture.
  • the material of DC03 in the model exceeds the set value, the failed element is deleted in the model;
  • Step 2 Constrain the 123456 degrees of freedom of the truncated section of the body-in-white.
  • the solver adopts NASTRAN and the Lanczos method is used to solve the first 3 modal frequency values and modal shapes;
  • Step 3 Set the boundary conditions for safety analysis.
  • the solver uses LS-DYNA to output displacement cloud diagram (Figure 5), strain cloud diagram (Figure 6), shear force Fs and tensile force Fa ( Figure 7) of the Beam element;
  • the assessment area of the partition is 100mm up from the Z-direction underbody to 200mm up from the top of the seat headrest, and the Y-direction covers the partition area;
  • the impact head of the partition device is a cylindrical head with a diameter of 80mm, an end chamfer size of R60mm, a length of 365mm, and a mass of 6.0kg;
  • the initial speed of the collision cylinder head is 65km/h, and the collision direction is the -X direction of the vehicle;
  • the security calculations are performed on 5 points respectively, and their positions are located at the upper and lower ends, left and right ends and middle positions of the partition assessment area.
  • the positions judged by the engineer as weak are also listed in the assessment;
  • the connected rivets and bolts are connected by Beam unit to output the axial force and shear force of the Beam unit;
  • Step 4 Evaluate whether the performance meets the requirements by evaluating the first-order modal frequency value, the maximum displacement in the X direction of the collision head, and the equivalent combined force of the bolt and rivet;
  • the first-order modal frequency value of the partition is ⁇ 35Hz; the maximum displacement of the partition after the collision is ⁇ 220mm; the equivalent combined force of the fastener is less than or equal to the minimum tensile load of bolts and rivets.
  • the calculation formula is as follows:
  • Fa the axial force of the bolt or rivet
  • Fs the shear force of the bolt or rivet
  • F min the minimum tensile load of the bolt or rivet
  • Fa is a value greater than zero. If Fa is negative, then The value of Fa is 0 when calculating.
  • Step 5 Optimize sensitive parameters such as the material and thickness of the partition, the shape and position of the ribs, the diameter of the fasteners, the number of fasteners and other sensitive parameters. Repeat steps 1 to 4 until the total weight of the parts is the smallest and the parts are controlled The total cost is less than or equal to the target cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

本发明公开了一种轻型货车隔板装置和基于有限元技术的设计方法。隔板装置由隔板总成和"几"字形加强横梁组成,经过优化后的隔板装置,其结构简单,安全性能好、质量轻、成本低。隔板总成和横梁均分为两部分,更利于冲压成形,制造工艺性好,隔板两侧采用铆钉连接,坚固耐用。该方法在满足性能要求的前提下,对隔板的材料、厚度、加强筋的形状和位置、紧固件的直径、紧固件的数量等参数进行优化,直至零件总重量最小、控制零件总成本小于等于目标成本。本发明减小了设计风险,提高了产品质量,降低了试验次数和试验成本,同时实现性能最大化、设计轻量化、成本最优化。

Description

一种轻型货车隔板装置及其设计方法 技术领域:
本发明属于车辆部件辅助设计领域,特别涉及一种轻型货车隔板装置和设计方法。
背景技术:
目前普通的厢式货车,尤其是轻便型的厢式货车,驾驶室和后货仓是连通的一体结构,为了保证驾驶员和货物的安全,越来越多的消费者要求驾驶区和货物区之间设置隔板,目前很多的隔板就是平板结构,而且绝大多数是后期改装的,简单来讲就是把一块薄钢板焊接在车厢和驾驶舱之间的适当位置,但是这种后期改装存在较多问题,例如隔板刚性不足,在行驶过程中可能出现明显的抖动、异响、车内轰鸣声。同时,在车辆急转弯、紧急制动、碰撞、翻越障碍物等工况下,焊接不牢固或者挡板形状不契合,货物可能会越入驾驶区并对驾驶员及乘员造成伤害。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容:
本发明的目的在于提供一种轻型货车隔板装置,从而克服上述现有技术中的缺陷。
为实现上述目的,本发明提供了一种轻型货车隔板装置,由隔板总成和截面呈几字形的加强横梁组成,隔板总成的上下两端分别与车身的上下横梁固连,隔板总成的左右两端分别与车身的B柱固定连接;加强横梁水平架设在隔板总成的中部,加强横梁(2)与隔板总成(1)采用点焊连接。
优选地,上述技术方案中,隔板总成由上连接板和下主隔板点焊而成,下主隔板的下部设有竖直加强筋,下主隔板上部的设有水平加强筋和对称分布在水平加强筋两侧的交叉的加强筋。
优选地,上述技术方案中,几字形横梁由横梁和两个端部支架组成,横梁上设有腰形带翻边的减重孔。
优选地,上述技术方案中,下主隔板下部设有7条竖直的加强筋,下主隔板9上部设有两条水平的加强筋,下主隔板上部的两侧设有交叉的加强筋。
优选地,上述技术方案中,横梁上设有11个腰形带翻边的减重孔。
优选地,上述技术方案中,下主隔板的左右端设有固定孔,上连接板的上端和下主隔板的下端分别设有固定孔,下主隔板的左右端通过铆钉将固定孔和车身左右B柱 相连接,上连接板的上端和下主隔板的下端分别通过螺栓将固定孔和车身的上、下横梁连接。
优选地,上述技术方案中,下主隔板上留有2个安装上车扶手的安装孔。
一种轻型货车隔板设计方法,按照如下步骤进行:
S1、截取车辆车身结构的前端部分,按设计状态建立车身及隔板总成的有限元模型,设定基本网格尺寸,建立材料、属性及连接;
S2、设置边界条件进行约束模态分析,求解器采用NASTRAN软件,采用Lanczos方法利用三项递推关系产生一组正交规范的特征向量,同时将模型的刚度矩阵约化成三对角矩阵,将问题转化为三对角阵的方法求解前3阶模态频率值及模态振型;
S3、设置边界条件进行安全性分析,求解器采用LS-DYNA软件,输出位移云图、应变云图、Beam单元的剪切力Fs和拉伸力Fa;
S4、通过评价第一阶模态频率值、碰撞头X方向最大位移、螺栓和铆钉的等效合力来评价性能是否满足要求;
S5、对敏感参数进行优化,重复步骤一到步骤四,直至零件总重量最小、控制零件总成本小于等于目标成本。
优选地,上述技术方案中,步骤S1中,材料参数中设置应变率考虑拉伸速率对隔板安全性能的影响;材料参数中采用应变失效方式考虑钣金的失效;
步骤S3中,隔板安全性计算中隔板的考核区域为Z向车身底板往上100mm到座椅头枕最上方往上200mm,Y向覆盖隔板区域;
隔板安全性计算中撞击头为圆柱头,其直径为80mm,质量为6.0kg,撞击速度为65km/h,撞击方向为车辆的-X向;
隔板安全性计算中至少选取5个点进行计算,分别位于隔板的考核区域的左右端,上下端和中间位置;
螺栓的铆钉或螺栓采用Beam单元连接,输出Beam单元的轴向力和剪切力,并按相关公式计算其强度是否满足要求。
步骤S4中,评价结果满足以下条件,隔板的第一阶模态频率值≥35Hz;碰撞过程中隔板X向最大变形量≤220mm;紧固件等效合力小于等于螺栓和铆钉的最小拉伸载荷;
步骤S5中,隔板装置敏感参数为钣金的厚度、钣金的材料、隔板加强筋的形状、“几”字横梁的端面形状和数量、螺栓数量、铆钉数量。
优选地,上述技术方案中,步骤S3中,计算公式如下:
式中:Fa螺栓或铆钉的轴向力;Fs:螺栓或铆钉的剪切力,F min:螺栓或铆钉的最小拉伸载荷;Fa是一个大于零的数值,如果Fa为负值,那么计算时:Fa取值为0。
由于采取上述方案,本发明的有益效果为:
1.本发明提出了一种轻型货车隔板装置,优化了横梁的结构以及加强筋的形状,其结构简单,提高了隔板的模态性能,安全性能好、质量轻、成本低。隔板总成和横梁分为两部分,更利于冲压成形,制造工艺性好。隔板两侧采用铆钉连接,不易脱落,坚固耐用。
2.本发明提出一种轻型货车隔板设计方法,通过对隔板的敏感参数进行优化,大大减小了设计风险,提高了产品性能和质量,降低了试验次数和试验成本,同时实现性能最大化、设计轻量化、成本最优化。
附图说明:
图1一种轻型货车隔板装置的结构示意图;
图2一种轻型货车隔板装置中横梁的结构示意图;
图3一种轻型货车隔板装置中隔板总成结构示意图;
图4一种轻型货车隔板装置设计方法材料DC03在不同应变率下的应力应变曲线;
图5一种轻型货车隔板装置设计方法隔板装置位移云图;
图6一种轻型货车隔板装置设计方法隔板装置应变云图
图7一种轻型货车隔板装置设计方法螺栓或铆钉的轴向力和剪切力
图8一种轻型货车隔板装置设计方法隔板安全性考核区域;
图9一种轻型货车隔板装置设计方法碰撞圆柱头尺寸;
图10一种轻型货车隔板装置设计方法安全性计算边界条件设置。
具体实施方式:
下面对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
如图1所示,本发明的一个实施例是一种轻型货车隔板装置,由隔板总成1和“几”字形加强横梁2组成,隔板的左右端设有固定孔3,上下端设有固定孔4,隔板左右端固定孔3和白车身左右B柱相连接,隔板上下端固定孔4和白车身上下横梁连接;隔板左右端通过铆钉和白车身左右B柱连接,上下端通过螺栓和白车身上下横梁连接。
如图2所示,“几”字形横梁2由横梁5和两个端部支架6组成,横梁5上设有11个腰形带翻边的减重孔7;
如图3所示,隔板总成1由上连接板8和下主隔板9点焊而成,下主隔板下部设有7条竖直的加强筋10,下主隔板9上部设有两条水平的加强筋11,下主隔板上部的两侧设有交叉的加强筋12,隔板总成1上留有2个安装上车扶手的安装孔13。
一种轻型货车隔板设计方法,具体步骤如下:
步骤一、截取车辆车身结构的前端部分,按设计状态建立白车身及隔板总成的有限元模型,基本网格尺寸为10mm,建立材料、属性及连接;
如图4所示,模型中材料DC03采用24号弹塑性材料模拟,考虑了材料应变速率对隔板安全性能的影响;
材料DC03定义应变失效,失效应变值设置为0.9倍的材料断后伸长率,当模型中DC03的材料超过设定值时,失效的单元在模型中被删除;
步骤二、约束白车身的截断断面位置123456自由度,求解器采用NASTRAN,采用Lanczos方法求解前3阶模态频率值及模态振型;
步骤三、设置边界条件进行安全性分析,求解器采用LS-DYNA,输出位移云图(图5)、应变云图(图6)、Beam单元的剪切力Fs和拉伸力Fa(图7);
如图8所示阴影部分,隔板的考核区域为Z向车身底板往上100mm到座椅头枕最上方往上200mm,Y向覆盖隔板区域;
如图9所示,隔板装置的撞击头为圆柱头,其直径为80mm,端部倒角尺寸为R60mm,长度为365mm,质量为6.0kg;
如图10所示,碰撞圆柱头初始速度为65km/h,碰撞方向为车辆的-X方向;
如图8所示,分别对5个点进行安全性计算,其位置分别位于隔板考核区域的上下端,左右端及中间位置,工程师判断为薄弱的位置处也列在考核中;
连接的铆钉和螺栓采用Beam单元连接,输出Beam单元的轴向力和剪切力;
步骤四、通过评价第一阶模态频率值、碰撞头X方向最大位移、螺栓和铆钉的等效合力来评价性能是否满足要求;
评价结果满足以下条件,隔板的第一阶模态频率值≥35Hz;碰撞后隔板的最大位移≤220mm;紧固件等效合力小于等于螺栓和铆钉的最小拉伸载荷,计算公式如下:
式中:Fa:螺栓或铆钉的轴向力;Fs:螺栓或铆钉的剪切力;F min:螺栓或铆钉的最小拉伸载荷;Fa是一个大于零的数值,如果Fa为负值,那么计算时Fa取值为0。
步骤五、对隔板的材料、厚度、加强筋的形状和位置、紧固件的直径、紧固件的数量等敏感参数进行优化,重复步骤一到步骤四,直至零件总重量最小、控制零件总成本小于等于目标成本。
上述实施例描述可便于该技术领域的技术人员理解和应用本发明,熟悉本领域的技术人员可在不脱离本发明的发明思想的情况下,针对本发明所做的任何修改、替换、改进等均应在本发明的保护范围之内。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (10)

  1. 一种轻型货车隔板装置,由隔板总成(1)和截面呈几字形的加强横梁(2)组成,隔板总成(1)的上下两端分别与车身的上下横梁固连,所述隔板总成(1)的左右两端分别与车身的B柱固定连接;加强横梁(2)水平架设在隔板总成(1)的中部,加强横梁(2)的与隔板总成(1)采用点焊连接。
  2. 根据权利要求1所述的轻型货车隔板装置,其特征在于:隔板总成(1)由上连接板(8)和下主隔板(9)点焊而成,下主隔板(9)的下部设有竖直加强筋(10),下主隔板(9)上部的设有水平加强筋(11)和对称分布在水平加强筋(11)两侧的交叉的加强筋(12)。
  3. 根据权利要求1所述的轻型货车隔板装置,其特征在于:几字形横梁(2)由横梁(5)和两个端部支架(6)组成,横梁(5)上设有腰形带翻边的减重孔(7)。
  4. 根据权利要求2所述的轻型货车隔板装置,其特征在于:下主隔板(9)下部设有7条竖直的加强筋(10),下主隔板(9)上部设有两条水平的加强筋(11),下主隔板(9)上部的两侧设有交叉的加强筋(12)。
  5. 根据权利要求3所述的轻型货车隔板装置,其特征在于:横梁(5)上设有11个腰形带翻边的减重孔(7)。
  6. 根据权利要求2所述的轻型货车隔板装置,其特征在于:下主隔板(9)的左右端设有固定孔(3),上连接板(8)的上端和下主隔板(9)的下端分别设有固定孔(4),下主隔板(9)的左右端通过铆钉将固定孔(3)和车身左右B柱相连接,上连接板(8)的上端、下主隔板(9)下端通过螺栓将固定孔(4)和车身的上、下横梁连接。
  7. 根据权利要求2或6所述的轻型货车隔板装置,其特征在于:下主隔板(9)上留有2个安装上车扶手的安装孔(13)。
  8. 一种轻型货车隔板设计方法,其特征在于:按照如下步骤进行:
    S1、截取车辆车身结构的前端部分,按设计状态建立车身及隔板总成的有限元模型,设定基本网格尺寸,建立材料、属性及连接;
    S2、设置边界条件进行约束模态分析,求解器采用NASTRAN软件,采用Lanczos方法利用三项递推关系产生一组正交规范的特征向量,同时将模型的刚度矩阵约化成三对角矩阵,将问题转化为三对角阵的方法求解前3阶模态频率值及模态振型;
    S3、设置边界条件进行安全性分析,求解器采用LS-DYNA,输出位移云图、应变云图、Beam单元的剪切力Fs和拉伸力Fa;
    S4、通过评价第一阶模态频率值、碰撞头X方向最大位移、螺栓和铆钉的等效合力来评价性能是否满足要求;
    S5、对敏感参数进行优化,重复步骤一到步骤四,直至零件总重量最小、控制零件总成本小于等于目标成本。
  9. 根据权利要求8所述的轻型货车隔板设计方法,其特征在于:步骤S1中,材料参数中设置应变率考虑拉伸速率对隔板安全性能的影响;材料参数中采用应变失效方式考虑钣金的失效;
    步骤S3中,隔板安全性计算中隔板的考核区域为Z向车身底板往上100mm到座椅头枕最上方往上200mm,Y向覆盖隔板区域;
    隔板安全性计算中撞击头为圆柱头,其直径为80mm,质量为6.0kg,撞击速度为65km/h,撞击方向为车辆的-X向;
    隔板安全性计算中至少选择5个点进行计算,分别位于隔板的考核区域的左右端,上下端和中间位置;
    螺栓的铆钉或螺栓采用Beam单元连接,输出Beam单元的轴向力和剪切力,并按相关公式计算其强度是否满足要求。
    步骤S4中,评价结果满足以下条件,隔板的第一阶模态频率值≥35Hz;碰撞过程中隔板X向最大变形量≤220mm;紧固件等效合力小于等于螺栓和铆钉的最小拉伸载荷;
    步骤S5中,隔板装置敏感参数为钣金的厚度、钣金的材料、隔板加强筋的形状、“几”字横梁的端面形状和数量、螺栓数量、铆钉数量。
  10. 根据权利要求8所述的轻型货车隔板设计方法,其特征在于:步骤S4中,计算公式如下:
    式中:Fa螺栓或铆钉的轴向力;Fs:螺栓或铆钉的剪切力,F min:螺栓或铆钉的最小拉伸载荷;Fa是一个大于零的数值,如果Fa为负值,那么计算时:Fa取值为0。
PCT/CN2020/086296 2019-06-04 2020-04-23 一种轻型货车隔板装置及其设计方法 WO2020244326A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910484914.2A CN110422134A (zh) 2019-06-04 2019-06-04 一种轻型货车隔板装置及其设计方法
CN201910484914.2 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020244326A1 true WO2020244326A1 (zh) 2020-12-10

Family

ID=68408432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086296 WO2020244326A1 (zh) 2019-06-04 2020-04-23 一种轻型货车隔板装置及其设计方法

Country Status (2)

Country Link
CN (1) CN110422134A (zh)
WO (1) WO2020244326A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110422134A (zh) * 2019-06-04 2019-11-08 南京依维柯汽车有限公司 一种轻型货车隔板装置及其设计方法
CN116167172B (zh) * 2023-04-24 2023-10-13 江铃汽车股份有限公司 一种货车隔板及其强度分析方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275310B1 (en) * 2009-07-14 2013-09-11 Nissan Motor Manufacturing (UK) Ltd. Vehicle partition wall
CN203753049U (zh) * 2014-01-02 2014-08-06 上海汽车集团股份有限公司 商用车隔板结构
CN203832395U (zh) * 2014-05-14 2014-09-17 安徽江淮汽车股份有限公司 一种箱式货车及其中隔板
CN108357455A (zh) * 2018-02-12 2018-08-03 安徽江淮汽车集团股份有限公司 一种多用途汽车车型的隔板结构及安装方法
CN208036453U (zh) * 2018-01-03 2018-11-02 北京汽车股份有限公司 一种隔栏总成结构及厢式货车
CN109800460A (zh) * 2018-12-19 2019-05-24 苏州奥杰汽车工业有限公司 一种基于车身接头提升铝车身模态和刚度性能的分析方法
CN110422134A (zh) * 2019-06-04 2019-11-08 南京依维柯汽车有限公司 一种轻型货车隔板装置及其设计方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104325733B (zh) * 2014-09-26 2016-06-15 南车青岛四方机车车辆股份有限公司 车体复合涂层及其设计方法
US11244088B2 (en) * 2017-04-04 2022-02-08 Humanetics Innovative Solutions, Inc. Customized response finite element model for crash test dummy and method
CN106126849B (zh) * 2016-07-04 2020-04-17 上海迅仿工程技术有限公司 一种车身焊点布置的非线性拓扑优化方法
CN106934117A (zh) * 2017-02-22 2017-07-07 江铃汽车股份有限公司 汽车仪表板总成优化方法
CN107169194B (zh) * 2017-05-11 2020-07-07 常州轻工职业技术学院 一种汽车排气管消音器的有限元建模方法
US10751800B2 (en) * 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
CN107451347B (zh) * 2017-07-25 2020-06-09 中南大学 诱导薄壁管件吸能的主动控制方法
CN107633120B (zh) * 2017-09-07 2018-07-17 东南大学 一种纤维增强复合材料动态剪切本构模型的构建方法
CN107832570A (zh) * 2017-12-14 2018-03-23 重庆长安汽车股份有限公司 车身结构轻量化优化方法
CN211442226U (zh) * 2019-06-04 2020-09-08 南京依维柯汽车有限公司 一种轻型货车隔板装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275310B1 (en) * 2009-07-14 2013-09-11 Nissan Motor Manufacturing (UK) Ltd. Vehicle partition wall
CN203753049U (zh) * 2014-01-02 2014-08-06 上海汽车集团股份有限公司 商用车隔板结构
CN203832395U (zh) * 2014-05-14 2014-09-17 安徽江淮汽车股份有限公司 一种箱式货车及其中隔板
CN208036453U (zh) * 2018-01-03 2018-11-02 北京汽车股份有限公司 一种隔栏总成结构及厢式货车
CN108357455A (zh) * 2018-02-12 2018-08-03 安徽江淮汽车集团股份有限公司 一种多用途汽车车型的隔板结构及安装方法
CN109800460A (zh) * 2018-12-19 2019-05-24 苏州奥杰汽车工业有限公司 一种基于车身接头提升铝车身模态和刚度性能的分析方法
CN110422134A (zh) * 2019-06-04 2019-11-08 南京依维柯汽车有限公司 一种轻型货车隔板装置及其设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHI, YI: "Research on Experimental Design Method and Applications for Autobody Lightweight Design", no. 11,, 15 November 2010 (2010-11-15), ISSN: 1674-0246, DOI: 20200713100629X *

Also Published As

Publication number Publication date
CN110422134A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
US8814248B2 (en) Motor vehicle body with reinforcing structure
JP4384206B2 (ja) 自動車の車体構造
JP6908117B2 (ja) 中空の部材
WO2020244326A1 (zh) 一种轻型货车隔板装置及其设计方法
US8870274B2 (en) Side member for a rear frame of a vehicle body
JP2024054178A (ja) 電動車両のための前部構造
CN111051186B (zh) 中空的部件
CN107416042B (zh) 一种汽车地板前部的九宫格式骨架梁
CN211442226U (zh) 一种轻型货车隔板装置
JP4834353B2 (ja) 車両用エネルギ吸収ビーム及び車両用ドア構造
US10464611B2 (en) Pillar assemblies for vehicles having sections formed of materials having different material properties
KR20210047344A (ko) 인서트를 갖는 범퍼 빔
Bhaskar et al. Static and dynamic analysis of chassis
CN106275097B (zh) 一种座椅及加强结构
CN112969633B (zh) 用于具有置于通道中的电池组的车辆的前底板加强结构
CN113704865A (zh) 复合材料增强整车主要传递路径承力构件耐撞性分析方法
CN208774892U (zh) 一种重卡地板骨架
US10427723B2 (en) Motor vehicle
CN106347477B (zh) 前部车体结构
Makhrojan et al. Strength analysis of monocoque frame construction in an electric city car using finite element method
CN116738740B (zh) 大压铸件的结构优化方法及装置
CN217554024U (zh) 一种汽车仪表板骨架
CN210129226U (zh) 一种利于客车正面碰撞保护的前部车体结构
CN218967026U (zh) 侧围总成和车辆
KR102202098B1 (ko) 차량용 시트 크로스 멤버 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818584

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20818584

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20818584

Country of ref document: EP

Kind code of ref document: A1