WO2020243928A1 - 光学图像采集单元、光学图像采集系统、显示屏和电子设备 - Google Patents

光学图像采集单元、光学图像采集系统、显示屏和电子设备 Download PDF

Info

Publication number
WO2020243928A1
WO2020243928A1 PCT/CN2019/090173 CN2019090173W WO2020243928A1 WO 2020243928 A1 WO2020243928 A1 WO 2020243928A1 CN 2019090173 W CN2019090173 W CN 2019090173W WO 2020243928 A1 WO2020243928 A1 WO 2020243928A1
Authority
WO
WIPO (PCT)
Prior art keywords
display screen
optical
image acquisition
light
optical image
Prior art date
Application number
PCT/CN2019/090173
Other languages
English (en)
French (fr)
Inventor
王文轩
沈健
姚国峰
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to PCT/CN2019/090173 priority Critical patent/WO2020243928A1/zh
Priority to CN201980004326.2A priority patent/CN111213152B/zh
Publication of WO2020243928A1 publication Critical patent/WO2020243928A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/147Details of sensors, e.g. sensor lenses

Definitions

  • the embodiments of the present application relate to the field of information technology, and more specifically, to an optical image acquisition unit, an optical image acquisition system, a display screen, and an electronic device.
  • biometric identification technology such as fingerprint identification technology
  • the embodiments of the present application provide an optical image acquisition unit, an optical image acquisition system, a display screen, and electronic equipment, which can improve the performance of an optical image acquisition product.
  • an optical image acquisition unit including:.
  • the photoelectric sensing unit is arranged on the thin film transistor TFT layer of the display screen;
  • An optical convergence device which is arranged above the TFT layer
  • a diaphragm is provided between the TFT layer and the optical converging device, wherein the diaphragm is provided with a window;
  • the optical converging device is used for converging the light signal reflected from the target object above the display screen to the window, and the light signal is transmitted to the photoelectric sensing unit through the window.
  • the light-emitting layer of the display screen is arranged between the optical converging device and the TFT layer, and the diaphragm is arranged on the light-emitting layer of the display screen.
  • the light-emitting layer of the display screen is disposed under the TFT layer, and the diaphragm is disposed in the base layer above the TFT layer in the display screen.
  • the light-emitting layer of the display screen includes a plurality of organic light-emitting diode OLED light-emitting units, and the aperture is arranged between adjacent OLED light-emitting units.
  • the optical image acquisition unit further includes:
  • the filter unit is arranged in the optical path between the target object and the photoelectric sensing unit, and is used to filter out the optical signal of the non-target waveband and transmit the optical signal of the target waveband.
  • the filter unit is arranged above the optical converging device, or on the lower surface of the optical converging device, or on the upper surface of the photoelectric sensing unit.
  • the distance from the lower surface of the optical converging device to the diaphragm is the focal length of the optical converging device and the distance from the optical center of the optical converging device to the lower plane of the optical converging device. The difference in distance.
  • the distance from the lower surface of the diaphragm to the photoelectric sensing unit is determined according to the area of the photoelectric sensing unit and the divergence angle of the light passing through the focal point of the optical converging device.
  • the light signal detected by the photoelectric sensing unit is used to form one pixel of the captured image.
  • the photoelectric sensing unit is configured to receive the light signal to obtain fingerprint information of the target.
  • the photoelectric sensing unit is disposed between the TFT devices of the TFT layer.
  • the photoelectric sensing unit multiplexes the circuit of the TFT layer to realize the photodetection function.
  • an optical image acquisition system including an array of optical image acquisition units in the first aspect or any possible implementation of the first aspect.
  • an optical image acquisition system including:
  • the photoelectric sensing array includes a plurality of photoelectric sensing units distributed in an array and arranged on the thin film transistor TFT layer of the display screen;
  • An array of optical converging devices arranged above the TFT layer;
  • a diaphragm array is arranged between the TFT layer and the optical convergence device array, wherein each diaphragm in the diaphragm array is provided with a window;
  • the optical converging device array is used for converging the light signal reflected from the target above the display screen to the window of the diaphragm array, and the light signal is transmitted to the photoelectric sensing array through the window.
  • the light-emitting layer of the display screen is arranged between the optical converging device and the TFT layer, and the aperture array is arranged on the light-emitting layer of the display screen.
  • the light-emitting layer of the display screen is disposed under the TFT layer, and the aperture array is disposed on the base layer above the TFT layer in the display screen.
  • the light-emitting layer of the display screen includes a plurality of OLED display units
  • the aperture array includes a plurality of apertures
  • the plurality of apertures are arranged at intervals in the plurality of OLED display units.
  • OLED lighting unit OLED
  • the optical image acquisition system further includes:
  • the filter layer is arranged in the optical path between the target and the photoelectric sensing array, and is used to filter out the optical signal in the non-target waveband and transmit the optical signal in the target waveband.
  • the filter layer is disposed above the optical converging device array, or disposed on the lower surface of the optical converging device array, or disposed on the upper surface of the photoelectric sensing array.
  • the filter layer includes a plurality of filter units, and each filter unit corresponds to one photoelectric sensing unit or corresponding to multiple photoelectric sensing units.
  • the size of the optical convergence device in the optical convergence device layer covers only the photoelectric sensing unit, or covers both the photoelectric sensing unit and the light emitting unit of the display screen.
  • the distance from the lower surface of the optical converging device to the diaphragm is the focal length of the optical converging device and the distance from the optical center of the optical converging device to the lower plane of the optical converging device. The difference in distance.
  • the distance from the plane of the diaphragm layer to the sensing array is determined according to the area of the photoelectric sensing unit and the divergence angle of the light passing through the focal point of the optical converging device.
  • the display screen is an OLED screen with multiple OLED display units, and the fingerprint detection area of the optical image acquisition system is located in the display area of the OLED screen, and the fingerprint detection area is used
  • the light-emitting unit of the OLED is used as the excitation light source; wherein the light signal received by the optical image acquisition system is the reflected light formed by the light signal emitted by the OLED light-emitting unit illuminating the target object above the OLED screen.
  • the light carries the biological characteristic information of the target object.
  • a display screen including:
  • optical image acquisition system in the first aspect or any possible implementation of the first aspect, or, as the optical image acquisition system in the second aspect or any possible implementation of the second aspect.
  • the display screen further includes:
  • the first base layer is arranged above the TFT layer of the display screen, wherein the diaphragm array of the optical image acquisition system is arranged on the base layer.
  • the display screen further includes:
  • the light-emitting layer is arranged under the TFT layer.
  • the display screen further includes:
  • the second base layer is arranged under the light-emitting layer of the display screen.
  • the display screen further includes: a transparent medium layer disposed between the first base layer of the display screen and the TFT layer of the display screen.
  • the display screen further includes:
  • the light-emitting layer is arranged above the TFT layer, wherein the diaphragm array of the optical image acquisition system is arranged on the light-emitting layer.
  • the display screen further includes:
  • the base layer is arranged under the TFT layer of the display screen.
  • the display screen further includes:
  • the display screen accessory layer is arranged above the optical convergence device array of the optical image acquisition system, wherein the display screen accessory layer includes a polarizer, a touch device and a protective glass.
  • the display screen is an OLED screen with multiple organic light-emitting diode OLED display units
  • the fingerprint detection area of the optical image acquisition system is located in the display area of the OLED screen, and the The OLED light-emitting unit in the fingerprint detection area is used as an excitation light source; wherein the light signal received by the optical image acquisition system is the reflected light formed by the light signal emitted by the OLED light-emitting unit irradiating the target object above the OLED screen, The reflected light carries biological characteristic information of the target object.
  • an electronic device including: a display screen; and an optical image acquisition system in the first aspect or any possible implementation of the first aspect, or any possible second or second aspect The optical image acquisition system in the implementation manner, wherein the optical image acquisition system is arranged in the display screen.
  • the display screen is an organic light-emitting diode OLED display screen, and the light-emitting layer of the display screen includes a plurality of OLED light-emitting units, wherein, when the optical image acquisition system is a biometric recognition system, The biometric identification system uses at least part of the OLED light-emitting unit source as the excitation light source for biometric identification.
  • an electronic device including: the display screen in the fourth aspect or any possible implementation manner of the fourth aspect.
  • the technical solution of the embodiment of the present application integrates the photoelectric sensing unit in the TFT layer of the display screen, and converges the light signal from the top of the display screen to the window of the diaphragm through the optical converging device, and transmits the light signal to the photoelectricity through the window.
  • the sensor unit is used to realize image acquisition. Compared with arranging the module under the display screen, the thickness of the product can be reduced, and the imaging quality can be improved at the same time, thereby improving the performance of the optical image acquisition product.
  • Fig. 1 is a schematic diagram of an optical image acquisition unit according to an embodiment of the present application.
  • FIG. 2 is a working principle diagram of the filter unit.
  • 3 to 5 are schematic structural diagrams of an optical image acquisition unit based on a top-emitting OLED screen.
  • Fig. 6 is a schematic diagram of an optical image acquisition unit according to another embodiment of the present application.
  • FIG. 7 to 9 are schematic structural diagrams of an optical image acquisition unit based on a bottom emission type OLED screen.
  • 10 to 12 are schematic structural diagrams of an optical image acquisition system based on a top-emitting OLED screen.
  • 13 to 15 are schematic structural diagrams of an optical image acquisition system based on a bottom emission OLED screen.
  • optical biometric identification can be used for optical biometric identification or other optical image acquisition.
  • optical biometric identification can also be other biometric identification, such as living body identification. This is not limited.
  • Optical biometric recognition technology uses light returned from the top surface of the device display assembly to perform fingerprint sensing and other sensing operations.
  • the returned light carries the information of the target (for example, finger) in contact with the top surface, and a specific optical sensing module is realized by collecting and detecting the returned light.
  • the design of the optical sensing module can be to achieve desired optical imaging by appropriately configuring optical elements for collecting and detecting the returned light.
  • Optical biometric identification modules are mainly used to collect user biometric information (such as fingerprint image information).
  • the biometric identification module may specifically include an optical biometric sensor having an optical sensing array, such as an optical fingerprint sensor; the optical sensing array includes a plurality of optical sensing units (photosensitive units), and the The area where the optical sensing array is located corresponds to the biological feature collection area of the biological feature recognition module.
  • the biological feature collection area is located in the display area of the display screen. Therefore, when the user needs to unlock the electronic device or perform other biological feature verification, he only needs to press his finger on the biological feature located on the display screen. In the feature collection area, the biometric input operation can be realized.
  • the electronic device adopting the above structure does not need to reserve a special space on the front of the fingerprint button (such as the Home button), so a full screen solution can be adopted. Therefore, the display area of the display screen can be substantially extended to the entire front surface of the electronic device.
  • the above-mentioned display screen may be a self-luminous display, which uses a self-luminous display unit as display pixels.
  • the display screen may be an Organic Light-Emitting Diode (OLED) display, an Active-Matrix Organic Light-Emitting Diode (AMOLED) or a Micro-LED (Micro-LED) display.
  • the display screen may also be a liquid crystal display (Liquid Crystal Display, LCD) or other passive light-emitting display screen, which is not limited in the embodiment of the present application.
  • the display screen is specifically a touch-sensitive display screen, which can not only perform screen display, but also detect a user's touch or pressing operation, thereby providing a user with a human-computer interaction interface.
  • the electronic device may include a touch sensor, and the touch sensor may specifically be a touch panel (TP), which may be provided on the surface of the display screen, or may be partially integrated or integrated. To the inside of the display screen to form the touch display screen.
  • TP touch panel
  • the light-emitting layer of the display screen has an array of OLED display units arranged in an array
  • the biometric identification module can utilize the OLED display unit of the OLED screen in the biometric collection area (Ie OLED light-emitting unit) as the excitation light source for biometric detection and recognition.
  • the biometric identification module may also use a built-in light source or an external light source to provide a light signal for biometric detection and identification.
  • the biometric identification module can be applied not only to self-luminous display screens such as OLED screens, but also to non-self-luminous display screens, such as liquid crystal display screens or other passively luminous display screens.
  • the optical sensing array of the biometric recognition module is specifically a photodetector array (or called a photodetector array or a photosensitive unit array), which includes a plurality of photodetectors distributed in an array.
  • the photosensitive unit, the photodetector/photosensitive unit can be used as the optical sensing unit as described above.
  • the light emitted by the display unit of the biometrics collection area is reflected on the finger and forms reflected light.
  • the reflected light can carry biometric information of the user's finger. For example, after the light is reflected by the fingerprint on the surface of the user's finger, since the reflected light of the fingerprint ridge and the fingerprint valley of the fingerprint of the finger are different, the reflected light carries the user's fingerprint information.
  • the reflected light returns to the display screen and is received by the photodetector array of the biometric identification module below it and converted into a corresponding electrical signal, that is, a biometric detection signal.
  • the electronic device can obtain the user's biometric information based on the biometric detection signal, and can further perform biometric matching verification, thereby completing the current user's identity verification in order to confirm whether it has the authority to perform corresponding operations on the electronic device .
  • the electronic device further includes a protective cover
  • the cover may be specifically a transparent cover, such as a glass cover or a sapphire cover, which is located above the display screen and covers the The front side of the electronic device, and the protective cover can also be provided with a protective layer. Therefore, in the embodiments of the present application, the so-called finger pressing the display screen may actually refer to the finger pressing the cover plate above the display screen or covering the surface of the protective layer of the cover plate.
  • the optical biometric identification module may be arranged below the display screen to form an under-screen biometric identification module.
  • the thickness of the module will increase accordingly, which will occupy a larger space.
  • FIG. 1 shows a schematic diagram of an optical image acquisition unit 10 according to an embodiment of the present application.
  • the optical image acquisition unit 10 may constitute a pixel unit of the optical image acquisition system.
  • the optical image acquisition unit 10 may include:
  • the photoelectric sensing unit 201 is arranged on the thin film transistor TFT layer 200 of the display screen;
  • the optical convergence device 401 is arranged above the TFT layer 200;
  • the aperture 301 is arranged between the TFT layer 200 and the optical converging device 401, wherein the aperture 301 is provided with a window 303;
  • the optical converging device 401 is used to converge the light signal reflected from the target object above the display screen to the window 303, and the light signal is transmitted to the photoelectric sensing unit 201 through the window 303.
  • the optical signal from above the optical converging device 401 is condensed to the window 303 and transmitted to the photoelectric sensing unit 201 through the window 303.
  • the photoelectric sensing unit 201 can detect the light signal from the corresponding area above the optical converging device 401, and then can obtain the pixel value according to the light intensity of the light signal.
  • the optical signal detected by the photoelectric sensing unit 201 can be used to form a pixel of the captured image, and the pixel represents the characteristic value of the corresponding area above the optical image capturing unit 10. That is to say, the signal collected by one optical image collecting unit 10 forms one pixel of the image, so that an image can be obtained from the signals collected by multiple optical image collecting units 10.
  • each optical image acquisition unit 10 will feel the light intensity converged above it, and then converted into an electrical signal by the photoelectric sensing unit 201 to form the original fingerprint value, and then the rows and columns are assembled into the fingerprint of the entire identification area image.
  • the optical image acquisition unit 10 may be arranged in the display screen, so that the inherent structure in the display screen can be reused to the maximum.
  • the photoelectric sensing unit 201 is used to convert optical signals into electrical signals.
  • the photoelectric sensing unit 201 may include a photodiode (PD), a phototransistor (Phototransistor), and a TFT device for controlling the PD or Phototransistor. Therefore, the photoelectric sensing unit 201 may be disposed on the thin film transistor (TFT) layer 200 of the display screen.
  • the TFT layer 200 may include a plurality of TFT devices 202 for controlling the light emission of the OLED light emitting unit.
  • the TFT device in the TFT layer can be multiplexed as a TFT device for controlling PD or Phototransistor.
  • the optical signal detection circuit may also adopt a separate circuit, that is, a circuit that does not multiplex the TFT layer, such as a newly added circuit that realizes the function of a photoelectric sensing unit.
  • the photoelectric sensing units 201 can be periodically arranged at intervals. For example, one photoelectric sensing unit 201 is arranged every M TFT devices 202, or in every M+1 TFT devices 202, One of the TFT devices 202 is replaced by a photoelectric sensing unit 201.
  • the distance between the optical sensing units can be set according to the image resolution requirements, the size of the image acquisition area and other factors.
  • the photoelectric sensing unit 201 is prepared by using the same or compatible manufacturing process as the TFT device 202 to ensure that the photoelectric image acquisition unit and the display screen can be integrated together.
  • the optical convergence device 401 may be various devices with a convergence function, such as a lens or a micro lens.
  • the focal point of the optical convergence device 401 is located in the window 403.
  • the optical converging device 401 can be filled with a material with high transmittance and low refractive index, and the refractive index of the material needs to be lower than that of the optical converging device 401 to ensure that the most sufficient optical signal is converged to the window 303.
  • the optical convergence device 401 may be an organic material, such as SiO 2 , resin or transparent glue.
  • the optical converging device 401 may be prepared by processes such as thermal reflow or gray-scale masking process.
  • the window 403 is used for the light condensed by the optical condensing device 401.
  • the number of the windows 403 in the diaphragm 401 may be one or more.
  • the window 403 may be cylindrical, that is, the window 403 may be a small hole in the diaphragm 401.
  • the diameter of the window 403 is greater than 100 nm, so as to transmit the required light for imaging.
  • the diameter of the window 403 should also be smaller than a predetermined value to ensure that the diaphragm 401 can block unwanted light.
  • the parameter setting of the window 403 enables the optical signal required for imaging of the optical image acquisition unit 10 to be transmitted to the photoelectric sensing unit 201 to the maximum, and unnecessary light is blocked to the maximum.
  • the parameters of the window 403 can be set to maximize the transmission of light signals incident downwardly from the corresponding area above the optical image acquisition unit 10 to the photoelectric sensing unit 201, while maximizing other light signals.
  • the optical converging device 401 may also reuse the optical converging device in the display screen, or a separate optical converging device may also be used, which is not limited in the embodiment of the present application.
  • the optical image acquisition unit 10 in the display screen, the assembly space of the optical image acquisition product is saved.
  • the use of the optical converging device to converge the optical signal can improve the imaging quality, thereby improving the optical image acquisition Product performance.
  • LED light emitting diode
  • AMOLED AMOLED
  • Micro-LED Micro-LED
  • a typical OLED screen can include a top emission OLED screen and a bottom emission OLED screen.
  • Figure 1 is a typical structure of an optical image acquisition unit based on a top emission OLED screen.
  • Figure 6 is a A typical structure of an optical image acquisition unit based on a bottom-emitting OLED screen.
  • the light-emitting layer 300 of the display screen is arranged between the optical converging device 401 and the TFT layer 200.
  • the diaphragm 301 may be arranged in the light-emitting layer 300 of the display screen.
  • the light-emitting layer 300 of the display screen includes a plurality of OLED light-emitting units (or OLED display units, light-emitting pixels) 302, and the aperture 301 may be arranged between adjacent OLED light-emitting units, for example, may be spaced apart.
  • the N OLED light-emitting units are provided with an aperture 301, and the aperture 301 may correspond to one photoelectric sensing unit 201 in the TFT layer 200.
  • the OLED light-emitting unit 302 of the display screen can emit light to the fingerprint detection area of the display screen, and illuminate the surface of the user's finger. After being reflected by the ridge and crest of the finger, The reflected light of different light intensity enters the display screen, and after being condensed by the optical converging device 401, it is focused on the window 303 of the diaphragm 301. Further, the reflected light passes through the window 303 and is transmitted to the photoelectric sensing unit 201. The reflected light carries The fingerprint information of the user's finger.
  • the photoelectric sensing unit 201 receives the reflected light and converts it into a corresponding electrical signal, that is, a fingerprint detection signal.
  • the electronic device can obtain the fingerprint information of the user's finger based on the fingerprint detection signal.
  • the OLED light emitting unit of the display screen and the photoelectric sensing unit may be in one-to-one correspondence, or one OLED light emitting unit may correspond to multiple photoelectric sensing units, or multiple OLEDs.
  • the light-emitting unit corresponds to a photoelectric sensing unit.
  • the setting of the distance d 1 between the optical converging device 401 and the aperture 301 (that is, the thickness of the light-emitting layer 300 of the display screen) needs to satisfy that the optical signal passing through the lens can be converged at In the aperture window, specifically, the thickness d 1 of the light-emitting layer 300 of the display screen can be determined according to the focal length F of the optical converging device 401 and the position of the optical center of the optical converging device 401.
  • the distance d 2 from the plane where the aperture 301 is located to the optical sensing unit 201 can be determined according to the photosensitive area of the optical sensing unit 201 and the divergence angle of light passing through the focal point F of the optical converging device 401 .
  • the distance d 2 can be set to be smaller, or if the divergence angle of the light at the focal point F is larger, the distance d 2 can be set to be larger.
  • the thickness of the TFT layer 200 can be controlled by controlling the photosensitive area of the optical sensing unit 201 and the divergence angle of the light passing through the focal point F of the optical converging device 401, and further can control the overall thickness of the display screen.
  • the optical image acquisition unit 10 further includes:
  • the filter unit 402 is arranged in the optical path between the target object and the photoelectric sensing unit 201, and is used to filter out the light signal of the non-target waveband, and transmit the light signal of the target waveband (that is, the waveband required for optical image collection) Light signal).
  • the filter unit 402 only allows the optical signal of the target wavelength band to pass through (that is, the optical signal of the target wavelength band has a high transmittance), and the optical signal other than the target wavelength band has only a very low transmittance.
  • any medium layer in the middle of the optical path between the target object and the photoelectric sensing unit may be coated to form the filter unit.
  • the transmittance of the filter unit to light in the target wavelength band is greater than a first threshold, for example, 80%, and the transmittance of light in the non-target wavelength range is less than a second threshold, for example, 20%.
  • the filter unit 402 may be prepared by evaporation, sputtering, spin coating, etc., which is not limited in the embodiment of the present application.
  • the area projection of the filter unit 402 on the photoelectric sensing unit 201 needs to completely cover the photoelectric sensing unit 201 to ensure that interference light signals are filtered to the greatest extent.
  • FIGS. 3 to 5 show several typical arrangements of the filter unit 402, but the embodiment of the present application is not limited thereto.
  • the filter unit 402 may be arranged above the optical convergence device 401, as shown in FIG. 3.
  • the filter unit 402 may be disposed on the lower surface of the optical converging device 401, as shown in FIG. 4.
  • the filter unit 402 may be disposed on the upper surface of the photoelectric sensing unit 201, as shown in FIG. 5.
  • the top-emitting OLED screen may also include a base layer 100.
  • the base layer 100 may use a rigid substrate, such as glass.
  • the base layer 100 may be a flexible soft substrate.
  • the top-emitting OLED screen may further include a display accessory layer 500.
  • the display accessory layer 500 may include a polarizer, touch-related devices, protective glass and other accessories.
  • the The display accessory layer 500 is usually located at the outermost part of the display, and is the area directly touched by a finger.
  • the light-emitting layer 300 of the display screen is arranged below the TFT layer 200, and the TFT layer has a first base layer 100 above the TFT layer.
  • the diaphragm 301 may be disposed on the first base layer 100 above the TFT layer 200.
  • fingerprint detection is taken as an example to illustrate the working principle of the optical image acquisition unit based on the bottom-emission OLED screen.
  • the OLED light-emitting unit 302 of the display screen emits light to the fingerprint detection area of the display screen and illuminates the surface of the user's finger. After the reflection of the ridge and ridge of the finger, the reflected light of different light intensity enters the display screen. After being condensed by the optical converging device 401, it is focused on the window 303 of the diaphragm 301.
  • the reflected light passes through the window 303 and transmits to the photoelectric
  • the reflected light carries fingerprint information of the user’s finger
  • the photoelectric sensing unit 201 receives the reflected light and converts it into a corresponding electrical signal, that is, a fingerprint detection signal
  • the electronic device is based on the fingerprint detection signal
  • the fingerprint information of the user's finger can be obtained.
  • the distance d 1 between the optical converging device 401 and the aperture 301 (that is, the thickness of the first base layer 100) is also specially designed, for example, according to the focal length f of the optical converging device 401 and the optical The position of the optical center of the converging device 401 is determined.
  • the focal length f of the optical converging device 401 and the distance t from the optical center of the optical converging device 401 to the lower surface of the optical converging device 401 the thickness of the first base layer 100 can be controlled, and the overall thickness of the display screen can be further controlled.
  • a transparent medium layer 600 may also be included between the base layer and the TFT layer.
  • the thickness of the transparent medium layer 600 is the distance d 2 from the plane where the aperture is located to the optical sensing unit 201. It can be determined according to the photosensitive area of the optical sensing unit 201 and the divergence angle of the light passing through the focal point F of the optical converging device 401. For specific implementation, refer to the related description of the foregoing embodiment, and details are not repeated here. Therefore, the thickness of the transparent medium layer 600 can be controlled by controlling the photosensitive area of the optical sensing unit 201 and the divergence angle of the light passing through the focal point F of the optical converging device 401, and further control the overall thickness of the display screen.
  • a filter unit 402 can be provided in the optical path between the target object and the photoelectric sensing unit 201, which is used to filter out non-target optical signals and transmit optical signals in the target wavelength band (That is, the optical signal of the required wavelength band for optical image acquisition).
  • the arrangement of the filter unit can be as shown in Figs. 7, 8 and Figs. As shown in 9, the specific principle refers to the related description of the foregoing embodiment, which is not repeated here.
  • the top-emitting OLED screen may further include a second base layer 700 disposed under the light-emitting layer 300 of the display screen.
  • the second base layer 700 may Using a hard substrate, such as glass, for a flexible display screen, the second base layer 700 may be a flexible soft substrate, and the second base layer 700 may be integrated with the light emitting layer 300 of the display screen for protection The light-emitting layer 300 of the display screen.
  • the technical solution of the embodiment of the present application integrates the photoelectric sensing unit in the TFT layer of the display screen, and converges the light signal from the upper side of the display screen to the window of the aperture through the optical converging device, and transmits the light signal through the window
  • the thickness of the product can be reduced, and the imaging quality can be improved, thereby improving the performance of the optical image acquisition product.
  • FIGS. 10 to 15 are schematic structural diagrams of an optical image acquisition system based on a top-emitting OLED screen
  • Figures 13 to 15 are schematic structural diagrams of an optical image acquisition system based on a bottom-emitting OLED screen.
  • the optical image acquisition system may include:
  • the photoelectric sensing array includes a plurality of photoelectric sensing units distributed in an array and arranged on the thin film transistor TFT layer of the display screen;
  • An array of optical converging devices arranged above the TFT layer;
  • a diaphragm array is arranged between the TFT layer and the optical convergence device array, wherein each diaphragm in the diaphragm array is provided with a window;
  • the optical converging device array is used for converging the light signal reflected from the target above the display screen to the window of the diaphragm array, and the light signal is transmitted to the photoelectric sensing array through the window.
  • the optical converging device 401 may only be arranged above the photoelectric sensing unit 201, and the size of the optical converging device 401 may only cover the optical sensing unit 202, as shown in FIG. 10 or Figure 13.
  • the optical converging device 401 in the optical image acquisition system can be arranged in other ways.
  • the optical converging device 401 can be disposed above the light-emitting unit of the display screen.
  • the size of 401 can cover both the optical sensing unit 202 and the light emitting unit 302 of the display screen, as shown in FIG. 11, FIG. 12, FIG. 14, and FIG. 15.
  • the above arrangement of the optical converging device is only an example, and the embodiment of the present application does not specifically limit this, as long as it can converge the effective reflected light signal above the display screen to the window of the diaphragm to the maximum extent.
  • the photoelectric sensing array, the optical converging device array, and the setting mode and working principle of the diaphragm array in the optical image acquisition system can be referred to in the previous article about the photoelectric sensing unit 201, the optical converging device 401, and the diaphragm 301.
  • the relevant description will not be repeated here.
  • the optical image acquisition system may further include:
  • the filter layer is arranged in the optical path between the target and the photoelectric sensing array, and is used to filter out the optical signal in the non-target waveband and transmit the optical signal in the target waveband.
  • the setting period or number of optical image acquisition units can be set according to the requirements of image resolution, the size of the image acquisition area and other factors, which are not limited in the embodiment of the present application.
  • each optical image acquisition unit corresponds to a pixel of the acquired image, and the optical image acquisition system obtains the acquired image through an array of multiple optical image acquisition units.
  • the optical image acquisition system may further include:
  • the light incident angle screening unit is arranged above the array, and is used to transmit light in a specific incident angle range and block light outside the specific incident angle range.
  • the incident angle required by the light incident angle screening unit can be very small, so as to select the light signal incident substantially vertically downward.
  • the optical image acquisition system may further include a corresponding processing chip for further processing of the acquired image, for example, fingerprint identification, fingerprint verification, etc., which is not limited in the embodiment of the present application.
  • An embodiment of the present application also provides a display screen, which may include the optical image acquisition system as described above. Therefore, the display screen not only has an image display function but also an optical image acquisition function.
  • the display screen may include various structures included in the display screen in the foregoing embodiment, and the setting mode and working principle of the optical image acquisition system in the display screen may refer to the relevant description of the foregoing embodiment. No longer.
  • the display screen is an OLED screen with a plurality of organic light emitting diode OLED light-emitting units
  • the fingerprint detection area of the optical image acquisition system is located in the display area of the OLED screen, and the fingerprint is used
  • the OLED display unit in the detection area is used as the excitation light source; wherein the light signal received by the optical image acquisition system is the reflected light formed by the light signal emitted by the OLED display unit irradiating the target object above the OLED screen, so The reflected light carries biological characteristic information of the target object.
  • An embodiment of the present application also provides an electronic device, which may include a display screen and the optical image acquisition system of the foregoing embodiment of the application, wherein the optical image acquisition system is provided in the display screen.
  • the electronic device can be any electronic device with a display screen.
  • the display screen may be the display screen described above, for example, an OLED screen or other display screens.
  • OLED screen for example, an OLED screen or other display screens.
  • the related description of the display screen please refer to the description of the display screen in the above description.
  • the display screen is an OLED display screen
  • the light-emitting layer of the display screen includes a plurality of OLED light-emitting units, wherein, when the optical image acquisition system is a biometric recognition system, the biometric recognition system adopts At least part of the OLED light-emitting unit is used as an excitation light source for biometric identification.
  • the units can be implemented by electronic hardware, computer software, or a combination of both, in order to clearly illustrate the interchangeability of hardware and software.
  • the composition and steps of each example have been described generally in terms of function. Whether these functions are executed by hardware or software depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the disclosed system and device may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Image Input (AREA)
  • Electroluminescent Light Sources (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种光学图像采集单元(10)、光学图像采集系统、显示屏和电子设备。该光学图像采集单元(10)包括:光电感应单元(201),设置在显示屏的薄膜晶体管TFT层(200);光学会聚器件(401),设置在所述TFT层(200)上方;光阑(301),设置在所述TFT层(200)和所述光学会聚器件(401)之间,其中,所述光阑(301)设置有窗口(303);所述光学会聚器件(401)用于将从所述显示屏上方的目标物体反射的光信号传输至所述窗口(303),所述光信号经由所述窗口(303)传输至所述光电感应单元(201)。该方案能够提升光学图像采集的性能。

Description

光学图像采集单元、光学图像采集系统、显示屏和电子设备 技术领域
本申请实施例涉及信息技术领域,并且更具体地,涉及一种光学图像采集单元、光学图像采集系统、显示屏和电子设备。
背景技术
随着终端行业的高速发展,生物特征识别技术,例如,指纹识别技术,越来越受到人们重视。
在生物特征识别技术中,光学图像采集方式是其中比较重要的实现方式。随着终端产品的发展,对生物特征识别的要求越来越高,例如,要求较大的识别区域和较小的装配空间,相应地,对光学图像采集产品的要求也越来越高。
因此,如何提升光学图像采集产品的性能,成为一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种光学图像采集单元、光学图像采集系统、显示屏和电子设备,能够提升光学图像采集产品的性能。
第一方面,提供了一种光学图像采集单元,包括:。
光电感应单元,设置在显示屏的薄膜晶体管TFT层;
光学会聚器件,设置在所述TFT层上方;
光阑,设置在所述TFT层和所述光学会聚器件之间,其中,所述光阑设置有窗口;
所述光学会聚器件用于将从所述显示屏上方的目标物体反射的光信号会聚至所述窗口,所述光信号经由所述窗口传输至所述光电感应单元。
在一些可能的实现方式中,所述显示屏的发光层设置在所述光学会聚器件和所述TFT层之间,所述光阑设置在所述显示屏的发光层。
在一些可能的实现方式中,所述显示屏的发光层设置在所述TFT层下方,所述光阑设置在所述显示屏中位于所述TFT层上方的基底层。
在一些可能的实现方式中,所述显示屏的发光层包括多个有机发光二极 管OLED发光单元,所述光阑设置在相邻OLED发光单元之间。
在一些可能的实现方式中,所述光学图像采集单元还包括:
滤光单元,设置于所述目标物体到所述光电感应单元之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
在一些可能的实现方式中,所述滤光单元设置在所述光学会聚器件的上方,或设置在所述光学会聚器件的下表面,或设置在所述光电感应单元的上表面。
在一些可能的实现方式中,所述光学会聚器件的下表面到所述光阑的距离为所述光学会聚器件的焦距和所述光学会聚器件的光心到所述光学会聚器件的下平面的距离之差。
在一些可能的实现方式中,所述光阑的下表面到所述光电感应单元的距离根据所述光电感应单元的面积和经过所述光学会聚器件的焦点的光线的发散角确定。
在一些可能的实现方式中,所述光电感应单元检测的光信号用于形成采集图像的一个像素。
在一些可能的实现方式中,所述光电感应单元用于接收所述光信号以获取所述目标的指纹信息。
在一些可能的实现方式中,所述光电感应单元设置所述TFT层的TFT器件之间。
在一些可能的实现方式中,所述光电感应单元复用所述TFT层的电路以实现光电检测功能。
第二方面,提供了一种光学图像采集系统,包括第一方面或第一方面中任一可能的实现方式中的光学图像采集单元构成的阵列。
第三方面,提供了一种光学图像采集系统,包括:
光电感应阵列,包括呈阵列式分布的多个光电感应单元,设置在显示屏的薄膜晶体管TFT层;
光学会聚器件阵列,设置在所述TFT层上方;
光阑阵列,设置在所述TFT层和所述光学会聚器件阵列之间,其中,所述光阑阵列中的每个光阑设置有窗口;
所述光学会聚器件阵列用于将从所述显示屏上方的目标反射的光信号会聚至光阑阵列的窗口,所述光信号经由所述窗口传输至光电感应阵列。
在一些可能的实现方式中,所述显示屏的发光层设置在所述光学会聚器件和所述TFT层之间,所述光阑阵列设置在所述显示屏的发光层。
在一些可能的实现方式中,所述显示屏的发光层设置在所述TFT层下方,所述光阑阵列设置在所述显示屏中位于所述TFT层上方的基底层。
在一些可能的实现方式中,所述显示屏的发光层包括多个OLED显示单元,所述光阑阵列包括多个光阑,所述多个光阑间隔设置在所述显示屏的所述多个OLED发光单元中。
在一些可能的实现方式中,所述光学图像采集系统还包括:
滤波层,设置于所述目标到所述光电感应阵列之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
在一些可能的实现方式中,所述滤波层设置在所述光学会聚器件阵列的上方,或设置在所述光学会聚器件阵列的下表面,或设置在所述光电感应阵列上表面。
在一些可能的实现方式中,所述滤光层包括多个滤光单元,每个滤光单元对应一个光电感应单元,或者对应多个光电感应单元。
在一些可能的实现方式中,所述光学会聚器件层中的光学会聚器件的尺寸只覆盖光电感应单元,或者同时覆盖光电感应单元和显示屏的发光单元。
在一些可能的实现方式中,所述光学会聚器件的下表面到所述光阑的距离为所述光学会聚器件的焦距和所述光学会聚器件的光心到所述光学会聚器件的下平面的距离之差。
在一些可能的实现方式中,所述光阑层的平面到所述感应阵列的距离根据所述光电感应单元的面积和经过所述光学会聚器件的焦点的光线的发散角确定。
在一些可能的实现方式中,所述显示屏为具有多个OLED显示单元的OLED屏,且所述光学图像采集系统的指纹检测区域位于所述OLED屏的显示区域,并采用所述指纹检测区域的OLED的发光单元作为激励光源;其中,所述光学图像采集系统接收的光信号为所述OLED发光单元发出的光信号照射到所述OLED屏上方的目标物体而形成的反射光,所述反射光携带有所述目标物体的生物特征信息。
第四方面,提供了一种显示屏,包括:
如第一方面或第一方面中任意可能实现方式中的光学图像采集系统, 或,如第二方面或第二方面中任意可能实现方式中的光学图像采集系统。
在一些可能的实现方式中,所述显示屏还包括:
第一基底层,设置在所述显示屏的TFT层上方,其中,所述光学图像采集系统的光阑阵列设置在所述基底层。
在一些可能的实现方式中,所述显示屏还包括:
发光层,设置在所述TFT层下方。
在一些可能的实现方式中,所述显示屏还包括:
第二基底层,设置在所述显示屏的发光层下方。
在一些可能的实现方式中,所述显示屏还包括:透明介质层,设置在所述显示屏的第一基底层和所述显示屏的TFT层之间。
在一些可能的实现方式中,所述显示屏还包括:
发光层,设置在所述TFT层上方,其中,所述光学图像采集系统的光阑阵列设置在所述发光层。
在一些可能的实现方式中,所述显示屏还包括:
基底层,设置在所述显示屏的TFT层下方。
在一些可能的实现方式中,所述显示屏还包括:
显示屏附件层,设置在所述光学图像采集系统的光学会聚器件阵列上方,其中,所述显示屏附件层包括偏振片,触控器件和保护玻璃。
在一些可能的实现方式中,所述显示屏为具有多个有机发光二极管OLED显示单元的OLED屏,且所述光学图像采集系统的指纹检测区域位于所述OLED屏的显示区域,并采用所述指纹检测区域的OLED的发光单元作为激励光源;其中,所述光学图像采集系统接收的光信号为所述OLED发光单元发出的光信号照射到所述OLED屏上方的目标物体而形成的反射光,所述反射光携带有所述目标物体的生物特征信息。
第五方面,提供了一种电子设备,包括:显示屏;以及第一方面或第一方面的任意可能的实现方式中的光学图像采集系统,或者,第二方面或第二方面的任意可能的实现方式中的光学图像采集系统,其中,所述光学图像采集系统设置于所述显示屏中。
在一些可能的实现方式中,所述显示屏为有机发光二极管OLED显示屏,所述显示屏的发光层包括多个OLED发光单元,其中,在所述光学图像采集系统为生物特征识别系统时,所述生物特征识别系统采用至少部分 OLED发光单元源作为生物特征识别的激励光源。
第六方面,提供了一种电子设备,包括:如第四方面或第四方面任意可能的实现方式中的显示屏。
本申请实施例的技术方案,通过将光电感应单元集成在显示屏的TFT层中,通过光学会聚器件将来自显示屏上方的光信号会聚至光阑的窗口,并使光信号经由窗口传输至光电传感单元以实现图像采集,相对于将模组设置在显示屏下方,可以减小产品的厚度,同时还可以提高成像质量,从而能够提升光学图像采集产品的性能。
附图说明
图1是本申请一个实施例的光学图像采集单元的示意图。
图2是滤光单元的工作原理图。
图3至图5是基于顶出射型OLED屏的光学图像采集单元的示意性结构图。
图6是本申请另一个实施例的光学图像采集单元的示意图。
图7至图9是基于底出射型OLED屏的光学图像采集单元的示意性结构图。
图10至图12是基于顶出射型OLED屏的光学图像采集系统的示意性结构图。
图13至图15是基于底出射型OLED屏的光学图像采集系统的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种电子设备,例如智能手机、笔记本电脑、平板电脑、游戏设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备,但本申请实施例对此并不限定。
本申请实施例的技术方案可以用于光学生物特征识别或者其他光学图像采集,其中,光学生物特征识别除了光学指纹识别外,还可以为其他生物特征识别,例如,活体识别等,本申请实施例对此也不限定。为了便于理解 本申请实施例的技术方案,下面首先对光学生物特征识别技术进行介绍。
光学生物特征识别技术使用从设备显示组件的顶面返回的光来进行指纹感应和其他感应操作。该返回的光携带与该顶面接触的目标(例如手指)的信息,通过采集和检测该返回的光实现特定光学感应模块。光学感应模块的设计可以为通过恰当地配置用于采集和检测返回的光的光学元件来实现期望的光学成像。
光学生物特征识别模组,比如光学指纹模组,其主要用于采集用户的生物特征信息(比如指纹图像信息)。作为一种实施例,所述生物特征识别模组可以具体包括具有光学感应阵列的光学生物特征传感器,比如光学指纹传感器;所述光学感应阵列包括多个光学感应单元(感光单元),且所述光学感应阵列的所在区域对应所述生物特征识别模组的生物特征采集区域。例如,所述生物特征采集区域位于显示屏的显示区域之中,因此,用户在需要对所述电子设备进行解锁或者其他生物特征验证的时候,只需要将手指按压在位于所述显示屏的生物特征采集区域,便可以实现生物特征输入操作。由于生物特征采集检测可以在所述显示屏的显示区域内部实现,采用上述结构的电子设备无需其正面专门预留空间来设置指纹按键(比如Home键),因而可以采用全面屏方案。因此,所述显示屏的显示区域可以基本扩展到所述电子设备的整个正面。
上述的显示屏可以为自发光显示屏,其采用具有自发光的显示单元作为显示像素。比如显示屏可以为有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏、有源矩阵有机发光二极管(Active-Matrix Organic Light-Emitting Diode,AMOLED)或者微型发光二极管(Micro-LED)显示屏。在其他替代实施例中,所述显示屏也可以为液晶显示屏(Liquid Crystal Display,LCD)或者其他被动发光显示屏,本申请实施例对此不做限制。
另一方面,所述显示屏具体为触控显示屏,其不仅可以进行画面显示,还可以检测用户的触摸或者按压操作,从而为用户提供一个人机交互界面。比如,在一种实施例中,电子设备可以包括触摸传感器,所述触摸传感器可以具体为触控面板(Touch Panel,TP),其可以设置在所述显示屏表面,也可以部分集成或者整体集成到所述显示屏内部,从而形成所述触控显示屏。
以显示屏采用OLED屏为例,显示屏的发光层具有呈阵列式排布的OLED显示单元阵列,所述生物特征识别模组可以利用所述OLED屏位于所 述生物特征采集区域的OLED显示单元(即OLED发光单元)作为生物特征检测识别的激励光源。当然,应当理解,在其他替代实现方案中,该生物特征识别模组也可以采用内置光源或者外置光源来提供用于进行生物特征检测识别的光信号。在这种情况下,所述生物特征识别模组不仅可以适用于如OLED屏等自发光显示屏,还可以适用于非自发光显示屏,比如液晶显示屏或者其他的被动发光显示屏。并且,所述生物特征识别模组的光学感应阵列具体为光探测器(Photo detector)阵列(或称为光电探测器阵列、感光单元阵列),其包括多个呈阵列式分布的光探测器/感光单元,所述光探测器/感光单元可以作为如上所述的光学感应单元。
当手指触摸、按压或者接近(为便于描述,在本申请中统称为按压)在生物特征采集区域时,所述生物特征采集区域的显示单元发出的光线在手指发生反射并形成反射光,其中所述反射光可以携带有用户手指的生物特征信息。比如,所述光线被用户手指表面的指纹发生反射之后,由于手指指纹的指纹脊和指纹谷的反射光是不同的,因此反射光便携带有用户的指纹信息。所述反射光返回显示屏并被其下方的生物特征识别模组的光探测器阵列所接收并且转换为相应的电信号,即生物特征检测信号。电子设备基于所述生物特征检测信号便可以获得用户的生物特征信息,并且可以进一步进行生物特征匹配验证,从而完成当前用户的身份验证以便于确认其是否有权限对所述电子设备进行相应的操作。
应当理解的是,在具体实现上,电子设备还包括保护盖板,所述盖板可以具体为透明盖板,比如玻璃盖板或者蓝宝石盖板,其位于所述显示屏的上方并覆盖所述电子设备的正面,且所述保护盖板表面还可以设置有保护层。因此,本申请实施例中,所谓的手指按压所述显示屏实际上可以是指手指按压在所述显示屏上方的盖板或者覆盖所述盖板的保护层表面。
在一种实施例中,光学生物特征识别模组可以设置在显示屏的下方,形成屏下生物特征识别模组。随着识别区域越来越大的需求,模组的厚度也相应会增大,这又会占据较大空间。鉴于此,本申请实施例提供了一种改进的光学图像采集方案,可以将模组设置于显示屏内,从而提升光学图像采集产品的性能。
图1示出了本申请一个实施例的光学图像采集单元10的示意图,该光学图像采集单元10可以构成光学图像采集系统的一个像素单元。
如图1所示,光学图像采集单元10可以包括:
光电感应单元201,设置在显示屏的薄膜晶体管TFT层200;
光学会聚器件401,设置在所述TFT层200上方;
光阑301,设置在所述TFT层200和所述光学会聚器件401之间,其中,所述光阑301设置有窗口303;
所述光学会聚器件401用于将从所述显示屏上方的目标物体反射的光信号会聚至所述窗口303,所述光信号经由所述窗口303传输至所述光电感应单元201。
通过光学会聚器件401、光阑301、窗口303和光电感应单元201的设置,来自光学会聚器件401上方的光信号被会聚至窗口303,并通过窗口303传输至光电感应单元201。这样,光电感应单元201可以检测到来自光学会聚器件401上方对应区域的光信号,进而可以根据光信号的光强获取像素值。
光电传感单元201检测的光信号可以用于形成采集图像的一个像素,该像素表示该光学图像采集单元10上方对应区域的特征值。也就是说,一个光学图像采集单元10采集的信号形成图像的一个像素,这样,通过多个光学图像采集单元10采集的信号可以得到一副图像。
例如,以指纹检测为例,每个光学图像采集单元10会感受到其上方会聚的光强,再通过光电感应单元201转化成电信号形成指纹原始值,然后,行列拼成整个识别区的指纹图像。
在本申请实施例中,所述光学图像采集单元10可以设置在显示屏内,这样,可以最大限度复用该显示屏内的固有结构。
具体的,所述光电感应单元201用于将光信号转换为电信号。所述光电感应单元201可以包括光电二极管(Photo Diode,PD),光电三极管(Phototransistor),以及控制所述PD或Phototransistor的TFT器件。因此,可以将所述光电感应单元201设置在所述显示屏的薄膜晶体管(Thin film Transistor,TFT)层200,该TFT层200可以包括多个TFT器件202,用于控制OLED发光单元的发光,在一种可选实施例中,可以复用TFT层中的TFT器件用作控制PD或Phototransistor的TFT器件。或者,在其他实施例中,光信号检测电路也可以采用单独的电路,即,不复用TFT层的电路,例如新增实现光电感应单元功能的电路。
在该TFT层200中,所述光电感应单元201可以周期性间隔设置,例如, 每间隔M个TFT器件202设置一个光电感应单元201,或者,在每M+1个TFT器件202中,将其中的一个TFT器件202替换为一个光电感应单元201。光学感应单元的间距可以根据图像分辨率需求,图像采集区域的大小等因素设定。
在本申请实施例中,所述光电感应单元201采用与TFT器件202相同或兼容的制备工艺进行制备,以保证所述光电图像采集单元和所述显示屏能够在集成在一起。
所述光学会聚器件401可以是各种具有会聚功能的器件,例如透镜或微透镜。可选地,所述光学会聚器件401的聚焦点位于所述窗口403内。
所述光学会聚器件401的周围可以填充高透过率低折射率材料,该材料的折射率需要低于该光学会聚器件401,以保证最够的光信号被会聚到所述窗口303。可选地,所述光学会聚器件401可以为有机材料,例如SiO 2,树脂或透明胶等。可选地,所述光学会聚器件401可以采用热回流或灰度掩膜工艺等工艺制备。
所述窗口403用于通过所述光学会聚器件401会聚的光。可选地,所述光阑401中所述窗口403的数量可以为一个或多个。可选地,所述窗口403可以为圆柱形,即,所述窗口403可以为光阑401中的小孔。可选地,所述窗口403的直径大于100nm,以便于透过所需的光以进行成像。所述窗口403的直径也要小于预定值,以确保所述光阑401能够阻挡不需要的光。也就是说,所述窗口403的参数设置使得该光学图像采集单元10成像所需的光信号最大化的传输至所述光电感应单元201,而不需要的光被最大化的阻挡。例如,所述窗口403的参数可以设置为使得该光学图像采集单元10上方对应区域大致垂直向下入射的光信号最大化的传输至所述光电感应单元201,而最大化阻挡其他光信号。
在本申请实施例中,所述光学会聚器件401也可以复用显示屏内的光学会聚器件,或者,也可以采用单独的光学会聚器件,本申请实施例对此并不限定。
因此,通过将所述光学图像采集单元10可以设置在显示屏内,节约了光学图像采集产品的装配空间,另外,利用光学会聚器件对光信号进行会聚可以提高成像质量,从而能够提升光学图像采集产品的性能。
应理解,本申请实施例的各种设计适用于所有发光二极管(Light  Emitting Diode,LED)类屏,比如OLED,AMOLED,Micro-LED等。以下,以显示屏为OLED屏为例,说明光学图像采集单元的具体结构。
典型的OLED屏可以包括顶出射型(Top emission)OLED屏和底出射型(Bottom emission)OLED屏,图1是一种基于顶出射性OLED屏的光学图像采集单元的典型结构,图6是一种基于底出射性OLED屏的光学图像采集单元的典型结构。
以下,结合图1至图9,分别介绍基于顶出射型OLED屏和基于底出射型OLED屏的光学图像采集单元的具体结构。
对于顶出射型OLED屏,所述显示屏的发光层300设置在所述光学会聚器件401和所述TFT层200之间,为了在所述TFT层200上方设置光阑301,在一种可选的实现方式中,可以将所述光阑301设置在所述显示屏的发光层300中。
具体地,所述显示屏的发光层300包括多个OLED发光单元(或称OLED显示单元,发光像素)302,可以在相邻的OLED发光单元之间设置所述光阑301,例如,可以间隔N个OLED发光单元设置一个光阑301,所述光阑301可以对应所述TFT层200中的一个光电感应单元201。
结合图1,以指纹检测为例,说明具体的工作原理,显示屏的OLED发光单元302可以向显示屏的指纹检测区域发光,照射在用户手指的表面,经过手指的峪和嵴的反射后,不同光强的反射光进入显示屏,经过光学会聚器件401会聚后,聚焦到光阑301的窗口303处,进一步地,该反射光经过窗口303后传输至光电感应单元201,该反射光携带有用户手指的指纹信息,所述光电感应单元201接收到所述反射光并将其转换为相应的电信号,即指纹检测信号,电子设备基于所述指纹检测信号便可以获得用户手指的指纹信息。
应理解,在本申请实施例中,所述显示屏的OLED发光单元和所述光电感应单元可以是一一对应的,或者也可以是一个OLED发光单元对应多个光电感应单元,或者多个OLED发光单元对应一个光电感应单元。
在本申请实施例中,所述光学会聚器件401与光阑301之间的距离d 1的设置(即该显示屏的发光层300的厚度)需要满足使得透过该透镜的光信号能够会聚在光阑的窗口中,具体地,该显示屏的发光层300的厚度d 1可以根据光学会聚器件401的焦距F与光学会聚器件401的光心的位置确定。
以所述光学会聚器件401为透镜举例,在透镜的规格确定的情况下,该显示屏的发光层300的厚度d 1的设置需要满足公式d 1=f-t,其中,f为透镜401的焦距(即透镜的光心O到焦点F的距离),t为透镜401的光心到透镜401的下平面的距离,应注意,当透镜401的光心在透镜401的下平面之上时,t为正值,透镜401的光心在透镜401的下平面之下时,t为负值。因此,通过控制f和t的大小可以达到控制显示屏的发光层300的厚度的目的,进一步可以控制显示屏的整体厚度。
在本申请实施例中,所述光阑301所在的平面到光学感应单元201的距离d 2可以根据光学感应单元201的感光面积以及经过所述光学会聚器件401的焦点F的光线的发散角确定。例如,若光学感应单元201的感光面积较大,则可以设置该距离d 2较小,或者,若焦点F的光线的发散角较大,则可以设置该距离d 2较大。因此,通过控制光学感应单元201的感光面积以及经过所述光学会聚器件401的焦点F的光线的发散角可以控制TFT层200的厚度,进一步可以控制显示屏的整体厚度。
进一步地,在本申请一些实施例中,所述光学图像采集单元10还包括:
滤光单元402,设置于所述目标物体到所述光电感应单元201之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号(即光学图像采集所需波段的光信号)。
所述滤光单元402只允许目标波段的光信号透过(即,对目标波段的光信号具有高透过率),除所述目标波段以外的光信号只具有极低的透过率。
图2是滤光单元的工作原理图,用于指纹检测的有效光发射信号入射到目标物体的表面,经过目标物体的反射进入显示屏,在传输至所述光电感应单元的过程中,除了有效光反射信号之外,环境杂散光如太阳光等无效干扰光信号也会同时进入显示屏,传输至所述光电感应单元。通过在目标物体到所述光电感应单元201之间的光路中设置滤光单元,能够保证进入光电感应单元的光信号为光学图像采集所需的有效光反射光信号,进一步根据该光信号进行处理可以得到所需的图像信息,例如指纹图像。
可选地,在一些实施例中,可以在所述目标物体到所述光电感应单元之间的光路中间的任意介质层镀膜,形成该滤光单元。可选地,滤光单元对目标波段的光的透过率大于第一阈值,例如,80%,对非目标波段的光的透过率小于第二阈值,例如20%。
可选地,所述滤光单元402可以采用多层无机盐金属,氧化物,非金属氧化物等叠层结构,或者也可以为具有一定厚度的有机材料,本申请实施例对此不作限定。
可选地,所述滤光单元402可以采用蒸镀,溅射,旋涂等方式制备,本申请实施例对此不作限定。
可选地,所述滤光单元402在所述光电感应单元201上的面积投影需要完全覆盖所述光电感应单元201,以保证最大程度的滤除干扰光信号。
图3至图5示出了滤光单元402的几种典型的设置方式,但本申请实施例并不限于此。
例如,所述滤光单元402可以设置在所述光学会聚器件401的上方,如图3所示。
又例如,所述滤光单元402可以设置在所述光学会聚器件401的下表面,如图4所示。
再例如,所述滤光单元402可以设置在所述光电感应单元201的上表面,如图5所示。
可选地,顶出射型OLED屏还可以包括基底层100,可选地,对于非柔性显示屏而言,该基底层100可以采用硬质基板,例如玻璃,对于柔性显示屏而言,该基底层100可以采用挠性软质基板。
可选地,顶出射型OLED屏还可以包括显示屏附件层500,可选地,该显示屏附件层500可以包括偏振片,触控相关的器件,保护玻璃等附件,在实际使用中,该显示屏附件层500通常位于显示屏的最外部,为手指直接触摸区域。
结合图6至图8说明基于底出射型OLED屏的光学图像采集单元的具体结构。
对于底出射型OLED屏,所述显示屏的发光层300设置在所述TFT层200下方,所述TFT层上方具有第一基底层100,为了在所述光电感应单元201上方设置光阑,在一个可选的实现方式中,所述光阑301可以设置在所述TFT层200上方的第一基底层100。
结合图6,以指纹检测为例,说明基于底出射型OLED屏的光学图像采集单元的工作原理,显示屏的OLED发光单元302向显示屏的指纹检测区域发光,照射在用户手指的表面,经过手指的峪和嵴的反射后,不同光强的反 射光进入显示屏,经过光学会聚器件401会聚后,聚焦到光阑301的窗口303处,进一步地,该反射光经过窗口303后传输至光电感应单元201,该反射光携带有用户手指的指纹信息,所述光电感应单元201接收到所述反射光并将其转换为相应的电信号,即指纹检测信号,电子设备基于所述指纹检测信号便可以获得用户手指的指纹信息。
在本实施例中,所述光学会聚器件401与光阑301之间的距离d 1(即该第一基底层100的厚度)也是特别设计的,例如,根据光学会聚器件401的焦距f与光学会聚器件401的光心的位置确定,具体实现参考前述实施例的相关描述,这里不再赘述。因此,通过控制光学会聚器件401的焦距f和光学会聚器件401的光心到光学会聚器件401下表面的距离t可以控制第一基底层100的厚度,进一步控制显示屏的整体厚度。
在本实施例中,所述基底层和所述TFT层之间还可以包括透明介质层600,该透明介质层600的厚度,即所述光阑所在的平面到光学感应单元201的距离d 2可以根据光学感应单元201的感光面积以及经过所述光学会聚器件401的焦点F的光线的发散角确定,具体实现参考前述实施例的相关描述,这里不再赘述。因此,通过控制光学感应单元201的感光面积以及经过所述光学会聚器件401的焦点F的光线的发散角可以控制透明介质层600的厚度,进一步控制显示屏的整体厚度。
与前述实施例类似,可以在所述目标物体到所述光电感应单元201之间的光路中可以设置滤光单元402,用于滤掉非目标波段的光信号,透过目标波段的光信号(即光学图像采集所需波段的光信号)。
与图3至图5所示实施例中滤光单元的设置方式类似,基于底出射型显示屏的光学图像采集单元中,所述滤光单元的设置方式可以分别如图7,图8和图9所示,具体原理参考前述实施例的相关描述,这里不再赘述。
可选地,顶出射型OLED屏还可以包括第二基底层700,设置在所述显示屏的发光层300的下方,可选地,对于非柔性显示屏而言,该第二基底层700可以采用硬质基板,例如玻璃,对于柔性显示屏而言,该第二基底层700可以采用挠性软质基板,该第二基底层700可以与显示屏的发光层300集成在一起,用于保护所述显示屏的发光层300。
因此,本申请实施例的技术方案,通过将光电感应单元集成在显示屏的TFT层中,通过光学会聚器件将来自显示屏上方的光信号会聚至光阑的窗 口,并使光信号经由窗口传输至光电传感单元以实现图像采集,相对于将模组设置在显示屏下方,可以减小产品的厚度,同时还可以提高成像质量,从而能够提升光学图像采集产品的性能。
以下,结合图10至图15,介绍根据本申请实施例的光学图像采集系统。其中,图10至图12是基于顶出射型OLED屏的光学图像采集系统的结构示意图,该图13至图15是基于底出射型OLED屏的光学图像采集系统的结构示意图。具体地,该光学图像采集系统可以包括:
光电感应阵列,包括呈阵列式分布的多个光电感应单元,设置在显示屏的薄膜晶体管TFT层;
光学会聚器件阵列,设置在所述TFT层上方;
光阑阵列,设置在所述TFT层和所述光学会聚器件阵列之间,其中,所述光阑阵列中的每个光阑设置有窗口;
所述光学会聚器件阵列用于将从所述显示屏上方的目标反射的光信号会聚至光阑阵列的窗口,所述光信号经由所述窗口传输至光电感应阵列。
该光学图像采集系统可以为上述光学图像采集单元10构成的阵列。可选地,在一些具体实施例中,所述阵列的每行或每列中的光学图像采集单元的数量不小于10。
在一些实施例中,在光学图像采集系统中,所述光学会聚器件401可以只设置在光电感应单元201的上方,所述光学会聚器件401的尺寸可以只覆盖所述光学感应单元202,如图10或图13所示。
在另一些实施例中,光学图像采集系统中的光学会聚器件401可以采用其他的设置方式,例如,所述光学会聚器件401可以设置在所述显示屏的发光单元的上方,所述光学会聚器件401的尺寸可以同时覆盖所述光学感应单元202和显示屏的发光单元302,如图11、图12,图14、图15所示。
应理解,以上光学会聚器件的设置方式仅为示例,本申请实施例对此不作具体限定,只要其能够将显示屏上方的有效反射光信号最大程度会聚至所述光阑的窗口即可。
需要说明的是,所述光学图像采集系统中的光电感应阵列,光学会聚器件阵列,光阑阵列的设置方式和工作原理可以参考前文中关于光电感应单元201,光学会聚器件401,光阑301的相关说明,为了简洁,这里不再赘述。
可选地,在一些实施例中,所述光学图像采集系统还可以包括:
滤波层,设置于所述目标到所述光电感应阵列之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
可选地,所述滤光层包括多个滤光单元,每个滤光单元对应一个光电感应单元,或者对应多个光电感应单元。
这里,滤波层的具体设置方式和工作原理参考前文中滤光单元402的相关描述,这里不再赘述。
应理解,在所述光学图像采集系统中,光学图像采集单元的设置周期或数量可以根据图像分辨率的要求、图像采集区域的大小等因素而设定,本申请实施例对此并不限定。
在光学图像采集系统中,每个光学图像采集单元对应采集图像的一个像素,光学图像采集系统通过多个光学图像采集单元的阵列得到所采集的图像。
可选地,所述光学图像采集系统还可以包括:
光入射角度筛选单元,设置于所述阵列上方,用于透过特定入射角度范围的光,阻挡所述特定入射角度范围外的光。
例如,光入射角度筛选单元要求的入射角可以非常小,以选择大致垂直向下入射的光信号。
可选地,所述光学图像采集系统还可以包括相应的处理芯片,用于对采集的图像的进一步处理,例如,指纹识别,指纹验证等,本申请实施例对此并不限定。
本申请实施例还提供了一种显示屏,该显示屏可以包括如前文所述的光学图像采集系统。因此,该显示屏不仅具有图像显示功能还具有光学图像采集功能。
应理解,所述显示屏可以包括前述实施例中显示屏所包括的各种结构,所述显示屏中的所述光学图像采集系统的设置方式和工作原理可以参考前述实施例的相关描述,这里不再赘述。
在一个具体实施例中,所述显示屏为具有多个有机发光二极管OLED发光单元的OLED屏,且所述光学图像采集系统的指纹检测区域位于所述OLED屏的显示区域,并采用所述指纹检测区域的OLED的显示单元作为激励光源;其中,所述光学图像采集系统接收的光信号为所述OLED显示单元发出的光信号照射到所述OLED屏上方的目标物体而形成的反射光,所述反 射光携带有所述目标物体的生物特征信息。
本申请实施例还提供了一种电子设备,该电子设备可以包括显示屏以及上述本申请实施例的光学图像采集系统,其中,所述光学图像采集系统设置于所述显示屏中。该电子设备可以为任何具有显示屏的电子设备。
显示屏可以采用以上描述中的显示屏,例如OLED屏或其他显示屏,显示屏的相关说明可以参考以上描述中关于显示屏的描述,为了简洁,在此不再赘述。
可选地,所述显示屏为OLED显示屏,所述显示屏的发光层包括多个OLED发光单元,其中,在所述光学图像采集系统为生物特征识别系统时,所述生物特征识别系统采用至少部分OLED发光单元作为生物特征识别的激励光源。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种光学图像采集单元,其特征在于,包括:
    光电感应单元,设置在显示屏的薄膜晶体管TFT层;
    光学会聚器件,设置在所述TFT层上方;
    光阑,设置在所述TFT层和所述光学会聚器件之间,其中,所述光阑设置有窗口;
    所述光学会聚器件用于将从所述显示屏上方的目标物体反射的光信号会聚至所述窗口,所述光信号经由所述窗口传输至所述光电感应单元。
  2. 根据权利要求1所述的光学图像采集单元,其特征在于,所述显示屏的发光层设置在所述光学会聚器件和所述TFT层之间,所述光阑设置在所述显示屏的发光层。
  3. 根据权利要求1所述的光学图像采集单元,其特征在于,所述显示屏的发光层设置在所述TFT层下方,所述光阑设置在所述显示屏中位于所述TFT层上方的基底层。
  4. 根据权利要求2或3所述的光学图像采集单元,其特征在于,所述显示屏的发光层包括多个有机发光二极管OLED发光单元,所述光阑设置在相邻OLED发光单元之间。
  5. 根据权利要求1至4中任一项所述的光学图像采集单元,其特征在于,所述光学图像采集单元还包括:
    滤光单元,设置于所述目标物体到所述光电感应单元之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
  6. 根据权利要求5所述的光学图像采集单元,其特征在于,所述滤光单元设置在所述光学会聚器件的上方,或设置在所述光学会聚器件的下表面,或设置在所述光电感应单元的上表面。
  7. 根据权利要求1至6中任一项所述的光学图像采集单元,其特征在于,所述光学会聚器件的下表面到所述光阑的距离为所述光学会聚器件的焦距和所述光学会聚器件的光心到所述光学会聚器件的下平面的距离之差。
  8. 根据权利要求1至7中任一项所述的光学图像采集单元,其特征在于,所述光阑的下表面到所述光电感应单元的距离根据所述光电感应单元的面积和经过所述光学会聚器件的焦点的光线的发散角确定。
  9. 根据权利要求1至8中任一项所述的光学图像采集单元,其特征在 于,所述光电感应单元设置在所述TFT层的TFT器件之间。
  10. 根据权利要求1至9中任一项所述的光学图像采集单元,其特征在于,所述光电感应单元检测的光信号用于形成采集图像的一个像素。
  11. 一种光学图像采集系统,其特征在于,包括:
    根据权利要求1至10中任一项所述的光学图像采集单元构成的阵列。
  12. 一种光学图像采集系统,其特征在于,包括:
    光电感应阵列,包括呈阵列式分布的多个光电感应单元,设置在显示屏的薄膜晶体管TFT层;
    光学会聚器件阵列,设置在所述TFT层上方;
    光阑阵列,设置在所述TFT层和所述光学会聚器件阵列之间,其中,所述光阑阵列中的每个光阑设置有窗口;
    所述光学会聚器件阵列用于将从所述显示屏上方的目标反射的光信号会聚至光阑阵列的窗口,所述光信号经由所述窗口传输至光电感应阵列。
  13. 根据权利要求12所述的光学图像采集系统,其特征在于,所述显示屏的发光层设置在所述光学会聚器件和所述TFT层之间,所述光阑阵列设置在所述显示屏的发光层。
  14. 根据权利要求12所述的光学图像采集系统,其特征在于,所述显示屏的发光层设置在所述TFT层下方,所述光阑阵列设置在所述显示屏中位于所述TFT层上方的基底层。
  15. 根据权利要求13或14所述的光学图像采集系统,其特征在于,所述显示屏的发光层包括多个OLED显示单元,所述光阑阵列包括多个光阑,所述多个光阑间隔设置在所述显示屏的所述多个OLED发光单元中。
  16. 根据权利要求12至15中任一项所述的光学图像采集系统,其特征在于,所述光学图像采集系统还包括:
    滤波层,设置于所述目标到所述光电感应阵列之间的光路中,用于滤掉非目标波段的光信号,透过目标波段的光信号。
  17. 根据权利要求16所述的光学图像采集系统,其特征在于,所述滤波层设置在所述光学会聚器件阵列的上方,或设置在所述光学会聚器件阵列的下表面,或设置在所述光电感应阵列上表面。
  18. 根据权利要求16或17所述的光学图像采集系统,其特征在于,所述滤光层包括多个滤光单元,每个滤光单元对应一个光电感应单元,或者对 应多个光电感应单元。
  19. 根据权利要求12至18中任一项所述的光学图像采集系统,其特征在于,所述光学会聚器件层中的光学会聚器件的尺寸只覆盖光电感应单元,或者同时覆盖光电感应单元和显示屏的发光单元。
  20. 根据权利要求12至19中任一项所述的光学图像采集系统,其特征在于,所述光学会聚器件的下表面到所述光阑的距离为所述光学会聚器件的焦距和所述光学会聚器件的光心到所述光学会聚器件的下平面的距离之差。
  21. 根据权利要求12至20中任一项所述的光学图像采集系统,其特征在于,所述光阑层的平面到所述感应阵列的距离根据所述光电感应单元的面积和经过所述光学会聚器件的焦点的光线的发散角确定。
  22. 根据权利要求12至21中任一项所述的光学图像采集系统,其特征在于,所述显示屏为具有多个OLED显示单元的OLED屏,且所述光学图像采集系统的指纹检测区域位于所述OLED屏的显示区域,并采用所述指纹检测区域的OLED的发光单元作为激励光源;其中,所述光学图像采集系统接收的光信号为所述OLED发光单元发出的光信号照射到所述OLED屏上方的目标物体而形成的反射光,所述反射光携带有所述目标物体的生物特征信息。
  23. 一种显示屏,其特征在于,包括:
    如权利要求11所述的光学图像采集系统,或如权利要求12至22中任一项所述的光学图像采集系统。
  24. 根据权利要求23所述的显示屏,其特征在于,所述显示屏还包括:
    第一基底层,设置在所述显示屏的TFT层上方,其中,所述光学图像采集系统的光阑阵列设置在所述基底层。
  25. 根据权利要求24所述的显示屏,其特征在于,所述显示屏还包括:
    发光层,设置在所述TFT层下方。
  26. 根据权利要求25所述的显示屏,其特征在于,所述显示屏还包括:
    第二基底层,设置在所述显示屏的发光层下方。
  27. 根据权利要求24至26中任一项所述的显示屏,其特征在于,所述显示屏还包括:
    透明介质层,设置在所述显示屏的第一基底层和所述显示屏的TFT层之间。
  28. 根据权利要求23所述的显示屏,其特征在于,所述显示屏还包括:
    发光层,设置在所述TFT层上方,其中,所述光学图像采集系统的光阑阵列设置在所述发光层。
  29. 根据权利要求28所述的显示屏,其特征在于,所述显示屏还包括:
    基底层,设置在所述显示屏的TFT层下方。
  30. 根据权利要求23至29中任一项所述的显示屏,其特征在于,所述显示屏还包括:
    显示屏附件层,设置在所述光学图像采集系统的光学会聚器件阵列上方,其中,所述显示屏附件层包括偏振片,触控器件和保护玻璃。
  31. 根据权利要求23至30中任一项所述的显示屏,其特征在于,所述显示屏为具有多个有机发光二极管OLED发光单元的OLED屏,且所述光学图像采集系统的指纹检测区域位于所述OLED屏的显示区域,并采用所述指纹检测区域的OLED的显示单元作为激励光源;其中,所述光学图像采集系统接收的光信号为所述OLED显示单元发出的光信号照射到所述OLED屏上方的目标物体而形成的反射光,所述反射光携带有所述目标物体的生物特征信息。
  32. 一种电子设备,其特征在于,包括:
    显示屏;以及
    如权利要求11所述的光学图像采集系统,或者,如权利要求12至22中任一项所述的光学图像采集系统;
    其中,所述光学图像采集系统设置于所述显示屏中。
  33. 根据权利要求32所述的电子设备,其特征在于,所述显示屏为有机发光二极管OLED显示屏,所述显示屏的发光层包括多个OLED发光单元,其中,在所述光学图像采集系统为生物特征识别系统时,所述生物特征识别系统采用至少部分OLED发光单元源作为生物特征识别的激励光源。
  34. 一种电子设备,其特征在于,包括:
    如权利要求23至31中任一项所述的显示屏。
PCT/CN2019/090173 2019-06-05 2019-06-05 光学图像采集单元、光学图像采集系统、显示屏和电子设备 WO2020243928A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/090173 WO2020243928A1 (zh) 2019-06-05 2019-06-05 光学图像采集单元、光学图像采集系统、显示屏和电子设备
CN201980004326.2A CN111213152B (zh) 2019-06-05 2019-06-05 光学图像采集单元、光学图像采集系统、显示屏和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/090173 WO2020243928A1 (zh) 2019-06-05 2019-06-05 光学图像采集单元、光学图像采集系统、显示屏和电子设备

Publications (1)

Publication Number Publication Date
WO2020243928A1 true WO2020243928A1 (zh) 2020-12-10

Family

ID=70788966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090173 WO2020243928A1 (zh) 2019-06-05 2019-06-05 光学图像采集单元、光学图像采集系统、显示屏和电子设备

Country Status (2)

Country Link
CN (1) CN111213152B (zh)
WO (1) WO2020243928A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112753036A (zh) * 2019-08-30 2021-05-04 京东方科技集团股份有限公司 纹路图像获取装置、显示装置及准直部件
CN114038343A (zh) * 2021-07-20 2022-02-11 重庆康佳光电技术研究院有限公司 一种显示屏及终端
CN113745306B (zh) * 2021-09-08 2024-02-13 京东方科技集团股份有限公司 显示装置及其制备方法、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256595A1 (en) * 2016-11-21 2017-09-07 Shanghai Tianma AM-OLED Co., Ltd. Organic light-emitting diode display panel and organic light-emitting diode display device
CN108681703A (zh) * 2018-05-14 2018-10-19 京东方科技集团股份有限公司 用于指纹识别的装置、模组、设备及系统
CN109313704A (zh) * 2018-09-06 2019-02-05 深圳市汇顶科技股份有限公司 光学图像采集单元、光学图像采集系统和电子设备
CN109417080A (zh) * 2018-09-26 2019-03-01 深圳市汇顶科技股份有限公司 光学图像采集单元、光学图像采集装置和电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636836B (zh) * 2012-04-18 2013-11-06 济南量谱信息技术有限公司 一种全息增亮元件及含该元件的半反半透型lcd
JP6316433B2 (ja) * 2013-12-12 2018-04-25 クアルコム,インコーポレイテッド マイクロメカニカル超音波トランスデューサおよびディスプレイ
US8917387B1 (en) * 2014-06-05 2014-12-23 Secugen Corporation Fingerprint sensing apparatus
WO2018119566A1 (zh) * 2016-12-26 2018-07-05 深圳市汇顶科技股份有限公司 一种指纹识别引导方法及装置
WO2018195782A1 (zh) * 2017-04-25 2018-11-01 深圳市汇顶科技股份有限公司 确定显示屏内指纹提示图案的位置的方法与装置
CN108304769A (zh) * 2017-12-15 2018-07-20 深圳市金立通信设备有限公司 指纹识别方法、终端及计算机可读存储介质
CN108133193A (zh) * 2017-12-27 2018-06-08 深圳信炜科技有限公司 显示模组、指纹传感芯片以及电子设备
CN207731044U (zh) * 2017-12-29 2018-08-14 深圳市柔宇科技有限公司 显示装置
CN108649061B (zh) * 2018-05-18 2019-06-25 武汉华星光电半导体显示技术有限公司 Oled显示面板及oled显示器
CN108917625A (zh) * 2018-07-27 2018-11-30 深圳中科飞测科技有限公司 一种发光装置、光学检测系统和光学检测方法
CN109633959A (zh) * 2019-01-21 2019-04-16 上海思立微电子科技有限公司 可实现屏内指纹识别的显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170256595A1 (en) * 2016-11-21 2017-09-07 Shanghai Tianma AM-OLED Co., Ltd. Organic light-emitting diode display panel and organic light-emitting diode display device
CN108681703A (zh) * 2018-05-14 2018-10-19 京东方科技集团股份有限公司 用于指纹识别的装置、模组、设备及系统
CN109313704A (zh) * 2018-09-06 2019-02-05 深圳市汇顶科技股份有限公司 光学图像采集单元、光学图像采集系统和电子设备
CN109417080A (zh) * 2018-09-26 2019-03-01 深圳市汇顶科技股份有限公司 光学图像采集单元、光学图像采集装置和电子设备

Also Published As

Publication number Publication date
CN111213152A (zh) 2020-05-29
CN111213152B (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
CN213182770U (zh) 指纹识别装置和电子设备
US11455823B2 (en) Under-screen fingerprint identification apparatus and electronic device
CN106847872B (zh) 显示装置
WO2020191596A1 (zh) 指纹识别装置和电子设备
WO2020206894A1 (zh) 光学指纹识别装置和电子设备
CN211349385U (zh) 光学图像采集单元、光学图像采集系统和电子设备
WO2020133378A1 (zh) 指纹识别装置和电子设备
US20190034686A1 (en) Optical Fingerprint Module
KR102374723B1 (ko) 광학 지문 장치 및 전자 기기
WO2020056728A1 (zh) 光学图像采集单元、光学图像采集系统和电子设备
WO2020243928A1 (zh) 光学图像采集单元、光学图像采集系统、显示屏和电子设备
CN110720106B (zh) 指纹识别的装置和电子设备
WO2020147018A1 (zh) 光学图像采集系统和电子设备
WO2021051737A1 (zh) 指纹识别装置、背光模组、液晶显示屏和电子设备
WO2021077265A1 (zh) 指纹识别装置和电子设备
CN210864751U (zh) 恒流驱动电路和电子设备
CN210864756U (zh) 光学指纹装置和电子设备
CN210109828U (zh) 指纹识别的装置和电子设备
WO2020061823A1 (zh) 光学图像采集单元、光学图像采集装置和电子设备
TW202023086A (zh) 光學指紋感測模組
WO2021077368A1 (zh) 指纹识别装置和电子设备
CN111183429B (zh) 指纹识别的方法、装置和电子设备
CN210038815U (zh) 光学图像采集单元、光学图像采集系统、显示屏和电子设备
WO2021174423A1 (zh) 指纹识别装置、显示屏和电子设备
CN211087274U (zh) 指纹检测装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931771

Country of ref document: EP

Kind code of ref document: A1