WO2020241879A1 - 鉛蓄電池 - Google Patents

鉛蓄電池 Download PDF

Info

Publication number
WO2020241879A1
WO2020241879A1 PCT/JP2020/021476 JP2020021476W WO2020241879A1 WO 2020241879 A1 WO2020241879 A1 WO 2020241879A1 JP 2020021476 W JP2020021476 W JP 2020021476W WO 2020241879 A1 WO2020241879 A1 WO 2020241879A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
lead
less
group
polymer compound
Prior art date
Application number
PCT/JP2020/021476
Other languages
English (en)
French (fr)
Inventor
宏樹 籠橋
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Priority to EP20814501.1A priority Critical patent/EP3975287A4/en
Priority to US17/614,889 priority patent/US20220238859A1/en
Priority to JP2021521910A priority patent/JP7180768B2/ja
Priority to CN202080040572.6A priority patent/CN113906590A/zh
Publication of WO2020241879A1 publication Critical patent/WO2020241879A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/08Selection of materials as electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/56Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead
    • H01M4/57Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of lead of "grey lead", i.e. powders containing lead and lead oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/627Expanders for lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery.
  • Lead-acid batteries are used for various purposes such as in-vehicle use and industrial use.
  • Lead-acid batteries include a negative electrode plate, a positive electrode plate, a separator (or mat), an electrolytic solution, and the like.
  • Additives may be added to the constituent members of the lead-acid battery from the viewpoint of imparting various functions.
  • Patent Document 1 proposes a lead-acid battery characterized in that a copolymer of propylene oxide and ethylene oxide is added to a negative electrode plate active material in combination with lignin sulfonate.
  • Patent Document 2 is characterized in that an activator containing an organic polymer is sealed in a small airtight container having a dehiscence mechanism into an electric tank, and the small airtight container is attached to the electric tank or a lid. Storage batteries have been proposed.
  • Patent Document 3 includes a plurality of fibers coated with a size composition, a binder composition, and one or more kinds of additives, and the additives include rubber additives, rubber derivatives, aldehydes, and metal salts.
  • the additive comprises one or more of ethylene-propylene oxide block copolymer, sulfuric acid ester, sulfonic acid ester, phosphoric acid ester, polyacrylic acid, polyvinyl alcohol, lignin, phenol aldehyde resin, cellulose, wood flour and the like. Fiber-attached mats that can function to reduce water loss in lead storage batteries have been proposed.
  • Patent Document 4 describes 0.2% by weight to 10% by weight of carbon-based nanofillers dispersed in an aqueous medium, at least one water-soluble polymer, and 0.01% to 50% by weight of alkali metal. Alternatively, it is used in the preparation of a lead battery formulation of a liquid composition that is stable over time and contains at least one cation component selected from alkaline earth metal cations and ammonium ions, wherein the carbon-based nanofiller is carbon.
  • the water-soluble polymer is a polysaccharide; a modified polysaccharide such as modified cellulose; a polyether such as a polyalkylene oxide or a polyalkylene glycol; a lignosulfonate; a polyacrylate.
  • a polysaccharide such as modified cellulose
  • a polyether such as a polyalkylene oxide or a polyalkylene glycol
  • a lignosulfonate a polyacrylate.
  • Products based on polycarboxylic acids, especially polyether polycarboxylates or copolymers thereof; naphthalene sulfonates and derivatives thereof; and their corresponding aqueous solutions have been proposed for use.
  • the present invention includes a positive electrode plate, a negative electrode plate, and an electrolytic solution.
  • the negative electrode plate includes a negative electrode material and has a negative electrode material.
  • the negative electrode material contains a polymer compound and contains.
  • the polymer compound has a peak in the range of 3.2 ppm or more and 3.8 ppm or less in the chemical shift of 1 H-NMR spectrum.
  • the ratio specific surface area S n of the negative electrode material of the content C n of the polymer compound of the negative electrode material: C n / S n is 25ppm ⁇ m -2 ⁇ g or more, about lead-acid battery.
  • the negative electrode plate includes a negative electrode material and has a negative electrode material.
  • the negative electrode material contains a polymer compound containing a repeating structure of oxyC 2-4 alkylene units.
  • the ratio specific surface area S n of the negative electrode material of the content C n of the polymer compound of the negative electrode material: C n / S n is 25ppm ⁇ m -2 ⁇ g or more, about lead-acid battery.
  • the organic additive adheres to the surface of lead, which is an active material.
  • the surface of lead is covered with an organic additive, lead sulfate generated during discharge is less likely to elute during charging, and thus charge acceptability is lowered.
  • the reaction during overcharging is greatly affected by the reduction reaction of hydrogen ions at the interface between lead and the electrolytic solution.
  • the reduction reaction of hydrogen ions is less likely to occur, so that the amount of overcharged electricity tends to decrease. Therefore, there is a trade-off relationship between suppressing the decrease in charge acceptability and reducing the amount of overcharged electricity, and it has been difficult to achieve both.
  • the organic additive is unevenly distributed in the pores of the lead, it is necessary to increase the content of the organic additive in the negative electrode material in order to secure a sufficient effect of reducing the amount of overcharged electricity. There is. However, in general, when the content of the organic additive is increased, the charge acceptability is greatly reduced.
  • an aqueous sulfuric acid solution is generally used as the electrolytic solution, so if an organic additive (oil, polymer, organic shrink-proofing agent, etc.) is contained in the negative electrode material, it will elute into the electrolytic solution and lead. It becomes difficult to balance with the adsorption of. For example, when an organic additive having low adsorptivity to lead is used, it becomes easy to elute into the electrolytic solution, and it becomes difficult to reduce the amount of overcharged electricity. On the other hand, when an organic additive having high adsorptivity to lead is used, it becomes difficult to attach the organic additive thinly to the surface of lead, and the organic additive tends to be unevenly distributed in the pores of lead.
  • an organic additive oil, polymer, organic shrink-proofing agent, etc.
  • the organic additive When the organic additive is unevenly distributed in the pores of lead, the movement of ions (lead ion, sulfate ion, etc.) is hindered by the steric hindrance of the unevenly distributed organic additive. Therefore, the charge / discharge reaction is likely to be inhibited, and the low temperature high rate (HR) discharge performance is also deteriorated.
  • the content of the organic additive is increased in order to secure a sufficient effect of reducing the amount of overcharged electricity, the movement of ions in the pores is further inhibited, so that the charge / discharge reaction is further inhibited. At the same time, the low temperature HR discharge performance also deteriorates.
  • the lead storage battery according to one aspect of the present invention includes a positive electrode plate, a negative electrode plate, and an electrolytic solution.
  • the negative electrode plate comprises a negative electrode material, and the negative electrode material contains a polymer compound.
  • the polymer compound has a peak in the range of 3.2 ppm or more and 3.8 ppm or less in the chemical shift of 1 H-NMR spectrum.
  • the ratio specific surface area S n of the negative electrode material of the content C n of the polymer compound of the negative electrode material: C n / S n is 25ppm ⁇ m -2 ⁇ g or more.
  • the peak appearing in the range of 3.2 ppm or more and 3.8 ppm or less in the 1 H-NMR spectrum is derived from the oxyC 2-4 alkylene unit.
  • the 1 H-NMR spectrum is measured using deuterated chloroform as a solvent.
  • the lead storage battery according to another aspect of the present invention includes a positive electrode plate, a negative electrode plate, and an electrolytic solution.
  • the negative electrode plate includes a negative electrode material.
  • the negative electrode material contains a polymer compound containing a repeating structure of oxyC 2-4 alkylene units.
  • the ratio specific surface area S n of the negative electrode material of the content C n of the polymer compound of the negative electrode material: the ratio C n / S n is 25ppm ⁇ m -2 ⁇ g or more.
  • the lead-acid battery according to one aspect and another aspect of the present invention at 25ppm ⁇ m -2 ⁇ g or more ratio C n / S n, thereby containing the polymer compound as described above in negative electrode material. Therefore, it is possible to suppress a decrease in charge acceptability while reducing the amount of overcharged electricity.
  • the amount of overcharged electricity is reduced because the surface of lead in the negative electrode material is covered with the polymer compound, which raises the hydrogen overvoltage and causes a side reaction in which hydrogen is generated from protons during overcharging. It is thought that it is hindered.
  • the carbonaceous material is contained in the negative electrode material, the surface of the carbonaceous material is also covered with the polymer compound, and it is considered that the generation of hydrogen on the surface of the carbonaceous material is also inhibited.
  • the polymer compound Since the polymer compound has an oxyC 2-4 alkylene unit, it is easy to form a linear structure, so that it is considered that the polymer compound is hard to stay in the negative electrode material and is easy to diffuse in the electrolytic solution. Therefore, even if the above polymer compound is used, it is expected that the effect of reducing the amount of overcharged electricity can hardly be obtained. However, contrary to such an expectation, the present inventors have found that the effect of reducing the amount of overcharged electricity can be actually obtained even when the negative electrode material contains a very small amount of polymer compound.
  • the polymer compound can be contained in the negative electrode material so that it can be present in the vicinity of lead. It is considered that the high adsorption action of the 2-4 alkylene unit on lead is exhibited. Further, it is considered that the polymer compound is thinly spread on the surface of the lead, and the reduction reaction of hydrogen ions is suppressed in a wide range of the surface of the negative electrode material. This is consistent with the fact that polymer compounds tend to have a linear structure.
  • the inclusion of such a polymer compound in the negative electrode material at a ratio corresponding to the specific surface area of the negative electrode material inhibits a side reaction during overcharging.
  • the amount of overcharged electricity can be effectively reduced.
  • liquid reduction can be reduced, which is advantageous for extending the life of the lead storage battery.
  • the carbonaceous material is contained in the negative electrode material, it is considered that the polymer compound is thinly spread on the surface of the carbonaceous material. Therefore, it is considered that the reduction reaction of hydrogen ions on the surface of the carbonaceous material is also suppressed.
  • the polymer compound thinly covers the lead surface, it is difficult to inhibit the elution of lead sulfate generated during discharge during charging. In addition, since the uneven distribution of the polymer compound in the pores of lead is suppressed, ions can easily move. From these points, it is possible to suppress a decrease in charge acceptability.
  • the negative electrode material contains the polymer compound regardless of whether or not the component of the lead-acid battery other than the negative electrode material contains the polymer compound. Then, by controlling the ratio C n / S n, it is possible to increase the hydrogen overvoltage of a negative electrode plate, thereby it is possible to reduce the overcharge electric quantity, it is possible to suppress the deterioration of charge acceptance. In addition, it is possible to suppress a decrease in low temperature HR discharge performance after a high temperature light load test.
  • the polymer compound can be contained in the negative electrode material, and the origin of the polymer compound contained in the negative electrode material is not particularly limited.
  • the polymer compound may be contained in any of the components of the lead-acid battery (for example, a negative electrode plate, a positive electrode plate, an electrolytic solution, and / or a separator) when the lead-acid battery is manufactured.
  • the polymer compound may be contained in one component or in two or more components (for example, a negative electrode plate and an electrolytic solution).
  • the specific surface area S n of the negative electrode material a BET specific surface area determined by a gas adsorption method using nitrogen gas (m 2 ⁇ g -1).
  • the ratio C n / Sn is obtained by dividing the content C n (ppm) of the polymer compound contained in the negative electrode material by the BET specific surface area S n (m 2 ⁇ g -1 ) of the negative electrode material. ..
  • the content C n of the polymer compound can be obtained by the procedure described below.
  • the lead-acid battery may be either a control valve type (sealed type) lead-acid battery or a liquid type (vent type) lead-acid battery.
  • the fully charged state of the liquid lead-acid battery is defined by the definition of JIS D 5301: 2006. More specifically, electrolysis of a lead-acid battery with a current (A) 0.2 times the value described as the rated capacity (Ah), measured every 15 minutes at the terminal voltage during charging, or temperature-converted to 20 ° C.
  • a fully charged state is defined as a state in which the liquid density is charged three times in a row until it shows a constant value with three significant figures.
  • the fully charged state is a current (A) that is 0.2 times the rated capacity (Ah) in an air tank at 25 ° C ⁇ 2 ° C, which is 2 .23V / cell constant current constant voltage charging is performed, and charging is completed when the charging current (A) during constant voltage charging becomes 0.005 times the value described in the rated capacity (Ah). ..
  • the numerical value described as the rated capacity is a numerical value in which the unit is Ah.
  • the unit of current set based on the numerical value described as the rated capacity is A.
  • a fully charged lead-acid battery is a fully charged lead-acid battery.
  • the lead-acid battery may be fully charged after the chemical conversion, immediately after the chemical conversion, or after a lapse of time from the chemical conversion (for example, after the chemical conversion, the lead-acid battery in use (preferably at the initial stage of use) is fully charged. May be).
  • An initial use battery is a battery that has not been used for a long time and has hardly deteriorated.
  • the polymer compound may contain an oxygen atom bonded to a terminal group and an -CH 2 -group and / or -CH ⁇ group bonded to an oxygen atom.
  • the integrated value of the peaks of 3.2 ppm ⁇ 3.8 ppm, and the integral value of the peak, -CH 2 bonded to an oxygen atom - and the integral value of the peak of the hydrogen atoms of the group, an oxygen atom The ratio of the peak of the hydrogen atom of the -CH ⁇ group bonded to the group to the integrated value is preferably 85% or more.
  • Such polymer compounds contain a large amount of oxyC 2-4 alkylene unit in the molecule.
  • the lead surface is easily covered thinly by easily adsorbing to lead and easily forming a linear structure. Therefore, the amount of overcharged electricity can be reduced more effectively. In addition, the effect of suppressing a decrease in charge acceptability can be further enhanced. It is also possible to secure an excellent effect of suppressing a decrease in low-temperature HR discharge performance.
  • the polymer compound having a peak in the chemical shift range of 3.2 ppm to 3.8 ppm preferably contains a repeating structure of an oxyC 2-4 alkylene unit.
  • a polymer compound containing a repeating structure of an oxyC 2-4 alkylene unit it is considered that the polymer compound is more easily adsorbed to lead and easily has a linear structure, so that the lead surface can be easily covered thinly. Therefore, the effect of suppressing the decrease in charge acceptability can be further enhanced, and the amount of overcharged electricity can be reduced more effectively. Further, even after the high temperature light load test, the effect of suppressing the decrease in the low temperature HR discharge performance can be further enhanced.
  • a polymer compound is defined to have a repeating unit of oxyC 2-4 alkylene unit and / or have a number average molecular weight (Mn) of 500 or more.
  • the number average molecular weight Mn is determined by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the standard substance used to determine Mn is polyethylene glycol.
  • the oxyC 2-4 alkylene unit is a unit represented by —OR 1 ⁇ (R 1 represents a C 2-4 alkylene group).
  • Polymeric compounds include at least one selected from the group consisting of esters of hydroxy compounds having a repeating structure of ethers of hydroxy compounds, and oxy C 2-4 alkylene unit having a repeating structure oxy C 2-4 alkylene unit It may be.
  • the hydroxy compound is at least one selected from the group consisting of a poly C 2-4 alkylene glycol, a copolymer containing a repeating structure of oxy C 2-4 alkylene, and a C 2-4 alkylene oxide adduct of a polyol.
  • the repeating structure of the oxyC 2-4 alkylene unit may include at least the repeating structure of the oxypropylene unit (-O-CH (-CH 3 ) -CH 2- ). It is considered that such a polymer compound has a high adsorptivity to lead, yet easily spreads thinly on the lead surface, and has an excellent balance between them. Therefore, the amount of overcharged electricity can be reduced more effectively, and it is easy to secure higher charge acceptability. Further, the effect of suppressing the decrease in the low temperature HR discharge performance can be further enhanced.
  • the polymer compound has high adsorptivity to lead and can cover the lead surface thinly. Therefore, even if the content of the polymer compound in the negative electrode material is relatively small, the amount of overcharged electricity Can be reduced. Further, even if the content is small, a sufficient effect of reducing the amount of overcharged electricity can be ensured, so that a decrease in charge acceptability can be suppressed. Further, by controlling the ratio C n / S n, easily balance between the effect of reducing the excessive amount of charge and the effect of preventing the reduction of charge acceptance takes.
  • the low temperature HR discharge performance is deteriorated even after the high temperature and light load test. It can be suppressed.
  • the ratio C n / S n, 800ppm ⁇ m -2 ⁇ g or less From the viewpoint of ensuring a higher charge acceptance, the ratio C n / S n, 800ppm ⁇ m -2 ⁇ g or less.
  • the ratio C n / S n is preferably not more than 450ppm ⁇ m -2 ⁇ g.
  • the negative electrode material can include a carbonaceous material.
  • the content C c of the carbonaceous material in the negative electrode material is preferably 0.45% by mass or more. In this case, the effect of suppressing the amount of overcharged electricity is further enhanced, and the effect of suppressing a decrease in charge acceptability can be obtained.
  • the polymer compound preferably contains a compound having at least Mn of 1000 or more.
  • the adsorptivity to lead is enhanced, so that the effect of reducing the amount of overcharged electricity is further enhanced.
  • by reducing the amount of overcharged electricity it is possible to suppress the structural change of the negative electrode active material caused by the collision of hydrogen gas with the negative electrode material. Therefore, even after the high-temperature light load test in which the structural change of the negative electrode active material is likely to occur, the effect of suppressing the deterioration of the low-temperature HR discharge performance can be enhanced.
  • the negative electrode material may further contain an organic shrinkage proofing agent (first organic shrinkage proofing agent) having a sulfur element content of 2000 ⁇ mol / g or more.
  • first organic shrinkage proofing agent organic shrinkage proofing agent
  • a decrease in charge acceptability can be further suppressed.
  • Charge acceptability is governed by the dissolution rate of lead sulfate during charging in the negative electrode plate.
  • the particle size of lead sulfate generated during discharge has a small sulfur element content (for example, less than 2000 ⁇ mol / g, preferably 1000 ⁇ mol / g or less) when the first organic shrink-proofing agent is used.
  • the size is smaller and the specific surface area of lead sulfate is larger. Therefore, when the first organic shrinkage proofing agent is used, the proportion of the surface of lead sulfate covered with the polymer compound is smaller than that when the second organic shrinkage proofing agent is used. Therefore, it is considered that the dissolution of lead sulfate is less likely to be inhibited and the decrease in charge acceptability is suppressed.
  • the negative electrode material may contain a second organic shrinkage proofing agent.
  • the second organic shrinkage proofing agent and the polymer compound are used in combination, the particle size of the colloid can be reduced, so that the effect of suppressing the deterioration of the low temperature HR discharge performance can be further enhanced.
  • the negative electrode material may contain a second organic shrinkage proofing agent in addition to the first organic shrinkage proofing agent.
  • a second organic shrinkage proofing agent in addition to the first organic shrinkage proofing agent.
  • the first organic shrinkage proofing agent contains a condensate containing a unit of an aromatic compound having a sulfur-containing group, and the condensate is a unit of an aromatic compound from a unit of a bisarene compound and a unit of a monocyclic aromatic compound. It may contain at least one selected from the group. Further, the condensate may contain a unit of a bisarene compound and a unit of a monocyclic aromatic compound. The unit of the monocyclic aromatic compound may include a unit of a hydroxyarene compound. Such a condensate is more advantageous in suppressing the deterioration of the low temperature HR discharge performance after the high temperature light load test because the low temperature HR discharge performance is not impaired even if the environment is higher than the normal temperature.
  • the content of sulfur element in the organic shrinkage proofing agent is X ⁇ mol / g means that the content of sulfur element contained in 1 g of the organic shrinkage proofing agent is X ⁇ mol / g.
  • the negative electrode plate usually includes a negative electrode current collector in addition to the negative electrode material.
  • the negative electrode electrode material is a negative electrode plate obtained by removing the negative electrode current collector.
  • Members such as mats and pacing papers may be attached to the negative electrode plate. Since such a member (pasting member) is used integrally with the negative electrode plate, it is included in the negative electrode plate.
  • the negative electrode material is the one excluding the negative electrode current collector and the sticking member.
  • the thickness of the sticking member is included in the thickness of the separator.
  • the negative electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead sheet or a lead alloy sheet. Examples of the processing method include expanding processing and punching processing. It is preferable to use a negative electrode lattice as the negative electrode current collector because it is easy to support the negative electrode material.
  • the lead alloy used for the negative electrode current collector may be any of Pb-Sb-based alloy, Pb-Ca-based alloy, and Pb-Ca-Sn-based alloy. These leads or lead alloys may further contain at least one selected from the group consisting of Ba, Ag, Al, Bi, As, Se, Cu and the like as an additive element.
  • the negative electrode current collector may include a surface layer. The composition of the surface layer and the inner layer of the negative electrode current collector may be different. The surface layer may be formed on a part of the negative electrode current collector. The surface layer may be formed on the selvage portion of the negative electrode current collector. The surface layer of the selvage portion may contain Sn or a Sn alloy.
  • the negative electrode material contains the above polymer compound.
  • the negative electrode material further contains a negative electrode active material (lead or lead sulfate) that develops a capacity by a redox reaction.
  • the negative electrode material may contain shrink-proofing agents, carbonaceous materials, and / or other additives. Examples of the additive include, but are not limited to, barium sulfate, fibers (resin fibers, etc.) and the like.
  • the negative electrode active material in the charged state is spongy lead, but the unchemicald negative electrode plate is usually produced by using lead powder.
  • the specific surface area S n of the negative electrode material is, for example, 0.3 m 2 ⁇ g -1 or more. From higher cold HR discharge performance to ensure easy aspect, the specific surface area S n is preferably 0.5 m 2 ⁇ g -1 or higher, 0.7 m 2 ⁇ g -1 or more is more preferable. The specific surface area Sn is, for example, 4 m 2 ⁇ g -1 or less. From the viewpoint of increasing overcharged quantity of electricity more the effect of suppressing the specific surface area S n is preferably from 3.5 m 2 ⁇ g -1 or less, 2.5 m 2 ⁇ g -1 or less is more preferable. From easy viewpoint to ensure higher cold HR discharge performance, the specific surface area S n is, 2m 2 ⁇ g -1 or less, or 1.5 m 2 ⁇ g -1 or less is more preferable.
  • the specific surface area S n of the negative electrode material 0.3 m 2 ⁇ g -1 or more 4m 2 ⁇ g -1 or less (or 3.5 m 2 ⁇ g -1 or less), 0.3m 2 ⁇ g -1 or more 2.
  • the specific surface area S n of the negative electrode material for example, components of the negative electrode material (in particular, the carbonaceous material) may be adjusted by adjusting the specific surface area, such as and / or content.
  • the polymer compound has a peak in the range of 3.2 ppm or more and 3.8 ppm or less in the chemical shift of 1 H-NMR spectrum.
  • Such polymer compounds have an oxyC 2-4 alkylene unit.
  • the oxyC 2-4 alkylene unit includes an oxyethylene unit, an oxypropylene unit, an oxytrimethylene unit, an oxy2-methyl-1,3-propylene unit, an oxy1,4-butylene unit, and an oxy1,3-butylene unit. And so on.
  • the polymer compound may have one kind of such oxyC 2-4 alkylene unit, or may have two or more kinds.
  • the polymer compound preferably contains a repeating structure of oxyC 2-4 alkylene units.
  • the repeating structure may contain one type of oxyC 2-4 alkylene unit, or may contain two or more types of oxy C 2-4 alkylene unit.
  • the polymer compound may contain one kind of the above-mentioned repeating structure, or may contain two or more kinds of repeating structures.
  • polymer compound examples include a hydroxy compound having a repeating structure of an oxy C 2-4 alkylene unit (poly C 2-4 alkylene glycol, a copolymer containing a repeating structure of oxy C 2-4 alkylene, and C 2- of a polyol. (4 alkylene oxide adduct, etc.), etherified products or esterified products of these hydroxy compounds, and the like.
  • copolymer examples include a copolymer containing different oxyC 2-4 alkylene units, a poly C 2-4 alkylene glycol alkyl ether, a poly C 2-4 alkylene glycol ester of a carboxylic acid, and the like.
  • the copolymer may be a block copolymer.
  • the polyol may be any of an aliphatic polyol, an alicyclic polyol, an aromatic polyol, a heterocyclic polyol and the like. From the viewpoint that the polymer compound is thin and easily spreads on the lead surface, an aliphatic polyol, an alicyclic polyol (for example, polyhydroxycyclohexane, polyhydroxynorbornane, etc.) and the like are preferable, and an aliphatic polyol is particularly preferable.
  • the aliphatic polyol include an aliphatic diol and a polyol above triol (for example, glycerin, trimethylolpropane, pentaerythritol, sugar alcohol, etc.).
  • Examples of the aliphatic diol include alkylene glycol having 5 or more carbon atoms.
  • Alkylene glycol for example, be a C 5 ⁇ 14 alkylene glycol or C 5-10 alkylene glycol.
  • sugar alcohols include erythritol, xylitol, mannitol, sorbitol and the like.
  • the alkylene oxide adduct of the polyol the alkylene oxide corresponds to the oxyC 2-4 alkylene unit of the polymer compound and comprises at least C 2-4 alkylene oxide. From the viewpoint that the polymer compound easily has a linear structure, the polyol is preferably a diol.
  • the etherified product is composed of at least a part of the terminal -OH group (hydrogen atom of the terminal group and the oxygen atom bonded to the hydrogen atom) of the hydroxy compound having the repeating structure of the above oxyC 2-4 alkylene unit. -OH group) having etherified -OR 2 group (wherein, R 2 is an organic group.).
  • R 2 is an organic group.
  • ends of the polymer compound some ends may be etherified, or all ends may be etherified. For example, in one end of the main chain is -OH groups of a linear polymer compound, the other end may be an -OR 2 group.
  • the esterified product is composed of at least a part of a terminal-OH group (a hydrogen atom of the terminal group and an oxygen atom bonded to the hydrogen atom) of the hydroxy compound having a repeating structure of the oxyC 2-4 alkylene unit.
  • R 3 is an organic group.
  • some ends may be esterified, or all ends may be esterified.
  • Examples of the organic groups R 2 and R 3 include hydrocarbon groups.
  • the hydrocarbon group may have a substituent (eg, a hydroxy group, an alkoxy group, and / or a carboxy group).
  • the hydrocarbon group may be any of an aliphatic, alicyclic, and aromatic group.
  • the aromatic hydrocarbon group and the alicyclic hydrocarbon group may have an aliphatic hydrocarbon group (for example, an alkyl group, an alkenyl group, an alkynyl group, etc.) as a substituent.
  • the number of carbon atoms of the aliphatic hydrocarbon group as a substituent may be, for example, 1 to 20, 1 to 10, or 1 to 6 or 1 to 4.
  • Examples of the aromatic hydrocarbon group include an aromatic hydrocarbon group having 24 or less carbon atoms (for example, 6 to 24). The number of carbon atoms of the aromatic hydrocarbon group may be 20 or less (for example, 6 to 20), 14 or less (for example, 6 to 14) or 12 or less (for example, 6 to 12).
  • Examples of the aromatic hydrocarbon group include an aryl group and a bisaryl group. Examples of the aryl group include a phenyl group and a naphthyl group. Examples of the bisaryl group include a monovalent group corresponding to bisarene. Examples of the bisarene include biphenyl and bisaryl alkane (for example, bis C 6-10 aryl C 1-4 alkane (2,2-bisphenylpropane, etc.)).
  • Examples of the alicyclic hydrocarbon group include an alicyclic hydrocarbon group having 16 or less carbon atoms.
  • the alicyclic hydrocarbon group may be a crosslinked cyclic hydrocarbon group.
  • the number of carbon atoms of the alicyclic hydrocarbon group may be 10 or less or 8 or less.
  • the number of carbon atoms of the alicyclic hydrocarbon group is, for example, 5 or more, and may be 6 or more.
  • the number of carbon atoms of the alicyclic hydrocarbon group may be 5 (or 6) or more and 16 or less, 5 (or 6) or more and 10 or less, or 5 (or 6) or more and 8 or less.
  • Examples of the alicyclic hydrocarbon group include a cycloalkyl group (cyclopentyl group, cyclohexyl group, cyclooctyl group, etc.), a cycloalkenyl group (cyclohexenyl group, cyclooctenyl group, etc.) and the like.
  • the alicyclic hydrocarbon group also includes the hydrogenated additive of the above aromatic hydrocarbon group.
  • an aliphatic hydrocarbon group is preferable from the viewpoint that the polymer compound is thin and easily adheres to the lead surface.
  • the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, an alkynyl group, and a dienyl group.
  • the aliphatic hydrocarbon group may be linear or branched chain.
  • the number of carbon atoms of the aliphatic hydrocarbon group may be, for example, 30 or less, 26 or less or 22 or less, 20 or less or 16 or less, 14 or less or 10 or less. It may be 8 or less or 6 or less.
  • the lower limit of the number of carbon atoms is 1 or more for an alkyl group, 2 or more for an alkenyl group and an alkynyl group, and 3 or more for a dienyl group, depending on the type of aliphatic hydrocarbon group.
  • Alkyl groups and alkenyl groups are particularly preferable from the viewpoint that the polymer compound is thin and easily adheres to the lead surface.
  • alkyl group examples include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, neopentyl, i-pentyl, s-pentyl, Examples thereof include 3-pentyl, t-pentyl, n-hexyl, 2-ethylhexyl, n-octyl, n-decyl, i-decyl, lauryl, myristyl, cetyl, stearyl and behenyl.
  • alkenyl group examples include vinyl, 1-propenyl, allyl, palmitrail, oleyl and the like.
  • the alkenyl group may be, for example, a C 2-30 alkenyl group or a C 2-26 alkenyl group, a C 2-22 alkenyl group or a C 2-20 alkenyl group, and a C 10-20 alkenyl group. It may be.
  • esters of hydroxy compounds having a repeating structure of ethers of hydroxy compounds, and / or oxy-C 2-4 alkylene unit having a repeating structure oxy C 2-4 alkylene unit, of charge acceptance This is preferable because the effect of suppressing the decrease can be further enhanced. Further, even when these polymer compounds are used, a high liquid reduction suppressing effect can be ensured.
  • the negative electrode material may contain one kind of polymer compound or two or more kinds.
  • the repeating structure of oxyC 2-4 alkylene is at least the oxypropylene unit. It preferably contains a repeating structure.
  • Polymeric compounds containing oxypropylene units, at chemical shift of 1 H-NMR spectrum, in the range of 3.2 ppm ⁇ 3.8 ppm, -CH oxypropylene units ⁇ and -CH 2 - has a peak derived from. Since the electron densities around the nuclei of hydrogen atoms in these groups are different, the peaks are split.
  • Such a polymer compound has peaks in the chemical shift of 1 H-NMR spectrum, for example, in the range of 3.2 ppm or more and 3.42 ppm or less and in the range of 3.42 ppm or more and 3.8 ppm or less. Peaks in the range of 3.2 ppm or more and 3.42 ppm or less are derived from -CH 2- , and peaks in the range of more than 3.42 ppm and 3.8 ppm or less are derived from -CH ⁇ and -CH 2- .
  • Examples of such a polymer compound include polypropylene glycol, a copolymer containing a repeating structure of oxypropylene, a propylene oxide adduct of the above-mentioned polyol, and an etherified product or an esterified product thereof.
  • Examples of the copolymer include an oxypropylene-oxyalkylene copolymer (where oxyalkylene is C 2-4 alkylene other than oxypropylene), polypropylene glycol alkyl ether, polypropylene glycol ester of carboxylic acid and the like.
  • Examples of the oxypropylene-oxyalkylene copolymer include an oxypropylene-oxyethylene copolymer and an oxypropylene-oxytrimethylene copolymer.
  • the oxypropylene-oxyalkylene copolymer may be a block copolymer.
  • the proportion of the oxypropylene unit is, for example, 5 mol% or more, and may be 10 mol% or more or 20 mol% or more.
  • the polymer compound preferably contains a large amount of oxyC 2-4 alkylene unit from the viewpoint of increasing the adsorptivity to lead and facilitating the formation of a linear structure.
  • Such polymer compounds include, for example, an oxygen atom attached to a terminal group and an -CH 2 -group and / or -CH ⁇ group attached to an oxygen atom.
  • the ratio of the peak of hydrogen atom to the integral value of the peak becomes large.
  • This ratio is, for example, 50% or more, and may be 80% or more. From the viewpoint of further enhancing the effect of reducing the amount of overcharged electricity and further enhancing the effect of suppressing the decrease in charge acceptability and / or low temperature HR discharge performance, the above ratio is preferably 85% or more, preferably 90% or more. Is more preferable.
  • the polymer compound having an -OH group at the terminal, -CH 2 bonded to an oxygen atom of the -OH group - if having a group or -CH ⁇ group the 1 H-NMR spectrum, -CH 2 - group The peak of the hydrogen atom of the -CH ⁇ group has a chemical shift in the range of more than 3.8 ppm and 4.0 ppm or less.
  • the polymer compound may contain a compound having a Mn of 500 or more, a compound having a Mn of 600 or more, or a compound having a Mn of 1000 or more.
  • the Mn of such a compound is, for example, 20000 or less, and may be 15000 or less or 10000 or less. From the viewpoint that the compound is easily retained in the negative electrode material and spreads thinner on the lead surface, the Mn of the compound is preferably 5000 or less, and may be 4000 or less or 3000 or less.
  • the Mn of the above compounds is 500 or more (or 600 or more) 20000 or less, 500 or more (or 600 or more) 15000 or less, 500 or more (or 600 or more) 10000 or less, 500 or more (or 600 or more) 5000 or less, 500 or more ( Or 600 or more and 4000 or less, 500 or more (or 600 or more) 3000 or less, 1000 or more and 20000 or less (or 15000 or less), 1000 or more and 10000 or less (or 5000 or less), or 1000 or more and 4000 or less (or 3000 or less). May be good.
  • the polymer compound preferably contains a compound having at least Mn of 1000 or more.
  • the Mn of such a compound may be 1000 or more and 20000 or less, 1000 or more and 15000 or less, or 1000 or more and 10000 or less.
  • the Mn of the compound is preferably 1000 or more and 5000 or less, may be 1000 or more and 4000 or less, and is 1000 or more and 3000 or less. You may.
  • the amount of overcharged electricity can be reduced more easily. Further, by reducing the amount of overcharged electricity, it is possible to suppress the structural change of the negative electrode active material caused by the collision of hydrogen gas with the negative electrode active material.
  • the compound having Mn as described above easily moves into the negative electrode material even when it is contained in the electrolytic solution, the compound can be replenished in the negative electrode material, and from this viewpoint as well, the negative electrode material It is easy to hold the compound inside.
  • the polymer compound two or more compounds having different Mns may be used. That is, the polymer compound may have a plurality of Mn peaks in the distribution of molecular weight.
  • the ratio C n / S n, and a 25ppm ⁇ m -2 ⁇ g or more, 26ppm ⁇ m -2 ⁇ g or more, there is 50ppm ⁇ m -2 ⁇ g or more, or 90ppm ⁇ m -2 ⁇ g or more May be good.
  • the ratio C n / Sn is in such a range, it is possible to suppress a decrease in charge acceptability while reducing the amount of overcharged electricity. In addition, it is easy to secure high low temperature HR discharge performance (particularly, low temperature HR discharge performance after a high temperature light load test).
  • the ratio C n / S n is preferably from 800ppm ⁇ m -2 ⁇ g or less, 730ppm ⁇ m -2 ⁇ g or less, or 600ppm ⁇ m -2 ⁇ g or less is more preferable.
  • the ratio C n / Sn is in such a range, it is easy to secure higher charge acceptability.
  • the ratio C n / S n preferably 450ppm ⁇ m -2 ⁇ g or less, 410ppm ⁇ m -2 ⁇ g or less More preferred.
  • the ratio C n / S n is, 25ppm ⁇ m -2 ⁇ g or more (or 26ppm ⁇ m -2 ⁇ g or more) 800ppm ⁇ m -2 ⁇ g or less, 25ppm ⁇ m -2 ⁇ g or more (or 26 ppm ⁇ m - 2 ⁇ g or more) 730ppm ⁇ m -2 ⁇ g or less, 25ppm ⁇ m -2 ⁇ g or more (or 26ppm ⁇ m -2 ⁇ g or more) 600ppm ⁇ m -2 ⁇ g or less, 25ppm ⁇ m -2 ⁇ g or more (or 26ppm ⁇ m -2 ⁇ g or more) 450ppm ⁇ m -2 ⁇ g or less, 25ppm ⁇ m -2 ⁇ g or more (or 26ppm ⁇ m -2 ⁇ g or more) 410ppm ⁇ m
  • the content C n of the polymer compound of the negative electrode material is on a mass basis, for example, more than 8 ppm, preferably more than or 13 ppm 10 ppm, more preferably at least 15 ppm, or may be 30ppm or higher or 40ppm or more.
  • the content C n of the polymer compound is within the range, the more easily it increases the hydrogen generation voltage can further enhance the effect of reducing the overcharge electric quantity.
  • the content C n (by weight) of the polymer compound of the negative electrode material may also be 50ppm or higher or 80ppm or more, may be 100ppm or more .
  • the content C n of the polymer compound of the negative electrode material is, for example, 3000ppm or less, may be less 2500 ppm, may be 2000ppm or less. Effectively suppressed from easily aspect a decrease in low-temperature HR discharge performance by the surface of the lead is excessively covered with the polymer compound is suppressed, the content C n (by weight) of the polymer compound, 1000 ppm or less Is preferable, 600 ppm or less or 500 ppm or less is more preferable, and 300 ppm or less or 200 ppm or less may be used. These lower limit value and upper limit value can be arbitrarily combined.
  • the content C n (by weight) of the polymer compound exceed 8 ppm (or more 10 ppm) 3000 ppm or less, exceeded 8 ppm (or more 10 ppm) 2500 ppm or less, exceeded 8 ppm (or more 10 ppm) 2000 ppm or less, exceeded 8 ppm ( Or 10ppm or more) 1000ppm or less, 8ppm or more (or 10ppm or more) 600ppm or less, 8ppm or more (or 10ppm or more) 500ppm or less, 8ppm or more (or 10ppm or more) 300ppm or less, 8ppm or more (or 10ppm or more) 200ppm or less , 13ppm or more (or 15ppm or more) 3000ppm or less, 13ppm or more (or 15ppm or more) 2500ppm or less, 13ppm or more (or 15ppm or more) 2000ppm or less, 13ppm or more (or 15ppm or more) 1000ppm or less, 13ppm or
  • Carbonaceous material examples include carbon black, graphite, hard carbon, and soft carbon. Examples of carbon black include acetylene black, ketjen black, furnace black, and lamp black.
  • the graphite may be any carbonaceous material containing a graphite-type crystal structure, and may be either artificial graphite or natural graphite. As the carbonaceous material, one kind may be used alone, or two or more kinds may be combined.
  • the intensity ratio of the peaks appearing in 1300 cm -1 or 1350 cm -1 or less in the range of the Raman spectrum (D band) and 1550 cm -1 or 1600 cm -1 peak appearing in the range (G band) I D / I G is a carbonaceous material is 0 to 0.9, will be referred to as graphite.
  • the graphite may be either artificial graphite or natural graphite.
  • the coating amount of lead and lead sulfate is also affected by the specific surface area and amount of the carbonaceous material.
  • the specific surface area S c of the carbonaceous material for example, a 0.5 (m 2 ⁇ g -1) or more, for example, 0.8 (m 2 ⁇ g -1 ) or more, 1 (m 2 ⁇ g -1 ) Or more, 2 (m 2 ⁇ g -1 ) or more, 20 (m 2 ⁇ g -1 ) or more, 25 (m 2 ⁇ g -1 ) or more, 50 (m 2 ⁇ g -1 ) or more, 70 (m) It may be 2 ⁇ g -1 ) or more, 100 (m 2 ⁇ g -1 ) or more, or 130 (m 2 ⁇ g -1 ) or more.
  • the specific surface area Sc When the specific surface area Sc is in such a range, it is easy to prevent the content of the polymer compound from becoming excessively large, and it is easy to secure high charge acceptability.
  • the specific surface area Sc may be, for example, 1500 (m 2 ⁇ g -1 ) or less, 1000 (m 2 ⁇ g -1 ) or less, 700 (m 2 ⁇ g -1 ) or less, or 650 ( m 2 ⁇ g -1) may be less than or equal to, 200 (m 2 ⁇ g -1 ) or less, or 150 (m 2 ⁇ g -1) or less, or 130 (m 2 ⁇ g -1) or less even with May be good.
  • gas generation tends to be remarkable on the surface of the carbonaceous material, but even in such a case, gas generation can be suppressed by combining with the polymer compound.
  • the specific surface area S c of the carbonaceous material 0.5 (or 0.8) (m 2 ⁇ g -1 ) or more 1500 (m 2 ⁇ g -1) or less, 0.5 (or 0.8) (m 2 ⁇ g -1 ) or more and 1000 (m 2 ⁇ g -1 ) or less, 0.5 (or 0.8) (m 2 ⁇ g -1 ) or more and 700 (m 2 ⁇ g -1 ) or less, 0.5 (Or 0.8) (m 2 ⁇ g -1 ) or more and 650 (m 2 ⁇ g -1 ) or less, 0.5 (or 0.8) (m 2 ⁇ g -1 ) or more and 200 (m 2 ⁇ g -1 ) or more -1 ) or less, 0.5 (or 0.8) (m 2 ⁇ g -1 ) or more and 150 (m 2 ⁇ g -1 ) or less, 0.5 (or 0.8) (m 2 ⁇ g -1) ) Or
  • the specific surface area S c of the carbonaceous material is a BET specific surface area determined by a gas adsorption method using a nitrogen gas.
  • the carbonaceous material may include a first carbonaceous material having a particle size of 32 ⁇ m or more, or may include a second carbonaceous material having a particle size of less than 32 ⁇ m.
  • the carbonaceous material may include both a first carbonaceous material and a second carbonaceous material. The first carbonaceous material and the second carbonaceous material are separated and distinguished by the procedure described later.
  • the first carbonaceous material examples include at least one selected from the group consisting of graphite, hard carbon and soft carbon. Above all, the first carbonaceous material preferably contains at least graphite. By using graphite, even higher PSOC life performance can be ensured.
  • the secondary carbonaceous material preferably contains at least carbon black.
  • the ratio of the secondary carbonaceous material to the total carbonaceous material is, for example, 10% by mass or more, 40% by mass or more, and 50% by mass. It may be% or more or 60% by mass or more.
  • the ratio of the secondary carbonaceous material to the total carbonaceous material is, for example, 100% by mass or less. From the viewpoint of easily ensuring higher low temperature HR discharge performance, the ratio of the secondary carbonaceous material may be 90% by mass or less.
  • the ratio of the secondary carbonaceous material to the total carbonaceous material is 10% by mass or more (or 40% by mass or more) 100% by mass or less, 10% by mass or more (or 40% by mass or more) 90% by mass or less, 50% by mass. It may be more than (or 60% by mass or more) 100% by mass or less, or 50% by mass or more (or 60% by mass or more) 90% by mass or less.
  • the content C c of the carbonaceous material in the negative electrode material is, for example, 0.01% by mass or more, and may be 0.1% by mass or more. From the viewpoint of easily ensuring higher charge acceptability, 0.2% by mass or more or 0.3% by mass or more is preferable. Further, from the viewpoint that the effect of suppressing the amount of overcharged electricity is further enhanced and the effect of suppressing a decrease in charge acceptability is obtained, the content C c is preferably 0.45% by mass or more. The content C c is, for example, 5% by mass or less, and may be 3.5% by mass or less. From the viewpoint of easily securing a higher amount of overcharged electricity, the content C c is preferably 3% by mass or less.
  • the content C c of the carbonaceous material is 0.01% by mass or more (or 0.1% by mass) 5% by mass or less, 0.01% by mass or more (or 0.1% by mass or more) 3.5% by mass.
  • the negative electrode material can include a shrink-proofing agent.
  • an organic shrink proofing agent is preferable.
  • the organic shrinkage proofing agent lignins and / or synthetic organic shrinkage proofing agents may be used.
  • lignins include lignin and lignin derivatives.
  • the lignin derivative include lignin sulfonic acid or a salt thereof (alkali metal salt (sodium salt, etc.), etc.).
  • Organic shrink proofing agents are usually roughly classified into lignins and synthetic organic shrink proofing agents. It can be said that the synthetic organic shrinkage proofing agent is an organic shrinkage proofing agent other than lignins.
  • the synthetic organic shrinkage proofing agent is an organic polymer containing a sulfur element, and generally contains a plurality of aromatic rings in the molecule and also contains a sulfur element as a sulfur-containing group.
  • a sulfur element as a sulfur-containing group.
  • the sulfur-containing groups a sulfonic acid group or a sulfonyl group in a stable form is preferable.
  • the sulfonic acid group may be present in the acid form or in the salt form such as the Na salt.
  • the negative electrode material may contain one type of shrink-proofing agent, or may contain two or more types.
  • the organic shrinkage proofing agent it is preferable to use a condensate containing at least a unit of an aromatic compound.
  • a condensate include a condensate of an aromatic compound made of an aldehyde compound (such as an aldehyde (for example, formaldehyde) and / or a condensate thereof).
  • the organic shrink proofing agent may contain a unit of one kind of aromatic compound, or may contain a unit of two or more kinds of aromatic compounds.
  • the unit of the aromatic compound means a unit derived from the aromatic compound incorporated in the condensate.
  • Examples of the aromatic ring contained in the aromatic compound include a benzene ring and a naphthalene ring.
  • the plurality of aromatic rings may be directly bonded or linked by a linking group (for example, an alkylene group (including an alkylidene group), a sulfone group, etc.).
  • Examples of such a structure include a bisarene structure (biphenyl, bisphenylalkane, bisphenylsulfone, etc.).
  • Examples of the aromatic compound include the above-mentioned compounds having an aromatic ring and a hydroxy group and / or an amino group.
  • the hydroxy group or amino group may be directly bonded to the aromatic ring, or may be bonded as an alkyl chain having a hydroxy group or amino group.
  • the hydroxy group also includes a salt of the hydroxy group (-OMe).
  • the amino group also includes a salt of the amino group (salt with an anion). Examples of Me include alkali metals (Li, K, Na, etc.) and Group 2 metals of the periodic table (Ca, Mg, etc.).
  • aromatic compound examples include bisarene compounds [bisphenol compounds, hydroxybiphenyl compounds, bisarene compounds having an amino group (bisarylalkane compounds having an amino group, bisarylsulfone compounds having an amino group, biphenyl compounds having an amino group, etc.), Hydroxyarene compounds (hydroxynaphthalene compounds, phenol compounds, etc.), aminoarene compounds (aminonaphthalene compounds, aniline compounds (aminobenzenesulfonic acid, alkylaminobenzenesulfonic acid, etc.), etc.) and the like] are preferable.
  • the aromatic compound may further have a substituent.
  • the organic shrinkage proofing agent may contain one type of residues of these compounds, or may contain a plurality of types.
  • bisphenol compound bisphenol A, bisphenol S, bisphenol F and the like are preferable.
  • the condensate preferably contains at least a unit of an aromatic compound having a sulfur-containing group.
  • a condensate containing at least a unit of a bisphenol compound having a sulfur-containing group when used, the effect of suppressing a decrease in low-temperature HR discharge performance after a high-temperature light load test can be enhanced.
  • the sulfur-containing group may be directly bonded to the aromatic ring contained in the compound, or may be bonded to the aromatic ring as an alkyl chain having a sulfur-containing group, for example.
  • the sulfur-containing group is not particularly limited, and examples thereof include a sulfonyl group, a sulfonic acid group, or a salt thereof.
  • the organic shrinkage proofing agent for example, a condensation containing at least one selected from the group consisting of the above-mentioned unit of a bisalene compound and a unit of a monocyclic aromatic compound (such as a hydroxyarene compound and / or an aminoarene compound). At least one may be used.
  • the organic shrink-proofing agent may contain at least a condensate containing a unit of a bisalene compound and a unit of a monocyclic aromatic compound (particularly, a hydroxyarene compound). Examples of such a condensate include a condensate of a bisarene compound and a monocyclic aromatic compound with an aldehyde compound.
  • hydroxyarene compound a phenol sulfonic acid compound (phenol sulfonic acid or a substitute thereof, etc.) is preferable.
  • aminoarene compound aminobenzenesulfonic acid, alkylaminobenzenesulfonic acid and the like are preferable.
  • monocyclic aromatic compound a hydroxyarene compound is preferable.
  • the negative electrode material may contain, for example, a first organic shrinkage proofing agent having a sulfur element content of 2000 ⁇ mol / g or more among the above organic shrinkage proofing agents.
  • a first organic shrinkage proofing agent having a sulfur element content of 2000 ⁇ mol / g or more among the above organic shrinkage proofing agents.
  • the first organic shrinkage proofing agent include the above-mentioned synthetic organic shrinkage proofing agent (the above-mentioned condensate and the like).
  • the sulfur element content of the first organic shrinkage proofing agent may be 2000 ⁇ mol / g or more, preferably 3000 ⁇ mol / g or more.
  • the upper limit of the sulfur element content of the organic shrink proofing agent is not particularly limited, but from the viewpoint of further enhancing the effect of suppressing liquid reduction, it is preferably 9000 ⁇ mol / g or less, and more preferably 8000 ⁇ mol / g or less or 7000 ⁇ mol / g or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the sulfur element content of the first organic shrinkage agent is, for example, 2000 ⁇ mol / g or more (or 3000 ⁇ mol / g or more) 9000 ⁇ mol / g or less, 2000 ⁇ mol / g or more (or 3000 ⁇ mol / g or more) 8000 ⁇ mol / g or less, or 2000 ⁇ mol / g. It may be more than (or 3000 ⁇ mol / g or more) and 7,000 ⁇ mol / g or less.
  • the weight average molecular weight (Mw) of the first organic shrinkage proofing agent is preferably 7,000 or more, for example.
  • the Mw of the first organic shrinkage proofing agent is, for example, 100,000 or less, and may be 20,000 or less.
  • Mw of an organic shrinkage-proofing agent is obtained by GPC.
  • the standard substance used when determining Mw is sodium polystyrene sulfonate. Mw is measured under the following conditions using the following device.
  • the negative electrode material can contain, for example, a second organic shrinkage proofing agent having a sulfur element content of less than 2000 ⁇ mol / g.
  • the second organic shrinkage proofing agent include lignins and synthetic organic shrinkage proofing agents (particularly lignins) among the above-mentioned organic shrinkage proofing agents.
  • the sulfur element content of the second organic shrinkage proofing agent is preferably 1000 ⁇ mol / g or less, and may be 800 ⁇ mol / g or less.
  • the lower limit of the sulfur element content in the second organic shrinkage proofing agent is not particularly limited, but is, for example, 400 ⁇ mol / g or more.
  • the Mw of the second organic shrinkage proofing agent is, for example, less than 7,000.
  • the Mw of the second organic shrinkage proofing agent is, for example, 3000 or more.
  • the mass ratios thereof can be arbitrarily selected.
  • the ratio of the first organic shrinkage proofing agent to the total amount of the first organic shrinkage proofing agent and the second organic shrinkage proofing agent is preferably 20% by mass or more, and 25 It may be mass% or more.
  • the ratio of the first organic shrinkage-proofing agent to the total amount of the first organic shrinkage-proofing agent and the second organic shrinkage-proofing agent is preferably 80% by mass or less, and may be 75% by mass or less.
  • the ratio of the first organic shrinkage-proofing agent to the total amount of the first organic shrinkage-proofing agent and the second organic shrinkage-proofing agent is 20% by mass or more and 80% by mass or less (or 75% by mass or less), or 25% by mass or more and 80% by mass or less. (Or 75% by mass or less) may be used.
  • the content of the organic shrink-proofing agent contained in the negative electrode electrode material is, for example, 0.01% by mass or more, and may be 0.05% by mass or more.
  • the content of the organic shrink proofing agent is, for example, 1.0% by mass or less, and may be 0.5% by mass or less.
  • the content of the organic shrink-proofing agent contained in the negative electrode electrode material is 0.01% by mass or more and 1.0% by mass or less, 0.05% by mass or more and 1.0% by mass or less, and 0.01% by mass or more and 0.5. It may be mass% or less, or 0.05 mass% or more and 0.5 mass% or less.
  • barium sulfate The content of barium sulfate in the negative electrode electrode material is, for example, 0.05% by mass or more, and may be 0.10% by mass or more. The content of barium sulfate in the negative electrode electrode material is 3% by mass or less, and may be 2% by mass or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the content of barium sulfate in the negative electrode material is 0.05% by mass or more and 3% by mass or less, 0.05% by mass or more and 2% by mass or less, 0.10% by mass or more and 3% by mass or less, or 0.10% by mass. It may be% or more and 2% by mass or less.
  • sample A a sample obtained by separating the negative electrode material from the negative electrode plate. Sample A is pulverized as needed and subjected to analysis.
  • Chloroform-soluble components are recovered by distilling off chloroform under reduced pressure from the chloroform solution in which the polymer compound obtained by extraction is dissolved.
  • the chloroform-soluble component is dissolved in deuterated chloroform, and the 1 H-NMR spectrum is measured under the following conditions. From this 1 1 H-NMR spectrum, a peak with a chemical shift in the range of 3.2 ppm or more and 3.8 ppm or less is confirmed.
  • the type of oxyC 2-4 alkylene unit is specified from the peak in this range.
  • V 1 From the 1 H-NMR spectrum, the integral value (V 1 ) of the peaks in which the chemical shift exists in the range of 3.2 ppm or more and 3.8 ppm or less is obtained.
  • V 2 the sum of the integrated values of the peaks in the 1 H-NMR spectrum (V 2 ).
  • the straight line connecting the intervals is used as the baseline.
  • the straight line connecting the two points of 3.2 ppm and 3.8 ppm in the spectrum is used as the baseline.
  • the straight line connecting the two points of 3.8 ppm and 4.0 ppm in the spectrum is used as the baseline.
  • N a is a value obtained by averaging using a molar ratio of each monomer unit contained in the structure repeated N a value of each monomer unit (mol%), M a is the monomer It is determined according to the type of unit.
  • the integrated value of the peak in the 1 H-NMR spectrum is obtained by using the data processing software "ALICE” manufactured by JEOL Ltd.
  • the mass of each carbonaceous material separated by the above procedure is measured, and the ratio (mass%) of the total mass to the pulverized sample is calculated. Obtained by.
  • the separation is performed according to the following procedure.
  • the recovered carbonaceous material is sieved wet using a sieve with an opening of 32 ⁇ m
  • the material that remains on the sieve without passing through the sieve mesh is used as the first carbonaceous material, and the sieve mesh is used.
  • the material that passes through is the secondary carbonaceous material. That is, the particle size of each carbonaceous material is based on the size of the mesh opening of the sieve. For wet sieving, see JIS Z8815: 1994.
  • the carbonaceous material is placed on a sieve with an opening of 32 ⁇ m, and while sprinkling ion-exchanged water, the sieve is gently shaken for 5 minutes to sieve.
  • the primary carbonaceous material remaining on the sieve is recovered from the sieve by pouring ion-exchanged water over the sieve and separated from the ion-exchanged water by filtration.
  • the second carbonaceous material that has passed through the sieve is recovered by filtration using a membrane filter (opening 0.1 ⁇ m) made of nitrocellulose.
  • the recovered first carbonaceous material and second carbonaceous material are each dried at a temperature of 100 ° C. for 2 hours.
  • a sieve provided with a sieve net having a nominal mesh size of 32 ⁇ m specified in JIS Z8801-1: 2006 is used.
  • the ratio of the secondary carbonaceous material to the total carbonaceous material is obtained by calculating the ratio (mass%) of the measured mass of the secondary carbonaceous material to the mass of the carbonaceous material.
  • BET specific surface area S c of the carbonaceous material BET specific surface area S c of the carbonaceous material, using a carbonaceous material separated by the above steps (2-1), by a gas adsorption method, is determined using the BET equation.
  • the carbonaceous material is pretreated by heating in a nitrogen flow at a temperature of 150 ° C. for 1 hour to remove water.
  • the BET specific surface area of the carbonaceous material is determined by the following equipment under the following conditions.
  • Measuring device TriStar3000 manufactured by Micromeritix Adsorption gas: Nitrogen gas with a purity of 99.99% or more Adsorption temperature: Liquid nitrogen boiling temperature (77K) Calculation method of BET specific surface area: Compliant with 7.2 of JIS Z 8830: 2013
  • BET specific surface area S n of the negative electrode material BET specific surface area S n of the negative electrode material, using a sample A, a gas adsorption method, it is determined using the BET equation.
  • the negative electrode material is pretreated by heating in a nitrogen flow at a temperature of 150 ° C. for 1 hour. Using negative electrode material pretreated by the same apparatus and conditions as (2-2), obtaining a BET specific surface area S n of the negative electrode material.
  • the organic shrink-proofing agent species is specified by dissolving in a solvent and using a combination of information obtained from the NMR spectrum of the obtained solution.
  • the first organic shrinkage proofing agent and the second organic shrinkage proofing agent are separated from the above extract as follows. First, the extract is measured by infrared spectroscopy, NMR, and / or GC-MS to determine whether or not it contains a plurality of organic shrink proofing agents. Next, the molecular weight distribution is measured by GPC analysis of the extract, and if a plurality of kinds of organic shrink-proofing agents can be separated by molecular weight, the organic shrinkage-proofing agents are separated by column chromatography based on the difference in molecular weight.
  • one of the organic shrinkage proofing agents is separated by a precipitation separation method by utilizing the difference in solubility which differs depending on the type of functional group and / or the amount of functional groups of the organic shrinkage proofing agent.
  • one of the organic shrink-proofing agents is aggregated and separated by adding a sulfuric acid aqueous solution to the mixture in which the above extract is dissolved in a NaOH aqueous solution and adjusting the pH of the mixture.
  • the insoluble component is removed by filtration from the solution obtained by dissolving the separated product in the aqueous NaOH solution again as described above.
  • the remaining solution after separating one of the organic shrink proofing agents is concentrated.
  • the resulting concentrate contains the other organic shrink proofing agent, from which the insoluble components are removed by filtration as described above.
  • the structural formula of the organic shrinkage proofing agent cannot be specified exactly, so that the same organic shrinkage proofing is applied to the calibration curve.
  • the agent may not be available.
  • calibration is performed using an organic shrink-proofing agent extracted from the negative electrode of the battery and a separately available organic polymer having a similar shape in the ultraviolet-visible absorption spectrum, infrared spectroscopic spectrum, NMR spectrum, and the like. By creating a line, the content of the organic shrink-proofing agent shall be measured using the ultraviolet-visible absorption spectrum.
  • a carbonaceous material and components other than barium sulfate are removed from the dispersion liquid using a sieve.
  • the dispersion is suction-filtered using a membrane filter whose mass has been measured in advance, and the membrane filter is dried together with the filtered sample in a dryer at 110 ° C. ⁇ 5 ° C.
  • the filtered sample is a mixed sample of carbonaceous material and barium sulfate. The mass of the mixed sample is measured by subtracting the mass of the membrane filter from the total mass of the mixed sample and the membrane filter after drying.
  • the mixed sample after drying is put into a crucible together with a membrane filter and incinerated at 700 ° C. or higher.
  • the remaining residue is barium oxide.
  • the mass of barium oxide is converted to the mass of barium sulfate to obtain the mass of barium sulfate.
  • the negative electrode plate can be formed by applying or filling a negative electrode paste to a negative electrode current collector, aging and drying to produce an unchemicald negative electrode plate, and then forming an unchemicald negative electrode plate.
  • the negative electrode paste is prepared by adding water and sulfuric acid to lead powder, an organic shrink-proofing agent, and various additives as necessary, and kneading them. At the time of aging, it is preferable to ripen the unchemicald negative electrode plate at a temperature higher than room temperature and high humidity.
  • Chemical formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unchemical negative electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery. However, the chemical conversion may be carried out before assembling the lead-acid battery or the electrode plate group. The chemical formation produces spongy lead.
  • the positive electrode plate of a lead storage battery can be classified into a paste type, a clad type and the like.
  • the paste-type positive electrode plate includes a positive electrode current collector and a positive electrode material.
  • the positive electrode material is held in the positive electrode current collector.
  • the positive electrode electrode material is the positive electrode plate from which the positive electrode current collector is removed.
  • the positive electrode current collector may be formed by casting lead (Pb) or a lead alloy, or may be formed by processing a lead sheet or a lead alloy sheet. Examples of the processing method include expanding processing and punching processing. It is preferable to use a grid-shaped current collector as the positive electrode current collector because it is easy to support the positive electrode material.
  • the clad type positive electrode plate is a positive electrode filled in a plurality of porous tubes, a core metal inserted in each tube, a current collector connecting the plurality of core metals, and a tube in which the core metal is inserted. It comprises an electrode material and a coupling that connects a plurality of tubes.
  • the positive electrode material is the one excluding the tube, the core metal, the current collector, and the collective punishment.
  • the core metal and the current collector may be collectively referred to as a positive electrode current collector.
  • the positive electrode plate may be attached to the positive electrode plate. Since such a member (pasting member) is used integrally with the positive electrode plate, it is included in the positive electrode plate. Further, when the positive electrode plate includes such a member, the positive electrode electrode material is a paste type positive electrode plate obtained by removing the positive electrode current collector and the sticking member from the positive electrode plate.
  • the positive electrode current collector may include a surface layer.
  • the composition of the surface layer and the inner layer of the positive electrode current collector may be different.
  • the surface layer may be formed on a part of the positive electrode current collector.
  • the surface layer may be formed only on the lattice portion of the positive electrode current collector, only the ear portion, or only the frame bone portion.
  • the positive electrode material contained in the positive electrode plate contains a positive electrode active material (lead dioxide or lead sulfate) whose capacity is developed by a redox reaction.
  • the positive electrode material may contain other additives, if necessary.
  • the unchemical paste type positive electrode plate is obtained by filling the positive electrode current collector with the positive electrode paste, aging and drying.
  • the positive electrode paste is prepared by kneading lead powder, additives, water, and sulfuric acid.
  • the unchemical clad type positive electrode plate is formed by filling a porous tube into which a core metal connected by a current collector is inserted with lead powder or slurry-like lead powder, and connecting a plurality of tubes in a collective punishment. Will be done. Then, a positive electrode plate is obtained by forming these unchemical positive electrode plates.
  • the chemical conversion can be carried out by charging the electrode plate group in a state where the electrode plate group including the unchemical positive electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery.
  • the chemical conversion may be carried out before assembling the lead-acid battery or the electrode plate group.
  • Chemical formation can be performed by charging the electrode plate group in a state where the electrode plate group including the unchemical positive electrode plate is immersed in the electrolytic solution containing sulfuric acid in the electric tank of the lead storage battery.
  • the chemical conversion may be carried out before assembling the lead-acid battery or the electrode plate group.
  • a separator can be arranged between the negative electrode plate and the positive electrode plate.
  • a non-woven fabric and / or a microporous membrane or the like is used as the separator.
  • the thickness and the number of separators interposed between the negative electrode plate and the positive electrode plate may be selected according to the distance between the electrodes.
  • Nonwoven fabric is a mat that is entwined without weaving fibers, and is mainly composed of fibers.
  • the non-woven fabric for example, 60% by mass or more of the non-woven fabric is formed of fibers.
  • the fiber glass fiber, polymer fiber (polyester fiber such as polyolefin fiber, acrylic fiber, polyethylene terephthalate fiber, etc.), pulp fiber and the like can be used. Of these, glass fiber is preferable.
  • the non-woven fabric may contain components other than fibers, such as an acid-resistant inorganic powder and a polymer as a binder.
  • the microporous film is a porous sheet mainly composed of components other than fiber components.
  • a composition containing a pore-forming agent (polymer powder and / or oil, etc.) is extruded into a sheet and then pore-formed. It is obtained by removing the agent to form pores.
  • the microporous membrane is preferably composed of a material having acid resistance, and preferably contains a polymer component as a main component.
  • the polymer component polyolefins such as polyethylene and polypropylene are preferable.
  • the separator may be composed of, for example, only a non-woven fabric or only a microporous membrane. Further, the separator may be, if necessary, a laminate of a non-woven fabric and a microporous film, a material obtained by laminating different or similar materials, or a material in which irregularities are engaged with different or similar materials.
  • the separator may be in the shape of a sheet or in the shape of a bag.
  • a sheet-shaped separator may be sandwiched between the positive electrode plate and the negative electrode plate.
  • the electrode plate may be arranged so as to sandwich the electrode plate with one sheet-shaped separator in a bent state.
  • the positive electrode plate sandwiched between the bent sheet-shaped separators and the negative electrode plate sandwiched between the bent sheet-shaped separators may be overlapped, and one of the positive electrode plate and the negative electrode plate may be sandwiched between the bent sheet-shaped separators. , May be overlapped with the other electrode plate.
  • the sheet-shaped separator may be bent in a bellows shape, and the positive electrode plate and the negative electrode plate may be sandwiched between the bellows-shaped separators so that the separator is interposed between them.
  • the separator may be arranged so that the bent portion is along the horizontal direction of the lead storage battery (for example, the bent portion is parallel to the horizontal direction), and is along the vertical direction. (For example, the separator may be arranged so that the bent portion is parallel to the vertical direction).
  • recesses are alternately formed on both main surface sides of the separator.
  • the positive electrode plate is formed only in the recess on one main surface side of the separator.
  • a negative electrode plate is arranged (that is, a double separator is interposed between the adjacent positive electrode plate and the negative electrode plate).
  • the separator is arranged so that the bent portion is along the vertical direction of the lead-acid battery, the positive electrode plate can be accommodated in the recess on one main surface side and the negative electrode plate can be accommodated in the recess on the other main surface side (that is,).
  • a separator may be provided in a single layer between the adjacent positive electrode plate and the negative electrode plate.)
  • the bag-shaped separator may accommodate a positive electrode plate or a negative electrode plate.
  • the vertical direction in the electrode plate means the vertical direction in the vertical direction of the lead storage battery.
  • the electrolytic solution is an aqueous solution containing sulfuric acid, and may be gelled if necessary.
  • the electrolytic solution may contain the above-mentioned polymer compound.
  • the origin of the polymer compound contained in the electrolytic solution is not particularly limited.
  • the concentration of the polymer compound in the electrolytic solution may be, for example, 500 ppm or less, 300 ppm or less, or 200 ppm or less on a mass basis. Even when the amount of the polymer compound contained in the electrolytic solution is small as described above, the amount of overcharged electricity can be reduced, and the deterioration of charge acceptability and low-temperature HR discharge performance can be suppressed.
  • the concentration of the polymer compound in the electrolytic solution may be 1 ppm or more or 5 ppm or more on a mass basis. These upper limit values and lower limit values can be arbitrarily combined.
  • the concentration of the polymer compound in the electrolytic solution may be 1 ppm or more and 500 ppm or less, 1 ppm or more and 300 ppm or less, 1 ppm or more and 200 ppm or less, 5 ppm or more and 500 ppm or less, 5 ppm or more and 300 ppm or less, or 5 ppm or more and 200 ppm or less on a mass basis.
  • the concentration of the polymer compound in the electrolytic solution is 100 ppm or more.
  • the polymer compound preferably contains at least a compound having Mn of 1000 or more and 5000 or less. Since the polymer compound having Mn of 5000 or less easily dissolves in the electrolytic solution and easily moves in the electrolytic solution, it can move into the negative electrode material and further enhance the effect of reducing the amount of overcharged electricity. Since the structural change of the negative electrode active material due to hydrogen gas is also suppressed, it is possible to suppress the deterioration of the low temperature HR discharge performance after the high temperature light load test.
  • the polymer compound having Mn of 1000 or more has higher adsorptivity to lead, and the effect of reducing the amount of overcharged electricity can be further enhanced.
  • the lead-acid battery is used for a long period of time, the structural change of the negative electrode active material gradually progresses, and the polymer compound tends to easily elute from the negative electrode plate.
  • the electrolytic solution contains a polymer compound having a certain concentration, the elution of the polymer compound from the negative electrode plate can be suppressed, the polymer compound can be retained in the negative electrode electrode material, and the polymer compound can be contained in the electrolytic solution.
  • the negative electrode plate can be replenished.
  • the concentration of the polymer compound in the electrolytic solution may be, for example, 100 ppm or more, 200 ppm or more, 500 ppm or more, higher than 500 ppm, or 600 ppm or more on a mass basis.
  • the polymer compound preferably contains at least a compound having a Mn of 1000 or more and 5000 or less (for example, 4000 or less or 3000 or less).
  • the concentration of the polymer compound in the electrolytic solution is, for example, 5000 ppm or less, 4000 ppm or less, 3000 ppm or less, 2500 ppm or less, or 2400 ppm or less on a mass basis.
  • the concentration of the polymer compound in the electrolytic solution is 100 ppm or more (or 200 ppm or more) 5000 ppm or less, 100 ppm or more (or 200 ppm or more) 4000 ppm or less, 100 ppm or more (or 200 ppm or more) 3000 ppm or less, 100 ppm or more (or 200 ppm or more) on a mass basis.
  • 2500ppm or less 2500ppm or less, 100ppm or more (or 200ppm or more) 2400ppm or less, 500ppm or more (or higher than 500ppm) 5000ppm or less, 500ppm or more (or higher than 500ppm) 4000ppm or less, 500ppm or more (or higher than 500ppm) 3000ppm or less, 500ppm or more ( Alternatively, it may be 2500 ppm or less (higher than 500 ppm), 500 ppm or more (or higher than 500 ppm), 2400 ppm or less, 600 ppm or more and 5000 ppm or less (or 4000 ppm or less), 600 ppm or more and 3000 ppm or less (or 2500 ppm or less), or 600 ppm or more and 2400 ppm or less.
  • the concentration of the polymer compound in the electrolytic solution shall be determined for a fully charged lead-acid battery.
  • the concentration of the polymer compound in the electrolytic solution is determined by adding chloroform to a predetermined amount (m 1 (g)) of electrolytic solution taken out from a ready-made fully charged lead-acid battery, mixing the mixture, and allowing it to stand to separate into two layers. After that, only the chloroform layer is taken out. After repeating this operation several times, chloroform is distilled off under reduced pressure to obtain a chloroform-soluble component. An appropriate amount of chloroform-soluble matter is dissolved in deuterated chloroform together with TCE 0.0212 ⁇ 0.0001 g, and 1 1 H-NMR spectrum is measured.
  • the electrolyte may optionally include cations (eg, metal cations such as sodium ions, lithium ions, magnesium ions, and / or aluminum ions) and / or anions (eg, anions other than sulfate anions such as phosphate ions). ) May be included.
  • cations eg, metal cations such as sodium ions, lithium ions, magnesium ions, and / or aluminum ions
  • anions eg, anions other than sulfate anions such as phosphate ions.
  • the specific gravity of the electrolytic solution in a fully charged lead-acid battery at 20 ° C. is, for example, 1.20 or more, and may be 1.25 or more.
  • the specific gravity of the electrolytic solution at 20 ° C. is 1.35 or less, preferably 1.32 or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the specific gravity of the electrolytic solution at 20 ° C. may be 1.20 or more and 1.35 or less, 1.20 or more and 1.32 or less, 1.25 or more and 1.35 or less, or 1.25 or more and 1.32 or less. ..
  • the lead-acid battery can be obtained by a manufacturing method including a step of assembling the lead-acid battery by accommodating the positive electrode plate, the negative electrode plate, and the electrolytic solution in the battery case.
  • the separator is usually arranged so as to be interposed between the positive electrode plate and the negative electrode plate.
  • the step of assembling the lead-acid battery may include a step of accommodating the positive electrode plate, the negative electrode plate, and the electrolytic solution in the battery case, and then, if necessary, a step of forming the positive electrode plate and / or the negative electrode plate.
  • the positive electrode plate, the negative electrode plate, the electrolytic solution, and the separator are each prepared before being housed in the battery case.
  • FIG. 1 shows the appearance of an example of a lead storage battery according to an embodiment of the present invention.
  • the lead-acid battery 1 includes an electric tank 12 that houses a electrode plate group 11 and an electrolytic solution (not shown).
  • the inside of the electric tank 12 is partitioned into a plurality of cell chambers 14 by a partition wall 13.
  • One electrode plate group 11 is housed in each cell chamber 14.
  • the opening of the battery case 12 is closed by a lid 15 including a negative electrode terminal 16 and a positive electrode terminal 17.
  • the lid 15 is provided with a liquid spout 18 for each cell chamber. At the time of rehydration, the liquid spout 18 is removed and the rehydration liquid is replenished.
  • the liquid spout 18 may have a function of discharging the gas generated in the cell chamber 14 to the outside of the battery.
  • the electrode plate group 11 is formed by laminating a plurality of negative electrode plates 2 and positive electrode plates 3 with a separator 4 interposed therebetween.
  • the bag-shaped separator 4 that accommodates the negative electrode plate 2 is shown, but the form of the separator is not particularly limited.
  • the negative electrode shelf portion 6 for connecting the plurality of negative electrode plates 2 in parallel is connected to the through connecting body 8, and the positive electrode shelf portion for connecting the plurality of positive electrode plates 3 in parallel. 5 is connected to the positive electrode column 7.
  • the positive electrode column 7 is connected to the positive electrode terminal 17 outside the lid 15.
  • the negative electrode column 9 is connected to the negative electrode shelf 6, and the through connector 8 is connected to the positive electrode shelf 5.
  • the negative electrode column 9 is connected to the negative electrode terminal 16 outside the lid 15.
  • Each through-connecting body 8 passes through a through-hole provided in the partition wall 13 and connects the electrode plates 11 of the adjacent cell chambers 14 in series.
  • the positive electrode shelf 5 is formed by welding the ears provided on the upper part of each positive electrode plate 3 by a cast-on strap method or a burning method.
  • the negative electrode shelf portion 6 is also formed by welding the ear portions provided on the upper portions of the negative electrode plates 2 as in the case of the positive electrode shelf portion 5.
  • the lid 15 of the lead storage battery has a single structure (single lid), but is not limited to the case shown in the illustrated example.
  • the lid 15 may have, for example, a double structure including an inner lid and an outer lid (or upper lid).
  • the lid having a double structure is provided with a reflux structure between the inner lid and the outer lid for returning the electrolytic solution to the inside of the battery (inside the inner lid) from the reflux port provided on the inner lid. May be good.
  • the lead-acid batteries according to one aspect of the present invention are summarized below.
  • a positive electrode plate, a negative electrode plate, and an electrolytic solution are provided.
  • the negative electrode plate includes a negative electrode material and has a negative electrode material.
  • the negative electrode material contains a polymer compound and contains.
  • the polymer compound has a peak in the range of 3.2 ppm or more and 3.8 ppm or less in the chemical shift of 1 H-NMR spectrum.
  • the ratio specific surface area S n of the negative electrode material of the content C n of the polymer compound of the negative electrode material: C n / S n is 25ppm ⁇ m -2 ⁇ g or more, lead-acid batteries.
  • the polymer compound contains an oxygen atom bonded to a terminal group and an -CH 2 -group and / or -CH ⁇ group bonded to the oxygen atom, and the above 1 H-NMR.
  • the ratio of the integrated value of the peak to the total of the integrated value of the peak, the integrated value of the peak of the -CH 2 -group hydrogen atom, and the integrated value of the peak of the -CH ⁇ group hydrogen atom May be 50% or more, 80% or more, 85% or more, or 90% or more.
  • the polymer compound may contain a repeating structure of an oxyC 2-4 alkylene unit.
  • the negative electrode plate includes a negative electrode material and has a negative electrode material.
  • the negative electrode material contains a polymer compound containing a repeating structure of oxyC 2-4 alkylene units.
  • the ratio specific surface area S n of the negative electrode material of the content C n of the polymer compound of the negative electrode material: C n / S n is 25ppm ⁇ m -2 ⁇ g or more, lead-acid batteries.
  • the polymer compound has an etherified product of a hydroxy compound having a repeating structure of the oxyC 2-4 alkylene unit and a repeating structure of the oxy C 2-4 alkylene unit. Containing at least one selected from the group consisting of esterified compounds of hydroxy compounds.
  • the hydroxy compound is at least one selected from the group consisting of a poly C 2-4 alkylene glycol, a copolymer containing a repeating structure of oxy C 2-4 alkylene, and a C 2-4 alkylene oxide adduct of a polyol. You may.
  • the negative electrode plate includes a negative electrode material and has a negative electrode material.
  • the negative electrode material contains a polymer compound and contains.
  • the ratio specific surface area S n of the negative electrode material of the content C n of the polymer compound of the negative electrode material: C n / S n is the 25ppm ⁇ m -2 ⁇ g or more,
  • the polymeric compound at least one selected from the group consisting of esters of hydroxy compounds having a repeating structure of ethers of hydroxy compounds, and oxy C 2-4 alkylene unit having a repeating structure oxy C 2-4 alkylene unit Including
  • the hydroxy compound is at least one selected from the group consisting of a poly C 2-4 alkylene glycol, a copolymer containing a repeating structure of oxy C 2-4 alkylene, and a C 2-4 alkylene oxide adduct of a polyol. , Lead-acid battery.
  • the etherified product has two -OR groups in which the -OH group at the terminal of at least a part of the hydroxy compound is etherified (in the formula, R 2 is an organic group). have certain.), the organic group R 2 may be a hydrocarbon group.
  • R 3 is an organic group), and the organic group R 3 may be a hydrocarbon group.
  • the hydrocarbon group may be an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be either linear or branched.
  • the number of carbon atoms of the aliphatic hydrocarbon group is, for example, 30 or less, may be 26 or less or 22 or less, and is 20 or less or 16 or less. It may be 14 or less or 10 or less, and may be 8 or less or 6 or less.
  • the aliphatic hydrocarbon group may be an alkyl group or an alkenyl group.
  • the alkyl group may have 1 or more carbon atoms, and the alkenyl group may have 2 or more carbon atoms.
  • the alkyl group is methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-pentyl, and the like.
  • the alkenyl group may be, for example, a C 2-30 alkenyl group or a C 2-26 alkenyl group, a C 2-22 alkenyl group or a C 2-20. It may be an alkenyl group or a C 10-20 alkenyl group.
  • the alkenyl group may be at least one selected from the group consisting of vinyl, 1-propenyl, allyl, palmitrail, and oleyl.
  • the repeating structure of the oxyC 2-4 alkylene unit may include at least the repeating structure of the oxypropylene unit.
  • the ratio of the oxypropylene unit in the polymer compound (1 molecule) may be 5 mol% or more, 10 mol% or more, or 20 mol% or more.
  • the polymer compound may contain a compound having a Mn of 500 or more, a compound having a Mn of 600 or more, and a Mn of 1000 or more. It may contain a compound.
  • the Mn of the compound may be 20000 or less, 15000 or less, 10000 or less, 5000 or less, 4000 or less, or 3000 or less.
  • the polymer compound may contain a compound having at least Mn of 1000 or more.
  • the Mn of the compound may be 1000 or more and 20000 or less, 1000 or more and 15000 or less, 1000 or more and 10000 or less, 1000 or more and 5000 or less, 1000 or more and 4000 or less, or 1000 or more and 3000 or less. ..
  • the ratio C n / S n is, 25ppm ⁇ m -2 ⁇ g or more, 26ppm ⁇ m -2 ⁇ g or more, 50 ppm ⁇ m -2 -It may be g or more, or 90 ppm ⁇ m- 2 ⁇ g or more.
  • the ratio C n / S n is, 800ppm ⁇ m -2 ⁇ g or less, 730ppm ⁇ m -2 ⁇ g or less, 600 ppm ⁇ m -2 ⁇ g or less, 450 ppm ⁇ m -2 ⁇ g or less, or 410 ppm ⁇ m -2 ⁇ g may be less.
  • the content C n of the polymer compound of the negative electrode material is a mass, it may be greater than 8 ppm, 10 ppm or more, more 13ppm , 15 ppm or more, 30 ppm or more, 40 ppm or more, 50 ppm or more, 80 ppm or more, or 100 ppm or more.
  • the content C n of the polymer compound of the negative electrode material is on a mass basis, 3000 ppm or less, 2500 ppm or less, 2000 ppm or less, 1000 ppm or less, It may be 600 ppm or less, 500 ppm or less, 300 ppm or less, or 200 ppm or less.
  • the specific surface area S n of the negative electrode material 0.3 m 2 ⁇ g -1 or more, 0.5 m 2 ⁇ g -1 or more, or It may be 0.7 m 2 ⁇ g -1 or more.
  • the specific surface area S n of the negative electrode material 4m 2 ⁇ g -1 or less, 3.5 m 2 ⁇ g -1 or less, 2.5 m It may be 2 ⁇ g -1 or less, 2 m 2 ⁇ g -1 or less, or 1.5 m 2 ⁇ g -1 or less.
  • the negative electrode material may contain a carbonaceous material.
  • the content C c of the carbonaceous material in the negative electrode material is 0.01% by mass or more, 0.1% by mass or more, 0.2% by mass or more, 0.3. It may be mass% or more, or 0.45 mass% or more.
  • the content C c of the carbonaceous material in the negative electrode material is 5% by mass or less, 3.5% by mass or less, or 3% by mass or less. May be good.
  • the carbonaceous material may include a second carbonaceous material having a particle size of less than 32 ⁇ m.
  • the ratio of the second carbonaceous material to the total carbonaceous material may be 100% by mass or less, or 90% by mass or less.
  • the negative electrode material may further contain an organic shrinkage proofing agent.
  • the organic shrinkage proofing agent (or the negative electrode material) may contain a first organic shrinkage proofing agent having a sulfur element content of 2000 ⁇ mol / g or more or 3000 ⁇ mol / g or more.
  • the sulfur element content of the first organic shrinkage proofing agent may be 9000 ⁇ mol / g or less, 8000 ⁇ mol / g or less, or 7000 ⁇ mol / g or less.
  • the first organic shrinkage-proofing agent contains a condensate containing a unit of an aromatic compound having a sulfur-containing group, and the condensate is a unit of the aromatic compound.
  • the condensate is a unit of the aromatic compound.
  • at least one selected from the group consisting of a unit of a bisarene compound and a unit of a monocyclic aromatic compound may be contained.
  • the condensate may contain a unit of the bis-alene compound and a unit of the monocyclic aromatic compound.
  • the unit of the monocyclic aromatic compound may include a unit of a hydroxyarene compound.
  • the sulfur-containing group may contain at least one selected from the group consisting of a sulfonic acid group and a sulfonyl group.
  • the organic shrinkage proofing agent (or the negative electrode material) is a second organic shrinkage proofing agent having a sulfur element content of less than 2000 ⁇ mol / g (or 1000 ⁇ mol / g or less or 800 ⁇ mol / g or less). It may be included.
  • the organic shrink-proofing agent (or the negative electrode material) further has a sulfur element content of less than 2000 ⁇ mol / g (or 1000 ⁇ mol / g or less or 800 ⁇ mol).
  • a second organic shrinkage proofing agent (/ g or less) may be contained.
  • the sulfur element content of the second organic shrinkage proofing agent may be 400 ⁇ mol / g or more.
  • the ratio of the first organic shrinkage proofing agent to the total amount of the first organic shrinkage proofing agent and the second organic shrinkage proofing agent is 80% by mass or less or 75% by mass or less. It may be.
  • the content of the organic shrinkage-proofing agent contained in the negative electrode electrode material is 0.01% by mass or more, or 0.05% by mass or more. There may be.
  • the content of the organic shrinkage-proofing agent contained in the negative electrode electrode material is 1.0% by mass or less or 0.5% by mass or less. You may.
  • the electrolytic solution may contain the polymer compound.
  • the concentration of the polymer compound in the electrolytic solution may be 500 ppm or less, 300 ppm or less, or 200 ppm or less on a mass basis.
  • the concentration of the polymer compound in the electrolytic solution may be 1 ppm or more or 5 ppm or more on a mass basis.
  • the concentration of the polymer compound in the electrolytic solution may be 100 ppm or more, 200 ppm or more, 500 ppm or more, or higher than 500 ppm on a mass basis. , 600 ppm or more.
  • the concentration of the polymer compound in the electrolytic solution may be 5000 ppm or less, 4000 ppm or less, 3000 ppm or less, 2500 ppm or less, or 2400 ppm or less on a mass basis.
  • the polymer compound may contain a compound having at least Mn of 500 or more (or 600 or more, preferably 1000 or more).
  • the Mn of the compound may be 5000 or less, 4000 or less, or 3000 or less.
  • the negative electrode material may contain barium sulfate.
  • the content of the barium sulfate in the negative electrode material may be 0.05% by mass or more or 0.10% by mass or more.
  • the content of the barium sulfate in the negative electrode material may be 3% by mass or less or 2% by mass or less.
  • Each component is mixed so that the content of the organic shrinkage-proofing agent is 0.6% by mass and 0.1% by mass.
  • the ratio C n / S n is adjusted by adjusting the content C n of the polymer compound of specific surface area S n and the negative electrode material of the negative electrode material obtained in above-described procedure.
  • the obtained negative electrode paste is filled in the mesh portion of the expanded lattice made of Pb—Ca—Sn alloy and aged and dried to obtain an unmodified negative electrode plate.
  • the lead-acid battery R1 does not use a polymer compound, and the lead-acid battery E12 produces a negative electrode plate without using a carbonaceous material.
  • (B) Preparation of Positive Electrode Plate The lead powder as a raw material is mixed with an aqueous sulfuric acid solution to obtain a positive electrode paste.
  • the positive electrode paste is filled in the mesh portion of the expanded lattice made of Pb—Ca—Sn alloy and aged and dried to obtain an unchemicald positive electrode plate.
  • the test battery has a rated voltage of 2V and a rated 5-hour rate capacity of 32Ah.
  • the electrode plate group of the test battery is composed of seven positive electrode plates and seven negative electrode plates.
  • the negative electrode plate is housed in a bag-shaped separator formed of a microporous polyethylene film, and is alternately laminated with the positive electrode plate to form a group of electrode plates.
  • a group of electrode plates is housed in a polypropylene electric tank together with an electrolytic solution (sulfuric acid aqueous solution) and chemically formed in the electric tank to prepare a liquid lead-acid battery.
  • the specific gravity of the electrolytic solution after chemical conversion is 1.28 (20 ° C. conversion).
  • the concentration of the polymer compound in the electrolytic solution obtained by the procedure described above is 300 ppm or less.
  • the integrated value of the peaks of 3.2 ppm ⁇ 3.8 ppm, and the integral value of the peak, -CH 2 bonded to an oxygen atom - and the integral value of the peak of the hydrogen atoms of the group is 98.1%.
  • the overcharged electricity amount is evaluated by the ratio (%) when the overcharged electricity amount (Ah) per cycle of the lead storage battery R1 is 100.
  • Discharge 25A, 1 minute Charge: 2.47V / cell, 25A, 10 minutes
  • (C) Low-temperature HR discharge performance after light load test
  • the test battery after full charge after the high-temperature light load test in (a) above has a terminal voltage of 1.0 V at -15 ° C ⁇ 1 ° C at a discharge current of 150 A. / Discharge until it reaches the cell, and obtain the discharge time (low temperature HR discharge duration after the light load test) (s) at this time.
  • the longer the discharge duration the better the low temperature HR discharge performance.
  • the low temperature HR discharge performance of each battery is evaluated by the ratio (%) when the discharge duration of the lead storage battery R1 is 100.
  • Table 1 shows the results of lead-acid batteries E1 to E12 and R1.
  • the decrease in charge acceptability is suppressed because the lead surface is thinly covered with the polymer compound, which makes it difficult to inhibit the elution of lead sulfate. It is considered that the decrease in charge acceptability is also suppressed by suppressing the uneven distribution of the polymer compound in the pores of lead and facilitating the movement of ions.
  • the ratio C n / S n is preferably not more than 450ppm ⁇ m -2 ⁇ g, more preferably at most 410ppm ⁇ m -2 ⁇ g.
  • the ratio C n / S n in Table 1 the relationship between the charge acceptance shown in Fig.
  • the relationship between the amount of overcharged electricity in Table 1 and charge acceptability is shown in FIG.
  • FIGS. 3 and 4 the case where the content C c of the carbonaceous material in the negative electrode material is 0.45% by mass or more and the case where the content C c is less than 0.45% by mass are shown separately.
  • FIG. 3 when the carbonaceous material is 0.45% by mass or more, the effect of suppressing the decrease in charge acceptability is significantly higher than when it is less than 0.45% by mass. ing.
  • FIG. 3 when the carbonaceous material is 0.45% by mass or more, the effect of suppressing the decrease in charge acceptability is significantly higher than when it is less than 0.45% by mass. ing.
  • Lead-acid batteries E13-1 to E16-1, E13-2 to E16-2, and E15-3 to E15-5 The polymer compound (polypropylene glycol) having Mn shown in Table 2 is used.
  • the content C n of the polymer compound of the negative electrode material obtained in above-described procedure is mixing the components of the anode paste to a value shown in Table 2. Except for these, a test battery is manufactured and evaluated in the same manner as the lead storage battery E1.
  • the polymer compounds used in E13-2 to E16-2 are the same as the polymer compounds used in E13-1 to E16-1, respectively.
  • the polymer compounds used in E15-3 to E15-5 are the same as the polymer compounds used in E15-1 and E15-2.
  • the polymer compound 1 in H-NMR spectrum, the integrated value of the peaks of 3.2 ppm ⁇ 3.8 ppm, and the integral value of the peak, -CH 2 bonded to an oxygen atom - the peak of hydrogen atom of the group
  • the ratio of the integrated value to the integrated value of the peak of the hydrogen atom of the -CH ⁇ group bonded to the oxygen atom is 90.8% to 98.7%.
  • Table 2 shows the results of lead-acid batteries E13-1 to E16-1, E13-2 to E16-2, and E15-3 to E15-5. Table 2 also shows the results of the lead-acid battery R1.
  • Lead-acid batteries E17-1 to E20-1 and E17-2 to E20-2 >> The polymer compound (polypropylene glycol) having Mn shown in Table 3 is added to the negative electrode material and the electrolytic solution.
  • the polymer compound is added to the electrolytic solution so that the concentration of the polymer compound in the electrolytic solution obtained by the procedure described above becomes the value shown in Table 3. Except for these, a test battery is manufactured in the same manner as the lead storage battery E1 and the amount of overcharged electricity is evaluated.
  • the polymer compounds used in E17-1 to E20-1 are the same as the polymer compounds used in E13-1 to E16-1, respectively.
  • the polymer compounds used in E17-2 to E20-2 are the same as the polymer compounds used in E13-1 to E16-1, respectively.
  • the results of lead-acid batteries E17-1 to E20-1 and E17-2 to E20-2 are shown in Table 3. Table 3 also shows the results of the lead-acid battery R1.
  • Lead-acid batteries E21 to E23 and R2 to R4 >> An organic shrink-proofing agent having the sulfur (S) element content shown in Table 4 is used.
  • the content C n of the polymer compound of the negative electrode material obtained in above-described procedure is mixing the components of the anode paste to a value shown in Table 4. Except for these, a test battery is manufactured in the same manner as the lead storage battery E1, and the amount of overcharged electricity and the charge acceptability are evaluated. Further, using a lead storage battery, the initial low temperature HR discharge performance is evaluated according to the procedure (d) below.
  • the sulfur element content ( ⁇ mol / g) in the organic shrinkage-proofing agent the value before preparing the negative electrode electrode material and the value measured by disassembling the lead-acid battery and extracting each organic shrinkage-proofing agent are substantially the same. There is no difference.
  • the initial low-temperature HR discharge performance and charge acceptability are evaluated according to the above.
  • the overcharged electricity and initial low temperature HR discharge performance of lead-acid batteries E21, E22, E15-1, and E23 are that of lead-acid batteries R2, R3, R1, and R4, which use organic shrinkage agents with the same sulfur element content, respectively. Evaluate by the ratio (%) when the data is 100.
  • the charge acceptability of the lead-acid batteries E21, E22, E15-1 and E23 is such that the 10-second electric energy of the lead-acid batteries R2, R3, R1 and R4 using the organic shrink-proofing agent having the same sulfur element content is 100. Evaluate by the ratio (%) when the lead-acid batteries R2, R3, R1 and R4 using the organic shrink-proofing agent having the same sulfur element content is 100. Evaluate by the ratio (%) when
  • Table 4 shows the results of lead-acid batteries E21 to E23 and R2 to R4. Table 4 also shows the results of lead-acid batteries R1 and E15-1.
  • the decrease in charge acceptability is further suppressed.
  • the particle size of lead sulfate generated during discharge is smaller and the specific surface area is larger than when the organic shrinkage proofing agent having a low sulfur element content is used. Therefore, lead sulfate is used as a polymer compound. It becomes difficult to be covered. As a result, it is considered that when the first organic shrinkage proofing agent is used, the decrease in charge acceptability is suppressed as compared with the case where the organic shrinkage proofing agent having a low sulfur element content is used.
  • the initial low-temperature HR discharge performance is greatly improved.
  • the particle size of the colloid formed by the second organic shrinkage proofing agent in sulfuric acid is smaller than that in the case where the polymer compound is not used due to the surface active action of the polymer compound, so that the discharge reaction can easily proceed. It is thought that this is due to the fact.
  • the first organic shrinkage proofing agent having a high sulfur element content has a small particle size of the colloid produced even when the polymer compound is not used, so that the change in the particle size due to the addition of the polymer compound is small. Therefore, it is considered that the effect of improving the low temperature HR discharge performance is reduced.
  • Lead-acid batteries E24-E28 For the first organic shrinkage proofing agent and / or the second organic shrinkage proofing agent having the sulfur (S) element content shown in Table 5, the content of each organic shrinkage proofing agent obtained by the procedure described above is the value shown in Table 5. Mix each component as in. Except for these, a test battery is manufactured in the same manner as the lead storage battery E1 and the charge acceptability is evaluated. The same (e1) as the lead storage battery E1 is used as the first organic shrinkage proofing agent, and the same lignin sulfonate (e2) as the E20 is used as the second organic shrinkage proofing agent.
  • the value before preparing the negative electrode electrode material and the value measured by disassembling the lead-acid battery and extracting each organic shrinkage-proofing agent are substantially the same. There is no difference.
  • the charge acceptability of the lead-acid batteries E24 to E28 is evaluated by the ratio (%) when the electric energy of the lead-acid batteries E24 at the 10th second is 100.
  • Table 5 shows the results of lead-acid batteries E24 to E28.
  • Table 6 shows the results of lead-acid batteries E29, R5-1, R5-2, R6-1, and R6-2. Table 6 also shows the results of lead-acid batteries R1 and E15-1.
  • the amount of overcharged electricity can be effectively reduced even if the content of the polymer compound in the negative electrode electrode material is as small as 82 ppm.
  • the lead-acid batteries R5-1 or R6-1 using lignin sulfonate or oil unlike the lead-acid batteries E15-1 and E29 using polymer compounds, have no effect of reducing the amount of overcharged electricity. Absent. From this, it is considered that the polymer compound is in a state in which the interaction such as the adsorption action on lead and lead sulfate is different from that of lignin sulfonate and oil in the negative electrode material.
  • the lead-acid batteries R5-1 and R6-1 have a small effect of suppressing hydrogen generation during overcharging and a small effect of suppressing liquid reduction.
  • the lead-acid batteries E15-1 and E29 although the effect of reducing the amount of overcharged electricity is high, the decrease in charge acceptability is suppressed, and high charge acceptability can be ensured. From this, it is considered that most of the surfaces of lead and lead sulfate in the negative electrode material are thinly covered with the polymer compound, and the hydrogen overvoltage in the negative electrode plate is increased. Further, since the lead surface is thinly covered with the polymer compound, the elution of lead sulfate is less likely to be inhibited, so that it is considered that the decrease in charge acceptability is suppressed in the lead storage batteries E15-1 and E29.
  • the lead-acid batteries E15-1 and E29 higher low-temperature HR discharge performance can be ensured even after the high-temperature light load test as compared with the lead-acid battery R1. This is because the uneven distribution of the polymer compound in the pores of lead is suppressed, which facilitates the movement of ions, and the generation of hydrogen gas during overcharging is suppressed, so that the negative electrode active material due to the collision of hydrogen gas It is considered that this is due to the reduction of structural changes. Further, from the results in Table 4, it can be seen that the same effects as those of the lead-acid batteries E15-1 and E29 can be obtained even when the organic shrink-proof agents e2 to e4 are used.
  • Lead-acid batteries E30-E36 As the polymer compound, those shown in Table 7 are used.
  • the content C n of the polymer compound of the negative electrode material obtained in above-described procedure is mixing the components of the anode paste to a value shown in Table 7. Except for these, a test battery is manufactured and evaluated in the same manner as the lead storage battery E1.
  • the lead-acid battery according to one aspect of the present invention can be suitably used as a power source for starting a vehicle (automobile, motorcycle, etc.) or an industrial power storage device such as an electric vehicle (forklift, etc.). It should be noted that these uses are merely examples and are not limited to these uses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

鉛蓄電池は、正極板と、負極板と、電解液と、を備える。前記負極板は、負極電極材料を備える。前記負極電極材料は、ポリマー化合物を含み、前記ポリマー化合物は、H-NMRスペクトルのケミカルシフトにおいて、3.2ppm以上3.8ppm以下の範囲にピークを有する。あるいは、前記負極電極材料は、オキシC2-4アルキレンユニットの繰り返し構造を含むポリマー化合物を含む。前記負極電極材料中の前記ポリマー化合物の含有量Cの前記負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上である。

Description

鉛蓄電池
 本発明は、鉛蓄電池に関する。
 鉛蓄電池は、車載用、産業用の他、様々な用途で使用されている。鉛蓄電池には、負極板、正極板、セパレータ(またはマット)、および電解液などが含まれる。様々な機能を付与する観点から、鉛蓄電池の構成部材に添加剤が添加されることがある。
 特許文献1には、リグニンスルホン酸塩と併用してプロピレンオキシドとエチレンオキシドとの共重合体を負極板活物質中に添加したことを特徴とする鉛蓄電池が提案されている。
 特許文献2には、有機高分子を含む活性化剤を電槽内への裂開機構を有する小型密閉容器に封入し、小型密閉容器を電槽または蓋部に装着したことを特徴とする鉛蓄電池が提案されている。
 特許文献3には、サイズ組成物で被覆された複数の繊維と、バインダ組成物と、1種以上の添加剤とを含み、該添加剤が、ゴム添加剤、ゴム誘導体、アルデヒド、金属塩、エチレン-プロピレンオキサイドブロックコポリマー、硫酸エステル、スルホン酸エステル、リン酸エステル、ポリアクリル酸、ポリビニルアルコール、リグニン、フェノールホルムアルデヒド樹脂、セルロース、および木粉などのうち1種以上を含み、該添加剤が、鉛蓄電池における水分損失を減じるように機能し得る繊維貼付マットが提案されている。
 特許文献4には、水性媒体中に分散した0.2重量%から10重量%の炭素系ナノフィラーと、少なくとも1種の水溶性ポリマーと、0.01重量%から50重量%の、アルカリ金属又はアルカリ土類金属カチオン及びアンモニウムイオンから選択される少なくとも1種のカチオン成分とを含む、経時的に安定な液状組成物の鉛電池配合物の調製における使用であって、炭素系ナノフィラーがカーボンナノチューブ、グラフェン、又はカーボンナノチューブとグラフェンのあらゆる割合での混合物であり、水溶性ポリマーが多糖類;変性セルロースなどの変性多糖類;ポリアルキレンオキシド又はポリアルキレングリコールなどのポリエーテル;リグノスルホネート;ポリアクリレート;ポリカルボン酸、特にポリエーテルポリカルボキシレート又はそれらのコポリマーをベースとする製品;ナフタレンスルホネート及びそれらの誘導体;並びにそれらの対応する水溶液から選択される、使用が提案されている。
特開昭60-182662号公報 特開2000-149980号公報 特表2017-525092号公報 特表2018-508961号公報
 鉛の表面が有機系添加剤で覆われると、水素イオンの還元反応が起こり難くなるため、過充電電気量は減少する傾向にある。一方、鉛の表面が有機系添加剤で覆われた状態になると、放電時に生成した硫酸鉛が充電時に溶出し難くなるため、充電受入性は低下する。そのため、充電受入性の低下抑制と過充電電気量の低減とを両立させることは困難である。
 本発明の一側面は、正極板と、負極板と、電解液と、を備え、
 前記負極板は、負極電極材料を備え、
 前記負極電極材料は、ポリマー化合物を含み、
 前記ポリマー化合物は、H-NMRスペクトルのケミカルシフトにおいて、3.2ppm以上3.8ppm以下の範囲にピークを有し、
 前記負極電極材料中の前記ポリマー化合物の含有量Cの前記負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上である、鉛蓄電池に関する。
 本発明の他の側面は、正極板と、負極板と、電解液と、を備え、
 前記負極板は、負極電極材料を備え、
 前記負極電極材料は、オキシC2-4アルキレンユニットの繰り返し構造を含むポリマー化合物を含み、
 前記負極電極材料中の前記ポリマー化合物の含有量Cの前記負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上である、鉛蓄電池に関する。
 鉛蓄電池において、過充電電気量を低減しながら、充電受入性の低下を抑制できる。
本発明の一側面に係る鉛蓄電池の外観と内部構造を示す、一部を切り欠いた分解斜視図である。 表1の比C/Sと低温ハイレート(HR)放電性能との関係を示すグラフである。 表1の比C/Sと充電受入性との関係を示すグラフである。 表1の過充電電気量と充電受入性との関係を示すグラフである。
 一般に、鉛蓄電池の負極電極材料に有機系添加剤が含まれると、活物質である鉛の表面に有機系添加剤が付着する。鉛の表面が有機系添加剤で覆われた状態になると、放電時に生成した硫酸鉛が充電時に溶出し難くなるため、充電受入性が低下する。
 また、一般に、鉛蓄電池では、過充電時の反応は、鉛と電解液との界面における水素イオンの還元反応に大きく影響される。鉛の表面が有機系添加剤で覆われると、水素イオンの還元反応が起こり難くなるため、過充電電気量は減少する傾向にある。そのため、充電受入性の低下抑制と、過充電電気量の低減とは、トレードオフの関係にあり、両立させることは従来困難であった。さらに、有機系添加剤が鉛の細孔内で偏在した状態となると、十分な過充電電気量の低減効果を確保するには、負極電極材料中の有機系添加剤の含有量を多くする必要がある。しかし、一般に、有機系添加剤の含有量を多くすると、充電受入性が大きく低下する。
 鉛蓄電池では、一般に、電解液に硫酸水溶液が用いられるため、有機系添加剤(オイル、高分子、または有機防縮剤など)を負極電極材料中に含有させると、電解液への溶出と鉛への吸着とのバランスを取ることが難しくなる。例えば、鉛への吸着性が低い有機系添加剤を用いると、電解液中に溶出し易くなり、過充電電気量を低減し難くなる。一方、鉛への吸着性が高い有機系添加剤を用いると、鉛表面に薄く付着させることが難しくなり、有機系添加剤が鉛の細孔内に偏在した状態となり易い。
 鉛の細孔内で有機系添加剤が偏在した状態になると、偏在した有機系添加剤の立体障害により、イオン(鉛イオンおよび硫酸イオンなど)の移動が阻害される。そのため、充放電反応が阻害され易くなるとともに、低温ハイレート(HR)放電性能も低下する。十分な過充電電気量の低減効果を確保するために、有機系添加剤の含有量を多くすると、細孔内におけるイオンの移動もさらに阻害されることから、充放電反応がさらに阻害されることになるとともに、低温HR放電性能も低下することになる。
 それに対し、本発明の一側面に係る鉛蓄電池は、正極板と、負極板と、電解液と、を備える。負極板は、負極電極材料を備え、負極電極材料は、ポリマー化合物を含む。ポリマー化合物は、H-NMRスペクトルのケミカルシフトにおいて、3.2ppm以上3.8ppm以下の範囲にピークを有する。負極電極材料中のポリマー化合物の含有量Cの負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上である。
 なお、H-NMRスペクトルの3.2ppm以上3.8ppm以下の範囲に現れるピークは、オキシC2-4アルキレンユニットに由来する。ここで、H-NMRスペクトルは、重クロロホルムを溶媒として用いて測定される。
 また、本発明の他の側面に係る鉛蓄電池は、正極板と、負極板と、電解液と、を備え、
 前記負極板は、負極電極材料を備える。負極電極材料は、オキシC2-4アルキレンユニットの繰り返し構造を含むポリマー化合物を含む。負極電極材料中のポリマー化合物の含有量Cの負極電極材料の比表面積Sに対する比:比C/Sは、25ppm・m-2・g以上である。
 一般に、負極電極材料の比表面積が大きくなると、過充電時の副反応が起こり易くなり、過充電電気量が大きくなり易い。これに対し、本発明の一側面および他の側面に係る鉛蓄電池では、25ppm・m-2・g以上の比C/Sで、負極電極材料に上記のようなポリマー化合物を含有させる。そのため、過充電電気量を低減しながら、充電受入性の低下を抑制できる。
 過充電電気量が低減されるのは、ポリマー化合物により負極電極材料中の鉛の表面が覆われた状態となることで、水素過電圧が上昇し、過充電時にプロトンから水素が発生する副反応が阻害されるためと考えられる。負極電極材料中に炭素質材料が含まれる場合には、炭素質材料の表面もポリマー化合物で覆われた状態となり、炭素質材料の表面における水素の発生も阻害されると考えられる。
 ポリマー化合物は、オキシC2-4アルキレンユニットを有することで線状構造を取り易くなるため、負極電極材料中に留まり難く、電解液中に拡散し易いと考えられる。そのため、上記のポリマー化合物を用いても、過充電電気量の低減効果はほとんど得られないと予想される。ところが、このような予想に反し、本発明者らは、実際には、負極電極材料中にごく僅かなポリマー化合物が含まれる場合でも、過充電電気量の低減効果が得られることを見出した。ごく僅かな量のポリマー化合物でも、過充電電気量の低減効果が得られることから、ポリマー化合物を負極電極材料中に含有させることで、鉛の近傍に存在させることができ、これにより、オキシC2-4アルキレンユニットの鉛に対する高い吸着作用が発揮されるものと考えられる。また、ポリマー化合物が鉛の表面に薄く広がった状態となり、負極電極材料表面の広範囲な領域で水素イオンの還元反応が抑制されると考えられる。このことは、ポリマー化合物が線状構造を取り易いこととも矛盾しない。本発明の一側面および他の側面によれば、このようなポリマー化合物を負極電極材料の比表面積に応じた割合で負極電極材料中に含有させることで、過充電時の副反応が阻害され、過充電電気量を効果的に低減することができる。また、過充電時の水素発生が抑制されることで、減液を低減できるため、鉛蓄電池の長寿命化に有利である。また、負極電極材料中に炭素質材料が含まれる場合には、炭素質材料の表面にもポリマー化合物が薄く広がった状態となると考えられる。よって、炭素質材料の表面における水素イオンの還元反応も抑制されると考えられる。
 ポリマー化合物は、鉛表面を薄く覆うため、放電時に生成する硫酸鉛の充電時における溶出が阻害され難くなる。また、鉛の細孔内におけるポリマー化合物の偏在が抑制されるため、イオンが移動し易くなる。これらの点から、充電受入性の低下を抑制することができる。
 鉛の細孔内をイオンが移動し易くなることから、低温HR放電性能の低下を抑制することもできる。さらに、過充電電気量を低減させることができるため、水素ガスが負極活物質に衝突することに起因する負極活物質の構造変化も抑制することができる。よって、負極活物質の構造変化が起こりやすい高温軽負荷試験の後であっても、低温HR放電性能の低下を抑制する効果を高めることができる。
 本発明の一側面および他の側面によれば、比C/Sを制御することで、過充電電気量の優れた低減効果を確保しながらも、過充電電気量の低減効果と充電受入性の低下抑制効果とのバランスを取り易くなる。
 上記のようなポリマー化合物の効果を得るには、ポリマー化合物を鉛や硫酸鉛の近傍に存在させることが必要になる。そのため、負極電極材料以外の鉛蓄電池の構成要素にポリマー化合物が含まれているか否かに拘わらず、負極電極材料がポリマー化合物を含有していることが重要である。そして、比C/Sを制御することにより、負極板における水素過電圧を上昇させることができ、これにより過充電電気量を低減することができるとともに、充電受入性の低下を抑制できる。また、高温軽負荷試験後の低温HR放電性能の低下を抑制することもできる。
 なお、ポリマー化合物を負極電極材料中に含有させることができればよく、負極電極材料に含まれるポリマー化合物の由来は特に制限されない。ポリマー化合物は、鉛蓄電池を作製する際に、鉛蓄電池の構成要素(例えば、負極板、正極板、電解液、および/またはセパレータなど)のいずれに含有させてもよい。ポリマー化合物は、1つの構成要素に含有させてもよく、2つ以上の構成要素(例えば、負極板および電解液など)に含有させてもよい。
 負極電極材料の比表面積Sとは、窒素ガスを利用するガス吸着法により求められるBET比表面積(m・g-1)である。比C/Sは、負極電極材料に含まれるポリマー化合物の含有量C(ppm)を、負極電極材料のBET比表面積S(m・g-1)で除することにより求められる。ポリマー化合物の含有量Cは、後述の手順で求められる。
 なお、負極電極材料の比表面積Sおよび負極電極材料中のポリマー化合物の含有量Cは、それぞれ、満充電状態の鉛蓄電池の負極板について求めるものとする。
 鉛蓄電池は、制御弁式(密閉式)鉛蓄電池および液式(ベント式)鉛蓄電池のいずれでもよい。
 本明細書中、液式の鉛蓄電池の満充電状態とは、JIS D 5301:2006の定義によって定められる。より具体的には、鉛蓄電池を、定格容量(Ah)として記載の数値の0.2倍の電流(A)で、15分ごとに測定した充電中の端子電圧または20℃に温度換算した電解液密度が3回連続して有効数字3桁で一定値を示すまで充電した状態を満充電状態とする。また、制御弁式の鉛蓄電池の場合、満充電状態とは、25℃±2℃の気槽中で、定格容量(Ah)として記載の数値の0.2倍の電流(A)で、2.23V/セルの定電流定電圧充電を行い、定電圧充電時の充電電流(A)が定格容量(Ah)に記載の数値の0.005倍になった時点で充電を終了した状態である。なお、定格容量として記載の数値は単位をAhとした数値である。定格容量として記載の数値を元に設定される電流の単位はAとする。
 満充電状態の鉛蓄電池は、既化成の鉛蓄電池を満充電したものをいう。鉛蓄電池の満充電は、化成後であれば、化成直後でもよく、化成から時間が経過した後に行ってもよい(例えば、化成後で、使用中(好ましくは使用初期)の鉛蓄電池を満充電してもよい)。使用初期の電池とは、使用開始後、それほど時間が経過しておらず、ほとんど劣化していない電池をいう。
 本発明の一側面に係る鉛蓄電池では、ポリマー化合物は、末端基に結合した酸素原子と、酸素原子に結合した-CH-基および/または-CH<基とを含んでもよい。H-NMRスペクトルにおいて、3.2ppm~3.8ppmのピークの積分値の、このピークの積分値と、酸素原子に結合した-CH-基の水素原子のピークの積分値と、酸素原子に結合した-CH<基の水素原子のピークの積分値との合計に占める割合は、85%以上であることが好ましい。このようなポリマー化合物は、オキシC2-4アルキレンユニットを分子中に多く含む。そのため、鉛に吸着し易くなるとともに、線状構造を取り易いことで鉛表面を薄く覆い易くなると考えられる。よって、過充電電気量をより効果的に低減することができる。また、充電受入性の低下抑制効果をさらに高めることができる。低温HR放電性能の優れた低下抑制効果を確保することもできる。
 H-NMRスペクトルにおいて、3.2ppm~3.8ppmのケミカルシフトの範囲にピークを有するポリマー化合物は、オキシC2-4アルキレンユニットの繰り返し構造を含むことが好ましい。オキシC2-4アルキレンユニットの繰り返し構造を含むポリマー化合物を用いる場合、鉛に対してより吸着し易くなるとともに、線状構造を取り易いことで鉛表面を薄く覆い易くなると考えられる。よって、充電受入性の低下抑制効果をさらに高めることができるとともに、過充電電気量をより効果的に低減することができる。また、高温軽負荷試験後であっても、低温HR放電性能の低下抑制効果をさらに高めることができる。
 本明細書中、ポリマー化合物は、オキシC2-4アルキレンユニットの繰り返し単位を有するか、および/または数平均分子量(Mn)が500以上であるものをいうものとする。
 本明細書中、数平均分子量Mnは、ゲルパーミエイションクロマトグラフィー(GPC)により求められるものである。Mnを求める際に使用する標準物質は、ポリエチレングリコールとする。
 なお、オキシC2-4アルキレンユニットは、-O-R-(RはC2-4アルキレン基を示す。)で表されるユニットである。
 ポリマー化合物は、オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエーテル化物およびオキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエステル化物からなる群より選択される少なくとも一種を含んでもよい。ここで、ヒドロキシ化合物は、ポリC2-4アルキレングリコール、オキシC2-4アルキレンの繰り返し構造を含む共重合体、およびポリオールのC2-4アルキレンオキサイド付加物からなる群より選択される少なくとも一種である。このようなポリマー化合物を用いる場合、充電受入性の低下をさらに抑制することができる。また、過充電電気量を低減する効果が高いため、水素ガス発生をより効果的に抑制できるとともに、高い減液抑制効果が得られる。
 オキシC2-4アルキレンユニットの繰り返し構造は、少なくともオキシプロピレンユニット(-O-CH(-CH)-CH-)の繰り返し構造を含んでもよい。このようなポリマー化合物は、鉛に対する高い吸着性を有しながらも、鉛表面に薄く広がり易く、これらのバランスに優れていると考えられる。よって、過充電電気量をより効果的に低減することができるとともに、より高い充電受入性を確保し易い。さらには、低温HR放電性能の低下抑制効果をさらに高めることもできる。
 このようにポリマー化合物は、鉛に対する高い吸着性を有しながらも、鉛表面を薄く覆うことができるため、負極電極材料中のポリマー化合物の含有量が比較的少量であっても過充電電気量を低減することができる。また、含有量が少量でも十分な過充電電気量の低減効果を確保できるため、充電受入性の低下を抑制することもできる。さらに、比C/Sを制御することで、過充電電気量の低減効果と充電受入性の低下抑制効果とのバランスが取り易くなる。鉛細孔内におけるポリマー化合物の立体障害を低減できるとともに、水素ガスの衝突に起因する負極活物質の構造変化も抑制できるため、高温軽負荷試験後であっても、低温HR放電性能の低下を抑制することができる。
 より高い充電受入性を確保する観点からは、比C/Sは、800ppm・m-2・g以下が好ましい。
 鉛の表面がポリマー化合物で過度に覆われることが抑制され、高い低温HR放電性能を確保し易い観点からは、比C/Sは、450ppm・m-2・g以下が好ましい。
 負極電極材料は、炭素質材料を含むことができる。負極電極材料中の炭素質材料の含有量Cは、0.45質量%以上が好ましい。この場合、過充電電気量を抑制する効果がさらに高まるとともに、充電受入性のより高い低下抑制効果を得ることができる。
 ポリマー化合物は、少なくともMnが1000以上の化合物を含むことが好ましい。この場合、ポリマー化合物が負極電極材料中に留まり易いことに加え、鉛に対する吸着性が高まるため、過充電電気量を低減する効果がより高まる。また、過充電電気量を低減させることで、水素ガスが負極電極材料に衝突することに起因する負極活物質の構造変化も抑制することができる。よって、負極活物質の構造変化が起こりやすい高温軽負荷試験の後であっても、低温HR放電性能の低下を抑制する効果を高めることができる。
 負極電極材料は、さらに硫黄元素含有量が2000μmol/g以上の有機防縮剤(第1有機防縮剤)を含んでもよい。このような有機防縮剤とポリマー化合物とを併用する場合、充電受入性の低下をさらに抑制できる。充電受入性は、負極板における充電時の硫酸鉛の溶解速度に支配される。放電時に生成する硫酸鉛の粒子径は、放電量が同じ場合、第1有機防縮剤を用いると、硫黄元素含有量が小さい(例えば、2000μmol/g未満、好ましくは1000μmol/g以下の)有機防縮剤(第2有機防縮剤)を用いる場合に比べて小さくなり、硫酸鉛の比表面積が大きくなる。そのため、第1有機防縮剤を用いる場合には、第2有機防縮剤を用いる場合に比べて、硫酸鉛の表面がポリマー化合物により被覆される割合が小さくなる。そのため、硫酸鉛の溶解が阻害されにくくなり、充電受入性の低下が抑制されると考えられる。
 負極電極材料は、第2有機防縮剤を含んでもよい。第2有機防縮剤とポリマー化合物とを併用する場合、コロイドの粒子径を小さくすることができるため、低温HR放電性能の低下を抑制する効果をさらに高めることができる。
 負極電極材料は、第1有機防縮剤に加え、第2有機防縮剤を含んでもよい。第1有機防縮剤および第2有機防縮剤とポリマー化合物とを併用する場合、充電受入性の低下を抑制する効果を相乗的に第1有機防縮剤および第2有機防縮剤は、負極電極材料中で、それぞれ異種のコロイドを形成する。異種のコロイドが接する境界では、同種のコロイドが接する境界に比べてコロイド間の密着性が低い。そのため、鉛イオンが異種のコロイドが接する境界を透過し易い。これにより、硫酸鉛の溶解が進行し易くなる。その結果、充電受入性の低下抑制における相乗効果が得られると考えられる。
 第1有機防縮剤は、硫黄含有基を有する芳香族化合物のユニットを含む縮合物を含み、縮合物は、芳香族化合物のユニットとして、ビスアレーン化合物のユニットおよび単環式の芳香族化合物のユニットからなる群より選択される少なくとも一種を含んでもよい。また、縮合物は、ビスアレーン化合物のユニットと、単環式の芳香族化合物のユニットとを含むものであってもよい。単環式の芳香族化合物のユニットは、ヒドロキシアレーン化合物のユニットを含んでもよい。このような縮合物は、常温より高い環境を経験しても、低温HR放電性能が損なわれないため、高温軽負荷試験後の低温HR放電性能の低下を抑制する上でより有利である。
 有機防縮剤中の硫黄元素の含有量がXμmol/gであるとは、有機防縮剤の1g当たりに含まれる硫黄元素の含有量がXμmolであることをいう。
 以下、本発明の実施形態に係る鉛蓄電池について、主要な構成要件ごとに説明するが、本発明は以下の実施形態に限定されるものではない。
[鉛蓄電池]
(負極板)
 負極板は、通常、負極電極材料に加え、負極集電体を備える。負極電極材料は、負極板から負極集電体を除いたものである。なお、負極板には、マット、ペースティングペーパなどの部材が貼り付けられていることがある。このような部材(貼付部材)は負極板と一体として使用されるため、負極板に含まれるものとする。また、負極板がこのような部材を含む場合には、負極電極材料は、負極集電体および貼付部材を除いたものである。ただし、セパレータにマットなどの貼付部材が貼り付けられている場合には、貼付部材の厚みは、セパレータの厚みに含まれる。
 負極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛シートまたは鉛合金シートを加工して形成してもよい。加工方法としては、例えば、エキスパンド加工や打ち抜き(パンチング)加工が挙げられる。負極集電体として負極格子を用いると、負極電極材料を担持させ易いため好ましい。
 負極集電体に用いる鉛合金は、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金のいずれであってもよい。これらの鉛もしくは鉛合金は、更に、添加元素として、Ba、Ag、Al、Bi、As、Se、Cuなどからなる群より選択された少なくとも1種を含んでもよい。負極集電体は、表面層を備えていてもよい。負極集電体の表面層と内側の層とは組成が異なるものであってもよい。表面層は、負極集電体の一部に形成されていてもよい。表面層は、負極集電体の耳部に形成されていてもよい。耳部の表面層は、SnまたはSn合金を含有するものであってもよい。
 負極電極材料は、上記のポリマー化合物を含む。負極電極材料は、さらに、酸化還元反応により容量を発現する負極活物質(鉛もしくは硫酸鉛)を含んでいる。負極電極材料は、防縮剤、炭素質材料、および/または他の添加剤を含んでもよい。添加剤としては、硫酸バリウム、繊維(樹脂繊維など)などが挙げられるが、これらに限定されるものではない。なお、充電状態の負極活物質は、海綿状鉛であるが、未化成の負極板は、通常、鉛粉を用いて作製される。
 負極電極材料の比表面積Sは、例えば、0.3m・g-1以上である。より高い低温HR放電性能を確保し易い観点からは、比表面積Sは、0.5m・g-1以上が好ましく、0.7m・g-1以上がより好ましい。比表面積Sは、例えば、4m・g-1以下である。過充電電気量を抑制する効果がさらに高まる観点からは、比表面積Sは、3.5m・g-1以下が好ましく、2.5m・g-1以下がより好ましい。より高い低温HR放電性能を確保し易い観点からは、比表面積Sは、2m・g-1以下または1.5m・g-1以下がさらに好ましい。
 負極電極材料の比表面積Sは、0.3m・g-1以上4m・g-1以下(または3.5m・g-1以下)、0.3m・g-1以上2.5m・g-1以下(または2m・g-1以下)、0.3m・g-1以上1.5m・g-1以下、0.5m・g-1以上4m・g-1以下(または3.5m・g-1以下)、0.5m・g-1以上2.5m・g-1以下(または2m・g-1以下)、0.5m・g-1以上1.5m・g-1以下、0.7m・g-1以上4m・g-1以下(または3.5m・g-1以下)、0.7m・g-1以上2.5m・g-1以下(または2m・g-1以下)、あるいは0.7m・g-1以上1.5m・g-1以下であってもよい。
 負極電極材料の比表面積Sは、例えば、負極電極材料の構成成分(特に、炭素質材料)の比表面積および/または含有量などを調節することにより調節することができる。
 (ポリマー化合物)
 ポリマー化合物は、H-NMRスペクトルのケミカルシフトにおいて、3.2ppm以上3.8ppm以下の範囲にピークを有する。このようなポリマー化合物は、オキシC2-4アルキレンユニットを有する。オキシC2-4アルキレンユニットとしては、オキシエチレンユニット、オキシプロピレンユニット、オキシトリメチレンユニット、オキシ2-メチル-1,3-プロピレンユニット、オキシ1,4-ブチレンユニット、オキシ1,3-ブチレンユニットなどが挙げられる。ポリマー化合物は、このようなオキシC2-4アルキレンユニットを一種有していてもよく、二種以上有していてもよい。
 ポリマー化合物は、オキシC2-4アルキレンユニットの繰り返し構造を含むことが好ましい。繰り返し構造は、一種のオキシC2-4アルキレンユニットを含むものであってもよく、二種以上のオキシC2-4アルキレンユニットを含むものであってもよい。ポリマー化合物には、一種の上記繰り返し構造が含まれていてもよく、二種以上の繰り返し構造が含まれていてもよい。
 ポリマー化合物としては、例えば、オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物(ポリC2-4アルキレングリコール、オキシC2-4アルキレンの繰り返し構造を含む共重合体、ポリオールのC2-4アルキレンオキサイド付加物など)、これらのヒドロキシ化合物のエーテル化物またはエステル化物などが挙げられる。
 共重合体としては、異なるオキシC2-4アルキレンユニットを含む共重合体、ポリC2-4アルキレングリコールアルキルエーテル、カルボン酸のポリC2-4アルキレングリコールエステルなどが挙げられる。共重合体は、ブロック共重合体であってもよい。
 ポリオールは、脂肪族ポリオール、脂環式ポリオール、芳香族ポリオール、および複素環式ポリオールなどのいずれであってもよい。ポリマー化合物が鉛表面に薄く広がり易い観点からは、脂肪族ポリオール、脂環式ポリオール(例えば、ポリヒドロキシシクロヘキサン、ポリヒドロキシノルボルナンなど)などが好ましく、中でも脂肪族ポリオールが好ましい。脂肪族ポリオールとしては、例えば、脂肪族ジオール、トリオール以上のポリオール(例えば、グリセリン、トリメチロールプロパン、ペンタエリスリトール、糖アルコールなど)などが挙げられる。脂肪族ジオールとしては、炭素数が5以上のアルキレングリコールなどが挙げられる。アルキレングリコールは、例えば、C5~14アルキレングリコールまたはC5-10アルキレングリコールであってもよい。糖アルコールとしては、例えば、エリスリトール、キシリトール、マンニトール、ソルビトールなどが挙げられる。ポリオールのアルキレンオキサイド付加物においては、アルキレンオキサイドは、ポリマー化合物のオキシC2-4アルキレンユニットに相当し、少なくともC2-4アルキレンオキサイドを含む。ポリマー化合物が線状構造を取りやすい観点からは、ポリオールはジオールであることが好ましい。
 エーテル化物は、上記のオキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物の少なくとも一部の末端の-OH基(末端基の水素原子とこの水素原子に結合した酸素原子とで構成される-OH基)がエーテル化された-OR基を有する(式中、Rは有機基である。)。ポリマー化合物の末端のうち、一部の末端がエーテル化されていてもよく、全ての末端がエーテル化されていてもよい。例えば、線状のポリマー化合物の主鎖の一方の末端が-OH基で、他方の末端が-OR基であってもよい。
 エステル化物は、上記オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物の少なくとも一部の末端の-OH基(末端基の水素原子とこの水素原子に結合した酸素原子とで構成される-OH基)がエステル化された-O-C(=O)-R基を有する(式中、Rは有機基である。)。ポリマー化合物の末端のうち、一部の末端がエステル化されていてもよく、全ての末端がエステル化されていてもよい。例えば、線状のポリマー化合物の主鎖の一方の末端が-OH基で、他方の末端が-O-C(=O)-R基であってもよい。
 有機基RおよびRのそれぞれとしては、炭化水素基が挙げられる。炭化水素基は、置換基(例えば、ヒドロキシ基、アルコキシ基、および/またはカルボキシ基など)を有するものであってもよい。炭化水素基は、脂肪族、脂環族、および芳香族のいずれであってもよい。芳香族炭化水素基および脂環族炭化水素基は、置換基として、脂肪族炭化水素基(例えば、アルキル基、アルケニル基、アルキニル基など)を有するものであってもよい。置換基としての脂肪族炭化水素基の炭素数は、例えば、1~20であってもよく、1~10であってもよく、1~6または1~4であってもよい。
 芳香族炭化水素基としては、例えば、炭素数が24以下(例えば、6~24)の芳香族炭化水素基が挙げられる。芳香族炭化水素基の炭素数は、20以下(例えば、6~20)であってもよく、14以下(例えば、6~14)または12以下(例えば、6~12)であってもよい。芳香族炭化水素基としては、アリール基、ビスアリール基などが挙げられる。アリール基としては、例えば、フェニル基、ナフチル基などが挙げられる。ビスアリール基としては、例えば、ビスアレーンに対応する一価基が挙げられる。ビスアレーンとしては、ビフェニル、ビスアリールアルカン(例えば、ビスC6-10アリールC1-4アルカン(2,2-ビスフェニルプロパンなど)など)が挙げられる。
 脂環族炭化水素基としては、例えば、炭素数が16以下の脂環族炭化水素基が挙げられる。脂環族炭化水素基は、架橋環式炭化水素基であってもよい。脂環族炭化水素基の炭素数は、10以下または8以下であってもよい。脂環族炭化水素基の炭素数は、例えば、5以上であり、6以上であってもよい。
 脂環族炭化水素基の炭素数は、5(または6)以上16以下、5(または6)以上10以下、あるいは5(または6)以上8以下であってもよい。
 脂環族炭化水素基としては、例えば、シクロアルキル基(シクロペンチル基、シクロヘキシル基、シクロオクチル基など)、シクロアルケニル基(シクロヘキセニル基、シクロオクテニル基など)などが挙げられる。脂環族炭化水素基には、上記の芳香族炭化水素基の水素添加物も包含される。
 鉛表面にポリマー化合物が薄く付着し易い観点からは、炭化水素基のうち、脂肪族炭化水素基が好ましい。脂肪族炭化水素基としては、アルキル基、アルケニル基、アルキニル基、ジエニル基などが挙げられる。脂肪族炭化水素基は、直鎖状および分岐鎖状のいずれであってもよい。
 脂肪族炭化水素基の炭素数は、例えば、30以下であり、26以下または22以下であってもよく、20以下または16以下であってもよく、14以下または10以下であってもよく、8以下または6以下であってもよい。炭素数の下限は、脂肪族炭化水素基の種類に応じて、アルキル基では1以上、アルケニル基およびアルキニル基では2以上、ジエニル基では3以上である。鉛表面にポリマー化合物が薄く付着し易い観点からは中でもアルキル基やアルケニル基が好ましい。
 アルキル基の具体例としては、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、i-ペンチル、s-ペンチル、3-ペンチル、t-ペンチル、n-ヘキシル、2-エチルヘキシル、n-オクチル、n-デシル、i-デシル、ラウリル、ミリスチル、セチル、ステアリル、ベヘニルなどが挙げられる。
 アルケニル基の具体例としては、ビニル、1-プロペニル、アリル、パルミトレイル、オレイルなどが挙げられる。アルケニル基は、例えば、C2-30アルケニル基またはC2-26アルケニル基であってもよく、C2-22アルケニル基またはC2-20アルケニル基であってもよく、C10-20アルケニル基であってもよい。
 ポリマー化合物のうち、オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエーテル化物および/またはオキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエステル化物を用いると、充電受入性の低下抑制効果をさらに高めることができるため好ましい。また、これらのポリマー化合物を用いた場合にも高い減液抑制効果を確保することができる。
 負極電極材料は、ポリマー化合物を一種含んでもよく、二種以上含んでもよい。
 過充電電気量の低減効果をさらに高めることができるとともに、充電受入性および/または低温HR放電性能の低下抑制効果を高める観点からは、オキシC2-4アルキレンの繰り返し構造が少なくともオキシプロピレンユニットの繰り返し構造を含むことが好ましい。オキシプロピレンユニットを含むポリマー化合物は、H-NMRスペクトルのケミカルシフトにおいて、3.2ppm~3.8ppmの範囲に、オキシプロピレンユニットの-CH<および-CH-に由来するピークを有する。これらの基における水素原子の原子核の周囲の電子密度が異なるため、ピークがスプリットした状態となる。このようなポリマー化合物は、H-NMRスペクトルのケミカルシフトにおいて、例えば、3.2ppm以上3.42ppm以下の範囲と、3.42ppmを超え3.8ppm以下の範囲とのそれぞれにピークを有する。3.2ppm以上3.42ppm以下の範囲のピークは、-CH-に由来し、3.42ppmを超え3.8ppm以下の範囲のピークは、-CH<および-CH-に由来する。
 このようなポリマー化合物としては、ポリプロピレングリコール、オキシプロピレンの繰り返し構造を含む共重合体、上記ポリオールのプロピレンオキサイド付加物、またはこれらのエーテル化物もしくはエステル化物などが挙げられる。共重合体としては、オキシプロピレン-オキシアルキレン共重合体(ただし、オキシアルキレンは、オキシプロピレン以外のC2-4アルキレン)、ポリプロピレングリコールアルキルエーテル、カルボン酸のポリプロピレングリコールエステルなどが挙げられる。オキシプロピレン-オキシアルキレン共重合体としては、オキシプロピレン-オキシエチレン共重合体、オキシプロピレン-オキシトリメチレン共重合体などが例示される。オキシプロピレン-オキシアルキレン共重合体は、ブロック共重合体であってもよい。
 オキシプロピレンの繰り返し構造を含むポリマー化合物において、オキシプロピレンユニットの割合は、例えば、5mol%以上であり、10mol%以上または20mol%以上であってもよい。
 鉛に対する吸着性が高まるとともに、線状構造を取り易くなる観点から、ポリマー化合物は、オキシC2-4アルキレンユニットを多く含むことが好ましい。このようなポリマー化合物は、例えば、末端基に結合した酸素原子と、酸素原子に結合した-CH-基および/または-CH<基とを含んでいる。ポリマー化合物のH-NMRスペクトルでは、3.2ppm~3.8ppmのピークの積分値の、このピークの積分値と、-CH-基の水素原子のピークの積分値と、-CH<基の水素原子のピークの積分値との合計に占める割合が大きくなる。この割合は、例えば、50%以上であり、80%以上であってもよい。過充電電気量の低減効果がさらに高まるとともに、充電受入性および/または低温HR放電性能の低下抑制効果がさらに高まる観点からは、上記の割合は、85%以上が好ましく、90%以上であることがより好ましい。例えば、ポリマー化合物が末端に-OH基を有するとともに、この-OH基の酸素原子に結合した-CH-基や-CH<基を有する場合、H-NMRスペクトルにおいて、-CH-基や-CH<基の水素原子のピークは、ケミカルシフトが3.8ppmを超え4.0ppm以下の範囲にある。
 ポリマー化合物は、Mnが500以上の化合物を含んでもよく、Mnが600以上の化合物を含んでもよく、Mnが1000以上の化合物を含んでもよい。このような化合物のMnは、例えば、20000以下であり、15000以下または10000以下であってもよい。負極電極材料中に化合物を保持させ易く、鉛表面により薄く広がり易い観点からは、上記化合物のMnは、5000以下が好ましく、4000以下または3000以下であってもよい。
 上記の化合物のMnは、500以上(または600以上)20000以下、500以上(または600以上)15000以下、500以上(または600以上)10000以下、500以上(または600以上)5000以下、500以上(または600以上)4000以下、500以上(または600以上)3000以下、1000以上20000以下(または15000以下)、1000以上10000以下(または5000以下)、あるいは1000以上4000以下(または3000以下)であってもよい。
 ポリマー化合物は、少なくともMnが1000以上の化合物を含むことが好ましい。このような化合物のMnは、1000以上20000以下であってもよく、1000以上15000以下であってもよく、1000以上10000以下であってもよい。負極電極材料中に化合物を保持させ易く、鉛表面により薄く広がり易い観点からは、上記化合物のMnは、1000以上5000以下が好ましく、1000以上4000以下であってもよく、1000以上3000以下であってもよい。このようなMnを有する化合物を用いる場合、過充電電気量をより容易に低減させることができる。また、過充電電気量を低減させることで、水素ガスが負極活物質に衝突することに起因する負極活物質の構造変化も抑制することができる。よって、高温軽負荷試験後の低温HR放電性能の低下を抑制する効果を高めることもできる。上記のようなMnを有する化合物は、電解液中に含まれる場合でも負極電極材料中に移動し易いため、負極電極材料中に化合物を補充することができ、このような観点からも負極電極材料中に化合物を保持させ易い。ポリマー化合物としては、Mnが異なる2種以上の化合物を用いてもよい。つまり、ポリマー化合物は、分子量の分布において、Mnのピークを複数有するものであってもよい。
 比C/Sは、25ppm・m-2・g以上であり、26ppm・m-2・g以上が好ましく、50ppm・m-2・g以上または90ppm・m-2・g以上であってもよい。比C/Sがこのような範囲である場合、過充電電気量を低減しながら、充電受入性の低下を抑制できる。また、高い低温HR放電性能(特に、高温軽負荷試験後の低温HR放電性能)を確保し易い。比C/Sは、800ppm・m-2・g以下が好ましく、730ppm・m-2・g以下または600ppm・m-2・g以下がより好ましい。比C/Sがこのような範囲である場合、より高い充電受入性を確保し易い。高温軽負荷試験後の低温HR放電性能の低下を抑制する効果が高まる観点からは、比C/Sは、450ppm・m-2・g以下が好ましく、410ppm・m-2・g以下がより好ましい。
 比C/Sは、25ppm・m-2・g以上(または26ppm・m-2・g以上)800ppm・m-2・g以下、25ppm・m-2・g以上(または26ppm・m-2・g以上)730ppm・m-2・g以下、25ppm・m-2・g以上(または26ppm・m-2・g以上)600ppm・m-2・g以下、25ppm・m-2・g以上(または26ppm・m-2・g以上)450ppm・m-2・g以下、25ppm・m-2・g以上(または26ppm・m-2・g以上)410ppm・m-2・g以下、50ppm・m-2・g以上(または90ppm・m-2・g以上)800ppm・m-2・g以下、50ppm・m-2・g以上(または90ppm・m-2・g以上)730ppm・m-2・g以下、50ppm・m-2・g以上(または90ppm・m-2・g以上)600ppm・m-2・g以下、50ppm・m-2・g以上(または90ppm・m-2・g以上)450ppm・m-2・g以下、あるいは50ppm・m-2・g以上(または90ppm・m-2・g以上)410ppm・m-2・g以下であってもよい。
 負極電極材料中のポリマー化合物の含有量Cは、質量基準で、例えば、8ppmより多く、10ppm以上または13ppm以上が好ましく、15ppm以上がより好ましく、30ppm以上または40ppm以上であってもよい。ポリマー化合物の含有量Cがこのような範囲である場合、水素発生電圧をより高め易く、過充電電気量を低減する効果をさらに高めることができる。より高い低温HR放電性能を確保し易い観点からは、負極電極材料中のポリマー化合物の含有量C(質量基準)は、50ppm以上または80ppm以上であってもよく、100ppm以上であってもよい。負極電極材料中のポリマー化合物の含有量C(質量基準)は、例えば3000ppm以下であり、2500ppm以下であってもよく、2000ppm以下であってもよい。鉛の表面がポリマー化合物で過度に覆われることが抑制されることで低温HR放電性能の低下を効果的に抑制し易い観点からは、ポリマー化合物の含有量C(質量基準)は、1000ppm以下が好ましく、600ppm以下または500ppm以下がより好ましく、300ppm以下または200ppm以下であってもよい。これらの下限値と上限値とは、任意に組み合わせることができる。
 ポリマー化合物の含有量C(質量基準)は、8ppmを超え(または10ppm以上)3000ppm以下、8ppmを超え(または10ppm以上)2500ppm以下、8ppmを超え(または10ppm以上)2000ppm以下、8ppmを超え(または10ppm以上)1000ppm以下、8ppmを超え(または10ppm以上)600ppm以下、8ppmを超え(または10ppm以上)500ppm以下、8ppmを超え(または10ppm以上)300ppm以下、8ppmを超え(または10ppm以上)200ppm以下、13ppm以上(または15ppm以上)3000ppm以下、13ppm以上(または15ppm以上)2500ppm以下、13ppm以上(または15ppm以上)2000ppm以下、13ppm以上(または15ppm以上)1000ppm以下、13ppm以上(または15ppm以上)600ppm以下、13ppm以上(または15ppm以上)500ppm以下、13ppm以上(または15ppm以上)300ppm以下、13ppm以上(または15ppm以上)200ppm以下30ppm以上(または40ppm以上)3000ppm以下、30ppm以上(または40ppm以上)2500ppm以下、30ppm以上(または40ppm以上)2000ppm以下、30ppm以上(または40ppm以上)1000ppm以下、30ppm以上(または40ppm以上)600ppm以下、30ppm以上(または40ppm以上)500ppm以下、30ppm以上(または40ppm以上)300ppm以下、30ppm以上(または40ppm以上)200ppm以下50ppm以上(または80ppm以上)3000ppm以下、50ppm以上(または80ppm以上)2500ppm以下、50ppm以上(または80ppm以上)2000ppm以下、50ppm以上(または80ppm以上)1000ppm以下、50ppm以上(または80ppm以上)600ppm以下、50ppm以上(または80ppm以上)500ppm以下、50ppm以上(または80ppm以上)300ppm以下、50ppm以上(または80ppm以上)200ppm以下100ppm以上3000ppm以下(または2500ppm以下)、100ppm以上2000ppm以下(または1000ppm以下)、100ppm以上600ppm以下(または500ppm以下)、あるいは100ppm以上300ppm以下(または200ppm以下)であってもよい。
 (炭素質材料)
 炭素質材料としては、カーボンブラック、黒鉛、ハードカーボン、ソフトカーボンなどが挙げられる。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、ファーネスブラック、ランプブラックなどが例示される。黒鉛は、黒鉛型の結晶構造を含む炭素質材料であればよく、人造黒鉛および天然黒鉛のいずれであってもよい。炭素質材料は、一種を単独で用いてもよく、二種以上を組み合わせてもよい。
 なお、炭素質材料のうち、ラマンスペクトルの1300cm-1以上1350cm-1以下の範囲に現れるピーク(Dバンド)と1550cm-1以上1600cm-1以下の範囲に現れるピーク(Gバンド)との強度比I/Iが、0以上0.9以下である炭素質材料を、黒鉛と呼ぶものとする。黒鉛は、人造黒鉛、天然黒鉛のいずれであってもよい。
 ポリマー化合物は、炭素質材料の表面も覆うため、鉛や硫酸鉛に対する被覆量は、炭素質材料の比表面積および量にも影響される。
 炭素質材料の比表面積Sは、例えば、0.5(m・g-1)以上であり、例えば、0.8(m・g-1)以上、1(m・g-1)以上、2(m・g-1)以上、20(m・g-1)以上、25(m・g-1)以上、50(m・g-1)以上、70(m・g-1)以上、100(m・g-1)以上、または130(m・g-1)以上であってもよい。比表面積Sがこのような範囲である場合、ポリマー化合物の含有量が過度に多くなることを抑制し易く、高い充電受入性を確保し易い。比表面積Sは、例えば、1500(m・g-1)以下であり、1000(m・g-1)以下であってもよく、700(m・g-1)以下または650(m・g-1)以下であってもよく、200(m・g-1)以下または150(m・g-1)以下、あるいは130(m・g-1)以下であってもよい。比表面積Sがこのような範囲である場合、炭素質材料の表面におけるガス発生が顕著になりやすいが、このような場合であっても、ポリマー化合物と組み合わせることでガス発生を抑制できる。
 炭素質材料の比表面積Sは、0.5(または0.8)(m・g-1)以上1500(m・g-1)以下、0.5(または0.8)(m・g-1)以上1000(m・g-1)以下、0.5(または0.8)(m・g-1)以上700(m・g-1)以下、0.5(または0.8)(m・g-1)以上650(m・g-1)以下、0.5(または0.8)(m・g-1)以上200(m・g-1)以下、0.5(または0.8)(m・g-1)以上150(m・g-1)以下、0.5(または0.8)(m・g-1)以上130(m・g-1)以下、1(または2)(m・g-1)以上1500(m・g-1)以下、1(または2)(m・g-1)以上1000(m・g-1)以下、1(または2)(m・g-1)以上700(m・g-1)以下、1(または2)(m・g-1)以上650(m・g-1)以下、1(または2)(m・g-1)以上200(m・g-1)以下、1(または2)(m・g-1)以上150(m・g-1)以下、1(または2)(m・g-1)以上130(m・g-1)以下、20(または25)(m・g-1)以上1500(m・g-1)以下、20(または25)(m・g-1)以上1000(m・g-1)以下、20(または25)(m・g-1)以上700(m・g-1)以下、20(または25)(m・g-1)以上650(m・g-1)以下、20(または25)(m・g-1)以上200(m・g-1)以下、20(または25)(m・g-1)以上150(m・g-1)以下、20(または25)(m・g-1)以上130(m・g-1)以下、50(または70)(m・g-1)以上1500(m・g-1)以下、50(または70)(m・g-1)以上1000(m・g-1)以下、50(または70)(m・g-1)以上700(m・g-1)以下、50(または70)(m・g-1)以上650(m・g-1)以下、50(または70)(m・g-1)以上200(m・g-1)以下、50(または70)(m・g-1)以上150(m・g-1)以下、50(または70)(m・g-1)以上130(m・g-1)以下、100(または130)(m・g-1)以上1500(m・g-1)以下、100(または130)(m・g-1)以上1000(m・g-1)以下、100(または130)(m・g-1)以上700(m・g-1)以下、100(または130)(m・g-1)以上650(m・g-1)以下、あるいは100(または130)(m・g-1)以上200(m・g-1)以下であってもよい。
 なお、炭素質材料の比表面積Sは、窒素ガスを利用するガス吸着法により求められるBET比表面積である。
 炭素質材料は、32μm以上の粒子径を有する第1炭素質材料を含んでもよく、32μm未満の粒子径を有する第2炭素質材料を含んでもよい。炭素質材料は、第1炭素質材料および第2炭素質材料の双方を含んでもよい。第1炭素質材料と第2炭素質材料とは、後述する手順で分離され、区別される。
 第1炭素質材料としては、例えば、黒鉛、ハードカーボンおよびソフトカーボンからなる群より選択される少なくとも一種が挙げられる。中でも、第1炭素質材料は、少なくとも黒鉛を含むことが好ましい。黒鉛を用いることで、さらに高いPSOC寿命性能を確保することができる。第2炭素質材料は、少なくともカーボンブラックを含むことが好ましい。
 炭素質材料が、第2炭素質材料を含む場合、炭素質材料全体に占める第2炭素質材料の割合は、例えば、10質量%以上であり、40質量%以上であってもよく、50質量%以上または60質量%以上であってもよい。第2炭素質材料の割合がこのような範囲である場合、より高い充電受入性を確保する上で有利である。炭素質材料全体に占める第2炭素質材料の割合は、例えば、100質量%以下である。より高い低温HR放電性能を確保し易い観点から、第2炭素質材料の割合を、90質量%以下としてもよい。
 炭素質材料全体に占める第2炭素質材料の割合は、10質量%以上(または40質量%以上)100質量%以下、10質量%以上(または40質量%以上)90質量%以下、50質量%以上(または60質量%以上)100質量%以下、あるいは50質量%以上(または60質量%以上)90質量%以下であってもよい。
 負極電極材料中の炭素質材料の含有量Cは、例えば、0.01質量%以上であり、0.1質量%以上であってもよい。より高い充電受入性を確保し易い観点からは、0.2質量%以上または0.3質量%以上が好ましい。また、過充電電気量を抑制する効果がさらに高まるとともに、充電受入性のより高い低下抑制効果が得られる観点からは、含有量Cは、0.45質量%以上が好ましい。含有量Cは、例えば5質量%以下であり、3.5質量%以下であってもよい。より高い過充電電気量を確保し易い観点からは、含有量Cは、3質量%以下が好ましい。
 炭素質材料の含有量Cは、0.01質量%以上(または0.1質量%以上)5質量%以下、0.01質量%以上(または0.1質量%以上)3.5質量%以下、0.01質量%以上(または0.1質量%以上)3質量%以下、0.2質量%以上(または0.3質量%以上)5質量%以下、0.2質量%以上(または0.3質量%以上)3.5質量%以下、0.2質量%以上(または0.3質量%以上)3質量%以下、0.45質量%以上5質量%以下(または3.5質量%以下)、0.45質量%以上3質量%以下であってもよい。
 (防縮剤)
 負極電極材料は、防縮剤を含むことができる。防縮剤としては、有機防縮剤が好ましい。有機防縮剤には、リグニン類および/または合成有機防縮剤を用いてもよい。リグニン類としては、リグニン、リグニン誘導体などが挙げられる。リグニン誘導体としては、リグニンスルホン酸またはその塩(アルカリ金属塩(ナトリウム塩など)など)などが挙げられる。有機防縮剤は、通常、リグニン類と合成有機防縮剤とに大別される。合成有機防縮剤は、リグニン類以外の有機防縮剤であるとも言える。合成有機防縮剤は、硫黄元素を含む有機高分子であり、一般に、分子内に複数の芳香環を含むとともに、硫黄含有基として硫黄元素を含んでいる。硫黄含有基の中では、安定形態であるスルホン酸基もしくはスルホニル基が好ましい。スルホン酸基は、酸型で存在してもよく、Na塩のように塩型で存在してもよい。負極電極材料は、防縮剤を一種含んでもよく、二種以上含んでもよい。
 有機防縮剤としては、少なくとも芳香族化合物のユニットを含む縮合物を用いることが好ましい。このような縮合物としては、例えば、芳香族化合物の、アルデヒド化合物(アルデヒド(例えば、ホルムアルデヒド)および/またはその縮合物など)による縮合物が挙げられる。有機防縮剤は、一種の芳香族化合物のユニットを含んでもよく、二種以上の芳香族化合物のユニットを含んでいてもよい。
 なお、芳香族化合物のユニットとは、縮合物に組み込まれた芳香族化合物に由来するユニットを言う。
 芳香族化合物が有する芳香環としては、ベンゼン環、ナフタレン環などが挙げられる。芳香族化合物が複数の芳香環を有する場合には、複数の芳香環は直接結合や連結基(例えば、アルキレン基(アルキリデン基を含む)、スルホン基など)などで連結していてもよい。このような構造としては、例えば、ビスアレーン構造(ビフェニル、ビスフェニルアルカン、ビスフェニルスルホンなど)が挙げられる。芳香族化合物としては、例えば、上記の芳香環と、ヒドロキシ基および/またはアミノ基とを有する化合物が挙げられる。ヒドロキシ基やアミノ基は、芳香環に直接結合していてもよく、ヒドロキシ基やアミノ基を有するアルキル鎖として結合していてもよい。なお、ヒドロキシ基には、ヒドロキシ基の塩(-OMe)も包含される。アミノ基には、アミノ基の塩(アニオンとの塩)も包含される。Meとしては、アルカリ金属(Li、K、Naなど)、周期表第2族金属(Ca、Mgなど)などが挙げられる。
 芳香族化合物としては、ビスアレーン化合物[ビスフェノール化合物、ヒドロキシビフェニル化合物、アミノ基を有するビスアレーン化合物(アミノ基を有するビスアリールアルカン化合物、アミノ基を有するビスアリールスルホン化合物、アミノ基を有するビフェニル化合物など)、ヒドロキシアレーン化合物(ヒドロキシナフタレン化合物、フェノール化合物など)、アミノアレーン化合物(アミノナフタレン化合物、アニリン化合物(アミノベンゼンスルホン酸、アルキルアミノベンゼンスルホン酸など)など)など]が好ましい。芳香族化合物は、さらに置換基を有していてもよい。有機防縮剤は、これらの化合物の残基を一種含んでもよく、複数種含んでもよい。ビスフェノール化合物としては、ビスフェノールA、ビスフェノールS、ビスフェノールFなどが好ましい。
 縮合物は、少なくとも硫黄含有基を有する芳香族化合物のユニットを含むことが好ましい。中でも、硫黄含有基を有するビスフェノール化合物のユニットを少なくとも含む縮合物を用いると、高温軽負荷試験後の低温HR放電性能の低下を抑制する効果を高めることができる。減液を抑制する効果が高まる観点からは、硫黄含有基を有するとともに、ヒドロキシ基および/またはアミノ基を有するナフタレン化合物のアルデヒド化合物による縮合物を用いることが好ましい。
 硫黄含有基は、化合物に含まれる芳香環に直接結合していてもよく、例えば、硫黄含有基を有するアルキル鎖として芳香環に結合していてもよい。硫黄含有基としては、特に制限されないが、例えば、スルホニル基、スルホン酸基またはその塩などが挙げられる。
 また、有機防縮剤として、例えば、上記のビスアレーン化合物のユニットおよび単環式の芳香族化合物(ヒドロキシアレーン化合物、および/またはアミノアレーン化合物など)のユニットからなる群より選択される少なくとも一種を含む縮合物を少なくとも用いてもよい。有機防縮剤は、ビスアレーン化合物のユニットと単環式芳香族化合物(中でも、ヒドロキシアレーン化合物)のユニットとを含む縮合物を少なくとも含んでもよい。このような縮合物としては、ビスアレーン化合物と単環式の芳香族化合物との、アルデヒド化合物による縮合物が挙げられる。ヒドロキシアレーン化合物としては、フェノールスルホン酸化合物(フェノールスルホン酸またはその置換体など)が好ましい。アミノアレーン化合物としては、アミノベンゼンスルホン酸、アルキルアミノベンゼンスルホン酸などが好ましい。単環式の芳香族化合物としては、ヒドロキシアレーン化合物が好ましい。
 負極電極材料は、上記の有機防縮剤のうち、例えば、硫黄元素含有量が2000μmol/g以上の第1有機防縮剤を含んでもよい。第1有機防縮剤としては、上記の合成有機防縮剤(上記の縮合物など)などが挙げられる。
 第1有機防縮剤の硫黄元素含有量は、2000μmol/g以上であればよく、3000μmol/g以上が好ましい。有機防縮剤の硫黄元素含有量の上限は特に制限されないが、減液を抑制する効果がさらに高まる観点からは、9000μmol/g以下が好ましく、8000μmol/g以下または7000μmol/g以下がより好ましい。これらの下限値と上限値とは任意に組み合わせることができる。このような有機防縮剤とポリマー化合物とを組み合わせることで、充電時の硫酸鉛の溶解が阻害されにくくなるため、充電受入性の低下をさらに抑制できる。
 第1有機防縮剤の硫黄元素含有量は、例えば、2000μmol/g以上(または3000μmol/g以上)9000μmol/g以下、2000μmol/g以上(または3000μmol/g以上)8000μmol/g以下、もしくは2000μmol/g以上(または3000μmol/g以上)7000μmol/g以下であってもよい。
 第1有機防縮剤の重量平均分子量(Mw)は、例えば、7000以上であることが好ましい。第1有機防縮剤のMwは、例えば、100,000以下であり、20,000以下であってもよい。
 なお、本明細書中、有機防縮剤のMwは、GPCにより求められるものである。Mwを求める際に使用する標準物質は、ポリスチレンスルホン酸ナトリウムとする。
 Mwは、下記の装置を用い、下記の条件で測定される。
 GPC装置:ビルドアップGPCシステムSD-8022/DP-8020/AS-8020/CO-8020/UV-8020 (東ソー(株)製)
 カラム:TSKgel G4000SWXL,G2000SWXL(7.8mmI.D.×30cm)(東ソー(株)製)
 検出器:UV検出器、λ=210nm
 溶離液:濃度1mol/LのNaCl水溶液:アセトニトリル(体積比=7:3)の混合溶液
 流速:1mL/min.
 濃度:10mg/mL
 注入量:10μL
 標準物質:ポリスチレンスルホン酸Na(Mw=275,000、35,000、12,500、7,500、5,200、1,680)
 負極電極材料は、例えば、硫黄元素含有量が2000μmol/g未満の第2有機防縮剤を含むことができる。第2有機防縮剤としては、上記の有機防縮剤のうち、リグニン類、合成有機防縮剤(特に、リグニン類)などが挙げられる。第2有機防縮剤の硫黄元素含有量は、1000μmol/g以下が好ましく、800μmol/g以下であってもよい。第2有機防縮剤中の硫黄元素含有量の下限は特に制限されないが、例えば、400μmol/g以上である。第2有機防縮剤とポリマー化合物とを併用することで、コロイドの粒子径を小さくすることができるため、低温HR放電性能の低下を抑制する効果をさらに高めることができる。
 第2有機防縮剤のMwは、例えば、7000未満である。第2有機防縮剤のMwは、例えば、3000以上である。
 第1有機防縮剤と第2有機防縮剤とを併用する場合、これらの質量比は任意に選択できる。充電受入性の低下抑制における相乗効果を確保し易い観点からは、第1有機防縮剤と第2有機防縮剤との総量に占める第1有機防縮剤の比率は、20質量%以上が好ましく、25質量%以上であってもよい。同様の観点から、第1有機防縮剤と第2有機防縮剤との総量に占める第1有機防縮剤の比率は、80質量%以下が好ましく、75質量%以下であってもよい。
 第1有機防縮剤と第2有機防縮剤との総量に占める第1有機防縮剤の比率は、20質量%以上80質量%以下(または75質量%以下)、もしくは25質量%以上80質量%以下(または75質量%以下)であってもよい。
 負極電極材料中に含まれる有機防縮剤の含有量は、例えば、0.01質量%以上であり、0.05質量%以上であってもよい。有機防縮剤の含有量は、例えば、1.0質量%以下であり、0.5質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 負極電極材料中に含まれる有機防縮剤の含有量は、0.01質量%以上1.0質量%以下、0.05質量%以上1.0質量%以下、0.01質量%以上0.5質量%以下、または0.05質量%以上0.5質量%以下であってもよい。
 (硫酸バリウム)
 負極電極材料中の硫酸バリウムの含有量は、例えば0.05質量%以上であり、0.10質量%以上であってもよい。負極電極材料中の硫酸バリウムの含有量は、3質量%以下であり、2質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 負極電極材料中の硫酸バリウムの含有量は、0.05質量%以上3質量%以下、0.05質量%以上2質量%以下、0.10質量%以上3質量%以下、または0.10質量%以上2質量%以下であってもよい。
 (負極電極材料の構成成分の分析)
 以下に、負極電極材料またはその構成成分の分析方法について説明する。分析に先立ち、化成後の鉛蓄電池を満充電してから解体して分析対象の負極板を入手する。入手した負極板を水洗し、負極板から硫酸分を除去する。水洗は、水洗した負極板表面にpH試験紙を押し当て、試験紙の色が変化しないことが確認されるまで行う。ただし、水洗を行う時間は、2時間以内とする。水洗した負極板は、減圧環境下、60±5℃で6時間程度乾燥する。乾燥後に添付部材が含まれる場合には剥離により負極板から添付部材が除去される。次に、負極板から負極電極材料を分離することにより試料(以下、試料Aとも称する。)を得る。試料Aは、必要に応じて粉砕され、分析に供される。
(1)ポリマー化合物の分析
 (1-1)ポリマー化合物の定性分析
 粉砕した100.0±0.1gの試料Aに150.0±0.1mLのクロロホルムを加え、20±5℃で16時間撹拌し、ポリマー化合物を抽出する。その後、ろ過によって固形分を除く。抽出により得られるポリマー化合物が溶解したクロロホルム溶液またはクロロホルム溶液を乾固することにより得られるポリマー化合物について、赤外分光スペクトル、紫外可視吸収スペクトル、NMRスペクトル、LC-MSおよび/または熱分解GC-MSなどから情報を得ることで、ポリマー化合物を特定する。
 抽出により得られるポリマー化合物が溶解したクロロホルム溶液から、クロロホルムを減圧下で留去することによりクロロホルム可溶分を回収する。クロロホルム可溶分を重クロロホルムに溶解させて、下記の条件でH-NMRスペクトルを測定する。このH-NMRスペクトルから、ケミカルシフトが3.2ppm以上3.8ppm以下の範囲のピークを確認する。また、この範囲のピークから、オキシC2-4アルキレンユニットの種類を特定する。
 装置:日本電子(株)製、AL400型核磁気共鳴装置
 観測周波数:395.88MHz
 パルス幅:6.30μs
 パルス繰り返し時間:74.1411秒
 積算回数:32
 測定温度:室温(20~35℃)
 基準:7.24ppm
 試料管直径:5mm
 H-NMRスペクトルから、ケミカルシフトが3.2ppm以上3.8ppm以下の範囲に存在するピークの積分値(V)を求める。また、ポリマー化合物の末端基に結合した酸素原子に対して結合した-CH-基および-CH<基の水素原子のそれぞれについて、H-NMRスペクトルにおけるピークの積分値の合計(V)を求める。そして、VおよびVから、VがVおよびVの合計に占める割合(=V/(V+V)×100(%))を求める。
 なお、定性分析で、H-NMRスペクトルにおけるピークの積分値を求める際には、H-NMRスペクトルにおいて、該当するピークを挟むように有意なシグナルがない2点を決定し、この2点間を結ぶ直線をベースラインとして各積分値を算出する。例えば、ケミカルシフトが3.2ppm~3.8ppmの範囲に存在するピークについては、スペクトルにおける3.2ppmと3.8ppmとの2点間を結ぶ直線をベースラインとする。例えば、ケミカルシフトが3.8ppmを超え4.0ppm以下の範囲に存在するピークについては、スペクトルにおける3.8ppmと4.0ppmとの2点間を結ぶ直線をベースラインとする。
 (1-2)ポリマー化合物の定量分析
 上記のクロロホルム可溶分の適量を、±0.0001gの精度で測定したm(g)のテトラクロロエタン(TCE)と共に重クロロホルムに溶解させて、H-NMRスペクトルを測定する。ケミカルシフトが3.2~3.8ppmの範囲に存在するピークの積分値(S)とTCEに由来するピークの積分値(S)を求め、以下の式から負極電極材料中のポリマー化合物の質量基準の含有量C(ppm)を求める。
=S/S×N/N×M/M×m/m×1000000
(式中、Mはケミカルシフトが3.2~3.8ppmの範囲にピークを示す構造の分子量(より具体的には、オキシC2-4アルキレンユニットの繰り返し構造の分子量)であり、Nは繰り返し構造の主鎖の炭素原子に結合した水素原子の数である。Nr、はそれぞれ基準物質の分子に含まれる水素数、基準物質の分子量であり、m(g)は抽出に使用した負極電極材料の質量である。)
 なお、本分析での基準物質はTCEであるため、N=2、M=168である。また、m=100である。
 例えば、ポリマー化合物がポリプロピレングリコールの場合、Mは58であり、Nは3である。ポリマー化合物がポリエチレングリコールの場合、Mは44であり、Nは4である。共重合体の場合には、Nは、各モノマー単位のN値を繰り返し構造に含まれる各モノマー単位のモル比率(モル%)を用いて平均化した値であり、Mは各モノマー単位の種類に応じて決定される。
 なお、定量分析では、H-NMRスペクトルにおけるピークの積分値は、日本電子(株)製のデータ処理ソフト「ALICE」を用いて求める。
 (1-3)ポリマー化合物のMn測定
 ポリマー化合物のGPC測定を、下記の装置を用い、下記の条件で行う。別途、標準物質のMnと溶出時間のプロットから校正曲線(検量線)を作成する。この検量線およびポリマー化合物のGPC測定結果に基づき、ポリマー化合物のMnを算出する。
 分析システム:20A system((株)島津製作所製)
 カラム:GPC KF-805L(Shodex社製)2本を直列接続
 カラム温度:30℃
 移動相:テトラヒドロフラン
 流速:1mL/min.
 濃度:0.20質量%
 注入量:10μL
 標準物質:ポリエチレングリコール(Mn=200,0000、20,0000、20,000、2,000、200)
 検出器:示差屈折率検出器(Shodex社製、Shodex RI-201H)
(2)炭素質材料の分析
 (2-1)炭素質材料の分離および定量
 満充電状態の鉛蓄電池を分解し、既化成の負極板を取り出し、水洗により硫酸を除去し、真空下または不活性ガス雰囲気下で乾燥する。次に、乾燥した負極板から負極電極材料を採取し、粉砕する。粉砕試料5gあたりに、60質量%濃度の硝酸水溶液30mLを加えて、70℃で加熱する。さらに、粉砕試料5gあたり、エチレンジアミン四酢酸二ナトリウム10g、28質量%濃度のアンモニア水30mL、および水100mLを加えて、加熱を続け、可溶分を溶解させる。このようにして前処理を行なった試料を、ろ過により回収する。回収した試料を、目開き500μmのふるいにかけて、補強材などのサイズが大きな成分を除去して、ふるいを通過した成分を炭素質材料として回収する。
 なお、負極電極材料中の炭素質材料の含有量Cは、上記の手順で分離した各炭素質材料の質量を測り、この質量の合計が粉砕試料中に占める比率(質量%)を算出することにより求める。
 第1炭素質材料と第2炭素質材料とを分離する場合には、下記の手順で分離を行う。
 回収した炭素質材料を、目開き32μmのふるいを用いて湿式にて篩ったときに、ふるいの目を通過せずに、ふるい上に残るものを第1炭素質材料とし、ふるいの目を通過するものを第2炭素質材料とする。つまり、各炭素質材料の粒子径は、ふるいの目開きのサイズを基準とするものである。湿式のふるい分けについては、JIS Z8815:1994を参照できる。
 具体的には、炭素質材料を、目開き32μmのふるい上に載せ、イオン交換水を散水しながら、5分間ふるいを軽く揺らして篩い分けする。ふるい上に残った第1炭素質材料は、イオン交換水を流しかけてふるいから回収し、ろ過によりイオン交換水から分離する。ふるいを通過した第2炭素質材料は、ニトロセルロース製のメンブランフィルター(目開き0.1μm)を用いてろ過により回収する。回収された第1炭素質材料および第2炭素質材料は、それぞれ、100℃の温度で2時間乾燥させる。目開き32μmのふるいとしては、JIS Z 8801-1:2006に規定される、公称目開きが32μmであるふるい網を備えるものを使用する。
 炭素質材料全体に占める第2炭素質材料の割合は、測定した第2炭素質材料の質量が、炭素質材料の質量に占める比率(質量%)を算出することにより求める。
 (2-2)炭素質材料のBET比表面積S
 炭素質材料のBET比表面積Sは、上記(2-1)の手順で分離された炭素質材料を用いて、ガス吸着法により、BET式を用いて求められる。炭素質材料は、水分除去のため、窒素フロー中、150℃の温度で、1時間加熱することにより前処理される。前処理した炭素質材料を用いて、下記の装置にて、下記の条件により、炭素質材料のBET比表面積を求める。
 測定装置:マイクロメリティックス社製 TriStar3000
 吸着ガス:純度99.99%以上の窒素ガス
 吸着温度:液体窒素沸点温度(77K)
 BET比表面積の計算方法:JIS Z 8830:2013の7.2に準拠
(3)負極電極材料のBET比表面積S
 負極電極材料のBET比表面積Sは、試料Aを用いて、ガス吸着法により、BET式を用いて求められる。負極電極材料は、窒素フロー中、150℃の温度で、1時間加熱することにより前処理される。前処理した負極電極材料を用いて、(2-2)と同様の装置および条件により、負極電極材料のBET比表面積Sを求める。
(4)有機防縮剤の分析
 (4-1)負極電極材料中の有機防縮剤の定性分析
 試料Aを1mol/Lの水酸化ナトリウム(NaOH)水溶液に浸漬し、有機防縮剤を抽出する。次に、抽出物から、第1有機防縮剤と第2有機防縮剤とを分離する。各有機防縮剤を含む分離物のそれぞれについて、不溶成分を濾過で取り除き、得られた溶液を脱塩した後、濃縮し、乾燥する。脱塩は、脱塩カラムを用いて行うか、溶液をイオン交換膜に通すことにより行うか、もしくは、溶液を透析チューブに入れて蒸留水中に浸すことにより行なう。これを乾燥することにより有機防縮剤の粉末試料(以下、粉末試料Bとも称する。)が得られる。
 このようにして得た有機防縮剤の粉末試料を用いて測定した赤外分光スペクトルや、粉末試料を蒸留水等で希釈し、紫外可視吸光度計で測定した紫外可視吸収スペクトル、重水等の所定の溶媒で溶解し、得られた溶液のNMRスペクトルなどから得た情報を組み合わせて用いて、有機防縮剤種を特定する。
 なお、上記抽出物からの第1有機防縮剤と第2有機防縮剤との分離は、次のようにして行なう。まず、上記抽出物を、赤外分光、NMR、および/またはGC-MSで測定することにより、複数種の有機防縮剤が含まれているかどうかを判断する。次いで、上記抽出物のGPC分析により分子量分布を測定し、複数種の有機防縮剤が分子量により分離可能であれば、分子量の違いに基づいて、カラムクロマトグラフィーにより有機防縮剤を分離する。分子量の違いによる分離が難しい場合には、有機防縮剤が有する官能基の種類および/または官能基の量により異なる溶解度の違いを利用して、沈殿分離法により一方の有機防縮剤を分離する。具体的には、上記抽出物をNaOH水溶液に溶解させた混合物に、硫酸水溶液を滴下して、混合物のpHを調節することにより、一方の有機防縮剤を凝集させ、分離する。分離物を再度NaOH水溶液に溶解させたものから上記のように不溶成分を濾過により取り除く。また、一方の有機防縮剤を分離した後の残りの溶液を、濃縮する。得られた濃縮物は、他方の有機防縮剤を含んでおり、この濃縮物から上記のように不溶成分を濾過により取り除く。
 (4-2)負極電極材料中における有機防縮剤の含有量の定量
 上記(4-1)と同様に、有機防縮剤を含む分離物のそれぞれについて不溶成分を濾過で取り除いた後の溶液を得る。得られた各溶液について、紫外可視吸収スペクトルを測定する。各有機防縮剤に特徴的なピークの強度と、予め作成した検量線とを用いて、負極電極材料中の各有機防縮剤の含有量を求める。
 なお、有機防縮剤の含有量が未知の鉛蓄電池を入手して有機防縮剤の含有量を測定する際に、有機防縮剤の構造式の厳密な特定ができないために検量線に同一の有機防縮剤が使用できないことがある。この場合には、当該電池の負極から抽出した有機防縮剤と、紫外可視吸収スペクトル、赤外分光スペクトル、およびNMRスペクトルなどが類似の形状を示す、別途入手可能な有機高分子を使用して検量線を作成することで、紫外可視吸収スペクトルを用いて有機防縮剤の含有量を測定するものとする。
 (4-3)有機防縮剤中の硫黄元素の含有量
 上記(4-1)と同様に、有機防縮剤の粉末試料を得た後、酸素燃焼フラスコ法によって、0.1gの有機防縮剤中の硫黄元素を硫酸に変換する。このとき、吸着液を入れたフラスコ内で粉末試料を燃焼させることで、硫酸イオンが吸着液に溶け込んだ溶出液を得る。次に、トリン(thorin)を指示薬として、溶出液を過塩素酸バリウムで滴定することにより、0.1gの有機防縮剤中の硫黄元素の含有量(C1)を求める。次に、C1を10倍して1g当たりの有機防縮剤中の硫黄元素の含有量(μmol/g)を算出する。
 (5)硫酸バリウムの定量
 未粉砕の初期試料を粉砕し、粉砕された初期試料10gに対し、20%質量濃度硝酸を50ml加え、約20分加熱し、鉛成分を硝酸鉛として溶解させる。次に、硝酸鉛を含む溶液を濾過して、炭素質材料、硫酸バリウム等の固形分を濾別する。
 得られた固形分を水中に分散させて分散液とした後、篩いを用いて分散液から炭素質材料および硫酸バリウム以外の成分(例えば補強材)を除去する。次に、分散液に対し、予め質量を測定したメンブレンフィルタを用いて吸引ろ過を施し、濾別された試料とともにメンブレンフィルタを110℃±5℃の乾燥器で乾燥する。濾別された試料は、炭素質材料と硫酸バリウムとの混合試料である。乾燥後の混合試料とメンブレンフィルタとの合計質量からメンブレンフィルタの質量を差し引いて、混合試料の質量を測定する。その後、乾燥後の混合試料をメンブレンフィルタとともに坩堝に入れ、700℃以上で灼熱灰化させる。残った残渣は酸化バリウムである。酸化バリウムの質量を硫酸バリウムの質量に変換して硫酸バリウムの質量を求める。
 (その他)
 負極板は、負極集電体に負極ペーストを塗布または充填し、熟成および乾燥することにより未化成の負極板を作製し、その後、未化成の負極板を化成することにより形成できる。負極ペーストは、鉛粉と有機防縮剤および必要に応じて各種添加剤に、水と硫酸を加えて混練することで作製する。熟成する際には、室温より高温かつ高湿度で、未化成の負極板を熟成させることが好ましい。
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の負極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。化成により、海綿状鉛が生成する。
(正極板)
 鉛蓄電池の正極板は、ペースト式、クラッド式などに分類できる。ペースト式正極板は、正極集電体と、正極電極材料とを具備する。正極電極材料は、正極集電体に保持されている。ペースト式正極板では、正極電極材料は、正極板から正極集電体を除いたものである。正極集電体は、鉛(Pb)または鉛合金の鋳造により形成してもよく、鉛シートまたは鉛合金シートを加工して形成してもよい。加工方法としては、例えば、エキスパンド加工や打ち抜き(パンチング)加工が挙げられる。正極集電体として格子状の集電体を用いると、正極電極材料を担持させ易いため好ましい。クラッド式正極板は、複数の多孔質のチューブと、各チューブ内に挿入される芯金と、複数の芯金を連結する集電部と、芯金が挿入されたチューブ内に充填される正極電極材料と、複数のチューブを連結する連座とを具備する。クラッド式正極板では、正極電極材料は、チューブ、芯金、集電部、および連座を除いたものである。クラッド式正極板では、芯金と集電部とを合わせて正極集電体と称する場合がある。
 正極板には、マット、ペースティングペーパなどの部材が貼り付けられていることがある。このような部材(貼付部材)は正極板と一体として使用されるため、正極板に含まれるものとする。また、正極板がこのような部材を含む場合には、正極電極材料は、ペースト式正極板では、正極板から正極集電体および貼付部材を除いたものである。
 正極集電体に用いる鉛合金としては、耐食性および機械的強度の点で、Pb-Sb系合金、Pb-Ca系合金、Pb-Ca-Sn系合金が好ましい。正極集電体は、表面層を備えていてもよい。正極集電体の表面層と内側の層とは組成が異なるものであってもよい。表面層は、正極集電体の一部に形成されていてもよい。表面層は、正極集電体の格子部分のみや、耳部分のみ、枠骨部分のみに形成されていてもよい。
 正極板に含まれる正極電極材料は、酸化還元反応により容量を発現する正極活物質(二酸化鉛もしくは硫酸鉛)を含む。正極電極材料は、必要に応じて、他の添加剤を含んでもよい。
 未化成のペースト式正極板は、正極集電体に、正極ペーストを充填し、熟成、乾燥することにより得られる。正極ペーストは、鉛粉、添加剤、水、および硫酸を混練することで調製される。未化成のクラッド式正極板は、集電部で連結された芯金が挿入された多孔質なチューブに鉛粉またはスラリー状の鉛粉を充填し、複数のチューブを連座で結合することにより形成される。その後、これらの未化成の正極板を化成することにより正極板が得られる。化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の正極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。
 化成は、鉛蓄電池の電槽内の硫酸を含む電解液中に、未化成の正極板を含む極板群を浸漬させた状態で、極板群を充電することにより行うことができる。ただし、化成は、鉛蓄電池または極板群の組み立て前に行ってもよい。
(セパレータ)
 負極板と正極板との間には、セパレータを配置することができる。セパレータとしては、不織布、および/または微多孔膜などが用いられる。負極板と正極板との間に介在させるセパレータの厚さや枚数は、極間距離に応じて選択すればよい。
 不織布は、繊維を織らずに絡み合わせたマットであり、繊維を主体とする。不織布は、例えば、不織布の60質量%以上が繊維で形成されている。繊維としては、ガラス繊維、ポリマー繊維(ポリオレフィン繊維、アクリル繊維、ポリエチレンテレフタレート繊維などのポリエステル繊維など)、パルプ繊維などを用いることができる。中でも、ガラス繊維が好ましい。不織布は、繊維以外の成分、例えば耐酸性の無機粉体、結着剤としてのポリマーなどを含んでもよい。
 一方、微多孔膜は、繊維成分以外を主体とする多孔性のシートであり、例えば、造孔剤(ポリマー粉末および/またはオイルなど)を含む組成物をシート状に押し出し成形した後、造孔剤を除去して細孔を形成することにより得られる。微多孔膜は、耐酸性を有する材料で構成することが好ましく、ポリマー成分を主体とするものが好ましい。ポリマー成分としては、ポリエチレン、ポリプロピレンなどのポリオレフィンが好ましい。
 セパレータは、例えば、不織布のみで構成してもよく、微多孔膜のみで構成してもよい。また、セパレータは、必要に応じて、不織布と微多孔膜との積層物、異種または同種の素材を貼り合わせた物、または異種または同種の素材において凹凸をかみ合わせた物などであってもよい。
 セパレータは、シート状であってもよく、袋状に形成されていてもよい。正極板と負極板との間に1枚のシート状のセパレータを挟むように配置してもよい。また、折り曲げた状態の1枚のシート状のセパレータで極板を挟むように配置してもよい。この場合、折り曲げたシート状のセパレータで挟んだ正極板と、折り曲げたシート状のセパレータで挟んだ負極板とを重ねてもよく、正極板および負極板の一方を折り曲げたシート状のセパレータで挟み、他方の極板と重ねてもよい。また、シート状のセパレータを蛇腹状に折り曲げ、正極板および負極板を、これらの間にセパレータが介在するように、蛇腹状のセパレータに挟み込んでもよい。蛇腹状に折り曲げられたセパレータを用いる場合、折り曲げ部が鉛蓄電池の水平方向に沿うように(例えば、折り曲げ部が水平方向と平行になるように)セパレータを配置してもよく、鉛直方向に沿うように(例えば、折り曲げ部が鉛直方向と平行になるように)セパレータを配置してもよい。蛇腹状に折り曲げられたセパレータでは、セパレータの両方の主面側に交互に凹部が形成されることになる。正極板や負極板の上部には通常耳部が形成されているため、折り曲げ部が鉛蓄電池の水平方向に沿うようにセパレータを配置する場合、セパレータの一方の主面側の凹部のみに正極板および負極板が配置される(つまり、隣接する正極板と負極板との間には、二重のセパレータが介在した状態となる)。折り曲げ部が鉛蓄電池の鉛直方向に沿うようにセパレータを配置する場合、一方の主面側の凹部に正極板を収容し、他方の主面側の凹部に負極板を収容することができる(つまり、隣接する正極板と負極板との間には、セパレータが一重に介在した状態とすることができる。)。袋状のセパレータを用いる場合、袋状のセパレータが正極板を収容していてもよいし、負極板を収容してもよい。
 なお、本明細書中、極板における上下方向は、鉛蓄電池の鉛直方向における上下方向を意味する。
(電解液)
 電解液は、硫酸を含む水溶液であり、必要に応じてゲル化させてもよい。
 電解液には、上記のポリマー化合物が含まれていてもよい。負極電極材料の場合と同様に、電解液中に含まれるポリマー化合物の由来も特に制限されない。
 電解液中のポリマー化合物の濃度は、質量基準で、例えば、500ppm以下であってもよく、300ppm以下または200ppm以下であってもよい。このように電解液に含まれるポリマー化合物の量が少量の場合でも、過充電電気量を低減できるとともに、充電受入性および低温HR放電性能の低下を抑制することができる。電解液中のポリマー化合物の濃度は、質量基準で、1ppm以上であってもよく、5ppm以上であってもよい。これらの上限値と下限値とは任意に組み合わせることができる。
 電解液中のポリマー化合物の濃度は、質量基準で、1ppm以上500ppm以下、1ppm以上300ppm以下、1ppm以上200ppm以下、5ppm以上500ppm以下、5ppm以上300ppm以下、または5ppm以上200ppm以下であってもよい。
 また、電解液中のポリマー化合物の濃度が、100ppm以上である場合も好ましい。このとき、ポリマー化合物は、少なくともMnが1000以上5000以下の化合物を含むことが好ましい。Mnが5000以下のポリマー化合物は、電解液中に溶解し易く、電解液中を移動し易いため、負極電極材料中に移動して、過充電電気量を低減する効果をさらに高めることができる。水素ガスによる負極活物質の構造変化も抑制されるため、高温軽負荷試験後の低温HR放電性能の低下を抑制することもできる。Mnが1000以上のポリマー化合物では、鉛に対する吸着性がより高くなると考えられ、過充電電気量の低減効果をさらに高めることができる。鉛蓄電池を長期間使用すると負極活物質の構造変化が徐々に進行して、負極板からポリマー化合物が溶出し易くなる傾向がある。しかし、電解液がある程度の濃度のポリマー化合物を含むことで、負極板からのポリマー化合物の溶出を抑制することができ、負極電極材料中にポリマー化合物を保持できるとともに、電解液中からポリマー化合物を負極板に補充することができる。
 電解液中のポリマー化合物の濃度は、質量基準で、例えば、100ppm以上であってもよく、200ppm以上または500ppm以上であってもよく、500ppmより高くてもよく、600ppm以上であってもよい。ポリマー化合物は、少なくともMnが1000以上5000以下(例えば、4000以下または3000以下)の化合物を含むことが好ましい。負極電極材料にポリマー化合物が含まれるとともに、電解液がある程度の濃度のポリマー化合物を含むことで、負極板からのポリマー化合物の溶出を抑制することができるとともに、電解液中からポリマー化合物を負極板に補充することができる。
 電解液中のポリマー化合物の濃度は、質量基準で、例えば、5000ppm以下であり、4000ppm以下であってもよく、3000ppm以下であってもよく、2500ppm以下または2400ppm以下であってもよい。
 電解液中のポリマー化合物の濃度は、質量基準で、100ppm以上(または200ppm以上)5000ppm以下、100ppm以上(または200ppm以上)4000ppm以下、100ppm以上(または200ppm以上)3000ppm以下、100ppm以上(または200ppm以上)2500ppm以下、100ppm以上(または200ppm以上)2400ppm以下、500ppm以上(または500ppmより高く)5000ppm以下、500ppm以上(または500ppmより高く)4000ppm以下、500ppm以上(または500ppmより高く)3000ppm以下、500ppm以上(または500ppmより高く)2500ppm以下、500ppm以上(または500ppmより高く)2400ppm以下、600ppm以上5000ppm以下(または4000ppm以下)、600ppm以上3000ppm以下(または2500ppm以下)、あるいは600ppm以上2400ppm以下であってもよい。
 電解液中のポリマー化合物の濃度は、満充電状態の鉛蓄電池について求めるものとする。
 電解液中のポリマー化合物の濃度は、既化成の満充電状態の鉛蓄電池から取り出した所定量(m(g))の電解液にクロロホルムを加えて混合し、静置して二層に分離させた後、クロロホルム層のみを取り出す。この作業を数回繰り返した後、クロロホルムを減圧下で留去し、クロロホルム可溶分を得る。クロロホルム可溶分の適量をTCE0.0212±0.0001gと共に重クロロホルムに溶解させて、H-NMRスペクトルを測定する。ケミカルシフトが3.2~3.8ppmの範囲に存在するピークの積分値(S)とTCEに由来するピークの積分値(S)を求め、以下の式から電解液中のポリマー化合物の含有量Cを求める。
=S/S×N/N×M/M×m/m×1000000
(式中、MおよびNは、それぞれ前記に同じ。)
 電解液は、必要に応じて、カチオン(例えば、ナトリウムイオン、リチウムイオン、マグネシウムイオン、および/またはアルミニウムイオンなどの金属カチオン)、および/またはアニオン(例えば、リン酸イオンなどの硫酸アニオン以外のアニオン)を含んでいてもよい。
 満充電状態の鉛蓄電池における電解液の20℃における比重は、例えば、1.20以上であり、1.25以上であってもよい。電解液の20℃における比重は、1.35以下であり、1.32以下であることが好ましい。これらの下限値と上限値とは任意に組み合わせることができる。電解液の20℃における比重は、1.20以上1.35以下、1.20以上1.32以下、1.25以上1.35以下、または1.25以上1.32以下であってもよい。
 鉛蓄電池は、電槽に、正極板、負極板、および電解液を収容することにより鉛蓄電池を組み立てる工程を含む製造方法により得ることができる。鉛蓄電池の組み立て工程において、セパレータは、通常、正極板と負極板との間に介在するように配置される。鉛蓄電池の組み立て工程は、正極板、負極板、および電解液を電槽に収容する工程の後、必要に応じて、正極板および/または負極板を化成する工程を含んでもよい。正極板、負極板、電解液、およびセパレータは、それぞれ、電槽に収容される前に準備される。
 図1に、本発明の一実施形態に係る鉛蓄電池の一例の外観を示す。
 鉛蓄電池1は、極板群11と電解液(図示せず)とを収容する電槽12を具備する。電槽12内は、隔壁13により、複数のセル室14に仕切られている。各セル室14には、極板群11が1つずつ収納されている。電槽12の開口部は、負極端子16および正極端子17を具備する蓋15で閉じられる。蓋15には、セル室毎に液口栓18が設けられている。補水の際には、液口栓18を外して補水液が補給される。液口栓18は、セル室14内で発生したガスを電池外に排出する機能を有してもよい。
 極板群11は、それぞれ複数枚の負極板2および正極板3を、セパレータ4を介して積層することにより構成されている。ここでは、負極板2を収容する袋状のセパレータ4を示すが、セパレータの形態は特に限定されない。電槽12の一方の端部に位置するセル室14では、複数の負極板2を並列接続する負極棚部6が貫通接続体8に接続され、複数の正極板3を並列接続する正極棚部5が正極柱7に接続されている。正極柱7は蓋15の外部の正極端子17に接続されている。電槽12の他方の端部に位置するセル室14では、負極棚部6に負極柱9が接続され、正極棚部5に貫通接続体8が接続される。負極柱9は蓋15の外部の負極端子16と接続されている。各々の貫通接続体8は、隔壁13に設けられた貫通孔を通過して、隣接するセル室14の極板群11同士を直列に接続している。
 正極棚部5は、各正極板3の上部に設けられた耳部同士をキャストオンストラップ方式やバーニング方式で溶接することにより形成される。負極棚部6も、正極棚部5の場合に準じて各負極板2の上部に設けられた耳部同士を溶接することにより形成される。
 なお、鉛蓄電池の蓋15は、一重構造(単蓋)であるが、図示例の場合に限らない。蓋15は、例えば、中蓋と外蓋(または上蓋)とを備える二重構造を有するものであってもよい。二重構造を有する蓋は、中蓋と外蓋との間に、中蓋に設けられた還流口から電解液を電池内(中蓋の内側)に戻すための還流構造を備えるものであってもよい。
 本発明の一側面に係る鉛蓄電池を以下にまとめて記載する。
 (1)正極板と、負極板と、電解液と、を備え、
 前記負極板は、負極電極材料を備え、
 前記負極電極材料は、ポリマー化合物を含み、
 前記ポリマー化合物は、H-NMRスペクトルのケミカルシフトにおいて、3.2ppm以上3.8ppm以下の範囲にピークを有し、
 前記負極電極材料中の前記ポリマー化合物の含有量Cの前記負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上である、鉛蓄電池。
 (2)上記(1)において、前記ポリマー化合物は、末端基に結合した酸素原子と、前記酸素原子に結合した-CH-基および/または-CH<基とを含み、前記H-NMRスペクトルにおいて、前記ピークの積分値の、前記ピークの積分値と前記-CH-基の水素原子のピークの積分値と前記-CH<基の水素原子のピークの積分値との合計に占める割合は、50%以上、80%以上、85%以上、または90%以上であってもよい。
 (3)上記(1)または(2)において、前記ポリマー化合物は、オキシC2-4アルキレンユニットの繰り返し構造を含んでもよい。
 (4)正極板と、負極板と、電解液と、を備え、
 前記負極板は、負極電極材料を備え、
 前記負極電極材料は、オキシC2-4アルキレンユニットの繰り返し構造を含むポリマー化合物を含み、
 前記負極電極材料中の前記ポリマー化合物の含有量Cの前記負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上である、鉛蓄電池。
 (5)上記(3)または(4)において、前記ポリマー化合物は、前記オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエーテル化物および前記オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエステル化物からなる群より選択される少なくとも一種を含み、
 前記ヒドロキシ化合物は、ポリC2-4アルキレングリコール、オキシC2-4アルキレンの繰り返し構造を含む共重合体、およびポリオールのC2-4アルキレンオキサイド付加物からなる群より選択される少なくとも一種であってもよい。
 (6)正極板と、負極板と、電解液と、を備え、
 前記負極板は、負極電極材料を備え、
 前記負極電極材料は、ポリマー化合物を含み、
 前記負極電極材料中の前記ポリマー化合物の含有量Cの前記負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上であり、
 前記ポリマー化合物は、オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエーテル化物およびオキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエステル化物からなる群より選択される少なくとも一種を含み、
 前記ヒドロキシ化合物は、ポリC2-4アルキレングリコール、オキシC2-4アルキレンの繰り返し構造を含む共重合体、およびポリオールのC2-4アルキレンオキサイド付加物からなる群より選択される少なくとも一種である、鉛蓄電池。
 (7)上記(5)または(6)において、前記エーテル化物は、前記ヒドロキシ化合物の少なくとも一部の末端の-OH基がエーテル化された-OR基(式中、Rは有機基である。)を有し、前記有機基Rは、炭化水素基であってもよい。
 (8)上記(5)または(6)において、前記エステル化物は、上記ヒドロキシ化合物の少なくとも一部の末端の-OH基がエステル化された-O-C(=O)-R基(式中、Rは有機基である。)を有し、前記有機基Rは、炭化水素基であってもよい。
 (9)上記(7)または(8)において、前記炭化水素基は、脂肪族炭化水素基であってもよい。
 (10)上記(9)において、前記脂肪族炭化水素基は、直鎖状および分岐鎖状のいずれであってもよい。
 (11)上記(9)または(10)において、前記脂肪族炭化水素基の炭素数は、例えば、30以下であり、26以下または22以下であってもよく、20以下または16以下であってもよく、14以下または10以下であってもよく、8以下または6以下であってもよい。
 (12)上記(9)~(11)のいずれか1つにおいて、前記脂肪族炭化水素基は、アルキル基またはアルケニル基であってもよい。
 (13)上記(12)において、前記アルキル基の炭素数は、1以上であり、前記アルケニル基の炭素数は、2以上であってもよい。
 (14)上記(12)または(13)において、前記アルキル基は、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、n-ペンチル、ネオペンチル、i-ペンチル、s-ペンチル、3-ペンチル、t-ペンチル、n-ヘキシル、2-エチルヘキシル、n-オクチル、n-デシル、i-デシル、ラウリル、ミリスチル、セチル、ステアリルおよびベヘニルからなる群より選択される少なくとも一種であってもよい。
 (15)上記(12)または(13)において、前記アルケニル基は、例えば、C2-30アルケニル基またはC2-26アルケニル基であってもよく、C2-22アルケニル基またはC2-20アルケニル基であってもよく、C10-20アルケニル基であってもよい。
 (16)上記(12)、(13)または(15)において、前記アルケニル基は、ビニル、1-プロペニル、アリル、パルミトレイル、およびオレイルからなる群より選択される少なくとも一種であってもよい。
 (17)上記(3)~(16)のいずれか1つにおいて、前記オキシC2-4アルキレンユニットの繰り返し構造は、少なくともオキシプロピレンユニットの繰り返し構造を含んでもよい。
 (18)上記(17)において、前記ポリマー化合物(1分子)中の前記オキシプロピレンユニットの割合は、5mol%以上、10mol%以上、または20mol%以上であってもよい。
 (19)上記(1)~(18)のいずれか1つにおいて、前記ポリマー化合物は、Mnが500以上の化合物を含んでもよく、Mnが600以上の化合物を含んでもよく、Mnが1000以上の化合物を含んでもよい。
 (20)上記(19)において、前記化合物のMnは、20000以下、15000以下、10000以下、5000以下、4000以下、または3000以下であってもよい。
 (21)上記(1)~(18)のいずれか1つにおいて、前記ポリマー化合物は、少なくともMnが1000以上の化合物を含んでもよい。
 (22)上記(21)において、前記化合物のMnは、1000以上20000以下、1000以上15000以下、1000以上10000以下、1000以上5000以下、1000以上4000以下、または1000以上3000以下であってもよい。
 (23)上記(1)~(22)のいずれか1つにおいて、前記比C/Sは、25ppm・m-2・g以上、26ppm・m-2・g以上、50ppm・m-2・g以上、または90ppm・m-2・g以上であってもよい。
 (24)上記(1)~(23)のいずれか1つにおいて、前記比C/Sは、800ppm・m-2・g以下、730ppm・m-2・g以下、600ppm・m-2・g以下、450ppm・m-2・g以下、または410ppm・m-2・g以下であってもよい。
 (25)上記(1)~(24)のいずれか1つにおいて、前記負極電極材料中の前記ポリマー化合物の含有量Cは、質量基準で、8ppmより多くてもよく、10ppm以上、13ppm以上、15ppm以上、30ppm以上、40ppm以上、50ppm以上、80ppm以上、または100ppm以上であってもよい。
 (26)上記(1)~(25)のいずれか1つにおいて、前記負極電極材料中の前記ポリマー化合物の含有量Cは、質量基準で、3000ppm以下、2500ppm以下、2000ppm以下、1000ppm以下、600ppm以下、500ppm以下、300ppm以下、または200ppm以下であってもよい。
 (27)上記(1)~(26)のいずれか1つにおいて、前記負極電極材料の比表面積Sは、0.3m・g-1以上、0.5m・g-1以上、または0.7m・g-1以上であってもよい。
 (28)上記(1)~(27)のいずれか1つにおいて、前記負極電極材料の比表面積Sは、4m・g-1以下、3.5m・g-1以下、2.5m・g-1以下、2m・g-1以下、または1.5m・g-1以下であってもよい。
 (29)上記(1)~(28)のいずれか1つにおいて、前記負極電極材料は、炭素質材料を含んでもよい。
 (30)上記(29)において、前記負極電極材料中の前記炭素質材料の含有量Cは、0.01質量%以上、0.1質量%以上、0.2質量%以上、0.3質量%以上、または0.45質量%以上であってもよい。
 (31)上記(29)または(30)において、前記負極電極材料中の前記炭素質材料の含有量Cは、5質量%以下、3.5質量%以下、または3質量%以下であってもよい。
 (32)上記(29)~(31)のいずれか1つにおいて、前記炭素質材料は、32μm未満の粒子径を有する第2炭素質材料を含んでもよい。
 (33)上記(32)において、前記炭素質材料全体に占める前記第2炭素質材料の割合は、10質量%以上、40質量%以上、50質量%以上、または60質量%以上であってもよい。
 (34)上記(32)または(33)において、前記炭素質材料全体に占める前記第2炭素質材料の割合は、100質量%以下、または90質量%以下であってもよい。
 (35)上記(1)~(34)のいずれか1つにおいて、前記負極電極材料は、さらに有機防縮剤を含んでもよい。
 (36)上記(35)において、前記有機防縮剤(または前記負極電極材料)は、硫黄元素含有量が2000μmol/g以上または3000μmol/g以上の第1有機防縮剤を含んでもよい。
 (37)上記(36)において、前記第1有機防縮剤の硫黄元素含有量は、9000μmol/g以下であってもよく、8000μmol/g以下または7000μmol/g以下であってもよい。
 (38)上記(36)または(37)において、前記第1有機防縮剤は、硫黄含有基を有する芳香族化合物のユニットを含む縮合物を含み、前記縮合物は、前記前記芳香族化合物のユニットとして、ビスアレーン化合物のユニットおよび単環式の芳香族化合物のユニットからなる群より選択される少なくとも一種を含んでもよい。
 (39)上記(38)において、前記縮合物は、前記ビスアレーン化合物のユニットと、前記単環式の芳香族化合物のユニットとを含んでもよい。
 (40)上記(38)または(39)において、前記単環式の芳香族化合物のユニットは、ヒドロキシアレーン化合物のユニットを含んでもよい。
 (41)上記(38)において、前記硫黄含有基は、スルホン酸基およびスルホニル基からなる群より選択される少なくとも一種を含んでもよい。
 (42)上記(35)において、前記有機防縮剤(または前記負極電極材料)は、硫黄元素含有量が2000μmol/g未満(または1000μmol/g以下もしくは800μmol/g以下)の第2有機防縮剤を含んでもよい。
 (43)上記(36)~(41)のいずれか1つにおいて、前記有機防縮剤(または前記負極電極材料)は、さらに、硫黄元素含有量が2000μmol/g未満(または1000μmol/g以下もしくは800μmol/g以下)の第2有機防縮剤を含んでもよい。
 (44)上記(42)または(43)において、前記第2有機防縮剤の硫黄元素含有量は、400μmol/g以上であってもよい。
 (45)上記(43)において、前記第1有機防縮剤と前記第2有機防縮剤との総量に占める前記第1有機防縮剤の比率は、20質量%以上または25質量%以上であってもよい。
 (46)上記(43)または(45)において、前記第1有機防縮剤と前記第2有機防縮剤との総量に占める前記第1有機防縮剤の比率は、80質量%以下または75質量%以下であってもよい。
 (47)上記(35)~(46)のいずれか1つにおいて、前記負極電極材料中に含まれる前記有機防縮剤の含有量は、0.01質量%以上、または0.05質量%以上であってもよい。
 (48)上記(35)~(47)のいずれか1つにおいて、前記負極電極材料中に含まれる前記有機防縮剤の含有量は、1.0質量%以下または0.5質量%以下であってもよい。
 (49)上記(1)~(48)のいずれか1つにおいて、前記電解液は、前記ポリマー化合物を含んでもよい。
 (50)上記(49)において、前記電解液中の前記ポリマー化合物の濃度は、質量基準で、500ppm以下、300ppm以下、または200ppm以下であってもよい。
 (51)上記(49)または(50)において、前記電解液中のポリマー化合物の濃度は、質量基準で、1ppm以上、または5ppm以上であってもよい。
 (52)上記(49)において、前記電解液中の前記ポリマー化合物の濃度は、質量基準で、100ppm以上であってもよく、200ppm以上または500ppm以上であってもよく、500ppmより高くてもよく、600ppm以上であってもよい。
 (53)上記(52)において、前記電解液中の前記ポリマー化合物の濃度は、質量基準で、5000ppm以下、4000ppm以下、3000ppm以下、2500ppm以下、または2400ppm以下であってもよい。
 (54)上記(52)または(53)において、前記ポリマー化合物は、少なくともMnが500以上(または600以上、好ましくは1000以上)の化合物を含んでもよい。
 (55)上記(54)において、前記化合物のMnは、5000以下であってもよく、4000以下または3000以下であってもよい。
 (56)上記(1)~(55)のいずれか1つにおいて、前記負極電極材料は、硫酸バリウムを含んでもよい。
 (57)上記(56)において、前記負極電極材料中の前記硫酸バリウムの含有量は、0.05質量%以上または0.10質量%以上であってもよい。
 (58)上記(56)または(57)において、前記負極電極材料中の前記硫酸バリウムの含有量は、3質量%以下または2質量%以下であってもよい。
[実施例]
 以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《鉛蓄電池E1~E12およびR1》
(1)鉛蓄電池の準備
(a)負極板の作製
 原料の鉛粉と、硫酸バリウムと、炭素質材料と、ポリマー化合物(ポリプロピレングリコール、Mn=2000)と、有機防縮剤e1とを、適量の硫酸水溶液と混合して、負極ペーストを得る。このとき、いずれも既述の手順で求められる、比C/Sおよび負極電極材料中の炭素質材料の含有量Cが表1に示す値となるとともに、硫酸バリウムの含有量が0.6質量%、有機防縮剤の含有量が0.1質量%となるように各成分を混合する。比C/Sは、既述の手順で求められる負極電極材料の比表面積Sおよび負極電極材料中のポリマー化合物の含有量Cを調節することにより調節される。得られる負極ペーストを、Pb-Ca-Sn合金製のエキスパンド格子の網目部に充填し、熟成乾燥し、未化成の負極板を得る。有機防縮剤e1としては、スルホン酸基を導入したビスフェノール化合物のホルムアルデヒドによる縮合物(硫黄元素含有量:5000μmol/g、Mw=9600)が用いられる。なお、鉛蓄電池R1では、ポリマー化合物を用いず、鉛蓄電池E12では、炭素質材料を用いずに、負極板を作製する。
(b)正極板の作製
 原料の鉛粉を硫酸水溶液と混合して、正極ペーストを得る。正極ペーストを、Pb-Ca-Sn合金製のエキスパンド格子の網目部に充填し、熟成乾燥し、未化成の正極板を得る。
(c)試験電池の作製
 試験電池は定格電圧2V、定格5時間率容量は32Ahである。試験電池の極板群は、正極板7枚と負極板7枚で構成する。負極板はポリエチレン製の微多孔膜で形成された袋状セパレータに収容し、正極板と交互に積層し、極板群を形成する。極板群をポリプロピレン製の電槽に電解液(硫酸水溶液)とともに収容して、電槽内で化成を施し、液式の鉛蓄電池を作製する。化成後の電解液の比重は1.28(20℃換算)である。なお、鉛蓄電池E1~E11では、既述の手順で求められる電解液中のポリマー化合物の濃度は300ppm以下である。
 なお、既述の手順で測定されるポリマー化合物のH-NMRスペクトルでは、3.2ppm以上3.42ppm以下のケミカルシフトの範囲にオキシプロピレンユニットの--CH-に由来するピークが観察され、3.42ppmを超え3.8ppm以下のケミカルシフトの範囲にオキシプロピレンユニットの-CH<および-CH-に由来するピークが観察される。また、H-NMRスペクトルにおいて、3.2ppm~3.8ppmのピークの積分値の、このピークの積分値と、酸素原子に結合した-CH-基の水素原子のピークの積分値と、酸素原子に結合した-CH<基の水素原子のピークの積分値との合計に占める割合は、98.1%である。
(2)評価
(a)過充電電気量
 上記鉛蓄電池を用いて、以下の条件で実施する。
 JIS D5301に指定される通常の4分-10分試験よりも過充電条件にするために、放電1分-充電10分の試験(1分-10分試験)を75℃±3℃で実施する(高温軽負荷試験)。高温軽負荷試験において充放電を1220サイクル繰り返すことで高温軽負荷試験を行う。1220サイクルまでの各サイクルにおける過充電電気量(充電電気量-放電電気量)を合計し、平均化することにより1サイクル当たりの過充電電気量(Ah)を求める。鉛蓄電池R1の1サイクル当たりの過充電電気量(Ah)を100としたときの比率(%)で過充電電気量を評価する。
 放電:25A、1分
 充電:2.47V/セル、25A、10分
 水槽温度:75℃±3℃
(b)充電受入性
 満充電後の試験電池を用いて、10秒目電気量を測定する。具体的には、試験電池を、6.4Aで30分放電し、16時間放置する。その後、試験電池を電流の上限を200Aとして2.42V/セルで定電流定電圧充電し、このときの10秒間の積算電気量(10秒目電気量)を測定する。いずれの作業も、25℃の水槽中で行う。
(c)軽負荷試験後の低温HR放電性能
 上記(a)における高温軽負荷試験後の満充電後の試験電池を、放電電流150Aにて、-15℃±1℃で端子電圧が1.0V/セルに到達するまで放電し、このときの放電時間(軽負荷試験後の低温HR放電持続時間)(s)を求める。放電持続時間が長いほど、低温HR放電性能に優れる。鉛蓄電池R1の放電持続時間を100としたときの比率(%)で各電池の低温HR放電性能を評価する。
 鉛蓄電池E1~E12およびR1の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、負極電極材料中にポリマー化合物が含まれるとともに、比C/Sを25ppm・m-2・g以上とすることで、過充電電気量を低減しながらも、充電受入性の低下を抑制できる。過充電電気量が30%台や40%台にまで低減される場合でも、77%以上の高い充電受入性を確保することができる。過充電電気量が低減されるのは、ポリマー化合物の吸着により鉛の表面が覆われることで、負極板における水素過電圧が上昇したことによるものと考えられる。また、充電受入性の低下が抑制されるのは、ポリマー化合物により鉛表面が薄く覆われることで、硫酸鉛の溶出が阻害され難くなることによるものと考えられる。充電受入性の低下は、鉛の細孔内におけるポリマー化合物の偏在が抑制されイオンが移動し易くなったことでも抑制されると考えられる。
 表1の比C/Sと低温HR放電性能との関係を図2に示す。表1および図2に示されるように、鉛蓄電池E1~E9では、負極電極材料がポリマー化合物を含むにも拘わらず、予想外に高い低温HR放電性能が得られている。これは、細孔内におけるポリマー化合物の偏在が抑制されることで、イオンが移動し易くなること、および過充電時の水素ガスの発生が抑制され、水素ガスの衝突による負極活物質の構造変化が低減されたことによるものと考えられる。鉛の表面がポリマー化合物で過度に覆われると、低温HR放電性能が低下する傾向がある。そのため、より高い低温HR放電性能を確保する観点からは、比C/Sは、450ppm・m-2・g以下が好ましく、410ppm・m-2・g以下がより好ましい。
 表1の比C/Sと充電受入性との関係を図3に示す。表1の過充電電気量と充電受入性との関係を図4に示す。図3および図4では、負極電極材料中の炭素質材料の含有量Cが0.45質量%以上の場合と0.45質量%未満の場合とを分けて示す。図3に示されるように、炭素質材料が0.45質量%の以上の場合には、0.45質量%未満の場合と比べて、充電受入性の低下を抑制する効果が顕著に高くなっている。図4では、炭素質材料が0.45質量%の以上の場合には、0.45質量%未満の場合と比べて、過充電電気量を低く維持しながらも、より高い充電受入性が得られていることが分かる。このような効果は、鉛の表面を薄く覆い易いポリマー化合物を負極電極材料中に含有させるとともに、比C/Sを制御することで両特性のバランスが取り易くなることによるものと考えられる。
《鉛蓄電池E13-1~E16-1、E13-2~E16-2、およびE15-3~E15-5》
 表2に示すMnを有するポリマー化合物(ポリプロピレングリコール)を用いる。既述の手順で求められる負極電極材料中のポリマー化合物の含有量Cが表2に示す値となるように負極ペーストの構成成分を混合する。これら以外は、鉛蓄電池E1と同様にして試験電池を作製し、評価を行う。E13-2~E16-2で用いたポリマー化合物は、それぞれ、E13-1~E16-1で用いたポリマー化合物と同じである。E15-3~E15-5で用いたポリマー化合物は、E15-1およびE15-2で用いたポリマー化合物と同じである。
 なお、ポリマー化合物について、H-NMRスペクトルにおいて、3.2ppm~3.8ppmのピークの積分値の、このピークの積分値と、酸素原子に結合した-CH-基の水素原子のピークの積分値と、酸素原子に結合した-CH<基の水素原子のピークの積分値との合計に占める割合は、90.8%~98.7%である。
 鉛蓄電池E13-1~E16-1、E13-2~E16-2、およびE15-3~E15-5の結果を表2に示す。表2には、鉛蓄電池R1の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、ポリマー化合物のMnが1000以上になると、過充電電気量を低減する効果が高まる。これは、ポリマー化合物が負極電極材料中に留まり易いことによるものと考えられる。さらに、Mnが1000以上になると、優れた高温軽負荷試験後の低温HR放電性能を確保することができる。これは、過充電電気量が低くなることで、水素ガスが負極活物質に衝突することに起因する負極活物質の構造変化が抑制されるためと考えられる。
《鉛蓄電池E17-1~E20-1およびE17-2~E20-2》
 表3に示すMnを有するポリマー化合物(ポリプロピレングリコール)を負極電極材料および電解液に添加する。既述の手順で求められる負極電極材料中のポリマー化合物の含有量Cが表3に示す値となるように負極ペーストの組成を調節する。既述の手順で求められる電解液中のポリマー化合物の濃度が表3に示す値となるように電解液中にポリマー化合物を添加する。これら以外は、鉛蓄電池E1と同様にして試験電池を作製し、過充電電気量の評価を行う。E17-1~E20-1で用いたポリマー化合物は、それぞれ、E13-1~E16-1で用いたポリマー化合物と同じである。E17-2~E20-2で用いたポリマー化合物は、それぞれ、E13-1~E16-1で用いたポリマー化合物と同じである。
 鉛蓄電池E17-1~E20-1およびE17-2~E20-2の結果を表3に示す。表3には、鉛蓄電池R1の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されるように、ポリマー化合物のMnが1000以上になると、過充電電気量を低減する効果が顕著に高まる。これは、鉛に対する吸着性が高まることによるものと考えられる。また、電解液にポリマー化合物がある程度の濃度で含まれることで、負極板からのポリマー化合物の溶出も抑制されていると考えられる。
《鉛蓄電池E21~E23およびR2~R4》
 表4に示す硫黄(S)元素含有量を有する有機防縮剤を用いる。また、既述の手順で求められる負極電極材料中のポリマー化合物の含有量Cが表4に示す値となるように負極ペーストの構成成分を混合する。これら以外は、鉛蓄電池E1と同様にして試験電池を作製し、過充電電気量および充電受入性の評価を行う。また、鉛蓄電池を用いて、下記(d)の手順で初期の低温HR放電性能の評価を行う。
 有機防縮剤としては、下記のものが用いられる。
 (e2):リグニンスルホン酸塩(硫黄元素含有量:600μmol/g、Mw=5500)
 (e3):スルホン酸基を導入したビスフェノール化合物のホルムアルデヒドによる縮合物(硫黄元素含有量:3000μmol/g、Mw=9000)
 (e4):スルホン酸基を導入したビスフェノール化合物のホルムアルデヒドによる縮合物(硫黄元素含有量:7000μmol/g、Mw=9000)
 なお、有機防縮剤中の硫黄元素含有量(μmol/g)については、負極電極材料を調製する前の値と、鉛蓄電池を解体し、各有機防縮剤を抽出して測定した値には実質的に差がない。
(d)初期の低温HR放電性能
 満充電後の試験電池を、放電電流150Aにて、-15℃±1℃で端子電圧が1.0V/セルに到達するまで放電し、このときの放電時間(初期の低温HR放電持続時間)(s)を求める。放電持続時間が長いほど、低温HR放電性能に優れる。
 また、鉛蓄電池R1およびE15-1についても上記に準じて初期の低温HR放電性能および充電受入性の評価を行う。
 鉛蓄電池E21、E22、E15-1、およびE23の過充電電気量および初期の低温HR放電性能は、それぞれ、同じ硫黄元素含有量の有機防縮剤を用いる鉛蓄電池R2、R3、R1、およびR4のデータを100としたときの比率(%)で評価する。
 鉛蓄電池E21、E22、E15-1、およびE23の充電受入性は、それぞれ、同じ硫黄元素含有量の有機防縮剤を用いる鉛蓄電池R2、R3、R1、およびR4の10秒目電気量を100としたときの比率(%)で評価する。
 鉛蓄電池E21~E23およびR2~R4の結果を表4に示す。表4には鉛蓄電池R1およびE15-1の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、ポリマー化合物と第1有機防縮剤(好ましくは硫黄元素含有量が3000μmol/g以上の有機防縮剤)とを併用すると、充電受入性の低下がさらに抑制される。第1有機防縮剤を用いると、硫黄元素含有量が少ない有機防縮剤を用いる場合に比べて、放電時に生成する硫酸鉛の粒子サイズが小さく、比表面積が大きくなるため、硫酸鉛がポリマー化合物に被覆されにくくなる。その結果、第1有機防縮剤を用いる場合には、硫黄元素含有量が少ない有機防縮剤を用いる場合に比べて、充電受入性の低下が抑制されると考えられる。
 また、リグニンスルホン酸塩などの硫黄元素含有量が少ない第2有機防縮剤と、ポリマー化合物とを併用すると、初期の低温HR放電性能が大きく向上する。これは、第2有機防縮剤が硫酸中で形成するコロイドの粒子径が、ポリマー化合物の界面活性作用により、ポリマー化合物を用いない場合と比べて小さくなることで、放電反応が進行し易くなったことによるものと考えられる。一方、硫黄元素含有量が多い第1有機防縮剤は、ポリマー化合物を用いない場合でも、生成するコロイドの粒子径が小さいため、ポリマー化合物の添加に伴う粒子径の変化が小さい。そのため、低温HR放電性能の向上効果は小さくなったと考えられる。
《鉛蓄電池E24~E28》
 表5に示す硫黄(S)元素含有量を有する第1有機防縮剤および/または第2有機防縮剤を、既述の手順で求められる各有機防縮剤の含有量が表5に示す値となるように各成分を混合する。これら以外は、鉛蓄電池E1と同様にして試験電池を作製し、充電受入性の評価を行う。なお、第1有機防縮剤としては、鉛蓄電池E1と同じ(e1)を用い、第2有機防縮剤としてはE20と同じリグニンスルホン酸塩(e2)を用いる。なお、有機防縮剤中の硫黄元素含有量(μmol/g)については、負極電極材料を調製する前の値と、鉛蓄電池を解体し、各有機防縮剤を抽出して測定した値には実質的に差がない。
 鉛蓄電池E24~E28の充電受入性は、鉛蓄電池E24の10秒目電気量を100としたときの比率(%)で評価する。
 鉛蓄電池E24~E28の結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示されるように、ポリマー化合物を用いる場合に、双方の有機防縮剤を併用することで高い充電受入性が得られる。第1有機防縮剤と第2有機防縮剤とを併用する場合の結果は、各有機防縮剤を単独で用いる場合から想定される充電受入性の値よりも優れている。このことから、ポリマー化合物を用いる場合に、第1有機防縮剤および第2有機防縮剤を用いることで、相乗効果が得られていると言える。
《鉛蓄電池E29》
 有機防縮剤e5(スルホン酸基を導入したビスフェノールS化合物とフェノールスルホン酸とのホルムアルデヒドによる縮合物(硫黄元素含有量:4000μmol/g、Mw=8000))を用いる。これ以外は、鉛蓄電池E15-1と同様にして試験電池を作製し、評価を行う。
《鉛蓄電池R5-1、R5-2、R6-1およびR6-2》
 負極ペーストの構成成分を混合する際に、ポリマー化合物に代えて、リグニンスルホン酸塩(硫黄元素含有量が600μmol/g、Mw=5500)またはオイルを負極電極材料中の含有量が表6に示す値となるように添加する。これ以外は、鉛蓄電池E15-1と同様にして試験電池を作製し、評価を行う。オイルとしては、パラフィン系オイルを用いる。パラフィン系オイルおよびリグニンスルホン酸塩はいずれも、重クロロホルムを溶媒として用いて測定されるH-NMRスペクトルのケミカルシフトにおいて、3.2ppm以上3.8ppm以下の範囲にピークを有さない。
 鉛蓄電池E29、R5-1、R5-2、R6-1、およびR6-2の結果を表6に示す。表6には、鉛蓄電池R1およびE15-1の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示されるように、鉛蓄電池E15-1およびE29では、負極電極材料中のポリマー化合物の含有量が82ppmとごく僅かでも過充電電気量を効果的に低減できる。一方、リグニンスルホン酸塩やオイルを用いた鉛蓄電池R5-1またはR6-1では、ポリマー化合物を用いた鉛蓄電池E15-1およびE29とは異なり、過充電電気量を低減する効果は全く見られない。このことから、ポリマー化合物は、負極電極材料中において、リグニンスルホン酸塩やオイルとは鉛や硫酸鉛に対する吸着作用などの相互作用が異なる状態にあると考えられる。このように、ポリマー化合物に代わりに、従来の有機系添加剤(具体的には、H-NMRスペクトルのケミカルシフトにおいて、3.2ppm以上3.8ppm以下の範囲にピークを有さないもの)を用いても、過充電電気量を低減する効果は得られない。そのため、鉛蓄電池R5-1およびR6-1では、過充電時の水素発生を抑制する効果が小さく、減液抑制効果が小さい。
 また、R5-2およびR6-2に示されるように、リグニンスルホン酸塩やオイルを用いる場合でも、負極電極材料中の含有量が多い場合には、ある程度、過充電電気量の低減効果が得られる。しかし、過充電電気量の低減効果が得られるほどリグニンスルホン酸塩やオイルを添加すると、充電受入性も低下する。つまり、従来の有機系添加剤では、過充電電気量を低減しながら、充電受入性の低下を抑制することは困難である。それに対し、鉛蓄電池E15-1およびE29では、過充電電気量の高い低減効果が得られるにも拘わらず、充電受入性の低下が抑制され、高い充電受入性を確保できている。このことから、負極電極材料中では、鉛や硫酸鉛の表面の多くがポリマー化合物で薄く覆われた状態となり、負極板における水素過電圧が上昇したものと考えられる。また、ポリマー化合物により鉛表面が薄く覆われることで、硫酸鉛の溶出が阻害され難くなるため、鉛蓄電池E15-1およびE29では、充電受入性の低下が抑制されると考えられる。従って、リグニンスルホン酸塩やオイルなどの他の有機系添加剤を用いる場合に比べて、ポリマー化合物を用いる場合には、過充電電気量を低減する効果と充電受入性の低下を抑制する効果とを両立する効果が高まると言える。
 また、鉛蓄電池E15-1およびE29では、鉛蓄電池R1に比べて、高温軽負荷試験後でも、高い低温HR放電性能を確保することができる。これは、鉛の細孔内におけるポリマー化合物の偏在が抑制されることで、イオンが移動し易くなること、および過充電時の水素ガスの発生が抑制され、水素ガスの衝突による負極活物質の構造変化が低減されたことによるものと考えられる。
 また、表4の結果から、有機防縮剤e2~e4を用いる場合にも、鉛蓄電池E15-1やE29と類似の効果が得られることが分かる。
《鉛蓄電池E30~E36》
 ポリマー化合物として、表7に示すものを用いる。また、既述の手順で求められる負極電極材料中のポリマー化合物の含有量Cが表7に示す値となるように負極ペーストの構成成分を混合する。これら以外は、鉛蓄電池E1と同様にして試験電池を作製し、評価を行う。なお、ポリマー化合物について、H-NMRスペクトルにおいて、3.2ppm~3.8ppmのピークの積分値の、このピークの積分値と、酸素原子に結合した-CH-基の水素原子のピークの積分値と、酸素原子に結合した-CH<基の水素原子のピークの積分値との合計に占める割合は、97.6%~99.7%である。
 鉛蓄電池E30~E36の結果を表7に示す。表7には、鉛蓄電池R1の結果も合わせて示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示されるように、オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエーテル化物やエステル化物を用いる場合にも、過充電電気量を低減しながら、充電受入性の低下が抑制されている。
 本発明の一側面に係る鉛蓄電池は、例えば、車両(自動車、バイクなど)の始動用電源や、電動車両(フォークリフトなど)などの産業用蓄電装置などの電源として好適に利用できる。なお、これらの用途は単なる例示であり、これらの用途に限定されるものではない。
 1:鉛蓄電池
 2:負極板
 3:正極板
 4:セパレータ
 5:正極棚部
 6:負極棚部
 7:正極柱
 8:貫通接続体
 9:負極柱
 11:極板群
 12:電槽
 13:隔壁
 14:セル室
 15:蓋
 16:負極端子
 17:正極端子
 18:液口栓
 

Claims (31)

  1.  正極板と、負極板と、電解液と、を備え、
     前記負極板は、負極電極材料を備え、
     前記負極電極材料は、ポリマー化合物を含み、
     前記ポリマー化合物は、H-NMRスペクトルのケミカルシフトにおいて、3.2ppm以上3.8ppm以下の範囲にピークを有し、
     前記負極電極材料中の前記ポリマー化合物の含有量Cの前記負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上である、鉛蓄電池。
  2.  前記比C/Sは、800ppm・m-2・g以下である、請求項1に記載の鉛蓄電池。
  3.  前記比C/Sは、450ppm・m-2・g以下である、請求項1または2に記載の鉛蓄電池。
  4.  前記比C/Sは、90ppm・m-2・g以上410ppm・m-2・g以下である、請求項1~3のいずれか1項に記載の鉛蓄電池。
  5.  前記比表面積Sは、0.5m・g-1以上である、請求項1~4のいずれか1項に記載の鉛蓄電池。
  6.  前記負極電極材料は、炭素質材料を含み、
     前記負極電極材料中の前記炭素質材料の含有量Cは、0.45質量%以上である、請求項1~5のいずれか1項に記載の鉛蓄電池。
  7.  前記ポリマー化合物は、末端基に結合した酸素原子と、前記酸素原子に結合した-CH-基および/または-CH<基とを含み、
     前記H-NMRスペクトルにおいて、前記ピークの積分値の、前記ピークの積分値と前記-CH-基の水素原子のピークの積分値と前記-CH<基の水素原子のピークの積分値との合計に占める割合は、85%以上である、請求項1~6のいずれか1項に記載の鉛蓄電池。
  8.  前記ポリマー化合物は、オキシC2-4アルキレンユニットの繰り返し構造を含む、請求項1~7のいずれか1項に記載の鉛蓄電池。
  9.  前記ポリマー化合物は、前記オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエーテル化物および前記オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエステル化物からなる群より選択される少なくとも一種を含み、
     前記ヒドロキシ化合物は、ポリC2-4アルキレングリコール、オキシC2-4アルキレンの繰り返し構造を含む共重合体、およびポリオールのC2-4アルキレンオキサイド付加物からなる群より選択される少なくとも一種である、請求項8に記載の鉛蓄電池。
  10.  前記オキシC2-4アルキレンユニットの繰り返し構造は、少なくともオキシプロピレンユニットの繰り返し構造を含む、請求項8または9に記載の鉛蓄電池。
  11.  前記ポリマー化合物は、少なくとも数平均分子量が1000以上の化合物を含む、請求項10に記載の鉛蓄電池。
  12.  前記負極電極材料は、さらに硫黄元素含有量が2000μmol/g以上の第1有機防縮剤を含む、請求項1~11のいずれか1項に記載の鉛蓄電池。
  13.  前記第1有機防縮剤は、硫黄含有基を有する芳香族化合物のユニットを含む縮合物を含み、
     前記縮合物は、前記芳香族化合物のユニットとして、ビスアレーン化合物のユニットおよび単環式の芳香族化合物のユニットからなる群より選択される少なくとも一種を含む、請求項12に記載の鉛蓄電池。
  14.  前記縮合物は、前記ビスアレーン化合物のユニットと、前記単環式の芳香族化合物のユニットとを含む、請求項12に記載の鉛蓄電池。
  15.  前記単環式の芳香族化合物のユニットは、ヒドロキシアレーン化合物のユニットを含む、請求項13または14に記載の鉛蓄電池。
  16.  前記負極電極材料は、さらに硫黄元素含有量が2000μmol/g未満の第2有機防縮剤を含む、請求項1~15のいずれか1項に記載の鉛蓄電池。
  17.  正極板と、負極板と、電解液と、を備え、
     前記負極板は、負極電極材料を備え、
     前記負極電極材料は、オキシC2-4アルキレンユニットの繰り返し構造を含むポリマー化合物を含み、
     前記負極電極材料中の前記ポリマー化合物の含有量Cの前記負極電極材料の比表面積Sに対する比:C/Sは、25ppm・m-2・g以上である、鉛蓄電池。
  18.  前記比C/Sは、800ppm・m-2・g以下である、請求項17に記載の鉛蓄電池。
  19.  前記比C/Sは、450ppm・m-2・g以下である、請求項17または18に記載の鉛蓄電池。
  20.  前記比C/Sは、90ppm・m-2・g以上410ppm・m-2・g以下である、請求項17~19のいずれか1項に記載の鉛蓄電池。
  21.  前記比表面積Sは、0.5m・g-1以上である、請求項17~20のいずれか1項に記載の鉛蓄電池。
  22.  前記負極電極材料は、炭素質材料を含み、
     前記負極電極材料中の前記炭素質材料の含有量Cは、0.45質量%以上である、請求項17~21のいずれか1項に記載の鉛蓄電池。
  23.  前記ポリマー化合物は、末端基に結合した酸素原子と、前記酸素原子に結合した-CH-基および/または-CH<基とを含み、
     前記H-NMRスペクトルにおいて、前記ピークの積分値の、前記ピークの積分値と前記-CH-基の水素原子のピークの積分値と前記-CH<基の水素原子のピークの積分値との合計に占める割合は、85%以上である、請求項17~22のいずれか1項に記載の鉛蓄電池。
  24.  前記ポリマー化合物は、前記オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエーテル化物および前記オキシC2-4アルキレンユニットの繰り返し構造を有するヒドロキシ化合物のエステル化物からなる群より選択される少なくとも一種を含み、
     前記ヒドロキシ化合物は、ポリC2-4アルキレングリコール、オキシC2-4アルキレンの繰り返し構造を含む共重合体、およびポリオールのC2-4アルキレンオキサイド付加物からなる群より選択される少なくとも一種である、請求項17~23のいずれか1項に記載の鉛蓄電池。
  25.  前記オキシC2-4アルキレンユニットの繰り返し構造は、少なくともオキシプロピレンユニットの繰り返し構造を含む、請求項17~24のいずれか1項に記載の鉛蓄電池。
  26.  前記ポリマー化合物は、少なくとも数平均分子量が1000以上の化合物を含む、請求項25に記載の鉛蓄電池。
  27.  前記負極電極材料は、さらに硫黄元素含有量が2000μmol/g以上の第1有機防縮剤を含む、請求項17~26のいずれか1項に記載の鉛蓄電池。
  28.  前記第1有機防縮剤は、硫黄含有基を有する芳香族化合物のユニットを含む縮合物を含み、
     前記縮合物は、前記芳香族化合物のユニットとして、ビスアレーン化合物のユニットおよび単環式の芳香族化合物のユニットからなる群より選択される少なくとも一種を含む、請求項27に記載の鉛蓄電池。
  29.  前記縮合物は、前記ビスアレーン化合物のユニットと、前記単環式の芳香族化合物のユニットとを含む、請求項27に記載の鉛蓄電池。
  30.  前記単環式の芳香族化合物のユニットは、ヒドロキシアレーン化合物のユニットを含む、請求項28または29に記載の鉛蓄電池。
  31.  前記負極電極材料は、さらに硫黄元素含有量が2000μmol/g未満の第2有機防縮剤を含む、請求項17~30のいずれか1項に記載の鉛蓄電池。
PCT/JP2020/021476 2019-05-31 2020-05-29 鉛蓄電池 WO2020241879A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20814501.1A EP3975287A4 (en) 2019-05-31 2020-05-29 LEAD BATTERY
US17/614,889 US20220238859A1 (en) 2019-05-31 2020-05-29 Lead-acid battery
JP2021521910A JP7180768B2 (ja) 2019-05-31 2020-05-29 鉛蓄電池
CN202080040572.6A CN113906590A (zh) 2019-05-31 2020-05-29 铅蓄电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019103310 2019-05-31
JP2019-103310 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241879A1 true WO2020241879A1 (ja) 2020-12-03

Family

ID=73553214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021476 WO2020241879A1 (ja) 2019-05-31 2020-05-29 鉛蓄電池

Country Status (6)

Country Link
US (1) US20220238859A1 (ja)
EP (1) EP3975287A4 (ja)
JP (1) JP7180768B2 (ja)
CN (1) CN113906590A (ja)
TW (1) TWI829928B (ja)
WO (1) WO2020241879A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182662A (ja) 1984-02-28 1985-09-18 Japan Storage Battery Co Ltd 鉛蓄電池
JPH0660881A (ja) * 1992-08-06 1994-03-04 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用活物質ペースト
JPH09147869A (ja) * 1995-11-17 1997-06-06 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2000149980A (ja) 1998-11-15 2000-05-30 Jec Service Kk 鉛蓄電池およびその活性化法
JP2000149981A (ja) * 1998-11-02 2000-05-30 Jec Service Kk 鉛蓄電池および鉛蓄電池用添加剤
CN104900876A (zh) * 2015-05-19 2015-09-09 江苏苏中电池科技发展有限公司 一种铅酸蓄电池用新型石墨烯负极活性物质及其制备方法
CN106099056A (zh) * 2016-06-17 2016-11-09 超威电源有限公司 一种铅酸电池用石墨烯复合碳及其制备方法
CN108630937A (zh) * 2018-05-10 2018-10-09 浙江工业大学 一种铅炭电池负极铅膏及负极板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147237A (ja) * 1974-10-18 1976-04-22 Yuasa Battery Co Ltd
CN108630900B (zh) * 2010-05-10 2021-11-09 新神户电机株式会社 铅蓄电池
CN101937996B (zh) * 2010-08-26 2012-11-28 风帆股份有限公司 电动助力车用胶体铅酸蓄电池负极铅膏及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182662A (ja) 1984-02-28 1985-09-18 Japan Storage Battery Co Ltd 鉛蓄電池
JPH0660881A (ja) * 1992-08-06 1994-03-04 Shin Kobe Electric Mach Co Ltd 鉛蓄電池用活物質ペースト
JPH09147869A (ja) * 1995-11-17 1997-06-06 Shin Kobe Electric Mach Co Ltd 鉛蓄電池
JP2000149981A (ja) * 1998-11-02 2000-05-30 Jec Service Kk 鉛蓄電池および鉛蓄電池用添加剤
JP2000149980A (ja) 1998-11-15 2000-05-30 Jec Service Kk 鉛蓄電池およびその活性化法
CN104900876A (zh) * 2015-05-19 2015-09-09 江苏苏中电池科技发展有限公司 一种铅酸蓄电池用新型石墨烯负极活性物质及其制备方法
CN106099056A (zh) * 2016-06-17 2016-11-09 超威电源有限公司 一种铅酸电池用石墨烯复合碳及其制备方法
CN108630937A (zh) * 2018-05-10 2018-10-09 浙江工业大学 一种铅炭电池负极铅膏及负极板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3975287A4

Also Published As

Publication number Publication date
TWI829928B (zh) 2024-01-21
EP3975287A1 (en) 2022-03-30
TW202107763A (zh) 2021-02-16
EP3975287A4 (en) 2022-11-16
JP7180768B2 (ja) 2022-11-30
JPWO2020241879A1 (ja) 2020-12-03
US20220238859A1 (en) 2022-07-28
CN113906590A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
WO2020241878A1 (ja) 鉛蓄電池
WO2020241884A1 (ja) 鉛蓄電池
WO2020241886A1 (ja) 鉛蓄電池
JP7173322B2 (ja) 鉛蓄電池
WO2020241547A1 (ja) 鉛蓄電池
WO2022113633A1 (ja) 鉛蓄電池
WO2020241879A1 (ja) 鉛蓄電池
WO2020241885A1 (ja) 鉛蓄電池
WO2020241880A1 (ja) 鉛蓄電池
WO2020241881A1 (ja) 鉛蓄電池
WO2022113621A1 (ja) 鉛蓄電池
WO2020241883A1 (ja) 鉛蓄電池
WO2022113622A1 (ja) 鉛蓄電池
WO2022113628A1 (ja) 鉛蓄電池
EP4239718A1 (en) Lead-acid battery
WO2022113635A1 (ja) 鉛蓄電池
WO2022113626A1 (ja) 鉛蓄電池
WO2022113623A1 (ja) 鉛蓄電池
WO2022113627A1 (ja) 鉛蓄電池
WO2022113624A1 (ja) 鉛蓄電池
EP4246621A1 (en) Lead-acid battery
WO2022113634A1 (ja) 鉛蓄電池
WO2021060323A1 (ja) 鉛蓄電池
JP2022085745A (ja) 鉛蓄電池
JP2022085750A (ja) 制御弁式鉛蓄電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521910

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020814501

Country of ref document: EP

Effective date: 20211222