WO2020241705A1 - Laminate for circular polarization element transfer and method for manufacturing optical article using same - Google Patents

Laminate for circular polarization element transfer and method for manufacturing optical article using same Download PDF

Info

Publication number
WO2020241705A1
WO2020241705A1 PCT/JP2020/020960 JP2020020960W WO2020241705A1 WO 2020241705 A1 WO2020241705 A1 WO 2020241705A1 JP 2020020960 W JP2020020960 W JP 2020020960W WO 2020241705 A1 WO2020241705 A1 WO 2020241705A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizer
retardation layer
laminate
layer
film
Prior art date
Application number
PCT/JP2020/020960
Other languages
French (fr)
Japanese (ja)
Inventor
柴野 博史
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020217041535A priority Critical patent/KR20220011678A/en
Priority to CN202080038795.9A priority patent/CN113874765A/en
Priority to JP2021522826A priority patent/JPWO2020241705A1/ja
Publication of WO2020241705A1 publication Critical patent/WO2020241705A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a laminate for transferring a circularly polarized element, and an optical article using the same (for example, a transparent conductive base material having a circularly polarized element, a touch panel having a circularly polarized element, and a transparent group for a surface cover having a circularly polarized element.
  • the present invention relates to a method for manufacturing a material (an image display device having a material and a circular polarization element).
  • organic EL display devices have been attracting attention as image display devices in various fields.
  • the organic EL display device is expected not only as a means for reducing the thickness and weight of a large image display device such as a television because of its thinness, but also as a curved image display device and a flexible image display device. Has been done.
  • a circular polarizing plate is attached to the visible side of the organic EL cell in order to prevent reflection of wiring and cells.
  • a circular polarizing plate has a structure in which a ⁇ / 4 retardation film is bonded to the organic EL cell side of the polarizing plate.
  • the polarizing plate is obtained by attaching a polarizing element protective film to a polarizing element.
  • a rigid film having a thickness of 40 to 100 ⁇ m such as triacetyl cellulose (TAC), acrylic resin, cyclic polyolefin (COP), and polyethylene terephthalate (PET) is used.
  • TAC triacetyl cellulose
  • COP cyclic polyolefin
  • PET polyethylene terephthalate
  • the ⁇ / 4 retardation film a film obtained by stretching a resin having birefringence such as cyclic polyolefin or polycarbonate, or a TAC provided with a liquid crystal compound layer by coating is used.
  • a touch panel is combined (for example, Patent Documents 1 and 2), and in an in-vehicle or outdoor organic EL display device (for example, a car navigation system, a back monitor, a side monitor, an instrument panel, etc.), the surface cover is transparent. Since a base material is often provided and many members are provided, even if the organic EL display cell is made thinner, there is a limit to making the organic EL display device thinner.
  • the present invention has been made against the background of the problems of the prior art. That is, one object of the present invention is to provide a means for supporting a further thinned image display device.
  • the present inventor has completed the present invention as a result of diligent studies to achieve such an object. That is, the present invention includes the following aspects.
  • Item 1. A circle in which the polarizer and the ⁇ / 4 retardation layer are laminated in this order on the releasable film, or the ⁇ / 4 retardation layer and the polarizer are laminated in this order on the releasable film. Laminated body for transfer of polarizing element.
  • Item 2. A method for manufacturing a transparent conductive base material having a circular polarization element.
  • the ⁇ / 4 retardation layer of the laminated body for transferring a circularly polarizing element, in which a polarizer and a ⁇ / 4 retardation layer are laminated in this order on a releasable film on a transparent conductive substrate, is transparent conductivity.
  • a method comprising laminating the circularly polarizing element transfer laminate so that the polarizers of the circularly polarized element transfer laminates laminated in this order are arranged on the transparent conductive base material side.
  • Item 3 A method for manufacturing a touch panel having a circularly polarized element.
  • C The ⁇ / 4 retardation layer of a laminate for transferring a circularly polarizing element, in which a polarizer and a ⁇ / 4 retardation layer are laminated in this order on a transparent conductive base material of a touch panel, is described above.
  • the step of laminating the circularly polarizing element transfer laminate is included so that the polarizer of the circular polarization element transfer laminate in which the layers and the polarizers are laminated in this order is arranged on the transparent conductive substrate side.
  • Method 4 A method for manufacturing an image display device having a circular polarization element.
  • a method comprising a step of providing the touch panel on an image display device so that a touch panel of a touch panel having a circular polarization element or a circular polarization element manufactured by the method of item 3 is arranged on the visual side.
  • Item 5 A method for manufacturing a transparent base material for a surface cover having a circular polarization element.
  • the ⁇ / 4 retardation layer of the circularly polarizing element transfer laminate in which the polarizer and the ⁇ / 4 retardation layer are laminated in this order on the transparent substrate for the surface cover on the releasable film is the transparent.
  • a method comprising laminating the circularly polarizing element transfer laminate so that the polarizer of the circularly polarized element transfer laminate laminated in this order is arranged on the transparent substrate side. Item 6.
  • a method for manufacturing an image display device having a circular polarization element The step of providing the transparent base material in the image display device so that the transparent base material for the surface cover of the transparent base material for the surface cover having a circular polarization element manufactured by the method of Item 5 is arranged on the visual side. ,Method.
  • the present invention makes it possible to further reduce the thickness of the image display device.
  • the polarizer and the ⁇ / 4 retardation layer are laminated in this order on the releasable film, or the ⁇ / 4 retardation layer and the ⁇ / 4 retardation layer are laminated on the releasability film. It is preferable that the polarizers are laminated in this order.
  • the stacking order of the polarizer and the ⁇ / 4 retardation layer can be selected, for example, depending on the position at which the transfer target is incorporated in the image display device.
  • the stacking order is preferably the release film- ⁇ / 4 retardation layer-polarizer.
  • the stacking order is preferably releasable film-polarizer- ⁇ / 4 retardation layer.
  • the releasable film As the releasable film of the laminate for transferring the circularly polarizing element, a releasable film widely used as a releasable film can be appropriately used.
  • the releasable film consists of a single layer or multiple layers and includes at least a base film.
  • the base film is preferably a resin film.
  • the resin of the resin film is not particularly limited, and any resin film such as polyester, polycarbonate, polyamide, polyimide, polyamideimide, polystyrene, triacetyl cellulose, polypropylene, and cyclic polyolefin can be used without limitation.
  • polyester is preferable from the viewpoint of mechanical strength, heat resistance, supply stability, and the like, and polyethylene terephthalate is more preferable.
  • the base film may be an unstretched film or a stretched film. When it is a stretched film, it may be a uniaxially stretched film or a biaxially stretched film. Of these, a biaxially stretched polyethylene terephthalate film is preferable.
  • the base film When the base film itself has releasability, the base film can be used as it is as a releasable film. Further, a surface treatment such as a corona treatment, a plasma treatment, or a flame treatment may be performed in order to adjust the releasability of the base film.
  • a surface treatment such as a corona treatment, a plasma treatment, or a flame treatment may be performed in order to adjust the releasability of the base film.
  • the releasable film may have a releasable layer on the base film.
  • the release layer include silicone-based, amino resin-based, alkyd resin-based, long-chain acrylic resin-based, and the like, and the composition and type thereof can be appropriately selected according to the required peeling force.
  • the releasable film may have an easily adhesive layer between the base film and the releasable layer.
  • the easy-adhesion layer those conventionally used in each base film such as polyester, acrylic, and polyurethane can be used, and can be selected according to the base film to be used and / or the release layer. ..
  • the laminated body for transferring a circularly polarizing element may have an antistatic layer on a releasable film.
  • the antistatic layer is preferably provided between the base film and the release layer, or on the back surface of the base film (opposite the release surface). It is also preferable that an antistatic agent is added to the release layer so that the release layer has antistatic properties.
  • the antistatic layer is not particularly limited as long as it is a layer containing an antistatic agent.
  • Antistatic agents include cationic antistatic agents such as quaternary ammonium salts; conductive polymers such as polyaniline and polythiophene; acicular metal fillers; conductive high refractive index such as tin-doped indium oxide fine particles and antimony-doped tin oxide fine particles. Examples include fine particles. Only one type of antistatic agent may be used, or two or more types may be used in combination.
  • the antistatic layer preferably contains a binder resin in addition to the antistatic agent.
  • a binder resin for example, polyester, polyurethane, polyamide, acrylic and the like are used. Only one type of binder resin may be used, or two or more types may be used in combination.
  • polarizer examples include a uniaxially stretched polyvinyl alcohol (PVA) in which iodine or an organic bicolor dye is adsorbed (PVA polarizer).
  • PVA polyvinyl alcohol
  • a composition obtained by coating (or coating) and orienting a composition composed of a liquid crystal compound and a bicolor dye (liquid crystal polarizer), a wire grid polarizing element, or the like can be used.
  • coating includes not only a wet process of coating and solidifying a liquid, but also a dry process such as vapor deposition, sputtering, and CVD.
  • Examples of the method of providing the polarizing element on the ⁇ / 4 retardation layer or the releasable film include the methods (a) and (b) in the case of the PVA polarizer.
  • Examples of the method (a) include a method in which a single PVA polarizer is bonded using an adhesive or an adhesive, and is applied to the release surface of the release film or the ⁇ / 4 retardation layer on the release film.
  • a method of adhering PVA polarizers using an adhesive or an adhesive is preferable.
  • the thickness of this type of polarizer is preferably 5 to 50 ⁇ m, more preferably 10 to 30 ⁇ m, and particularly preferably 12 to 25 ⁇ m.
  • the thickness of the adhesive or the pressure-sensitive adhesive is preferably 1 to 10 ⁇ m, more preferably 2 to 5 ⁇ m.
  • examples of the releasable substrate include those listed as releasable films, and unstretched or uniaxially stretched films such as PET or polypropylene are preferable.
  • a method of laminating a PVA polarizer on a releasable base material PVA is applied to the releasable base material, stretched together with the releasable base material, and iodine or an organic dichroic dye is applied to the PVA. After adsorbing, a method of fixing the orientation with a boron compound can be mentioned.
  • a laminate of a releasable base material and a PVA polarizer may be referred to as a "laminate for PVA polarizer transfer".
  • the polarizer of the laminate for PVA polarizer transfer is released from the releasable film. It may be transferred to the mold surface to be a "removable film-polarizer", but it is preferable that the PVA polarizer transfer laminate is directly used as a "removable film-polarizer". Further, if the laminate for transferring the circularly polarizing element is one in which the releasable film- ⁇ / 4 retardation layer-polarizer is laminated in this order, the polarizer of the laminate for transferring the PVA polarizer is a releasable film.
  • a ⁇ / 4 retardation layer on a releasable film is attached to the polarizer surface (the surface on which the releasable base material is not laminated) of the PVA polarizer transfer laminate with an adhesive or an adhesive.
  • the thickness of this type of polarizer is preferably 1 to 10 ⁇ m, more preferably 2 to 8 ⁇ m, and particularly preferably 3 to 6 ⁇ m.
  • the thickness of the adhesive or the pressure-sensitive adhesive is preferably 1 to 10 ⁇ m, more preferably 2 to 5 ⁇ m.
  • a polyvinyl alcohol-based adhesive an ultraviolet curable adhesive such as acrylic and epoxy, and a thermosetting adhesive such as epoxy and isocyanate (urethane) are preferably used.
  • the adhesive may be a hot melt adhesive. Examples of the adhesive include acrylic, urethane, and rubber.
  • the pressure-sensitive adhesive it is also preferable to use an acrylic-based transparent pressure-sensitive adhesive sheet for optics without a base material.
  • Examples of the method of providing the polarizing element on the ⁇ / 4 retardation layer or the releasable film include the methods (c) and (d) in the case of the liquid crystal polarizer.
  • C A method of applying a paint for a liquid crystal polarizer.
  • D A method for transferring a liquid crystal polarizer on a releasable substrate.
  • a liquid crystal polarizer coating material containing a liquid crystal compound is applied to the release surface of the release film or the ⁇ / 4 retardation layer on the release film to orient the liquid crystal compound.
  • the method of fixing As a method of orienting and fixing the liquid crystal compound, a method of applying a liquid crystal polarizer paint on a rubbing-treated surface, heating and aligning the liquid crystal compound, and then curing and fixing with ultraviolet rays; Examples thereof include a method of irradiating polarized ultraviolet rays after coating to align and fix the liquid crystal compound.
  • an orientation control layer is provided on the release surface of the release film or the ⁇ / 4 retardation layer on the release film, that is, the release film is released. It is also a preferable method to laminate a liquid crystal polarizer on a ⁇ / 4 retardation layer on a mold surface or a releasable film via an orientation control layer.
  • a liquid crystal polarizer is laminated on a releasable base material according to the above method (c), and an adhesive or an adhesive is used on the releasable substrate to release the release surface of the releasable film.
  • an adhesive or an adhesive is used on the releasable substrate to release the release surface of the releasable film.
  • a method of laminating the ⁇ / 4 retardation layer on the releasable film and peeling off the releasable base material as necessary can be mentioned.
  • the adhesive and the adhesive for bonding include the above-mentioned ones.
  • the releasable base material those listed as the releasable base material of the laminate for PVA polarizer transfer, a metal belt, and the like can be used.
  • a laminate of a releasable base material and a liquid crystal polarizer may be referred to as a "laminate for transfer of a liquid crystal polarizer".
  • the thickness of the liquid crystal polarizer is preferably 0.1 to 7 ⁇ m, more preferably 0.3 to 5 ⁇ m, and particularly preferably 0.5 to 3 ⁇ m.
  • the thickness of the adhesive or the pressure-sensitive adhesive is preferably 1 to 10 ⁇ m, more preferably 2 to 5 ⁇ m.
  • orientation control layer The paint for a liquid crystal polarizer may be directly applied to a release film or a ⁇ / 4 retardation layer, but a method in which an orientation control layer is provided in advance and the coating is applied on the orientation control layer is also preferable.
  • the orientation control layer and the liquid crystal polarizer may be regarded as one member, and the member may be referred to as a liquid crystal polarizer.
  • the liquid crystal polarizer to be combined with the orientation control layer is sometimes called a liquid crystal polarizing layer in order to clearly distinguish it from the generic liquid crystal polarizer.
  • the orientation control layer may be any orientation control layer as long as the liquid crystal compound can be brought into a desired orientation state.
  • the orientation control layer are a rubbing treatment orientation control layer whose surface is rubbed and a photoalignment control layer in which molecules are oriented by irradiation with polarized light to generate an orientation function.
  • a polymer is usually used as a material for the rubbing treatment orientation control layer.
  • the polymer polyvinyl alcohol and its derivatives, polyimide and its derivatives, acrylic resins, polysiloxane derivatives and the like are preferably used. Only one type of polymer may be used, or two or more types may be used in combination.
  • the surface of the coating film obtained by applying the coating material for the rubbing treatment orientation control layer containing the above polymer and solvent to the release film or the ⁇ / 4 retardation layer is subjected to the rubbing treatment.
  • a method including the step of performing is preferable.
  • the coating material for the rubbing treatment orientation control layer may contain a cross-linking agent.
  • the solvent for the paint for the rubbing treatment orientation control layer can be used without limitation as long as it dissolves the polymer material.
  • Specific examples include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, cellosolve and other alcohols; ester solvents such as ethyl acetate, butyl acetate and gamma butyrolactone; acetone, methyl ethyl ketone, cyclopentanone and cyclohexanone.
  • Ketone-based solvents aromatic hydrocarbon solvents such as toluene or xylene
  • ether-based solvents such as tetrahydrofuran or dimethoxyethane can be mentioned. Only one type of solvent may be used, or two or more types may be used in combination.
  • the concentration of the polymer in the coating for the rubbing treatment orientation control layer can be appropriately adjusted depending on the type of polymer and the thickness of the orientation control layer to be manufactured, but it should be 0.2 to 20% by mass in terms of solid content concentration. Is preferable, and the range of 0.3 to 10% by mass is particularly preferable.
  • the coating method known methods such as a gravure coating method, a die coating method, a coating method such as a bar coating method and an applicator method, and a printing method such as a flexographic method can be adopted.
  • the drying temperature depends on the material of the release film, but in the case of PET, it is preferably 30 ° C. to 170 ° C., more preferably 50 to 150 ° C., and further preferably 70 to 130 ° C. If the drying temperature is in such a range, it is not necessary to take a long drying time and the productivity is excellent, the optical function as designed can be achieved without heat elongation and heat shrinkage of the alignment film for transfer, and the flatness is also excellent. ..
  • the drying time is, for example, 0.5 to 30 minutes, more preferably 1 to 20 minutes, still more preferably 2 to 10 minutes.
  • the thickness of the rubbing treatment orientation control layer is preferably 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m, and particularly preferably 0.1 ⁇ m to 1 ⁇ m.
  • the rubbing treatment can generally be carried out by rubbing the surface with paper or cloth in a certain direction.
  • the rubbing treatment is preferably a method using a rubbing roller of a brushed cloth made of fibers such as nylon, polyester and acrylic.
  • the orientation control layer is provided so as to be oriented in a predetermined direction diagonally with respect to the longitudinal direction of the long film
  • the rubbing direction is preferably set to an angle suitable for the direction. The angle can be adjusted by adjusting the angle between the rubbing roller and the film, adjusting the transport speed of the film and the rotation speed of the roller, and the like.
  • Photo-orientation control layer For the photo-orientation control layer, a paint containing a polymer and / or a monomer having a photoreactive group and a solvent (paint for a photo-orientation control layer) is applied to a releasable film or a ⁇ / 4 retardation layer, and polarized light is preferable. Is preferably an alignment film to which an orientation regulating force is imparted by irradiating with polarized ultraviolet rays.
  • the photoreactive group is preferably a group that produces a liquid crystal orientation ability by irradiation with light, and specifically, an orientation-inducing or isomerization reaction, a dimerization reaction, and a photocrosslinking reaction of molecules generated by irradiation with light. , Or a group that causes a photoreaction that is the origin of the liquid crystal orientation ability, such as a photodecomposition reaction.
  • a group that causes a photoreaction that is the origin of the liquid crystal orientation ability such as a photodecomposition reaction.
  • those that cause a dimerization reaction or a photocrosslinking reaction are preferable in that they have excellent orientation and maintain a smectic liquid crystal state.
  • the number of substituents is not particularly limited, but is, for example, 1, 2, 3, or 4.
  • a photoreactive group capable of causing a photodimerization reaction is preferable, and a cinnamoyl group and a chalcone group are a photo-orientation control layer in which the amount of polarized light required for photo-orientation is relatively small and the thermal stability and temporal stability are excellent. Is preferable because it is easy to obtain.
  • a polymer having a photoreactive group a polymer having a cinnamoyl group such that the terminal portion of the side chain of the polymer has a cinnamic acid structure is particularly preferable.
  • the structure of the main chain include polyimide, polyamide, (meth) acrylic, polyester and the like.
  • orientation control layer examples include JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, and JP-A-2007-121721.
  • JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, JP-A-2002-229039, JP-A-2002-265541 Orientation described in Kai 2002-317013, Japanese Patent Application Laid-Open No. 2003-520878, Japanese Patent Application Laid-Open No. 2004-522220, Japanese Patent Application Laid-Open No. 2013-33248, Japanese Patent Application Laid-Open No. 2015-7702, Japanese Patent Application Laid-Open No. 2015-129210.
  • a control layer can be mentioned.
  • the solvent for the paint for the photo-orientation control layer can be used without limitation as long as it dissolves a polymer and a monomer having a photoreactive group.
  • the one mentioned in the method of forming the rubbing treatment orientation control layer can be exemplified.
  • a polymer having a photoreactive group, a polymer other than the monomer, and a monomer having no photoreactive group copolymerizable with the monomer having a photoreactive group may be added to the coating material for the photoorientation control layer.
  • Examples of the polymer or monomer concentration, coating method, and drying conditions of the coating material for the photo-orientation control layer are also those listed in the method for forming the rubbing treatment orientation control layer.
  • the thickness is also the same as the preferable thickness of the rubbing treatment orientation control layer.
  • the wavelength of polarization is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy.
  • ultraviolet rays having a wavelength in the range of 250 to 400 nm are preferable.
  • the polarized light source include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps, and metal halide lamps are preferable. ..
  • Polarized light is obtained, for example, by passing light from the light source through a polarizer.
  • the direction of polarization can be adjusted by adjusting the polarization angle of the polarizer.
  • the polarizer include a polarizing filter, a polarizing prism such as a Gran Thomson and a Granter, and a wire grid type polarizer.
  • the polarized light is preferably substantially parallel light.
  • the direction of the orientation regulating force of the optical orientation control layer can be arbitrarily adjusted.
  • the irradiation intensity is different in kind and amount of a polymerization initiator or a resin (monomer), for example, preferably 10 ⁇ 10000mJ / cm 2 at 365nm reference, and more preferably 20 ⁇ 5000mJ / cm 2.
  • the liquid crystal polarizer has a function as a polarizer that allows light to pass through in only one direction, and preferably contains a dichroic dye.
  • the dichroic dye is preferably an organic dye having a property that the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different.
  • the dichroic dye preferably has an absorption maximum wavelength ( ⁇ MAX) in the range of 300 to 700 nm.
  • a dichroic dye examples include an acrydin dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye, and the like, and among them, the azo dye is preferable.
  • the azo dye examples include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and / or a trisazo dye is preferable.
  • the dichroic dye may be used alone or in combination of two or more, but it is preferable to combine two or more in order to adjust the color tone (achromatic color). In particular, it is preferable to combine three or more types. In particular, it is preferable to combine three or more kinds of azo compounds.
  • Preferred azo compounds include dyes described in JP-A-2007-126628, JP-A-2010-168570, JP-A-2013-101328, and JP-A-2013-210624.
  • the dichroic dye is a dichroic dye polymer introduced into the side chain of a polymer such as acrylic.
  • examples of the dichroic dye polymer include polymers listed in JP-A-2016-4055 and polymers obtained by polymerizing compounds [Chemical formula 6] to [Chemical formula 12] in JP-A-2014-206682.
  • the content of the dichroic dye in the liquid crystal polarizer is preferably 0.1 to 30% by mass, preferably 0.5 to 20% by mass in the liquid crystal polarizer from the viewpoint of improving the orientation of the dichroic dye. More preferably, 1.0 to 15% by mass is further preferable, and 2.0 to 10% by mass is particularly preferable.
  • the liquid crystal polarizer further contains a polymerizable liquid crystal compound in order to improve the film strength, the degree of polarization, and the film homogeneity.
  • the polymerizable liquid crystal compound also includes a film after polymerization.
  • the polymerizable liquid crystal compound is preferably a compound having a polymerizable group and exhibiting liquid crystallinity.
  • the polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group.
  • the photopolymerizable group refers to a group that can undergo a polymerization reaction with an active radical, an acid, or the like generated from a photopolymerization initiator described later.
  • Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like.
  • an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group, and an oxetanyl group are preferable, and an acryloyloxy group is more preferable.
  • the liquid crystal compound may be a thermotropic liquid crystal or a riotropic liquid crystal.
  • the thermotropic liquid crystal may be a nematic liquid crystal or a smectic liquid crystal.
  • a smectic liquid crystal compound is preferable in that higher polarization characteristics can be obtained, and a higher-order smectic liquid crystal compound is more preferable.
  • the liquid crystal phase formed by the polymerizable liquid crystal compound is a higher-order smectic phase, a liquid crystal polarizer having a higher degree of orientation order can be produced.
  • Specific preferred polymerizable liquid crystal compounds include, for example, JP-A-2002-308832, JP-A-2007-16207, JP-A-2015-163596, JP-A-2007-510946, JP-A-2013-114131. No., WO2005 / 045485, Lub et al. Recl.Trav.Chim.Pays-Bas, 115, 321-328 (1996) and the like.
  • the content ratio of the polymerizable liquid crystal compound in the liquid crystal polarizer is preferably 70 to 99.5% by mass, more preferably 75 to 99% by mass in the liquid crystal polarizer from the viewpoint of increasing the orientation of the polymerizable liquid crystal compound. It is more preferably 80 to 97% by mass, and particularly preferably 83 to 95% by mass.
  • the liquid crystal polarizer can be provided by applying a paint for the liquid crystal polarizer.
  • the paint for a liquid crystal polarizer may contain additives such as a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, and a cross-linking agent. Only one type of additive may be used, or two or more types may be used in combination.
  • solvent those listed as the solvent for the paint for the orientation control layer are preferably used.
  • the polymerization initiator is not limited as long as it polymerizes a polymerizable liquid crystal compound, but a photopolymerization initiator that generates active radicals by light is preferable.
  • the polymerization initiator include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts, sulfonium salts and the like.
  • a photosensitizer is preferable, and examples thereof include xanthone compounds, anthracene compounds, phenothiazines, and rubrenes.
  • polymerization inhibitor examples include hydroquinones, catechols, and thiophenols.
  • the polymerizable non-liquid crystal compound is preferably one that copolymerizes with the polymerizable liquid crystal compound, and examples thereof include (meth) acrylates when the polymerizable liquid crystal compound has a (meth) acryloyloxy group.
  • the (meth) acrylates may be monofunctional or polyfunctional. By using polyfunctional (meth) acrylates, the strength of the polarizer can be improved.
  • the content thereof is preferably 1 to 15% by mass, more preferably 2 to 10% by mass, and particularly 3 in the liquid crystal polarizer in order to suppress a decrease in the degree of polarization. It is preferably about 7% by mass.
  • cross-linking agent examples include a polymerizable liquid crystal compound and a compound capable of reacting with a functional group of a polymerizable non-liquid crystal compound, and examples thereof include an isocyanate compound, a melamine, an epoxy resin, and an oxazoline compound.
  • a liquid crystal polarizer can be produced by applying a paint for a liquid crystal polarizer on a release film, a ⁇ / 4 retardation layer, or an orientation control layer, and then drying, heating, and curing as necessary. ..
  • the coating method known methods such as a gravure coating method, a die coating method, a coating method such as a bar coating method and an applicator method, and a printing method such as a flexographic method can be adopted.
  • Drying is preferably performed in a dryer (warm air dryer, infrared dryer, etc.) at a temperature of 30 to 170 ° C.
  • the drying temperature is more preferably 50 to 150 ° C., further preferably 70 to 130 ° C.
  • the drying time is preferably 0.5 to 30 minutes, more preferably 1 to 20 minutes, still more preferably 2 to 10 minutes. preferable.
  • Heating can be performed to more strongly orient the dichroic dye and the polymerizable liquid crystal compound in the liquid crystal polarizer.
  • the heating temperature is preferably in the temperature range in which the polymerizable liquid crystal compound forms a liquid crystal phase.
  • the liquid crystal polarizer paint contains a polymerizable liquid crystal compound
  • it is preferably cured.
  • the curing method include heating and light irradiation, and light irradiation is preferable.
  • the dichroic dye can be fixed in an oriented state.
  • the curing is preferably carried out in a state where the polymerizable liquid crystal compound has a liquid crystal phase formed therein, and may be cured by irradiating light at a temperature indicating the liquid crystal phase.
  • the light in the light irradiation include visible light, ultraviolet light and laser light. Ultraviolet light is preferable because it is easy to handle.
  • the irradiation intensity is different in kind and amount of a polymerization initiator or a resin (monomer), for example, preferably 100 ⁇ 10000mJ / cm 2 at 365nm reference, more preferably 200 ⁇ 5000mJ / cm 2.
  • the dye is oriented along the orientation direction of the alignment layer and has a polarization transmission axis in a predetermined direction. If the above is not provided, the liquid crystal polarizer can be oriented by irradiating polarized light to cure the liquid crystal compound-containing composition.
  • any method may be used for providing the polarizer, but the methods (b), (c), and (d) are particularly preferable.
  • the ⁇ / 4 retardation layer can convert light that has been linearly polarized by the polarizer into circularly polarized light.
  • a coat layer coated with a paint for a ⁇ / 4 retardation layer is preferable, and a coat layer coated with a paint containing a liquid crystal compound or a polymer compound is more preferable.
  • a coat layer coated with a paint containing a liquid crystal compound is particularly preferable.
  • polymers used for the ⁇ / 4 retardation layer include polymers such as polyimide, polyamideimide, polyester, polyetherketone, polyaryletherketone, and polyesterimide having at least one aromatic ring in the repeating unit. Be done.
  • liquid crystal compound used for the ⁇ / 4 retardation layer a rod-shaped liquid crystal compound is preferable, and a polymerizable rod-shaped liquid crystal compound having a polymerizable group such as a double bond is preferable in terms of being able to fix the orientation state.
  • rod-shaped liquid crystal compound examples include JP-A-2002-030042, JP-A-2004-204190, JP-A-2005-263789, JP-A-2007-119415, JP-A-2007-186430, and special publications. Examples thereof include rod-shaped liquid crystal compounds having a polymerizable group described in Kaihei 11-513360.
  • NPh is a 2,6-naphthylene group
  • rod-shaped liquid crystal compounds are commercially available from BASF as LC242 and the like, and they can be used.
  • a plurality of types of these rod-shaped liquid crystal compounds may be used in combination at any ratio.
  • the method of forming the ⁇ / 4 retardation layer may be a method of applying the paint for the ⁇ / 4 retardation layer to the release surface of the release film or the polarizer on the release film.
  • a method of transferring the ⁇ / 4 retardation layer on the mold base material to a polarizer may be used.
  • the laminate of the releasable base material and the ⁇ / 4 retardation layer may be referred to as a "laminate for transfer of the retardation layer".
  • the releasable base material of the retardation layer transfer laminate those listed in the releasable substrate of the PVA polarizer laminate can be used.
  • the ⁇ / 4 retardation layer coating material may contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a cross-linking agent and the like. As these, those described in the orientation control layer or the liquid crystal polarizer can be used.
  • the same method as the above-mentioned orientation of the liquid layer polarizer can be adopted. That is, a method of directly applying a paint for a ⁇ / 4 retardation layer to a releasable film or a polarizer to irradiate polarized ultraviolet rays, a method of rubbing the surface of a releasable film or a polarizer, a polarizer and ⁇ .
  • a method of providing an orientation control layer between the / 4 retardation layers can be mentioned. As for these conditions, the conditions described in the orientation control layer or the liquid crystal polarizer are used as preferable conditions.
  • the ⁇ / 4 retardation layer may be a single ⁇ / 4 retardation layer, or may be a composite ⁇ / 4 retardation layer of a ⁇ / 4 retardation layer and a ⁇ / 2 retardation layer. ..
  • the single ⁇ / 4 retardation layer and the composite ⁇ / 4 retardation layer may be collectively referred to as a ⁇ / 4 retardation layer, and other retardation layers such as the C plate layer described later. May also be referred to as a ⁇ / 4 retardation layer.
  • the in-plane retardation of the ⁇ / 4 retardation layer is preferably 100 to 180 nm, more preferably 120 to 150 nm.
  • the in-plane retardation of the ⁇ / 2 retardation layer is preferably 200 to 360 nm, more preferably 240 to 300 nm.
  • the angle formed by the orientation axis (slow phase axis) of the ⁇ / 4 retardation layer and the transmission axis of the polarizer is preferably 35 to 55 degrees, more preferably 40 to 50 degrees. Degrees, more preferably 42-48 degrees.
  • the orientation axis (slow phase axis) of each retardation layer is ⁇ / 4 phase difference between the two layers. It is preferable that they are arranged at such an angle.
  • the angle ( ⁇ ) formed by the orientation axis (slow phase axis) of the ⁇ / 2 retardation layer and the transmission axis of the polarizer is preferably 5 to 20 degrees, more preferably 7 to 17 degrees.
  • the angle formed by the orientation axis (slow phase axis) of the ⁇ / 2 retardation layer and the orientation axis (slow phase axis) of the ⁇ / 4 retardation layer is preferably in the range of 2 ⁇ + 45 degrees ⁇ 10 degrees, more preferably 2 ⁇ + 45 degrees ⁇ . It is in the range of 5 degrees, more preferably in the range of 2 ⁇ + 45 degrees ⁇ 3 degrees.
  • Examples of the ⁇ / 4 retardation layer include JP-A-2008-149757, JP-A-2002-303722, WO2006 / 100830, JP-A-2015-64418, JP-A-2018-10086, and the like. It can be used as a reference.
  • a C plate layer on the ⁇ / 4 retardation layer.
  • a positive or negative C plate layer is selected according to the characteristics of the ⁇ / 4 retardation layer and the ⁇ / 2 retardation layer.
  • the composite ⁇ / 4 retardation layer for example, as a method of laminating the ⁇ / 4 retardation layer and the ⁇ / 2 retardation layer, for example, -A method in which a ⁇ / 2 retardation layer is provided on the polarizer by transfer and a ⁇ / 4 retardation layer is provided on the polarizer by transfer.
  • a ⁇ / 2 retardation layer is provided on the polarizer by transfer and ⁇ is provided on the ⁇ / 2 retardation layer.
  • a method of providing a / 4 retardation layer by coating ⁇ A method of providing a ⁇ / 2 retardation layer on a polarizer by coating and a ⁇ / 4 retardation layer on it by transfer ⁇ ⁇ / 2 on a polarizer
  • Method of providing a retardation layer and a ⁇ / 4 retardation layer by coating ⁇ A ⁇ / 4 retardation layer and a ⁇ / 2 retardation layer are provided in this order on a releasable substrate, and these are transferred onto a polarizer. The method can be mentioned.
  • a method of laminating the C plate on the ⁇ / 4 retardation layer As a method of laminating the C plate on the ⁇ / 4 retardation layer, a method of providing the C plate layer on the ⁇ / 4 retardation layer by transfer, a method of providing the C plate layer on the releasable substrate, and further Various methods can be adopted, such as a method in which a single ⁇ / 4 retardation layer or a composite ⁇ / 4 retardation layer is provided on the top and these are transferred to a polarizer.
  • the laminated body for transferring a circularly polarizing element includes a plurality of layers between any two layers (for example, between a polarizer and a ⁇ / 4 retardation layer, a surface on which the ⁇ / 4 retardation layer is not laminated, and a plurality of layers.
  • An interlayer protective layer may be provided between the retardation layers, between the adhesive or the pressure-sensitive adhesive and the polarizer or the ⁇ / 4 retardation layer).
  • the interlayer protection layer can prevent the components of each layer or the solvent used from migrating to other adjacent layers, causing a decrease in the degree of polarization or a change in the phase difference.
  • the interlayer protection layer may be provided on the releasable substrate together with the ⁇ / 4 retardation layer and / or the polarizer and transferred to the target.
  • the interlayer protection layer examples include a transparent resin layer.
  • the transparent resin include, but are not limited to, polyvinyl alcohol, ethylene vinyl alcohol copolymer, polyester, polyurethane, polyamide, polystyrene, acrylic resin, epoxy resin and the like.
  • the transparent resin may be crosslinked with a crosslinking agent to form a crosslinked structure.
  • a curable (for example, photocurable) composition such as acrylic such as a hard coat may be cured (for example, photocurable).
  • the interlayer protection layer may also serve as an orientation control layer.
  • the circular polarizing element transfer laminate may have a masking film bonded to that surface.
  • a masking film a base material such as polyethylene, polypropylene, or polyester provided with an adhesive layer such as acrylic, rubber, or polyolefin is preferably used.
  • the releasable substrate used for transferring the polarizer, the ⁇ / 4 retardation layer, or the like may remain.
  • the circular polarization element transfer laminate can be provided with a circular polarization element containing a ⁇ / 4 retardation layer and a polarizer on the surface of the target by transferring to the surface of the target.
  • the above-mentioned adhesive or adhesive can be used.
  • the adhesive or pressure-sensitive adhesive for transferring to the target may be provided in advance on the laminated body for transferring the circular polarization element.
  • a separator may be further laminated on the adhesive layer or the adhesive layer.
  • the separator those mentioned in the releasable base material of the laminate for PVA polarizer transfer can be used.
  • the releasable base material and the masking film are preferably peeled off immediately before being transferred to the target or immediately before the adhesive layer or the pressure-sensitive adhesive layer is provided.
  • the laminated body for transferring a circularly polarizing element does not have a self-supporting film other than a film for a manufacturing process as a constituent layer.
  • a self-supporting film is an independently manufactured film.
  • the self-supporting film include a polarizer protective film.
  • the film for a manufacturing process is a member used for manufacturing a laminate for transferring a circularly polarizing element, but is finally removed by an image display device.
  • Each layer constituting the laminated body for transferring a circularly polarizing element other than the film for a manufacturing process does not exist by itself, and is preferably provided by coating or by transfer. This makes it possible to further reduce the thickness and weight.
  • (Transfer target) Circular polarization element examples of the target for providing the circular polarization element using the transfer laminate include the substance itself that causes reflection and the transparent substance that exists between the substance that causes reflection and the observer. Not limited. Preferred objects include a transparent conductive base material and a transparent base material for a surface cover.
  • the circular polarization element transfer laminate is laminated on the target surface so that the ⁇ / 4 retardation layer or the polarizer of the circular polarization element transfer laminate is arranged on the target surface, and the releasable film is peeled off.
  • the releasable film of the laminated body for transferring the circularly polarizing element does not need to be peeled off immediately after the lamination, and is not peeled off for surface protection until the final form (or until the use). It may be peeled off immediately before it becomes the final form (or immediately before it is used).
  • the transparent conductive base material having the circular polarization element is preferably one in which a laminate for transferring the circular polarization element is laminated (transferred) on the transparent conductive base material.
  • the transparent conductive base material preferably has a transparent conductive layer provided on at least one side (preferably both sides) of the transparent base material.
  • the transparent base material include resin films such as glass, PET, TAC, COP, acrylic, and polycarbonate.
  • the transparent conductive layer include a resin coat in which tin-doped indium oxide, a metal mesh, a mesh of a conductive paste, a needle-like metal filler, CNT, and the like are dispersed.
  • the transparent conductive base material By laminating the circularly polarized light element on the transparent conductive base material using the laminated body for transferring the circularly polarized light element, the transparent conductive base material has an antireflection function by the circularly polarized light element without substantially increasing the thickness. Can be made.
  • a method for producing a transparent conductive base material having a circular polarization element is used.
  • the transparent conductive substrate has a ⁇ / 4 retardation layer and a polarizer on the releasable film. It is preferable to include a step of laminating the circularly polarizing element transfer laminate so that the polarizers of the circularly polarizing element transfer laminates laminated in this order are arranged on the transparent conductive base material side.
  • the touch panel having the circular polarization element is preferably one in which a laminate for transferring the circular polarization element is laminated (transferred) on the transparent conductive base material of the touch panel.
  • the transparent conductive base material include the same as those described above.
  • the circular polarization element may be provided on either the transparent base material side or the transparent conductive layer side of the transparent conductive base material. Further, when the coat layer or the like is present on the transparent conductive layer, the circular polarization element may be provided on the coat layer or the like.
  • a circularly polarized element may be provided on the transparent conductive base material before the touch panel is processed, or a circularly polarized element may be provided at an intermediate stage of the touch panel processing or after the processing.
  • the circularly polarized light element may be provided on the surface on the visual side of the touch panel or on the surface on the opposite side (the surface on the image display cell side). Further, in the case of a capacitance type touch panel, the circular polarization element may exist as a part of the dielectric layer between the two transparent conductive base materials.
  • the circularly polarized light element may exist as an intermediate layer between the touch panel and the image display cells.
  • the circularly polarized light element may exist as an intermediate layer between the touch panel and the surface cover.
  • a method for manufacturing a touch panel having a circularly polarized light element is used.
  • C The ⁇ / 4 retardation layer of a laminate for transferring a circularly polarizing element, in which a polarizer and a ⁇ / 4 retardation layer are laminated in this order on a transparent conductive base material of a touch panel, is described above.
  • the step of laminating the circularly polarizing element transfer laminate is included so that the polarizer of the circular polarization element transfer laminate in which the layers and the polarizers are laminated in this order is arranged on the transparent conductive substrate side. Is preferable.
  • the transparent base material for a surface cover having a circular polarization element is preferably one in which a laminate for transferring a circular polarization element is laminated (transferred) on the transparent base material for a surface cover.
  • the transparent base material for the surface cover include a glass plate, acrylic, polyester, polycarbonate, polystyrene, polypropylene, polymethylpentene, a film or sheet of polyurethane or the like.
  • the circular polarization element may exist as an intermediate layer between the surface cover and the image display cell.
  • a method for manufacturing a transparent base material for a surface cover having a circularly polarizing element is used.
  • the transparent base material is preferably a transparent base material for a surface cover of an image display device.
  • the image display device can be used without particular limitation as long as it has a function of preventing reflection by a circularly polarizing element.
  • the image display device preferably has the transparent conductive base material having the above-mentioned circular polarization element, the touch panel having the circular polarization element, or the surface cover having the circular polarization element.
  • the image display device has a transparent conductive base material, a circular polarization element, and an image display cell in this order, has a circular polarization element, a transparent conductive base material, and an image display cell in this order, and a touch panel.
  • the circular polarization element, and the image display cell in this order the circular polarization element, the touch panel, and the image display cell in this order, or the surface cover, the circular polarization element, and the image display cell in this order. That is preferable.
  • the image display device for example, an organic EL display device, a micro LED display device, or the like is a preferable example. Further, it can be suitably used for a foldable type (folding type) or rollable type (winding type) image display device.
  • the image display device of the present invention can be made thinner, and has good foldability and winding property.
  • a method for manufacturing an image display device having a circularly polarized light element is used.
  • G A step of providing the touch panel in the image display device so that the touch panel of the touch panel having the circular polarization element is arranged on the visual recognition side (so that the circular polarization element is arranged on the image display cell side).
  • H A step of providing the touch panel in the image display device so that the circular polarization element of the touch panel having the circular polarization element is arranged on the viewing side (so that the touch panel is arranged on the image display cell side), or (I).
  • the transparent base material for the surface cover having the circular polarization element is arranged so that the transparent base material for the surface cover is arranged on the viewing side (so that the circular polarization element is arranged on the image display cell side). It is preferable to include a step of providing the image display device.
  • the laminate for transferring a circular polarization element is transferred to a transparent conductive base material.
  • the present invention is not limited to the following examples, and it is also possible to carry out modifications as appropriate to the extent that the gist of the present invention can be met. All of them are included in the technical scope of the present invention.
  • the retardation measurement of the retardation layer in the laminated body of the example is as follows.
  • An orientation control layer and a retardation layer are provided on the non-easy adhesive layer surface of a polyester film having a thickness of 50 ⁇ m (Cosmo Shine (TM) A4100 manufactured by Toyobo Co., Ltd.) under the same conditions as in the examples described later, and this is a glass plate (35 mm). It was transferred to ⁇ 35 mm) to prepare a sample for measurement. An ultraviolet curable adhesive was used for the transfer. Using an automatic birefringence meter (KOBRA-WR, Oji Measurement Co., Ltd.), the retardation value (Re) measured from the vertical direction was measured when the wavelength used was 590 nm, and the slow phase in the film plane was measured.
  • the retardation value was measured in the same manner by tilting the axis from 0 degrees to 50 degrees every 10 degrees with respect to the normal direction of the film with the axis as the inclination axis (rotation axis), and Rth was obtained from this value, the thickness, and the average refractive index. ..
  • the thickness was determined by embedding the film in an epoxy resin, cutting out a cross-sectional section, and observing with a polarizing microscope.
  • the average refractive index used was 1.60.
  • thermoplastic resin base material polyethylene terephthalate having an ultimate viscosity of 0.62 dl / d is melted and kneaded with an extruder, and then extruded into a sheet on a cooling roll to a thickness of 100 ⁇ m. A stretched film was produced. An aqueous solution of polyvinyl alcohol having a degree of polymerization of 2400 and a degree of saponification of 99.9 mol% was applied to one side of this unstretched film and dried to form a PVA layer. The obtained laminate was stretched twice in the longitudinal direction between rolls having different peripheral speeds at 120 ° C. and wound up.
  • the obtained laminate was treated with a 4% boric acid aqueous solution for 30 seconds, then immersed in a mixed aqueous solution of iodine (0.2%) and potassium iodide (1%) for 60 seconds for staining, followed by It was treated with a mixed aqueous solution of potassium iodide (3%) and boric acid (3%) for 30 seconds. Further, this laminate was uniaxially stretched in the longitudinal direction in a mixed aqueous solution of boric acid (4%) and potassium iodide (5%) at 72 ° C., subsequently washed with a 4% potassium iodide aqueous solution, and the aqueous solution was prepared with an air knife.
  • Example 1 (Preparation of Laminate 1 for Transfer of Phase Difference Layer)
  • Orientation control layer paint with a width of 50 cm (Cosmo Shine (TM) A4100 manufactured by Toyobo Co., Ltd., thickness 50 ⁇ m) is applied to the non-easy adhesive layer surface, dried at 100 ° C, and the orientation control layer with a thickness of 0.5 ⁇ m. Was formed. Further, the orientation control layer was treated with a rubbing roll wrapped with a nylon blanket. The film was hung diagonally on the rubbing roll, and the direction of the rubbing roll, the running speed of the film, and the number of rotations of the rubbing roll were adjusted so that the rubbing direction was 45 degrees with respect to the flow direction of the film.
  • TM Cosmo Shine
  • the solvent was evaporated by heating at 110 ° C. for 3 minutes, and the rod-shaped liquid crystal compound was oriented. Further, it was irradiated with ultraviolet rays for 30 seconds in an environment of 110 ° C. to obtain a stack 1 for transfer of a retardation layer having a length of 200 m.
  • the Re of the retardation layer was 140 nm, and the Rth was 70 nm.
  • the PVA polarizer transfer laminate and the retardation layer transfer laminate 1 are unwound, and an ultraviolet curable adhesive is applied to the polarizer surface (PVA surface) of the PVA polarizer transfer laminate to form an adhesive surface.
  • the retardation layer transfer laminate side is irradiated with ultraviolet rays to adhere and wind up, and the circularly polarizing element transfer laminate having a length of 200 m ( Obtained a roll of CP1).
  • the thermoplastic resin base material of the PVA polarizer transfer laminate and the polyester film of the retardation layer transfer laminate 1 are peeled off immediately before transfer to the object (ITO layer).
  • Example 2 A paint for an orientation control layer was applied to the polarizer surface of the PVA polarizer transfer laminate and dried at 100 ° C. to provide an orientation control layer having a thickness of 0.5 ⁇ m. Further, the orientation control layer was treated with a rubbing roll wrapped with a brushed nylon cloth. The rubbing direction was 45 degrees with respect to the flow direction of the film. Subsequently, after applying the retardation layer coating material, the solvent was evaporated by heating at 110 ° C. for 3 minutes, and the rod-shaped liquid crystal compound was oriented. Further, it was irradiated with ultraviolet rays for 30 seconds in an environment of 110 ° C. to obtain a laminated body (CP2) for transferring a circularly polarized light element. The Re of the retardation layer was 140 nm.
  • Example 3 A 50 cm wide polyester film (Cosmo Shine (TM) A4100 manufactured by Toyobo Co., Ltd., 50 ⁇ m thick) is coated with a paint for an orientation control layer on the non-easy adhesive layer surface, dried at 100 ° C., and a 0.5 ⁇ m thick orientation control layer.
  • the orientation control layer was treated with a rubbing roll wrapped with a nylon blanket. The rubbing direction was set to be the flow direction of the film. Then, a paint for a liquid crystal polarizer was applied to the rubbing treated surface and dried at 110 ° C.
  • Example 4 After applying the hard coat layer paint to the non-easy adhesive layer surface of a polyester film with a width of 50 cm (Cosmo Shine (TM) A4100 manufactured by Toyo Boseki Co., Ltd., thickness 50 ⁇ m) and drying it in an oven at 90 ° C. to evaporate the solvent.
  • a hard coat layer having a thickness of 3 ⁇ m was formed by irradiating with ultraviolet rays. Further, the hard coat layer was treated with a rubbing roll wrapped with a nylon blanket. The rubbing direction was parallel to the flow direction of the film. Then, in the same manner as in Example 3, a liquid crystal polarizer paint was applied to the rubbing treated surface to obtain a liquid crystal polarizer transfer laminate.
  • a retardation layer was provided on the polarizer surface of the liquid crystal polarizer transfer laminate in the same manner as in Example 2, and the circular polarization element transfer laminate (CP4) was wound as a roll having a length of 200 m.
  • Example 5 As the laminate for transfer of the retardation layer, it is carried out except that the non-easy adhesive layer surface of the polyester film is corona-treated and the retardation layer is provided on the corona-treated surface (laminator for transfer of the retardation layer 2). In the same manner as in Example 1, a roll of a laminated body (CP5) for transferring a circularly polarizing element having a length of 200 m was obtained. In CP5, the thermoplastic resin base material of the PVA polarizer transfer laminate is peeled off and used immediately before transfer to the object (glass substrate).
  • Example 6 A paint for an orientation control layer was applied to the retardation layer surface of the retardation layer transfer laminate 1 and dried at 100 ° C. to provide an orientation control layer having a thickness of 0.5 ⁇ m. Further, the orientation control layer was treated with a rubbing roll wrapped with a nylon blanket. The rubbing direction was set to be the flow direction of the film. Then, a liquid crystal polarizer paint is applied to the rubbing treated surface, dried at 110 ° C. for 3 minutes to form a film having a thickness of 2 ⁇ m, and then irradiated with ultraviolet rays to obtain a laminated body for transferring a circularly polarizing element (CP6). It was wound as a roll with a length of 200 m.
  • CP6 circularly polarizing element
  • Example 7 The liquid crystal polarizer transfer laminate of Example 3 and the retardation layer transfer laminate 2 of Example 5 are unwound, and an ultraviolet curable adhesive is applied to the polarizer surface of the liquid crystal polarizer transfer laminate. After the adhesive surface and the retardation layer surface of the retardation layer transfer laminate 2 are overlapped, ultraviolet rays are irradiated from the retardation layer transfer laminate side to bond and wind up, and a circular polarizing element transfer having a length of 200 m is performed. A roll of laminated body (CP7) was obtained. In CP7, the polyester film of the liquid crystal polarizer transfer laminate is peeled off and used immediately before transfer to the object (glass substrate).
  • Table 2 shows the configurations of Examples 5 to 7.
  • Evaluation 1 The laminated body for transferring the circularly polarizing element (CP1) was unwound, cut out to a required size, and then the polyester film of the laminated body for transferring the retardation layer 1 was peeled off.
  • An optical pressure-sensitive adhesive sheet is used to bond the ITO surface of a glass substrate on which ITO is laminated to the peeled surface (orientation control layer surface), and the obtained laminate is used as a thermoplastic resin base material for a PVA polarizer transfer laminate. (Releasable film) was peeled off.
  • an optical adhesive sheet was attached to the peeled surface, and further, it was attached to the ITO surface of a transparent conductive polyester film having an ITO layer on one surface and a hard coat layer on the other surface, which were separately prepared.
  • a model of a touch sensor equipped with a polarizing element was made. When the obtained touch sensor model was placed on the organic EL display device with the glass surface facing down and the antireflection effect was confirmed, the reflection of wiring etc. was reduced and the antireflection effect was high. It turned out.
  • a model of a touch sensor was prepared in which the ITO surface of a glass substrate on which ITO was laminated and the ITO surface of a TAC film on which ITO was laminated were bonded with an optical adhesive.
  • the circular polarization element transfer laminate (CP4) was unwound, cut out to a required size, and then the polyester film of the retardation layer transfer laminate 1 was peeled off.
  • the polyester film of the liquid crystal polarizer transfer laminate is peeled off, and the touch sensor equipped with a circular polarizing element A model was created.
  • the obtained touch sensor model was placed on the organic EL display device with the glass surface facing down and the antireflection effect was confirmed, the reflection of wiring etc. was reduced and the antireflection effect was high. It turned out.
  • CP5
  • the laminated body for transferring the circularly polarizing element (CP5) was unwound, cut out to a required size, and then the thermoplastic resin base material of the laminated body for transferring the PVA polarizer was peeled off.
  • the polarizer surface and a polycarbonate sheet having a thickness of 1 mm were bonded together using an optical adhesive sheet to obtain a polycarbonate sheet in which circularly polarizing elements were laminated.
  • the obtained polycarbonate sheet on which the circularly polarized light elements were laminated was placed on the organic EL display device with the circularly polarized light element side down and the antireflection effect was confirmed, the reflection of wiring etc. was reduced and the reflection was high. It was found to have a preventive effect.
  • the obtained polycarbonate sheet on which the circular polarization elements are laminated can be used as a surface cover sheet of an organic EL display device having an antireflection function with almost no increase in thickness.

Abstract

Provided is a means for dealing with further thinned image processing devices. In this laminate for circular polarization element transfer, a polarizer and a λ/4 retardation layer are laminated in this order on a releasable film, or a λ/4 retardation layer and a polarizer are laminated in this order on the releasable film. It is possible to manufacture an image display device having a circular polarization element by transferring the laminate to a constituent member of the image display device.

Description

円偏光素子転写用積層体及びこれを用いた光学物品の製造方法A laminate for transferring a circularly polarizing element and a method for manufacturing an optical article using the same
 本発明は、円偏光素子転写用積層体、及びこれを用いた光学物品(例えば、円偏光素子を有する透明導電性基材、円偏光素子を有するタッチパネル、円偏光素子を有する表面カバー用透明基材、円偏光素子を有する画像表示装置)の製造方法に関する。 The present invention relates to a laminate for transferring a circularly polarized element, and an optical article using the same (for example, a transparent conductive base material having a circularly polarized element, a touch panel having a circularly polarized element, and a transparent group for a surface cover having a circularly polarized element. The present invention relates to a method for manufacturing a material (an image display device having a material and a circular polarization element).
 近年、有機EL表示装置が様々な分野における画像表示装置として注目されている。特に有機EL表示装置はその薄さから、テレビなどの大型画像表示装置の薄型化及び軽量化の手段として期待されているだけでなく、曲面の画像表示装置及び可撓性画像表示装置としても期待されている。 In recent years, organic EL display devices have been attracting attention as image display devices in various fields. In particular, the organic EL display device is expected not only as a means for reducing the thickness and weight of a large image display device such as a television because of its thinness, but also as a curved image display device and a flexible image display device. Has been done.
 有機EL表示装置では、配線及びセル等の反射を防止するために、有機ELセルの視認側に円偏光板が貼り合わされている。従来、円偏光板は、偏光板の有機ELセル側にλ/4位相差フィルムが貼り合わされた構造を有する。偏光板は、偏光子に偏光子保護フィルムを貼り合わせたものである。偏光子保護フィルムとしては、トリアセチルセルロース(TAC)、アクリル樹脂、環状ポリオレフィン(COP)、ポリエチレンテレフタレート(PET)などの40~100μmの剛直なフィルムが用いられている。また、λ/4位相差フィルムとしては、環状ポリオレフィン、ポリカーボネートのような複屈折性を有する樹脂を延伸したもの、TACに液晶化合物層を塗工により設けたものが用いられている。 In the organic EL display device, a circular polarizing plate is attached to the visible side of the organic EL cell in order to prevent reflection of wiring and cells. Conventionally, a circular polarizing plate has a structure in which a λ / 4 retardation film is bonded to the organic EL cell side of the polarizing plate. The polarizing plate is obtained by attaching a polarizing element protective film to a polarizing element. As the polarizer protective film, a rigid film having a thickness of 40 to 100 μm such as triacetyl cellulose (TAC), acrylic resin, cyclic polyolefin (COP), and polyethylene terephthalate (PET) is used. Further, as the λ / 4 retardation film, a film obtained by stretching a resin having birefringence such as cyclic polyolefin or polycarbonate, or a TAC provided with a liquid crystal compound layer by coating is used.
 偏光板のλ/4位相差フィルム側の偏光子保護フィルムを省略し、偏光子の片面に直接λ/4位相差フィルムを貼り合わせることで、円偏光板を薄型化することも行われているが、この方法による薄型化にも限界がある。 It is also possible to reduce the thickness of the circular polarizing plate by omitting the polarizer protective film on the λ / 4 retardation film side of the polarizing plate and directly adhering the λ / 4 retardation film to one side of the polarizer. However, there is a limit to the thinning by this method.
 有機EL表示装置ではタッチパネルを組み合わせること(例えば、特許文献1及び2)、車載用又は屋外用の有機EL表示装置(例えば、カーナビゲーション、バックモニター、サイドモニター、計器盤など)では表面カバー用透明基材が設けられることも多く、多くの部材が設けられるため、有機EL表示セルを薄型化しても、有機EL表示装置の薄型化には限界がある。 In the organic EL display device, a touch panel is combined (for example, Patent Documents 1 and 2), and in an in-vehicle or outdoor organic EL display device (for example, a car navigation system, a back monitor, a side monitor, an instrument panel, etc.), the surface cover is transparent. Since a base material is often provided and many members are provided, even if the organic EL display cell is made thinner, there is a limit to making the organic EL display device thinner.
特開2017-84153号公報JP-A-2017-84153 特開2017-128004号公報JP-A-2017-128004
 本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の1つの目的は、さらなる薄型化の画像表示装置に対応するための手段を提供するものである。 The present invention has been made against the background of the problems of the prior art. That is, one object of the present invention is to provide a means for supporting a further thinned image display device.
 本発明者は、かかる目的を達成するために鋭意検討した結果、本発明の完成に至った。すなわち、本発明は、以下の態様を包含する。
項1.
離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層されている、又は離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層されている、円偏光素子転写用積層体。
項2.
円偏光素子を有する透明導電性基材の製造方法であって、
(A)透明導電性基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
(B)透明導電性基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
を含む、方法。
項3.
円偏光素子を有するタッチパネルの製造方法であって、
(C)タッチパネルの透明導電性基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が前記透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
(D)タッチパネルの透明導電性基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が前記透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
を含む、方法。
項4.
円偏光素子を有する画像表示装置の製造方法であって、
項3の方法により製造された、円偏光素子を有するタッチパネルのタッチパネル又は円偏光素子が視認側に配置されるように、前記タッチパネルを画像表示装置に設ける工程を含む、方法。
項5.
円偏光素子を有する表面カバー用透明基材の製造方法であって、
(E)表面カバー用透明基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が前記透明基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
(F)表面カバー用透明基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が前記透明基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
を含む、方法。
項6.
円偏光素子を有する画像表示装置の製造方法であって、
項5の方法により製造された、円偏光素子を有する表面カバー用透明基材の表面カバー用透明基材が視認側に配置されるように、前記透明基材を画像表示装置に設ける工程を含む、方法。
The present inventor has completed the present invention as a result of diligent studies to achieve such an object. That is, the present invention includes the following aspects.
Item 1.
A circle in which the polarizer and the λ / 4 retardation layer are laminated in this order on the releasable film, or the λ / 4 retardation layer and the polarizer are laminated in this order on the releasable film. Laminated body for transfer of polarizing element.
Item 2.
A method for manufacturing a transparent conductive base material having a circular polarization element.
(A) The λ / 4 retardation layer of the laminated body for transferring a circularly polarizing element, in which a polarizer and a λ / 4 retardation layer are laminated in this order on a releasable film on a transparent conductive substrate, is transparent conductivity. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the substrate side, or (B) the transparent conductive substrate has a λ / 4 retardation layer and a polarizer on the releasable film. A method comprising laminating the circularly polarizing element transfer laminate so that the polarizers of the circularly polarized element transfer laminates laminated in this order are arranged on the transparent conductive base material side.
Item 3.
A method for manufacturing a touch panel having a circularly polarized element.
(C) The λ / 4 retardation layer of a laminate for transferring a circularly polarizing element, in which a polarizer and a λ / 4 retardation layer are laminated in this order on a transparent conductive base material of a touch panel, is described above. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the transparent conductive base material side, or (D) λ / 4 phase difference on the releasable film on the transparent conductive base material of the touch panel. The step of laminating the circularly polarizing element transfer laminate is included so that the polarizer of the circular polarization element transfer laminate in which the layers and the polarizers are laminated in this order is arranged on the transparent conductive substrate side. ,Method.
Item 4.
A method for manufacturing an image display device having a circular polarization element.
A method comprising a step of providing the touch panel on an image display device so that a touch panel of a touch panel having a circular polarization element or a circular polarization element manufactured by the method of item 3 is arranged on the visual side.
Item 5.
A method for manufacturing a transparent base material for a surface cover having a circular polarization element.
(E) The λ / 4 retardation layer of the circularly polarizing element transfer laminate in which the polarizer and the λ / 4 retardation layer are laminated in this order on the transparent substrate for the surface cover on the releasable film is the transparent. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the substrate side, or (F) the transparent substrate for the surface cover, the λ / 4 retardation layer and the polarizer on the releasable film. A method comprising laminating the circularly polarizing element transfer laminate so that the polarizer of the circularly polarized element transfer laminate laminated in this order is arranged on the transparent substrate side.
Item 6.
A method for manufacturing an image display device having a circular polarization element.
The step of providing the transparent base material in the image display device so that the transparent base material for the surface cover of the transparent base material for the surface cover having a circular polarization element manufactured by the method of Item 5 is arranged on the visual side. ,Method.
 本発明により、画像表示装置のさらなる薄型化を可能にする。 The present invention makes it possible to further reduce the thickness of the image display device.
 本発明の円偏光素子転写用積層体は、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層されている、又は離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層されていることが好ましい。 In the laminated body for transferring a circularly polarizing element of the present invention, the polarizer and the λ / 4 retardation layer are laminated in this order on the releasable film, or the λ / 4 retardation layer and the λ / 4 retardation layer are laminated on the releasability film. It is preferable that the polarizers are laminated in this order.
 偏光子とλ/4位相差層の積層順は、例えば、転写対象がどのような位置で画像表示装置に組み込まれるかにより選択することができる。例えば、画像表示セル-λ/4位相差層-偏光子-転写対象の順であれば、積層順は離型性フィルム-λ/4位相差層-偏光子の順であることが好ましく、画像表示セル-転写対象-λ/4位相差層-偏光子の順であれば、積層順は離型性フィルム-偏光子-λ/4位相差層の順であることが好ましい。 The stacking order of the polarizer and the λ / 4 retardation layer can be selected, for example, depending on the position at which the transfer target is incorporated in the image display device. For example, in the case of the image display cell-λ / 4 retardation layer-polarizer-transfer target, the stacking order is preferably the release film-λ / 4 retardation layer-polarizer. In the order of display cell-transfer target-λ / 4 retardation layer-polarizer, the stacking order is preferably releasable film-polarizer-λ / 4 retardation layer.
(離型性フィルム)
 円偏光素子転写用積層体の離型性フィルムとしては広く離型性フィルムとして用いられているものを適宜用いることができる。離型性フィルムは、単層又は多層からなり、少なくとも基材フィルムを含む。基材フィルムは樹脂フィルムであることが好ましい。樹脂フィルムの樹脂としては特に限定はなく、ポリエステル、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリスチレン、トリアセチルセルロース、ポリプロピレン、環状ポリオレフィンなど、樹脂フィルムとなるものであれば制限なく使用できる。これらの中でも、機械的強度、耐熱性、供給安定性などの面からポリエステルが好ましく、さらにはポリエチレンテレフタレートが好ましい。また、基材フィルムは未延伸フィルムであっても延伸フィルムであってもよい。延伸フィルムである場合は一軸延伸フィルムであっても二軸延伸フィルムであってもよい。中でも二軸延伸ポリエチレンテレフタレートフィルムが好ましい。
(Releasable film)
As the releasable film of the laminate for transferring the circularly polarizing element, a releasable film widely used as a releasable film can be appropriately used. The releasable film consists of a single layer or multiple layers and includes at least a base film. The base film is preferably a resin film. The resin of the resin film is not particularly limited, and any resin film such as polyester, polycarbonate, polyamide, polyimide, polyamideimide, polystyrene, triacetyl cellulose, polypropylene, and cyclic polyolefin can be used without limitation. Among these, polyester is preferable from the viewpoint of mechanical strength, heat resistance, supply stability, and the like, and polyethylene terephthalate is more preferable. Further, the base film may be an unstretched film or a stretched film. When it is a stretched film, it may be a uniaxially stretched film or a biaxially stretched film. Of these, a biaxially stretched polyethylene terephthalate film is preferable.
 基材フィルム自体が離型性を有する場合は、基材フィルムをそのまま離型性フィルムとして用いることができる。また、基材フィルムの離型性を調節するためにコロナ処理、プラズマ処理、火炎処理などの表面処理を行ってもよい。 When the base film itself has releasability, the base film can be used as it is as a releasable film. Further, a surface treatment such as a corona treatment, a plasma treatment, or a flame treatment may be performed in order to adjust the releasability of the base film.
 離型性フィルムは、基材フィルム上に離型層を有していてもよい。離型層としては、シリコーン系、アミノ樹脂系、アルキッド樹脂系、長鎖アクリル樹脂系等が挙げられ、必要な剥離力に合わせてその組成及び種類を適宜選択できる。 The releasable film may have a releasable layer on the base film. Examples of the release layer include silicone-based, amino resin-based, alkyd resin-based, long-chain acrylic resin-based, and the like, and the composition and type thereof can be appropriately selected according to the required peeling force.
 離型性フィルムは、基材フィルムと離型層との間に易接着層を有していてもよい。易接着層としては、ポリエステル系、アクリル系、ポリウレタン系など各基材フィルムで従来から用いられているものを使用することができ、使用する基材フィルム及び/又は離型層に合わせて選択できる。 The releasable film may have an easily adhesive layer between the base film and the releasable layer. As the easy-adhesion layer, those conventionally used in each base film such as polyester, acrylic, and polyurethane can be used, and can be selected according to the base film to be used and / or the release layer. ..
(帯電防止層)
 円偏光素子転写用積層体は、離型性フィルム上に帯電防止層を有していてもよい。帯電防止層は、基材フィルムと離型層の間、又は基材フィルムの裏面(離型面の反対側)に設けられることが好ましい。また、離型層に帯電防止剤を添加し、離型層が帯電防止性を有していることも好ましい。
(Antistatic layer)
The laminated body for transferring a circularly polarizing element may have an antistatic layer on a releasable film. The antistatic layer is preferably provided between the base film and the release layer, or on the back surface of the base film (opposite the release surface). It is also preferable that an antistatic agent is added to the release layer so that the release layer has antistatic properties.
 帯電防止層は、帯電防止剤を含む層である限り特に制限されない。帯電防止剤としては、4級アンモニウム塩などのカチオン性帯電防止剤;ポリアニリン、ポリチオフェンなどの導電性高分子;針状金属フィラー;スズドープ酸化インジウム微粒子、アンチモンドープ酸化スズ微粒子などの導電性高屈折率微粒子が挙げられる。帯電防止剤は1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 The antistatic layer is not particularly limited as long as it is a layer containing an antistatic agent. Antistatic agents include cationic antistatic agents such as quaternary ammonium salts; conductive polymers such as polyaniline and polythiophene; acicular metal fillers; conductive high refractive index such as tin-doped indium oxide fine particles and antimony-doped tin oxide fine particles. Examples include fine particles. Only one type of antistatic agent may be used, or two or more types may be used in combination.
 帯電防止層は、帯電防止剤に加えて、バインダ樹脂を含むことが好ましい。バインダ樹脂としては、例えば、ポリエステル、ポリウレタン、ポリアミド、アクリルなどが用いられる。バインダ樹脂は1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 The antistatic layer preferably contains a binder resin in addition to the antistatic agent. As the binder resin, for example, polyester, polyurethane, polyamide, acrylic and the like are used. Only one type of binder resin may be used, or two or more types may be used in combination.
(偏光子)
 偏光子(偏光板、偏光膜、偏光層等とも称する)としては、例えば、一軸延伸されたポリビニルアルコール(PVA)にヨウ素又は有機系の二色性色素を吸着させたもの(PVA偏光子)、液晶化合物と二色性色素からなる組成物を塗工(又は塗布)し配向させたもの(液晶偏光子)、ワイヤーグリッド偏光子などを用いることができる。なお、本明細書において、塗工は、液体を塗工固化させるウエットプロセスだけでなく、蒸着、スパッタ、CVDなどのドライプロセスも含むものとする。
(Polarizer)
Examples of the polarizer (also referred to as a polarizing plate, a polarizing film, a polarizing layer, etc.) include a uniaxially stretched polyvinyl alcohol (PVA) in which iodine or an organic bicolor dye is adsorbed (PVA polarizer). A composition obtained by coating (or coating) and orienting a composition composed of a liquid crystal compound and a bicolor dye (liquid crystal polarizer), a wire grid polarizing element, or the like can be used. In addition, in this specification, coating includes not only a wet process of coating and solidifying a liquid, but also a dry process such as vapor deposition, sputtering, and CVD.
 λ/4位相差層又は離型性フィルムの上に偏光子を設ける方法の例として、PVA偏光子の場合は(a)及び(b)の方法が挙げられる。
(a)PVA偏光子単体を貼り合わせる方法。
(b)離型性基材上のPVA偏光子を転写する方法。
Examples of the method of providing the polarizing element on the λ / 4 retardation layer or the releasable film include the methods (a) and (b) in the case of the PVA polarizer.
(A) A method of bonding PVA polarizers alone.
(B) A method for transferring a PVA polarizer on a releasable substrate.
 (a)の方法としては、接着剤又は粘着剤を用いてPVA偏光子単体を貼り合わせる方法が挙げられ、離型性フィルムの離型面又は離型性フィルム上のλ/4位相差層に接着剤又は粘着剤を用いてPVA偏光子を貼り合わせる方法が好ましい。このタイプの偏光子の厚みとしては、5~50μmが好ましく、さらには10~30μmが好ましく、特には12~25μmが好ましい。接着剤又は粘着剤の厚みは、1~10μmが好ましく、さらに好ましくは2~5μmである。 Examples of the method (a) include a method in which a single PVA polarizer is bonded using an adhesive or an adhesive, and is applied to the release surface of the release film or the λ / 4 retardation layer on the release film. A method of adhering PVA polarizers using an adhesive or an adhesive is preferable. The thickness of this type of polarizer is preferably 5 to 50 μm, more preferably 10 to 30 μm, and particularly preferably 12 to 25 μm. The thickness of the adhesive or the pressure-sensitive adhesive is preferably 1 to 10 μm, more preferably 2 to 5 μm.
 (b)の方法において、離型性基材としては、離型性フィルムとして挙げたもの等が挙げられ、PET又はポリプロピレンなどの未延伸又は一軸延伸のフィルムが好ましい。離型性基材上にPVA偏光子を積層する方法としては、離型性基材にPVAを塗工し、離型性基材と共に延伸してPVAにヨウ素又は有機系の二色性色素を吸着させた後、ホウ素化合物で配向を固定化する方法が挙げられる。なお、本明細書において、離型性基材とPVA偏光子との積層体を「PVA偏光子転写用積層体」と呼ぶことがある。 In the method (b), examples of the releasable substrate include those listed as releasable films, and unstretched or uniaxially stretched films such as PET or polypropylene are preferable. As a method of laminating a PVA polarizer on a releasable base material, PVA is applied to the releasable base material, stretched together with the releasable base material, and iodine or an organic dichroic dye is applied to the PVA. After adsorbing, a method of fixing the orientation with a boron compound can be mentioned. In addition, in this specification, a laminate of a releasable base material and a PVA polarizer may be referred to as a "laminate for PVA polarizer transfer".
 円偏光素子転写用積層体が、離型性フィルム-偏光子-λ/4位相差層の順に積層されたものであれば、PVA偏光子転写用積層体の偏光子を離型性フィルムの離型面に転写して「離型性フィルム-偏光子」としてもよいが、PVA偏光子転写用積層体をそのまま「離型性フィルム-偏光子」とすることが好ましい。また、円偏光素子転写用積層体が、離型性フィルム-λ/4位相差層-偏光子の順に積層されたものであれば、PVA偏光子転写用積層体の偏光子を離型性フィルム上のλ/4位相差層に転写することが好ましい。転写方法としては、PVA偏光子転写用積層体の偏光子面(離型性基材が積層されていない面)に離型性フィルム上のλ/4位相差層を接着剤又は粘着剤で貼り合わせ、必要により離型性基材を剥離する方法が挙げられる。このタイプの偏光子の厚みとしては、1~10μmが好ましく、さらには2~8μmが好ましく、特には3~6μmが好ましい。接着剤又は粘着剤の厚みは、1~10μmが好ましく、さらに好ましくは2~5μmである。 If the laminate for circularly polarizing element transfer is laminated in the order of releasable film-polarizer-λ / 4 retardation layer, the polarizer of the laminate for PVA polarizer transfer is released from the releasable film. It may be transferred to the mold surface to be a "removable film-polarizer", but it is preferable that the PVA polarizer transfer laminate is directly used as a "removable film-polarizer". Further, if the laminate for transferring the circularly polarizing element is one in which the releasable film-λ / 4 retardation layer-polarizer is laminated in this order, the polarizer of the laminate for transferring the PVA polarizer is a releasable film. It is preferable to transfer to the upper λ / 4 retardation layer. As a transfer method, a λ / 4 retardation layer on a releasable film is attached to the polarizer surface (the surface on which the releasable base material is not laminated) of the PVA polarizer transfer laminate with an adhesive or an adhesive. In addition, there is a method of peeling off the releasable substrate if necessary. The thickness of this type of polarizer is preferably 1 to 10 μm, more preferably 2 to 8 μm, and particularly preferably 3 to 6 μm. The thickness of the adhesive or the pressure-sensitive adhesive is preferably 1 to 10 μm, more preferably 2 to 5 μm.
 貼り合わせる際の接着剤としては、ポリビニルアルコール系接着剤、アクリル、エポキシなどの紫外線硬化型接着剤、エポキシ、イソシアネート(ウレタン)などの熱硬化型接着剤が好ましく用いられる。また、接着剤はホットメルト接着剤でもよい。粘着剤としては、アクリル、ウレタン系、ゴム系などが挙げられる。また、粘着剤としては、アクリル系の基材レスの光学用透明粘着剤シートを用いることも好ましい。 As the adhesive for bonding, a polyvinyl alcohol-based adhesive, an ultraviolet curable adhesive such as acrylic and epoxy, and a thermosetting adhesive such as epoxy and isocyanate (urethane) are preferably used. Further, the adhesive may be a hot melt adhesive. Examples of the adhesive include acrylic, urethane, and rubber. Further, as the pressure-sensitive adhesive, it is also preferable to use an acrylic-based transparent pressure-sensitive adhesive sheet for optics without a base material.
 λ/4位相差層又は離型性フィルムの上に偏光子を設ける方法の例として、液晶偏光子の場合は(c)及び(d)の方法が挙げられる。
(c)液晶偏光子用塗料を塗工する方法。
(d)離型性基材上の液晶偏光子を転写する方法。
Examples of the method of providing the polarizing element on the λ / 4 retardation layer or the releasable film include the methods (c) and (d) in the case of the liquid crystal polarizer.
(C) A method of applying a paint for a liquid crystal polarizer.
(D) A method for transferring a liquid crystal polarizer on a releasable substrate.
 (c)の方法としては、離型性フィルムの離型面又は離型性フィルム上のλ/4位相差層に、液晶化合物を含有する液晶偏光子用塗料を塗工し、液晶化合物を配向及び固定させる方法が挙げられる。液晶化合物を配向及び固定させる方法としては、ラビング処理した表面上に液晶偏光子用塗料を塗工し、加熱して配向させた後、紫外線で硬化して固定させる方法;液晶偏光子用塗料の塗工後に偏光の紫外線を照射して液晶化合物を配向させながら固定させる方法等が挙げられる。また、液晶偏光子用塗料を塗工する前に、離型性フィルムの離型面又は離型性フィルム上のλ/4位相差層に配向制御層を設ける、すなわち、離型性フィルムの離型面又は離型性フィルム上のλ/4位相差層に配向制御層を介して液晶偏光子を積層することも好ましい方法である。 As the method (c), a liquid crystal polarizer coating material containing a liquid crystal compound is applied to the release surface of the release film or the λ / 4 retardation layer on the release film to orient the liquid crystal compound. And the method of fixing. As a method of orienting and fixing the liquid crystal compound, a method of applying a liquid crystal polarizer paint on a rubbing-treated surface, heating and aligning the liquid crystal compound, and then curing and fixing with ultraviolet rays; Examples thereof include a method of irradiating polarized ultraviolet rays after coating to align and fix the liquid crystal compound. Further, before applying the liquid crystal polarizer paint, an orientation control layer is provided on the release surface of the release film or the λ / 4 retardation layer on the release film, that is, the release film is released. It is also a preferable method to laminate a liquid crystal polarizer on a λ / 4 retardation layer on a mold surface or a releasable film via an orientation control layer.
 (d)の方法としては、上記の方法(c)に準じて離型性基材上に液晶偏光子を積層し、この上に接着剤又は粘着剤を用いて離型性フィルムの離型面又は離型性フィルム上のλ/4位相差層を貼り合わせ、必要により離型性基材を剥離する方法が挙げられる。貼り合わせる際の接着剤及び粘着剤は前述のものが挙げられる。離型性基材は、PVA偏光子転写用積層体の離型性基材として挙げたもの、金属ベルトなどを用いることができる。なお、本明細書において、離型性基材と液晶偏光子との積層体を「液晶偏光子転写用積層体」と呼ぶことがある。 As the method (d), a liquid crystal polarizer is laminated on a releasable base material according to the above method (c), and an adhesive or an adhesive is used on the releasable substrate to release the release surface of the releasable film. Alternatively, a method of laminating the λ / 4 retardation layer on the releasable film and peeling off the releasable base material as necessary can be mentioned. Examples of the adhesive and the adhesive for bonding include the above-mentioned ones. As the releasable base material, those listed as the releasable base material of the laminate for PVA polarizer transfer, a metal belt, and the like can be used. In addition, in this specification, a laminate of a releasable base material and a liquid crystal polarizer may be referred to as a "laminate for transfer of a liquid crystal polarizer".
 液晶偏光子の厚みとしては、0.1~7μmが好ましく、さらには0.3~5μmが好ましく、特には0.5~3μmが好ましい。接着剤又は粘着剤の厚みは、1~10μmが好ましく、さらに好ましくは2~5μmである。 The thickness of the liquid crystal polarizer is preferably 0.1 to 7 μm, more preferably 0.3 to 5 μm, and particularly preferably 0.5 to 3 μm. The thickness of the adhesive or the pressure-sensitive adhesive is preferably 1 to 10 μm, more preferably 2 to 5 μm.
 さらに、配向制御層と液晶偏光子に関して詳しく説明する。
(配向制御層)
 液晶偏光子用塗料は離型性フィルム又はλ/4位相差層に直接塗工してもよいが、予め配向制御層を設け、この配向制御層上に塗工する方法も好ましい。なお、本明細書において、配向制御層と液晶偏光子とをあわせて1つの部材とみなし、その部材を液晶偏光子と呼ぶことがある。配向制御層と組み合わせる液晶偏光子は、総称としての液晶偏光子と明確に区別するため、液晶偏光層と呼ぶことがある。
Further, the orientation control layer and the liquid crystal polarizer will be described in detail.
(Orientation control layer)
The paint for a liquid crystal polarizer may be directly applied to a release film or a λ / 4 retardation layer, but a method in which an orientation control layer is provided in advance and the coating is applied on the orientation control layer is also preferable. In the present specification, the orientation control layer and the liquid crystal polarizer may be regarded as one member, and the member may be referred to as a liquid crystal polarizer. The liquid crystal polarizer to be combined with the orientation control layer is sometimes called a liquid crystal polarizing layer in order to clearly distinguish it from the generic liquid crystal polarizer.
 配向制御層としては、液晶化合物を所望の配向状態にすることができるものであれば、どのような配向制御層でもよい。表面をラビング処理したラビング処理配向制御層、及び偏光の光照射により分子を配向させて配向機能を生じさせる光配向制御層が、配向制御層の好適な例として挙げられる。 The orientation control layer may be any orientation control layer as long as the liquid crystal compound can be brought into a desired orientation state. Preferable examples of the orientation control layer are a rubbing treatment orientation control layer whose surface is rubbed and a photoalignment control layer in which molecules are oriented by irradiation with polarized light to generate an orientation function.
(ラビング処理配向制御層)
 ラビング処理配向制御層の材料には、通常、ポリマーが用いられる。ポリマーとしては、ポリビニルアルコール及びその誘導体、ポリイミド及びその誘導体、アクリル樹脂、ポリシロキサン誘導体などが好ましく用いられる。ポリマーは1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。
(Rubbing treatment orientation control layer)
A polymer is usually used as a material for the rubbing treatment orientation control layer. As the polymer, polyvinyl alcohol and its derivatives, polyimide and its derivatives, acrylic resins, polysiloxane derivatives and the like are preferably used. Only one type of polymer may be used, or two or more types may be used in combination.
 ラビング処理配向制御層の形成方法としては、上記のポリマー及び溶媒を含むラビング処理配向制御層用塗料を離型性フィルム又はλ/4位相差層に塗布して得られる塗膜の表面をラビング処理する工程を含む方法が好ましい。ラビング処理配向制御層用塗料は架橋剤を含んでいてもよい。 As a method for forming the rubbing treatment orientation control layer, the surface of the coating film obtained by applying the coating material for the rubbing treatment orientation control layer containing the above polymer and solvent to the release film or the λ / 4 retardation layer is subjected to the rubbing treatment. A method including the step of performing is preferable. The coating material for the rubbing treatment orientation control layer may contain a cross-linking agent.
 ラビング処理配向制御層用塗料の溶剤としては、ポリマー材料を溶解するものであれば制限なく用いることができる。具体例としては、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、セロソルブなどのアルコール;酢酸エチル、酢酸ブチル、ガンマーブチロラクトンなどのエステル系溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノンなどのケトン系溶剤;トルエン又はキシレンなどの芳香族炭化水素溶剤;テトラヒドロフラン又はジメトキシエタンなどのエーテル系溶剤などが挙げられる。溶剤は、1種類のみを用いてもよいし、2種類以上を組み合わせて用いてもよい。 The solvent for the paint for the rubbing treatment orientation control layer can be used without limitation as long as it dissolves the polymer material. Specific examples include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, cellosolve and other alcohols; ester solvents such as ethyl acetate, butyl acetate and gamma butyrolactone; acetone, methyl ethyl ketone, cyclopentanone and cyclohexanone. Ketone-based solvents; aromatic hydrocarbon solvents such as toluene or xylene; ether-based solvents such as tetrahydrofuran or dimethoxyethane can be mentioned. Only one type of solvent may be used, or two or more types may be used in combination.
 ラビング処理配向制御層用塗料中のポリマーの濃度は、ポリマーの種類や製造しようとする配向制御層の厚みによって適宜調節できるが、固形分濃度で表して、0.2~20質量%とすることが好ましく、0.3~10質量%の範囲が特に好ましい。 The concentration of the polymer in the coating for the rubbing treatment orientation control layer can be appropriately adjusted depending on the type of polymer and the thickness of the orientation control layer to be manufactured, but it should be 0.2 to 20% by mass in terms of solid content concentration. Is preferable, and the range of 0.3 to 10% by mass is particularly preferable.
 塗布する方法としては、グラビアコーティング法、ダイコーティング法、バーコーティング法及びアプリケータ法などの塗布法、フレキソ法などの印刷法などの公知の方法を採用することができる。 As the coating method, known methods such as a gravure coating method, a die coating method, a coating method such as a bar coating method and an applicator method, and a printing method such as a flexographic method can be adopted.
 塗布後は乾燥(例えば加熱乾燥)を行うことが好ましい。乾燥温度は、離型性フィルムの素材にもよるが、PETの場合30℃~170℃が好ましく、より好ましくは50~150℃、さらに好ましくは70~130℃である。乾燥温度がこのような範囲にあれば、乾燥時間を長く取る必要がなく生産性に優れ、転写用配向フィルムの熱伸長及び熱収縮がなく設計通りの光学機能が達成でき、平面性にも優れる。乾燥時間は、例えば0.5~30分であり、1~20分がより好ましく、さらには2~10分がより好ましい。 It is preferable to dry (for example, heat dry) after application. The drying temperature depends on the material of the release film, but in the case of PET, it is preferably 30 ° C. to 170 ° C., more preferably 50 to 150 ° C., and further preferably 70 to 130 ° C. If the drying temperature is in such a range, it is not necessary to take a long drying time and the productivity is excellent, the optical function as designed can be achieved without heat elongation and heat shrinkage of the alignment film for transfer, and the flatness is also excellent. .. The drying time is, for example, 0.5 to 30 minutes, more preferably 1 to 20 minutes, still more preferably 2 to 10 minutes.
 ラビング処理配向制御層の厚さは、0.01~10μmであることが好ましく、さらには0.05~5μm、特には0.1μm~1μmであることが好ましい。 The thickness of the rubbing treatment orientation control layer is preferably 0.01 to 10 μm, more preferably 0.05 to 5 μm, and particularly preferably 0.1 μm to 1 μm.
 ラビング処理は、一般には、表面を紙又は布で一定方向に擦ることにより実施することができる。ラビング処理は、ナイロン、ポリエステル、アクリルなどの繊維の起毛布のラビングローラーを用いる方法であることが好ましい。ラビング方向は、長尺状のフィルムの長手方向に対して斜めの所定方向に配向する配向制御層を設ける場合、当該方向に合った角度にすることが好ましい。角度の調整は、ラビングローラーとフィルムとの角度調整、フィルムの搬送速度とローラーの回転数の調整等で合わせることができる。 The rubbing treatment can generally be carried out by rubbing the surface with paper or cloth in a certain direction. The rubbing treatment is preferably a method using a rubbing roller of a brushed cloth made of fibers such as nylon, polyester and acrylic. When the orientation control layer is provided so as to be oriented in a predetermined direction diagonally with respect to the longitudinal direction of the long film, the rubbing direction is preferably set to an angle suitable for the direction. The angle can be adjusted by adjusting the angle between the rubbing roller and the film, adjusting the transport speed of the film and the rotation speed of the roller, and the like.
(光配向制御層)
 光配向制御層は、光反応性基を有するポリマー及び/又はモノマーと溶剤とを含む塗料(光配向制御層用塗料)を離型性フィルム又はλ/4位相差層に塗布し、偏光、好ましくは偏光紫外線を照射することによって配向規制力を付与した配向膜であることが好ましい。光反応性基とは、光照射により液晶配向能を生じる基であることが好ましく、具体的には、光を照射することで生じる分子の配向誘起又は異性化反応、二量化反応、光架橋反応、あるいは光分解反応のような、液晶配向能の起源となる光反応を生じる基であることが好ましい。当該光反応性基の中でも、二量化反応又は光架橋反応を起こすものが、配向性に優れ、スメクチック液晶状態を保持する点で好ましい。以上のような反応を生じうる光反応性基としては、不飽和結合、特に二重結合であると好ましく、C=C結合、C=N結合、N=N結合、C=O結合からなる群より選ばれる少なくとも一つを有する基が特に好ましい。
(Photo-orientation control layer)
For the photo-orientation control layer, a paint containing a polymer and / or a monomer having a photoreactive group and a solvent (paint for a photo-orientation control layer) is applied to a releasable film or a λ / 4 retardation layer, and polarized light is preferable. Is preferably an alignment film to which an orientation regulating force is imparted by irradiating with polarized ultraviolet rays. The photoreactive group is preferably a group that produces a liquid crystal orientation ability by irradiation with light, and specifically, an orientation-inducing or isomerization reaction, a dimerization reaction, and a photocrosslinking reaction of molecules generated by irradiation with light. , Or a group that causes a photoreaction that is the origin of the liquid crystal orientation ability, such as a photodecomposition reaction. Among the photoreactive groups, those that cause a dimerization reaction or a photocrosslinking reaction are preferable in that they have excellent orientation and maintain a smectic liquid crystal state. The photoreactive group capable of causing the above reaction is preferably an unsaturated bond, particularly a double bond, and is a group consisting of a C = C bond, a C = N bond, an N = N bond, and a C = O bond. Groups having at least one selected from the above are particularly preferred.
 C=C結合を有する光反応性基としては例えば、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基、シンナモイル基などが挙げられる。C=N結合を有する光反応性基としては、芳香族シッフ塩基及び芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、アゾキシベンゼンを基本構造とするものなどが挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基、マレイミド基などが挙げられる。これらの基は、アルキル基、アルコキシ基、アリ-ル基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。置換基の数は、特に制限されないが、例えば、1、2、3、又は4個である。 Examples of the photoreactive group having a C = C bond include a vinyl group, a polyene group, a stilbene group, a stillbazol group, a stillbazolium group, a chalcone group, a cinnamoyl group and the like. Examples of the photoreactive group having a C = N bond include a group having a structure such as an aromatic Schiff base and an aromatic hydrazone. Examples of the photoreactive group having an N = N bond include those having an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and an azoxibenzene as a basic structure. Examples of the photoreactive group having a C = O bond include a benzophenone group, a coumarin group, an anthraquinone group, a maleimide group and the like. These groups may have substituents such as an alkyl group, an alkoxy group, an allyl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group and an alkyl halide group. The number of substituents is not particularly limited, but is, for example, 1, 2, 3, or 4.
 中でも、光二量化反応を起こしうる光反応性基が好ましく、シンナモイル基及びカルコン基が、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性及び経時安定性に優れる光配向制御層が得られやすいため好ましい。さらに、光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。主鎖の構造としては、ポリイミド、ポリアミド、(メタ)アクリル、ポリエステル等が挙げられる。 Among them, a photoreactive group capable of causing a photodimerization reaction is preferable, and a cinnamoyl group and a chalcone group are a photo-orientation control layer in which the amount of polarized light required for photo-orientation is relatively small and the thermal stability and temporal stability are excellent. Is preferable because it is easy to obtain. Further, as the polymer having a photoreactive group, a polymer having a cinnamoyl group such that the terminal portion of the side chain of the polymer has a cinnamic acid structure is particularly preferable. Examples of the structure of the main chain include polyimide, polyamide, (meth) acrylic, polyester and the like.
 具体的な配向制御層としては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特開2002-229039号公報、特開2002-265541号公報、特開2002-317013号公報、特表2003-520878号公報、特表2004-529220号公報、特開2013-33248号公報、特開2015-7702号公報、特開2015-129210号公報に記載の配向制御層が挙げられる。 Specific examples of the orientation control layer include JP-A-2006-285197, JP-A-2007-76839, JP-A-2007-138138, JP-A-2007-94071, and JP-A-2007-121721. , JP-A-2007-140465, JP-A-2007-156439, JP-A-2007-133184, JP-A-2009-109831, JP-A-2002-229039, JP-A-2002-265541, Orientation described in Kai 2002-317013, Japanese Patent Application Laid-Open No. 2003-520878, Japanese Patent Application Laid-Open No. 2004-522220, Japanese Patent Application Laid-Open No. 2013-33248, Japanese Patent Application Laid-Open No. 2015-7702, Japanese Patent Application Laid-Open No. 2015-129210. A control layer can be mentioned.
 光配向制御層用塗料の溶剤としては、光反応性基を有するポリマー及びモノマーを溶解するものであれば制限なく用いることができる。具体例としてはラビング処理配向制御層の形成方法で挙げたものが例示できる。光配向制御層用塗料には、光重合開始剤、重合禁止剤、各種安定剤を添加することも好ましい。また、光配向制御層用塗料には、光反応性基を有するポリマー及びモノマー以外のポリマー、光反応性基を有するモノマーと共重合可能な光反応性基を有しないモノマーを加えてもよい。 The solvent for the paint for the photo-orientation control layer can be used without limitation as long as it dissolves a polymer and a monomer having a photoreactive group. As a specific example, the one mentioned in the method of forming the rubbing treatment orientation control layer can be exemplified. It is also preferable to add a photopolymerization initiator, a polymerization inhibitor, and various stabilizers to the coating material for the photoalignment control layer. Further, a polymer having a photoreactive group, a polymer other than the monomer, and a monomer having no photoreactive group copolymerizable with the monomer having a photoreactive group may be added to the coating material for the photoorientation control layer.
 光配向制御層用塗料のポリマー又はモノマーの濃度、塗布方法、乾燥条件もラビング処理配向制御層の形成方法で挙げたものが例示できる。厚みもラビング処理配向制御層の好ましい厚みと同様である。 Examples of the polymer or monomer concentration, coating method, and drying conditions of the coating material for the photo-orientation control layer are also those listed in the method for forming the rubbing treatment orientation control layer. The thickness is also the same as the preferable thickness of the rubbing treatment orientation control layer.
 偏光は、配向前の光配向制御層面の方向から照射することが好ましい。 It is preferable to irradiate the polarized light from the direction of the photo-alignment control layer surface before orientation.
 偏光の波長は、光反応性基を有するポリマー又はモノマーの光反応性基が、光エネルギーを吸収できる波長領域のものが好ましい。具体的には、波長250~400nmの範囲の紫外線が好ましい。偏光の光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レ-ザ-などが挙げられ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプが好ましい。 The wavelength of polarization is preferably in the wavelength range in which the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, ultraviolet rays having a wavelength in the range of 250 to 400 nm are preferable. Examples of the polarized light source include xenon lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, ultraviolet light lasers such as KrF and ArF, and high-pressure mercury lamps, ultra-high pressure mercury lamps, and metal halide lamps are preferable. ..
 偏光は、例えば、前記光源からの光を偏光子に通すことにより得られる。偏光子の偏光角を調整することにより、偏光の方向を調整することができる。偏光子は、偏光フィルター、グラントムソン、グランテ-ラ-等の偏光プリズム、ワイヤーグリッドタイプの偏光子が挙げられる。偏光は、実質的に平行光であることが好ましい。 Polarized light is obtained, for example, by passing light from the light source through a polarizer. The direction of polarization can be adjusted by adjusting the polarization angle of the polarizer. Examples of the polarizer include a polarizing filter, a polarizing prism such as a Gran Thomson and a Granter, and a wire grid type polarizer. The polarized light is preferably substantially parallel light.
 照射する偏光の角度を調整することにより、光配向制御層の配向規制力の方向を任意に調整することができる。 By adjusting the angle of the polarized light to be irradiated, the direction of the orientation regulating force of the optical orientation control layer can be arbitrarily adjusted.
 照射強度は重合開始剤や樹脂(モノマー)の種類や量で異なるが、例えば365nm基準で10~10000mJ/cmが好ましく、さらには20~5000mJ/cmが好ましい。 The irradiation intensity is different in kind and amount of a polymerization initiator or a resin (monomer), for example, preferably 10 ~ 10000mJ / cm 2 at 365nm reference, and more preferably 20 ~ 5000mJ / cm 2.
(液晶偏光子)
 液晶偏光子は一方向のみの光を通過させる偏光子としての機能を有し、二色性色素を含むことが好ましい。
(Liquid crystal polarizer)
The liquid crystal polarizer has a function as a polarizer that allows light to pass through in only one direction, and preferably contains a dichroic dye.
<二色性色素>
 二色性色素は、分子の長軸方向における吸光度と、短軸方向における吸光度とが異なる性質を有する有機色素であることが好ましい。
<Dichroic pigment>
The dichroic dye is preferably an organic dye having a property that the absorbance in the major axis direction and the absorbance in the minor axis direction of the molecule are different.
 二色性色素は、300~700nmの範囲に吸収極大波長(λMAX)を有するものが好ましい。このような二色性色素は、例えば、アクリジン色素、オキサジン色素、シアニン色素、ナフタレン色素、アゾ色素、アントラキノン色素などが挙げられるが、中でもアゾ色素が好ましい。アゾ色素は、モノアゾ色素、ビスアゾ色素、トリスアゾ色素、テトラキスアゾ色素、スチルベンアゾ色素などが挙げられ、好ましくはビスアゾ色素及び/又はトリスアゾ色素である。二色性色素は単独でも、2種類以上を組み合わせてもよいが、色調を調整(無彩色)にするため、2種以上を組み合わせることが好ましい。特には3種類以上を組み合わせるのが好ましい。特に、3種類以上のアゾ化合物を組み合わせるのが好ましい。 The dichroic dye preferably has an absorption maximum wavelength (λMAX) in the range of 300 to 700 nm. Examples of such a dichroic dye include an acrydin dye, an oxazine dye, a cyanine dye, a naphthalene dye, an azo dye, an anthraquinone dye, and the like, and among them, the azo dye is preferable. Examples of the azo dye include a monoazo dye, a bisazo dye, a trisazo dye, a tetrakisazo dye, a stilbene azo dye, and the like, and a bisazo dye and / or a trisazo dye is preferable. The dichroic dye may be used alone or in combination of two or more, but it is preferable to combine two or more in order to adjust the color tone (achromatic color). In particular, it is preferable to combine three or more types. In particular, it is preferable to combine three or more kinds of azo compounds.
 好ましいアゾ化合物としては、特開2007-126628号公報、特開2010-168570号公報、特開2013-101328号公報、特開2013-210624号公報に記載の色素が挙げられる。 Preferred azo compounds include dyes described in JP-A-2007-126628, JP-A-2010-168570, JP-A-2013-101328, and JP-A-2013-210624.
 二色性色素はアクリルなどのポリマーの側鎖に導入された二色性色素ポリマーであることも好ましい形態である。二色性色素ポリマーとしては、特開2016-4055号公報で挙げられるポリマー、特開2014-206682号公報の[化6]~[化12]の化合物が重合されたポリマーが例示できる。 It is also a preferable form that the dichroic dye is a dichroic dye polymer introduced into the side chain of a polymer such as acrylic. Examples of the dichroic dye polymer include polymers listed in JP-A-2016-4055 and polymers obtained by polymerizing compounds [Chemical formula 6] to [Chemical formula 12] in JP-A-2014-206682.
 液晶偏光子中の二色性色素の含有量は、二色性色素の配向を良好にする観点から、液晶偏光子中、0.1~30質量%が好ましく、0.5~20質量%がより好ましく、1.0~15質量%がさらに好ましく、2.0~10質量%が特に好ましい。    The content of the dichroic dye in the liquid crystal polarizer is preferably 0.1 to 30% by mass, preferably 0.5 to 20% by mass in the liquid crystal polarizer from the viewpoint of improving the orientation of the dichroic dye. More preferably, 1.0 to 15% by mass is further preferable, and 2.0 to 10% by mass is particularly preferable.
 液晶偏光子には、膜強度、偏光度、膜均質性の向上のため、さらに重合性液晶化合物が含まれていることが好ましい。なお、重合性液晶化合物は膜として重合後の物も含まれる。 It is preferable that the liquid crystal polarizer further contains a polymerizable liquid crystal compound in order to improve the film strength, the degree of polarization, and the film homogeneity. The polymerizable liquid crystal compound also includes a film after polymerization.
<重合性液晶化合物>
 重合性液晶化合物は、重合性基を有し、かつ、液晶性を示す化合物であることが好ましい。
 重合性基は、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、後述する光重合開始剤から発生した活性ラジカル、酸などによって重合反応し得る基をいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基、オキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性を示す化合物は、サーモトロピック液晶でもリオトロピック液晶でもよい。サーモトロピック液晶は、ネマチック液晶でもスメクチック液晶でもよい。   
<Polymerizable liquid crystal compound>
The polymerizable liquid crystal compound is preferably a compound having a polymerizable group and exhibiting liquid crystallinity.
The polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group. Here, the photopolymerizable group refers to a group that can undergo a polymerization reaction with an active radical, an acid, or the like generated from a photopolymerization initiator described later. Examples of the polymerizable group include a vinyl group, a vinyloxy group, a 1-chlorovinyl group, an isopropenyl group, a 4-vinylphenyl group, an acryloyloxy group, a methacryloyloxy group, an oxylanyl group, an oxetanyl group and the like. Of these, an acryloyloxy group, a methacryloyloxy group, a vinyloxy group, an oxylanyl group, and an oxetanyl group are preferable, and an acryloyloxy group is more preferable. The liquid crystal compound may be a thermotropic liquid crystal or a riotropic liquid crystal. The thermotropic liquid crystal may be a nematic liquid crystal or a smectic liquid crystal.
 重合性液晶化合物は、より高い偏光特性が得られるという点でスメクチック液晶化合物が好ましく、高次スメクチック液晶化合物がより好ましい。重合性液晶化合物が形成する液晶相が高次スメクチック相であると、配向秩序度のより高い液晶偏光子を製造することができる。 As the polymerizable liquid crystal compound, a smectic liquid crystal compound is preferable in that higher polarization characteristics can be obtained, and a higher-order smectic liquid crystal compound is more preferable. When the liquid crystal phase formed by the polymerizable liquid crystal compound is a higher-order smectic phase, a liquid crystal polarizer having a higher degree of orientation order can be produced.
 具体的な好ましい重合性液晶化合物としては、例えば、特開2002-308832号公報、特開2007-16207号公報、特開2015-163596号公報、特表2007-510946号公報、特開2013-114131号公報、WO2005/045485号公報、Lub et al. Recl.Trav.Chim.Pays-Bas,115, 321-328(1996)などに記載のものが挙げられる。 Specific preferred polymerizable liquid crystal compounds include, for example, JP-A-2002-308832, JP-A-2007-16207, JP-A-2015-163596, JP-A-2007-510946, JP-A-2013-114131. No., WO2005 / 045485, Lub et al. Recl.Trav.Chim.Pays-Bas, 115, 321-328 (1996) and the like.
 液晶偏光子中の重合性液晶化合物の含有割合は、重合性液晶化合物の配向性を高くするという観点から、液晶偏光子中70~99.5質量%が好ましく、より好ましくは75~99質量%、さらに好ましくは80~97質量%であり、特に好ましくは83~95質量%である。 The content ratio of the polymerizable liquid crystal compound in the liquid crystal polarizer is preferably 70 to 99.5% by mass, more preferably 75 to 99% by mass in the liquid crystal polarizer from the viewpoint of increasing the orientation of the polymerizable liquid crystal compound. It is more preferably 80 to 97% by mass, and particularly preferably 83 to 95% by mass.
 液晶偏光子は液晶偏光子用塗料を塗工して設けることができる。液晶偏光子用塗料は、添加剤、例えば、溶剤、重合開始剤、増感剤、重合禁止剤、レベリング剤、重合性非液晶化合物、架橋剤等を含んでもよい。添加剤は1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 The liquid crystal polarizer can be provided by applying a paint for the liquid crystal polarizer. The paint for a liquid crystal polarizer may contain additives such as a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, and a cross-linking agent. Only one type of additive may be used, or two or more types may be used in combination.
 溶剤としては、配向制御層用塗料の溶剤として挙げたものが好ましく用いられる。 As the solvent, those listed as the solvent for the paint for the orientation control layer are preferably used.
 重合開始剤は、重合性液晶化合物を重合させるものであれば限定はされないが、光により活性ラジカルを発生する光重合開始剤が好ましい。重合開始剤としては、例えばベンゾイン化合物、ベンゾフェノン化合物、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、トリアジン化合物、ヨードニウム塩、スルホニウム塩などが挙げられる。 The polymerization initiator is not limited as long as it polymerizes a polymerizable liquid crystal compound, but a photopolymerization initiator that generates active radicals by light is preferable. Examples of the polymerization initiator include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts, sulfonium salts and the like.
 増感剤としては、光増感剤が好ましく、例えば、キサントン化合物、アントラセン化合物、フェノチアジン、ルブレン等が挙げられる。 As the sensitizer, a photosensitizer is preferable, and examples thereof include xanthone compounds, anthracene compounds, phenothiazines, and rubrenes.
 重合禁止剤としては、ハイドロキノン類、カテコール類、チオフェノール類が挙げられる。 Examples of the polymerization inhibitor include hydroquinones, catechols, and thiophenols.
 重合性非液晶化合物としては、重合性液晶化合物と共重合するものが好ましく、例えば、重合性液晶化合物が(メタ)アクリロイルオキシ基を有する場合は(メタ)アクリレート類が挙げられる。(メタ)アクリレート類は単官能であっても多官能であってもよい。多官能の(メタ)アクリレート類を用いることで、偏光子の強度を向上させることができる。重合性非液晶化合物を用いる場合、その含有量は、偏光度の低下を抑制するため、液晶偏光子中に1~15質量%とすることが好ましく、さらには2~10質量%、特には3~7質量%にすることが好ましい。 The polymerizable non-liquid crystal compound is preferably one that copolymerizes with the polymerizable liquid crystal compound, and examples thereof include (meth) acrylates when the polymerizable liquid crystal compound has a (meth) acryloyloxy group. The (meth) acrylates may be monofunctional or polyfunctional. By using polyfunctional (meth) acrylates, the strength of the polarizer can be improved. When a polymerizable non-liquid crystal compound is used, the content thereof is preferably 1 to 15% by mass, more preferably 2 to 10% by mass, and particularly 3 in the liquid crystal polarizer in order to suppress a decrease in the degree of polarization. It is preferably about 7% by mass.
 架橋剤としては、重合性液晶化合物、重合性非液晶化合物の官能基と反応しうる化合物が挙げられ、イソシアネート化合物、メラミン、エポキシ樹脂、オキサゾリン化合物などが挙げられる。 Examples of the cross-linking agent include a polymerizable liquid crystal compound and a compound capable of reacting with a functional group of a polymerizable non-liquid crystal compound, and examples thereof include an isocyanate compound, a melamine, an epoxy resin, and an oxazoline compound.
 液晶偏光子用塗料を離型性フィルム上、λ/4位相差層上、又は配向制御層上に塗工後、必要により乾燥、加熱、硬化することにより、液晶偏光子を作製することができる。 A liquid crystal polarizer can be produced by applying a paint for a liquid crystal polarizer on a release film, a λ / 4 retardation layer, or an orientation control layer, and then drying, heating, and curing as necessary. ..
 塗工方法としては、グラビアコーティング法、ダイコーティング法、バーコーティング法及びアプリケータ法などの塗布法、フレキソ法などの印刷法などの公知の方法を採用することができる。 As the coating method, known methods such as a gravure coating method, a die coating method, a coating method such as a bar coating method and an applicator method, and a printing method such as a flexographic method can be adopted.
 乾燥は、乾燥機(温風乾燥機、赤外線乾燥機など)で30~170℃の温度で行われることが好ましい。乾燥温度は、より好ましくは50~150℃、さらに好ましくは70~130℃であり、乾燥時間は0.5~30分が好ましく、1~20分がより好ましく、さらには2~10分がより好ましい。 Drying is preferably performed in a dryer (warm air dryer, infrared dryer, etc.) at a temperature of 30 to 170 ° C. The drying temperature is more preferably 50 to 150 ° C., further preferably 70 to 130 ° C., and the drying time is preferably 0.5 to 30 minutes, more preferably 1 to 20 minutes, still more preferably 2 to 10 minutes. preferable.
 液晶偏光子中の二色性色素及び重合性液晶化合物をより強固に配向させるために、加熱を行うことができる。加熱温度は、重合性液晶化合物が液晶相を形成する温度範囲にすることが好ましい。 Heating can be performed to more strongly orient the dichroic dye and the polymerizable liquid crystal compound in the liquid crystal polarizer. The heating temperature is preferably in the temperature range in which the polymerizable liquid crystal compound forms a liquid crystal phase.
 液晶偏光子用塗料に重合性液晶化合物が含まれる場合、硬化するのが好ましい。硬化方法としては、加熱及び光照射が挙げられ、光照射が好ましい。硬化により二色性色素を配向した状態で固定することができる。硬化は、重合性液晶化合物に液晶相を形成させた状態で行うのが好ましく、液晶相を示す温度で光照射して硬化してもよい。光照射における光は、可視光、紫外光及びレーザー光が挙げられる。取り扱いやすい点で、紫外光が好ましい。 When the liquid crystal polarizer paint contains a polymerizable liquid crystal compound, it is preferably cured. Examples of the curing method include heating and light irradiation, and light irradiation is preferable. By curing, the dichroic dye can be fixed in an oriented state. The curing is preferably carried out in a state where the polymerizable liquid crystal compound has a liquid crystal phase formed therein, and may be cured by irradiating light at a temperature indicating the liquid crystal phase. Examples of the light in the light irradiation include visible light, ultraviolet light and laser light. Ultraviolet light is preferable because it is easy to handle.
 照射強度は重合開始剤や樹脂(モノマー)の種類や量で異なるが、例えば365nm基準で100~10000mJ/cmが好ましく、さらには200~5000mJ/cmが好ましい。 The irradiation intensity is different in kind and amount of a polymerization initiator or a resin (monomer), for example, preferably 100 ~ 10000mJ / cm 2 at 365nm reference, more preferably 200 ~ 5000mJ / cm 2.
 液晶偏光子は、液晶偏光子用塗料を配向制御層上に塗布することで、色素が配向層の配向方向に沿って配向し、所定方向の偏光透過軸を有することになるが、配向制御層を設けない場合は、偏光を照射して液晶化合物含有組成物を硬化させることで、液晶偏光子を配向させることもできる。 In the liquid crystal polarizer, by applying the coating material for the liquid crystal polarizer on the alignment control layer, the dye is oriented along the orientation direction of the alignment layer and has a polarization transmission axis in a predetermined direction. If the above is not provided, the liquid crystal polarizer can be oriented by irradiating polarized light to cure the liquid crystal compound-containing composition.
 偏光子を設ける方法としてはいずれであってもよいが、特には(b)、(c)、(d)の方法が好ましい。 Any method may be used for providing the polarizer, but the methods (b), (c), and (d) are particularly preferable.
(λ/4位相差層)
 λ/4位相差層は、偏光子により直線偏光となった光を円偏光に変換することができる。λ/4位相差層としては、λ/4位相差層用塗料を塗工したコート層が好ましく、液晶化合物又は高分子化合物を含有する塗料を塗工したコート層であることがより好ましく、中でも液晶化合物を含有する塗料を塗工したコート層であることが特に好ましい。
(Λ / 4 phase difference layer)
The λ / 4 retardation layer can convert light that has been linearly polarized by the polarizer into circularly polarized light. As the λ / 4 retardation layer, a coat layer coated with a paint for a λ / 4 retardation layer is preferable, and a coat layer coated with a paint containing a liquid crystal compound or a polymer compound is more preferable. A coat layer coated with a paint containing a liquid crystal compound is particularly preferable.
 λ/4位相差層に用いられる高分子化合物としては、繰り返し単位に少なくとも1種の芳香族環を有するポリイミド、ポリアミドイミド、ポリエステル、ポリエーテルケトン、ポリアリールエーテルケトン、ポリエステルイミドなどのポリマーが挙げられる。 Examples of the polymer compound used for the λ / 4 retardation layer include polymers such as polyimide, polyamideimide, polyester, polyetherketone, polyaryletherketone, and polyesterimide having at least one aromatic ring in the repeating unit. Be done.
 λ/4位相差層に用いられる液晶化合物としては、棒状液晶化合物が好ましく、配向状態を固定できるという面で、二重結合などの重合性基を持つ重合性棒状液晶化合物であることが好ましい。 As the liquid crystal compound used for the λ / 4 retardation layer, a rod-shaped liquid crystal compound is preferable, and a polymerizable rod-shaped liquid crystal compound having a polymerizable group such as a double bond is preferable in terms of being able to fix the orientation state.
 棒状液晶化合物の例としては、特開2002-030042号公報、特開2004-204190号公報、特開2005-263789号公報、特開2007-119415号公報、特開2007-186430号公報、及び特開平11-513360号公報に記載された重合性基を有する棒状液晶化合物が挙げられる。 Examples of the rod-shaped liquid crystal compound include JP-A-2002-030042, JP-A-2004-204190, JP-A-2005-263789, JP-A-2007-119415, JP-A-2007-186430, and special publications. Examples thereof include rod-shaped liquid crystal compounds having a polymerizable group described in Kaihei 11-513360.
 具体的な棒状液晶化合物としては、
CH=CHCOO-(CH-O-Ph1-COO-Ph2-OCO-Ph1-O-(CH-OCO-CH=CH
CH=CHCOO-(CH-O-Ph1-COO-NPh-OCO-Ph1-O-(CH-OCO-CH=CH
CH=CHCOO-(CH-O-Ph1-COO-Ph2-OCH
CH=CHCOO-(CH-O-Ph1-COO-Ph1-Ph1-CHCH(CH)C
(式中、
m及びnは2~6の整数であり、
Ph1及びPh2は1,4-フェニレン基(Ph2は2位にメチル基が置換されていてもよい)であり、
NPhは2,6-ナフチレン基である)
が挙げられる。
As a specific rod-shaped liquid crystal compound,
CH 2 = CHCOO- (CH 2 ) m- O-Ph1-COO-Ph2-OCO-Ph1-O- (CH 2 ) n -OCO-CH = CH 2
CH 2 = CHCOO- (CH 2 ) m- O-Ph1-COO-NPh-OCO-Ph1-O- (CH 2 ) n -OCO-CH = CH 2
CH 2 = CHCOO- (CH 2 ) m- O-Ph1-COO-Ph2-OCH 3
CH 2 = CHCOO- (CH 2 ) m- O-Ph1-COO-Ph1-Ph1-CH 2 CH (CH 3 ) C 2 H 5
(During the ceremony,
m and n are integers from 2 to 6
Ph1 and Ph2 are 1,4-phenylene groups (Ph2 may have a methyl group substituted at the 2-position).
NPh is a 2,6-naphthylene group)
Can be mentioned.
 これらの棒状液晶化合物は、BASF社製からLC242等として市販されており、それらを利用することができる。 These rod-shaped liquid crystal compounds are commercially available from BASF as LC242 and the like, and they can be used.
 これらの棒状液晶化合物は複数種を任意の比率で組み合わせて用いてもよい。 A plurality of types of these rod-shaped liquid crystal compounds may be used in combination at any ratio.
 λ/4位相差層を形成する方法は、λ/4位相差層用塗料を離型性フィルムの離型面又は離型性フィルム上の偏光子に塗工する方法であってもよく、離型性基材上のλ/4位相差層を偏光子に転写する方法であってもよい。なお、離型性基材とλ/4位相差層との積層体を「位相差層転写用積層体」と呼ぶことがある。位相差層転写用積層体の離型性基材は、PVA偏光子用積層体の離型性基材で挙げたもの等を用いることができる。 The method of forming the λ / 4 retardation layer may be a method of applying the paint for the λ / 4 retardation layer to the release surface of the release film or the polarizer on the release film. A method of transferring the λ / 4 retardation layer on the mold base material to a polarizer may be used. The laminate of the releasable base material and the λ / 4 retardation layer may be referred to as a "laminate for transfer of the retardation layer". As the releasable base material of the retardation layer transfer laminate, those listed in the releasable substrate of the PVA polarizer laminate can be used.
 λ/4位相差層用塗料は、溶剤、重合開始剤、増感剤、重合禁止剤、レベリング剤、重合性非液晶化合物、架橋剤等を含んでもよい。これらは、配向制御層又は液晶偏光子で説明したものを用いることができる。 The λ / 4 retardation layer coating material may contain a solvent, a polymerization initiator, a sensitizer, a polymerization inhibitor, a leveling agent, a polymerizable non-liquid crystal compound, a cross-linking agent and the like. As these, those described in the orientation control layer or the liquid crystal polarizer can be used.
 λ/4位相差層に用いられる液晶化合物を配向させる方法としては、上述の液層偏光子の配向と同様の方法を採ることができる。すなわち、λ/4位相差層用塗料を離型性フィルム又は偏光子に直接塗工して偏光紫外線を照射する方法、離型性フィルム又は偏光子の表面をラビング処理する方法、偏光子とλ/4位相差層の間に配向制御層を設ける方法などが挙げられる。これらの条件も配向制御層又は液晶偏光子で説明した条件が好ましい条件として用いられる。 As a method for orienting the liquid crystal compound used for the λ / 4 retardation layer, the same method as the above-mentioned orientation of the liquid layer polarizer can be adopted. That is, a method of directly applying a paint for a λ / 4 retardation layer to a releasable film or a polarizer to irradiate polarized ultraviolet rays, a method of rubbing the surface of a releasable film or a polarizer, a polarizer and λ. A method of providing an orientation control layer between the / 4 retardation layers can be mentioned. As for these conditions, the conditions described in the orientation control layer or the liquid crystal polarizer are used as preferable conditions.
 λ/4位相差層は、単層のλ/4位相差層であってもよく、λ/4位相差層とλ/2位相差層との複合λ/4位相差層であってもよい。本明細書において、単層のλ/4位相差層と複合λ/4位相差層をあわせてλ/4位相差層と称する場合があり、さらに後述するCプレート層などの他の位相差層も合わせてλ/4位相差層と称する場合がある。 The λ / 4 retardation layer may be a single λ / 4 retardation layer, or may be a composite λ / 4 retardation layer of a λ / 4 retardation layer and a λ / 2 retardation layer. .. In the present specification, the single λ / 4 retardation layer and the composite λ / 4 retardation layer may be collectively referred to as a λ / 4 retardation layer, and other retardation layers such as the C plate layer described later. May also be referred to as a λ / 4 retardation layer.
 λ/4位相差層の面内レタデーションは100~180nmが好ましく、さらに好ましくは120~150nmである。λ/2位相差層の面内レタデーションは200~360nmが好ましく、さらに好ましくは240~300nmである。 The in-plane retardation of the λ / 4 retardation layer is preferably 100 to 180 nm, more preferably 120 to 150 nm. The in-plane retardation of the λ / 2 retardation layer is preferably 200 to 360 nm, more preferably 240 to 300 nm.
(λ/4位相差層の遅相軸の角度)
 単層のλ/4位相差層の場合、λ/4位相差層の配向軸(遅相軸)と偏光子の透過軸がなす角度は35~55度が好ましく、より好ましくは40度~50度、さらに好ましくは42~48度である。
(Angle of slow axis of λ / 4 retardation layer)
In the case of a single λ / 4 retardation layer, the angle formed by the orientation axis (slow phase axis) of the λ / 4 retardation layer and the transmission axis of the polarizer is preferably 35 to 55 degrees, more preferably 40 to 50 degrees. Degrees, more preferably 42-48 degrees.
 λ/4位相差層とλ/2位相差層を組み合わせた複合λ/4位相差層の場合、各位相差層の配向軸(遅相軸)は、両層でλ/4の位相差となるような角度に配置されることが好ましい。具体的には、λ/2位相差層の配向軸(遅相軸)と偏光子の透過軸がなす角度(θ)は5~20度が好ましく、より好ましくは7度~17度である。λ/2位相差層の配向軸(遅相軸)とλ/4位相差層の配向軸(遅相軸)がなす角度は、2θ+45度±10度の範囲が好ましく、より好ましくは2θ+45度±5度の範囲であり、さらに好ましくは2θ+45度±3度の範囲である。 In the case of a composite λ / 4 retardation layer in which a λ / 4 retardation layer and a λ / 2 retardation layer are combined, the orientation axis (slow phase axis) of each retardation layer is λ / 4 phase difference between the two layers. It is preferable that they are arranged at such an angle. Specifically, the angle (θ) formed by the orientation axis (slow phase axis) of the λ / 2 retardation layer and the transmission axis of the polarizer is preferably 5 to 20 degrees, more preferably 7 to 17 degrees. The angle formed by the orientation axis (slow phase axis) of the λ / 2 retardation layer and the orientation axis (slow phase axis) of the λ / 4 retardation layer is preferably in the range of 2θ + 45 degrees ± 10 degrees, more preferably 2θ + 45 degrees ±. It is in the range of 5 degrees, more preferably in the range of 2θ + 45 degrees ± 3 degrees.
 λ/4位相差層の例としては、特開2008-149577号公報、特開2002-303722号公報、WO2006/100830号公報、特開2015-64418号公報、特開2018-10086号公報等を参考とすることができる。 Examples of the λ / 4 retardation layer include JP-A-2008-149757, JP-A-2002-303722, WO2006 / 100830, JP-A-2015-64418, JP-A-2018-10086, and the like. It can be used as a reference.
 さらに、斜めから見た場合の着色の変化などを低減するため、λ/4位相差層の上にCプレート層を設けることも好ましい形態である。Cプレート層としては、λ/4位相差層及びλ/2位相差層の特性に合わせ、正又は負のCプレート層が選択される。 Further, in order to reduce the change in coloring when viewed from an angle, it is also a preferable form to provide a C plate layer on the λ / 4 retardation layer. As the C plate layer, a positive or negative C plate layer is selected according to the characteristics of the λ / 4 retardation layer and the λ / 2 retardation layer.
 複合λ/4位相差層において、例えば、λ/4位相差層とλ/2位相差層の積層方法としては、例えば、
・偏光子上にλ/2位相差層を転写により設け、その上にλ/4位相差層を転写により設ける方法
・偏光子上にλ/2位相差層を転写により設け、その上にλ/4位相差層を塗工により設ける方法
・偏光子上にλ/2位相差層を塗工により設け、その上にλ/4位相差層を転写により設ける方法
・偏光子上にλ/2位相差層及びλ/4位相差層を塗工により設ける方法
・離型性基材上にλ/4位相差層及びλ/2位相差層をこの順に設け、これらを偏光子上に転写する方法
が挙げられる。
In the composite λ / 4 retardation layer, for example, as a method of laminating the λ / 4 retardation layer and the λ / 2 retardation layer, for example,
-A method in which a λ / 2 retardation layer is provided on the polarizer by transfer and a λ / 4 retardation layer is provided on the polarizer by transfer.-A λ / 2 retardation layer is provided on the polarizer by transfer and λ is provided on the λ / 2 retardation layer. A method of providing a / 4 retardation layer by coating ・ A method of providing a λ / 2 retardation layer on a polarizer by coating and a λ / 4 retardation layer on it by transfer ・ λ / 2 on a polarizer Method of providing a retardation layer and a λ / 4 retardation layer by coating ・ A λ / 4 retardation layer and a λ / 2 retardation layer are provided in this order on a releasable substrate, and these are transferred onto a polarizer. The method can be mentioned.
 λ/4位相差層上にCプレートを積層する方法としては、λ/4位相差層の上にCプレート層を転写により設ける方法、離型性基材上にCプレート層を設け、さらにこの上に単層のλ/4位相差層又は複合λ/4位相差層を設けて、これらを偏光子に転写する方法など、様々な方法が採用できる。 As a method of laminating the C plate on the λ / 4 retardation layer, a method of providing the C plate layer on the λ / 4 retardation layer by transfer, a method of providing the C plate layer on the releasable substrate, and further Various methods can be adopted, such as a method in which a single λ / 4 retardation layer or a composite λ / 4 retardation layer is provided on the top and these are transferred to a polarizer.
(層間保護層)
 円偏光素子転写用積層体は、任意の2つの層の間(例えば、偏光子とλ/4位相差層との間、λ/4位相差層の偏光子が積層されていない面、複数の位相差層の間、接着剤又は粘着剤と偏光子又はλ/4位相差層との間)に層間保護層を有していてもよい。層間保護層は、各層の成分又は使用溶剤が隣接する他の層に移行し、偏光度の低下又は位相差の変化が起こることを防ぐことができる。層間保護層は、λ/4位相差層及び/又は偏光子と共に離型性基材上に設けて対象に転写してもよい。
(Interlayer protective layer)
The laminated body for transferring a circularly polarizing element includes a plurality of layers between any two layers (for example, between a polarizer and a λ / 4 retardation layer, a surface on which the λ / 4 retardation layer is not laminated, and a plurality of layers. An interlayer protective layer may be provided between the retardation layers, between the adhesive or the pressure-sensitive adhesive and the polarizer or the λ / 4 retardation layer). The interlayer protection layer can prevent the components of each layer or the solvent used from migrating to other adjacent layers, causing a decrease in the degree of polarization or a change in the phase difference. The interlayer protection layer may be provided on the releasable substrate together with the λ / 4 retardation layer and / or the polarizer and transferred to the target.
 層間保護層としては、例えば、透明樹脂層などが挙げられる。透明樹脂としては、ポリビニルアルコール、エチレンビニルアルコール共重合体、ポリエステル、ポリウレタン、ポリアミド、ポリスチレン、アクリル樹脂、エポキシ樹脂などが挙げられるが、これらに特に限定されない。透明樹脂は架橋剤により架橋して架橋構造としてもよい。また、ハードコートのようなアクリルなどの硬化性(例えば光硬化性)組成物を硬化(例えば光硬化)させたものであってもよい。また、層間保護層が配向制御層を兼ねていてもよい。 Examples of the interlayer protection layer include a transparent resin layer. Examples of the transparent resin include, but are not limited to, polyvinyl alcohol, ethylene vinyl alcohol copolymer, polyester, polyurethane, polyamide, polystyrene, acrylic resin, epoxy resin and the like. The transparent resin may be crosslinked with a crosslinking agent to form a crosslinked structure. Further, a curable (for example, photocurable) composition such as acrylic such as a hard coat may be cured (for example, photocurable). Further, the interlayer protection layer may also serve as an orientation control layer.
 円偏光素子転写用積層体は、対象の表面に転写される面(偏光子面又はλ/4位相差層面等)を保護するため、その面にマスキングフィルムが貼り合わされているものであってもよい。マスキングフィルムとしては、ポリエチレン、ポリプロピレン、ポリエステルなどの基材に、アクリル系、ゴム系、ポリオレフィン系などの粘着層を設けたものが好ましく用いられる。マスキングフィルの代わりに、偏光子又はλ/4位相差層等を転写する際に用いられた離型性基材が残存したものであってもよい。 In order to protect the surface (polarizer surface, λ / 4 retardation layer surface, etc.) transferred to the surface of the target surface, the circular polarizing element transfer laminate may have a masking film bonded to that surface. Good. As the masking film, a base material such as polyethylene, polypropylene, or polyester provided with an adhesive layer such as acrylic, rubber, or polyolefin is preferably used. Instead of the masking fill, the releasable substrate used for transferring the polarizer, the λ / 4 retardation layer, or the like may remain.
 円偏光素子転写用積層体は、対象の表面に転写することにより、対象の表面にλ/4位相差層及び偏光子を含む円偏光素子を設けることができる。対象に転写する場合は、前述した接着剤又は粘着剤を用いることができる。対象に転写するための接着剤又は粘着剤は、予め円偏光素子転写用積層体に設けられていてもよい。この場合、接着剤層又は粘着剤層の上にさらにセパレータが積層されていてもよい。セパレータは、PVA偏光子転写用積層体の離型性基材で挙げたもの等を用いることができる。なお、離型性基材及びマスキングフィルムは、対象に転写する直前、又は、接着剤層又は粘着剤層を設ける直前に剥離されることが好ましい。 The circular polarization element transfer laminate can be provided with a circular polarization element containing a λ / 4 retardation layer and a polarizer on the surface of the target by transferring to the surface of the target. When transferring to the subject, the above-mentioned adhesive or adhesive can be used. The adhesive or pressure-sensitive adhesive for transferring to the target may be provided in advance on the laminated body for transferring the circular polarization element. In this case, a separator may be further laminated on the adhesive layer or the adhesive layer. As the separator, those mentioned in the releasable base material of the laminate for PVA polarizer transfer can be used. The releasable base material and the masking film are preferably peeled off immediately before being transferred to the target or immediately before the adhesive layer or the pressure-sensitive adhesive layer is provided.
 円偏光素子転写用積層体は、構成層として、製造工程用フィルム以外に自立性フィルムを有しないことが好ましい。自立性フィルムとは、フィルムとして独立して製造されたものである。自立性フィルムとしては、例えば、偏光子保護フィルムが挙げられる。製造工程用フィルムとは、円偏光素子転写用積層体の製造のために用いられるが画像表示装置では最終的に除去される部材であり、例えば、離型性フィルム、離型性基材、マスキングフィルム、セパレータ等が挙げられる。製造工程用フィルム以外の円偏光素子転写用積層体を構成する各層は、それ自体が単独で存在しないものであり、塗工によって設けられるか、転写によって設けらることが好ましい。これにより更なる薄型化及び軽量化を図ることができる。 It is preferable that the laminated body for transferring a circularly polarizing element does not have a self-supporting film other than a film for a manufacturing process as a constituent layer. A self-supporting film is an independently manufactured film. Examples of the self-supporting film include a polarizer protective film. The film for a manufacturing process is a member used for manufacturing a laminate for transferring a circularly polarizing element, but is finally removed by an image display device. For example, a releasable film, a releasable base material, and masking. Examples include films and separators. Each layer constituting the laminated body for transferring a circularly polarizing element other than the film for a manufacturing process does not exist by itself, and is preferably provided by coating or by transfer. This makes it possible to further reduce the thickness and weight.
(転写対象)
 円偏光素子転写用積層体を用いて円偏光素子を設ける対象としては、例えば、反射が生じる物質そのもの、反射が生じる物質と観察者の間に存在する透明なものが挙げられるが、これらに特に限定されない。好ましい対象としては、透明導電性基材、表面カバー用透明基材が挙げられる。
(Transfer target)
Circular polarization element Examples of the target for providing the circular polarization element using the transfer laminate include the substance itself that causes reflection and the transparent substance that exists between the substance that causes reflection and the observer. Not limited. Preferred objects include a transparent conductive base material and a transparent base material for a surface cover.
 円偏光素子転写用積層体のλ/4位相差層又は偏光子が対象の表面に配置されるように、円偏光素子転写用積層体を対象の表面に積層し、離型性フィルムを剥離することで、対象の表面に円偏光素子を設けることができる。なお、円偏光素子転写用積層体の離型性フィルムは、積層直後に剥離する必要はなく、最終形態となるまでの間(又は使用するまでの間)の表面保護のために剥離せずにおいておき、最終形態となる直前(又は使用する直前)に剥離してもよい。 The circular polarization element transfer laminate is laminated on the target surface so that the λ / 4 retardation layer or the polarizer of the circular polarization element transfer laminate is arranged on the target surface, and the releasable film is peeled off. This makes it possible to provide a circularly polarizing element on the surface of the target. It should be noted that the releasable film of the laminated body for transferring the circularly polarizing element does not need to be peeled off immediately after the lamination, and is not peeled off for surface protection until the final form (or until the use). It may be peeled off immediately before it becomes the final form (or immediately before it is used).
(円偏光素子を有する透明導電性基材)
 円偏光素子を有する透明導電性基材は、透明導電性基材に円偏光素子転写用積層体が積層(転写)されたものであることが好ましい。透明導電性基材は、透明基材の少なくとも片面(好ましくは両面)に透明導電層が設けられたものであることが好ましい。透明基材としては、ガラス、PET、TAC、COP、アクリル、ポリカーボネートなどの樹脂フィルムが挙げられる。透明導電層としては、スズドープ酸化インジウム、金属メッシュ、導電ペーストのメッシュ、針状金属フィラー又はCNTなどを分散させた樹脂コートが挙げられる。円偏光素子転写用積層体を用いて円偏光素子を透明導電性基材に積層することで、厚みを実質上大きく増加させることなく、透明導電性基材に円偏光素子による反射防止機能を持たせることができる。
(Transparent conductive base material with circular polarization element)
The transparent conductive base material having the circular polarization element is preferably one in which a laminate for transferring the circular polarization element is laminated (transferred) on the transparent conductive base material. The transparent conductive base material preferably has a transparent conductive layer provided on at least one side (preferably both sides) of the transparent base material. Examples of the transparent base material include resin films such as glass, PET, TAC, COP, acrylic, and polycarbonate. Examples of the transparent conductive layer include a resin coat in which tin-doped indium oxide, a metal mesh, a mesh of a conductive paste, a needle-like metal filler, CNT, and the like are dispersed. By laminating the circularly polarized light element on the transparent conductive base material using the laminated body for transferring the circularly polarized light element, the transparent conductive base material has an antireflection function by the circularly polarized light element without substantially increasing the thickness. Can be made.
 円偏光素子を有する透明導電性基材の製造方法は、一実施態様において、
(A)透明導電性基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
(B)透明導電性基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
を含むことが好ましい。
In one embodiment, a method for producing a transparent conductive base material having a circular polarization element is used.
(A) The λ / 4 retardation layer of the laminated body for transferring a circularly polarizing element, in which a polarizer and a λ / 4 retardation layer are laminated in this order on a releasable film on a transparent conductive substrate, is transparently conductive. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the substrate side, or (B) the transparent conductive substrate has a λ / 4 retardation layer and a polarizer on the releasable film. It is preferable to include a step of laminating the circularly polarizing element transfer laminate so that the polarizers of the circularly polarizing element transfer laminates laminated in this order are arranged on the transparent conductive base material side.
(円偏光素子を有するタッチパネル)
 円偏光素子を有するタッチパネルは、タッチパネルの透明導電性基材に円偏光素子転写用積層体が積層(転写)されたものであることが好ましい。透明導電性基材は、前述と同じものが挙げられる。円偏光素子転写用積層体を用いて円偏光素子をタッチパネルの透明導電性基材に積層することで、厚みを実質上大きく増加させることなく、タッチパネルに円偏光素子による反射防止機能を持たせることができる。
(Touch panel with circular polarization element)
The touch panel having the circular polarization element is preferably one in which a laminate for transferring the circular polarization element is laminated (transferred) on the transparent conductive base material of the touch panel. Examples of the transparent conductive base material include the same as those described above. By laminating the circularly polarized light element on the transparent conductive base material of the touch panel using the laminated body for transferring the circularly polarized light element, the touch panel is provided with the antireflection function by the circularly polarized light element without substantially increasing the thickness. Can be done.
 円偏光素子は、透明導電性基材の透明基材側及び透明導電層側のいずれに設けられていてもよい。また、透明導電層の上にコート層等が存在している場合、円偏光素子はコート層等の上に設けられてもよい。 The circular polarization element may be provided on either the transparent base material side or the transparent conductive layer side of the transparent conductive base material. Further, when the coat layer or the like is present on the transparent conductive layer, the circular polarization element may be provided on the coat layer or the like.
 タッチパネルへの加工前に透明導電性基材に円偏光素子を設けてもよく、タッチパネルへの加工の中間段階、又は加工後に円偏光素子を設けてもよい。円偏光素子はタッチパネルの視認側の面に設けても、反対側の面(画像表示セル側の面)に設けてもよい。また、静電容量型のタッチパネルであれば、円偏光素子が2つの透明導電性基材の間の誘電体層の一部として存在していてもよい。 A circularly polarized element may be provided on the transparent conductive base material before the touch panel is processed, or a circularly polarized element may be provided at an intermediate stage of the touch panel processing or after the processing. The circularly polarized light element may be provided on the surface on the visual side of the touch panel or on the surface on the opposite side (the surface on the image display cell side). Further, in the case of a capacitance type touch panel, the circular polarization element may exist as a part of the dielectric layer between the two transparent conductive base materials.
 タッチパネルに画像表示セルを積層する場合、円偏光素子はタッチパネルと画像表示セルの中間層として存在していてもよい。タッチパネルに表面カバーが積層される場合、円偏光素子はタッチパネルと表面カバーの中間層として存在していてもよい。 When the image display cells are stacked on the touch panel, the circularly polarized light element may exist as an intermediate layer between the touch panel and the image display cells. When the surface cover is laminated on the touch panel, the circularly polarized light element may exist as an intermediate layer between the touch panel and the surface cover.
 円偏光素子を有するタッチパネルの製造方法は、一実施態様において、
(C)タッチパネルの透明導電性基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が前記透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
(D)タッチパネルの透明導電性基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が前記透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
を含むことが好ましい。
In one embodiment, a method for manufacturing a touch panel having a circularly polarized light element is used.
(C) The λ / 4 retardation layer of a laminate for transferring a circularly polarizing element, in which a polarizer and a λ / 4 retardation layer are laminated in this order on a transparent conductive base material of a touch panel, is described above. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the transparent conductive base material side, or (D) λ / 4 phase difference on the releasable film on the transparent conductive base material of the touch panel. The step of laminating the circularly polarizing element transfer laminate is included so that the polarizer of the circular polarization element transfer laminate in which the layers and the polarizers are laminated in this order is arranged on the transparent conductive substrate side. Is preferable.
(表面カバー用透明基材)
 円偏光素子を有する表面カバー用透明基材は、表面カバー用透明基材に円偏光素子転写用積層体が積層(転写)されたものであることが好ましい。表面カバー用透明基材としては、ガラス板、アクリル、ポリエステル、ポリカーボネート、ポリスチレン、ポリプロピレン、ポリメチルペンテン、ポリウレタンなどのフィルム又はシートなどが挙げられる。
(Transparent base material for surface cover)
The transparent base material for a surface cover having a circular polarization element is preferably one in which a laminate for transferring a circular polarization element is laminated (transferred) on the transparent base material for a surface cover. Examples of the transparent base material for the surface cover include a glass plate, acrylic, polyester, polycarbonate, polystyrene, polypropylene, polymethylpentene, a film or sheet of polyurethane or the like.
 表面カバーに画像表示セルが積層される場合、円偏光素子は表面カバーと画像表示セルの中間層として存在していてもよい。 When the image display cell is laminated on the surface cover, the circular polarization element may exist as an intermediate layer between the surface cover and the image display cell.
 円偏光素子を有する表面カバー用透明基材の製造方法は、一実施態様において、
(E)表面カバー用透明基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が前記透明基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
(F)表面カバー用透明基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が前記透明基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
を含むことが好ましい。前記透明基材は、画像表示装置の表面カバー用透明基材であることが好ましい。
In one embodiment, a method for manufacturing a transparent base material for a surface cover having a circularly polarizing element is used.
(E) The λ / 4 retardation layer of the multilayer body for transferring a circularly polarizing element, in which a polarizer and a λ / 4 retardation layer are laminated in this order on a releasable film on a transparent substrate for a surface cover, is transparent. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the substrate side, or (F) the transparent substrate for the surface cover, the λ / 4 retardation layer and the polarizer on the releasable film. It is preferable to include a step of laminating the circularly polarizing element transfer laminate so that the polarizer of the circularly polarizing element transfer laminate laminated in this order is arranged on the transparent substrate side. The transparent base material is preferably a transparent base material for a surface cover of an image display device.
(画像表示装置)
 画像表示装置としては、円偏光素子により反射を防止する機能を有するものであれば特に制限なく用いることができる。画像表示装置は、前述の円偏光素子を有する透明導電性基材、円偏光素子を有するタッチパネル、又は円偏光素子を有する表面カバーを有することが好ましい。例えば、画像表示装置は、透明導電性基材、円偏光素子、及び画像表示セルをこの順で有すること、円偏光素子、透明導電性基材、及び画像表示セルをこの順で有すること、タッチパネル、円偏光素子、及び画像表示セルをこの順で有すること、円偏光素子、タッチパネル、及び画像表示セルをこの順で有すること、又は表面カバー、円偏光素子、及び画像表示セルをこの順で有すること、が好ましい。また、画像表示装置としては、例えば有機EL表示装置、マイクロLED表示装置などが好適な例である。また、フォルダブル型(折り畳み型)又はローラブル型(巻き取り型)の画像表示装置にも好適に用いることができる。本発明の画像表示装置は薄型化が可能であり、折り畳み性及び巻取り性が良好である。
(Image display device)
The image display device can be used without particular limitation as long as it has a function of preventing reflection by a circularly polarizing element. The image display device preferably has the transparent conductive base material having the above-mentioned circular polarization element, the touch panel having the circular polarization element, or the surface cover having the circular polarization element. For example, the image display device has a transparent conductive base material, a circular polarization element, and an image display cell in this order, has a circular polarization element, a transparent conductive base material, and an image display cell in this order, and a touch panel. , The circular polarization element, and the image display cell in this order, the circular polarization element, the touch panel, and the image display cell in this order, or the surface cover, the circular polarization element, and the image display cell in this order. That is preferable. Further, as the image display device, for example, an organic EL display device, a micro LED display device, or the like is a preferable example. Further, it can be suitably used for a foldable type (folding type) or rollable type (winding type) image display device. The image display device of the present invention can be made thinner, and has good foldability and winding property.
 円偏光素子を有する画像表示装置の製造方法は、一実施態様において、
(G)円偏光素子を有するタッチパネルのタッチパネルが視認側に配置されるように(円偏光素子が画像表示セル側に配置されるように)、前記タッチパネルを画像表示装置に設ける工程、
(H)円偏光素子を有するタッチパネルの円偏光素子が視認側に配置されるように(タッチパネルが画像表示セル側に配置されるように)、前記タッチパネルを画像表示装置に設ける工程、又は
(I)円偏光素子を有する表面カバー用透明基材の表面カバー用透明基材が視認側に配置されるように(円偏光素子が画像表示セル側に配置されるように)、前記透明基材を画像表示装置に設ける工程
を含むことが好ましい。
In one embodiment, a method for manufacturing an image display device having a circularly polarized light element is used.
(G) A step of providing the touch panel in the image display device so that the touch panel of the touch panel having the circular polarization element is arranged on the visual recognition side (so that the circular polarization element is arranged on the image display cell side).
(H) A step of providing the touch panel in the image display device so that the circular polarization element of the touch panel having the circular polarization element is arranged on the viewing side (so that the touch panel is arranged on the image display cell side), or (I). ) The transparent base material for the surface cover having the circular polarization element is arranged so that the transparent base material for the surface cover is arranged on the viewing side (so that the circular polarization element is arranged on the image display cell side). It is preferable to include a step of providing the image display device.
 以下、実施例を参照して本発明をより具体的に説明する。本発明は、透明導電性基材に円偏光素子転写用積層体が転写されたものであることが好ましい。下記実施例に限定されず、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能である。それらは、いずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to Examples. In the present invention, it is preferable that the laminate for transferring a circular polarization element is transferred to a transparent conductive base material. The present invention is not limited to the following examples, and it is also possible to carry out modifications as appropriate to the extent that the gist of the present invention can be met. All of them are included in the technical scope of the present invention.
 実施例の積層体における位相差層のレタデーション測定は、以下の通りである。 The retardation measurement of the retardation layer in the laminated body of the example is as follows.
(位相差層のレタデーション測定)
 厚さ50μmのポリエステルフィルム(東洋紡株式会社製コスモシャイン(TM)A4100)の非易接着層面に、後述の実施例と同じ条件で、配向制御層及び位相差層を設け、これをガラス板(35mm×35mm)に転写して測定用サンプルとした。転写には、紫外線硬化型接着剤を用いた。
 サンプルを自動複屈折計(KOBRA―WR、王子計測(株))を用い、使用波長を590nmとした場合に垂直方向から測定したレタデーション値(Re)を測定し、さらに、フィルム面内の遅相軸を傾斜軸(回転軸)としてフィルム法線方向に対して0度から10度おきに50度まで傾けて同様にレタデーション値を測定し、この値、厚み、及び平均屈折率からRthを求めた。
 厚みは、フィルムをエポキシ樹脂に包埋し、断面切片を切り出し、偏光顕微鏡で観察して求めた。平均屈折率は、1.60を用いた。
(Measurement of retardation of retardation layer)
An orientation control layer and a retardation layer are provided on the non-easy adhesive layer surface of a polyester film having a thickness of 50 μm (Cosmo Shine (TM) A4100 manufactured by Toyobo Co., Ltd.) under the same conditions as in the examples described later, and this is a glass plate (35 mm). It was transferred to × 35 mm) to prepare a sample for measurement. An ultraviolet curable adhesive was used for the transfer.
Using an automatic birefringence meter (KOBRA-WR, Oji Measurement Co., Ltd.), the retardation value (Re) measured from the vertical direction was measured when the wavelength used was 590 nm, and the slow phase in the film plane was measured. The retardation value was measured in the same manner by tilting the axis from 0 degrees to 50 degrees every 10 degrees with respect to the normal direction of the film with the axis as the inclination axis (rotation axis), and Rth was obtained from this value, the thickness, and the average refractive index. ..
The thickness was determined by embedding the film in an epoxy resin, cutting out a cross-sectional section, and observing with a polarizing microscope. The average refractive index used was 1.60.
 実施例の積層体における各層について、以下に説明する。 Each layer in the laminated body of the example will be described below.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
(偏光子)
(1)PVA偏光子転写用積層体
 熱可塑性樹脂基材として、極限粘度0.62dl/dのポリエチレンテレフタレートを押出機で溶融・混練後、冷却ロール上にシート状に押出し、厚さ100μmの未延伸フィルムを作製した。この未延伸フィルムの片面に、重合度2400、ケン化度99.9モル%のポリビニルアルコールの水溶液を塗布し乾燥して、PVA層を形成した。
 得られた積層体を、120℃で周速の異なるロール間で長手方向に2倍に延伸して巻き取った。次に、得られた積層体を4%のホウ酸水溶液で30秒間処理した後、ヨウ素(0.2%)とヨウ化カリウム(1%)の混合水溶液で60秒間浸漬し染色し、引き続き、ヨウ化カリウム(3%)とホウ酸(3%)の混合水溶液で30秒間処理した。
 さらに、この積層体を72℃のホウ酸(4%)とヨウ化カリウム(5%)混合水溶液中で長手方向に一軸延伸し、引き続き、4%ヨウ化カリウム水溶液で洗浄し、エアナイフで水溶液を除去した後に80℃のオーブンで乾燥し、両端部をスリットして巻き取り、幅50cm、長さ1000mのPVA偏光子転写用積層体を得た。合計の延伸倍率は6.5倍で、PVA偏光子の厚みは5μmであった。なお、厚みはPVA偏光子転写用積層体をエポキシ樹脂に包埋して切片を切り出し、光学顕微鏡で観察して読み取った。このPVA偏光子は表1ではPVAと標記した。
(Polarizer)
(1) Laminate for PVA Polarizer Transfer As a thermoplastic resin base material, polyethylene terephthalate having an ultimate viscosity of 0.62 dl / d is melted and kneaded with an extruder, and then extruded into a sheet on a cooling roll to a thickness of 100 μm. A stretched film was produced. An aqueous solution of polyvinyl alcohol having a degree of polymerization of 2400 and a degree of saponification of 99.9 mol% was applied to one side of this unstretched film and dried to form a PVA layer.
The obtained laminate was stretched twice in the longitudinal direction between rolls having different peripheral speeds at 120 ° C. and wound up. Next, the obtained laminate was treated with a 4% boric acid aqueous solution for 30 seconds, then immersed in a mixed aqueous solution of iodine (0.2%) and potassium iodide (1%) for 60 seconds for staining, followed by It was treated with a mixed aqueous solution of potassium iodide (3%) and boric acid (3%) for 30 seconds.
Further, this laminate was uniaxially stretched in the longitudinal direction in a mixed aqueous solution of boric acid (4%) and potassium iodide (5%) at 72 ° C., subsequently washed with a 4% potassium iodide aqueous solution, and the aqueous solution was prepared with an air knife. After removal, the solution was dried in an oven at 80 ° C., both ends were slit and wound to obtain a PVA polarizer transfer laminate having a width of 50 cm and a length of 1000 m. The total draw ratio was 6.5 times, and the thickness of the PVA polarizer was 5 μm. The thickness was read by embedding the PVA polarizer transfer laminate in an epoxy resin, cutting out a section, and observing it with an optical microscope. This PVA polarizer is labeled PVA in Table 1.
(2)液晶偏光子
 特表2007-510946号公報の[0134]段落の記載及びLub et al.Recl.Trav.Chim.Pays-Bas,115,321-328(1996)に準じて下記化合物(d)及び(e)を合成した。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 特開昭63-301850号公報の実施例1に準じて下記色素(f)を合成した。
Figure JPOXMLDOC01-appb-C000004
 特公平5-49710号公報の実施例2に準じて下記色素(g)を合成した。
Figure JPOXMLDOC01-appb-C000005
 特公昭63-1357号公報の一般式(1)の化合物の製造方法に準じて下記色素(h)を合成した。
Figure JPOXMLDOC01-appb-C000006
(2) Liquid crystal polarizers The following compounds (d) and the following compounds according to the description in paragraph [0134] of JP-A-2007-510946 and Lub et al. Recl. Trav. Chim. Pays-Bas, 115, 321-328 (1996). (E) was synthesized.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
The following dye (f) was synthesized according to Example 1 of JP-A-63-301850.
Figure JPOXMLDOC01-appb-C000004
The following dye (g) was synthesized according to Example 2 of JP-A-5-49710.
Figure JPOXMLDOC01-appb-C000005
The following dye (h) was synthesized according to the method for producing the compound of the general formula (1) of Japanese Patent Publication No. 63-1357.
Figure JPOXMLDOC01-appb-C000006
 (d)75質量部、(e)25質量部、(f)2.5質量部、(g)2.5質量部、(h)2.5質量部、IRGACURE(商標)369E(BASF社製)6質量部、及びオルトキシレン250質量部を混合、溶解し、液晶偏光子用塗料を作製した。この塗料を塗工して得られた液晶偏光子は表1では液晶塗工と標記した。 (D) 75 parts by mass, (e) 25 parts by mass, (f) 2.5 parts by mass, (g) 2.5 parts by mass, (h) 2.5 parts by mass, IRGACURE ™ 369E (manufactured by BASF) ) 6 parts by mass and 250 parts by mass of ortho-xylene were mixed and dissolved to prepare a coating material for a liquid crystal polarizer. The liquid crystal polarizer obtained by applying this paint is labeled as liquid crystal coating in Table 1.
(実施例1)
(位相差層転写用積層体1の作製)
 幅50cmのポリエステルフィルム(東洋紡株式会社製コスモシャイン(TM)A4100、厚み50μm)の非易接着層面に配向制御層用塗料を塗布し、100℃で乾燥させ、厚さ0.5μmの配向制御層を形成した。さらに配向制御層をナイロン製の起毛布が巻かれたラビングロールで処理した。ラビングはフィルムをラビングロールに斜めに掛け、ラビングロールの方向とフィルムの走行速度、ラビングロールの回転数を調整して、ラビング方向がフィルムの流れ方向に対して45度となるように行った。引き続き、位相差層用塗料を塗布した後、110℃で3分間加熱して溶剤を蒸発させると共に、棒状液晶性化合物を配向させた。さらに110℃の環境下で紫外線を30秒間照射し、長さ200mの位相差層転写用積層体1を得た。位相差層のReは140nm、Rthは70nmであった。
(Example 1)
(Preparation of Laminate 1 for Transfer of Phase Difference Layer)
Orientation control layer paint with a width of 50 cm (Cosmo Shine (TM) A4100 manufactured by Toyobo Co., Ltd., thickness 50 μm) is applied to the non-easy adhesive layer surface, dried at 100 ° C, and the orientation control layer with a thickness of 0.5 μm. Was formed. Further, the orientation control layer was treated with a rubbing roll wrapped with a nylon blanket. The film was hung diagonally on the rubbing roll, and the direction of the rubbing roll, the running speed of the film, and the number of rotations of the rubbing roll were adjusted so that the rubbing direction was 45 degrees with respect to the flow direction of the film. Subsequently, after applying the retardation layer paint, the solvent was evaporated by heating at 110 ° C. for 3 minutes, and the rod-shaped liquid crystal compound was oriented. Further, it was irradiated with ultraviolet rays for 30 seconds in an environment of 110 ° C. to obtain a stack 1 for transfer of a retardation layer having a length of 200 m. The Re of the retardation layer was 140 nm, and the Rth was 70 nm.
 PVA偏光子転写用積層体と位相差層転写用積層体1を巻き出し、PVA偏光子転写用積層体の偏光子面(PVA面)に紫外線硬化型の接着剤を塗布し、接着剤面と位相差層転写用積層体1の位相差層面とを重ね合わせた後に、位相差層転写用積層体側から紫外線を照射して接着して巻き取り、長さ200mの円偏光素子転写用積層体(CP1)のロールを得た。なお、CP1ではPVA偏光子転写用積層体の熱可塑性樹脂基材及び位相差層転写用積層体1のポリエステルフィルムは対象物(ITO層)に転写する直前に剥離する。 The PVA polarizer transfer laminate and the retardation layer transfer laminate 1 are unwound, and an ultraviolet curable adhesive is applied to the polarizer surface (PVA surface) of the PVA polarizer transfer laminate to form an adhesive surface. After superimposing the retardation layer surface of the retardation layer transfer laminate 1, the retardation layer transfer laminate side is irradiated with ultraviolet rays to adhere and wind up, and the circularly polarizing element transfer laminate having a length of 200 m ( Obtained a roll of CP1). In CP1, the thermoplastic resin base material of the PVA polarizer transfer laminate and the polyester film of the retardation layer transfer laminate 1 are peeled off immediately before transfer to the object (ITO layer).
(実施例2)
 PVA偏光子転写用積層体の偏光子面に配向制御層用塗料を塗布し、100℃で乾燥させ、厚さ0.5μmの配向制御層を設けた。さらに配向制御層をナイロン製の起毛布が巻かれたラビングロールで処理した。ラビング方向はフィルムの流れ方向に対して45度で行った。引き続き、位相差層用塗料を塗布した後、110℃で3分間加熱して溶剤を蒸発させると共に、棒状液晶性化合物を配向させた。さらに、110℃の環境下で紫外線を30秒間照射し、円偏光素子転写用積層体(CP2)を得た。位相差層のReは140nmであった。
(Example 2)
A paint for an orientation control layer was applied to the polarizer surface of the PVA polarizer transfer laminate and dried at 100 ° C. to provide an orientation control layer having a thickness of 0.5 μm. Further, the orientation control layer was treated with a rubbing roll wrapped with a brushed nylon cloth. The rubbing direction was 45 degrees with respect to the flow direction of the film. Subsequently, after applying the retardation layer coating material, the solvent was evaporated by heating at 110 ° C. for 3 minutes, and the rod-shaped liquid crystal compound was oriented. Further, it was irradiated with ultraviolet rays for 30 seconds in an environment of 110 ° C. to obtain a laminated body (CP2) for transferring a circularly polarized light element. The Re of the retardation layer was 140 nm.
(実施例3)
 幅50cmのポリエステルフィルム(東洋紡株式会社製コスモシャイン(TM)A4100、厚み50μm)の非易接着層面に配向制御層用塗料を塗布し、100℃で乾燥させ、厚さ0.5μmの配向制御層を設けた。さらに、配向制御層をナイロン製の起毛布が巻かれたラビングロールで処理した。ラビング方向はフィルムの流れ方向になるように行った。その後、ラビング処理面に液晶偏光子用塗料を塗布し、110℃で3分間乾燥して、厚み2μmの膜を形成した後、紫外線を照射して、液晶偏光子転写用積層体を得た。引き続き、この液晶偏光子転写用積層体の偏光子面に実施例2と同様にして配向制御層及び位相差層を設け、円偏光素子転写用積層体(CP3)を長さ200mのロールとして巻き取った。
(Example 3)
A 50 cm wide polyester film (Cosmo Shine (TM) A4100 manufactured by Toyobo Co., Ltd., 50 μm thick) is coated with a paint for an orientation control layer on the non-easy adhesive layer surface, dried at 100 ° C., and a 0.5 μm thick orientation control layer. Was provided. Further, the orientation control layer was treated with a rubbing roll wrapped with a nylon blanket. The rubbing direction was set to be the flow direction of the film. Then, a paint for a liquid crystal polarizer was applied to the rubbing treated surface and dried at 110 ° C. for 3 minutes to form a film having a thickness of 2 μm, which was then irradiated with ultraviolet rays to obtain a laminate for transferring a liquid crystal polarizer. Subsequently, an orientation control layer and a retardation layer are provided on the polarizer surface of this liquid crystal polarizer transfer laminate in the same manner as in Example 2, and the circular polarization element transfer laminate (CP3) is wound as a roll having a length of 200 m. I took it.
(実施例4)
 幅50cmのポリエステルフィルム(東洋紡株式会社製コスモシャイン(TM)A4100、厚み50μm)の非易接着層面にハードコート層用塗料を塗布し、オーブン中で90℃で乾燥させて溶剤を蒸発させた後に紫外線を照射し、厚み3μmのハードコート層を形成した。さらにハードコート層をナイロン製の起毛布が巻かれたラビングロールで処理した。ラビング方向はフィルムの流れ方向に対して平行に行った。その後、実施例3と同様にして、ラビング処理面に液晶偏光子用塗料を塗布して液晶偏光子転写用積層体を得た。この液晶偏光子転写用積層体の偏光子面に実施例2と同様にして位相差層を設け、円偏光素子転写用積層体(CP4)を長さ200mのロールとして巻き取った。
(Example 4)
After applying the hard coat layer paint to the non-easy adhesive layer surface of a polyester film with a width of 50 cm (Cosmo Shine (TM) A4100 manufactured by Toyo Boseki Co., Ltd., thickness 50 μm) and drying it in an oven at 90 ° C. to evaporate the solvent. A hard coat layer having a thickness of 3 μm was formed by irradiating with ultraviolet rays. Further, the hard coat layer was treated with a rubbing roll wrapped with a nylon blanket. The rubbing direction was parallel to the flow direction of the film. Then, in the same manner as in Example 3, a liquid crystal polarizer paint was applied to the rubbing treated surface to obtain a liquid crystal polarizer transfer laminate. A retardation layer was provided on the polarizer surface of the liquid crystal polarizer transfer laminate in the same manner as in Example 2, and the circular polarization element transfer laminate (CP4) was wound as a roll having a length of 200 m.
 実施例1~4の構成を表1に示す。
Figure JPOXMLDOC01-appb-T000007
The configurations of Examples 1 to 4 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
(実施例5)
 位相差層転写用積層体として、ポリエステルフィルムの非易接着層面にコロナ処理を行い、このコロナ処理面に位相差層を設けたもの(位相差層転写用積層体2)を使用した以外は実施例1と同様にして、長さ200mの円偏光素子転写用積層体(CP5)のロールを得た。なお、CP5ではPVA偏光子転写用積層体の熱可塑性樹脂基材は対象物(ガラス基板)に転写する直前に剥がして使用する。
(Example 5)
As the laminate for transfer of the retardation layer, it is carried out except that the non-easy adhesive layer surface of the polyester film is corona-treated and the retardation layer is provided on the corona-treated surface (laminator for transfer of the retardation layer 2). In the same manner as in Example 1, a roll of a laminated body (CP5) for transferring a circularly polarizing element having a length of 200 m was obtained. In CP5, the thermoplastic resin base material of the PVA polarizer transfer laminate is peeled off and used immediately before transfer to the object (glass substrate).
(実施例6)
 位相差層転写用積層体1の位相差層面に配向制御層用塗料を塗布し、100℃で乾燥させ、厚さ0.5μmの配向制御層を設けた。さらに、配向制御層をナイロン製の起毛布が巻かれたラビングロールで処理した。ラビング方向はフィルムの流れ方向になるように行った。その後、ラビング処理面に液晶偏光子用塗料を塗布し、110℃で3分間乾燥して、厚み2μmの膜を形成後、紫外線を照射して円偏光素子転写用積層体(CP6)を得、長さ200mのロールとして巻き取った。
(Example 6)
A paint for an orientation control layer was applied to the retardation layer surface of the retardation layer transfer laminate 1 and dried at 100 ° C. to provide an orientation control layer having a thickness of 0.5 μm. Further, the orientation control layer was treated with a rubbing roll wrapped with a nylon blanket. The rubbing direction was set to be the flow direction of the film. Then, a liquid crystal polarizer paint is applied to the rubbing treated surface, dried at 110 ° C. for 3 minutes to form a film having a thickness of 2 μm, and then irradiated with ultraviolet rays to obtain a laminated body for transferring a circularly polarizing element (CP6). It was wound as a roll with a length of 200 m.
(実施例7)
 実施例3の液晶偏光子転写用積層体と実施例5の位相差層転写用積層体2を巻き出し、液晶偏光子転写用積層体の偏光子面に紫外線硬化型の接着剤を塗布し、接着剤面と位相差層転写用積層体2の位相差層面とを重ね合わせた後に、位相差層転写用積層体側から紫外線を照射して接着して巻き取り、長さ200mの円偏光素子転写用積層体(CP7)のロールを得た。なお、CP7では液晶偏光子転写用積層体のポリエステルフィルムは対象物(ガラス基板)に転写する直前に剥がして使用する。
(Example 7)
The liquid crystal polarizer transfer laminate of Example 3 and the retardation layer transfer laminate 2 of Example 5 are unwound, and an ultraviolet curable adhesive is applied to the polarizer surface of the liquid crystal polarizer transfer laminate. After the adhesive surface and the retardation layer surface of the retardation layer transfer laminate 2 are overlapped, ultraviolet rays are irradiated from the retardation layer transfer laminate side to bond and wind up, and a circular polarizing element transfer having a length of 200 m is performed. A roll of laminated body (CP7) was obtained. In CP7, the polyester film of the liquid crystal polarizer transfer laminate is peeled off and used immediately before transfer to the object (glass substrate).
 実施例5~7の構成を表2に示す。 Table 2 shows the configurations of Examples 5 to 7.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
評価1
 円偏光素子転写用積層体(CP1)を巻き出し、必要な大きさに切り出した後、位相差層転写用積層体1のポリエステルフィルムを剥離した。この剥離面(配向制御層面)に、光学用粘着シートを用いて、ITOを積層したガラス基板のITO面を貼り合わせ、得られた積層体からPVA偏光子転写用積層体の熱可塑性樹脂基材(離型性フィルム)を剥離した。引き続き、剥離面に、光学用粘着シートを貼り合わせ、さらに、別途用意した、一方の面にITO層及び他方の面にハードコート層を備えた透明導電性ポリエステルフィルムのITO面と貼り合わせ、円偏光素子を備えたタッチセンサーのモデルを作製した。 得られたタッチセンサーのモデルをガラス面を下にして有機EL表示装置の上に重ね、反射防止効果を確認したところ、配線等の反射は低減されており、高い反射防止効果を有していることが分かった。
Evaluation 1
The laminated body for transferring the circularly polarizing element (CP1) was unwound, cut out to a required size, and then the polyester film of the laminated body for transferring the retardation layer 1 was peeled off. An optical pressure-sensitive adhesive sheet is used to bond the ITO surface of a glass substrate on which ITO is laminated to the peeled surface (orientation control layer surface), and the obtained laminate is used as a thermoplastic resin base material for a PVA polarizer transfer laminate. (Releasable film) was peeled off. Subsequently, an optical adhesive sheet was attached to the peeled surface, and further, it was attached to the ITO surface of a transparent conductive polyester film having an ITO layer on one surface and a hard coat layer on the other surface, which were separately prepared. We made a model of a touch sensor equipped with a polarizing element. When the obtained touch sensor model was placed on the organic EL display device with the glass surface facing down and the antireflection effect was confirmed, the reflection of wiring etc. was reduced and the antireflection effect was high. It turned out.
 円偏光素子転写用積層体CP2及びCP3を用いて同様にして円偏光素子を備えたタッチセンサーのモデルを作製して評価したところ、高い反射防止効果を有していることが分かった。なお、CP2及びCP3では、光学用粘着シートを用いて位相差層面にガラス基板のITO面を貼り合わせた。また、CP3では、透明導電性ポリエステルフィルムのITO面と貼り合わせる際に、PVA偏光子転写用積層体の熱可塑性樹脂基材ではなく、液晶偏光子転写用積層体のポリエステルフィルムを剥離した。 When a model of a touch sensor equipped with a circular polarization element was similarly prepared and evaluated using the circular polarization element transfer laminates CP2 and CP3, it was found to have a high antireflection effect. In CP2 and CP3, the ITO surface of the glass substrate was bonded to the retardation layer surface using an optical adhesive sheet. Further, in CP3, when the transparent conductive polyester film was bonded to the ITO surface, the polyester film of the liquid crystal polarizer transfer laminate was peeled off instead of the thermoplastic resin base material of the PVA polarizer transfer laminate.
評価2
 ITOを積層したガラス基板のITO面とITOを積層したTACフィルムのITO面とを光学用粘着剤で貼り合わせたタッチセンサーのモデルを準備した。
 円偏光素子転写用積層体(CP4)を巻き出し、必要な大きさに切り出した後、位相差層転写用積層体1のポリエステルフィルムを剥離した。
 タッチセンサーのモデルのTACフィルム面に光学用粘着剤を用いてCP4の位相差層面を貼り合わせた後、液晶偏光子転写用積層体のポリエステルフィルムを剥離し、円偏光素子を備えたタッチセンサーのモデルを作製した。得られたタッチセンサーのモデルをガラス面を下にして有機EL表示装置の上に重ね、反射防止効果を確認したところ、配線等の反射は低減されており、高い反射防止効果を有していることが分かった。
Evaluation 2
A model of a touch sensor was prepared in which the ITO surface of a glass substrate on which ITO was laminated and the ITO surface of a TAC film on which ITO was laminated were bonded with an optical adhesive.
The circular polarization element transfer laminate (CP4) was unwound, cut out to a required size, and then the polyester film of the retardation layer transfer laminate 1 was peeled off.
After bonding the retardation layer surface of CP4 to the TAC film surface of the touch sensor model using an optical adhesive, the polyester film of the liquid crystal polarizer transfer laminate is peeled off, and the touch sensor equipped with a circular polarizing element A model was created. When the obtained touch sensor model was placed on the organic EL display device with the glass surface facing down and the antireflection effect was confirmed, the reflection of wiring etc. was reduced and the antireflection effect was high. It turned out.
評価3
 ITOを積層したガラス基板のITO面と、一方の面にITO層及び他方の面にハードコート層を備えた透明導電性ポリエステルフィルムのITO面とを光学用粘着剤で貼り合わせたタッチセンサーのモデルを準備した。
 円偏光素子転写用積層体(CP5)を巻き出し、必要な大きさに切り出した後、PVA偏光子転写用積層体の熱可塑性樹脂基材を剥離した。
 タッチセンサーのモデルのガラス面に光学用粘着剤を用いてCP5の偏光子面(PVA面)を貼り合わせた後、位相差層転写用積層体のポリエステルフィルムを剥離し、円偏光素子を備えたタッチセンサーのモデルを作製した。得られたタッチセンサーのモデルを円偏光素子側を下にして有機EL表示装置の上に重ね、反射防止効果を確認したところ、配線等の反射は低減されており、高い反射防止効果を有していることが分かった。
Evaluation 3
A touch sensor model in which the ITO surface of a glass substrate on which ITO is laminated and the ITO surface of a transparent conductive polyester film having an ITO layer on one surface and a hard coat layer on the other surface are bonded together with an optical adhesive. Prepared.
After unwinding the laminated body for transferring a circularly polarizing element (CP5) and cutting it into a required size, the thermoplastic resin base material of the laminated body for transferring a PVA polarizer was peeled off.
After bonding the polarizing element surface (PVA surface) of CP5 to the glass surface of the touch sensor model using an optical adhesive, the polyester film of the retardation layer transfer laminate was peeled off to provide a circular polarizing element. A model of the touch sensor was created. When the obtained touch sensor model was overlaid on the organic EL display device with the circular polarization element side down and the antireflection effect was confirmed, the reflection of wiring etc. was reduced and it had a high antireflection effect. It turned out that.
 円偏光素子転写用積層体CP6及びCP7を用いて同様にして円偏光素子を備えたタッチセンサーのモデルを作製して評価したところ、高い反射防止効果を有していることが分かった。なお、CP6では、タッチセンサーモデルのガラス面に光学用粘着シートを用いて液晶偏光子面を貼り合わせた。CP7では、タッチセンサーモデルのガラス面と貼り合わせる際に、PVA偏光子転写用積層体の熱可塑性樹脂基材ではなく、液晶偏光子転写用積層体のポリエステルフィルムを剥離した。 When a model of a touch sensor equipped with a circular polarization element was similarly prepared and evaluated using the circular polarization element transfer laminates CP6 and CP7, it was found to have a high antireflection effect. In CP6, the liquid crystal polarizer surface was attached to the glass surface of the touch sensor model using an optical adhesive sheet. In CP7, the polyester film of the liquid crystal polarizer transfer laminate was peeled off instead of the thermoplastic resin base material of the PVA polarizer transfer laminate when the touch sensor model was bonded to the glass surface.
 評価1、2、及び3においては、いずれも厚みを大幅に増加させることなくタッチセンサーに円偏光素子機能を組み込むことができた。 In evaluations 1, 2 and 3, it was possible to incorporate the circular polarization element function into the touch sensor without significantly increasing the thickness.
評価4
 円偏光素子転写用積層体(CP5)を巻き出し、必要な大きさに切り出した後、PVA偏光子転写用積層体の熱可塑性樹脂基材を剥離した。この偏光子面と厚さ1mmのポリカーボネートシートとを光学用粘着剤シートを用いて貼り合わせ、円偏光素子を積層したポリカーボネートシートを得た。
 得られた円偏光素子を積層したポリカーボネートシートを、円偏光素子側を下にして有機EL表示装置の上に重ね、反射防止効果を確認したところ、配線等の反射は低減されており、高い反射防止効果を有していることが分かった。
 得られた円偏光素子を積層したポリカーボネートシートは、ほとんど厚みを増加させることなく、反射防止機能を有する有機EL表示装置の表面カバーシートとして用いることができる。
Evaluation 4
The laminated body for transferring the circularly polarizing element (CP5) was unwound, cut out to a required size, and then the thermoplastic resin base material of the laminated body for transferring the PVA polarizer was peeled off. The polarizer surface and a polycarbonate sheet having a thickness of 1 mm were bonded together using an optical adhesive sheet to obtain a polycarbonate sheet in which circularly polarizing elements were laminated.
When the obtained polycarbonate sheet on which the circularly polarized light elements were laminated was placed on the organic EL display device with the circularly polarized light element side down and the antireflection effect was confirmed, the reflection of wiring etc. was reduced and the reflection was high. It was found to have a preventive effect.
The obtained polycarbonate sheet on which the circular polarization elements are laminated can be used as a surface cover sheet of an organic EL display device having an antireflection function with almost no increase in thickness.

Claims (6)

  1.  離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層されている、又は離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層されている、円偏光素子転写用積層体。 A circle in which the polarizer and the λ / 4 retarder are laminated in this order on the releasable film, or the λ / 4 retardation layer and the polarizer are laminated in this order on the releasable film. Laminated body for transfer of polarizing element.
  2.  円偏光素子を有する透明導電性基材の製造方法であって、
    (A)透明導電性基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
    (B)透明導電性基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
    を含む、方法。
    A method for manufacturing a transparent conductive base material having a circular polarization element.
    (A) The λ / 4 retardation layer of the laminated body for transferring a circularly polarizing element, in which a polarizer and a λ / 4 retardation layer are laminated in this order on a releasable film on a transparent conductive substrate, is transparently conductive. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the substrate side, or (B) the transparent conductive substrate has a λ / 4 retardation layer and a polarizer on the releasable film. A method comprising laminating the circularly polarizing element transfer laminate so that the polarizers of the circularly polarized element transfer laminates laminated in this order are arranged on the transparent conductive base material side.
  3.  円偏光素子を有するタッチパネルの製造方法であって、
    (C)タッチパネルの透明導電性基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が前記透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
    (D)タッチパネルの透明導電性基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が前記透明導電性基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
    を含む、方法。
    A method for manufacturing a touch panel having a circularly polarized element.
    (C) The λ / 4 retardation layer of a laminate for transferring a circularly polarizing element, in which a polarizer and a λ / 4 retardation layer are laminated in this order on a transparent conductive base material of a touch panel, is described above. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the transparent conductive base material side, or (D) λ / 4 phase difference on the releasable film on the transparent conductive base material of the touch panel. The step of laminating the circularly polarizing element transfer laminate is included so that the polarizer of the circular polarization element transfer laminate in which the layers and the polarizers are laminated in this order is arranged on the transparent conductive substrate side. ,Method.
  4.  円偏光素子を有する画像表示装置の製造方法であって、
     請求項3の方法により製造された、円偏光素子を有するタッチパネルのタッチパネル又は円偏光素子が視認側に配置されるように、前記タッチパネルを画像表示装置に設ける工程を含む、方法。
    A method for manufacturing an image display device having a circular polarization element.
    A method comprising a step of providing the touch panel on an image display device so that a touch panel of a touch panel having a circular polarization element or a circular polarization element manufactured by the method of claim 3 is arranged on the visual side.
  5.  円偏光素子を有する表面カバー用透明基材の製造方法であって、
    (E)表面カバー用透明基材に、離型性フィルム上に偏光子及びλ/4位相差層がこの順で積層された円偏光素子転写用積層体のλ/4位相差層が前記透明基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程、又は
    (F)表面カバー用透明基材に、離型性フィルム上にλ/4位相差層及び偏光子がこの順で積層された円偏光素子転写用積層体の偏光子が前記透明基材側に配置されるように、前記円偏光素子転写用積層体を積層する工程
    を含む、方法。
    A method for manufacturing a transparent base material for a surface cover having a circular polarization element.
    (E) The λ / 4 retardation layer of the multilayer body for transferring a circularly polarizing element, in which a polarizer and a λ / 4 retardation layer are laminated in this order on a releasable film on a transparent substrate for a surface cover, is transparent. The step of laminating the laminate for transferring the circularly polarizing element so as to be arranged on the substrate side, or (F) the transparent substrate for the surface cover, the λ / 4 retardation layer and the polarizer on the releasable film. A method including a step of laminating the circularly polarizing element transfer laminate so that the polarizer of the circularly polarized element transfer laminate laminated in this order is arranged on the transparent substrate side.
  6.  円偏光素子を有する画像表示装置の製造方法であって、
     請求項5の方法により製造された、円偏光素子を有する表面カバー用透明基材の表面カバー用透明基材が視認側に配置されるように、前記透明基材を画像表示装置に設ける工程を含む、方法。
    A method for manufacturing an image display device having a circular polarization element.
    A step of providing the transparent base material in the image display device so that the transparent base material for the surface cover of the transparent base material for the surface cover having a circularly polarizing element produced by the method of claim 5 is arranged on the visual side. Including, method.
PCT/JP2020/020960 2019-05-28 2020-05-27 Laminate for circular polarization element transfer and method for manufacturing optical article using same WO2020241705A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217041535A KR20220011678A (en) 2019-05-28 2020-05-27 Circularly polarized light element transfer laminate and manufacturing method of optical article using same
CN202080038795.9A CN113874765A (en) 2019-05-28 2020-05-27 Laminate for transferring circularly polarizing element and method for producing optical article using same
JP2021522826A JPWO2020241705A1 (en) 2019-05-28 2020-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-099664 2019-05-28
JP2019099664 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020241705A1 true WO2020241705A1 (en) 2020-12-03

Family

ID=73553817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020960 WO2020241705A1 (en) 2019-05-28 2020-05-27 Laminate for circular polarization element transfer and method for manufacturing optical article using same

Country Status (4)

Country Link
JP (1) JPWO2020241705A1 (en)
KR (1) KR20220011678A (en)
CN (1) CN113874765A (en)
WO (1) WO2020241705A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134117A (en) * 2010-09-03 2012-07-12 Nitto Denko Corp Polarizing film, optical film laminate including polarizing film, stretched laminate for use in manufacturing optical film laminate including polarizing film and method for manufacturing the same, and organic el display device having polarizing film
JP6470829B1 (en) * 2017-12-04 2019-02-13 住友化学株式会社 Optical laminate and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101397301B1 (en) * 2006-05-30 2014-05-22 제이엑스 닛코닛세키에너지주식회사 Elliptical polarizing plate, method for producing elliptical polarizing plate, liquid crystal display, and electroluminescent display
JP5478553B2 (en) * 2010-09-03 2014-04-23 日東電工株式会社 Continuous web-like optical film laminate roll and method for producing the same
WO2013031356A1 (en) * 2011-09-02 2013-03-07 コニカミノルタアドバンストレイヤー株式会社 Organic electroluminescence display device, circularly polarizing plate, and elongated λ/4 plate
JP6119109B2 (en) * 2012-04-27 2017-04-26 住友化学株式会社 Polarizing plate and liquid crystal display device
JP2014071380A (en) * 2012-09-28 2014-04-21 Dainippon Printing Co Ltd Transfer body for optical film, optical film, image display device, and production method of optical film
JP5799989B2 (en) * 2013-07-26 2015-10-28 大日本印刷株式会社 Optical film, image display device, optical film transfer body, optical film manufacturing method, and optical film transfer body manufacturing method
JP6560133B2 (en) * 2015-05-29 2019-08-14 日東電工株式会社 Laminated roll, optical unit, organic EL display device, transparent conductive film, and optical unit manufacturing method
JP6707836B2 (en) 2015-10-29 2020-06-10 大日本印刷株式会社 Sensor electrode base material for touch panel integrated organic electroluminescence display device, touch panel integrated organic electroluminescence display device, and method for manufacturing touch panel integrated organic electroluminescence display device
JP6453746B2 (en) * 2015-12-02 2019-01-16 日東電工株式会社 Elongated optical laminate and image display device
JP6631269B2 (en) 2016-01-19 2020-01-15 大日本印刷株式会社 Decorative member, display device, and method of manufacturing organic electroluminescence display device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134117A (en) * 2010-09-03 2012-07-12 Nitto Denko Corp Polarizing film, optical film laminate including polarizing film, stretched laminate for use in manufacturing optical film laminate including polarizing film and method for manufacturing the same, and organic el display device having polarizing film
JP6470829B1 (en) * 2017-12-04 2019-02-13 住友化学株式会社 Optical laminate and method for producing the same

Also Published As

Publication number Publication date
JPWO2020241705A1 (en) 2020-12-03
CN113874765A (en) 2021-12-31
KR20220011678A (en) 2022-01-28

Similar Documents

Publication Publication Date Title
JP2021140157A (en) Laminate
TWI641877B (en) Elliptical polarizer
KR100955762B1 (en) Method for manufacturing coating type polarizing plate and Coating type polarizing plate manufactured by thereof
JP7346863B2 (en) electroluminescent display device
JP2018022060A (en) Long-size polarizing film and liquid crystal display, and electret luminescence display
JP7187764B2 (en) liquid crystal display
JP6724297B2 (en) Method for producing optical laminate, method for producing circularly polarizing plate, and method for producing organic electroluminescence display device
CN112771422B (en) Film for transferring alignment layer of liquid crystal compound
WO2008105218A1 (en) Elliptical polarizing plate for vertically aligned liquid crystal display and vertically aligned liquid crystal display using the same
KR20220060531A (en) A laminate and an elliptically polarizing plate comprising the same
WO2019182120A1 (en) Electroluminescent display device
JP2020194091A (en) Composite polarizer and method of manufacturing the same
JP7392278B2 (en) Method for manufacturing liquid crystal compound laminate and method for inspecting liquid crystal compound layer
JP7331400B2 (en) FLEXIBLE IMAGE DISPLAY DEVICE AND METHOD FOR MANUFACTURING CIRCULARLY POLARIZED PLATE USED THEREOF
JP2024031796A (en) Laminated body and organic EL display device
WO2020241705A1 (en) Laminate for circular polarization element transfer and method for manufacturing optical article using same
KR20240005687A (en) Laminates and display devices
KR20150018426A (en) Composition for forming optical anisotropic layer
WO2016204146A1 (en) Multi-layer laminated film
WO2021192933A1 (en) Multilayer body for thin film layer transfer
JP7404635B2 (en) Method for producing aligned liquid crystal compound layer laminate
JP6287371B2 (en) Optical film, optical film transfer body, and image display device
CN111487703A (en) Laminate for organic E L display and circularly polarizing plate used therein
JPWO2014168258A1 (en) Method for producing optically anisotropic film
WO2021111859A1 (en) Method for producing light absorption anisotropic film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041535

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20815075

Country of ref document: EP

Kind code of ref document: A1