WO2020241688A1 - Water-borne floating facility - Google Patents

Water-borne floating facility Download PDF

Info

Publication number
WO2020241688A1
WO2020241688A1 PCT/JP2020/020924 JP2020020924W WO2020241688A1 WO 2020241688 A1 WO2020241688 A1 WO 2020241688A1 JP 2020020924 W JP2020020924 W JP 2020020924W WO 2020241688 A1 WO2020241688 A1 WO 2020241688A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating
water
gas
lng
heating
Prior art date
Application number
PCT/JP2020/020924
Other languages
French (fr)
Japanese (ja)
Inventor
真実 中山
ジフン ナ
Original Assignee
株式会社 商船三井
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 商船三井 filed Critical 株式会社 商船三井
Priority to KR1020217038618A priority Critical patent/KR102631877B1/en
Priority to CN202080039708.1A priority patent/CN113891830A/en
Priority to SG11202113061YA priority patent/SG11202113061YA/en
Publication of WO2020241688A1 publication Critical patent/WO2020241688A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J2/00Arrangements of ventilation, heating, cooling, or air-conditioning
    • B63J2/12Heating; Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63JAUXILIARIES ON VESSELS
    • B63J3/00Driving of auxiliaries
    • B63J3/04Driving of auxiliaries from power plant other than propulsion power plant

Definitions

  • the present invention relates to floating floating equipment.
  • a ship that transports LNG (liquefied natural gas) is known (see, for example, Patent Document 1).
  • LNG transported by such a ship is regasified using the heat of seawater via FSRU (floating storage regasification unit) and sent to onshore equipment. ..
  • FSRU floating storage regasification unit
  • the electric power required for the operation as FSRU is generated by using a diesel generator using fossil fuel or the like.
  • An object of the embodiment of the present invention is to provide a floating floating facility that functions as an FSRU that uses water in the natural environment and suppresses the influence on the natural environment.
  • the floating floating equipment includes a tank for storing a liquid gas, a vaporizing means for vaporizing the gas stored in the tank, and the gas vaporized by the vaporizing means on land.
  • a Rankin cycle that generates power by a Rankin cycle based on the temperature difference between the gas delivery means to be delivered to the equipment, the water intake means for taking in water in the natural environment, and the water taken in by the water intake means. It is equipped with a power generation means.
  • the block diagram which shows the structure of the floating body type equipment which concerns on embodiment of this invention.
  • the Ts diagram which shows the temperature / specific enthalpy of ORC which concerns on this embodiment.
  • FIG. 1 is a configuration diagram showing a configuration of a floating floating turbine 1 according to an embodiment of the present invention.
  • the floating floating equipment 1 is a floating floating LNG terminal that stores LNG, regass the stored LNG, and sends high-pressure gas to equipment on land (for example, a gas pipe). That is, the floating floating equipment 1 is an FSRU. Further, the floating floating equipment 1 is a navigable mobile body (for example, a ship).
  • the floating floating equipment 1 has a function of storing a liquid gas (for example, LNG), regasifying (vaporizing) the gas, and sending it to land, and water such as seawater, river water, or lake water. Any shape and structure may be used as long as the equipment floats on the surface.
  • the floating floating equipment 1 does not have to be in the shape of a ship, and may not have a propulsion equipment.
  • the floating floating equipment 1 will be mainly described as being configured as a ship navigating in the ocean.
  • the floating floating equipment 1 includes a turbo generator 3, an LNG vaporizer 4, an organic medium circulation pump 5, a first heat exchanger 6, a second heat exchanger 7, a third heat exchanger 8, and a fourth heat exchanger 9.
  • 5th heat exchanger 10 diesel generator 11, recondenser (reliquefaction device) 12, LNG booster pump 13, trim heater (heat exchanger for regas temperature adjustment) 14, LNG tank 15, feed pump (feed pump) ) 16, BOG (boil off gas) compressor 17, heating seawater pump 18, heating medium circulation pump 19, cooling seawater pump 20, cooling fresh water booster pump 21, organic medium piping L1, LNG piping L2, BOG piping L3, A seawater pipe L4, a heating medium pipe L5, a cooling fresh water pipe L6, and a regas pipe L7 are provided.
  • the organic medium pipe L1 is a pipe through which the organic medium used in the power generation system 2 flows.
  • the organic medium pipe L1 is configured so that the organic medium circulates between the LNG vaporizer 4 and the turbo generator 3.
  • the organic medium pipe L1 includes a path from the LNG vaporizer 4 to the turbo generator 3 via the first heat exchanger 6 and the second heat exchanger 7 in sequence, and from the LNG vaporizer 4 to the first heat exchanger 6.
  • the route is configured to branch into a route that passes through the third heat exchanger 8 and a route that does not pass through the third heat exchanger 8 (bypass).
  • the organic medium flows through a path that passes through the third heat exchanger 8, and while the BOG compressor 17 is stopped, the organic medium flows through a path that does not pass through the third heat exchanger 8. It flows.
  • the order in which the organic medium passes through the three heat exchangers 6 to 8 may be configured in any order.
  • the organic medium is, for example, propane, but it may not be a flammable medium but a non-flammable medium having thermal characteristics close to those of propane.
  • the LNG pipe L2 is configured so that LNG is sent from the LNG tank 15 to the recondenser 12.
  • LNG may have any composition.
  • the BOG pipe L3 is configured so that BOG (boil off gas) is sequentially sent from the upper part of the LNG tank 15 to the recondenser 12 via the BOG compressor 17 and the third heat exchanger 8. Further, the BOG pipe L3 is provided with a path for sending the BOG for fuel supply of the diesel generator 11. BOG is a gaseous natural gas in which a part of LNG accumulated in the LNG tank 15 is vaporized by heat input.
  • seawater taken in from outside the ship is sent to each of the 4th heat exchanger 9 and the 5th heat exchanger 10, and is heated or heated from each of the 4th heat exchanger 9 and the 5th heat exchanger 10.
  • the seawater used for cooling is configured to be discharged overboard.
  • the heating medium pipe L5 is a pipe through which the heating medium flows.
  • the heating medium circulates between the fourth heat exchanger 9 and the trim heater 14 and between the fourth heat exchanger 9 and the first heat exchanger 6. It is configured to include a route to do so.
  • the heating medium is used to heat the organic medium by the first heat exchanger 6, and is also used as the heating medium of the trim heater 14.
  • a heating medium which is an antifreeze heat medium, is used as an intermediate medium between the organic medium and seawater.
  • the heating medium is an aqueous ethylene glycol solution (glycol water), but other media such as propane may also be used.
  • the cooling fresh water pipe L6 is a pipe through which fresh water flows to cool the engine supply air with an air cooler of the diesel generator 11.
  • the cooling fresh water pipe L6 is configured so that fresh water flows and circulates in sequence through the fifth heat exchanger 10, the diesel generator 11, and the second heat exchanger 7.
  • the regas pipe L7 is configured so that vaporized (regasified) natural gas is sent from the LNG vaporizer 4 to the onshore equipment via the trim heater 14.
  • the power generation system 2 includes a turbo generator 3, an LNG vaporizer 4, an organic medium circulation pump 5, a first heat exchanger 6, a second heat exchanger 7, a third heat exchanger 8, and an organic medium pipe L1. Will be done.
  • the power generation system 2 is an organic Rankine cycle (ORC) power generation system that generates power by a Rankine cycle using an organic medium.
  • the turbo generator 3 generates electricity by utilizing the temperature difference between the LNG cold heat and other heat sources.
  • the outline of the operation of the power generation system 2 is as follows.
  • Each heat exchanger 6 to 8 heats (vaporizes) an organic medium to produce superheated steam.
  • the turbo generator 3 rotates the turbine by expanding the superheated steam produced by the heat exchangers 6 to 8 in the turbine.
  • the turbo generator 3 generates electricity by this rotational force (work).
  • the organic medium that has worked in the turbine of the turbo generator 3 is cooled by the LNG vaporizer 4 in a gas state or a gas-liquid mixed state to be condensed and liquefied, and returns to each of the heat exchangers 6 to 8.
  • the power generation system 2 repeats this series of operations to perform a cycle for generating power.
  • the turbo generator 3 has a configuration in which a turbine rotor having wings is connected to the generator.
  • the turbo generator 3 is a generator that uses a polymer organic medium instead of steam.
  • the LNG vaporizer 4 is a heat exchanger for absorbing heat from the organic medium flowing through the organic medium pipe L1 to vaporize (regasify) LNG.
  • the LNG vaporizer 4 is a shell and tube type, but other types may be used.
  • the organic medium circulation pump 5 is a pump for boosting the pressure of the condensed / liquefied organic medium cooled by the LNG vaporizer 4 and circulating the organic medium in the organic medium pipe L1 of the power generation system 2.
  • a tank for temporarily storing the liquefied organic medium may be provided on the upstream side of the organic medium circulation pump 5 (the wake side of the LNG vaporizer 4).
  • the first heat exchanger 6 heats the organic medium with the heating medium by exchanging heat between the organic medium flowing through the organic medium pipe L1 and the heating medium flowing through the heating medium pipe L5.
  • the first heat exchanger 6 may or may not be used.
  • the power generation system 2 uses the second heat exchanger 7 and the third heat exchanger 8 to perform the Rankine cycle by waste heat of the diesel generator 11 and heat recovery of the BOG compressor 17. Therefore, the floating floating turbine 1 may reduce the amount of seawater used.
  • the second heat exchanger 7 heats the organic medium with fresh water by exchanging heat between the organic medium flowing through the organic medium pipe L1 and the fresh water flowing through the cooling fresh water pipe L6. As a result, the second heat exchanger 7 heats the organic medium by utilizing the waste heat of the diesel generator 11.
  • the third heat exchanger 8 heats the organic medium with the BOG by exchanging heat between the organic medium flowing through the organic medium pipe L1 and the BOG flowing through the BOG pipe L3.
  • the fourth heat exchanger 9 heats the heating medium with seawater by exchanging heat between the seawater flowing through the seawater pipe L4 and the heating medium flowing through the heating medium pipe L5.
  • the fifth heat exchanger 10 cools the fresh water with seawater by exchanging heat between the seawater flowing through the seawater pipe L4 and the fresh water flowing through the cooling fresh water pipe L6.
  • the diesel generator 11 is a generator for supplying the electric power required for the regasification process (for example, the power source of the LNG booster pump 13, the BOG compressor 17, or the heating seawater pump 18) on board. ..
  • the diesel generator 11 is a dual fuel-fired diesel generator that generates electricity by burning heavy oil and BOG supplied from the BOG compressor 17 as fuel.
  • the diesel generator 11 may be another generator that does not use a diesel engine.
  • the recondenser 12 is a pressure vessel for reliquefying (recondensing) a part of the BOG supplied from the BOG compressor 17.
  • the recondenser 12 reliquefies (recondenses) a part of the BOG by utilizing the latent heat of vaporization caused by spraying LNG on the BOG inside the pressurized state.
  • the reliquefied BOG is mixed with the sprayed LNG and sent to the LNG vaporizer 4 by the LNG booster pump 13.
  • the reliquefied BOG may be returned to the LNG tank 15.
  • the LNG booster pump 13 is a pump for boosting the LNG (including the reliquefied BOG) supplied from the recondenser 12 and sending it to the equipment on land via the LNG vaporizer 4.
  • the LNG booster pump 13 determines the design discharge pressure according to the required pressure on the land side.
  • the LNG booster pump 13 has a role as a suction drum that keeps the liquid level above a certain level in order to prevent idle operation.
  • the trim heater 14 heats the regas with the heating medium by exchanging heat between the heating medium flowing through the heating medium pipe L5 and the regas flowing through the regas pipe L7. Since the heating medium is heated by seawater by the fourth heat exchanger 9, the trim heater 14 is a heat exchanger that uses seawater as a heat source for heating.
  • the trim heater 14 heats the regas sent from the LNG vaporizer 4 to the regas pipe L7 to adjust the temperature of the regas.
  • the capacity of the trim heater 14 is determined to meet the required pressure on the land side.
  • the LNG tank 15 is a tank for storing LNG. BOG in which a part of LNG is evaporated and vaporized is accumulated in the upper part of the LNG tank 15.
  • the feed pump 16 is installed on the bottom surface of the LNG tank 15 and is connected to the LNG pipe L2.
  • the feed pump 16 is a pump for sending an amount of LNG required for regas from the LNG tank 15 to the recondenser 12.
  • the BOG compressor 17 is a gas compressor that sucks in the BOG accumulated in the upper part of the LNG tank 15, compresses it, and sends it to the recondenser 12.
  • the BOG compressor 17 is used for pressure control of the LNG tank 15. As the BOG continues to increase, the internal pressure of the LNG tank 15 rises, so the BOG compressor 17 compresses the BOG in order to protect the LNG tank 15.
  • the compressed BOG is sent to the recondenser 12 or incinerated as fuel for the diesel generator 11.
  • the seawater pump 18 for heating is provided in the seawater pipe L4.
  • the heating seawater pump 18 is a pump for taking in seawater from the outboard and sending it to the fourth heat exchanger 9.
  • the heating medium circulation pump 19 is a pump for boosting and circulating the heating medium.
  • the heating medium circulation pump 19 is provided in the heating medium pipe L5.
  • the cooling seawater pump 20 is provided in the seawater pipe L4.
  • the cooling seawater pump 20 is a pump for taking in seawater from the outboard and sending it to the fifth heat exchanger 10.
  • the cooling fresh water booster pump 21 is provided in the cooling fresh water pipe L6.
  • the cooling fresh water booster pump 21 boosts the fresh water used for cooling the diesel generator 11 to sequentially circulate the diesel generator 11, the second heat exchanger 7 of the power generation system 2, and the fifth heat exchanger 10. It is a pump of.
  • the power generation system 2 is composed of a closed cycle of the organic medium flowing through the organic medium pipe L1.
  • the organic medium is heated and vaporized by the heat recovered from the gas wake of the BOG compressor 17, the heat obtained from seawater, and the heat obtained from the waste heat of the diesel generator 11.
  • the difference between those heats and the cold heat obtained from LNG liquefies the organic medium to generate expansion force.
  • the turbo generator 3 converts this expansion force into rotational energy to generate electricity.
  • the organic medium is boosted by the organic medium circulation pump 5 and circulates in the organic medium pipe L1.
  • the third heat exchanger 8 recovers the excess heat given to the BOG pipe L3 by the BOG compressor 17.
  • the first heat exchanger 6 takes in heat from seawater through the heating medium.
  • This heating medium takes in heat from seawater via the fourth heat exchanger 9.
  • the second heat exchanger 7 recovers the waste heat given to the fresh water for cooling the diesel generator 11.
  • FIG. 2 is a Ts diagram showing the temperature / specific enthalpy of the organic medium used in the ORC of the power generation system 2 according to the present embodiment. Further, FIG. 2 shows the saturation curve Cs of the organic medium.
  • the organic medium output from the LNG vaporizer 4 is boosted by the organic medium circulation pump 5 to circulate the organic medium pipe L1 so as to execute ORC (state P5).
  • the organic medium is heated by the first heat exchanger 6 and the third heat exchanger 8 in two phases of liquid or gas (states P6 and P8). While the BOG compressor 17 is in operation, the organic medium passes through the third heat exchanger 8 in order to recover the heat of the wake of the BOG compressor 17 (state P8). While the BOG compressor 17 is stopped, the organic medium passes through a bypass that does not pass through the third heat exchanger 8.
  • the organic medium is heated by the second heat exchanger 7 that utilizes the waste heat of the diesel generator 11. As a result, at least a part of the liquid state (state P7a) is finally vaporized (state P7b).
  • the vaporized organic medium enters the turbo generator 3 in a high temperature and high pressure state (state P3), performs work (power generation), and returns to the LNG vaporizer 4. At this time, the organic medium returns from the gaseous state (state P4a) to the liquid state (state P4b).
  • the LNG in the LNG tank 15 is sent to the recondenser 12 by the feed pump 16. Further, the BOG accumulated in the upper part of the LNG tank 15 is sent to the recondenser 12 via the third heat exchanger 8 by the BOG compressor 17. Therefore, the temperature of the BOG is lowered by the third heat exchanger 8 before being sent to the recondenser 12.
  • the LNG sent by the feed pump 16 is sprayed, and a part of the BOG sent from the BOG compressor 17 is reliquefied.
  • the reliquefaction efficiency is improved, and the recondenser 12 can reliquefy more BOG.
  • the reliquefied BOG and the LNG sent from the LNG tank 15 are boosted to a predetermined pressure by the LNG booster pump 13 and sent to the LNG vaporizer 4.
  • the LNG vaporizer 4 regasses the fed LNG and sends it to the trim heater 14.
  • the trim heater 14 regulates the temperature of the sent natural gas and sends it to the equipment on land.
  • the power generation system 2 is a closed-loop type that heats LNG using steam as a heat source, but an indirect heating system that regasifies an organic medium by using the heat source of seawater (water in the natural environment) via an intermediate medium. Since it is adopted, it also has the advantage of an open loop type.
  • fuel consumption and carbon dioxide emissions can be suppressed compared to the closed-loop type that regasifies without using the heat source of seawater.
  • the indirect heating system it is possible to suppress the influence on the natural environment (for example, the ecosystem) due to the decrease in seawater temperature due to the cold heat of LNG. Further, it is possible to avoid the risk of seawater circulating in each device (LNG vaporizer 4 or the like) of the floating floating equipment 1 (for example, damage to the tube due to freezing of seawater).
  • the power generation system 2 performs LNG cryogenic power generation using LNG cold heat, the LNG cold heat flowing into the seawater can be further reduced.
  • the energy efficiency of the power generation system 2 is improved, and the diesel generator 11 is discharged as seawater. Waste heat can be reduced. As a result, it is possible to suppress the influence on the natural environment due to the rise in seawater temperature.
  • the energy efficiency of the power generation system 2 is improved and the reliquefaction efficiency by the recondenser 12 is improved by providing the third heat exchanger 8 for heating the organic medium by BOG. Can be done.
  • the internal pressure of the LNG tank 15 can be efficiently reduced, and the amount of BOG incinerated can be reduced.
  • the floating floating equipment 1 can suppress the influence on the natural environment and reduce the energy required for the operation as the FSRU.

Abstract

A water-borne floating facility (1) is provided with: a tank (15) for storing liquid gas; an LNG vaporizer (4) for vaporizing LNG stored in the tank (15); a gas delivery means for delivering natural gas vaporized by the LNG vaporizer (4) to an onshore facility; a heating sea water pump (18) for taking in sea water; and a power generating system for generating electricity by means of the Rankine cycle on the basis of a temperature difference between the natural gas and the sea water taken in by the heating sea water pump (18).

Description

水上浮体式設備Floating wind turbine
 本発明は、水上浮体式設備に関する。 The present invention relates to floating floating equipment.
 一般に、LNG(液化天然ガス:liquefied natural gas)を輸送する船舶が知られている(例えば、特許文献1参照)。このような船舶で輸送されたLNGは、FSRU(浮体式LNG貯蔵・再ガス化設備:floating storage regasification unit)を介して、海水の熱を利用して再ガス化され、陸上の設備に送られる。FSRUとしての操業に必要な電力は、化石燃料等によりディーゼル発電機を用いて発電することが知られている。 Generally, a ship that transports LNG (liquefied natural gas) is known (see, for example, Patent Document 1). LNG transported by such a ship is regasified using the heat of seawater via FSRU (floating storage regasification unit) and sent to onshore equipment. .. It is known that the electric power required for the operation as FSRU is generated by using a diesel generator using fossil fuel or the like.
 しかしながら、LNGの冷熱を海水で温めて、冷やされた海水がそのまま海に流出すると、生態系等の自然環境への影響が懸念される。また、操業のためにディーゼル発電機を用いて排熱を海水で冷却し、その海水が流出すると、同様に、自然環境への影響が懸念される。 However, if the cold heat of LNG is warmed with seawater and the cooled seawater flows out into the sea as it is, there is concern about the impact on the natural environment such as the ecosystem. In addition, if the exhaust heat is cooled by seawater using a diesel generator for operation and the seawater flows out, there is also a concern about the impact on the natural environment.
特開2019-34665号公報JP-A-2019-34665
 本発明の実施形態の目的は、自然環境にある水を利用するFSRUとして機能し、自然環境への影響を抑制する水上浮体式設備を提供することにある。 An object of the embodiment of the present invention is to provide a floating floating facility that functions as an FSRU that uses water in the natural environment and suppresses the influence on the natural environment.
 本発明の観点に従った水上浮体式設備は、液体状のガスを貯蔵するタンクと、前記タンクに貯蔵された前記ガスを気化する気化手段と、前記気化手段により気化された前記ガスを陸上の設備に送出するガス送出手段と、自然環境にある水を取り込む水取り込み手段と、前記ガスと前記水取り込み手段により取り込まれた前記水との温度差に基づいて、ランキンサイクルによる発電を行うランキンサイクル発電手段とを備える。 The floating floating equipment according to the viewpoint of the present invention includes a tank for storing a liquid gas, a vaporizing means for vaporizing the gas stored in the tank, and the gas vaporized by the vaporizing means on land. A Rankin cycle that generates power by a Rankin cycle based on the temperature difference between the gas delivery means to be delivered to the equipment, the water intake means for taking in water in the natural environment, and the water taken in by the water intake means. It is equipped with a power generation means.
本発明の実施形態に係る水上浮体式設備の構成を示す構成図。The block diagram which shows the structure of the floating body type equipment which concerns on embodiment of this invention. 本実施形態に係るORCの温度/比エンタルピーを示すT-s線図。The Ts diagram which shows the temperature / specific enthalpy of ORC which concerns on this embodiment.
(実施形態)
 図1は、本発明の実施形態に係る水上浮体式設備1の構成を示す構成図である。
(Embodiment)
FIG. 1 is a configuration diagram showing a configuration of a floating floating turbine 1 according to an embodiment of the present invention.
 水上浮体式設備1は、LNGを貯蔵し、貯蔵しているLNGを再ガスして陸上の設備(例えば、ガス管)に高圧ガスを送る水上浮体式(洋上浮体式)のLNG基地である。即ち、水上浮体式設備1は、FSRUである。また、水上浮体式設備1は、航行可能な移動体(例えば、船舶)である。 The floating floating equipment 1 is a floating floating LNG terminal that stores LNG, regass the stored LNG, and sends high-pressure gas to equipment on land (for example, a gas pipe). That is, the floating floating equipment 1 is an FSRU. Further, the floating floating equipment 1 is a navigable mobile body (for example, a ship).
 なお、水上浮体式設備1は、液体状のガス(例えば、LNG)を貯蔵して、そのガスを再ガス化(気化)して陸上に送る機能を有し、海水、河水又は湖水等の水に浮かぶ設備であれば、どのような形状及び構造でもよい。例えば、水上浮体式設備1は、船の形をしていなくても良いし、推進設備がなくてもよい。ここでは、水上浮体式設備1は、主に、海洋を航行する船舶として構成されたものについて説明する。 The floating floating equipment 1 has a function of storing a liquid gas (for example, LNG), regasifying (vaporizing) the gas, and sending it to land, and water such as seawater, river water, or lake water. Any shape and structure may be used as long as the equipment floats on the surface. For example, the floating floating equipment 1 does not have to be in the shape of a ship, and may not have a propulsion equipment. Here, the floating floating equipment 1 will be mainly described as being configured as a ship navigating in the ocean.
 水上浮体式設備1は、ターボ発電機3、LNG気化器4、有機媒体循環ポンプ5、第1熱交換器6、第2熱交換器7、第3熱交換器8、第4熱交換器9、第5熱交換器10、ディーゼル発電機11、リコンデンサー(再液化装置)12、LNG昇圧ポンプ13、トリムヒーター(再ガス温度調整用熱交換器)14、LNGタンク15、フィードポンプ(feed pump)16、BOG(boil off gas)圧縮機17、加熱用海水ポンプ18、加熱媒体循環ポンプ19、冷却用海水ポンプ20、冷却清水昇圧ポンプ21、有機媒体配管L1、LNG配管L2、BOG配管L3、海水配管L4、加熱媒体配管L5、冷却清水配管L6、及び、再ガス配管L7を備える。 The floating floating equipment 1 includes a turbo generator 3, an LNG vaporizer 4, an organic medium circulation pump 5, a first heat exchanger 6, a second heat exchanger 7, a third heat exchanger 8, and a fourth heat exchanger 9. , 5th heat exchanger 10, diesel generator 11, recondenser (reliquefaction device) 12, LNG booster pump 13, trim heater (heat exchanger for regas temperature adjustment) 14, LNG tank 15, feed pump (feed pump) ) 16, BOG (boil off gas) compressor 17, heating seawater pump 18, heating medium circulation pump 19, cooling seawater pump 20, cooling fresh water booster pump 21, organic medium piping L1, LNG piping L2, BOG piping L3, A seawater pipe L4, a heating medium pipe L5, a cooling fresh water pipe L6, and a regas pipe L7 are provided.
 有機媒体配管L1は、発電システム2で用いられる有機媒体が流れる配管である。有機媒体配管L1は、LNG気化器4とターボ発電機3との間を有機媒体が循環するように構成される。有機媒体配管L1は、LNG気化器4からターボ発電機3に第1熱交換器6及び第2熱交換器7を順次に介する経路を含み、LNG気化器4から第1熱交換器6への経路において、第3熱交換器8を経由する経路と第3熱交換器8を経由しない経路(バイパス)に分岐するように構成される。BOG圧縮機17が動作中は、有機媒体は、第3熱交換器8を経由する経路を流れ、BOG圧縮機17が停止中は、有機媒体は、第3熱交換器8を経由しない経路を流れる。なお、有機媒体が3つの熱交換器6~8を通る順番は、どのように構成されてもよい。有機媒体は、例えばプロパンであるが、可燃性媒体ではなく、プロパンに熱特性が近い非可燃性媒体でもよい。 The organic medium pipe L1 is a pipe through which the organic medium used in the power generation system 2 flows. The organic medium pipe L1 is configured so that the organic medium circulates between the LNG vaporizer 4 and the turbo generator 3. The organic medium pipe L1 includes a path from the LNG vaporizer 4 to the turbo generator 3 via the first heat exchanger 6 and the second heat exchanger 7 in sequence, and from the LNG vaporizer 4 to the first heat exchanger 6. The route is configured to branch into a route that passes through the third heat exchanger 8 and a route that does not pass through the third heat exchanger 8 (bypass). While the BOG compressor 17 is operating, the organic medium flows through a path that passes through the third heat exchanger 8, and while the BOG compressor 17 is stopped, the organic medium flows through a path that does not pass through the third heat exchanger 8. It flows. The order in which the organic medium passes through the three heat exchangers 6 to 8 may be configured in any order. The organic medium is, for example, propane, but it may not be a flammable medium but a non-flammable medium having thermal characteristics close to those of propane.
 LNG配管L2は、LNGタンク15からリコンデンサー12にLNGが送られるように構成される。LNGは、どのような組成でもよい。 The LNG pipe L2 is configured so that LNG is sent from the LNG tank 15 to the recondenser 12. LNG may have any composition.
 BOG配管L3は、LNGタンク15の上部からリコンデンサー12にBOG圧縮機17及び第3熱交換器8を順次に介してBOG(boil off gas)が送られるように構成される。また、BOG配管L3は、ディーゼル発電機11の燃料供給用としてBOGを送る経路が設けられる。BOGは、LNGタンク15に蓄積されたLNGの一部が入熱により気化した気体状の天然ガスである。 The BOG pipe L3 is configured so that BOG (boil off gas) is sequentially sent from the upper part of the LNG tank 15 to the recondenser 12 via the BOG compressor 17 and the third heat exchanger 8. Further, the BOG pipe L3 is provided with a path for sending the BOG for fuel supply of the diesel generator 11. BOG is a gaseous natural gas in which a part of LNG accumulated in the LNG tank 15 is vaporized by heat input.
 海水配管L4は、第4熱交換器9及び第5熱交換器10のそれぞれに船外から取り込まれた海水が送られ、第4熱交換器9及び第5熱交換器10のそれぞれから加熱又は冷却に使用された海水が船外に放出されるように構成される。 In the seawater pipe L4, seawater taken in from outside the ship is sent to each of the 4th heat exchanger 9 and the 5th heat exchanger 10, and is heated or heated from each of the 4th heat exchanger 9 and the 5th heat exchanger 10. The seawater used for cooling is configured to be discharged overboard.
 加熱媒体配管L5は、加熱媒体が流れる配管である。加熱媒体配管L5は、第4熱交換器9とトリムヒーター14との間を加熱媒体が循環する経路、及び、第4熱交換器9と第1熱交換器6との間を加熱媒体が循環する経路を含むように構成される。加熱媒体は、第1熱交換器6により有機媒体を加熱するために用いられ、トリムヒーター14の加熱媒体としても用いられる。 The heating medium pipe L5 is a pipe through which the heating medium flows. In the heating medium pipe L5, the heating medium circulates between the fourth heat exchanger 9 and the trim heater 14 and between the fourth heat exchanger 9 and the first heat exchanger 6. It is configured to include a route to do so. The heating medium is used to heat the organic medium by the first heat exchanger 6, and is also used as the heating medium of the trim heater 14.
 ここで、有機媒体を海水で直接加熱すると、海水が第1熱交換器6の中で氷結するリスクがある。このため、有機媒体と海水との中間媒体として、不凍熱媒体である加熱媒体を用いる。例えば、加熱媒体は、エチレングリコール水溶液(グリコール水)であるが、プロパン等のその他の媒体でもよい。 Here, if the organic medium is directly heated with seawater, there is a risk that the seawater freezes in the first heat exchanger 6. Therefore, a heating medium, which is an antifreeze heat medium, is used as an intermediate medium between the organic medium and seawater. For example, the heating medium is an aqueous ethylene glycol solution (glycol water), but other media such as propane may also be used.
 冷却清水配管L6は、ディーゼル発電機11のエアクーラーなどでエンジン給気を冷却するための清水が流れる配管である。冷却清水配管L6は、第5熱交換器10、ディーゼル発電機11、及び、第2熱交換器7を順次に清水が流れて循環するように構成される。 The cooling fresh water pipe L6 is a pipe through which fresh water flows to cool the engine supply air with an air cooler of the diesel generator 11. The cooling fresh water pipe L6 is configured so that fresh water flows and circulates in sequence through the fifth heat exchanger 10, the diesel generator 11, and the second heat exchanger 7.
 再ガス配管L7は、LNG気化器4からトリムヒーター14を介して陸上の設備に、気化(再ガス化)された天然ガスが送出されるように構成される。 The regas pipe L7 is configured so that vaporized (regasified) natural gas is sent from the LNG vaporizer 4 to the onshore equipment via the trim heater 14.
 発電システム2は、ターボ発電機3、LNG気化器4、有機媒体循環ポンプ5、第1熱交換器6、第2熱交換器7、第3熱交換器8、及び、有機媒体配管L1で構成される。 The power generation system 2 includes a turbo generator 3, an LNG vaporizer 4, an organic medium circulation pump 5, a first heat exchanger 6, a second heat exchanger 7, a third heat exchanger 8, and an organic medium pipe L1. Will be done.
 発電システム2は、有機媒体を用いたランキンサイクルにより発電を行う有機ランキンサイクル(ORC、organic Rankine cycle)式発電システムである。LNG冷熱とその他の熱源との温度差を利用してターボ発電機3で発電を行う。 The power generation system 2 is an organic Rankine cycle (ORC) power generation system that generates power by a Rankine cycle using an organic medium. The turbo generator 3 generates electricity by utilizing the temperature difference between the LNG cold heat and other heat sources.
 発電システム2の動作の概要は、次のとおりである。各熱交換器6~8は、有機媒体を加熱(気化)して過熱蒸気を作る。ターボ発電機3は、熱交換器6~8により作られた過熱蒸気をタービンで膨張させて、タービンを回転させる。ターボ発電機3は、この回転力(仕事)により発電する。ターボ発電機3のタービンで仕事をした有機媒体は、気体のまま又は気液混合状態で、LNG気化器4で冷却されて凝縮・液化し、各熱交換器6~8に戻る。発電システム2は、この一連の動作を繰り返すことで、発電するためのサイクルが行われる。 The outline of the operation of the power generation system 2 is as follows. Each heat exchanger 6 to 8 heats (vaporizes) an organic medium to produce superheated steam. The turbo generator 3 rotates the turbine by expanding the superheated steam produced by the heat exchangers 6 to 8 in the turbine. The turbo generator 3 generates electricity by this rotational force (work). The organic medium that has worked in the turbine of the turbo generator 3 is cooled by the LNG vaporizer 4 in a gas state or a gas-liquid mixed state to be condensed and liquefied, and returns to each of the heat exchangers 6 to 8. The power generation system 2 repeats this series of operations to perform a cycle for generating power.
 ターボ発電機3は、翼を備えるタービンローターが発電機と接続された構成である。ターボ発電機3は、蒸気ではなく高分子の有機媒体を利用する発電機である。 The turbo generator 3 has a configuration in which a turbine rotor having wings is connected to the generator. The turbo generator 3 is a generator that uses a polymer organic medium instead of steam.
 LNG気化器4は、有機媒体配管L1に流れる有機媒体から熱を吸収してLNGを気化(再ガス化)させるための熱交換器である。例えば、LNG気化器4は、シェルアンドチューブ(shell & tube)タイプであるが、その他のタイプでもよい。 The LNG vaporizer 4 is a heat exchanger for absorbing heat from the organic medium flowing through the organic medium pipe L1 to vaporize (regasify) LNG. For example, the LNG vaporizer 4 is a shell and tube type, but other types may be used.
 有機媒体循環ポンプ5は、LNG気化器4で冷却され凝縮・液化した有機媒体を昇圧させて、発電システム2の有機媒体配管L1に有機媒体を循環させるためのポンプである。なお、有機媒体循環ポンプ5の上流側(LNG気化器4の後流側)に、液化した有機媒体を一時的に貯蔵するタンクを設けてもよい。 The organic medium circulation pump 5 is a pump for boosting the pressure of the condensed / liquefied organic medium cooled by the LNG vaporizer 4 and circulating the organic medium in the organic medium pipe L1 of the power generation system 2. A tank for temporarily storing the liquefied organic medium may be provided on the upstream side of the organic medium circulation pump 5 (the wake side of the LNG vaporizer 4).
 第1熱交換器6は、有機媒体配管L1に流れる有機媒体と加熱媒体配管L5に流れる加熱媒体との間で熱交換することで、加熱媒体で有機媒体を加熱する。なお、第1熱交換器6は、使用しない時があってもよいし、設けなくてもよい。この場合、発電システム2は、第2熱交換器7及び第3熱交換器8を用いて、ディーゼル発電機11の廃熱及びBOG圧縮機17の熱回収で、ランキンサイクルを行う。このため、水上浮体式設備1は、海水使用量を削減してもよい。 The first heat exchanger 6 heats the organic medium with the heating medium by exchanging heat between the organic medium flowing through the organic medium pipe L1 and the heating medium flowing through the heating medium pipe L5. The first heat exchanger 6 may or may not be used. In this case, the power generation system 2 uses the second heat exchanger 7 and the third heat exchanger 8 to perform the Rankine cycle by waste heat of the diesel generator 11 and heat recovery of the BOG compressor 17. Therefore, the floating floating turbine 1 may reduce the amount of seawater used.
 第2熱交換器7は、有機媒体配管L1に流れる有機媒体と、冷却清水配管L6に流れる清水との間で熱交換することで、清水で有機媒体を加熱する。これにより、第2熱交換器7は、ディーゼル発電機11の廃熱を利用して有機媒体を加熱する。 The second heat exchanger 7 heats the organic medium with fresh water by exchanging heat between the organic medium flowing through the organic medium pipe L1 and the fresh water flowing through the cooling fresh water pipe L6. As a result, the second heat exchanger 7 heats the organic medium by utilizing the waste heat of the diesel generator 11.
 第3熱交換器8は、有機媒体配管L1に流れる有機媒体と、BOG配管L3に流れるBOGとの間で熱交換することで、BOGで有機媒体を加熱する。 The third heat exchanger 8 heats the organic medium with the BOG by exchanging heat between the organic medium flowing through the organic medium pipe L1 and the BOG flowing through the BOG pipe L3.
 第4熱交換器9は、海水配管L4に流れる海水と、加熱媒体配管L5に流れる加熱媒体との間で熱交換することで、海水で加熱媒体を加熱する。 The fourth heat exchanger 9 heats the heating medium with seawater by exchanging heat between the seawater flowing through the seawater pipe L4 and the heating medium flowing through the heating medium pipe L5.
 第5熱交換器10は、海水配管L4に流れる海水と、冷却清水配管L6に流れる清水との間で熱交換することで、海水で清水を冷却する。 The fifth heat exchanger 10 cools the fresh water with seawater by exchanging heat between the seawater flowing through the seawater pipe L4 and the fresh water flowing through the cooling fresh water pipe L6.
 ディーゼル発電機11は、再ガス化処理に必要な電力(例えば、LNG昇圧ポンプ13、BOG圧縮機17、又は、加熱用海水ポンプ18の電源等)の船内の電力を賄うための発電機である。ディーゼル発電機11は、重油及びBOG圧縮機17から供給されるBOGを燃料として燃焼させて発電する2元燃料焚きディーゼル発電機である。なお、ディーゼル発電機11は、ディーゼル機関を用いない他の発電機でもよい。 The diesel generator 11 is a generator for supplying the electric power required for the regasification process (for example, the power source of the LNG booster pump 13, the BOG compressor 17, or the heating seawater pump 18) on board. .. The diesel generator 11 is a dual fuel-fired diesel generator that generates electricity by burning heavy oil and BOG supplied from the BOG compressor 17 as fuel. The diesel generator 11 may be another generator that does not use a diesel engine.
 リコンデンサー12は、BOG圧縮機17から供給されるBOGの一部を再液化(再凝縮)させるための圧力容器である。リコンデンサー12は、加圧された状態の内部で、BOGにLNGをスプレーすることによる蒸発潜熱を利用して、BOGの一部を再液化(再凝縮)させる。再液化されたBOGは、スプレーされたLNGと混合されて、LNG昇圧ポンプ13でLNG気化器4に送られる。なお、再液化されたBOGは、LNGタンク15に戻されてもよい。 The recondenser 12 is a pressure vessel for reliquefying (recondensing) a part of the BOG supplied from the BOG compressor 17. The recondenser 12 reliquefies (recondenses) a part of the BOG by utilizing the latent heat of vaporization caused by spraying LNG on the BOG inside the pressurized state. The reliquefied BOG is mixed with the sprayed LNG and sent to the LNG vaporizer 4 by the LNG booster pump 13. The reliquefied BOG may be returned to the LNG tank 15.
 LNG昇圧ポンプ13は、リコンデンサー12から供給されたLNG(BOGが再液化されたものを含む)を昇圧して、LNG気化器4を介して、陸上の設備に送るためのポンプである。LNG昇圧ポンプ13は、陸上側の要求圧力に合わせて設計吐出圧力を決定する。LNG昇圧ポンプ13は、空運転防止のために液面を一定以上に保つサクションドラムとしての役割を持つ。 The LNG booster pump 13 is a pump for boosting the LNG (including the reliquefied BOG) supplied from the recondenser 12 and sending it to the equipment on land via the LNG vaporizer 4. The LNG booster pump 13 determines the design discharge pressure according to the required pressure on the land side. The LNG booster pump 13 has a role as a suction drum that keeps the liquid level above a certain level in order to prevent idle operation.
 トリムヒーター14は、加熱媒体配管L5に流れる加熱媒体と、再ガス配管L7に流れる再ガスとの間で熱交換することで、加熱媒体で再ガスを加熱する。加熱媒体は、第4熱交換器9により海水で加熱されることから、トリムヒーター14は、加熱用熱源として海水を利用する熱交換器である。トリムヒーター14は、LNG気化器4から再ガス配管L7に送り込まれた再ガスを加熱して、再ガスの温度を調整する。トリムヒーター14の容量は、陸上側の要求圧力に合うように決定される。 The trim heater 14 heats the regas with the heating medium by exchanging heat between the heating medium flowing through the heating medium pipe L5 and the regas flowing through the regas pipe L7. Since the heating medium is heated by seawater by the fourth heat exchanger 9, the trim heater 14 is a heat exchanger that uses seawater as a heat source for heating. The trim heater 14 heats the regas sent from the LNG vaporizer 4 to the regas pipe L7 to adjust the temperature of the regas. The capacity of the trim heater 14 is determined to meet the required pressure on the land side.
 LNGタンク15は、LNGを貯蔵するタンクである。LNGタンク15の上部には、一部のLNGが蒸発・気化したBOGが溜まる。 The LNG tank 15 is a tank for storing LNG. BOG in which a part of LNG is evaporated and vaporized is accumulated in the upper part of the LNG tank 15.
 フィードポンプ16は、LNGタンク15の底面に設置され、LNG配管L2に接続される。フィードポンプ16は、再ガスに必要な量のLNGをLNGタンク15からリコンデンサー12に送るためのポンプである。 The feed pump 16 is installed on the bottom surface of the LNG tank 15 and is connected to the LNG pipe L2. The feed pump 16 is a pump for sending an amount of LNG required for regas from the LNG tank 15 to the recondenser 12.
 BOG圧縮機17は、LNGタンク15の上部に溜まったBOGを吸い込み、圧縮してリコンデンサー12に送るガス圧縮機である。BOG圧縮機17は、LNGタンク15の圧力制御用に使われる。BOGが増え続けるとLNGタンク15の内部圧力が上昇するため、BOG圧縮機17は、LNGタンク15を保護するために、BOGを圧縮する。圧縮されたBOGは、リコンデンサー12に送られるか、又は、ディーゼル発電機11の燃料として焼却処理される。 The BOG compressor 17 is a gas compressor that sucks in the BOG accumulated in the upper part of the LNG tank 15, compresses it, and sends it to the recondenser 12. The BOG compressor 17 is used for pressure control of the LNG tank 15. As the BOG continues to increase, the internal pressure of the LNG tank 15 rises, so the BOG compressor 17 compresses the BOG in order to protect the LNG tank 15. The compressed BOG is sent to the recondenser 12 or incinerated as fuel for the diesel generator 11.
 加熱用海水ポンプ18は、海水配管L4に設けられる。加熱用海水ポンプ18は、海水を船外から取り込み、第4熱交換器9に送るためのポンプである。 The seawater pump 18 for heating is provided in the seawater pipe L4. The heating seawater pump 18 is a pump for taking in seawater from the outboard and sending it to the fourth heat exchanger 9.
 加熱媒体循環ポンプ19は、加熱媒体を昇圧し、循環させるためのポンプである。加熱媒体循環ポンプ19は、加熱媒体配管L5に設けられる。 The heating medium circulation pump 19 is a pump for boosting and circulating the heating medium. The heating medium circulation pump 19 is provided in the heating medium pipe L5.
 冷却用海水ポンプ20は、海水配管L4に設けられる。冷却用海水ポンプ20は、海水を船外から取り込み、第5熱交換器10に送るためのポンプである。 The cooling seawater pump 20 is provided in the seawater pipe L4. The cooling seawater pump 20 is a pump for taking in seawater from the outboard and sending it to the fifth heat exchanger 10.
 冷却清水昇圧ポンプ21は、冷却清水配管L6に設けられる。冷却清水昇圧ポンプ21は、ディーゼル発電機11の冷却に用いられる清水を昇圧して、ディーゼル発電機11、発電システム2の第2熱交換器7、第5熱交換器10を順次に循環させるためのポンプである。 The cooling fresh water booster pump 21 is provided in the cooling fresh water pipe L6. The cooling fresh water booster pump 21 boosts the fresh water used for cooling the diesel generator 11 to sequentially circulate the diesel generator 11, the second heat exchanger 7 of the power generation system 2, and the fifth heat exchanger 10. It is a pump of.
 次に、発電システム2について説明する。 Next, the power generation system 2 will be described.
 発電システム2は、有機媒体配管L1に流れる有機媒体の閉サイクルにより成り立っている。有機媒体は、BOG圧縮機17の後流のガスから回収する熱、海水から得た熱、及び、ディーゼル発電機11の廃熱から得た熱で加熱・気化される。それらの熱とLNGから得た冷熱との差で有機媒体を液化させて、膨張力を生み出す。ターボ発電機3は、この膨張力を回転エネルギーに変換して発電する。 The power generation system 2 is composed of a closed cycle of the organic medium flowing through the organic medium pipe L1. The organic medium is heated and vaporized by the heat recovered from the gas wake of the BOG compressor 17, the heat obtained from seawater, and the heat obtained from the waste heat of the diesel generator 11. The difference between those heats and the cold heat obtained from LNG liquefies the organic medium to generate expansion force. The turbo generator 3 converts this expansion force into rotational energy to generate electricity.
 有機媒体は、有機媒体循環ポンプ5で昇圧され、有機媒体配管L1を循環する。有機媒体の1次加熱として、第3熱交換器8は、BOG圧縮機17によりBOG配管L3に余分に与えられた熱を回収する。有機媒体の2次加熱として、第1熱交換器6は、加熱媒体を介して、海水からの熱を取り入れる。この加熱媒体は、第4熱交換器9を介して海水から熱を取り入れる。有機媒体の3次加熱(及び気化)として、第2熱交換器7は、ディーゼル発電機11の冷却用の清水に与えられた廃熱を回収する。これらの加熱・気化過程を経て、有機媒体は、発電に必要なエネルギーを与えられ、ターボ発電機3を通過することで、発電システム2は、電力を得る。 The organic medium is boosted by the organic medium circulation pump 5 and circulates in the organic medium pipe L1. As the primary heating of the organic medium, the third heat exchanger 8 recovers the excess heat given to the BOG pipe L3 by the BOG compressor 17. As the secondary heating of the organic medium, the first heat exchanger 6 takes in heat from seawater through the heating medium. This heating medium takes in heat from seawater via the fourth heat exchanger 9. As the tertiary heating (and vaporization) of the organic medium, the second heat exchanger 7 recovers the waste heat given to the fresh water for cooling the diesel generator 11. Through these heating and vaporization processes, the organic medium is given the energy required for power generation, and by passing through the turbo generator 3, the power generation system 2 obtains electric power.
 図2は、本実施形態に係る、発電システム2のORCで用いられる有機媒体の温度/比エンタルピーを示すT-s線図である。また、図2には、有機媒体の飽和曲線Csを示している。 FIG. 2 is a Ts diagram showing the temperature / specific enthalpy of the organic medium used in the ORC of the power generation system 2 according to the present embodiment. Further, FIG. 2 shows the saturation curve Cs of the organic medium.
 LNG気化器4から出力された有機媒体は、有機媒体循環ポンプ5により昇圧されることで、ORCを実行するように有機媒体配管L1を循環する(状態P5)。 The organic medium output from the LNG vaporizer 4 is boosted by the organic medium circulation pump 5 to circulate the organic medium pipe L1 so as to execute ORC (state P5).
 有機媒体は、第1熱交換器6及び第3熱交換器8により、液体又は気液2相で加熱される(状態P6,P8)。BOG圧縮機17が動作中は、有機媒体は、BOG圧縮機17の後流の熱を回収するために、第3熱交換器8を通る(状態P8)。BOG圧縮機17が停止中は、有機媒体は、第3熱交換器8を通らないバイパスを通る。 The organic medium is heated by the first heat exchanger 6 and the third heat exchanger 8 in two phases of liquid or gas (states P6 and P8). While the BOG compressor 17 is in operation, the organic medium passes through the third heat exchanger 8 in order to recover the heat of the wake of the BOG compressor 17 (state P8). While the BOG compressor 17 is stopped, the organic medium passes through a bypass that does not pass through the third heat exchanger 8.
 有機媒体は、ディーゼル発電機11の廃熱を利用した第2熱交換器7により、加熱される。これにより、少なくとも一部が液体の状態(状態P7a)から、最終的に全量気化する(状態P7b)。気化した有機媒体は、高温かつ高圧の状態(状態P3)でターボ発電機3に入り、仕事(発電)をして、LNG気化器4に戻る。このとき、有機媒体は、気体の状態(状態P4a)から液体の状態(状態P4b)に戻る。 The organic medium is heated by the second heat exchanger 7 that utilizes the waste heat of the diesel generator 11. As a result, at least a part of the liquid state (state P7a) is finally vaporized (state P7b). The vaporized organic medium enters the turbo generator 3 in a high temperature and high pressure state (state P3), performs work (power generation), and returns to the LNG vaporizer 4. At this time, the organic medium returns from the gaseous state (state P4a) to the liquid state (state P4b).
 次に、LNGが再ガス化されて、陸上の設備に送られる動作について説明する。 Next, the operation in which LNG is regasified and sent to equipment on land will be described.
 LNG気化器4によるLNGの再ガス化を行う場合、LNGタンク15内のLNGがフィードポンプ16で、リコンデンサー12に送られる。また、LNGタンク15の上部に溜まったBOGは、BOG圧縮機17で第3熱交換器8を介してリコンデンサー12に送られる。したがって、第3熱交換器8により、リコンデンサー12に送られる前に、BOGの温度は、下げられる。 When regasifying LNG with the LNG vaporizer 4, the LNG in the LNG tank 15 is sent to the recondenser 12 by the feed pump 16. Further, the BOG accumulated in the upper part of the LNG tank 15 is sent to the recondenser 12 via the third heat exchanger 8 by the BOG compressor 17. Therefore, the temperature of the BOG is lowered by the third heat exchanger 8 before being sent to the recondenser 12.
 リコンデンサー12内では、フィードポンプ16により送り込まれたLNGがスプレーされて、BOG圧縮機17から送り込まれたBOGの一部が再液化する。このとき、BOGの温度が予め下げられていることで、再液化効率が向上し、リコンデンサー12は、より多くのBOGを再液化することができる。 In the recondenser 12, the LNG sent by the feed pump 16 is sprayed, and a part of the BOG sent from the BOG compressor 17 is reliquefied. At this time, since the temperature of the BOG is lowered in advance, the reliquefaction efficiency is improved, and the recondenser 12 can reliquefy more BOG.
 再液化されたBOGとLNGタンク15から送り込まれたLNGは、LNG昇圧ポンプ13により、所定の圧力に昇圧され、LNG気化器4に送られる。LNG気化器4は、送り込まれたLNGを再ガス化し、トリムヒーター14に送る。トリムヒーター14は、送り込まれた天然ガスを温度調節して、陸上の設備に送る。 The reliquefied BOG and the LNG sent from the LNG tank 15 are boosted to a predetermined pressure by the LNG booster pump 13 and sent to the LNG vaporizer 4. The LNG vaporizer 4 regasses the fed LNG and sends it to the trim heater 14. The trim heater 14 regulates the temperature of the sent natural gas and sends it to the equipment on land.
 本実施形態によれば、以下の作用効果を得ることができる。 According to this embodiment, the following effects can be obtained.
 発電システム2は、蒸気を熱源としてLNGを加熱するクローズドループ式であるが、中間媒体を介して海水(自然環境にある水)の熱源を利用して有機媒体を再ガス化する間接加熱システムを採用しているため、オープンループ式の利点も有する。 The power generation system 2 is a closed-loop type that heats LNG using steam as a heat source, but an indirect heating system that regasifies an organic medium by using the heat source of seawater (water in the natural environment) via an intermediate medium. Since it is adopted, it also has the advantage of an open loop type.
 具体的には、海水の熱源を利用せずに再ガス化するクローズドループ式と比較して、燃料消費量および二酸化炭素排出量を抑制することができる。また、間接加熱システムを採用することで、LNGの冷熱で海水温度が低下することによる自然環境(例えば、生態系)への影響を抑制することができる。さらに、水上浮体式設備1の各機器(LNG気化器4等)を海水が循環することによるリスク(例えば、海水の氷結によるチューブの破損等)を避けることができる。 Specifically, fuel consumption and carbon dioxide emissions can be suppressed compared to the closed-loop type that regasifies without using the heat source of seawater. Further, by adopting the indirect heating system, it is possible to suppress the influence on the natural environment (for example, the ecosystem) due to the decrease in seawater temperature due to the cold heat of LNG. Further, it is possible to avoid the risk of seawater circulating in each device (LNG vaporizer 4 or the like) of the floating floating equipment 1 (for example, damage to the tube due to freezing of seawater).
 また、発電システム2は、LNG冷熱を利用したLNG冷熱発電を行うため、海水に流れ出るLNG冷熱をさらに低減することができる。 Further, since the power generation system 2 performs LNG cryogenic power generation using LNG cold heat, the LNG cold heat flowing into the seawater can be further reduced.
 さらに、ディーゼル発電機11を冷却する清水で、有機媒体を加熱するための第2熱交換器7を設けることで、発電システム2のエネルギー効率を向上させ、海水として放出されるディーゼル発電機11の廃熱を低減することができる。これにより、海水温度が上昇することによる自然環境への影響を抑制することができる。 Further, by providing a second heat exchanger 7 for heating the organic medium with fresh water for cooling the diesel generator 11, the energy efficiency of the power generation system 2 is improved, and the diesel generator 11 is discharged as seawater. Waste heat can be reduced. As a result, it is possible to suppress the influence on the natural environment due to the rise in seawater temperature.
 ここで、余剰BOGをリコンデンサー12に送るために、BOG圧縮機17を運転する必要がある。これにより、BOGの温度が上がり、再液化処理にとって余分な入熱がBOGに与えられる。この余分な入熱により、再液化効率は下がり、LNGタンク15の内部圧力の上昇速度が上がる。LNGタンク15の内部圧力が一定以上に上昇すると、LNGタンク15の保護のため、BOGを焼却処理する必要がある。これにより、水上浮体式設備1の全体でのエネルギー効率が低減し、二酸化炭素の発生量が増加する。 Here, it is necessary to operate the BOG compressor 17 in order to send the surplus BOG to the recondenser 12. This raises the temperature of the BOG and gives the BOG extra heat for the reliquefaction process. Due to this extra heat input, the reliquefaction efficiency decreases and the rate of increase in the internal pressure of the LNG tank 15 increases. When the internal pressure of the LNG tank 15 rises above a certain level, it is necessary to incinerate the BOG to protect the LNG tank 15. As a result, the energy efficiency of the floating floating turbine 1 as a whole is reduced, and the amount of carbon dioxide generated is increased.
 そこで、水上浮体式設備1では、BOGにより有機媒体を加熱するための第3熱交換器8を設けることで、発電システム2のエネルギー効率を向上させ、リコンデンサー12による再液化効率を向上させることができる。これにより、LNGタンク15の内部圧力を効率的に低下させることができ、BOGの焼却処理される量を低減することができる。 Therefore, in the floating body type equipment 1, the energy efficiency of the power generation system 2 is improved and the reliquefaction efficiency by the recondenser 12 is improved by providing the third heat exchanger 8 for heating the organic medium by BOG. Can be done. As a result, the internal pressure of the LNG tank 15 can be efficiently reduced, and the amount of BOG incinerated can be reduced.
 したがって、水上浮体式設備1は、FSRUにLNG冷熱を利用する発電システム2を適用することで、自然環境への影響を抑制し、FSRUとしての操業に必要なエネルギーを低減することができる。 Therefore, by applying the power generation system 2 that utilizes LNG cold heat to the FSRU, the floating floating equipment 1 can suppress the influence on the natural environment and reduce the energy required for the operation as the FSRU.

Claims (10)

  1.  液体状のガスを貯蔵するタンクと、
     前記タンクに貯蔵された前記ガスを気化する気化手段と、
     前記気化手段により気化された前記ガスを陸上の設備に送出するガス送出手段と、
     自然環境にある水を取り込む水取り込み手段と、
     前記ガスと前記水取り込み手段により取り込まれた前記水との温度差に基づいて、ランキンサイクルによる発電を行うランキンサイクル発電手段と
    を備えたことを特徴とする水上浮体式設備。
    A tank for storing liquid gas and
    A vaporizing means for vaporizing the gas stored in the tank and
    A gas delivery means for delivering the gas vaporized by the vaporization means to a facility on land, and a gas delivery means.
    Water intake means for taking in water in the natural environment,
    A floating floating facility equipped with a Rankine cycle power generation means that generates power by a Rankine cycle based on a temperature difference between the gas and the water taken in by the water intake means.
  2.  前記水取り込み手段により取り込まれた前記水に基づいて、前記ランキンサイクルで用いるランキンサイクル用媒体を加熱するための第1加熱手段
    を備えたことを特徴とする請求項1に記載の水上浮体式設備。
    The floating floating equipment according to claim 1, further comprising a first heating means for heating the Rankine cycle medium used in the Rankine cycle based on the water taken in by the water take-in means. ..
  3.  前記第1加熱手段は、前記水で加熱される中間媒体を用いて、前記ランキンサイクル用媒体を加熱すること
    特徴とする請求項2に記載の水上浮体式設備。
    The floating floating equipment according to claim 2, wherein the first heating means heats the Rankine cycle medium by using the intermediate medium heated by water.
  4.  前記ランキンサイクル発電手段と異なる他の発電手段と、
     前記他の発電手段の冷却に用いる清水に基づいて、前記ランキンサイクル用媒体を加熱するための第2加熱手段と
    を備えたことを特徴とする請求項2に記載の水上浮体式設備。
    With other power generation means different from the Rankine cycle power generation means,
    The floating floating equipment according to claim 2, further comprising a second heating means for heating the Rankine cycle medium based on fresh water used for cooling the other power generation means.
  5.  前記水取り込み手段により取り込まれた前記水に基づいて、前記清水を冷却する冷却手段
    を備えたことを特徴とする請求項4に記載の水上浮体式設備。
    The floating floating equipment according to claim 4, further comprising a cooling means for cooling the fresh water based on the water taken in by the water taking-in means.
  6.  前記タンクの内部で発生する気化した前記ガスを圧縮する圧縮手段と、
     前記圧縮手段により圧縮された前記ガスを液化する液化手段と
    を備えたことを特徴とする請求項2に記載の水上浮体式設備。
    A compression means for compressing the vaporized gas generated inside the tank, and
    The floating body type equipment according to claim 2, further comprising a liquefaction means for liquefying the gas compressed by the compression means.
  7.  前記ランキンサイクル用媒体を前記圧縮手段により圧縮された前記ガスで加熱するための第3加熱手段
    を備えたことを特徴とする請求項6に記載の水上浮体式設備。
    The floating floating equipment according to claim 6, further comprising a third heating means for heating the Rankine cycle medium with the gas compressed by the compression means.
  8.  前記タンクの内部で発生する気化した前記ガスを燃料とする前記ランキンサイクル発電手段と異なる他の発電手段
    を備えたことを特徴とする請求項1に記載の水上浮体式設備。
    The floating floating equipment according to claim 1, further comprising another power generation means different from the Rankine cycle power generation means using the vaporized gas generated inside the tank as fuel.
  9.  前記水取り込み手段により取り込まれた前記水に基づいて、前記気化手段により気化された前記ガスの温度を調節する温度調節手段
    を備えたことを特徴とする請求項1に記載の水上浮体式設備。
    The floating floating equipment according to claim 1, further comprising a temperature adjusting means for adjusting the temperature of the gas vaporized by the vaporizing means based on the water taken in by the water taking means.
  10.  水上を移動する機能を有すること
    を特徴とする請求項1に記載の水上浮体式設備。
    The floating floating equipment according to claim 1, further comprising a function of moving on water.
PCT/JP2020/020924 2019-05-28 2020-05-27 Water-borne floating facility WO2020241688A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217038618A KR102631877B1 (en) 2019-05-28 2020-05-27 Floating system on water
CN202080039708.1A CN113891830A (en) 2019-05-28 2020-05-27 Water floating device
SG11202113061YA SG11202113061YA (en) 2019-05-28 2020-05-27 Water-borne floating facility

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-099650 2019-05-28
JP2019099650A JP6833908B2 (en) 2019-05-28 2019-05-28 Floating equipment on the water

Publications (1)

Publication Number Publication Date
WO2020241688A1 true WO2020241688A1 (en) 2020-12-03

Family

ID=73546159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020924 WO2020241688A1 (en) 2019-05-28 2020-05-27 Water-borne floating facility

Country Status (5)

Country Link
JP (1) JP6833908B2 (en)
KR (1) KR102631877B1 (en)
CN (1) CN113891830A (en)
SG (1) SG11202113061YA (en)
WO (1) WO2020241688A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022137961A (en) * 2021-03-09 2022-09-22 三菱重工マリンマシナリ株式会社 Cold recovery system and ship or floating body
JPWO2022250078A1 (en) 2021-05-25 2022-12-01
CN115235433A (en) * 2022-07-19 2022-10-25 中船(浙江)海洋科技有限公司 Marine environment observation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248599A (en) * 1992-03-03 1993-09-24 Osaka Gas Co Ltd Liquefied natural gas storage system
JP2005214313A (en) * 2004-01-30 2005-08-11 Mitsui Eng & Shipbuild Co Ltd Boil-off gas processing system
KR20180036221A (en) * 2016-09-30 2018-04-09 현대중공업 주식회사 A Regasification System Of Gas and Vessel having same
WO2018078688A1 (en) * 2016-10-24 2018-05-03 千代田化工建設株式会社 Floating-type liquified hydrocarbon gas plant manufacturing method
JP2019504792A (en) * 2016-04-07 2019-02-21 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Ship with gas revaporization system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664862B2 (en) * 1997-10-03 2005-06-29 三菱重工業株式会社 LNG cold heat storage method and apparatus, and BOG reliquefaction method using cold storage heat and apparatus thereof
CN101529055A (en) * 2006-08-25 2009-09-09 联邦科学及工业研究组织 A heat engine system
US8132411B2 (en) * 2008-11-06 2012-03-13 Air Products And Chemicals, Inc. Rankine cycle for LNG vaporization/power generation process
KR101219365B1 (en) * 2010-11-30 2013-01-08 에스티엑스조선해양 주식회사 LNG Regasification Facility and Method in the Vessel
US20130042612A1 (en) * 2011-08-15 2013-02-21 Laurence Jay Shapiro Ocean thermal energy conversion power plant
US20130160449A1 (en) * 2011-12-22 2013-06-27 Frederick J. Cogswell Cascaded organic rankine cycle system
JP2014104847A (en) * 2012-11-27 2014-06-09 Mitsubishi Heavy Ind Ltd Cold use device for low-temperature liquefied fuel
CN104088724B (en) * 2014-06-26 2016-06-22 河南工程学院 LNG heat management system based on thermo-electric generation
JP2019034665A (en) 2017-08-18 2019-03-07 株式会社 商船三井 Ship for energy transport

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248599A (en) * 1992-03-03 1993-09-24 Osaka Gas Co Ltd Liquefied natural gas storage system
JP2005214313A (en) * 2004-01-30 2005-08-11 Mitsui Eng & Shipbuild Co Ltd Boil-off gas processing system
JP2019504792A (en) * 2016-04-07 2019-02-21 ヒュンダイ ヘビー インダストリーズ カンパニー リミテッド Ship with gas revaporization system
KR20180036221A (en) * 2016-09-30 2018-04-09 현대중공업 주식회사 A Regasification System Of Gas and Vessel having same
WO2018078688A1 (en) * 2016-10-24 2018-05-03 千代田化工建設株式会社 Floating-type liquified hydrocarbon gas plant manufacturing method

Also Published As

Publication number Publication date
KR20220002513A (en) 2022-01-06
JP2020192895A (en) 2020-12-03
SG11202113061YA (en) 2021-12-30
KR102631877B1 (en) 2024-01-30
JP6833908B2 (en) 2021-02-24
CN113891830A (en) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2020241688A1 (en) Water-borne floating facility
KR101229620B1 (en) Liquefied Natural Gas Supply System for Marine Vessel or Offshore Plant
KR102287832B1 (en) Gas Regasification System and Vessel having the same
KR20190110753A (en) Liquefied gas re-gasification and power generation system
KR101904416B1 (en) A Liquefied Gas Treatment System
KR20150121321A (en) A Treatment System of Liquefied Gas
KR102113919B1 (en) Regasification System of liquefied Gas and Ship Having the Same
KR20150138995A (en) A Treatment System of Liquefied Gas
KR20140084832A (en) LNG Vaporizing System Using Cooling Sea Water From Engine Room
JP6876826B2 (en) Fuel gas supply system
JP7011713B2 (en) Liquefied fuel power generation and distribution system, and cargo handling method using that system
KR102426559B1 (en) System and Method for Liquefied Gas Regasification System with Organic Rankine Cycle
KR102232023B1 (en) Regasification System of liquefied Gas and Ship Having the Same
KR101623092B1 (en) Method and apparatus for reliquefying boil-off gas using cold-heat power generation
KR20150062382A (en) System for supplying fuel gas in ships
KR102027021B1 (en) Regasification System of liquefied Gas
KR102601315B1 (en) Regasification Operating System and Method for a Vessel
KR102279218B1 (en) Regasification System of liquefied Gas and Ship Having the Same
KR20210090842A (en) Energy saving fuel gas heating system and method
KR100743905B1 (en) Regasification system in electric propulsion type lngc
KR102487766B1 (en) Eco-friendly lng fuelled vessel
KR20150062373A (en) System for supplying fuel gas in ships
KR20220039985A (en) Regasification System of liquefied Gas and Ship Having the Same
KR101498388B1 (en) A Liquefied Gas Treatment System
KR102511198B1 (en) Liquefied gas vaporization device and floating body facility equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217038618

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815414

Country of ref document: EP

Kind code of ref document: A1