WO2020241517A1 - 分圧装置 - Google Patents

分圧装置 Download PDF

Info

Publication number
WO2020241517A1
WO2020241517A1 PCT/JP2020/020386 JP2020020386W WO2020241517A1 WO 2020241517 A1 WO2020241517 A1 WO 2020241517A1 JP 2020020386 W JP2020020386 W JP 2020020386W WO 2020241517 A1 WO2020241517 A1 WO 2020241517A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage dividing
substrate
resistance voltage
substrates
resistance
Prior art date
Application number
PCT/JP2020/020386
Other languages
English (en)
French (fr)
Inventor
裕也 山下
文仁 伊澤
聖又 石本
雅人 阿知原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080037192.7A priority Critical patent/CN113841056B/zh
Priority to US17/595,262 priority patent/US11988688B2/en
Priority to JP2021522325A priority patent/JP7069414B2/ja
Publication of WO2020241517A1 publication Critical patent/WO2020241517A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/04Voltage dividers
    • G01R15/06Voltage dividers having reactive components, e.g. capacitive transformer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0084Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring voltage only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/14Measuring resistance by measuring current or voltage obtained from a reference source

Definitions

  • the present invention relates to a voltage divider used for detecting high voltage.
  • a voltage divider is used to detect the voltage value of the voltage output from the high voltage power supply that is the source of the high voltage.
  • the voltage dividing device is a device that divides the voltage output from the high voltage power supply, and the voltage divided by the voltage dividing device is used for detecting the voltage value.
  • the voltage dividing device is provided with a resistance voltage dividing substrate that divides the voltage output from a high voltage power supply using a resistor, and a plurality of resistors and a plurality of capacitors are arranged on the resistance voltage dividing substrate.
  • the first resistor is located at the position of the first side of the triangle
  • the second resistor is located at the position of the second side of the triangle
  • the capacitor is located at the position of the third side of the triangle. They are arranged at each position, which makes the resistance voltage dividing substrate smaller.
  • the resistance voltage dividing substrate is miniaturized, the miniaturization when arranging a plurality of resistance voltage dividing substrates in order to divide a high voltage is not considered.
  • stray capacitance is generated between the resistance voltage dividing substrates, and when the voltage changes excessively due to the bias of the stray capacitance, the design value is applied to the resistance voltage dividing substrate. Since the above voltage may be applied and component destruction may occur, it is necessary to suppress the bias of stray capacitance. In order to suppress the stray capacitance between the resistance voltage dividing substrates, it is necessary to increase the distance between the resistance voltage dividing substrates due to the insulation design. Therefore, in the technique of Patent Document 1, a plurality of resistance voltage dividing substrates are arranged side by side. In that case, there is a problem that the device configuration becomes large.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a voltage dividing device capable of realizing voltage dividing with a small device configuration even when a plurality of resistance voltage dividing substrates are arranged. To do.
  • the present invention is a voltage dividing device for dividing the voltage output from a voltage power supply, and a capacitor and a capacitor connected in parallel on the first surface of a plate-shaped substrate.
  • a plurality of resistance voltage dividing substrates in which a plurality of conductor patterns arranged on the first surface of the substrate are connected in series by a resistor are provided.
  • a plurality of resistance voltage dividing substrates are connected in series via a conductive member, and adjacent resistance voltage dividing substrates are connected to a second surface of one resistance voltage dividing substrate and a first surface of the other resistance voltage dividing substrate.
  • the conductor pattern arranged on the first surface of one resistance voltage dividing substrate and the conductor pattern arranged on the first surface of the other resistance voltage dividing substrate sandwich the other resistance voltage dividing substrate. They are arranged so as to face each other.
  • the figure which shows the equivalent circuit of the resistance voltage dividing substrate shown in FIG. Diagram for explaining capacitor capacity The figure for demonstrating the mounting structure of the pressure dividing device which concerns on Embodiment 1.
  • the figure for demonstrating the stray capacitance generated between the resistance voltage dividing substrates shown in FIG. The figure which shows the simulation analysis result of the stray capacitance in the pressure dividing device which concerns on Embodiment 1.
  • the figure which shows the simulation analysis result when the stray capacitance between substrates is different
  • a front view of the pressure dividing device shown in FIG. Top view showing the configuration of the pressure dividing device shown in FIG.
  • FIG. 1 The figure which shows the structure of the resistance voltage dividing substrate shown in FIG.
  • FIG. 1 is a diagram showing a configuration of a voltage detection system including a voltage dividing device according to the first embodiment.
  • the voltage detection system 100 includes a high voltage power supply (voltage power supply) 1 which is a source of high voltage, a pressure dividing device (high voltage dividing device) 3 which divides the high voltage generated by the high voltage power supply 1, and high voltage. It includes a detection resistor 4 that detects a voltage for controlling the voltage power supply 1.
  • the high voltage power supply 1, the voltage dividing device 3, and the detection resistor 4 are connected in series.
  • One end of the high voltage power supply 1 is connected to one end of the voltage dividing device 3 via the connection point a, and the other end of the voltage dividing device 3 is connected to one end of the detection resistor 4 via the connection point b.
  • the other end of the high voltage power supply 1 is connected to the other end of the high voltage power supply 1.
  • the connection line connecting the other end of the detection resistor 4 and the other end of the high voltage power supply 1 is grounded.
  • the high voltage power supply 1 is a device that supplies a high voltage to a load (not shown).
  • the high voltage power supply 1 controls the output processing of the voltage to the load based on the voltage value detected by the voltage dividing device 3 and the detection resistor 4.
  • the voltage dividing device 3 has a plurality of resistance voltage dividing substrates for dividing the voltage.
  • the voltage dividing device 3 has four resistance voltage dividing boards 2A to 2D will be described, but if the number of the resistance voltage dividing boards included in the voltage dividing device 3 is two or more, It can be any number.
  • the resistance voltage dividing boards 2A to 2D are connected in series. Specifically, one end of the resistance voltage dividing substrate 2A is connected to the connection point a, one end of the resistance voltage dividing substrate 2B is connected to the other end of the resistance voltage dividing substrate 2A, and the resistance is connected to the other end of the resistance voltage dividing substrate 2B. One end of the voltage dividing substrate 2C is connected, one end of the resistance voltage dividing substrate 2D is connected to the other end of the resistance voltage dividing substrate 2C, and the connection point b is connected to the other end of the resistance voltage dividing substrate 2D.
  • circuit system of the high voltage power supply 1 is a booster system using a transformer, a voltage doubler circuit system applied to a Cockcroft-Walton circuit, etc., but any circuit system is applied to the high voltage power supply 1 of the present embodiment. You may.
  • the detection resistor 4 requires 5 k ⁇ , and the combined resistance of the voltage divider 3 requires 60 M ⁇ .
  • the resistance voltage dividing substrates 2A to 2D are divided by about 15 kV per substrate.
  • 60 kV will be used for calculation and explanation below, but since 60 kV is just an example, there is no upper limit or lower limit in the applicable voltage range.
  • the voltage dividing device 3 may be arranged in the vicinity of the high voltage power supply 1, it can be arranged above, below, or on the side surface of the high voltage power supply 1. Further, since the pressure dividing device 3 has no restriction on fixing, it may be fixed in an arbitrary direction and at an arbitrary angle. When the voltage dividing device 3 is fixed in the vicinity of the high voltage power supply 1, the voltage dividing device 3 may be fixed with an electrically 0V or an electrically floating structure.
  • FIG. 2 is a diagram showing a configuration of a resistance voltage dividing substrate included in the voltage dividing device according to the first embodiment.
  • FIG. 3 is a diagram showing an equivalent circuit of the resistance voltage dividing substrate shown in FIG. Since the resistance voltage dividing substrates 2A to 2D have the same configuration, the configuration of the resistance voltage dividing substrate 2A will be described here.
  • FIG. 2 shows the configuration of the front surface 5 which is the first surface of the resistance voltage dividing substrate 2A and the configuration of the back surface 6 which is the second surface of the resistance voltage dividing substrate 2A. The front surface 5 is hatched.
  • the resistance voltage dividing substrates 2A to 2D are single-sided substrates in which the copper pattern 7, which is an example of the conductor pattern, is arranged only on the front surface 5.
  • the copper pattern 7 which is an example of the conductor pattern
  • a copper pattern 7 that is as wide as possible with respect to the surface area of the front surface 5 and is regularly spread is important, and the copper pattern 7 generates a stray capacitance with less error.
  • a plurality of (for example, five) rectangular copper patterns 7 are connected in series along the longitudinal direction of the resistance voltage dividing substrate 2A. Further, on the front surface 5 of the resistance voltage dividing substrate 2A, chip capacitors C1 to C4, which are examples of capacitors, and chip resistors R1 to R4, which are examples of resistors, are arranged between copper patterns 7.
  • chip capacitors C1 to C4 when it is not necessary to identify the chip capacitors C1 to C4 included in the voltage dividing device 3, the chip capacitors C1 to C4 may be referred to as chip capacitors C0. Further, when it is not necessary to identify the chip resistors R1 to R4 included in the voltage dividing device 3, the chip resistors R1 to R4 may be referred to as chip resistors R0.
  • a chip resistor R1 and a chip capacitor C1 are arranged between the first copper pattern 7 and the second copper pattern 7 so as to connect the first copper pattern 7 and the second copper pattern 7. ..
  • the chip resistor R1 and the chip capacitor C1 are connected in parallel between the first copper pattern 7 and the second copper pattern 7.
  • a chip resistor R2 and a chip capacitor C2 are arranged between the second copper pattern 7 and the third copper pattern 7 so as to connect the second copper pattern 7 and the third copper pattern 7. ..
  • the chip resistor R2 and the chip capacitor C2 are connected in parallel between the second copper pattern 7 and the third copper pattern 7.
  • a chip resistor R3 and a chip capacitor C3 are arranged between the third copper pattern 7 and the fourth copper pattern 7 so as to connect the third copper pattern 7 and the fourth copper pattern 7. ..
  • the chip resistor R3 and the chip capacitor C3 are connected in parallel between the third copper pattern 7 and the fourth copper pattern 7.
  • a chip resistor R4 and a chip capacitor C4 are arranged between the fourth copper pattern 7 and the fifth copper pattern 7 so as to connect the fourth copper pattern 7 and the fifth copper pattern 7. ..
  • the chip resistor R4 and the chip capacitor C4 are connected in parallel between the fourth copper pattern 7 and the fifth copper pattern 7.
  • the copper pattern 7 is connected in series via the chip capacitor C0 and the chip resistor R0 connected in parallel.
  • the chip resistors R1 to R4 and the chip capacitors C1 to C4 are connected in series 4 will be described, but the number of series is limited in the design of the resistance voltage dividing substrate 2A. There is no.
  • the distance between the adjacent copper patterns 7 on the front surface 5 of the resistance voltage dividing substrate 2A depends on the sizes of the chip capacitors C0 and the chip resistors R0 to be arranged. For example, if the size of the chip capacitor C0 and the size of the chip resistor R0 are 1.6 mm ⁇ 0.8 mm (1608 size), respectively, the distance between the adjacent copper patterns 7 may be 1.0 mm.
  • a chip capacitor C0 and a chip resistor R0 are arranged on the front surface 5 of the resistance voltage dividing substrate 2A, and then a copper pattern 7 as wide as possible with respect to the surface area of the front surface 5 is arranged.
  • the gap between the upper side of the front surface 5 and the upper side of the copper pattern 7 is set to be close to 0, and the gap between the lower side of the front surface 5 and the lower side of the copper pattern 7 is set to 0. It shall be close.
  • the gap between the left side of the front surface 5 and the left side of the copper pattern 7 arranged at the leftmost end of the copper pattern 7 is set to be close to 0, and the right side of the front surface 5 and the copper It is assumed that the gap between the rightmost copper pattern 7 and the right side of the pattern 7 is close to zero.
  • the resistance voltage dividing substrates 2A to 2D are single-sided substrates, none of the copper pattern 7, the chip capacitor C0, and the chip resistor R0 is arranged on the back surface 6 of the resistance voltage dividing substrates 2A to 2D.
  • FIG. 4 is a diagram for explaining the capacitor capacity.
  • FIG. 4 shows the configuration of a capacitor arranged in a chip capacitor C0 or the like.
  • the capacitor arranged in the chip capacitor C0 or the like has a structure in which a dielectric having a dielectric constant ⁇ is sandwiched between two pairs of electrodes (parallel flat plates) 10.
  • the capacitance of the capacitor is Cc [F]
  • the surface area of the electrodes 10 is S [mm 2 ]
  • the distance between the electrodes 10 is d [mm]
  • the permittivity ⁇ is ⁇ [F / m] holds.
  • FIG. 5 is a diagram for explaining the mounting structure of the pressure dividing device according to the first embodiment.
  • the resistance voltage dividing substrates 2A to 2D included in the voltage dividing device 3 are connected in series by a connecting member 11 including a conductive member.
  • a connecting member 11 including a conductive member As the connection method between the resistance voltage dividing substrates 2A and 2D, any member may be used as long as the resistance voltage dividing substrates 2A and 2D can be electrically connected.
  • a wiring material such as a cable or a metal conductor can be used.
  • the resistance voltage dividing substrates 2A to 2D each have the same plate shape.
  • the front surface 5 and the back surface 6 of the resistance voltage dividing substrates 2A to 2D have a rectangular shape.
  • the resistance voltage dividing substrates 2A to 2D are arranged so that the side surface extending in the longitudinal direction is the bottom surface and the side surface in the lateral direction is parallel to the vertical direction.
  • the resistance voltage dividing substrates 2A to 2D are arranged upright so that the front surfaces 5 are parallel to each other and the positions in the in-plane directions are the same. That is, the resistance voltage dividing substrates 2A to 2D are arranged upright so that the resistance voltage dividing substrates 2A to 2D do not shift in the in-plane direction.
  • the atmospheric environment in which the resistance voltage dividing substrates 2A to 2D are arranged may be air, but the effect of suppressing the stray capacitance error is more effective when filled with dry air, nitrogen, or hydrogen than when air is used. is there. Further, since the atmospheric environment in which the resistance voltage dividing substrates 2A to 2D are arranged is filled with SF6 (sulfur hexafluoride), there is an effect of suppressing an error in stray capacitance as in the case of dry air.
  • SF6 sulfur hexafluoride
  • FIG. 6 is a diagram for explaining another mounting example of the resistance voltage dividing substrate according to the first embodiment. Note that in FIG. 6, the connection member 11 is not shown. As shown in FIG. 6, the resistance voltage dividing substrates 2A to 2D may be stacked in a layered manner in the vertical direction. In this case as well, there is an effect of suppressing an error in stray capacitance as in the case of FIG. 5 in which the resistance voltage dividing substrates 2A to 2D are arranged upright. When the resistance voltage dividing substrates 2A to 2D are stacked in a layered manner, the resistance voltage dividing substrates 2A to 2D are supported by a support member 45 or the like.
  • the resistance voltage dividing substrate 2A is arranged such that the back surface 6 of the resistance voltage dividing substrate 2A and the front surface 5 of the resistance voltage dividing substrate 2B face each other with respect to the distance d1.
  • the resistance voltage dividing substrate 2B is arranged such that the back surface 6 of the resistance voltage dividing substrate 2B and the front surface 5 of the resistance voltage dividing substrate 2C face each other with respect to the distance d2.
  • the resistance voltage dividing substrate 2C and the resistance voltage dividing substrate 2D are arranged so that the back surface 6 of the resistance voltage dividing substrate 2C and the front surface 5 of the resistance voltage dividing substrate 2D face each other with a distance d3.
  • the back surface 6 of one resistance voltage dividing substrate and the front surface 5 of the other resistance voltage dividing substrate face each other, and the front surface of one resistance voltage dividing substrate faces each other.
  • the copper pattern 7 arranged in 5 and the copper pattern 7 arranged on the front surface 5 of the other resistance voltage dividing substrate are arranged so as to face each other with the other resistance voltage dividing substrate interposed therebetween.
  • the resistance voltage dividing substrates 2A to 2D may be referred to as substrates. Therefore, in the following description, the space between the resistance voltage dividing boards 2A and 2D, that is, between the resistance voltage dividing boards 2A and 2B, between the resistance voltage dividing boards 2B and 2C, and between the resistance voltage dividing boards 2C and 2D is referred to as between the boards. In some cases.
  • the resistance voltage dividing substrates 2A to 2D are arranged so that the distances d1, d2, and d3 between the substrates are equal. Therefore, the resistance voltage dividing substrates 2A to 2D are fixed at equal intervals by using, for example, spacers such as resin, and the electrical connection between the substrates is performed by using a wiring material. Further, the resistance voltage dividing substrates 2A to 2D may be electrically connected by the metal conductor while being fixed at equal intervals only by the metal conductor. Since the distances d1, d2, and d3 between the substrates affect the capacitor capacity Cc [F] as described above, the error should be as small as possible. For example, the error may be within ⁇ 10%. ..
  • FIG. 7 is a diagram for explaining an ideal circuit when the resistance voltage dividing substrates included in the voltage dividing device according to the first embodiment are connected in series.
  • An ideal circuit is a circuit in which there is no stray capacitance between boards, but in an actual circuit, stray capacitance is generated between the boards.
  • the resistance voltage dividing substrate 2A includes chip capacitors C1 to C4 and chip resistors R1 to R4, and the resistance voltage dividing substrate 2B includes chip capacitors C5 to C8 and chip resistors R5 to R8.
  • the resistance voltage dividing substrate 2C includes chip capacitors C9 to C12 and chip resistors R9 to R12, and the resistance voltage dividing substrate 2D includes chip capacitors C13 to C16 and chip resistors R13 to R16.
  • the chip capacitors C1 to C16 have the same characteristics, and the chip resistors R1 to R16 have the same characteristics.
  • the chip capacitor CN (N is a natural number from 1 to 16) and the chip resistor RN are connected in parallel.
  • the element set XN when the combination of the chip capacitor CN and the chip resistor RN is the element set XN, the element set X1, the element set X2, the element set X3, the element set X4, the element set X5, the element set X6, and the element set
  • Each element group is connected in series in the order of X7, element group X8, element group X9, element group X10, element group X11, element group X12, element group X13, element group X14, element group X15, and element group X16.
  • the chip capacitor C0 and the chip resistor R0 are connected in parallel, and the pair of the chip capacitor C0 and the chip resistor R0 is connected in series between the sets.
  • the element set X1 of the resistance voltage dividing substrate 2A is connected to the connection point a.
  • the element set X4 of the resistance voltage dividing substrate 2A and the element set X5 of the resistance voltage dividing substrate 2B are connected via a connection point c.
  • the element set X8 of the resistance voltage dividing substrate 2B and the element set X9 of the resistance voltage dividing substrate 2C are connected via a connection point d.
  • the element set X12 of the resistance voltage dividing substrate 2C and the element set X13 of the resistance voltage dividing substrate 2D are connected via the connection point e.
  • the element set X16 of the resistance voltage dividing substrate 2D is connected to the connection point b.
  • the element sets X1 to X16 arranged on the resistance voltage dividing boards 2A to 2D are connected in series.
  • a voltage of 60 kV is applied from the connection point a to the connection point b
  • a voltage of 3.75 kV is applied to the chip capacitor C0 and the chip resistor R0, respectively. Therefore, in the case of an ideal circuit, this voltage of 3.75 kV may be considered in the design of the substrate.
  • connection points a and d Between the connection points a and d, 30 kV, which is a voltage several times in series (8 times in this case) of the chip capacitor C0 and the chip resistor R0 arranged between them, is applied. Similarly, 30 kV is applied between the connection points db and between the connection points ce, respectively. Therefore, in the case of an ideal circuit, the mounting structure may be designed on the assumption that a maximum of 30 kV is applied between the substrates.
  • FIG. 8 is a diagram for explaining an actual circuit when the resistance voltage dividing substrates included in the voltage dividing device according to the first embodiment are connected in series.
  • stray capacitances Cs1 to Cs12 exist between the substrates of the voltage dividing device 3.
  • the stray capacitances Cs1 to Cs4 are stray capacitances between the resistance voltage dividing substrates 2A and 2B
  • the stray capacitances Cs5 to Cs8 are stray capacitances between the resistance voltage dividing substrates 2B and 2C
  • the stray capacitances Cs9 to Cs12 are resistors. This is the stray capacitance between the voltage dividing substrates 2C and 2D.
  • the capacitance value [F] of the stray capacitances Cs1 to Cs12 is different for each stray capacitance Cs1 to Cs12 unless the stray capacitances Cs1 to Cs12 are properly controlled. If the capacitance values of the stray capacitances Cs1 to Cs12 are different, the voltage division ratio by the stray capacitances Cs1 to Cs12 between the substrates changes when an excessive change in voltage occurs. Therefore, a voltage higher than the design value may be applied between the connection points ad, the connection points db, and the connection points c, and the stray capacitances Cs1 to Cs12 are appropriately controlled. If this is not done, the voltage dividing device 3 may fail.
  • stray capacitances Cs1 to Cs12 are structurally not lost. Therefore, by controlling all of the stray capacitances Cs1 to Cs12 to a common value, the voltage division ratio between the substrates by the stray capacitances Cs1 to Cs12 can be brought close to a constant value.
  • the stray capacitances Cs1 to Cs12 may be referred to as stray capacitances CsX.
  • FIG. 9 is a diagram for explaining the stray capacitance generated between the resistance voltage dividing substrates shown in FIG. Since the capacitance values [F] of the stray capacitances Cs1 to Cs12 can be calculated by the same concept, the capacitance values [F] of the stray capacitances Cs1 will be described here.
  • FIG. 9 illustrates the first component 40, which is a part of the resistance voltage dividing substrates 2A and 2B.
  • the first component 40 is arranged at a position where the stray capacitance Cs1 shown in FIG. 8 is generated.
  • the stray capacitance of the first component 40 is configured by connecting the capacitance Cx of the substrate material and the stray capacitance Cs1 between the resistance voltage dividing substrates 2A and 2B in series.
  • the capacitance Cx of the substrate material and the stray capacitance Cs1 between the resistance voltage dividing substrates 2A and 2B in the mounting structure of the present embodiment will be described.
  • the relative dielectric constant epsilon r of the glass composite board is a common substrate material (CEM-3), was 4.7, the relative dielectric constant of the glass epoxy substrate (FR-4) ⁇ r is the 4.73 ..
  • the capacitance value [F] when the substrate material is CEM-3 will be described.
  • the thickness of the resistance voltage dividing substrates 2A and 2B is 1.6 mm, respectively.
  • the stray capacitance Cs1 between the substrates will be described.
  • the stray capacitance Cs1 between the substrates the distance between the substrates is 0.1 ⁇ 0 S [F] in the case of 10 mm, is 0.05 ⁇ 0 S [F] when the distance between the substrates is 20mm ..
  • the stray capacitance of the first component 40 when the stray capacitance of the first component 40 is composed of the stray capacitance Cx of the substrate material and the stray capacitance Cs1 between the substrates, the total number is included in the capacitance Cx of the substrate material from the concept of voltage division of the capacitor. Only a voltage of about% will be applied. Therefore, the remaining voltage is applied to the stray capacitance Cs1 between the substrates. That is, in the first embodiment, it can be said that the stray capacitance of the first component 40 depends on the stray capacitance Cs1 between the substrates.
  • FIG. 10 is a diagram showing a simulation analysis result of stray capacitance in the pressure dividing device according to the first embodiment.
  • FIG. 10 shows the simulation analysis results when the stray capacitances Cs1 to Cs12 between the substrates are common.
  • FIG. 11 is a diagram showing simulation analysis results when the stray capacitances between the substrates are different.
  • the simulation condition here is to apply a voltage of 60 kV and 100 Hz between the connection points a and b shown in FIG.
  • the upper part of FIGS. 10 and 11 shows the voltage waveform between the connection points a and d shown in FIG. Further, in the middle of FIGS. 10 and 11, the voltage waveform between the connection points ce shown in FIG. 8 is shown. Further, in the lower part of FIGS. 10 and 11, the voltage waveform between the connection points db shown in FIG. 8 is shown.
  • the voltage waveform shown in FIG. 10 is a voltage waveform when all the stray capacitances Cs1 to Cs12 are common as in the voltage dividing device 3 of the present embodiment.
  • the stray capacitances Cs1 to Cs12 are all common, 30 kV is evenly applied between all the substrates. This is because the error of the stray capacitances Cs1 to Cs12 is very small and has a substantially common value, and the voltage division by the stray capacitances Cs1 to Cs12 is evenly performed even for an excessive change in voltage. Because there is. Therefore, in the present embodiment, 3.75 kV divided on the substrate is uniformly applied not only between the substrates but also on the chip capacitor C0 and the chip resistor R0 on the substrate. Therefore, it is possible to prevent the failure of the voltage dividing device 3.
  • the voltage waveform shown in FIG. 11 is the voltage waveform shown by the voltage dividing device of the comparative example.
  • the stray capacitances Cs1 to Cs4 between the connection points a and d are made larger than the stray capacitances Cs5 to Cs12.
  • the stray capacitances Cs1 to Cs4 and the stray capacitances Cs5 to Cs12 are different.
  • the pressure dividing device of the comparative example needs to have a mounting structure in which the substrates are separated by 58 mm. Further, since a voltage equal to or higher than the design value is applied to the chip capacitor C0 and the chip resistor R0 on the substrate, it causes component destruction.
  • the simulation described with reference to FIG. 11 is merely an example of the simulation, in which only the stray capacitances Cs1 to Cs4 between the connection points a and d are changed in order to make the simulation easier to understand.
  • the pattern is not designed so that the stray capacitance between the substrates becomes a common value as in the present embodiment.
  • the single-sided substrates in which the copper patterns 7 are arranged uniformly as the surface area S [mm 2 ] of the front surface 5 of the substrate are not displaced from each other in the plane direction.
  • the distances d1, d2, and d3 between the substrates are arranged so as to be equal.
  • the stray capacitance CsX between the substrates can be controlled to a common value at all the positions between the substrates with respect to the pressure dividing device 3. Therefore, since the voltage between the substrates can be evenly divided even when the voltage changes excessively, the design of the insulation distance between the substrates becomes easy, and the voltage dividing device 3 can be miniaturized. That is, it is possible to realize the miniaturized pressure dividing device 3 while ensuring the insulation distance between the parts.
  • a substrate with a pattern design that does not consider the surface area S [mm 2 ] of the front surface 5 of the substrate (a substrate having a small surface area of a copper pattern) has a large variation in stray capacitance due to mechanical dimensional errors.
  • a substrate having a small surface area of a copper pattern has a small stray capacitance value itself. That is, in the case of a substrate having a small surface area of the copper pattern, the capacitance value of the stray capacitance is a very small value such as several pF.
  • the stray capacitance is more likely to be biased. Therefore, the voltage bias becomes large, and it becomes difficult to predict the voltage between the substrates.
  • the surface area of the copper pattern 7 is made as large as possible with respect to the surface area S [mm 2 ] of the front surface 5 of the substrate, the dimensional error of the copper pattern 7 ( It becomes possible to tolerate variations in stray capacitance CsX due to manufacturing error).
  • a case where a copper pattern having a width of 2 mm is overlapped will be described.
  • the copper patterns having a width of 2 mm overlap with each other by 1 mm in the lateral direction.
  • the stray capacitance between the copper patterns is half the design value.
  • the stray capacitance between the copper patterns is 90% of the design value.
  • the larger the surface area of the copper pattern the more the dimensional error (positional deviation) of the copper pattern can be tolerated.
  • the configuration in which the voltage of 60 kV is divided by connecting the resistance voltage dividing boards 2A to 2D in series has been described, but the resistance voltage dividing boards 2A to 2D are merely examples. Therefore, the number of resistance voltage dividing substrates can be changed according to the target device, voltage, and the like. For example, when dividing a voltage higher than 60 kV, the number of resistor dividing substrates connected in series may be increased. In this case as well, the resistance voltage dividing substrates are arranged so that there is no deviation in the in-plane direction of the resistance voltage dividing substrates and the distances between the resistance voltage dividing substrates are equal.
  • the resistance voltage dividing boards 2A to 2D are connected in series by the connecting member 11, and the adjacent resistance voltage dividing boards are connected to the back surface 6 of one of the resistance voltage dividing boards and the resistance of the other.
  • the front surface 5 of the voltage dividing substrate is arranged in parallel so as to face each other. Further, each resistance voltage dividing substrate is provided so that the distance between the back surface 6 of one resistance voltage dividing substrate and the front surface 5 of the other resistance voltage dividing substrate is equal for each of the adjacent resistance voltage dividing substrates.
  • the substrates 2A to 2D are arranged.
  • the voltage dividing device 3 can realize the voltage dividing with a small device configuration even when a plurality of resistance voltage dividing substrates are arranged.
  • the resistance voltage dividing substrates 2A to 2D copper patterns 7 having substantially the same area as the surface area S [mm 2 ] of the front surface 5 of the resistance voltage dividing substrates 2A to 2D are uniformly arranged. Therefore, the heat dissipation performance of the resistance voltage dividing substrates 2A to 2D is improved. Further, since the resistance voltage dividing substrates 2A to 2D are arranged upright, the air flow is improved and the heat dissipation due to natural convection is improved. Therefore, even in an environment in which the voltage dividing device 3 is installed in a closed structure that cannot be forced air-cooled or water-cooled, the temperature rise of the resistance voltage dividing substrates 2A to 2D can be suppressed.
  • the resistance voltage dividing substrate is a double-sided substrate in which copper patterns 7 are arranged on both sides.
  • FIG. 12 is a diagram showing a configuration of a resistance voltage dividing substrate included in the voltage dividing device according to the second embodiment.
  • the resistance voltage dividing substrate 20A which is a double-sided substrate is used instead of the resistance voltage dividing substrate 2A which is a single-sided substrate.
  • the resistance voltage dividing substrate other than the resistance voltage dividing substrate 20A provided in the voltage dividing device 3 according to the second embodiment also has the same configuration as the resistance voltage dividing substrate 20A.
  • the resistance voltage dividing substrate 20A is a double-sided substrate in which copper patterns 7 are arranged on both sides.
  • the front surface 50 of the resistance voltage dividing substrate 20A has the same configuration as the front surface 5 of the resistance voltage dividing substrate 2A. That is, on the front surface 50 of the resistance voltage dividing substrate 20A, a plurality of regularly laid copper patterns 7 are arranged as wide as possible with respect to the surface area S [mm 2 ] of the front surface 50. ing. Further, on the front surface 50 of the resistance voltage dividing substrate 20A, the chip capacitors C1 to C4 and the chip resistors R1 to R4 are arranged between the copper patterns 7 as in the front surface 5 of the resistance voltage dividing substrate 2A. ing.
  • a copper pattern 7 is arranged on the back surface 60 of the resistance voltage dividing substrate 20A at a position symmetrical with the front surface 50 of the resistance voltage dividing substrate 20A. That is, on the back surface 60 of the resistance voltage dividing substrate 20A, a copper pattern 7 having the same shape and size as the copper pattern 7 on the front surface 50 of the resistance voltage dividing substrate 20A is formed on the copper pattern 7 on the front surface 50. Are arranged to face each other.
  • the copper patterns 7 arranged on the back surface 60 are electrically connected to the copper patterns 7 on the front surface 50 arranged at symmetrical positions via vias (vias 17 described later). ing.
  • the leftmost copper pattern 7 arranged on the front surface 50 and the leftmost copper pattern 7 arranged on the back surface 60 are connected by a via 17 and arranged on the front surface 50.
  • the second copper pattern 7 from the left and the second copper pattern 7 from the left arranged on the back surface 60 are connected by a via 17.
  • the rightmost copper pattern 7 arranged on the front surface 50 and the rightmost copper pattern 7 arranged on the back surface 60 are connected by a via 17 from the right side arranged on the front surface 50.
  • the second copper pattern 7 and the second copper pattern 7 from the right arranged on the back surface 60 are connected by a via 17.
  • the mounting structure of the pressure dividing device 3 according to the second embodiment is the same as the mounting structure of the pressure dividing device 3 according to the first embodiment described with reference to FIG. 5, the description thereof will be omitted. Further, the actual circuit when a total of four resistance voltage dividing boards similar to the resistance voltage dividing board 20A are connected in series is the same as the circuit of the voltage dividing device 3 according to the first embodiment described with reference to FIG. , There are floating capacities Cs1 to Cs12 between the substrates.
  • the resistance voltage dividing substrate 20A is arranged at the position of the resistance voltage dividing substrate 2A, and the resistance voltage dividing substrate 20B described later is arranged at the position of the resistance voltage dividing substrate 2B. Further, a resistance voltage dividing substrate similar to the resistance voltage dividing substrate 20A is arranged at the position of the resistance voltage dividing substrate 2C, and a resistance voltage dividing substrate similar to the resistance voltage dividing substrate 20A is arranged at the position of the resistance voltage dividing substrate 2D. There is.
  • the voltage dividing device 3 may fail. Therefore, in the second embodiment as well as the first embodiment, the stray capacitance is suspended.
  • the capacitances Cs1 to Cs12 are all controlled to a common value.
  • the equivalent circuit of the resistance voltage dividing board 20A shown in FIG. 12 is the same as the equivalent circuit of the resistance voltage dividing boards 2A to 2D shown in FIG.
  • FIG. 13 is a diagram for explaining the stray capacitance generated between the resistance voltage dividing substrates included in the voltage dividing device according to the second embodiment. Since the capacitance values [F] of the stray capacitances Cs1 to Cs12 can be calculated by the same concept, the capacitance values [F] of the stray capacitances Cs1 will be described here.
  • the resistance voltage dividing substrates 20A and 20B included in the voltage dividing device 3 of the second embodiment are connected in series by a connecting member 11 (not shown in FIG. 13).
  • the difference between the pressure dividing device 3 of the second embodiment and the pressure dividing device 3 of the first embodiment is that the pressure dividing device 3 of the second embodiment has a copper pattern because the type of the substrate is a double-sided substrate. 7 are arranged on both sides of the substrate, and the copper pattern 7 on the front surface 50 of the substrate and the copper pattern 7 on the back surface 60 are connected by vias 17.
  • the stray capacitance Cs100 between the substrates, the distance between the substrates is 0.1 ⁇ 0 S [F] in the case of 10 mm, is 0.05 ⁇ 0 S [F] when the distance between the substrates is 20mm ..
  • the stray capacitance of the pressure dividing device 3 is considered only by the stray capacitance CsX between the substrates.
  • the mounting structure may be designed. Therefore, as compared with the pressure dividing device 3 of the first embodiment, the design of the mounting structure of the pressure dividing device 3 becomes easier.
  • the copper pattern 7 which is as large as possible with respect to the surface area S [mm 2 ] of the substrate and is regularly spread is arranged on the front surface 50 and the back surface 60 of the substrate.
  • the surface area of the copper pattern 7 is twice that of the first embodiment. Therefore, the heat dissipation performance of the substrate is improved as compared with the pressure dividing device 3 of the first embodiment.
  • the electric field is relaxed by adding R (R) with rounded corners to the corners of the copper pattern 7 closest to the corners of the resistance voltage dividing substrates 20A to 20D, and the discharge from the resistance voltage dividing substrates 20A to 20D is discharged. It may be suppressed.
  • FIG. 14 is a diagram showing another configuration example of the resistance voltage dividing substrate included in the voltage dividing device according to the second embodiment. Since the resistance voltage dividing substrates 20A to 20D have the same configuration, another configuration example of the resistance voltage dividing substrate 20A will be described here. As shown in FIG. 14, by adding R to the corner of the copper pattern 7 closest to the corner of the resistance voltage dividing substrate 20A, the electric field is relaxed and the discharge from the resistance voltage dividing substrate 20A can be suppressed. R may be provided at the corners of all the copper patterns 7 included in the resistance voltage dividing substrate 20A. That is, R may be provided at the corners of all the copper patterns 7 of the resistance voltage dividing substrates 20A to 20D.
  • R may be added to the copper pattern 7 of the single-sided substrate.
  • R is added to the corner of the copper pattern 7 closest to the corner of the resistance voltage dividing substrates 2A to 2D described in the first embodiment.
  • FIG. 15 is a diagram showing another configuration example of the resistance voltage dividing substrate included in the voltage dividing device according to the first embodiment. As shown in FIG. 15, by adding R to the corner of the copper pattern 7 closest to the corner of the resistance voltage dividing substrate 2A, the electric field is relaxed and the discharge from the resistance voltage dividing substrate 2A can be suppressed. R may be provided at the corners of all the copper patterns 7 of the resistance voltage dividing substrates 2A to 2D.
  • the effect of suppressing discharge by adding R to the corners of the copper pattern 7 is greater in the resistance voltage dividing substrates 20A to 20D, which are double-sided substrates, than in the resistance voltage dividing substrates 2A to 2D, which are single-sided substrates.
  • FIG. 16 is a diagram for explaining the relationship between the thickness of the resistance voltage dividing substrate and the discharge suppressing effect.
  • the resistance voltage dividing substrates 2A and 20A have a thickness of 1.6 mm, respectively, and the copper pattern 7 has a thickness of 35 ⁇ m.
  • the resistance voltage dividing substrate 20A which is a double-sided substrate, the voltages of the copper patterns 7 facing each other on the front surface and the back surface are the same. Therefore, the resistance voltage dividing substrate 20A has a characteristic as a mass of thick conductors by the thickness of the resistance voltage dividing substrate 20A, so that the discharge suppressing effect is enhanced.
  • the resistance voltage dividing substrate is used as a double-sided substrate, and an insulating sheet is attached between the resistance voltage dividing substrates.
  • FIG. 17 is a diagram for explaining the capacitance generated between the resistance voltage dividing substrates included in the voltage dividing device according to the third embodiment.
  • an insulating sheet 15 is added between the substrates as compared with the mounting structure of the pressure dividing device 3 in the second embodiment, and the insulating sheet 15 and the substrate are brought into close contact with each other. The point is different. Therefore, the pressure dividing device 3 of the third embodiment has no capacity of the substrate material, and has only the capacity Cs200 of the insulating sheet 15.
  • each of the insulating sheets 15 between the substrates has the same thickness and the insulating sheet 15 and the substrate are in close contact with each other, the distances d1, d2, and d3 between the substrates are equal to the thickness of the insulating sheet 15, respectively. ..
  • the connections of the substrates are connected in series by the connecting member 11 as in the pressure dividing device 3 of the first embodiment.
  • the actual circuit when a total of four resistance voltage dividing boards similar to the resistance voltage dividing board 20A are connected in series is the same as the circuit of the pressure dividing device 3 according to the first embodiment described with reference to FIG. There are floating capacities Cs1 to Cs12 between them.
  • the voltage dividing device 3 may fail. Therefore, in the third embodiment as well as the first embodiment, the stray capacitance is suspended.
  • the capacitances Cs1 to Cs12 are all controlled to a common value.
  • the capacity Cs200 of the insulating sheet 15 will be described.
  • the insulating sheet 15 there are products having various thicknesses and relative permittivity ⁇ r depending on the material. For example, assuming that the thickness of the insulating sheet 15 is 0.5 mm and the relative permittivity ⁇ r is 3, the capacitance Cs200 of the insulating sheet 15 is 6.0 ⁇ 0 S [F].
  • the mounting structure of the pressure dividing device 3 it is sufficient to design the mounting structure of the pressure dividing device 3 in consideration of only the capacity Cs200 of the insulating sheet 15 as the capacity of the pressure dividing device 3.
  • the design of the mounting structure of is easy.
  • Embodiment 4 Next, a fourth embodiment of the present invention will be described with reference to FIGS. 18 to 23. In the fourth embodiment, a method of arranging the resistance voltage dividing substrates 2A to 2D upright will be described.
  • FIG. 18 is a perspective view showing the configuration of the voltage dividing device when the resistance voltage dividing substrates shown in FIG. 5 are arranged upright.
  • FIG. 19 is a front view of the pressure dividing device shown in FIG.
  • FIG. 20 is a top view showing the configuration of the pressure dividing device shown in FIG.
  • FIG. 21 is a diagram showing the configuration of the resistance voltage dividing substrate shown in FIG.
  • FIG. 22 is a diagram showing a configuration of a threaded portion of a connection terminal included in the pressure dividing device shown in FIG. 18, and
  • FIG. 23 is a diagram showing a configuration of a bag nut included in the pressure dividing device shown in FIG. ..
  • the two axes in the plane parallel to the upper surface of the resistance voltage dividing substrates 2A to 2D and orthogonal to each other are defined as the X axis and the Y axis. Further, the axis orthogonal to the X-axis and the Y-axis is defined as the Z-axis.
  • the X-axis direction is the longitudinal direction of the front surface of the resistance voltage dividing substrates 2A to 2D
  • the Z axis direction is the lateral direction of the front surface of the resistance voltage dividing substrates 2A to 2D
  • the Y axis direction is. This is the thickness direction of the resistance voltage dividing substrates 2A to 2D.
  • the vertical direction parallel to the Z-axis direction is shown by the upper surface direction D1
  • the direction parallel to the X-axis direction is shown by the front direction D2.
  • the voltage dividing device 3 includes resistance voltage dividing boards 2A to 2D, a connection terminal 21, a bag nut 22, and a fixing rod 23.
  • the connection terminal 21 is a terminal that electrically connects the resistance voltage dividing boards 2A to 2D.
  • the bag nut 22 is a nut for fixing the resistance voltage dividing boards 2A to 2D and the connection terminal 21.
  • the fixing rod 23 is a rod-shaped member that mechanically fixes the resistance voltage dividing substrates 2A to 2D.
  • the resistance voltage dividing substrate 2A is provided with a fixing rod hole 24 and conductive through holes 25a to 25d.
  • the holes 24 for the fixing rod and the through holes 25a to 25d are holes that penetrate from the front surface to the back surface of the resistance voltage dividing substrate 2A.
  • the fixing rod holes 24 and the through holes 25a to 25d are provided at both ends in the longitudinal direction of the front surface of the resistance voltage dividing substrate 2A.
  • two through holes 25a and 25b and one fixing rod hole 24 are provided at one end of the front surface of the resistance voltage dividing substrate 2A in the longitudinal direction, and the other end. Is provided with two through holes 25c and 25d and one fixing rod hole 24.
  • the resistance voltage dividing boards 2B to 2D are also provided with fixing rod holes 24 and through holes 25a to 25d at the same positions as the resistance voltage dividing boards 2A.
  • the coordinates of the through holes 25a and 25c in the Z-axis direction are the same, and the coordinates of the through holes 25b and 25d in the Z-axis direction are the same.
  • the coordinates of the through holes 25a and 25b in the X-axis direction may be the same or different.
  • the coordinates of the through holes 25c and 25d in the X-axis direction may be the same or different.
  • FIG. 20 shows a case where the coordinates of the through holes 25a and 25b in the X-axis direction are different and the coordinates of the through holes 25c and 25d in the X-axis direction are different.
  • FIG. 21 shows a case where the coordinates of the through holes 25a and 25b in the X-axis direction are the same and the coordinates of the through holes 25c and 25d in the X-axis direction are the same.
  • the coordinates in the XZ plane of the through holes 25a to 25d provided in the resistance voltage dividing boards 2B to 2C are the same as the coordinates in the XZ plane of the through holes 25a to 25d provided in the resistance voltage dividing boards 2A.
  • the through holes 25a to 25d may be referred to as through holes 25.
  • the fixing rod 23 penetrates all the resistance voltage dividing boards 2A to 2D by being passed through the fixing rod holes 24 of the resistance voltage dividing boards 2A to 2D, and both ends are fixed to another structure. If any one of the resistance voltage dividing substrates 2A to 2D is used as one resistance voltage dividing substrate and the resistance voltage dividing substrate adjacent to the resistance voltage dividing substrate is used as the other resistance voltage dividing substrate, one of them is used.
  • the fixing rod hole 24 provided in the resistance voltage dividing substrate is the first hole, and the fixing rod hole 24 provided in the other resistance voltage dividing substrate is the second hole.
  • the connection terminal 21 has screw portions 21a and 21c which are conductors and a tubular insulating portion 21b.
  • the screw portions 21a and 21c are connected by a rod-shaped conductor member, and the rod-shaped conductor member is covered with an insulating portion 21b.
  • the rod-shaped conductor member and the screw portions 21a and 21c are integrally formed, and the integrally formed member penetrates the inside of the cylinder of the insulating portion 21b.
  • the screw portion 21a is arranged on one end side of the insulating portion 21b, and the screw portion 21c is arranged on the other end side of the insulating portion 21b. Since the screw portions 21a and 21c are connected to each other in the insulating portion 21b via a rod-shaped conductor member, the screw portions 21a and 21c are electrically conductive.
  • the resistance voltage dividing boards 2A and 2B are electrically connected via the connection terminal 21.
  • the resistance voltage dividing boards 2B and 2C are electrically connected via the connection terminal 21, and the resistance voltage dividing boards 2C and 2D are electrically connected via the connection terminal 21.
  • the screw portion 21a of the connection terminal 21 is inserted into the through hole 25a of the resistance voltage dividing board 2A, and the bag nut 22 is screwed into the screw portion 21a from the direction opposite to the insertion side. ..
  • the threaded portion 21c of the connection terminal 21 inserted into the through hole 25a of the resistance voltage dividing board 2A is inserted into the through hole 25a of the resistance voltage dividing board 2B, and the cap nut is inserted into the threaded portion 21c from the direction opposite to the insertion side. 22 is screwed.
  • connection terminal 21 and the resistance voltage dividing board 2A are fixed by the bag nut 22
  • connection terminal 21 and the resistance voltage dividing board 2B are fixed by the bag nut 22
  • the resistance voltage dividing boards 2A and 2B are connected terminals 21. It is fixed with.
  • the bag nut 22 and the through hole 25a come into contact with each other, the adjacent resistance voltage dividing substrates 2A and 2B are electrically connected.
  • the bag nut 22 for fixing the resistance voltage dividing substrate 2A and the connection terminal 21 is provided.
  • the first bag nut, and the bag nut 22 for fixing the resistance voltage dividing substrate 2B and the connection terminal 21, is the second bag nut.
  • the through hole 25a provided in the resistance voltage dividing substrate 2A is the third hole
  • the through hole 25a provided in the resistance voltage dividing substrate 2B is the fourth hole.
  • the screw portion 21a screwed into the through hole 25a provided in the resistance voltage dividing substrate 2A is the first screw portion, and the screw portion screwed into the through hole 25a provided in the resistance voltage dividing substrate 2B. 21c is the second threaded portion.
  • the through hole 25a of the resistance voltage dividing board 2A and the through hole 25a of the resistance voltage dividing board 2B are used for connecting the resistance voltage dividing boards 2A and 2B. Further, the through hole 25d of the resistance voltage dividing substrate 2B and the through hole 25d of the resistance voltage dividing substrate 2C are used for connecting the resistance voltage dividing substrates 2B and 2C. Further, the through hole 25b of the resistance voltage dividing substrate 2C and the through hole 25b of the resistance voltage dividing substrate 2D are used for connecting the resistance voltage dividing substrates 2C and 2D. Further, when the resistance voltage dividing substrate 2A is connected to the resistance voltage dividing substrate on the opposite side of the resistance voltage dividing substrate 2B, the through hole 25c is used. Further, when the resistance voltage dividing substrate 2D is connected to the resistance voltage dividing substrate on the opposite side of the resistance voltage dividing substrate 2C, the through hole 25c is used.
  • connection terminals 21 are arranged so as not to come close to each other between the resistance voltage dividing boards 2A and 2D. That is, the coordinates of the connection terminals 21 connecting the resistance voltage dividing boards 2A and 2B in the XZ plane, the coordinates of the connection terminals 21 connecting the resistance voltage dividing boards 2B and 2C in the XZ plane, and the resistance voltage dividing board.
  • the connection terminal 21 is arranged between the resistance voltage dividing boards 2A and 2D so that the coordinates of the connection terminal 21 connecting the 2C and 2D in the XZ plane are not the same. For example, when the first through hole 25 (through hole 25a in FIG.
  • connection on the front surface side of the resistance voltage dividing substrate 2B is used for the connection on the front surface side of the resistance voltage dividing substrate 2B, the connection on the back surface side of the resistance voltage dividing substrate 2B may be performed.
  • the second through hole 25 (through hole 25b in FIG. 21) closest to the first through hole 25 is not used, and the third through hole 25 on the opposite side in the longitudinal direction (through hole 25d in FIG. 21) is not used. ) Is used.
  • the connection on the back surface side of the resistance voltage dividing substrate 2C is the first.
  • the fourth through hole 25 (through hole 25c in FIG. 21) closest to the through hole 25 of 3 is not used, but the first or second through hole 25 on the opposite side in the longitudinal direction is used.
  • the first through hole 25 is used for connecting the front surface side of the resistance voltage dividing substrate 2B
  • the second through hole 25 is used for connecting the back surface side of the resistance voltage dividing substrate 2C. 25 is used.
  • the coordinates of the connection terminals 21 connecting the resistance voltage dividing boards 2A and 2B in the XZ plane and the coordinates of the connection terminals 21 connecting the resistance voltage dividing boards 2B and 2C are in the XZ plane.
  • the connection terminal 21 is arranged between the resistance voltage dividing boards 2A and 2D so that the coordinates of the above and the coordinates of the connection terminals 21 connecting the resistance voltage dividing boards 2C and 2D in the XZ plane are different. This makes it possible to electrically connect the resistance voltage dividing substrates 2A to 2D while ensuring the insulation distance between the bag nuts 22.
  • the configuration shown in the above-described embodiment shows an example of the content of the present invention, can be combined with another known technique, and is one of the configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1 high voltage power supply 2A to 2D, 20A, 20B resistance voltage dividing board, 3 voltage dividing device, 4 detection resistance, 5,50 front surface, 6,60 back surface, 7 copper pattern, 10 electrodes, 11 connecting members, 15 Insulation sheet, 17 Via, 21 Connection terminal, 21a, 21c Thread part, 21b Insulation part, 22 Bag nut, 23 Fixing rod, 24 Fixing rod hole, 25, 25a to 25d Through hole, 40 1st component, 45 Support member, 100 voltage detection system, a to e connection points, C0 to C16 chip capacitors, R0 to R16 chip resistors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Structure Of Printed Boards (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

電圧電源から出力された電圧を分圧する分圧装置(3)であって、板状の基板のおもて面(5)で並列接続されたコンデンサおよび抵抗によって、基板のおもて面(5)に配置された複数の導体パターンが直列接続された抵抗分圧基板(2A~2D)を複数備え、抵抗分圧基板(2A~2D)は、接続部材(11)を介して直列接続され、且つ隣接する抵抗分圧基板(2A~2D)同士は、一方の抵抗分圧基板の裏面(6)と、他方の抵抗分圧基板のおもて面(5)とが向き合い、且つ一方の抵抗分圧基板のおもて面(5)に配置された導体パターンと、他方の抵抗分圧基板のおもて面(5)に配置された導体パターンとが、他方の抵抗分圧基板を挟んで対向するよう配置されている。

Description

分圧装置
 本発明は、高電圧の検出に用いられる分圧装置に関する。
 高電圧の発生源である高電圧電源から出力される電圧の電圧値の検出には、分圧装置が用いられる。分圧装置は、高電圧電源から出力される電圧を分圧する装置であり、分圧装置によって分圧された電圧が電圧値の検出に用いられる。
 分圧装置は、高電圧電源から出力される電圧を、抵抗を用いて分圧する抵抗分圧基板を備えており、抵抗分圧基板上には、複数の抵抗および複数のコンデンサが配置される。特許文献1に記載の電圧検出装置では、第1の抵抗が三角形の第1の辺の位置に、第2の抵抗が三角形の第2の辺の位置に、コンデンサが三角形の第3の辺の位置にそれぞれ配置されており、これにより、抵抗分圧基板を小型化している。
特開昭63-215970号公報
 しかしながら、上記特許文献1の技術では、抵抗分圧基板を小型化しているが、高電圧を分圧するために複数枚の抵抗分圧基板を並べる場合の小型化が考慮されていない。複数枚の抵抗分圧基板が並べられた場合には、抵抗分圧基板間に浮遊容量が発生し、浮遊容量の偏りによって、電圧が過度的に変化した際に、抵抗分圧基板に設計値以上の電圧が印加されて部品破壊が発生する場合があるので、浮遊容量の偏りは抑制する必要がある。抵抗分圧基板間の浮遊容量を抑制するためには、絶縁設計上、抵抗分圧基板間の距離を長くする必要があるので、特許文献1の技術では、複数枚の抵抗分圧基板を並べた場合、装置構成が大きくなるという問題があった。
 本発明は、上記に鑑みてなされたものであって、複数枚の抵抗分圧基板が配置される場合であっても、小さな装置構成で分圧を実現できる分圧装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、電圧電源から出力された電圧を分圧する分圧装置であって、板状の基板の第1面で並列接続されたコンデンサおよび抵抗によって、基板の第1面に配置された複数の導体パターンが直列接続された抵抗分圧基板を複数備える。複数の抵抗分圧基板は、導電部材を介して直列接続され、且つ隣接する抵抗分圧基板同士は、一方の抵抗分圧基板の第2面と、他方の抵抗分圧基板の第1面とが向き合い、且つ一方の抵抗分圧基板の第1面に配置された導体パターンと、他方の抵抗分圧基板の第1面に配置された導体パターンとが、他方の抵抗分圧基板を挟んで対向するよう配置されている。
 本発明によれば、複数枚の抵抗分圧基板が配置される場合であっても、小さな装置構成で分圧を実現できるという効果を奏する。
実施の形態1にかかる分圧装置を備えた電圧検出システムの構成を示す図 実施の形態1にかかる分圧装置が備える抵抗分圧基板の構成を示す図 図2に示した抵抗分圧基板の等価回路を示す図 コンデンサ容量を説明するための図 実施の形態1にかかる分圧装置の実装構造を説明するための図 実施の形態1にかかる抵抗分圧基板の他の実装例を説明するための図 実施の形態1にかかる分圧装置が備える抵抗分圧基板を直列接続した場合の、理想的な回路を説明するための図 実施の形態1にかかる分圧装置が備える抵抗分圧基板を直列接続した場合の、実際の回路を説明するための図 図8に示した抵抗分圧基板間で発生する浮遊容量を説明するための図 実施の形態1にかかる分圧装置における浮遊容量のシミュレーション解析結果を示す図 基板間の浮遊容量が異なる場合のシミュレーション解析結果を示す図 実施の形態2にかかる分圧装置が備える抵抗分圧基板の構成を示す図 実施の形態2にかかる分圧装置が備える抵抗分圧基板間で発生する浮遊容量を説明するための図 実施の形態2にかかる分圧装置が備える抵抗分圧基板の他の構成例を示す図 実施の形態1にかかる分圧装置が備える抵抗分圧基板の他の構成例を示す図 抵抗分圧基板の厚みと放電抑制効果との関係を説明するための図 実施の形態3にかかる分圧装置が備える抵抗分圧基板間で発生する容量を説明するための図 図5に示した抵抗分圧基板を立てて並べた場合の分圧装置の構成を示す斜視図 図18に示した分圧装置を正面方向から見た図 図18に示した分圧装置の構成を示す上面図 図18に示した抵抗分圧基板の構成を示す図 図18に示した分圧装置が備える接続端子のねじ部の構成を示す図 図18に示した分圧装置が備える袋ナットの構成を示す図
 以下に、本発明にかかる分圧装置の実施の形態を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、実施の形態1にかかる分圧装置を備えた電圧検出システムの構成を示す図である。電圧検出システム100は、高電圧の発生源である高電圧電源(電圧電源)1と、高電圧電源1が発生させた高電圧を分圧する分圧装置(高電圧分圧装置)3と、高電圧電源1を制御するための電圧を検出する検出抵抗4とを備えている。
 電圧検出システム100では、高電圧電源1と、分圧装置3と、検出抵抗4とが直列に接続されている。高電圧電源1の一端は、接続点aを介して分圧装置3の一端に接続され、分圧装置3の他端は接続点bを介して検出抵抗4の一端に接続され、検出抵抗4の他端は、高電圧電源1の他端に接続されている。検出抵抗4の他端と、高電圧電源1の他端とを接続する接続線は、接地されている。
 高電圧電源1は、負荷(図示せず)に高電圧を供給する装置である。高電圧電源1は、分圧装置3および検出抵抗4を用いて検出された電圧値に基づいて負荷への電圧の出力処理を制御する。
 分圧装置3は、電圧を分圧するための複数の抵抗分圧基板を有している。以下では、分圧装置3が4枚の抵抗分圧基板2A~2Dを有している場合について説明するが、分圧装置3が備える抵抗分圧基板の枚数は、2枚以上であれば、何枚であってもよい。
 分圧装置3では、抵抗分圧基板2A~2Dが直列接続されている。具体的には、接続点aに抵抗分圧基板2Aの一端が接続され、抵抗分圧基板2Aの他端に抵抗分圧基板2Bの一端が接続され、抵抗分圧基板2Bの他端に抵抗分圧基板2Cの一端が接続され、抵抗分圧基板2Cの他端に抵抗分圧基板2Dの一端が接続され、抵抗分圧基板2Dの他端に接続点bが接続されている。
 高電圧電源1の回路方式の例は、トランスによる昇圧方式、コッククロフトウォルトン回路などに適用される倍電圧回路方式であるが、本実施の形態の高電圧電源1は、何れの回路方式が適用されてもよい。
 例えば、高電圧電源1の出力が60kVの高電圧であり、検出抵抗4で5Vを検出する必要があるとする。この場合、抵抗分圧の考え方に基づくと、検出抵抗4には5kΩ、分圧装置3の合成抵抗には60MΩが必要となる。分圧装置3の場合、4枚の抵抗分圧基板2A~2Dを備えているので、抵抗分圧基板2A~2Dは、1枚当たり約15kVずつ分圧することになる。本実施の形態の電気的な接続の説明を行うにあたり、以下でも60kVを用いて計算および説明を行うが、60kVは、あくまで一例であるので、適用できる電圧範囲に上限および下限はない。
 分圧装置3は、高電圧電源1の近傍に配置されればよいので、高電圧電源1の上部、下部、または側面に配置できる。また分圧装置3には、固定に関する制約がないので、任意の方向、任意の角度に向けて固定されればよい。分圧装置3を高電圧電源1の近傍に固定する場合、電気的に0Vまたは電気的に浮いている構造物で分圧装置3を固定すればよい。
 図2は、実施の形態1にかかる分圧装置が備える抵抗分圧基板の構成を示す図である。図3は、図2に示した抵抗分圧基板の等価回路を示す図である。抵抗分圧基板2A~2Dは、同様の構成を有しているので、ここでは、抵抗分圧基板2Aの構成について説明する。図2では、抵抗分圧基板2Aの第1面であるおもて面5の構成、および抵抗分圧基板2Aの第2面である裏面6の構成を示している。なお、おもて面5にはハッチングを付している。
 実施の形態1では、抵抗分圧基板2A~2Dは、導体パターンの一例である銅パターン7がおもて面5だけに配置された片面基板である。抵抗分圧基板2Aのおもて面5には、おもて面5の表面積に対して可能な限り広く、規則的に敷き詰められた複数の銅パターン7が配置されている。本実施の形態では、おもて面5の表面積に対して可能な限り広く、規則的に敷き詰められた銅パターン7が重要であり、この銅パターン7によって誤差の少ない浮遊容量を生成する。
 抵抗分圧基板2Aのおもて面5では、矩形状の複数(例えば5つ)の銅パターン7が、抵抗分圧基板2Aの長手方向に沿って直列接続されている。また、抵抗分圧基板2Aのおもて面5では、銅パターン7間にコンデンサの一例であるチップコンデンサC1~C4と、抵抗の一例であるチップ抵抗R1~R4とが配置されている。
 なお、以下の説明では、分圧装置3が備えるチップコンデンサC1~C4を識別する必要が無い場合には、チップコンデンサC1~C4をチップコンデンサC0という場合がある。また、分圧装置3が備えるチップ抵抗R1~R4を識別する必要が無い場合には、チップ抵抗R1~R4をチップ抵抗R0という場合がある。
 第1の銅パターン7と第2の銅パターン7との間には、第1の銅パターン7と第2の銅パターン7とを接続するよう、チップ抵抗R1およびチップコンデンサC1が配置されている。チップ抵抗R1およびチップコンデンサC1は、第1の銅パターン7と第2の銅パターン7との間で並列接続されている。
 第2の銅パターン7と第3の銅パターン7との間には、第2の銅パターン7と第3の銅パターン7とを接続するよう、チップ抵抗R2およびチップコンデンサC2が配置されている。チップ抵抗R2およびチップコンデンサC2は、第2の銅パターン7と第3の銅パターン7との間で並列接続されている。
 第3の銅パターン7と第4の銅パターン7との間には、第3の銅パターン7と第4の銅パターン7とを接続するよう、チップ抵抗R3およびチップコンデンサC3が配置されている。チップ抵抗R3およびチップコンデンサC3は、第3の銅パターン7と第4の銅パターン7との間で並列接続されている。
 第4の銅パターン7と第5の銅パターン7との間には、第4の銅パターン7と第5の銅パターン7とを接続するよう、チップ抵抗R4およびチップコンデンサC4が配置されている。チップ抵抗R4およびチップコンデンサC4は、第4の銅パターン7と第5の銅パターン7との間で並列接続されている。
 このように、抵抗分圧基板2Aのおもて面5では、並列接続されたチップコンデンサC0およびチップ抵抗R0を介して、銅パターン7が直列接続されている。なお、本実施の形態では説明の便宜上、チップ抵抗R1~R4とチップコンデンサC1~C4とが4直列で接続される場合について説明するが、抵抗分圧基板2Aの設計上は、直列数に制限はない。
 抵抗分圧基板2Aのおもて面5において隣接する銅パターン7間の距離は、配置されるチップコンデンサC0およびチップ抵抗R0のサイズに依存する。例えば、チップコンデンサC0のサイズおよびチップ抵抗R0のサイズが、それぞれ1.6mm×0.8mm(1608サイズ)であれば、隣接する銅パターン7間の距離は、1.0mmでよいことになる。抵抗分圧基板2Aのおもて面5には、チップコンデンサC0およびチップ抵抗R0を配置したうえで、おもて面5の表面積に対して可能な限り広い銅パターン7が配置される。例えば、おもて面5の上辺と、銅パターン7の上辺との間の隙間を0に近いものとし、おもて面5の下辺と、銅パターン7の下辺との間の隙間を0に近いものとする。また、おもて面5の左辺と、銅パターン7のうち最左端に配置されている銅パターン7の左辺との間の隙間を0に近いものとし、おもて面5の右辺と、銅パターン7のうち最右端に配置されている銅パターン7の右辺との間の隙間を0に近いものとする。
 なお、抵抗分圧基板2A~2Dは、片面基板であるので、抵抗分圧基板2A~2Dの裏面6には、銅パターン7、チップコンデンサC0、およびチップ抵抗R0の何れも配置されていない。
 ここで、コンデンサのコンデンサ容量Cc[F]について説明する。図4は、コンデンサ容量を説明するための図である。図4では、チップコンデンサC0などに配置されるコンデンサの構成を示している。チップコンデンサC0などに配置されるコンデンサは、2枚の対になった電極(並行平板)10で、誘電率εの誘電体を挟む構造を有している。
 誘電率ε[F/m]は、ε=ε・εであり、εは真空中の誘電率であり、εは各物質の持つ比誘電率である。ここでコンデンサの容量をCc[F]とし、電極10の表面積をS[mm2]とし、電極10間の距離をd[mm]とし、誘電率εをε[F/m]とすると、Cc=ε・(S/d)[F]の式が成立する。この式より、誘電率ε[F/m]を一定とした場合、表面積S[mm2]が大きいほどコンデンサ容量Cc[F]が大きくなり、また、電極10間の距離d[mm]が近いほどコンデンサ容量Cc[F]が大きくなることが分かる。また、表面積S[mm2]と、電極10間の距離d[mm]を適切に設定することができれば、コンデンサ容量Cc[F]を任意の値にすることが可能となるので、距離d[mm]が大きくても意図的にコンデンサ容量Cc[F]を作ることができる。
 図5は、実施の形態1にかかる分圧装置の実装構造を説明するための図である。分圧装置3が備える抵抗分圧基板2A~2Dは、導電部材を含んだ接続部材11で直列に接続されている。抵抗分圧基板2A~2D間の接続方法は、抵抗分圧基板2A~2D間を電気的に接続することができれば何れの部材が用いられてもよい。抵抗分圧基板2A~2D間の接続には、例えば、ケーブルなどの配線材料、または金属導体を用いることができる。
 抵抗分圧基板2A~2Dは、それぞれ同一の板状形状を有している。抵抗分圧基板2A~2Dのおもて面5および裏面6は、矩形状となっている。抵抗分圧基板2A~2Dは、側面のうち長手方向に延びる側面が底面となり、短手方向の側面が鉛直方向に平行になるよう立てて並べられる。抵抗分圧基板2A~2Dは、それぞれのおもて面5が平行になり、且つそれぞれの面内方向の位置が一致するよう立てて並べられる。すなわち、抵抗分圧基板2A~2Dは、抵抗分圧基板2A~2Dの面内方向で位置ずれが発生しないよう、立てて並べられる。
 なお、抵抗分圧基板2A~2Dが配置される雰囲気環境は空気でもよいが、ドライエアー、窒素、または水素で満たされている方が、空気の場合よりも浮遊容量の誤差を抑制する効果がある。また、抵抗分圧基板2A~2Dが配置される雰囲気環境がSF6(六フッ化硫黄)で満たされることで、ドライエアーの場合と同様に浮遊容量の誤差を抑制する効果がある。
 図6は、実施の形態1にかかる抵抗分圧基板の他の実装例を説明するための図である。なお、図6では、接続部材11の図示を省略している。図6に示すように、抵抗分圧基板2A~2Dは、鉛直方向に階層状に積み重ねられてもよい。この場合も、抵抗分圧基板2A~2Dが立てて並べられた図5の場合と同様に浮遊容量の誤差を抑制する効果がある。抵抗分圧基板2A~2Dを階層状に積み重ねる場合には、支持部材45などによって、抵抗分圧基板2A~2D間が支持される。
 抵抗分圧基板2Aは、抵抗分圧基板2Aの裏面6と、抵抗分圧基板2Bのおもて面5とが、距離d1を介して対向するよう配置される。抵抗分圧基板2Bは、抵抗分圧基板2Bの裏面6と、抵抗分圧基板2Cのおもて面5とが、距離d2を介して対向するよう配置される。抵抗分圧基板2Cおよび抵抗分圧基板2Dは、抵抗分圧基板2Cの裏面6と、抵抗分圧基板2Dのおもて面5とが、距離d3を介して対向するよう配置される。このように、抵抗分圧基板同士は、一方の抵抗分圧基板の裏面6と、他方の抵抗分圧基板のおもて面5とが向き合い、且つ一方の抵抗分圧基板のおもて面5に配置された銅パターン7と、他方の抵抗分圧基板のおもて面5に配置された銅パターン7とが、他方の抵抗分圧基板を挟んで対向するよう配置されている。
 なお、以下の説明では、抵抗分圧基板2A~2Dを、基板という場合がある。したがって、以下の説明では、抵抗分圧基板2A~2D間、すなわち、抵抗分圧基板2A,2B間、抵抗分圧基板2B,2C間、および抵抗分圧基板2C,2D間を、基板間という場合がある。
 分圧装置3では、基板間の各距離d1,d2,d3が等しくなるように抵抗分圧基板2A~2Dが配置される。このため、抵抗分圧基板2A~2Dは、例えば、樹脂等のスペーサを用いて等間隔に固定され、基板間の電気的な接続は配線材料を用いて行われる。また、抵抗分圧基板2A~2Dを、金属導体のみで等間隔に固定しつつ金属導体で電気的に接続してもよい。基板間の距離d1,d2,d3は、前述のようにコンデンサ容量Cc[F]に影響するので、可能な限り誤差は小さい方がよく、例えば、誤差は±10%以内に入っていればよい。
 ここで、抵抗分圧基板2A~2Dを直列接続した場合の、分圧装置3の理想的な回路について説明する。図7は、実施の形態1にかかる分圧装置が備える抵抗分圧基板を直列接続した場合の、理想的な回路を説明するための図である。理想的な回路とは、基板間の浮遊容量がない回路であるが、実際の回路には、基板間に浮遊容量が発生している。
 抵抗分圧基板2Aは、チップコンデンサC1~C4およびチップ抵抗R1~R4を備えており、抵抗分圧基板2Bは、チップコンデンサC5~C8およびチップ抵抗R5~R8を備えている。抵抗分圧基板2Cは、チップコンデンサC9~C12およびチップ抵抗R9~R12を備えており、抵抗分圧基板2Dは、チップコンデンサC13~C16およびチップ抵抗R13~R16を備えている。チップコンデンサC1~C16は、それぞれ同じ特性を有し、チップ抵抗R1~R16は、それぞれ同じ特性を有している。
 分圧装置3では、チップコンデンサCN(Nは1から16の自然数)とチップ抵抗RNとがそれぞれ並列接続されている。分圧装置3では、チップコンデンサCNおよびチップ抵抗RNの組み合わせを素子組XNとした場合に、素子組X1、素子組X2、素子組X3、素子組X4、素子組X5、素子組X6、素子組X7、素子組X8、素子組X9、素子組X10、素子組X11、素子組X12、素子組X13、素子組X14、素子組X15、素子組X16の順番で各素子組が直列接続されている。
 このように、抵抗分圧基板2A~2Dでは、チップコンデンサC0とチップ抵抗R0とが並列接続されるとともに、チップコンデンサC0およびチップ抵抗R0の組が、組間で直列接続されている。
 抵抗分圧基板2Aの素子組X1は、接続点aに接続されている。抵抗分圧基板2Aの素子組X4と、抵抗分圧基板2Bの素子組X5とは、接続点cを介して接続されている。また、抵抗分圧基板2Bの素子組X8と、抵抗分圧基板2Cの素子組X9とは、接続点dを介して接続されている。また、抵抗分圧基板2Cの素子組X12と、抵抗分圧基板2Dの素子組X13とは、接続点eを介して接続されている。そして、抵抗分圧基板2Dの素子組X16が、接続点bに接続されている。
 分圧装置3では、抵抗分圧基板2A~2D上に配置された素子組X1~X16は、直列に接続されている。理想的な回路の場合、基板間に浮遊容量が発生していない。このため、理想的な回路では、接続点aから接続点bに印加された電圧は、チップコンデンサC0とチップ抵抗R0との組み合わせ毎(素子組毎)に、均等に分圧される。ここで接続点aから接続点bに60kVの電圧を印加した場合、チップコンデンサC0およびチップ抵抗R0には、それぞれ3.75kVの電圧が印加されることになる。したがって、理想的な回路の場合、基板の設計上では、この3.75kVの電圧が考慮されればよい。
 接続点a-d間には、これらの間に配置されているチップコンデンサC0、チップ抵抗R0の直列数倍(ここでは8倍)された電圧である30kVが印加される。同様に、接続点d-b間、および接続点c-e間には、それぞれ、30kVが印加される。よって、理想的な回路の場合、基板間は最大30kVが印加されることを前提に、実装構造の設計が行われればよい。
 しかし、実際の分圧装置3の回路には、基板間に浮遊容量(後述する浮遊容量Cs1~Cs12)が存在する。ここで、浮遊容量を加味した分圧装置3の実際の回路について説明する。図8は、実施の形態1にかかる分圧装置が備える抵抗分圧基板を直列接続した場合の、実際の回路を説明するための図である。
 分圧装置3には、意図しない浮遊容量が発生している。ここでは、分圧装置3の基板間に浮遊容量Cs1~Cs12が存在している場合について説明する。浮遊容量Cs1~Cs4は、抵抗分圧基板2A,2B間の浮遊容量であり、浮遊容量Cs5~Cs8は、抵抗分圧基板2B,2C間の浮遊容量であり、浮遊容量Cs9~Cs12は、抵抗分圧基板2C,2D間の浮遊容量である。
 浮遊容量Cs1~Cs12の容量値[F]は、浮遊容量Cs1~Cs12を適切にコントロールしなければ、浮遊容量Cs1~Cs12毎に異なるものである。浮遊容量Cs1~Cs12の容量値が異なると、電圧の過度的な変化が発生した場合に、基板間の浮遊容量Cs1~Cs12による分圧比が変わる。このため、接続点a-d間、接続点d-b間、および接続点c-e間には、設計値以上の高い電圧が印加される場合があり、浮遊容量Cs1~Cs12を適切にコントロールしなければ、分圧装置3が故障する可能性がある。これらの浮遊容量Cs1~Cs12は、構造上無くなることはない。そのため、浮遊容量Cs1~Cs12の全てを共通の値にコントロールすることで、基板間の浮遊容量Cs1~Cs12による分圧比を一定値に近付けることができる。なお、以下の説明では、浮遊容量Cs1~Cs12を区別する必要が無い場合には、浮遊容量Cs1~Cs12を浮遊容量CsXという場合がある。
 ここで、片面基板である抵抗分圧基板2A~2Dが図5に示したように実装された場合の、浮遊容量Cs1~Cs12の容量値[F]について説明する。
 図9は、図8に示した抵抗分圧基板間で発生する浮遊容量を説明するための図である。なお、浮遊容量Cs1~Cs12の容量値[F]は、同様の考え方によって計算できるので、ここでは浮遊容量Cs1の容量値[F]について説明する。
 図9では、抵抗分圧基板2A,2Bの一部である第1構成部40を図示している。第1構成部40は、図8に示した浮遊容量Cs1を発生させる箇所に配置されている。図9に示すように、本実施の形態では、基板材料の容量Cxと、抵抗分圧基板2A,2B間の浮遊容量Cs1との直列接続によって第1構成部40の浮遊容量が構成される。ここで、本実施の形態の実装構造における、基板材料の容量Cx、および抵抗分圧基板2A,2B間の浮遊容量Cs1について説明する。一般的な基板材料であるガラスコンポジット基板(CEM-3)の比誘電率εrは、4.7であり、ガラスエポキシ基板(FR-4)の比誘電率εrは、4.73である。ここでは、基板材料がCEM-3である場合の容量値[F]について説明する。
 抵抗分圧基板2A,2Bの厚みは、それぞれ1.6mmとする。また、銅パターン7の表面積をS[mm2]と仮定すると、基板材料の容量Cxは、C=ε・ε・(S/d)より、2.94εS[F]である。
 次に、基板間の浮遊容量Cs1について説明する。本実施の形態の実装構造において、基板間の距離が10mm~20mmであり、分圧装置3が配置される環境が、比誘電率εr=1の雰囲気中であると仮定する。この場合、基板間の浮遊容量Cs1は、基板間の距離が10mmの場合に0.1εS[F]であり、基板間の距離が20mmの場合に0.05εS[F]である。したがって、第1構成部40の浮遊容量が、基板材料の容量Cxと基板間の浮遊容量Cs1とで構成されている場合、コンデンサの分圧の考え方から、基板材料の容量Cxには全体の数%程度の電圧しか印加されないことになる。このため、残りの電圧は、基板間の浮遊容量Cs1に印加される。すなわち、実施の形態1では、第1構成部40の浮遊容量は、基板間の浮遊容量Cs1に依存しているといえる。
 次に、図8に示した回路における浮遊容量のシミュレーション解析結果について説明する。図10は、実施の形態1にかかる分圧装置における浮遊容量のシミュレーション解析結果を示す図である。図10では、基板間の浮遊容量Cs1~Cs12が共通の場合のシミュレーション解析結果を示している。図11は、基板間の浮遊容量が異なる場合のシミュレーション解析結果を示す図である。
 ここでのシミュレーション条件は、60kV、100Hzの電圧を図8に示した接続点a-b間に印加することである。図10および図11の上段には、図8に示した接続点a-d間の電圧波形を示している。また、図10および図11の中段には、図8に示した接続点c-e間の電圧波形を示している。また、図10および図11の下段には、図8に示した接続点d-b間の電圧波形を示している。
 図10に示す電圧波形は、本実施の形態の分圧装置3のように、浮遊容量Cs1~Cs12が全て共通の場合の電圧波形である。図10に示すように、浮遊容量Cs1~Cs12が全て共通の場合、全ての基板間に30kVが均等に印加されている。これは、浮遊容量Cs1~Cs12の誤差が非常に小さく略共通の値になっているからであり、電圧の過度的な変化に対しても浮遊容量Cs1~Cs12による分圧が均等に行われているからである。このため、本実施の形態では、基板間だけでなく基板上のチップコンデンサC0、チップ抵抗R0についても、基板上で分圧された3.75kVが均等に印加される。したがって、分圧装置3の故障を防止することができる。
 図11に示す電圧波形は、比較例の分圧装置が示す電圧波形である。比較例の分圧装置では、接続点a-d間の浮遊容量Cs1~Cs4を、浮遊容量Cs5~Cs12より大きくしている。このように、比較例の分圧装置では、浮遊容量Cs1~Cs4と、浮遊容量Cs5~Cs12とが異なっている。
 図11に示すように、接続点a-d間、および接続点c-e間には、最大30kVが印加されているが、接続点d-b間には、最大58kVが印加されている。これは分圧装置3において異なる浮遊容量CsXが直列に接続されているため、浮遊容量CsXによる分圧比が変わり、浮遊容量CsXの容量値が小さい側に電圧が偏った結果である。この結果から、比較例の分圧装置では、58kVに耐える実装構造を設計する必要がある。仮に空間絶縁距離を1kV/mmとした場合、比較例の分圧装置では、基板間を58mm離した実装構造にする必要がある。また、基板上のチップコンデンサC0、チップ抵抗R0についても、設計値以上の電圧が印加されるため、部品破壊の原因になる。
 なお、図11で説明したシミュレーションは、あくまでもシミュレーションを分かりやすくするために、接続点a-d間の浮遊容量Cs1~Cs4のみを変化させたものであり、シミュレーションの一例にすぎない。実際の比較例の分圧装置に対する基板設計では、本実施の形態のように、基板間の浮遊容量が共通の値となるようにパターン設計することはない。
 また、本実施の形態の分圧装置3では、基板のおもて面5の表面積S[mm2]と同等に均一に銅パターン7を配置した片面基板が、互いに平面方向にずれがないよう、且つ基板間の距離d1,d2,d3が等しくなるように並べられている。これによって、分圧装置3に対し、基板間の浮遊容量CsXを、基板間の全ての位置において共通の値にコントロールすることができる。したがって、過度的な電圧の変化の際にも基板間の電圧を均等に分圧することができるので、基板間の絶縁距離の設計が容易となり、分圧装置3の小型化が可能となる。すなわち、部品間の絶縁距離を確保しつつ、小型化した分圧装置3を実現することができる。
 また、基板の製造時には、基板の機械的な寸法誤差が発生する。基板のおもて面5の表面積S[mm2]を考慮していないパターン設計の基板(銅パターンの表面積が狭い基板)は、機械的な寸法誤差が原因で浮遊容量のばらつきが大きくなる。また、銅パターンの表面積が狭い基板は、浮遊容量の容量値自体が小さい。すなわち、銅パターンの表面積が狭い基板の場合、浮遊容量の容量値が数pFといった非常に小さな値となる。このため、銅パターンの表面積が狭い基板を用いて、高電圧を分圧するために基板の枚数を増やした場合、さらに浮遊容量の偏りが発生しやすくなる。したがって、電圧の偏りも大きくなり、基板間の電圧を予測することが難しくなる。
 本実施の形態の分圧装置3では、基板のおもて面5の表面積S[mm2]に対し、銅パターン7の表面積を可能な限り大きくしているので、銅パターン7の寸法誤差(製造誤差)による浮遊容量CsXのばらつきを許容できるようになる。
 銅パターンの例として、幅が2mmの銅パターンを重ねる場合について説明する。基板の機械的な寸法誤差により、対向する一方の基板の銅パターンの位置が幅の方向(横方向)に1mmずれた場合、幅が2mmの銅パターン同士では、横方向で重なり合う部分が1mmとなる。この場合、銅パターン間の浮遊容量は設計値の半分となる。一方、幅が10mmの銅パターン同士を重ねた場合では、対向する一方の銅パターンの位置が幅の方向に1mmずれると、横方向で重なり合う部分が9mmとなる。この場合、銅パターン間の浮遊容量は設計値の90%となる。このように、銅パターンの表面積が大きいほど、銅パターンの寸法誤差(位置ずれ)を許容できる。
 本実施の形態では、電圧60kVを抵抗分圧基板2A~2Dの直列接続で分圧する構成について説明したが、抵抗分圧基板2A~2Dは、あくまでも一例である。このため、対象となる装置、電圧などに合わせて抵抗分圧基板の枚数は変更が可能である。例えば、電圧60kVよりも高電圧を対象に分圧する場合、直列に接続する抵抗分圧基板を増やせばよい。この場合も、抵抗分圧基板の面内方向にずれがなく、抵抗分圧基板間の距離が等しくなるよう、抵抗分圧基板が配置される。
 このように、実施の形態1では、抵抗分圧基板2A~2Dが接続部材11で直列に接続され、隣接する抵抗分圧基板同士は、一方の抵抗分圧基板の裏面6と、他方の抵抗分圧基板のおもて面5と、が対向するよう平行に配置されている。さらに、一方の抵抗分圧基板の裏面6と、他方の抵抗分圧基板のおもて面5との間の距離が、隣接する抵抗分圧基板同士のそれぞれで等しくなるよう、各抵抗分圧基板2A~2Dが配置されている。これにより、浮遊容量Cs1~Cs12の全てを共通の値にコントロールすることができ、基板間の浮遊容量Cs1~Cs12による分圧比を一定値に近付けることができる。したがって、分圧装置3は、複数枚の抵抗分圧基板が配置される場合であっても、小さな装置構成で分圧を実現できる。
 また、抵抗分圧基板2A~2Dには、抵抗分圧基板2A~2Dのおもて面5の表面積S[mm2]と略同じ面積の銅パターン7が均一に配置されている。このため、抵抗分圧基板2A~2Dの放熱性能が向上する。また、抵抗分圧基板2A~2Dは、立てて並べられているので空気の流れが良くなり、自然対流による放熱性が向上する。したがって、分圧装置3が、強制空冷または水冷ができない密閉された構造物内に取り付けられた環境下であっても、抵抗分圧基板2A~2Dの温度上昇を抑制することができる。
実施の形態2.
 つぎに、図12から図16を用いてこの発明の実施の形態2について説明する。実施の形態2では、抵抗分圧基板を、両面に銅パターン7が配置された両面基板とする。
 図12は、実施の形態2にかかる分圧装置が備える抵抗分圧基板の構成を示す図である。実施の形態2では、片面基板である抵抗分圧基板2Aの代わりに、両面基板である抵抗分圧基板20Aが用いられる。なお、実施の形態2における分圧装置3が備える抵抗分圧基板20A以外の抵抗分圧基板も、抵抗分圧基板20Aと同様の構成を有している。
 抵抗分圧基板20Aは、銅パターン7が両面に配置された両面基板である。抵抗分圧基板20Aのおもて面50は、抵抗分圧基板2Aのおもて面5と同様の構成を有している。すなわち、抵抗分圧基板20Aのおもて面50には、おもて面50の表面積S[mm2]に対して可能な限り広く、規則的に敷き詰められた複数の銅パターン7が配置されている。また、抵抗分圧基板20Aのおもて面50では、抵抗分圧基板2Aのおもて面5と同様に、銅パターン7間にチップコンデンサC1~C4とチップ抵抗R1~R4とが配置されている。
 抵抗分圧基板20Aの裏面60には、抵抗分圧基板20Aのおもて面50と面対称の位置に銅パターン7が配置されている。すなわち、抵抗分圧基板20Aの裏面60には、抵抗分圧基板20Aのおもて面50の銅パターン7と同じ形状で同じ大きさの銅パターン7が、おもて面50の銅パターン7と互いに対向するよう配置されている。この裏面60に配置されている銅パターン7は、それぞれ面対称の位置に配置されているおもて面50の銅パターン7に対し、ビア(後述するビア17)を介して電気的に接続されている。具体的には、おもて面50に配置された最左端の銅パターン7と、裏面60に配置された最左端の銅パターン7とがビア17で接続され、おもて面50に配置された左から2番目の銅パターン7と、裏面60に配置された左から2番目の銅パターン7とがビア17で接続されている。また、おもて面50に配置された最右端の銅パターン7と、裏面60に配置された最右端の銅パターン7とがビア17で接続され、おもて面50に配置された右から2番目の銅パターン7と、裏面60に配置された右から2番目の銅パターン7とがビア17で接続されている。
 実施の形態2にかかる分圧装置3の実装構造は、図5で説明した実施の形態1にかかる分圧装置3の実装構造と同じであるので、その説明を省略する。また、抵抗分圧基板20Aと同様の抵抗分圧基板を合計4枚直列接続した場合の、実際の回路については、図8で説明した実施の形態1にかかる分圧装置3の回路と同様に、基板間に浮遊容量Cs1~Cs12が存在する。
 実施の形態2の分圧装置3では、抵抗分圧基板2Aの位置に抵抗分圧基板20Aが配置され、抵抗分圧基板2Bの位置に後述する抵抗分圧基板20Bが配置されている。また、抵抗分圧基板2Cの位置に抵抗分圧基板20Aと同様の抵抗分圧基板が配置され、抵抗分圧基板2Dの位置に抵抗分圧基板20Aと同様の抵抗分圧基板が配置されている。
 実施の形態1で説明したように、浮遊容量Cs1~Cs12の容量値が異なると、分圧装置3が故障する可能性があるため、実施の形態2でも、実施の形態1と同様に、浮遊容量Cs1~Cs12を全て共通の値にコントロールする。なお、図12に示した抵抗分圧基板20Aの等価回路は、図2に示した抵抗分圧基板2A~2Dの等価回路と同様である。
 ここで、両面基板である4枚の抵抗分圧基板が図5に示したように実装された場合の、浮遊容量Cs1~Cs12の容量値[F]について説明する。
 図13は、実施の形態2にかかる分圧装置が備える抵抗分圧基板間で発生する浮遊容量を説明するための図である。なお、浮遊容量Cs1~Cs12の容量値[F]は、同様の考え方によって計算できるので、ここでは浮遊容量Cs1の容量値[F]について説明する。
 実施の形態2の分圧装置3が備える抵抗分圧基板20A,20Bは、接続部材11(図13では図示せず)で直列に接続されている。実施の形態2の分圧装置3と、実施の形態1の分圧装置3との違いは、実施の形態2の分圧装置3では、基板の種類が両面基板になったことにより、銅パターン7が基板の両面に配置され、ビア17によって基板のおもて面50の銅パターン7と、裏面60の銅パターン7とが接続されている点である。
 この構成により、基板材料の容量Cxがなくなるので、実施の形態2では、基板間の浮遊容量CsXのみが考慮されればよい。図13に示す基板間の浮遊容量Cs100は、実施の形態1における基板間の浮遊容量Cs1と同様の計算によって求めることができる。すなわち、基板間の距離が10mm~20mmであり、分圧装置3が配置される環境が、比誘電率εr=1の雰囲気中であると仮定する。この場合、基板間の浮遊容量Cs100は、基板間の距離が10mmの場合に0.1εS[F]であり、基板間の距離が20mmの場合に0.05εS[F]である。
 このように、実施の形態2によれば、分圧装置3に両面基板を用いているので、分圧装置3の浮遊容量としては基板間の浮遊容量CsXのみを考慮して分圧装置3の実装構造の設計を行えばよい。したがって、実施の形態1の分圧装置3と比較して、分圧装置3の実装構造の設計が容易になる。
 また、実施の形態2では、基板の表面積S[mm2]に対して可能な限り大きく、規則的に敷き詰めた銅パターン7を基板のおもて面50および裏面60に配置しているので、銅パターン7の表面積は、実施の形態1の2倍となる。このため基板の放熱性能は、実施の形態1の分圧装置3よりも向上する。
 さらに、抵抗分圧基板20A~20Dの角部に最も近い銅パターン7の角部に角丸であるR(アール)を付けることで電界を緩和し、抵抗分圧基板20A~20Dからの放電を抑制してもよい。
 図14は、実施の形態2にかかる分圧装置が備える抵抗分圧基板の他の構成例を示す図である。抵抗分圧基板20A~20Dは、同様の構成を有しているので、ここでは抵抗分圧基板20Aの他の構成例について説明する。図14に示すように、抵抗分圧基板20Aの角部に最も近い銅パターン7の角部にRを付けることで電界が緩和され、抵抗分圧基板20Aからの放電を抑制することができる。なお、抵抗分圧基板20Aが有する全ての銅パターン7の角部にRを設けてもよい。すなわち、抵抗分圧基板20A~20Dが有する全ての銅パターン7の角部にRを設けてもよい。
 また、片面基板の銅パターン7にRを付けてもよい。この場合、実施の形態1で説明した抵抗分圧基板2A~2Dの角部に最も近い銅パターン7の角部にRが付けられる。図15は、実施の形態1にかかる分圧装置が備える抵抗分圧基板の他の構成例を示す図である。図15に示すように、抵抗分圧基板2Aの角部に最も近い銅パターン7の角部にRを付けることで電界が緩和され、抵抗分圧基板2Aからの放電を抑制することができる。なお、抵抗分圧基板2A~2Dが有する全ての銅パターン7の角部にRを設けてもよい。
 銅パターン7の角部にRを付けることで放電を抑制する効果は、片面基板である抵抗分圧基板2A~2Dよりも両面基板である抵抗分圧基板20A~20D方が大きい。
 図16は、抵抗分圧基板の厚みと放電抑制効果との関係を説明するための図である。例えば、抵抗分圧基板2A,20Aの厚みがそれぞれ1.6mmであり、銅パターン7の厚みが35μmであるとする。この場合において、両面基板である抵抗分圧基板20Aにおいては表面と裏面の対向する銅パターン7の電圧が同じになる。このため、抵抗分圧基板20Aの厚み分、抵抗分圧基板20Aは、厚みのある導体の塊としての特性が得られるので、放電抑制効果が大きくなる。すなわち、抵抗分圧基板2Aでは、厚さW1=35μmの導体と同様の特性となるのに対し、抵抗分圧基板20Aでは、厚さW2=1.67mmの導体と同様の特性となる。したがって、両面基板である抵抗分圧基板20Aは、片面基板である抵抗分圧基板2Aよりも、基板からの放電を抑制する効果が大きい。
実施の形態3.
 つぎに、図17を用いてこの発明の実施の形態3について説明する。実施の形態3では、抵抗分圧基板を両面基板とし、且つ抵抗分圧基板間に絶縁シートを貼り付ける。
 図17は、実施の形態3にかかる分圧装置が備える抵抗分圧基板間で発生する容量を説明するための図である。実施の形態3における分圧装置3の実装構造は、実施の形態2における分圧装置3の実装構造と比較して、基板間に絶縁シート15が追加され、絶縁シート15と基板とが密着されている点が異なる。したがって、実施の形態3の分圧装置3は、基板材料の容量は無く、絶縁シート15の容量Cs200のみとなる。また、基板間の各絶縁シート15は全て同じ厚さであり、絶縁シート15と基板とが密着されているので、基板間の距離d1,d2,d3は、それぞれ絶縁シート15の厚みと等しくなる。なお、各基板の接続は、実施の形態1の分圧装置3と同様に接続部材11によって直列に接続されている。
 抵抗分圧基板20Aと同様の抵抗分圧基板を合計4枚直列接続した場合の、実際の回路については、図8で説明した実施の形態1にかかる分圧装置3の回路と同様に、基板間に浮遊容量Cs1~Cs12が存在する。
 実施の形態1で説明したように、浮遊容量Cs1~Cs12の容量値が異なると、分圧装置3が故障する可能性があるので、実施の形態3でも、実施の形態1と同様に、浮遊容量Cs1~Cs12を全て共通の値にコントロールする。
 実施の形態3では、基板間は絶縁シート15のみであり、比誘電率εrが温度または湿度によって変化しにくいので、浮遊容量CsXを共通の値にコントロールすることが容易になる。
 ここで、絶縁シート15の容量Cs200について説明する。絶縁シート15は、材質によって様々な厚み、比誘電率εrの製品がある。例えば、絶縁シート15の厚みを0.5mm、比誘電率εrを3と仮定すると、絶縁シート15の容量Cs200は、6.0εS[F]となる。
 このように、実施の形態3によれば、分圧装置3の容量としては絶縁シート15の容量Cs200のみを考慮して分圧装置3の実装構造の設計を行えばよいので、分圧装置3の実装構造の設計が容易になる。また、実施の形態3の分圧装置3では、比誘電率εr=1よりも比誘電率εrが大きな絶縁シート15によって絶縁を行っているので、実施の形態2の分圧装置3よりも、基板間の距離を近接させることが可能となり、実施の形態2の分圧装置3よりも、さらに小型化することができる。
実施の形態4.
 つぎに、図18から図23を用いてこの発明の実施の形態4について説明する。実施の形態4では、抵抗分圧基板2A~2Dを立てて並べる方法について説明する。
 図18は、図5に示した抵抗分圧基板を立てて並べた場合の分圧装置の構成を示す斜視図である。図19は、図18に示した分圧装置を正面方向から見た図である。図20は、図18に示した分圧装置の構成を示す上面図である。図21は、図18に示した抵抗分圧基板の構成を示す図である。図22は、図18に示した分圧装置が備える接続端子のねじ部の構成を示す図であり、図23は、図18に示した分圧装置が備える袋ナットの構成を示す図である。
 図18,20,21では、抵抗分圧基板2A~2Dの上面と平行な面内の2つの軸であって互いに直交する2つの軸をX軸およびY軸とする。また、X軸およびY軸に直交する軸をZ軸とする。X軸方向が、抵抗分圧基板2A~2Dのおもて面の長手方向であり、Z軸方向が抵抗分圧基板2A~2Dのおもて面の短手方向であり、Y軸方向が抵抗分圧基板2A~2Dの厚さ方向である。図18では、Z軸方向に平行な鉛直方向を上面方向D1で示し、X軸方向に平行な方向を正面方向D2で示している。
 分圧装置3は、抵抗分圧基板2A~2D、接続端子21、袋ナット22、および固定棒23を備えている。接続端子21は、抵抗分圧基板2A~2D間を電気的に接続する端子である。袋ナット22は、抵抗分圧基板2A~2Dと接続端子21とを固定するナットである。固定棒23は、抵抗分圧基板2A~2Dを機械的に固定する棒状部材である。
 図21に示すように、抵抗分圧基板2Aには、固定棒用穴24と導電性のスルーホール25a~25dとが設けられている。固定棒用穴24およびスルーホール25a~25dは、何れも抵抗分圧基板2Aのおもて面から裏面へ貫通する穴である。固定棒用穴24およびスルーホール25a~25dは、抵抗分圧基板2Aのおもて面の長手方向の両端部に設けられている。
 具体的には、抵抗分圧基板2Aのおもて面の長手方向の一方の端部には、2つのスルーホール25a,25bと1つの固定棒用穴24とが設けられ、他方の端部には、2つのスルーホール25c,25dと1つの固定棒用穴24とが設けられている。抵抗分圧基板2B~2Dについても、抵抗分圧基板2Aと同様の位置に固定棒用穴24とスルーホール25a~25dとが設けられている。
 例えば、スルーホール25a,25cのZ軸方向の座標は同じであり、スルーホール25b,25dのZ軸方向の座標は同じである。スルーホール25a,25bのX軸方向の座標は、同じであってもよいし、異なっていてもよい。また、スルーホール25c,25dのX軸方向の座標は、同じであってもよいし、異なっていてもよい。図20では、スルーホール25a,25bのX軸方向の座標が異なり、スルーホール25c,25dのX軸方向の座標が異なる場合を示している。図21では、スルーホール25a,25bのX軸方向の座標が同じであり、スルーホール25c,25dのX軸方向の座標が同じである場合を示している。
 抵抗分圧基板2B~2Cが備えるスルーホール25a~25dのXZ面内の座標は、抵抗分圧基板2Aが備えるスルーホール25a~25dのXZ面内の座標と同じである。なお、以下の説明では、スルーホール25a~25dを区別する必要が無い場合には、スルーホール25a~25dをスルーホール25という場合がある。
 固定棒23は、抵抗分圧基板2A~2Dの各固定棒用穴24に通されることで全ての抵抗分圧基板2A~2Dを貫通し、両端が他の構造体に固定される。抵抗分圧基板2A~2Dのうちの何れか1つの抵抗分圧基板を一方の抵抗分圧基板とし、この抵抗分圧基板に隣接する抵抗分圧基板を他方の抵抗分圧基板とすると、一方の抵抗分圧基板に設けられた固定棒用穴24が第1の穴であり、他方の抵抗分圧基板に設けられた固定棒用穴24が第2の穴である。
 図22に示すように接続端子21は、導体であるねじ部21a,21cと、筒状の絶縁部21bとを有している。ねじ部21a,21cは、棒状の導体部材で接続されており、この棒状の導体部材が絶縁部21bで覆われている。棒状の導体部材およびねじ部21a,21cは、一体に形成されており、一体形成された部材が絶縁部21bの筒内を貫通している。この構成により、ねじ部21aは、絶縁部21bの一方の端部側に配置され、ねじ部21cは、絶縁部21bの他方の端部側に配置されている。ねじ部21a,21cは絶縁部21bの中で棒状の導体部材を介して繋がっているので、ねじ部21a,21cは電気的に導通している。
 抵抗分圧基板2A,2Bは、接続端子21を介して電気的に接続されている。同様に、抵抗分圧基板2B,2Cは、接続端子21を介して電気的に接続され、抵抗分圧基板2C,2Dは、接続端子21を介して電気的に接続されている。
 接続端子21の絶縁部21bの長さを変えることで隣り合う抵抗分圧基板2A,2Bの距離を調整することが可能である。同様に、接続端子21の絶縁部21bの長さを変えることで、抵抗分圧基板2B,2Cの距離および抵抗分圧基板2C,2Dの距離を調整することが可能である。
 抵抗分圧基板2A,2Bの場合、接続端子21のねじ部21aが抵抗分圧基板2Aのスルーホール25aに挿入され、挿入側とは反対方向からねじ部21aに袋ナット22が螺合される。同様に、抵抗分圧基板2Aのスルーホール25aに挿入された接続端子21のねじ部21cが抵抗分圧基板2Bのスルーホール25aに挿入され、挿入側とは反対方向からねじ部21cに袋ナット22が螺合される。
 これにより、接続端子21と抵抗分圧基板2Aとが袋ナット22で固定され、接続端子21と抵抗分圧基板2Bとが袋ナット22で固定され、抵抗分圧基板2A,2Bが接続端子21で固定される。この場合に、袋ナット22とスルーホール25aとが接触することで、隣り合う抵抗分圧基板2A,2Bは電気的に接続される。
 例えば、抵抗分圧基板2Aが一方の抵抗分圧基板であり、抵抗分圧基板2Bが他方の抵抗分圧基板である場合、抵抗分圧基板2Aと接続端子21とを固定する袋ナット22が第1の袋ナットであり、抵抗分圧基板2Bと接続端子21とを固定する袋ナット22が第2の袋ナットである。この場合、抵抗分圧基板2Aに設けられたスルーホール25aが第3の穴であり、抵抗分圧基板2Bに設けられたスルーホール25aが第4の穴である。また、抵抗分圧基板2Aに設けられたスルーホール25aに螺合されるねじ部21aが第1のねじ部であり、抵抗分圧基板2Bに設けられたスルーホール25aに螺合されるねじ部21cが第2のねじ部である。
 抵抗分圧基板2Aのスルーホール25aと抵抗分圧基板2Bのスルーホール25aとが抵抗分圧基板2A,2Bの接続に用いられる。また、抵抗分圧基板2Bのスルーホール25dと抵抗分圧基板2Cのスルーホール25dとが抵抗分圧基板2B,2Cの接続に用いられる。また、抵抗分圧基板2Cのスルーホール25bと抵抗分圧基板2Dのスルーホール25bとが抵抗分圧基板2C,2Dの接続に用いられる。また、抵抗分圧基板2Aが、抵抗分圧基板2Bとは反対側の抵抗分圧基板と接続される場合には、スルーホール25cが用いられる。また、抵抗分圧基板2Dが、抵抗分圧基板2Cとは反対側の抵抗分圧基板と接続される場合には、スルーホール25cが用いられる。
 このように、接続端子21の位置は、抵抗分圧基板2A~2D間で近づかないよう配置されている。すなわち、抵抗分圧基板2A,2Bを接続する接続端子21のXZ面内での座標と、抵抗分圧基板2B,2Cを接続する接続端子21のXZ面内での座標と、抵抗分圧基板2C,2Dを接続する接続端子21のXZ面内での座標とは、同じにならないよう、抵抗分圧基板2A~2D間に接続端子21が配置されている。例えば、抵抗分圧基板2Bのおもて面側の接続に第1のスルーホール25(図21では、スルーホール25a)が用いられた場合、抵抗分圧基板2Bの裏面側の接続には、第1のスルーホール25に最も近い第2のスルーホール25(図21では、スルーホール25b)は用いられず、長手方向の反対側にある第3のスルーホール25(図21では、スルーホール25d)が用いられる。
 また、抵抗分圧基板2Cのおもて面側の接続に第3のスルーホール25(図21では、スルーホール25d)が用いられる場合、抵抗分圧基板2Cの裏面側の接続には、第3のスルーホール25に最も近い第4のスルーホール25(図21では、スルーホール25c)は用いられず、長手方向の反対側にある第1または第2のスルーホール25が用いられる。この場合において、第1のスルーホール25は、抵抗分圧基板2Bのおもて面側の接続に用いられているので、抵抗分圧基板2Cの裏面側の接続には、第2のスルーホール25が用いられる。
 これにより、抵抗分圧基板2A~2Dのうち隣り合う抵抗分圧基板の袋ナット22間の絶縁距離L1を長くすることが可能となる。また、抵抗分圧基板2A~2Dのおもて面側の袋ナット22と裏面側の袋ナット22との間の絶縁距離を長くすることが可能となる。
 このように、実施の形態4では、抵抗分圧基板2A,2Bを接続する接続端子21のXZ面内での座標と、抵抗分圧基板2B,2Cを接続する接続端子21のXZ面内での座標と、抵抗分圧基板2C,2Dを接続する接続端子21のXZ面内での座標とが異なるよう、抵抗分圧基板2A~2D間に接続端子21が配置されている。これにより、袋ナット22間の絶縁距離を確保しつつ、抵抗分圧基板2A~2D間を電気的に接続することが可能となる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 高電圧電源、2A~2D,20A,20B 抵抗分圧基板、3 分圧装置、4 検出抵抗、5,50 おもて面、6,60 裏面、7 銅パターン、10 電極、11 接続部材、15 絶縁シート、17 ビア、21 接続端子、21a,21c ねじ部、21b 絶縁部、22 袋ナット、23 固定棒、24 固定棒用穴、25,25a~25d スルーホール、40 第1構成部、45 支持部材、100 電圧検出システム、a~e 接続点、C0~C16 チップコンデンサ、R0~R16 チップ抵抗。

Claims (12)

  1.  電圧電源から出力された電圧を分圧する分圧装置であって、
     板状の基板の第1面で並列接続されたコンデンサおよび抵抗によって、前記基板の第1面に配置された複数の導体パターンが直列接続された抵抗分圧基板を複数備え、
     複数の前記抵抗分圧基板は、導電部材を介して直列接続され、且つ隣接する前記抵抗分圧基板同士は、一方の抵抗分圧基板の第2面と、他方の抵抗分圧基板の第1面とが向き合い、且つ前記一方の抵抗分圧基板の第1面に配置された前記導体パターンと、前記他方の抵抗分圧基板の第1面に配置された前記導体パターンとが、前記他方の抵抗分圧基板を挟んで対向するよう配置されている、
     ことを特徴とする分圧装置。
  2.  隣接する前記抵抗分圧基板同士は、前記一方の抵抗分圧基板の第2面と、前記他方の抵抗分圧基板の第1面と、が対向するよう平行に配置されている、
     ことを特徴とする請求項1に記載の分圧装置。
  3.  前記一方の抵抗分圧基板の第2面と、前記他方の抵抗分圧基板の第1面との間の距離は、隣接する前記抵抗分圧基板同士のそれぞれで等しくなるよう、それぞれの前記抵抗分圧基板が配置されている、
     ことを特徴とする請求項1または2に記載の分圧装置。
  4.  前記抵抗分圧基板は、矩形状の第1面を有し、前記抵抗分圧基板が有する側面のうち長手方向に延びる側面が水平方向となるよう立てて並べられる、
     ことを特徴とする請求項1から3の何れか1つに記載の分圧装置。
  5.  前記抵抗分圧基板は、鉛直方向に平行な方向に階層状に積み重ねられて並べられる、
     ことを特徴とする請求項1から3の何れか1つに記載の分圧装置。
  6.  前記抵抗分圧基板が配置される雰囲気環境は、ドライエアー、窒素、水素、または六フッ化硫黄で満たされている、
     ことを特徴とする請求項1から5の何れか1つに記載の分圧装置。
  7.  前記抵抗分圧基板は、前記基板の第1面に前記導体パターンが配置され、前記基板の第2面には前記導体パターンが配置されていない片面基板である、
     ことを特徴とする請求項1から6の何れか1つに記載の分圧装置。
  8.  前記抵抗分圧基板は、前記基板の第1面および前記基板の第2面に前記導体パターンが配置された両面基板であり、
     前記基板の第1面に配置された前記導体パターンと、前記基板の第2面に配置された前記導体パターンとは、ビアを介して接続されている、
     ことを特徴とする請求項1から6の何れか1つに記載の分圧装置。
  9.  前記基板の第1面に配置された前記導体パターンと、前記基板の第2面に配置された前記導体パターンとは、同じ形状で同じ大きさのパターンであり、互いに対向するよう配置されている、
     ことを特徴とする請求項8に記載の分圧装置。
  10.  前記一方の抵抗分圧基板の第2面と、前記他方の抵抗分圧基板の第1面との間には、前記一方の抵抗分圧基板の第2面および前記他方の抵抗分圧基板の第1面に密着し、且つ前記一方の抵抗分圧基板の第2面と対向し、且つ前記他方の抵抗分圧基板の第1面に対向するよう絶縁シートが配置されている、
     ことを特徴とする請求項8または9に記載の分圧装置。
  11.  前記導体パターンのうち前記抵抗分圧基板の角部に最も近い導体パターンの角部に角丸であるアールが付けられている、
     ことを特徴とする請求項1から10の何れか1つに記載の分圧装置。
  12.  前記一方の抵抗分圧基板と前記他方の抵抗分圧基板とを電気的に接続する接続端子と、
     前記一方の抵抗分圧基板と前記接続端子とを固定する第1の袋ナットと、
     前記他方の抵抗分圧基板と前記接続端子とを固定する第2の袋ナットと、
     前記一方の抵抗分圧基板に設けられた第1の穴および前記他方の抵抗分圧基板に設けられた第2の穴を貫通して、前記一方の抵抗分圧基板と前記他方の抵抗分圧基板とを機械的に固定する固定棒と、
     をさらに備え、
     前記接続端子は、前記一方の抵抗分圧基板に設けられた第3の穴を貫通する第1のねじ部と、前記他方の抵抗分圧基板に設けられた第4の穴を貫通する第2のねじ部とを有し、
     前記第1の袋ナットは、前記第3の穴を貫通した前記第1のねじ部に螺合され、
     前記第2の袋ナットは、前記第4の穴を貫通した前記第2のねじ部に螺合されている、
     ことを特徴とする請求項1から11の何れか1つに記載の分圧装置。
PCT/JP2020/020386 2019-05-29 2020-05-22 分圧装置 WO2020241517A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080037192.7A CN113841056B (zh) 2019-05-29 2020-05-22 分压装置
US17/595,262 US11988688B2 (en) 2019-05-29 2020-05-22 Voltage dividing device
JP2021522325A JP7069414B2 (ja) 2019-05-29 2020-05-22 分圧装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019100487 2019-05-29
JP2019-100487 2019-05-29

Publications (1)

Publication Number Publication Date
WO2020241517A1 true WO2020241517A1 (ja) 2020-12-03

Family

ID=73553771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020386 WO2020241517A1 (ja) 2019-05-29 2020-05-22 分圧装置

Country Status (4)

Country Link
US (1) US11988688B2 (ja)
JP (1) JP7069414B2 (ja)
CN (1) CN113841056B (ja)
WO (1) WO2020241517A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158366A (ja) * 1987-12-16 1989-06-21 Fuji Electric Co Ltd 直流高電圧分圧装置
JPH07200079A (ja) * 1993-12-28 1995-08-04 Murata Mfg Co Ltd 高電圧発生装置
JP2000065865A (ja) * 1998-08-26 2000-03-03 Nissin High Voltage Co Ltd 分圧器
JP2007256222A (ja) * 2006-03-27 2007-10-04 Mitsubishi Electric Corp 分圧装置
JP2011004559A (ja) * 2009-06-22 2011-01-06 Kyb Co Ltd 電動モータ
JP2015002333A (ja) * 2013-06-18 2015-01-05 株式会社村田製作所 抵抗内蔵基板およびこれを備える電流検出モジュール
JP2016115834A (ja) * 2014-12-16 2016-06-23 ダイキン工業株式会社 電子回路装置
US20160238648A1 (en) * 2015-02-12 2016-08-18 Hagenuk Kmt Kabelmesstechnik Gmbh Circuit Arrangement for Cable Checking, Cable Testing, Cable Diagnosis and/or Cable Fault Localization and Device with a Circuit Arrangement of that Type
JP2017058329A (ja) * 2015-09-18 2017-03-23 株式会社デンソー 電流測定装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962685A (en) * 1959-01-19 1960-11-29 Daystrom Inc High voltage resistor
DE1958679A1 (de) * 1969-11-22 1971-05-27 Preh Elektro Feinmechanik Schichtspannungsteiler mit zusaetzlichen Impedanzen
US4034283A (en) * 1975-08-28 1977-07-05 The Machlett Laboratories, Incorporated Compensated voltage divider
DE3144252A1 (de) * 1981-11-07 1983-05-19 Robert Bosch Gmbh, 7000 Stuttgart Spannungsteiler in duenn- oder dickschichttechnik
US4475099A (en) * 1983-06-27 1984-10-02 Analogic Corporation Voltage divider
JPS63215970A (ja) 1987-03-04 1988-09-08 Jeol Ltd 高圧発生回路の出力電圧変動検出装置
US5929746A (en) * 1995-10-13 1999-07-27 International Resistive Company, Inc. Surface mounted thin film voltage divider
US7079004B2 (en) * 2003-10-10 2006-07-18 Agilent Technologies, Inc. Precision thin film AC voltage divider
DE10356367B4 (de) * 2003-11-28 2009-06-10 Georg Bernitz Verfahren zur Herstellung eines Bauelements und Bauelement
US7202760B2 (en) * 2004-06-01 2007-04-10 Werlatone, Inc. Resistive voltage divider
JP5094805B2 (ja) * 2009-09-17 2012-12-12 日立オートモティブシステムズ株式会社 電圧検出装置及びそれを用いた電力変換装置
EP2492697B1 (en) * 2011-02-25 2013-04-03 Abb Ag Resistive voltage divider with improved phase accuracy
EP2492925B1 (en) * 2011-02-25 2013-08-07 Abb Ag Resistive voltage divider made of a resistive film material on an insulating substrate
WO2012113575A2 (en) * 2011-02-25 2012-08-30 Abb Ag Resistive structure and resistive voltage divider arrangement
EP2492926B1 (en) * 2011-02-25 2013-07-10 Abb Ag Resistive voltage divider with high voltage ratio
PT2605023T (pt) * 2011-12-16 2017-11-10 Arteche Lantegi Elkartea S A Divisor de tensão de alta tensão e conetor que compreende o dito divisor
FR2998376B1 (fr) * 2012-11-16 2015-07-31 Alstom Technology Ltd Capteur de tension de ligne a tres haute tension a courant continu
FR3003354B1 (fr) * 2013-03-12 2015-04-17 Alstom Technology Ltd Element resistif, module rc et diviseur en tension rc pour poste electrique haute tension isole par un fluide dielectrique
JP2016195506A (ja) 2015-04-01 2016-11-17 株式会社明電舎 回路基板及び電力変換装置
CN106546790A (zh) * 2016-11-25 2017-03-29 云南电网有限责任公司电力科学研究院 一种差分结构电阻分压器
JP6755386B2 (ja) 2017-04-21 2020-09-16 三菱電機株式会社 電力用半導体モジュールおよび電力用半導体モジュールの製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01158366A (ja) * 1987-12-16 1989-06-21 Fuji Electric Co Ltd 直流高電圧分圧装置
JPH07200079A (ja) * 1993-12-28 1995-08-04 Murata Mfg Co Ltd 高電圧発生装置
JP2000065865A (ja) * 1998-08-26 2000-03-03 Nissin High Voltage Co Ltd 分圧器
JP2007256222A (ja) * 2006-03-27 2007-10-04 Mitsubishi Electric Corp 分圧装置
JP2011004559A (ja) * 2009-06-22 2011-01-06 Kyb Co Ltd 電動モータ
JP2015002333A (ja) * 2013-06-18 2015-01-05 株式会社村田製作所 抵抗内蔵基板およびこれを備える電流検出モジュール
JP2016115834A (ja) * 2014-12-16 2016-06-23 ダイキン工業株式会社 電子回路装置
US20160238648A1 (en) * 2015-02-12 2016-08-18 Hagenuk Kmt Kabelmesstechnik Gmbh Circuit Arrangement for Cable Checking, Cable Testing, Cable Diagnosis and/or Cable Fault Localization and Device with a Circuit Arrangement of that Type
JP2017058329A (ja) * 2015-09-18 2017-03-23 株式会社デンソー 電流測定装置

Also Published As

Publication number Publication date
JP7069414B2 (ja) 2022-05-17
CN113841056B (zh) 2024-06-28
JPWO2020241517A1 (ja) 2021-10-21
US20220308091A1 (en) 2022-09-29
US11988688B2 (en) 2024-05-21
CN113841056A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
JP6475238B2 (ja) 導電性ガイド板を通る信号経路及び導電性ガイド板の間の2次経路を備えるマルチパス電気プローブ並びにプローブ・アセンブリ
JP6562357B2 (ja) 感圧センサ
TWI397703B (zh) 在測試積體電路中使用之接點
US8054607B2 (en) Multilayer chip capacitor and circuit board device
US6781816B2 (en) Electronic component
JP2011023439A5 (ja) キャパシタ及び配線基板
US10622146B2 (en) Multilayer capacitor and electronic component device
US7791896B1 (en) Providing an embedded capacitor in a circuit board
KR101309499B1 (ko) 관통형 적층 콘덴서
KR20150127650A (ko) 유전성 유체에 의해 절연된 고전압 변전소용 저항성 소자, rc 모듈 및 rc 분압기
KR102653197B1 (ko) 프로브 설치 시스템, 프로브 유닛 및 전기 특성 검사 장치
US10102976B2 (en) Multilayer capacitor
JP7069414B2 (ja) 分圧装置
US8717773B2 (en) Multi-plate board embedded capacitor and methods for fabricating the same
JP4425872B2 (ja) 分圧装置
US9101074B2 (en) Capacitor and multilayer circuit board using same
KR102318871B1 (ko) 자기 결합 장치 및 이를 포함하는 평판 디스플레이 장치
US9442616B2 (en) Touch screen, touch panel, and display device equipped therewith
US10546694B2 (en) Multilayer capacitor
CN216435678U (zh) 陶瓷电容、电路板组件和电子设备
CN114830435B (zh) 高频率高电压电流导体设备
US20130083484A1 (en) Composite electronic component and structure for mounting composite electronic component
JP2019149393A (ja) 配線基板及び電子装置
JP2010212428A (ja) 多層プリント配線板の設計方法及び多層プリント配線板
JP2010027844A (ja) シールドガスケットおよび電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522325

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814270

Country of ref document: EP

Kind code of ref document: A1