WO2020241371A1 - Planar glass antenna and method for producing same - Google Patents
Planar glass antenna and method for producing same Download PDFInfo
- Publication number
- WO2020241371A1 WO2020241371A1 PCT/JP2020/019735 JP2020019735W WO2020241371A1 WO 2020241371 A1 WO2020241371 A1 WO 2020241371A1 JP 2020019735 W JP2020019735 W JP 2020019735W WO 2020241371 A1 WO2020241371 A1 WO 2020241371A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- glass substrate
- glass
- flat glass
- substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/38—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C15/00—Surface treatment of glass, not in the form of fibres or filaments, by etching
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C23/00—Other surface treatment of glass not in the form of fibres or filaments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P11/00—Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/08—Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/061—Two dimensional planar arrays
Definitions
- the present invention relates to a flat glass antenna configured to receive radio waves while using a glass substrate as a dielectric substrate, and a method for manufacturing the same.
- Radio waves have many names, from long waves with long wavelengths (low frequencies) to millimeter waves and submillimeter waves with short wavelengths (high frequencies), and there are many types of characteristics and applications.
- a glass substrate having excellent transparency is adopted as a dielectric substrate, and at least the earth conductor is composed of a transparent conductor, so that it has light-collecting property and can be installed in a window opening.
- Flat glass antennas have been used in some cases (see, for example, Patent Document 1).
- An object of the present invention is to provide a flat glass antenna provided with a large number of antenna elements and a method for manufacturing the same.
- the flat glass antenna according to the present invention uses a glass substrate as a dielectric substrate and is configured to receive radio waves.
- the flat glass antenna includes at least a glass substrate, a ground conductive portion, and a plurality of antenna elements.
- Examples of the conductor used for the earth conductor portion and the antenna element include metal foils such as copper foil, silver foil and gold foil, and transparent conductors (organic conductive films such as ITO and PEDOT). Since the dielectric substrate is a transparent glass substrate, the flat glass antenna itself can be made transparent by using a transparent material for the antenna element and the ground conductor.
- Massive MIMO technology for 5G wireless communication requires an overwhelming number of antennas, but transparent antennas can be placed in various places (windows, etc.) without worrying about shading or landscape. It will be possible.
- the glass substrate has a plurality of through holes for power supply arranged in a matrix.
- the ground conductive portion is provided on the first main surface of the glass substrate.
- the plurality of antenna elements are provided at positions corresponding to the plurality of power feeding through holes on the second main surface of the glass substrate.
- the glass substrate preferably has a plurality of regions having different thicknesses so that a plurality of regions having different distances from the ground conductive portion and the antenna element are formed.
- the method for manufacturing a flat glass antenna according to the present invention is a method for manufacturing a flat glass antenna configured to receive radio waves while using a glass substrate as a dielectric substrate.
- This method of manufacturing a flat glass antenna includes at least a first laser processing step and an etching processing step.
- the first laser machining step by irradiating a laser beam at a position where a through hole for feeding is to be formed, a modified portion having a property of being easily etched is formed at this position.
- a through hole for feeding is formed by etching the modified portion.
- a second laser processing step of irradiating a laser beam while adjusting the laser focus on a region to be thinned on the glass substrate is further performed so that the substrate thickness is at least two steps or more. It is preferable to include it.
- a flat glass antenna provided with a large number of antenna elements and a method for manufacturing the same can be realized.
- the flat glass antenna 10 is used, for example, as a multi-element glass antenna for 5G communication.
- the flat glass antenna 10 is a square patch antenna in which the width of the strip conductor is widened in order to widen the microstrip antenna will be described, but the configuration and use of the flat glass antenna are limited to this. is not.
- the flat glass antenna 10 includes at least a glass substrate 12 as a dielectric substrate, an earth conductor portion 14 (ground electrode) and an antenna element 16 (radiation electrode) formed on both main surfaces of the glass substrate 12, respectively.
- the glass substrate 12 has a plurality of feeding through holes 20 formed at positions corresponding to the feeding points of the antenna element 16. As will be described later, a feeding line for feeding power to the antenna element 16 is passed through the feeding through hole 20.
- a glass substrate 12 having a thickness of about 0.3 mm to 0.5 mm is used.
- glass substrate 12 having a relative permittivity of about 3 to 7 for example, quartz glass, non-alkali glass, etc. is used.
- the ground conductor portion 14 is formed on the first main surface (lower main surface in the drawing) of the glass substrate 12.
- the ground conductor portion 14 surrounds the power supply through hole 20 and has an opening having a diameter slightly larger than that of the power supply through hole 20, and the feed line and the ground conductor portion passed through the power supply through hole 20. Insulation from 14 is ensured.
- the antenna element 16 is formed on the second main surface (upper main surface in the drawing) of the glass substrate 12.
- the antenna elements 16 are arranged in a matrix.
- Each of the antenna elements 16 has a quadrangular shape (square patch), but it can also have other shapes such as a circular shape.
- antenna elements 16 having about 40 rows and 40 columns (1600 in total) may be arranged on a glass substrate 12 of 40 mm ⁇ 40 mm, and the arrangement and number of antenna elements 16 are particularly limited. is not.
- the above-mentioned flat glass antenna 10 is connected to a transmitter or a receiver via a feeder line 18.
- a feeder line 18 As the feeder line 18, a coaxial line or a waveguide is preferable, but other feeder lines such as a parallel two-wire type line can also be used.
- FIGS. 2 (A) and 2 (B) a laser beam is irradiated to a position on the glass substrate 12 where the feeding through hole 20 should be formed. A modified portion having a property of being easily etched is formed at this position.
- the type and irradiation conditions of the laser beam are not particularly limited as long as the position where the power feeding through hole 20 is planned to be formed on the glass substrate 12 can be modified so as to be easily etched.
- the laser head irradiates a laser beam oscillated from a short pulse laser (for example, a picosecond laser or a femtosecond laser), but for example, a CO 2 laser, a nanosecond laser, or the like may be used. ..
- the output is controlled so that the average laser energy of the laser beam is about 30 ⁇ J to 300 ⁇ J, but the present invention is not limited to this.
- the focusing region of the laser beam is adjusted as appropriate.
- the condensing region of the laser beam so as to cover the entire area in the thickness direction of the glass substrate 12, the power feeding through hole 20 can be easily formed.
- the etching process for forming the feeding through hole 20 in the glass substrate 12 is performed by etching the above-mentioned modified portion.
- the production efficiency is improved by etching the glass base material 24 including a plurality of regions to be the glass substrate 12 rather than etching the individual glass substrates 12.
- the glass base material 24 for multi-chamfering the glass substrate 12 is subjected to laser processing, etching, film formation, and the like. After that, a method of dividing the glass base material 24 into a plurality of glass substrates 12 is adopted.
- the glass base material 24 in which the glass substrate 12 as shown in FIG. 3A is arranged in a matrix of 5 rows ⁇ 5 columns is subjected to laser modification + etching treatment (laser assist etching treatment) or photoetching. It can be divided into 25 glass substrates 12 by processing or a scribing break method.
- the first main surface and the second main surface of the glass base material 24 are covered with a protective film, and then the portion corresponding to the cut portion in the protective film is removed and etched (necessary). It is possible to divide by laser assist etching processing) according to the above.
- the glass base material 24 is introduced into the etching apparatus 50 and subjected to the etching process with an etching solution containing hydrofluoric acid, hydrochloric acid and the like.
- an etching solution containing about 1 to 10% by weight of hydrofluoric acid and about 5 to 20% by weight of hydrochloric acid is used, and a surfactant or the like is appropriately used in combination as necessary.
- the glass base material 24 is conveyed by a transfer roller, and the etching solution is brought into contact with the main surface of the glass base material 24 in the etching chamber 52 to perform an etching process on the glass base material 24. Since a cleaning chamber 53 for washing away the etching solution adhering to the glass base material 24 is provided after the etching chamber 52 in the etching apparatus 50, the glass base material 24 is in a state where the etching solution has been removed. It is discharged from the etching apparatus 50.
- the modified portion of the glass substrate 12 in the glass base material 24 penetrates to form a through hole 20 for feeding.
- the etching processing time can be minimized to the utmost by the method of assisting the etching by laser processing as described above.
- the surface of the glass substrate 12 is less likely to become rough and the shape of the power feeding through hole 20 is less likely to be distorted.
- the diameter of the power feeding through hole 20 can be appropriately adjusted in the range of about 5 ⁇ m to 500 ⁇ m.
- the thickness of the glass substrate 12 is thin, it becomes easy to reduce the diameter of the power feeding through hole 20.
- the diameter of the feeding through hole 20 is slightly larger than the diameter of the laser beam.
- the applicant's experiment shows that by adding a fluorine complexing agent such as titanium oxide in the etching process, the slight increase in the groove width of the power feeding through hole 20 in the etching process is suppressed. It has become clear. Therefore, the diameter and shape of the power feeding through hole 20 can be adjusted by adding an appropriate amount of a fluorine complexing agent to the etching solution, if necessary.
- a fluorine complexing agent such as titanium oxide
- the antenna element 16 and the ground conductor 14 are formed.
- Examples of the method for forming the antenna element 16 include vacuum deposition, sputtering, electroless plating, and sticking of a metal foil, but other methods can also be adopted.
- FIGS. 7 and 8 The basic configuration of the flat glass antenna 100 according to this embodiment is the same as that of the flat glass antenna 10 described in the first embodiment. However, the flat glass antenna 120 is different from the first embodiment in that the glass 120 is configured so that the thickness of the glass changes stepwise.
- the glass substrate 120 of the flat glass antenna 100 has four regions having different thicknesses from each other. Therefore, since the flat glass antenna 100 has four types of distances between the antenna element 16 and the ground conductive portion 14, it is possible to deal with radio waves of four types of wavelengths.
- the thickness of the glass substrate 120 is not limited to four, and may be two or three, or may be five or more. As the types of thickness increase, it becomes possible to support radio waves of more wavelengths.
- the flat glass antenna 100 made of a single substrate has a plurality of thicknesses, there are a plurality of distances between the antenna element 16 and the ground conductive portion 14, so that it is possible to support radio waves of a large number of wavelengths. It will be possible.
- a laser beam is irradiated to a region to be thinned on a glass substrate while adjusting the laser focus. Then it is good.
- the glass substrate 120 is removed so as to have different thicknesses in the etching process.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Waveguide Aerials (AREA)
- Support Of Aerials (AREA)
- Surface Treatment Of Glass (AREA)
- Details Of Aerials (AREA)
Abstract
[Problem] To provide a planar glass antenna equipped with numerous antenna elements, and a method for producing the same. [Solution] A planar glass antenna 10 is configured so as to use a glass substrate 12 as a dielectric substrate, and to receive radio waves. This planar glass antenna 10 is at least equipped with a glass substrate 12, a grounding conductor 14 and a plurality of antenna elements 16. The glass substrate 12 has a plurality of power-supplying through holes 20 positioned in a matrix arrangement. The grounding conductor 14 is provided on the first principal surface of the glass substrate 12. The plurality of antenna elements 16 are provided on the second principal surface of the glass substrate 12 at locations which respectively correspond to the plurality of power-supplying through holes 20.
Description
本発明は、誘電体基板としてガラス基板を用いるとともに、電波を受信するように構成された平面ガラスアンテナおよびその製造方法に関する。
The present invention relates to a flat glass antenna configured to receive radio waves while using a glass substrate as a dielectric substrate, and a method for manufacturing the same.
従来、さまざまな電波を受信するために、さまざまな構成のアンテナが開発されている。電波には、波長が長い(周波数が小さい)長波から、波長が短い(周波数が大きい)ミリ波・サブミリ波まで、多数の呼び名があり、またその特性や用途も多種類存在している。
Conventionally, antennas with various configurations have been developed to receive various radio waves. Radio waves have many names, from long waves with long wavelengths (low frequencies) to millimeter waves and submillimeter waves with short wavelengths (high frequencies), and there are many types of characteristics and applications.
ところが、受信すべき電波の種類が増加し、設置するアンテナの数が増加すると、設置スペースを見つけることが困難になったり、アンテナの設置により景観を損なったりするという不都合が生じることがあった。
However, when the types of radio waves to be received increased and the number of antennas to be installed increased, it became difficult to find the installation space, and the installation of the antennas sometimes spoiled the scenery.
そこで、従来技術の中には、透明性に優れたガラス基板を誘電体基板として採用するとともに、少なくともアース導体を透明導電体で構成することによって、採光性を具備し、窓用開口に設置可能な平面ガラスアンテナが利用されることがあった(例えば、特許文献1参照。)。
Therefore, in the prior art, a glass substrate having excellent transparency is adopted as a dielectric substrate, and at least the earth conductor is composed of a transparent conductor, so that it has light-collecting property and can be installed in a window opening. Flat glass antennas have been used in some cases (see, for example, Patent Document 1).
しかしながら、ガラス基板に対して穿孔加工等を施すことが困難であることから、平面ガラスアンテナは給電用貫通孔を形成することが困難であった。このため、多数のアンテナ素子を有する多素子平面ガラスアンテナを形成することが困難になることがあった。
However, since it is difficult to perform perforation processing on the glass substrate, it is difficult for the flat glass antenna to form a through hole for feeding. For this reason, it may be difficult to form a multi-element flat glass antenna having a large number of antenna elements.
その理由は、給電用貫通孔を形成しない場合、マイクロストリップ線路を用いた共平面給電方式を採用することになるからである。すなわち、マイクロストリップ線路を用いた共平面給電方式では、インピーダンスの均一化のために、アレイ状にアンテナ素子を直列配列する必要があり、アンテナ素子を多数配置するのに不向きになってしまうことが多かった。
The reason is that if a through hole for power supply is not formed, a coplanar power supply method using a microstrip line will be adopted. That is, in the coplanar power feeding method using the microstrip line, it is necessary to arrange the antenna elements in series in an array in order to make the impedance uniform, which may be unsuitable for arranging a large number of antenna elements. There were many.
本発明の目的は、多数のアンテナ素子を備えた平面ガラスアンテナおよびその製造方法を提供することである。
An object of the present invention is to provide a flat glass antenna provided with a large number of antenna elements and a method for manufacturing the same.
この発明に係る平面ガラスアンテナは、誘電体基板としてガラス基板を用いるとともに、電波を受信するように構成される。この平面ガラスアンテナは、ガラス基板、アース導電部、および複数のアンテナ素子を少なくとも備える。
The flat glass antenna according to the present invention uses a glass substrate as a dielectric substrate and is configured to receive radio waves. The flat glass antenna includes at least a glass substrate, a ground conductive portion, and a plurality of antenna elements.
アース導体部やアンテナ素子に使用する導体は、銅箔や銀箔や金箔等の金属箔、透明導体(ITOやPEDOT等の有機導電膜)が挙げられる。誘電体基板が透明なガラス基板であるため、アンテナ素子やアース導体に透明材料を採用することによって、平面ガラスアンテナ自体を透明化することが可能になる。
Examples of the conductor used for the earth conductor portion and the antenna element include metal foils such as copper foil, silver foil and gold foil, and transparent conductors (organic conductive films such as ITO and PEDOT). Since the dielectric substrate is a transparent glass substrate, the flat glass antenna itself can be made transparent by using a transparent material for the antenna element and the ground conductor.
この結果、平面ガラスアンテナを多数配置した場合であっても、景観を害しにくくなる。例えば、5G無線通信のMassive MIMO技術は、圧倒的多数のアンテナを必要とするが、透明なアンテナであれば遮光や景観を気にすることなく、さまざまな場所(窓等)に配置することが可能になる。
As a result, even when a large number of flat glass antennas are arranged, it is less likely to damage the landscape. For example, Massive MIMO technology for 5G wireless communication requires an overwhelming number of antennas, but transparent antennas can be placed in various places (windows, etc.) without worrying about shading or landscape. It will be possible.
ガラス基板は、マトリックス状に配置された複数の給電用貫通孔を有する。アース導電部は、ガラス基板の第1の主面に設けられる。複数のアンテナ素子は、ガラス基板の第2の主面における複数の給電用貫通孔にそれぞれ対応する位置に設けられる。
The glass substrate has a plurality of through holes for power supply arranged in a matrix. The ground conductive portion is provided on the first main surface of the glass substrate. The plurality of antenna elements are provided at positions corresponding to the plurality of power feeding through holes on the second main surface of the glass substrate.
この構成においては、ガラス基板にマトリックス状に配置された複数の給電用貫通孔を形成することによって、複数のアンテナ素子をアレイ状に直列配列するのではなく、マトリックス状に配置し易くなる。この結果、平面ガラスアンテナの多素子化を図り易くなる。
In this configuration, by forming a plurality of feeding through holes arranged in a matrix on the glass substrate, it becomes easy to arrange the plurality of antenna elements in a matrix rather than arranging them in series in an array. As a result, it becomes easy to increase the number of elements of the flat glass antenna.
上述の構成において、ガラス基板は、アース導電部およびアンテナ素子との間隔が異なる複数の領域が形成されるように、厚みの異なる複数の領域を有することが好ましい。
In the above configuration, the glass substrate preferably has a plurality of regions having different thicknesses so that a plurality of regions having different distances from the ground conductive portion and the antenna element are formed.
この構成においては、アース導電部およびアンテナ素子との間隔が異なる複数の領域を設けることによって、電波を単一のガラス基板からなる平面ガラスアンテナにおいて、複数種類の波長の電波に対応することが可能になる。
In this configuration, by providing a plurality of regions having different intervals between the ground conductive portion and the antenna element, it is possible to deal with radio waves of a plurality of wavelengths in a flat glass antenna made of a single glass substrate. become.
また、本発明に係る平面ガラスアンテナの製造方法は、誘電体基板としてガラス基板を用いるとともに、電波を受信するように構成された平面ガラスアンテナを製造するための方法である。この平面ガラスアンテナの製造方法は、第1のレーザ加工ステップおよびエッチング処理ステップを少なくとも含む。
Further, the method for manufacturing a flat glass antenna according to the present invention is a method for manufacturing a flat glass antenna configured to receive radio waves while using a glass substrate as a dielectric substrate. This method of manufacturing a flat glass antenna includes at least a first laser processing step and an etching processing step.
第1のレーザ加工ステップは、給電用貫通孔が形成されるべき位置にレーザビームを照射することによって、この位置にエッチングされやすい性質の改質部を形成する。
In the first laser machining step, by irradiating a laser beam at a position where a through hole for feeding is to be formed, a modified portion having a property of being easily etched is formed at this position.
エッチング処理ステップにおいては、改質部をエッチングすることによって給電用貫通孔が形成される。
In the etching process step, a through hole for feeding is formed by etching the modified portion.
上述の平面ガラスアンテナの製造方法において、基板厚さが少なくとも2段階以上になるように、ガラス基板における薄型化すべき領域にレーザ焦点を調整しつつレーザビームを照射する第2のレーザ加工ステップをさらに含むことが好ましい。
In the above-mentioned method for manufacturing a flat glass antenna, a second laser processing step of irradiating a laser beam while adjusting the laser focus on a region to be thinned on the glass substrate is further performed so that the substrate thickness is at least two steps or more. It is preferable to include it.
この発明によれば、多数のアンテナ素子を備えた平面ガラスアンテナおよびその製造方法が実現可能である。
According to the present invention, a flat glass antenna provided with a large number of antenna elements and a method for manufacturing the same can be realized.
以下、図を用いて、本発明に係る平面ガラスアンテナの第1の実施形態を説明する。図1(A)および図1(B)に示すように、平面ガラスアンテナ10は、例えば、5G通信用多素子ガラスアンテナとしての用途に用いられる。
Hereinafter, the first embodiment of the flat glass antenna according to the present invention will be described with reference to the drawings. As shown in FIGS. 1A and 1B, the flat glass antenna 10 is used, for example, as a multi-element glass antenna for 5G communication.
ここでは、平面ガラスアンテナ10が、マイクロストリップアンテナを広帯域にするためにストリップ導体の幅を広くした方形パッチアンテナである例を説明するが、平面ガラスアンテナの構成や用途はこれに限定されるものではない。
Here, an example in which the flat glass antenna 10 is a square patch antenna in which the width of the strip conductor is widened in order to widen the microstrip antenna will be described, but the configuration and use of the flat glass antenna are limited to this. is not.
平面ガラスアンテナ10は、誘電体基板としてのガラス基板12、このガラス基板12の両主面にそれぞれ形成されたアース導体部14(接地電極)およびアンテナ素子16(放射電極)を少なくとも備える。
The flat glass antenna 10 includes at least a glass substrate 12 as a dielectric substrate, an earth conductor portion 14 (ground electrode) and an antenna element 16 (radiation electrode) formed on both main surfaces of the glass substrate 12, respectively.
ガラス基板12は、アンテナ素子16の給電点に対応する位置に形成された複数の給電用貫通孔20を有する。給電用貫通孔20には、後述するように、アンテナ素子16に給電するための給電線が通される。
The glass substrate 12 has a plurality of feeding through holes 20 formed at positions corresponding to the feeding points of the antenna element 16. As will be described later, a feeding line for feeding power to the antenna element 16 is passed through the feeding through hole 20.
ガラス基板12は、例えば、その厚みが0.3mm~0.5mm程度のものが用いられる。ガラス基板12としては、比誘電率が約3~7程度のガラス(例えば、石英ガラス、無アルカリガラス等)が用いられる。
As the glass substrate 12, for example, a glass substrate 12 having a thickness of about 0.3 mm to 0.5 mm is used. As the glass substrate 12, glass having a relative permittivity of about 3 to 7 (for example, quartz glass, non-alkali glass, etc.) is used.
アース導体部14は、ガラス基板12の第1の主面(図中の下側の主面)に形成される。アース導体部14は、給電用貫通孔20を囲み、かつ、給電用貫通孔20よりも径がやや大きい開口部を有しており、給電用貫通孔20に通される給電線とアース導体部14との間の絶縁が確保されている。
The ground conductor portion 14 is formed on the first main surface (lower main surface in the drawing) of the glass substrate 12. The ground conductor portion 14 surrounds the power supply through hole 20 and has an opening having a diameter slightly larger than that of the power supply through hole 20, and the feed line and the ground conductor portion passed through the power supply through hole 20. Insulation from 14 is ensured.
一方で、アンテナ素子16は、ガラス基板12の第2の主面(図中の上側の主面)に形成される。アンテナ素子16は、マトリックス状に配置されている。アンテナ素子16は、それぞれ四角形を呈している(方形パッチ)が、円形等その他の形状にすることも可能である。
On the other hand, the antenna element 16 is formed on the second main surface (upper main surface in the drawing) of the glass substrate 12. The antenna elements 16 are arranged in a matrix. Each of the antenna elements 16 has a quadrangular shape (square patch), but it can also have other shapes such as a circular shape.
この実施形態では、図面の簡略化のために、4行4列のマトリックス状に配置する例を説明する。ただし、実際は、例えば、40mm×40mmのガラス基板12上に40行40列(総数1600個)程度のアンテナ素子16が配置されることもあり、アンテナ素子16の配置や数は特に限定されるものではない。
In this embodiment, an example of arranging in a matrix of 4 rows and 4 columns will be described for simplification of drawings. However, in reality, for example, antenna elements 16 having about 40 rows and 40 columns (1600 in total) may be arranged on a glass substrate 12 of 40 mm × 40 mm, and the arrangement and number of antenna elements 16 are particularly limited. is not.
上述の平面ガラスアンテナ10は、給電線18を介して、送信機または受信機に接続される。給電線18としては、同軸線路または導波管が好ましいが、平行二線式線路等のその他の給電線を用いることも可能である。
The above-mentioned flat glass antenna 10 is connected to a transmitter or a receiver via a feeder line 18. As the feeder line 18, a coaxial line or a waveguide is preferable, but other feeder lines such as a parallel two-wire type line can also be used.
続いて、図2~図6を用いて、平面ガラスアンテナ10の製造手順について説明する。まず、平面ガラスアンテナ10の製造にあたって、図2(A)および図2(B)に示すように、ガラス基板12における給電用貫通孔20が形成されるべき位置にレーザビームを照射することによって、この位置にエッチングされやすい性質の改質部を形成する。
Subsequently, the manufacturing procedure of the flat glass antenna 10 will be described with reference to FIGS. 2 to 6. First, in manufacturing the flat glass antenna 10, as shown in FIGS. 2 (A) and 2 (B), a laser beam is irradiated to a position on the glass substrate 12 where the feeding through hole 20 should be formed. A modified portion having a property of being easily etched is formed at this position.
レーザビームは、ガラス基板12における給電用貫通孔20の形成予定位置をエッチングされ易い性質に改質できる限り、その種類および照射条件は特に限定されない。この実施形態では、レーザヘッドから、短パルスレーザ(例えばピコ秒レーザ、フェムト秒レーザ)から発振されるレーザビームが照射されているが、例えば、CO2レーザ、ナノ秒レーザ等を用いても良い。
The type and irradiation conditions of the laser beam are not particularly limited as long as the position where the power feeding through hole 20 is planned to be formed on the glass substrate 12 can be modified so as to be easily etched. In this embodiment, the laser head irradiates a laser beam oscillated from a short pulse laser (for example, a picosecond laser or a femtosecond laser), but for example, a CO 2 laser, a nanosecond laser, or the like may be used. ..
また、この実施形態では、レーザビームの平均レーザエネルギが、約30μJ~300μJ程度になるように出力制御が行われているが、これに限定されるものでもない。
Further, in this embodiment, the output is controlled so that the average laser energy of the laser beam is about 30 μJ to 300 μJ, but the present invention is not limited to this.
レーザビームは、適宜、その集光領域が調整されることが好ましい。ここでは、レーザビームの集光領域がガラス基板12の厚み方向の全域にわたるように調整することによって、給電用貫通孔20が容易に形成されやすくなる。
It is preferable that the focusing region of the laser beam is adjusted as appropriate. Here, by adjusting the condensing region of the laser beam so as to cover the entire area in the thickness direction of the glass substrate 12, the power feeding through hole 20 can be easily formed.
上述のレーザ加工処理に続いて、上述の改質部をエッチングすることによってガラス基板12に給電用貫通孔20を形成するためのエッチング処理に移行する。個片のガラス基板12にエッチング処理を行うよりも、ガラス基板12になるべき領域を複数含んだガラス母材24にエッチング処理を行う方が、生産効率が向上する。
Following the above-mentioned laser processing, the etching process for forming the feeding through hole 20 in the glass substrate 12 is performed by etching the above-mentioned modified portion. The production efficiency is improved by etching the glass base material 24 including a plurality of regions to be the glass substrate 12 rather than etching the individual glass substrates 12.
このため、通常は、図3(A)および図3(B)に示すように、ガラス基板12を多面取りするためのガラス母材24に対してレーザ加工処理、エッチング処理、および成膜処理等を行い、その後にガラス母材24を複数のガラス基板12に分断する手法が採用される。
Therefore, normally, as shown in FIGS. 3 (A) and 3 (B), the glass base material 24 for multi-chamfering the glass substrate 12 is subjected to laser processing, etching, film formation, and the like. After that, a method of dividing the glass base material 24 into a plurality of glass substrates 12 is adopted.
例えば、図3(A)に示すようなガラス基板12を5行×5列のマトリックス状に配置したガラス母材24は、レーザ改質+エッチング処理(レーザ・アシスト・エッチング処理)や、フォトエッチング処理や、スクライブブレーク法によって、25枚のガラス基板12に分断することが可能である。
For example, the glass base material 24 in which the glass substrate 12 as shown in FIG. 3A is arranged in a matrix of 5 rows × 5 columns is subjected to laser modification + etching treatment (laser assist etching treatment) or photoetching. It can be divided into 25 glass substrates 12 by processing or a scribing break method.
フォトエッチング処理によって分断する場合は、ガラス母材24の第1の主面および第2の主面を保護膜で被覆した後、保護膜における切断箇所に対応する箇所を除去してエッチング処理(必要に応じて、レーザ・アシスト・エッチング処理)することで分断することが可能である。
When dividing by photo-etching, the first main surface and the second main surface of the glass base material 24 are covered with a protective film, and then the portion corresponding to the cut portion in the protective film is removed and etched (necessary). It is possible to divide by laser assist etching processing) according to the above.
エッチング処理においては、図4(A)に示すように、ガラス母材24は、エッチング装置50に導入され、フッ酸および塩酸等を含むエッチング液によるエッチング処理が施される。通常、フッ酸1~10重量%、塩酸5~20重量%程度を含むエッチング液が用いられ、必要に応じて適宜、界面活性剤等が併用される。
In the etching process, as shown in FIG. 4 (A), the glass base material 24 is introduced into the etching apparatus 50 and subjected to the etching process with an etching solution containing hydrofluoric acid, hydrochloric acid and the like. Usually, an etching solution containing about 1 to 10% by weight of hydrofluoric acid and about 5 to 20% by weight of hydrochloric acid is used, and a surfactant or the like is appropriately used in combination as necessary.
エッチング装置50では、搬送ローラによってガラス母材24を搬送しつつ、エッチングチャンバ52内でガラス母材24の主面にエッチング液を接触させることによって、ガラス母材24に対するエッチング処理が行われる。なお、エッチング装置50におけるエッチングチャンバ52の後段には、ガラス母材24に付着したエッチング液を洗い流すための洗浄チャンバ53が設けられているため、ガラス母材24はエッチング液が取り除かれた状態でエッチング装置50から排出される。
In the etching apparatus 50, the glass base material 24 is conveyed by a transfer roller, and the etching solution is brought into contact with the main surface of the glass base material 24 in the etching chamber 52 to perform an etching process on the glass base material 24. Since a cleaning chamber 53 for washing away the etching solution adhering to the glass base material 24 is provided after the etching chamber 52 in the etching apparatus 50, the glass base material 24 is in a state where the etching solution has been removed. It is discharged from the etching apparatus 50.
ガラス母材24にエッチング液を接触させる手法の一例として、図4(A)に示すように、エッチング装置50の各エッチングチャンバ52において、ガラス母材24に対してエッチング液をスプレイするスプレイエッチングが挙げられる。
As an example of the method of bringing the etching solution into contact with the glass base material 24, as shown in FIG. 4A, spray etching in which the etching solution is sprayed on the glass base material 24 in each etching chamber 52 of the etching apparatus 50 is performed. Can be mentioned.
また、スプレイエッチングに代えて、図4(B)に示すように、オーバーフロー型のエッチングチャンバ54において、オーバーフローしたエッチング液に接触しながらガラス母材24が搬送される構成を採用することも可能である。
Further, instead of the spray etching, as shown in FIG. 4B, it is also possible to adopt a configuration in which the glass base material 24 is conveyed while contacting the overflowed etching solution in the overflow type etching chamber 54. is there.
さらには、図4(C)に示すように、エッチング液が収納されたエッチング槽56に、キャリアに収納された単数または複数のガラス母材24を浸漬させるディップ式のエッチングを採用することも可能である。
Further, as shown in FIG. 4C, it is also possible to adopt a dip type etching in which one or more glass base materials 24 stored in the carrier are immersed in the etching tank 56 in which the etching solution is stored. Is.
上述のエッチング処理によって、図5(A)および図5(B)に示すように、ガラス母材24におけるガラス基板12の改質部が貫通し給電用貫通孔20が形成される。上述のようにレーザ加工によってエッチングをアシストする手法によって、エッチング処理時間を極限まで最小化することが可能になる。
By the etching process described above, as shown in FIGS. 5 (A) and 5 (B), the modified portion of the glass substrate 12 in the glass base material 24 penetrates to form a through hole 20 for feeding. The etching processing time can be minimized to the utmost by the method of assisting the etching by laser processing as described above.
この結果、給電用貫通孔20の形成時にガラス基板12の表面が粗面化したり、給電用貫通孔20の形状がいびつになったりしにくくなる。給電用貫通孔20の径は、5μm~500μm程度の範囲で適宜調整することが可能である。
As a result, when the power feeding through hole 20 is formed, the surface of the glass substrate 12 is less likely to become rough and the shape of the power feeding through hole 20 is less likely to be distorted. The diameter of the power feeding through hole 20 can be appropriately adjusted in the range of about 5 μm to 500 μm.
原則として、ガラス基板12の板厚が薄ければ、給電用貫通孔20の径を小さくし易くなる。その理由は、エッチング処理において、給電用貫通孔20の径がレーザビーム径よりも微増するからである。
As a general rule, if the thickness of the glass substrate 12 is thin, it becomes easy to reduce the diameter of the power feeding through hole 20. The reason is that in the etching process, the diameter of the feeding through hole 20 is slightly larger than the diameter of the laser beam.
この微増化に対する対策として、エッチング処理において、酸化チタン等のフッ素錯化剤を添加することにより、エッチング処理における給電用貫通孔20の溝幅の微増化が抑制されることが出願人の実験によって明らかになっている。このため、必要に応じて、エッチング液にフッ素錯化剤を適量添加することによって、給電用貫通孔20の径や形状を調整することが可能になる。
As a countermeasure against this slight increase, the applicant's experiment shows that by adding a fluorine complexing agent such as titanium oxide in the etching process, the slight increase in the groove width of the power feeding through hole 20 in the etching process is suppressed. It has become clear. Therefore, the diameter and shape of the power feeding through hole 20 can be adjusted by adding an appropriate amount of a fluorine complexing agent to the etching solution, if necessary.
続いて、図6(A)および図6(B)に示すように、アンテナ素子16やアース導体14が形成される。アンテナ素子16を形成するための手法として、真空蒸着、スパッタリング、および無電解めっき、金属箔の貼付等が挙げられるが、その他の手法を採用することも可能である。
Subsequently, as shown in FIGS. 6 (A) and 6 (B), the antenna element 16 and the ground conductor 14 are formed. Examples of the method for forming the antenna element 16 include vacuum deposition, sputtering, electroless plating, and sticking of a metal foil, but other methods can also be adopted.
上述の実施形態においては、ガラス基板12に適切に給電用貫通孔20を形成することが可能になる。その結果、ガラス基板12を用いた平面ガラスアンテナ10において背面給電方式を採用し易くなり、平面ガラスアンテナ10の多素子化が図り易くなる。すなわち、ガラス基板12を採用する場合であっても、マイクロストリップ線路を用いた共平面給電方式を用いる必要がなくなる。
In the above-described embodiment, it is possible to appropriately form the power feeding through hole 20 in the glass substrate 12. As a result, it becomes easy to adopt the back power feeding method in the flat glass antenna 10 using the glass substrate 12, and it becomes easy to increase the number of elements of the flat glass antenna 10. That is, even when the glass substrate 12 is adopted, it is not necessary to use the coplanar power feeding method using the microstrip line.
5Gモバイル通信用のギガヘルツ単位の高周波(=ミリ単位の短波長)は、誘電体基板の凹凸に影響を受けやすいところ、ガラス基板12の平坦性を乱すことなく給電線18を通すための貫通孔20を形成したり外形加工したりできるため、高性能の5Gモバイル通信用ガラスアンテナが実現し易くなる。
High frequencies in gigahertz units (= short wavelengths in millimeters) for 5G mobile communication are easily affected by the unevenness of the dielectric substrate, but through holes for passing the feeder line 18 without disturbing the flatness of the glass substrate 12 Since 20 can be formed or the outer shape can be processed, it becomes easy to realize a high-performance glass antenna for 5G mobile communication.
続いて、図7および図8を用いて、本発明に係る平面ガラスアンテナの第2の実施形態を説明する。この実施形態に係る平面ガラスアンテナ100の基本的構成は、第1の実施形態において説明した平面ガラスアンテナ10と同じである。ただし、平面ガラスアンテナ120は、ガラスの厚みが段階的に変化するように構成されたガラス120を用いている点で第1の実施形態と相違している。
Subsequently, a second embodiment of the flat glass antenna according to the present invention will be described with reference to FIGS. 7 and 8. The basic configuration of the flat glass antenna 100 according to this embodiment is the same as that of the flat glass antenna 10 described in the first embodiment. However, the flat glass antenna 120 is different from the first embodiment in that the glass 120 is configured so that the thickness of the glass changes stepwise.
ここでは、図7(A)および図7(B)に示すように、平面ガラスアンテナ100のガラス基板120は、互いに厚みが異なる4つの領域を有している。このため、平面ガラスアンテナ100は、アンテナ素子16とアース導電部14との間隔が4種類存在することになるため、4種類の波長の電波に対応することが可能である。
Here, as shown in FIGS. 7 (A) and 7 (B), the glass substrate 120 of the flat glass antenna 100 has four regions having different thicknesses from each other. Therefore, since the flat glass antenna 100 has four types of distances between the antenna element 16 and the ground conductive portion 14, it is possible to deal with radio waves of four types of wavelengths.
ガラス基板120は、厚みの種類は4つに限定されることはなく、2および3種類であってもよいし、5種類以上の多種類であっても良い。厚みの種類が増加すればするほど、より多くの波長の電波に対応することが可能になる。
The thickness of the glass substrate 120 is not limited to four, and may be two or three, or may be five or more. As the types of thickness increase, it becomes possible to support radio waves of more wavelengths.
つまり、単一基板からなる平面ガラスアンテナ100において複数の厚みを持つことにより、アンテナ素子16とアース導電部14との間隔が複数存在することになるため、多数の波長の電波に対応することが可能になるのである。
That is, since the flat glass antenna 100 made of a single substrate has a plurality of thicknesses, there are a plurality of distances between the antenna element 16 and the ground conductive portion 14, so that it is possible to support radio waves of a large number of wavelengths. It will be possible.
このような平面ガラスアンテナ100を製造するためには、例えば、図8(A)および図8(B)に示すように、ガラス基板における薄型化すべき領域にレーザ焦点を調整しつつレーザビームを照射すると良い。
In order to manufacture such a flat glass antenna 100, for example, as shown in FIGS. 8A and 8B, a laser beam is irradiated to a region to be thinned on a glass substrate while adjusting the laser focus. Then it is good.
レーザビームの集光領域がガラス基板120の厚み方向において段階的にずれるようにレーザ焦点を調整することによって、エッチング処理において互いに異なる厚みになるようにガラス基板120が除去されることになる。
By adjusting the laser focus so that the focused region of the laser beam shifts stepwise in the thickness direction of the glass substrate 120, the glass substrate 120 is removed so as to have different thicknesses in the etching process.
上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
The above description of the embodiment should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not by the above-described embodiment. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the claims.
10,100-平面ガラスアンテナ
12,120-ガラス基板
14-アース導体部
16-アンテナ素子部
18-給電線
20-給電用貫通孔
24-ガラス母材 10,100-Flat glass antenna 12,120-Glass substrate 14-Earth conductor part 16-Antenna element part 18-Feed line 20-Feeding through hole 24-Glass base material
12,120-ガラス基板
14-アース導体部
16-アンテナ素子部
18-給電線
20-給電用貫通孔
24-ガラス母材 10,100-Flat glass antenna 12,120-Glass substrate 14-Earth conductor part 16-Antenna element part 18-Feed line 20-Feeding through hole 24-Glass base material
Claims (4)
- 誘電体基板としてガラス基板を用いるとともに、電波を受信するように構成された平面ガラスアンテナであって、
マトリックス状に配置された複数の給電用貫通孔を有するガラス基板と、
前記ガラス基板の第1の主面に設けられたアース導電部と、
前記ガラス基板の第2の主面における前記複数の給電用貫通孔にそれぞれ対応する位置に設けられた複数のアンテナ素子と、
を少なくとも備えた平面ガラスアンテナ。 A flat glass antenna configured to receive radio waves while using a glass substrate as the dielectric substrate.
A glass substrate having a plurality of power feeding through holes arranged in a matrix,
A ground conductive portion provided on the first main surface of the glass substrate and
A plurality of antenna elements provided at positions corresponding to the plurality of power feeding through holes on the second main surface of the glass substrate, and
A flat glass antenna with at least. - 前記ガラス基板は、前記アース導電部および前記アンテナ素子との間隔が異なる複数の領域が形成されるように、厚みの異なる複数の領域を有することを特徴とする請求項1に記載の平面ガラスアンテナ。 The flat glass antenna according to claim 1, wherein the glass substrate has a plurality of regions having different thicknesses so that a plurality of regions having different distances from the ground conductive portion and the antenna element are formed. ..
- 誘電体基板としてガラス基板を用いるとともに、電波を受信するように構成された平面ガラスアンテナを製造するための方法であって、
給電用貫通孔が形成されるべき位置にレーザビームを照射することによって、この位置にエッチングされやすい性質の改質部を形成する第1のレーザ加工ステップと、
前記改質部をエッチングすることによって給電用貫通孔を形成するエッチング処理ステップと、
を少なくとも含む平面ガラスアンテナの製造方法。 It is a method for manufacturing a flat glass antenna configured to receive radio waves while using a glass substrate as a dielectric substrate.
A first laser machining step of irradiating a laser beam at a position where a through hole for feeding should be formed to form a modified portion having a property of being easily etched at this position.
An etching process step of forming a through hole for feeding by etching the modified portion, and
A method of manufacturing a flat glass antenna including at least. - 基板厚さが少なくとも2段階以上になるように、前記ガラス基板における薄型化すべき領域にレーザ焦点を調整しつつレーザビームを照射する第2のレーザ加工ステップをさらに含む請求項3に記載の平面ガラスアンテナ用ガラス基板の製造方法。 The flat glass according to claim 3, further comprising a second laser processing step of irradiating a laser beam while adjusting the laser focus on a region to be thinned in the glass substrate so that the substrate thickness is at least two steps or more. A method for manufacturing a glass substrate for an antenna.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080040767.0A CN113906630A (en) | 2019-05-24 | 2020-05-19 | Plane glass antenna and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019097903A JP6840403B2 (en) | 2019-05-24 | 2019-05-24 | Flat glass antenna and its manufacturing method |
JP2019-097903 | 2019-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241371A1 true WO2020241371A1 (en) | 2020-12-03 |
Family
ID=73547676
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/019735 WO2020241371A1 (en) | 2019-05-24 | 2020-05-19 | Planar glass antenna and method for producing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6840403B2 (en) |
CN (1) | CN113906630A (en) |
WO (1) | WO2020241371A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220048813A1 (en) * | 2020-08-13 | 2022-02-17 | Samsung Display Co., Ltd. | Manufacturing method of cover window for flexible display device and manufacturing method of the flexible display device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230021899A (en) * | 2021-08-06 | 2023-02-14 | 삼성전자주식회사 | Electronic apparatus comprising pattern structure for beam forming and opeartion method of the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004304443A (en) * | 2003-03-31 | 2004-10-28 | Clarion Co Ltd | Antenna |
JP2014513493A (en) * | 2011-05-05 | 2014-05-29 | インテル・コーポレーション | High-performance glass-based 60 GHz / MM wave phased array antenna and method of manufacturing the same |
JP2018018891A (en) * | 2016-07-26 | 2018-02-01 | 株式会社フジクラ | Wiring board and manufacturing method of the same |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002171120A (en) * | 2000-11-30 | 2002-06-14 | Asahi Glass Co Ltd | Radio-wave convergent structure and antenna device |
KR100826067B1 (en) * | 2003-09-09 | 2008-04-29 | 호야 가부시키가이샤 | Method for manufacturing double-sided printed glass board |
TWI461378B (en) * | 2012-10-12 | 2014-11-21 | Global Display Co Ltd | Method for manufacturing glass substrate having arched surface |
US9472859B2 (en) * | 2014-05-20 | 2016-10-18 | International Business Machines Corporation | Integration of area efficient antennas for phased array or wafer scale array antenna applications |
JP6545699B2 (en) * | 2014-10-22 | 2019-07-17 | 日本板硝子株式会社 | Method of manufacturing glass substrate, glass substrate, and assembly |
JP6803018B2 (en) * | 2019-03-05 | 2020-12-23 | 株式会社Nsc | Etching solution for glass and manufacturing method of glass substrate |
-
2019
- 2019-05-24 JP JP2019097903A patent/JP6840403B2/en active Active
-
2020
- 2020-05-19 WO PCT/JP2020/019735 patent/WO2020241371A1/en active Application Filing
- 2020-05-19 CN CN202080040767.0A patent/CN113906630A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004304443A (en) * | 2003-03-31 | 2004-10-28 | Clarion Co Ltd | Antenna |
JP2014513493A (en) * | 2011-05-05 | 2014-05-29 | インテル・コーポレーション | High-performance glass-based 60 GHz / MM wave phased array antenna and method of manufacturing the same |
JP2018018891A (en) * | 2016-07-26 | 2018-02-01 | 株式会社フジクラ | Wiring board and manufacturing method of the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220048813A1 (en) * | 2020-08-13 | 2022-02-17 | Samsung Display Co., Ltd. | Manufacturing method of cover window for flexible display device and manufacturing method of the flexible display device |
Also Published As
Publication number | Publication date |
---|---|
CN113906630A (en) | 2022-01-07 |
JP2020195002A (en) | 2020-12-03 |
JP6840403B2 (en) | 2021-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020241371A1 (en) | Planar glass antenna and method for producing same | |
US7548205B2 (en) | Wafer scale antenna module with a backside connectivity | |
EP2795726B1 (en) | Optically transparent antenna and array of optically transparent antennas | |
GB2573882A (en) | Electronic device antenna arrays mounted against a dielectric layer | |
US20190089053A1 (en) | Antenna Arrays Having Surface Wave Interference Mitigation Structures | |
CN104170095A (en) | Method for fabricating photovoltaic cells with plated contacts | |
WO2019054094A1 (en) | Antenna module | |
CN107749520B (en) | High-gain millimeter wave circularly polarized array antenna | |
WO2013016293A9 (en) | Loop antenna | |
JP2024061693A (en) | Through-electrode substrate, mounting board including through-electrode substrate, and method for manufacturing through-electrode substrate | |
EP3425725B1 (en) | Control panel and radiation device comprising the same | |
KR20120125280A (en) | Method of maskless manufacturing of oled devices | |
JP7264461B2 (en) | A method for manufacturing a flat glass antenna. | |
CN109979318B (en) | Display mother board, manufacturing and cutting method thereof, display substrate and device | |
CN109037874B (en) | Method for manufacturing beam lead on quartz circuit | |
KR20120101539A (en) | Electro-optical device, electrode therefor and method and appatatus of manufacturing an electrode and the electro-optical device provided therewith | |
JP2007012730A (en) | Photovoltaic device and manufacturing method thereof | |
CN1937312B (en) | Antenna and manufacture method thereof | |
WO2019195806A3 (en) | Local patterning and metallization of semiconductor structures using a laser beam | |
CN111463565B (en) | Terahertz wave impedance tuning air dielectric yagi antenna structure and manufacturing method thereof | |
EP4256161A1 (en) | Window coating transmissible to wireless communication signals | |
JP6983613B2 (en) | Microwave band antenna | |
CN111952729B (en) | Leaky-wave antenna based on double-layer substrate integration | |
CN215250447U (en) | TFT glass device easy for single-layer cutting | |
JP2021077717A (en) | Glass substrate, and manufacturing method of glass substrate provided with conductor pattern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20815159 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20815159 Country of ref document: EP Kind code of ref document: A1 |