WO2020240952A1 - Transfer - Google Patents

Transfer Download PDF

Info

Publication number
WO2020240952A1
WO2020240952A1 PCT/JP2020/007762 JP2020007762W WO2020240952A1 WO 2020240952 A1 WO2020240952 A1 WO 2020240952A1 JP 2020007762 W JP2020007762 W JP 2020007762W WO 2020240952 A1 WO2020240952 A1 WO 2020240952A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate clutch
transfer
clutch
control device
actuator
Prior art date
Application number
PCT/JP2020/007762
Other languages
French (fr)
Japanese (ja)
Inventor
木村 淳
小林 正幸
Original Assignee
株式会社Ijtt
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ijtt filed Critical 株式会社Ijtt
Publication of WO2020240952A1 publication Critical patent/WO2020240952A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/344Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having a transfer gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure

Definitions

  • This disclosure relates to the transfer provided in the drive system.
  • This type of transfer includes a multi-plate clutch, a pressing portion that presses the multi-plate clutch when the multi-plate clutch is engaged and is separated from the multi-plate clutch when the disengagement is performed, and a motor that drives the pressing portion. ..
  • this disclosure was devised in view of such circumstances, and its purpose is to provide a transfer capable of suppressing deterioration of responsiveness.
  • a multi-plate clutch provided in the drive system for distributing the driving force, an actuator for driving the multi-plate clutch, and a control device for controlling the actuator are provided.
  • the actuator includes a pressing portion that presses the clutch plate of the multi-plate clutch.
  • the control device is characterized in that when the multi-plate clutch is switched from contact to disconnect, the transfer controls the actuator so that the pressing portion is separated from the contacted multi-plate clutch by a preset distance.
  • the control device engages the multi-plate clutch and then switches to disconnection.
  • the actuator comprises a drive device comprising a DC motor with an encoder, a servomotor or a stepping motor.
  • the control device rotates the drive device in a direction opposite to that when the multi-plate clutch is switched from contact to contact by a preset angle.
  • each direction in the embodiment described later refers to each direction of the vehicle to which the transfer according to the present embodiment is applied.
  • each of these directions is merely defined for convenience of explanation and represents the relative positional relationship between the members.
  • FIG. 1 is a schematic top view of the vehicle C to which the transfer 1 according to the present embodiment is applied.
  • the vehicle C is an AWD (All Wheel Drive) vehicle based on an FR vehicle (front engine / rear drive vehicle).
  • the rotational driving force from the engine E mounted on the front portion of the vehicle is transmitted to the propeller shaft 2 via the transmission T / M and the transfer 1.
  • the rotational driving force transmitted to the propeller shaft 2 is transmitted to the rear wheels 4a via a differential gear (not shown) housed in the differential case 3.
  • the transfer 1 is configured to selectively distribute and transmit the rotational driving force from the transmission T / M to the input shaft 5 of the differential gear for driving the front wheels. That is, the front wheel 4b becomes a driving wheel when the driving force is transmitted from the transfer 1 to the input shaft 5, and becomes a driven wheel when the driving force is not transmitted to the input shaft 5.
  • FIG. 2 is a top sectional view of the transfer 1.
  • FIG. 3 is an enlarged view of a main part of FIG.
  • the transfer 1 includes a housing 6 attached to the transmission T / M, a first shaft 7 rotatably provided in the housing 6, and an inner rotating member provided on the first shaft 7. 8 and a multi-plate that connects the first sprocket 9 rotatably provided on the first shaft 7, the outer rotating member 10 provided on the first sprocket 9, and the inner rotating member 8 to and from the outer rotating member 10.
  • It includes a clutch 11, an actuator 12 that drives the multi-plate clutch 11, and a control device 34 that controls the actuator 12.
  • the transfer 1 includes a second shaft 13 rotatably provided in the housing 6, a second sprocket 14 provided on the second shaft 13, and a chain 15 hung around the first sprocket 9 and the second sprocket 14. And further prepare.
  • the second shaft 13 is connected to the input shaft 5 of the differential gear for driving the front wheels.
  • the front end of the first shaft 7 is connected to the output shaft (not shown) of the transmission T / M. Further, the rear end portion of the first shaft 7 is connected to the propeller shaft 2.
  • the inner rotating member 8 is formed in a tubular shape substantially coaxial with the first shaft 7.
  • An outer peripheral spline 16 is formed on the outer peripheral surface of the inner rotating member 8.
  • the outer rotating member 10 has a disk portion 17 arranged between the first sprocket 9 and the inner rotating member 8 extending outward in the radial direction, and an outer cylinder portion 18 formed extending rearward from the outer peripheral end of the disk portion 17. And.
  • the outer cylinder portion 18 is arranged so as to cover the outer periphery of the outer peripheral spline 16.
  • An inner peripheral spline 19 is formed on the inner peripheral surface of the outer cylinder portion 18. That is, the outer peripheral spline 16 and the inner peripheral spline 19 face each other in the radial direction.
  • the multi-plate clutch 11 includes an annular first clutch plate 20 that is spline-fitted to the outer peripheral spline 16 and an annular second clutch plate 21 that is spline-fitted to the inner peripheral spline 19.
  • the first clutch plate 20 and the second clutch plate 21 are alternately arranged in the front-rear direction.
  • a clutch receiving portion 22 for receiving the multi-plate clutch 11 is formed on the inner rotating member 8 in front of the multi-plate clutch 11.
  • the actuator 12 is interposed between the cam mechanism 23, the drive device 24 for driving the cam mechanism 23, the cam mechanism 23, and the multi-plate clutch 11.
  • a pressing portion 25 is provided.
  • the cam mechanism 23 includes a fixed cam block 26 fixed to the housing 6, a movable cam block 27 disposed in front of the fixed cam block 26, and a ball disposed between the fixed cam block 26 and the movable cam block 27. 28 and a thrust bearing 29 provided on the front surface of the movable cam block 27 are provided.
  • the fixed cam block 26 is formed in an annular shape having an inner diameter larger than the outer diameter of the first shaft 7 and in a plate shape.
  • the fixed cam block 26 is arranged coaxially with the first shaft 7.
  • a plurality of fixed cam grooves 30 for accommodating the rear portion of the ball 28 are formed on the front surface of the fixed cam block 26.
  • the fixed cam groove 30 is formed in an arc shape coaxial with the first shaft 7.
  • the fixed cam groove 30 is formed so that the center in the circumferential direction is the deepest and the fixed cam groove 30 becomes shallower toward both ends. Further, the plurality of fixed cam grooves 30 are arranged at equal intervals in the circumferential direction.
  • the movable cam block 27 includes a facing portion 27a that faces the fixed cam block 26 in the axial direction, and a lever portion 27b that extends outward in the radial direction from the facing portion 27a.
  • the facing portion 27a is formed in a shape symmetrical with respect to the fixed cam block 26. That is, the facing portion 27a is formed in an annular shape having an inner diameter larger than the outer diameter of the first shaft 7 and in a plate shape. The facing portion 27a is arranged coaxially with the first shaft 7.
  • a movable cam groove 31 having a shape and arrangement symmetrical with the fixed cam groove 30 is formed. Specifically, the movable cam groove 31 accommodates the front portion of the ball 28, and is formed in an arc shape coaxial with the first shaft 7.
  • the movable cam groove 31 is formed so that the center in the circumferential direction is the deepest and the movable cam groove 31 becomes shallower toward both ends.
  • the plurality of movable cam grooves 31 are arranged at equal intervals in the circumferential direction.
  • the distance between the movable cam grooves 31 adjacent to each other in the circumferential direction is the same as the distance between the fixed cam grooves 30 adjacent to each other in the circumferential direction.
  • the lever portion 27b is formed in a fan shape centered on the central axis CA of the first shaft 7. On the outer peripheral surface of the lever portion 27b, teeth 32 that mesh with the worm gear 33 described later are formed. That is, the movable cam block 27 constitutes a sector gear (fan-shaped gear) that rotates around the central axis CA.
  • the fixed cam groove 30 and the movable cam groove 31 are not limited to this.
  • the fixed cam groove 30 may be formed so that one end in the circumferential direction is the deepest and the fixed cam groove 30 becomes shallower toward the other end.
  • the movable cam groove 31 may be formed so as to be asymmetrical with the fixed cam groove 30, that is, one end in the circumferential direction is the shallowest and the movable cam groove 31 becomes deeper toward the other end.
  • the pressing portion 25 is interposed between the thrust bearing 29 and the multi-plate clutch 11.
  • the pressing portion 25 includes a plate portion 25a formed in an annular shape having an inner diameter larger than the outer diameter of the first shaft 7 and formed in a plate shape, and a pad portion 25b provided on the plate portion 25a.
  • the pad portion 25b is composed of a thrust bearing and is arranged close to the multi-plate clutch 11.
  • a spring 35 for pressing the plate portion 25a rearward is provided between the plate portion 25a and the inner rotating member 8.
  • the spring 35 is composed of a coil spring and is provided between the plate portion 25a and the inner rotating member 8 in a compressed state.
  • the spring force of the spring 35 is set to a weak force that allows the pressing portion 25 to follow the movable cam block 27 when it is moved rearward by the driving force from the driving device 24.
  • the pressing portion 25 is not limited to this.
  • the plate portion 25a of the pressing portion 25 may be formed integrally with the movable cam block 27.
  • the drive device 24 is composed of a DC motor with an encoder.
  • a worm gear 33 is provided on the drive shaft 24a of the drive device 24.
  • the worm gear 33 meshes with the teeth 32 of the movable cam block 27.
  • the drive device 24 is not limited to this.
  • the drive device 24 may be configured as long as the rotation angle can be controlled by the control device 34 described later, and may be composed of, for example, a stepping motor or a servomotor.
  • the control device 34 controls the drive device 24.
  • the control device 34 controls the drive device 24 so that the multi-plate clutch 11 is brought into contact with the vehicle when the angular velocity difference between the rear wheels 4a and the front wheels 4b becomes equal to or higher than a preset upper limit value.
  • the rotation of the drive device 24 at this time is set to forward rotation for convenience.
  • the driving force can be transmitted not only to the rear wheels 4a but also to the front wheels 4b on a slippery road surface such as a snowy road, and the vehicle C can be all-wheel drive (AWD).
  • control device 34 reversely rotates the drive device 24 to disengage the multi-plate clutch 11 when the angular velocity difference between the rear wheels 4a and the front wheels 4b becomes equal to or less than a preset lower limit value.
  • the front wheel 4b can be used as a driving wheel on a non-slip road surface.
  • the control device 34 rotates the drive device 24 at a constant speed.
  • This speed is set to a maximum speed that is generally determined by various conditions such as the drive device 24 and the power supply (not shown). As a result, the multi-plate clutch 11 is quickly engaged and disconnected.
  • the standby position the position of the pressing portion in the front-rear direction (hereinafter referred to as the standby position) when the multi-plate clutch is disengaged is a fixing mechanism such as a housing (the multi-plate clutch is not included). Is constant against. Therefore, if the assembly accuracy of the multi-plate clutch varies, or if the multi-plate clutch is worn, the distance from the standby position to the clutch contact position is not constant. Therefore, the distance from the standby position to the multi-plate clutch may be longer than the design value. In this case, as shown in FIG.
  • the time T2 from the standby position until the pressing portion 25 reaches the multi-plate clutch becomes longer than the expected time T1 by ⁇ T, and the responsiveness of the transfer deteriorates.
  • the transfer responsiveness can be improved by using a highly accurate clutch, but the manufacturing cost increases.
  • the pressing portion 25 is separated from the multi-plate clutch 11 in the contact state by a preset distance x (see FIG. 7).
  • the control device 34 of the transfer 1 reversely rotates the DC motor with an encoder, which is the drive device 24, by a preset angle ⁇ .
  • the distance x from the multi-plate clutch 11 to the standby position becomes constant regardless of variations in assembly accuracy of the multi-plate clutch 11 and wear of the multi-plate clutch 11. Therefore, as shown in FIG.
  • the time T2 from the standby position until the pressing portion 25 reaches the multi-plate clutch 11 can be made the same as the desired time T1, and the response time of the transfer 1 can be made constant. .. Then, the response time of the transfer 1 can be made constant without using the highly accurate multi-plate clutch 11, and the responsiveness of the transfer 1 can be improved while suppressing the manufacturing cost of the transfer 1.
  • the control device 34 engages the multi-plate clutch 11 and then switches to disconnection. That is, after the multi-plate clutch 11 is brought into contact with the multi-plate clutch 11 for a moment, the control device 34 reversely rotates the drive device 24 by an angle ⁇ . As a result, the pressing portion 25 can be moved to the standby position (a position separated from the multi-plate clutch 11 by a distance x) in advance before the vehicle C starts traveling.
  • the control device 34 rotates the drive device 24 in the forward direction.
  • the movable cam block 27 is rotated in the clutch contact direction (counterclockwise in FIG. 6).
  • the ball 28 moves to a relatively shallow position as shown in FIG. Will be done.
  • the movable cam block 27 is moved forward to move the pressing portion 25 forward.
  • the pressing portion 25 moved forward presses the multi-plate clutch 11 forward.
  • the first clutch plate 20 and the second clutch plate 21 are sandwiched between the pressing portion 25 and the clutch receiving portion 22 and are in contact with each other, and the pressing portion 25 is restricted from moving forward.
  • the control device 34 reversely rotates the drive device 24 by a preset angle ⁇ .
  • the pressing portion 25 is moved rearward from the multi-plate clutch 11 by a distance x (see FIG. 7) according to the angle ⁇ . That is, the position separated rearward by the distance x from the multi-plate clutch 11 serves as the standby position of the pressing portion 25, and the pressing portion 25 is positioned.
  • the control device 34 rotates the drive device 24 in the forward direction.
  • the movable cam block 27 and the pressing portion 25 are moved forward to bring the multi-plate clutch 11 into contact.
  • the pressing portion 25 reaches the multi-plate clutch 11 by moving forward by a distance x. Therefore, the time from when the control device 34 starts driving the drive device 24 until the pressing portion 25 reaches the multi-plate clutch 11 is a constant time according to the rotation speed and the distance x of the drive device 24.
  • the control device 34 reversely rotates the drive device 24 by a preset angle ⁇ .
  • the pressing portion 25 is moved rearward from the multi-plate clutch 11 by a distance x (see FIG. 7) according to the angle ⁇ .
  • the control device 34 controls the actuator 12 so that the pressing portion 25 is separated from the multi-plate clutch 11 in the contact state by a preset distance x. Therefore, the position separated from the multi-plate clutch 11 by the distance x is set as the standby position of the pressing portion 25, and the time until the pressing portion 25 in the standby position reaches the multi-plate clutch 11 is made constant. It is possible to suppress deterioration of responsiveness due to variation and wear of the multi-plate clutch 11. In other words, the standby position can be updated according to the variation and wear of the multi-plate clutch 11.
  • the control device 34 engages the multi-plate clutch 11 and then switches to disconnection.
  • the standby position can be returned to the original appropriate position when the engine is started. Then, the responsiveness of the transfer 1 can be improved immediately after the engine is started.
  • control device 34 controls the multi-plate clutch 11 to be engaged and then switched to disconnect, but this control may be omitted. This is because even if the standby position shifts while the engine is stopped, the standby position can be returned to the original appropriate position once the multi-plate clutch 11 is engaged and disengaged after the engine is started.
  • the drive device 24 is provided with a worm gear 33, but the present invention is not limited to this.
  • the drive device 24 may be provided with a spur gear (not shown) instead of the worm gear 33. By doing so, the drive device 24 is likely to rotate while the engine E is stopped, and the standby position is likely to shift. However, the shift can be eliminated by engaging and disengaging the multi-plate clutch 11 when the engine is started.
  • the transfer 1 applied to the FR vehicle-based AWD has been described, but the present invention is not limited to this.
  • the transfer 1 may be applied to an AWD based on an FF vehicle.
  • the multi-plate clutch 11 of the transfer 1 is provided on the propeller shaft 2, it may be provided on another drive system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Operated Clutches (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

Provided is a transfer capable of preventing deterioration of responsiveness. A transfer 1 comprises a multiplate clutch 11 provided in a drive system to distribute driving force, an actuator 12 for driving the multiplate clutch 11, and a control device 34 for controlling the actuator 12, wherein the actuator 12 includes a pressing part 25 that presses clutch plates 20, 21 of the multiplate clutch 11, and the control device 34, when switching the multiplate clutch 11 from a connected state to a disconnected state, controls the actuator 12 in such a manner that the pressing part 25 separates from the multiplate clutch 11 in the connected state by a predetermined distance x.

Description

トランスファーtransfer
 本開示は駆動系に設けられるトランスファーに関する。 This disclosure relates to the transfer provided in the drive system.
 トランスファーとしては、特許文献1、2に記載のものが知られている。このタイプのトランスファーは、多板クラッチと、多板クラッチを接にするとき多板クラッチを押圧し、断にするとき多板クラッチから離間される押圧部と、押圧部を駆動するモータとを備える。 As the transfer, those described in Patent Documents 1 and 2 are known. This type of transfer includes a multi-plate clutch, a pressing portion that presses the multi-plate clutch when the multi-plate clutch is engaged and is separated from the multi-plate clutch when the disengagement is performed, and a motor that drives the pressing portion. ..
再公表WO2008/096438号公報Republished WO2008 / 096438 特開2011-89610号公報Japanese Unexamined Patent Publication No. 2011-89610
 ところで、上述のタイプのトランスファーは、多板クラッチを接から断にするとき、押圧部を所定の待機位置に移動させて多板クラッチから離間させる。このため、多板クラッチの組立精度等にバラツキがあったり、多板クラッチが摩耗していたりすると、待機位置からクラッチ接位置までの距離が一定とならず、立ち上がりの応答性(トランスファーを断から接にするときの応答性)が悪化する場合がある。 By the way, in the above-mentioned type of transfer, when the multi-plate clutch is disengaged from contact, the pressing portion is moved to a predetermined standby position to separate it from the multi-plate clutch. For this reason, if the assembly accuracy of the multi-plate clutch varies, or if the multi-plate clutch is worn, the distance from the standby position to the clutch contact position will not be constant, and the responsiveness at the start (from the transfer cutoff). Responsiveness when contacting) may deteriorate.
 そこで本開示は、かかる事情に鑑みて創案され、その目的は、応答性の悪化を抑制できるトランスファーを提供することにある。 Therefore, this disclosure was devised in view of such circumstances, and its purpose is to provide a transfer capable of suppressing deterioration of responsiveness.
 本開示の一の態様によれば、
 駆動力を分配すべく駆動系に設けられる多板クラッチと、前記多板クラッチを駆動させるアクチュエータと、前記アクチュエータを制御する制御装置とを備え、
 前記アクチュエータは、前記多板クラッチのクラッチ板を押圧する押圧部を備え、
 前記制御装置は、前記多板クラッチを接から断に切り替えるとき、接状態の前記多板クラッチから前記押圧部を予め設定された距離離間させるように前記アクチュエータを制御する
 ことを特徴とするトランスファーが提供される。
According to one aspect of the present disclosure
A multi-plate clutch provided in the drive system for distributing the driving force, an actuator for driving the multi-plate clutch, and a control device for controlling the actuator are provided.
The actuator includes a pressing portion that presses the clutch plate of the multi-plate clutch.
The control device is characterized in that when the multi-plate clutch is switched from contact to disconnect, the transfer controls the actuator so that the pressing portion is separated from the contacted multi-plate clutch by a preset distance. Provided.
 好ましくは、前記制御装置は、前記トランスファーが適用される車両のエンジンが始動されたとき、前記多板クラッチを接にしたのち、断に切り替える。 Preferably, when the engine of the vehicle to which the transfer is applied is started, the control device engages the multi-plate clutch and then switches to disconnection.
 好ましくは、前記アクチュエータは、エンコーダ付きDCモータ、サーボモータ又はステッピングモータで構成される駆動装置を備え、
 前記制御装置は、前記多板クラッチを接から断に切り替えるとき、前記駆動装置を、前記多板クラッチを断から接にするときとは逆方向に、予め設定された角度だけ回動させる。
Preferably, the actuator comprises a drive device comprising a DC motor with an encoder, a servomotor or a stepping motor.
When the multi-plate clutch is switched from contact to disconnection, the control device rotates the drive device in a direction opposite to that when the multi-plate clutch is switched from contact to contact by a preset angle.
 上記の態様によれば、応答性の悪化を抑制できる。 According to the above aspect, deterioration of responsiveness can be suppressed.
本開示の一実施の形態に係るトランスファーが適用される車両の概略上面図である。It is the schematic top view of the vehicle to which the transfer which concerns on one Embodiment of this disclosure is applied. トランスファーの断面図である。It is sectional drawing of the transfer. 図2の要部拡大図である。It is an enlarged view of the main part of FIG. クラッチ断時のカム部を図3のA-A線の位置で切断した断面図である。It is sectional drawing which cut the cam part at the time of disengagement of a clutch at the position of line AA of FIG. クラッチ接時のカム部を図3のA-A線の位置で切断した断面図である。It is sectional drawing which cut the cam part at the time of clutch engagement at the position of line AA of FIG. カム部及びアクチュエータを図3のB-B線の位置から矢印方向に視た説明図である。It is explanatory drawing which looked at the cam part and the actuator in the direction of an arrow from the position of line BB of FIG. 図3の要部拡大図である。It is an enlarged view of the main part of FIG. 従来のトランスファーの応答時間のバラツキを説明するグラフである。It is a graph explaining the variation of the response time of the conventional transfer. 本実施の形態に係るトランスファーの応答時間のバラツキを説明するグラフである。It is a graph explaining the variation of the response time of the transfer which concerns on this embodiment.
 以下、添付図面を参照して本開示の実施形態を説明する。なお、後述する実施の形態における各方向は、本実施の形態に係るトランスファーが適用される車両の各方向をいうものとする。但しこれら各方向が説明の便宜上定められたものにすぎず、部材間の相対的な位置関係を表す点に留意されたい。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. In addition, each direction in the embodiment described later refers to each direction of the vehicle to which the transfer according to the present embodiment is applied. However, it should be noted that each of these directions is merely defined for convenience of explanation and represents the relative positional relationship between the members.
 図1は、本実施の形態に係るトランスファー1が適用される車両Cの概略上面図である。 FIG. 1 is a schematic top view of the vehicle C to which the transfer 1 according to the present embodiment is applied.
 図1に示すように、本実施の形態において車両CはFR車(フロントエンジン・リアドライブ車)ベースのAWD(All Wheel Drive:全輪駆動)車である。車両前部に搭載されたエンジンEからの回転駆動力は、トランスミッションT/M及びトランスファー1を介してプロペラシャフト2に伝達される。プロペラシャフト2に伝達された回転駆動力はデフケース3内に収容されるデファレンシャルギア(図示せず)を介して後輪4aに伝達される。また、トランスファー1は、トランスミッションT/Mからの回転駆動力を前輪駆動用のデファレンシャルギアの入力軸5に選択的に分配・伝達するように構成される。すなわち、前輪4bは、トランスファー1から入力軸5に駆動力が伝達されるとき駆動輪となり、入力軸5に駆動力が伝達されないとき従動輪となる。 As shown in FIG. 1, in the present embodiment, the vehicle C is an AWD (All Wheel Drive) vehicle based on an FR vehicle (front engine / rear drive vehicle). The rotational driving force from the engine E mounted on the front portion of the vehicle is transmitted to the propeller shaft 2 via the transmission T / M and the transfer 1. The rotational driving force transmitted to the propeller shaft 2 is transmitted to the rear wheels 4a via a differential gear (not shown) housed in the differential case 3. Further, the transfer 1 is configured to selectively distribute and transmit the rotational driving force from the transmission T / M to the input shaft 5 of the differential gear for driving the front wheels. That is, the front wheel 4b becomes a driving wheel when the driving force is transmitted from the transfer 1 to the input shaft 5, and becomes a driven wheel when the driving force is not transmitted to the input shaft 5.
 図2は、トランスファー1の上面断面図である。図3は、図2の要部拡大図である。図2及び図3に示すように、トランスファー1は、トランスミッションT/Mに取り付けられるハウジング6と、ハウジング6内に回転自在に設けられる第1シャフト7と、第1シャフト7に設けられる内側回転部材8と、第1シャフト7に回転自在に設けられる第1スプロケット9と、第1スプロケット9に設けられる外側回転部材10と、内側回転部材8を外側回転部材10に断接可能に接続する多板クラッチ11と、多板クラッチ11を駆動させるアクチュエータ12と、アクチュエータ12を制御する制御装置34とを備える。 FIG. 2 is a top sectional view of the transfer 1. FIG. 3 is an enlarged view of a main part of FIG. As shown in FIGS. 2 and 3, the transfer 1 includes a housing 6 attached to the transmission T / M, a first shaft 7 rotatably provided in the housing 6, and an inner rotating member provided on the first shaft 7. 8 and a multi-plate that connects the first sprocket 9 rotatably provided on the first shaft 7, the outer rotating member 10 provided on the first sprocket 9, and the inner rotating member 8 to and from the outer rotating member 10. It includes a clutch 11, an actuator 12 that drives the multi-plate clutch 11, and a control device 34 that controls the actuator 12.
 また、トランスファー1は、ハウジング6内に回転自在に設けられる第2シャフト13と、第2シャフト13に設けられる第2スプロケット14と、第1スプロケット9及び第2スプロケット14に掛け回されるチェーン15とをさらに備える。第2シャフト13は、前輪駆動用のデファレンシャルギアの入力軸5に接続される。 Further, the transfer 1 includes a second shaft 13 rotatably provided in the housing 6, a second sprocket 14 provided on the second shaft 13, and a chain 15 hung around the first sprocket 9 and the second sprocket 14. And further prepare. The second shaft 13 is connected to the input shaft 5 of the differential gear for driving the front wheels.
 第1シャフト7の前端部は、トランスミッションT/Mの出力軸(図示せず)に接続される。また、第1シャフト7の後端部は、プロペラシャフト2に接続される。内側回転部材8は、概ね第1シャフト7と同軸の筒状に形成される。内側回転部材8の外周面には、外周スプライン16が形成される。外側回転部材10は、第1スプロケット9と内側回転部材8との間に配置され径方向外方に延びる円盤部17と、円盤部17の外周端から後方に延びて形成される外筒部18とを備える。外筒部18は、外周スプライン16の外周を覆うように配置される。外筒部18の内周面には、内周スプライン19が形成される。すなわち、外周スプライン16と内周スプライン19は、径方向に対向される。 The front end of the first shaft 7 is connected to the output shaft (not shown) of the transmission T / M. Further, the rear end portion of the first shaft 7 is connected to the propeller shaft 2. The inner rotating member 8 is formed in a tubular shape substantially coaxial with the first shaft 7. An outer peripheral spline 16 is formed on the outer peripheral surface of the inner rotating member 8. The outer rotating member 10 has a disk portion 17 arranged between the first sprocket 9 and the inner rotating member 8 extending outward in the radial direction, and an outer cylinder portion 18 formed extending rearward from the outer peripheral end of the disk portion 17. And. The outer cylinder portion 18 is arranged so as to cover the outer periphery of the outer peripheral spline 16. An inner peripheral spline 19 is formed on the inner peripheral surface of the outer cylinder portion 18. That is, the outer peripheral spline 16 and the inner peripheral spline 19 face each other in the radial direction.
 多板クラッチ11は、外周スプライン16にスプライン嵌合される環状の第1クラッチ板20と、内周スプライン19にスプライン嵌合される環状の第2クラッチ板21とを備える。第1クラッチ板20と第2クラッチ板21は、前後方向に交互に配置される。また、多板クラッチ11より前方の内側回転部材8には、多板クラッチ11を受けるためのクラッチ受け部22が形成される。 The multi-plate clutch 11 includes an annular first clutch plate 20 that is spline-fitted to the outer peripheral spline 16 and an annular second clutch plate 21 that is spline-fitted to the inner peripheral spline 19. The first clutch plate 20 and the second clutch plate 21 are alternately arranged in the front-rear direction. Further, a clutch receiving portion 22 for receiving the multi-plate clutch 11 is formed on the inner rotating member 8 in front of the multi-plate clutch 11.
 図3、図4、図5及び図6に示すように、アクチュエータ12は、カム機構23と、カム機構23を駆動する駆動装置24と、カム機構23と多板クラッチ11の間に介在される押圧部25とを備える。 As shown in FIGS. 3, 4, 5, and 6, the actuator 12 is interposed between the cam mechanism 23, the drive device 24 for driving the cam mechanism 23, the cam mechanism 23, and the multi-plate clutch 11. A pressing portion 25 is provided.
 カム機構23は、ハウジング6に固定される固定カムブロック26と、固定カムブロック26の前方に配設される可動カムブロック27と、固定カムブロック26及び可動カムブロック27間に配設されるボール28と、可動カムブロック27の前面に設けられるスラスト軸受29とを備える。 The cam mechanism 23 includes a fixed cam block 26 fixed to the housing 6, a movable cam block 27 disposed in front of the fixed cam block 26, and a ball disposed between the fixed cam block 26 and the movable cam block 27. 28 and a thrust bearing 29 provided on the front surface of the movable cam block 27 are provided.
 固定カムブロック26は、第1シャフト7の外径より内径が大きな環状に形成されると共に板状に形成される。固定カムブロック26は、第1シャフト7と同軸に配置される。また、固定カムブロック26の前面には、ボール28の後部を収容する固定カム溝30が複数形成される。固定カム溝30は、第1シャフト7と同軸の円弧状に形成される。固定カム溝30は、周方向の中央が最も深く、両端に向かうにつれて浅くなるように形成される。また、複数の固定カム溝30は、周方向に等間隔に配置される。 The fixed cam block 26 is formed in an annular shape having an inner diameter larger than the outer diameter of the first shaft 7 and in a plate shape. The fixed cam block 26 is arranged coaxially with the first shaft 7. Further, a plurality of fixed cam grooves 30 for accommodating the rear portion of the ball 28 are formed on the front surface of the fixed cam block 26. The fixed cam groove 30 is formed in an arc shape coaxial with the first shaft 7. The fixed cam groove 30 is formed so that the center in the circumferential direction is the deepest and the fixed cam groove 30 becomes shallower toward both ends. Further, the plurality of fixed cam grooves 30 are arranged at equal intervals in the circumferential direction.
 可動カムブロック27は、固定カムブロック26に対して軸方向に対向される対向部27aと、対向部27aから径方向外方に延びて形成されるレバー部27bとを備える。 The movable cam block 27 includes a facing portion 27a that faces the fixed cam block 26 in the axial direction, and a lever portion 27b that extends outward in the radial direction from the facing portion 27a.
 対向部27aは、固定カムブロック26と前後対称の形状に形成される。すなわち、対向部27aは、第1シャフト7の外径より内径が大きな環状に形成されると共に板状に形成される。対向部27aは、第1シャフト7と同軸に配置される。可動カムブロック27の後面には、形状及び配置が固定カム溝30と前後対称の可動カム溝31が形成される。具体的には、可動カム溝31は、ボール28の前部を収容するものであり、第1シャフト7と同軸の円弧状に形成される。可動カム溝31は、周方向の中央が最も深く、両端に向かうにつれて浅くなるように形成される。また、複数の可動カム溝31は、周方向に等間隔に配置される。周方向に隣り合う可動カム溝31間の間隔は、周方向に隣り合う固定カム溝30間の間隔と同じである。 The facing portion 27a is formed in a shape symmetrical with respect to the fixed cam block 26. That is, the facing portion 27a is formed in an annular shape having an inner diameter larger than the outer diameter of the first shaft 7 and in a plate shape. The facing portion 27a is arranged coaxially with the first shaft 7. On the rear surface of the movable cam block 27, a movable cam groove 31 having a shape and arrangement symmetrical with the fixed cam groove 30 is formed. Specifically, the movable cam groove 31 accommodates the front portion of the ball 28, and is formed in an arc shape coaxial with the first shaft 7. The movable cam groove 31 is formed so that the center in the circumferential direction is the deepest and the movable cam groove 31 becomes shallower toward both ends. Further, the plurality of movable cam grooves 31 are arranged at equal intervals in the circumferential direction. The distance between the movable cam grooves 31 adjacent to each other in the circumferential direction is the same as the distance between the fixed cam grooves 30 adjacent to each other in the circumferential direction.
 レバー部27bは、第1シャフト7の中心軸CAを中心とする扇状に形成される。レバー部27bの外周面には、後述するウォームギア33と噛合する歯32が形成される。すなわち、可動カムブロック27は、中心軸CAを中心として回動するセクターギア(扇型歯車)を構成する。なお、固定カム溝30及び可動カム溝31はこれに限られない。例えば、固定カム溝30は、周方向の一端が最も深く、他端に向かうにつれて浅くなるように形成されてもよい。この場合、可動カム溝31は、固定カム溝30とは前後非対称、すなわち、周方向の一端が最も浅く、他端に向かうにつれて深くなるように形成されるとよい。 The lever portion 27b is formed in a fan shape centered on the central axis CA of the first shaft 7. On the outer peripheral surface of the lever portion 27b, teeth 32 that mesh with the worm gear 33 described later are formed. That is, the movable cam block 27 constitutes a sector gear (fan-shaped gear) that rotates around the central axis CA. The fixed cam groove 30 and the movable cam groove 31 are not limited to this. For example, the fixed cam groove 30 may be formed so that one end in the circumferential direction is the deepest and the fixed cam groove 30 becomes shallower toward the other end. In this case, the movable cam groove 31 may be formed so as to be asymmetrical with the fixed cam groove 30, that is, one end in the circumferential direction is the shallowest and the movable cam groove 31 becomes deeper toward the other end.
 押圧部25は、スラスト軸受29と多板クラッチ11との間に介在される。押圧部25は、第1シャフト7の外径より内径が大きな環状に形成されると共に板状に形成されるプレート部25aと、プレート部25aに設けられるパッド部25bとを備える。パッド部25bは、スラスト軸受で構成され、多板クラッチ11に近接して配置される。また、プレート部25aと内側回転部材8との間には、プレート部25aを後方に押圧するスプリング35が設けられる。スプリング35は、コイルバネで構成され、押し縮められた状態でプレート部25aと内側回転部材8との間に設けられる。スプリング35のバネ力は、可動カムブロック27が駆動装置24からの駆動力で後方に移動されたとき、これに押圧部25を追従させることができる程度の弱い力に設定されている。なお、押圧部25はこれに限られない。例えば押圧部25のプレート部25aは可動カムブロック27と一体に形成されてもよい。 The pressing portion 25 is interposed between the thrust bearing 29 and the multi-plate clutch 11. The pressing portion 25 includes a plate portion 25a formed in an annular shape having an inner diameter larger than the outer diameter of the first shaft 7 and formed in a plate shape, and a pad portion 25b provided on the plate portion 25a. The pad portion 25b is composed of a thrust bearing and is arranged close to the multi-plate clutch 11. Further, a spring 35 for pressing the plate portion 25a rearward is provided between the plate portion 25a and the inner rotating member 8. The spring 35 is composed of a coil spring and is provided between the plate portion 25a and the inner rotating member 8 in a compressed state. The spring force of the spring 35 is set to a weak force that allows the pressing portion 25 to follow the movable cam block 27 when it is moved rearward by the driving force from the driving device 24. The pressing portion 25 is not limited to this. For example, the plate portion 25a of the pressing portion 25 may be formed integrally with the movable cam block 27.
 駆動装置24は、エンコーダ付きDCモータで構成される。駆動装置24の駆動軸24aには、ウォームギア33が設けられる。ウォームギア33は、可動カムブロック27の歯32と噛合される。なお、駆動装置24はこれに限られない。駆動装置24は、後述する制御装置34で回転角度を制御できるものであればよく、例えばステッピングモータやサーボモータで構成されてもよい。 The drive device 24 is composed of a DC motor with an encoder. A worm gear 33 is provided on the drive shaft 24a of the drive device 24. The worm gear 33 meshes with the teeth 32 of the movable cam block 27. The drive device 24 is not limited to this. The drive device 24 may be configured as long as the rotation angle can be controlled by the control device 34 described later, and may be composed of, for example, a stepping motor or a servomotor.
 制御装置(ECU:Electronic Control Unit)34は、駆動装置24を制御する。制御装置34は、後輪4aと前輪4bの角速度差が予め設定された上限値以上になったとき、多板クラッチ11を接にするように駆動装置24を制御する。このときの駆動装置24の回転を便宜的に正回転とする。これにより、雪道等の滑りやすい路面では後輪4aのみならず前輪4bにも駆動力を伝達でき、車両Cを全輪駆動(AWD)にできる。 The control device (ECU: Electronic Control Unit) 34 controls the drive device 24. The control device 34 controls the drive device 24 so that the multi-plate clutch 11 is brought into contact with the vehicle when the angular velocity difference between the rear wheels 4a and the front wheels 4b becomes equal to or higher than a preset upper limit value. The rotation of the drive device 24 at this time is set to forward rotation for convenience. As a result, the driving force can be transmitted not only to the rear wheels 4a but also to the front wheels 4b on a slippery road surface such as a snowy road, and the vehicle C can be all-wheel drive (AWD).
 また、制御装置34は、後輪4aと前輪4bの角速度差が予め設定された下限値以下になったとき駆動装置24を逆回転させて多板クラッチ11を断にする。これにより、滑り難い路面では前輪4bを従動輪にできる。 Further, the control device 34 reversely rotates the drive device 24 to disengage the multi-plate clutch 11 when the angular velocity difference between the rear wheels 4a and the front wheels 4b becomes equal to or less than a preset lower limit value. As a result, the front wheel 4b can be used as a driving wheel on a non-slip road surface.
 また、制御装置34は、駆動装置24を正回転及び逆回転させる場合、駆動装置24を一定の速度で回転させる。この速度は、概ね駆動装置24及び電源(図示せず)等の諸条件から決まる最高速度に設定される。これにより、多板クラッチ11は迅速に断接される。 Further, when the drive device 24 is rotated forward and reverse, the control device 34 rotates the drive device 24 at a constant speed. This speed is set to a maximum speed that is generally determined by various conditions such as the drive device 24 and the power supply (not shown). As a result, the multi-plate clutch 11 is quickly engaged and disconnected.
 しかし、従来のトランスファー(図示せず)は、その多板クラッチを断にしたときの押圧部の前後方向の位置(以下、待機位置)はハウジング等の固定係(多板クラッチは含まれない)に対して一定である。このため、多板クラッチの組立精度等にバラツキがあったり、多板クラッチが摩耗していたりすると、待機位置からクラッチ接位置までの距離が一定とならない。このため、待機位置から多板クラッチまでの距離が設計値より長くなる可能性がある。この場合、図8に示すように、押圧部25が待機位置から多板クラッチに到達するまでの時間T2が所期の時間T1よりΔTだけ長くなり、トランスファーの応答性が悪化する。そして、精度の高いクラッチを用いればトランスファーの応答性を改善することはできるが、製造コストが上昇する。 However, in the conventional transfer (not shown), the position of the pressing portion in the front-rear direction (hereinafter referred to as the standby position) when the multi-plate clutch is disengaged is a fixing mechanism such as a housing (the multi-plate clutch is not included). Is constant against. Therefore, if the assembly accuracy of the multi-plate clutch varies, or if the multi-plate clutch is worn, the distance from the standby position to the clutch contact position is not constant. Therefore, the distance from the standby position to the multi-plate clutch may be longer than the design value. In this case, as shown in FIG. 8, the time T2 from the standby position until the pressing portion 25 reaches the multi-plate clutch becomes longer than the expected time T1 by ΔT, and the responsiveness of the transfer deteriorates. The transfer responsiveness can be improved by using a highly accurate clutch, but the manufacturing cost increases.
 そこで本実施の形態に係るトランスファー1は、多板クラッチ11を接から断に切り替えるとき、接状態の多板クラッチ11から押圧部25を予め設定された距離x(図7参照)だけ離間させるようにアクチュエータ12の駆動装置24を制御する。具体的には、トランスファー1の制御装置34は、多板クラッチ11を接から断に切り替えるとき、駆動装置24たるエンコーダ付きDCモータを予め設定された角度θだけ逆回転させる。これにより、多板クラッチ11から待機位置までの距離xが、多板クラッチ11の組立精度等のバラツキや多板クラッチ11の摩耗とは無関係に一定となる。よって、図9に示すように、押圧部25が待機位置から多板クラッチ11に到達するまでの時間T2を所期の時間T1と同じにすることができ、トランスファー1の応答時間を一定にできる。そして、精度の高い多板クラッチ11を用いなくてもトランスファー1の応答時間を一定にでき、トランスファー1の製造コストを抑えつつトランスファー1の応答性を良好にできる。 Therefore, in the transfer 1 according to the present embodiment, when the multi-plate clutch 11 is switched from contact to disconnection, the pressing portion 25 is separated from the multi-plate clutch 11 in the contact state by a preset distance x (see FIG. 7). Controls the drive device 24 of the actuator 12. Specifically, when the multi-plate clutch 11 is switched from contact to disconnection, the control device 34 of the transfer 1 reversely rotates the DC motor with an encoder, which is the drive device 24, by a preset angle θ. As a result, the distance x from the multi-plate clutch 11 to the standby position becomes constant regardless of variations in assembly accuracy of the multi-plate clutch 11 and wear of the multi-plate clutch 11. Therefore, as shown in FIG. 9, the time T2 from the standby position until the pressing portion 25 reaches the multi-plate clutch 11 can be made the same as the desired time T1, and the response time of the transfer 1 can be made constant. .. Then, the response time of the transfer 1 can be made constant without using the highly accurate multi-plate clutch 11, and the responsiveness of the transfer 1 can be improved while suppressing the manufacturing cost of the transfer 1.
 また、制御装置34は、エンジンEが始動されたとき、多板クラッチ11を接にしたのち、断に切り替える。すなわち、制御装置34は、多板クラッチ11を一瞬接状態にした後、駆動装置24を角度θだけ逆回転させる。これにより、車両Cが走行を始める前に予め押圧部25を待機位置(多板クラッチ11から距離xだけ後方に離れた位置)に移動させておくことができる。 Further, when the engine E is started, the control device 34 engages the multi-plate clutch 11 and then switches to disconnection. That is, after the multi-plate clutch 11 is brought into contact with the multi-plate clutch 11 for a moment, the control device 34 reversely rotates the drive device 24 by an angle θ. As a result, the pressing portion 25 can be moved to the standby position (a position separated from the multi-plate clutch 11 by a distance x) in advance before the vehicle C starts traveling.
 次に本実施の形態の作用について述べる。 Next, the operation of this embodiment will be described.
 エンジンEが始動されると、制御装置34は駆動装置24を正回転させる。これにより、可動カムブロック27はクラッチ接方向(図6において半時計回りとなる方向)に回動される。図4に示すように、エンジン始動前の時点でボール28が固定カム溝30及び可動カム溝31の比較的深い位置にある場合、ボール28は、図5に示すように比較的浅い位置に移動される。これにより、可動カムブロック27が前方に移動されて押圧部25を前方に移動させる。前方に移動された押圧部25は多板クラッチ11を前方に押圧する。これにより、第1クラッチ板20及び第2クラッチ板21は、押圧部25とクラッチ受け部22との間に挟まれて接状態となり、押圧部25は前方への移動を規制される。 When the engine E is started, the control device 34 rotates the drive device 24 in the forward direction. As a result, the movable cam block 27 is rotated in the clutch contact direction (counterclockwise in FIG. 6). As shown in FIG. 4, when the ball 28 is in a relatively deep position of the fixed cam groove 30 and the movable cam groove 31 before the engine is started, the ball 28 moves to a relatively shallow position as shown in FIG. Will be done. As a result, the movable cam block 27 is moved forward to move the pressing portion 25 forward. The pressing portion 25 moved forward presses the multi-plate clutch 11 forward. As a result, the first clutch plate 20 and the second clutch plate 21 are sandwiched between the pressing portion 25 and the clutch receiving portion 22 and are in contact with each other, and the pressing portion 25 is restricted from moving forward.
 この後、制御装置34は駆動装置24を予め設定された角度θだけ逆回転させる。これにより、押圧部25は多板クラッチ11から角度θに応じた距離x(図7参照)だけ後方に移動される。すなわち、多板クラッチ11から距離xだけ後方に離間された位置が押圧部25の待機位置となって押圧部25の位置決めがなされる。 After that, the control device 34 reversely rotates the drive device 24 by a preset angle θ. As a result, the pressing portion 25 is moved rearward from the multi-plate clutch 11 by a distance x (see FIG. 7) according to the angle θ. That is, the position separated rearward by the distance x from the multi-plate clutch 11 serves as the standby position of the pressing portion 25, and the pressing portion 25 is positioned.
 この後、車両Cが走行され、後輪4aと前輪4bの角速度差が上限値以上になった場合、制御装置34は駆動装置24を正回転させる。これにより、可動カムブロック27及び押圧部25は前方に移動されて多板クラッチ11を接にする。このとき、押圧部25は、前方に距離x移動することで多板クラッチ11に到達する。このため、制御装置34が駆動装置24を駆動させ始めてから押圧部25が多板クラッチ11に到達するまでの時間は、駆動装置24の回転速度及び距離xに応じた一定の時間となる。 After that, when the vehicle C is driven and the angular velocity difference between the rear wheels 4a and the front wheels 4b becomes equal to or more than the upper limit value, the control device 34 rotates the drive device 24 in the forward direction. As a result, the movable cam block 27 and the pressing portion 25 are moved forward to bring the multi-plate clutch 11 into contact. At this time, the pressing portion 25 reaches the multi-plate clutch 11 by moving forward by a distance x. Therefore, the time from when the control device 34 starts driving the drive device 24 until the pressing portion 25 reaches the multi-plate clutch 11 is a constant time according to the rotation speed and the distance x of the drive device 24.
 この後、車両Cがさらに走行され、後輪4aと前輪4bの角速度差が下限値以下になった場合、制御装置34は駆動装置24を予め設定された角度θだけ逆回転させる。これにより、押圧部25は多板クラッチ11から角度θに応じた距離x(図7参照)だけ後方に移動される。 After that, when the vehicle C is further driven and the angular velocity difference between the rear wheels 4a and the front wheels 4b becomes equal to or less than the lower limit value, the control device 34 reversely rotates the drive device 24 by a preset angle θ. As a result, the pressing portion 25 is moved rearward from the multi-plate clutch 11 by a distance x (see FIG. 7) according to the angle θ.
 以降、後輪4aと前輪4bの角速度差に応じて上述の制御が繰り返される。 After that, the above control is repeated according to the difference in angular velocity between the rear wheels 4a and the front wheels 4b.
 このように、制御装置34は、多板クラッチ11を接から断に切り替えるとき、接状態の多板クラッチ11から押圧部25を予め設定された距離x離間させるようにアクチュエータ12を制御する。このため、多板クラッチ11から距離x離間された位置を押圧部25の待機位置にすることができ、待機位置にある押圧部25が多板クラッチ11に到達するまでの時間を一定にすることができ、多板クラッチ11のバラツキや摩耗による応答性の悪化を抑制できる。言い換えれば、多板クラッチ11のバラツキや摩耗に応じて待機位置を更新できる。 In this way, when the multi-plate clutch 11 is switched from contact to disconnect, the control device 34 controls the actuator 12 so that the pressing portion 25 is separated from the multi-plate clutch 11 in the contact state by a preset distance x. Therefore, the position separated from the multi-plate clutch 11 by the distance x is set as the standby position of the pressing portion 25, and the time until the pressing portion 25 in the standby position reaches the multi-plate clutch 11 is made constant. It is possible to suppress deterioration of responsiveness due to variation and wear of the multi-plate clutch 11. In other words, the standby position can be updated according to the variation and wear of the multi-plate clutch 11.
 また、制御装置34は、トランスファー1が適用される車両CのエンジンEが始動されたとき、多板クラッチ11を接にしたのち、断に切り替える。これにより、エンジンE停止中に何等かの原因で駆動装置24が回転して待機位置がずれても、エンジン始動時に待機位置を元の適切な位置に戻すことができる。そして、エンジン始動直後からトランスファー1の応答性を良好にすることができる。 Further, when the engine E of the vehicle C to which the transfer 1 is applied is started, the control device 34 engages the multi-plate clutch 11 and then switches to disconnection. As a result, even if the drive device 24 rotates and the standby position shifts for some reason while the engine E is stopped, the standby position can be returned to the original appropriate position when the engine is started. Then, the responsiveness of the transfer 1 can be improved immediately after the engine is started.
 以上、本開示の実施形態を詳細に述べたが、本開示は以下のような他の実施形態も可能である。 Although the embodiments of the present disclosure have been described in detail above, the present disclosure may also include the following other embodiments.
 (1)制御装置34は、エンジンEが始動されたとき、多板クラッチ11を接にしたのち、断に切り替える制御を行うものとしたが、この制御は省略されてもよい。仮にエンジン停止中に待機位置がずれた場合でも、エンジン始動後に多板クラッチ11が一旦接・断されれば待機位置を元の適切な位置に戻すことができるからである。 (1) When the engine E is started, the control device 34 controls the multi-plate clutch 11 to be engaged and then switched to disconnect, but this control may be omitted. This is because even if the standby position shifts while the engine is stopped, the standby position can be returned to the original appropriate position once the multi-plate clutch 11 is engaged and disengaged after the engine is started.
 (2)駆動装置24にはウォームギア33が設けられるものとしたが、これに限られない。駆動装置24には、ウォームギア33に代えて平歯車(図示せず)が設けられてもよい。こうすると、エンジンE停止中に駆動装置24が回転し易くなり、待機位置がずれ易くなるが、エンジン始動時に多板クラッチ11を接・断することで、ずれを解消できる。 (2) The drive device 24 is provided with a worm gear 33, but the present invention is not limited to this. The drive device 24 may be provided with a spur gear (not shown) instead of the worm gear 33. By doing so, the drive device 24 is likely to rotate while the engine E is stopped, and the standby position is likely to shift. However, the shift can be eliminated by engaging and disengaging the multi-plate clutch 11 when the engine is started.
 (3)上述の実施の形態では、FR車ベースのAWDに適用されるトランスファー1について説明したが、これに限られない。例えばトランスファー1は、FF車ベースのAWDに適用されるものであってもよい。また、トランスファー1の多板クラッチ11は、プロペラシャフト2に設けられるものとしたが、他の駆動系に設けられてもよい。 (3) In the above-described embodiment, the transfer 1 applied to the FR vehicle-based AWD has been described, but the present invention is not limited to this. For example, the transfer 1 may be applied to an AWD based on an FF vehicle. Further, although the multi-plate clutch 11 of the transfer 1 is provided on the propeller shaft 2, it may be provided on another drive system.
 前述の各実施形態の構成は、特に矛盾が無い限り、部分的にまたは全体的に組み合わせることが可能である。本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。 The configurations of the above-described embodiments can be partially or wholly combined unless there is a particular contradiction. The embodiments of the present disclosure are not limited to the above-described embodiments, and all modifications, applications, and equivalents included in the ideas of the present disclosure defined by the scope of claims are included in the present disclosure. Therefore, this disclosure should not be construed in a limited way and can be applied to any other technique that belongs within the scope of the ideas of this disclosure.

Claims (3)

  1.  駆動力を分配すべく駆動系に設けられる多板クラッチと、前記多板クラッチを駆動させるアクチュエータと、前記アクチュエータを制御する制御装置とを備え、
     前記アクチュエータは、前記多板クラッチのクラッチ板を押圧する押圧部を備え、
     前記制御装置は、前記多板クラッチを接から断に切り替えるとき、接状態の前記多板クラッチから前記押圧部を予め設定された距離離間させるように前記アクチュエータを制御する
     ことを特徴とするトランスファー。
    A multi-plate clutch provided in the drive system to distribute the driving force, an actuator for driving the multi-plate clutch, and a control device for controlling the actuator are provided.
    The actuator includes a pressing portion that presses the clutch plate of the multi-plate clutch.
    The control device is a transfer that controls the actuator so that when the multi-plate clutch is switched from contact to disconnect, the pressing portion is separated from the contacted multi-plate clutch by a preset distance.
  2.  前記制御装置は、前記トランスファーが適用される車両のエンジンが始動されたとき、前記多板クラッチを接にしたのち、断に切り替える
     請求項1に記載のトランスファー。
    The transfer according to claim 1, wherein the control device switches to disengagement after engaging the multi-plate clutch when the engine of the vehicle to which the transfer is applied is started.
  3.  前記アクチュエータは、エンコーダ付きDCモータ、サーボモータ又はステッピングモータで構成される駆動装置を備え、
     前記制御装置は、前記多板クラッチを接から断に切り替えるとき、前記駆動装置を、前記多板クラッチを断から接にするときとは逆方向に、予め設定された角度だけ回動させる
     請求項1又は2に記載のトランスファー。
    The actuator includes a drive device including a DC motor with an encoder, a servo motor, or a stepping motor.
    The control device claims that when the multi-plate clutch is switched from contact to disengagement, the drive device is rotated by a preset angle in a direction opposite to that when the multi-plate clutch is switched from contact to disengagement. The transfer according to 1 or 2.
PCT/JP2020/007762 2019-05-30 2020-02-26 Transfer WO2020240952A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019101400A JP2020193696A (en) 2019-05-30 2019-05-30 transfer
JP2019-101400 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020240952A1 true WO2020240952A1 (en) 2020-12-03

Family

ID=73545844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007762 WO2020240952A1 (en) 2019-05-30 2020-02-26 Transfer

Country Status (2)

Country Link
JP (1) JP2020193696A (en)
WO (1) WO2020240952A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469521B2 (en) 2021-01-22 2024-04-16 ジーケーエヌ オートモーティブ リミテッド Power transmission
TWI757100B (en) * 2021-02-22 2022-03-01 姚立和 Clutch structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065364A (en) * 2001-08-28 2003-03-05 Aisin Seiki Co Ltd Clutch control equipment
WO2008096438A1 (en) * 2007-02-08 2008-08-14 Univance Corporation Control device for multiple disk clutch, and transfer device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003065364A (en) * 2001-08-28 2003-03-05 Aisin Seiki Co Ltd Clutch control equipment
WO2008096438A1 (en) * 2007-02-08 2008-08-14 Univance Corporation Control device for multiple disk clutch, and transfer device

Also Published As

Publication number Publication date
JP2020193696A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
US9199535B2 (en) Disconnectable driveline for all-wheel drive vehicle
US9022158B2 (en) Four-wheel-drive vehicle and control unit for four-wheel-drive vehicle
WO2020240952A1 (en) Transfer
JP5594487B2 (en) Locking differential
JP2003184993A (en) Gear module for clutch actuator in differential assembly
JP2004249979A (en) Transfer case equipped with two planetary gears having common carrier
US20180370354A1 (en) Vehicular power transmission device
US7694791B2 (en) Driving force transmitting apparatus
JP2001180317A (en) Torque divider for four-wheel drive vehicle
JP4364170B2 (en) Power transmission device
WO2017203831A1 (en) Drive power connection/disconnection device
JP4905036B2 (en) Driving force transmission device
JP6213449B2 (en) Vehicle drive device
WO2014132837A1 (en) Vehicle transmission
JP2019173957A (en) transfer
US11060594B2 (en) Driving force distribution apparatus
US4685352A (en) Power distributing mechanism
JP2529245B2 (en) Defarency device
KR100786533B1 (en) 4-wheel drive center axle disconnect system
JP2016142369A (en) Power force disconnecting mechanism
JPH0464747A (en) Differential limiting device
US20230278421A1 (en) Front-rear wheel driving force distribution device and front-rear wheel driving force distribution device controller
JP4192955B2 (en) Driving force transmission device
JP2013108613A (en) Clutch, and four-wheel drive vehicle
JP2012220005A (en) Electromagnetic engaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814454

Country of ref document: EP

Kind code of ref document: A1